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ABSTRACT

A Steiner Problem in graphs is the problem of finding a set of edges (arcs) with
minimum total weight which connects a given set of nodes in an edge-weighted graph
(directed or undirected). This paper develops models for the directed Steiner tree
problem on graphs. New and old models are examined in terms of their amenability
to solution schemes based on Lagrangean relaxation. As a result. three algorithms
are presented and their performance comparred on a number of problems originally
tested hy Beasley (1984, 1987) in the case of undirected graphs.

RESUME

Etant donne un graphe G = (1. 4) et un sous-ensemble de somniets \'1 de V. le
probleme de Steiner consiste a deterininer un graphe partiel de G de longueur mini-
male permettant de relier entre eux tous les sommets de \'1 en utilisant eventuellement
un ou plusieurs sommets de 1" | 17. Le present article traite de ce problenie dans le cas
des graphes non-orientes. Diflerentes modelisations y sont examinees. ainsi que des
methodes de solution basees sur la technique de la relaxation Lagrangienne. En guise
de resultats. trois algorithmes sont presentes et testes sur un ensemble de problemes
originalement utilises par Beaslev( 1984, 1987 ) dans le cas des graphes non-orientes.
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1. INTRODUCTION

1.1 Graph terminology

A directed graph G = {V. .4} consists of a hnite set of vertices 1" (|}’ = n) and a
set of arcs 4 (14 = m). Each arc in 4 is an ordered pair (v;,v;) of distinct vertices
v, vy (A CV x V). A weighted graph GG = {1 4:g}. is the graph G together with
a nonnegative real function g defined over 4. Since our concern is only with weighted
graphs. we drop the function g from our notation for graphs unless otherwise specified.

A subgraph G' C G is a graph ' = {17, A"}, where V' C V" and A' C 4 and
such that each arc a'k of (a'k € A')is incident to the same vertices in G’ aud in
G. The weight of a subgraph G'. denoted by W (G’). is the sum of the weights ¢, (or
cy for ay = (r,.7,)) over all the arcs a; in A'.

A senmupath joining vertices v and v; in (7 is a sequence of vertices vs. U, 1. ...,1¢
such that the arc (1., v ,.1) < dor(ve_,_).ves;) € Aforeach . A set of vertices

" 2 Vs weakly connected if there is a semipath of vertices in I’ joining any pair
of vertices in U'. A path froni v5 to vy in G is a sequence of arcs in A such that
(s g2 1) (Vem e tsm)ened Ui Ugayaq b (vy_y. 7). The path is sumple if all the

vertices {ts.te.y.....0y} are distinct. A pathis a cycle if v¢ = vy. A set of vertices
S C Vs strongly connected if there is a path from any vertexin S to any other vertex
in S which does not contain any vertices in 1" §. A maximal strongly connected set
i1sa strongly comnected component of G. An arborescence B, (B C G) is a sel of arcs
such that

(1) 1f (v, (v w,) are distinct arcs of B. then uw, = w; ; (at most one arc
entering a vertex)

(11} B does> not contain a cvcle:

(i} B is weakly connected. (B is a directed tree.)

A graph G = {1.A} is said to be connected if the set V" is weakly connected.
Let G' = {V', A’} be a subgraph of ¢ = {1. 4} and V" C V", then G’ is said to be a
connected subgraph with respect tc V" if there exists a semipath in G' between each
pair of distinct vertices in V", Furthermore. if ' is an aborescence, then subgraph
G' is said to be an aborescence subgraph of G with respect to V"' and if V! = V" = V'
then G' is a spanning arborescence of G. Note that one vertex in 1"/ is designated as
the root for the aborescence.

1.2 Problem Statement

Let G = {V, A} be a weighted connected graph. Let 17 C V" and G(V]) = {G, <
G: such that G, is a connected subgraph with respect to 17}. The problem is to find
the least weight graph in GG(17). Such graph (denoted by G*(V})) is called a directed
Steiner graph of G with respeet to V. If G*(17) is an aborescence then it is called a
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directed Stemmer tree of G with respect to Vy or the mimimal arborescence of G wath
respect to V). The vertices of the graph G7(1]} not from the set 17, are referred to

as Sleaner points.

Our graph notation attempts to tie together the notational conventions developed
by Bondy and Murty (1976), Hakimi (1971) and Tarjan (1977). An arc from ; to ¢,
1s denoted either by (v,.v;) or simply by (7,) if no ambiguity results.

We restrict the discussion to weighted graphs with stricily positive weight func-
tions and to the problem of finding the minimal arborescence of G with respect to
V], i.e.. the directed Steiner tree problem. Any solution to this problem. designates
one vertex in 1] as the root vertex of the resulting minimal arborescence of G with
respect to V7. To facilitate the forthcomming mathematical formulations, we aug-
ment the graph GG with an additional vertex denoted as vertex 0 and with a set of
arcs (0.v,). for v; = 17. The weight function g assigns to these arcs high positive
identical weights to assure only one such arc ir. the optimal solution to the directed
Steiner tree problem.

The complexity status of the Steiner tree problem on graphs is well settled. Karp.
1972, proves the NP-completeness of this problem by polvnomial transformation from
Exact Cover by 3-Sets problem. The problem remains NP-complete if all the arc
weights are equal. if (i is a bipartite graph with no arcs joining two vertices in 1]
(or two vertices in 1"\ 1), and also in case (i is a planar graph. For more detailed
reference list on the complexity of this problem see the classic book by Garey and
Johnson. 1979. As far as a literature review of past research on the Steiner tree
problem on graphs. the readers are directed to the very fine recent paper by Winter.
1987,

2. MATHEMATICAL FORMULATIONS WITH FLOW VARI-
ABLES

In the mathematical formulations that follow. the decision variables are of two
basic types: (i) a binary (selection) variables - y;;, which accept value 1 if the arc
(v,,v;) is selected in the solution and the value 0 if not. and (ii) flow variables either
z;jp (or z;;) representing the amount of flow through the arc (v;.v;) directed from
the root vertex 0 to vertex p in 1] (or the total flow on the arc {v,,v;)).

2.1 Mathematical Formulation - A

Minimize = = T (; j)c 4 Cij¥i)- (1)

subject to:

&
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1. for 1 = 0.
215\'\,{0} rop - S]{\'_{U} ryp =4 0. for ¢+ = 0.p y for all p = 17 12)
v1. for 1 = p.
) Tip < Yipe for all (v,.v;) € A.pe 1] (3)
z,,p 2 0. for all (v,.v;) € 4.pe 1) (4)

b ¥,y =0or 1. forall (v,,v;) € 4 (5)

)

1 Given the objective of minimizing the total weight of the selected arcs (the arcs
for which y,; = 1). the constraints have to ensure the arborescence structure (with
respect to V7). Constraints (2) impose the conservation of flow on all vertices in

b V' (V] _ {0}) and ensure that one unit of flow leaves the root vertex 0 for each
destination vertex p in Vj. Constraints (2} also state that one unit of flow reaches

} each vertex in V. Thus. there has to be a path (in ) from the vertex 0 to each one

of the vertices in 1]. Constraints (3) ensure that flow is allowed only through the
arcs selected in the solution. Constraints (4) are the flow nonnegativity constraints
and {5) are the binary value constraints for the appropriate decision variables.

A nofe: In case the weight function g of the graph G = {1. A:g} is not strictly
positive. then in order to ensure a tree structure for the solution to the MDSTP we
add the constrains ©,-y y,, = 1 forall j & 17 (2a). Since in this paper we restrict
the discussion to strictly positive functions g. constraints (2a) are redundent and
subsequently dropped.

A more compact mathematical formulation to the one presented in (A) is ob-
taired by simply aggregating constraints (3) with respect to the index p. In this case
we obtain:

o Togp < V1. for all (v,.v;) € A (37

We denote the mathematical formulation which contains the equations (1). (2).
(3'), (4), and (5) as (A").

It 1s of interest to examine the implications of aggregating constraints (3) into the
form of (3’). Since both formulations construct the same weight solution if solved op-
timaly, what could be the advantage of attempting to solve one set of equations versus
the other set of equations ? The answer to this question is in most cases experimental
in the sense that a number of researchers (Magnanti and Wong, 1981, Cornuejols et
al.. 1977) were much more successfull in constructing efficient solution schemes for
the disaggregated formulation (A) than the more compact (A’) formulation. In
order to formalize this experimental experience we examine the linear programming
relaxations (constraints (5) become > 0. and y,; < 1 for all (¢,,v;) € A4) of both
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formulations. Denote the objective function value for the LP relaxation for (A) as
:'I‘}P and for (A’) as :‘2,,.
Theorem 1 : :f,, b :f,,.
Proof : It is clear that any feasibie solution for the hnear programming relax-
ation of (A) 1s also feasible for the linear programming relaxation of (A’). In the
reverse direction this is not true in general. One can illustrate it by examining a

equilateral triangle graph with 4 vertices. (one in the center) and 7 directed ares (see
Figure 1). The 17 set consists of vertices 1 and 2.

Figure 1 : Lquilateral triangle graph.

The flow variables rg3; = 2.737] = 2.1y2) = l.xag; = 1 are clearly feasible in
the LP relaxation for (A’) and not feasible for the LP relaxation for (A) e

Given two (different) equivalent integer programming formulations (P1) and (P2)
for an optimization (minimization) problem. Denote by (RP1) and (RP2) the respec-’
tive formulations obtained by relaxing the integrality constraints. If :pp; > zgpo
and not equal in general, then formulation (P1) is called a strong formulation
with respect to (P2). This concept of strong formulation is stated in Geoffrion, 1979
and Van Roy, 1986.

In our case, we proved that (A) is a strong formulation with respect to (A’).

The next mathematical formulation for the minimal arborescence problem with
respect to V] requires only two indices for its flow variables. It is based on a similar
TSP formulation from Gavish and Graves, 1982.

Mathematical Formulation - B

Minimize = = T, j)c 4 Cij¥i), !




v —— - - -
Subject to:
Slar iy - Shera = -1 for all k = 1) (7}
Slar7a, - Slhoeta = 0 forall ke V" 15 (&)
T < Viyy- for all (v;,v5)€ 4 (9)
7, > 0. for all (vpv5) € A (10)
yi; = 0or 1 for all (v;,vj) € A (11)

The formulations (A) and (B) are equivalent in terms of determining the same
optimal solution. In terms of the linear programming relaxation, formulation (A)
is a strong formulation with respect to (B) (the proof of Theorem 1 holds for this
case t0o). What is also clear is that any feasible solution (in terms of flow) of the
LP relaxation for (A’) is also feasible for the LP relaxation of (B) and visa versa.
Thus. (A’) and (B) are fullv equivalent.

3. MATHEMATICAL FORMULATIONS WITHOUT FLOW VARI-
ABLES

.1 A Note on the Minimal Spanning Arborescence Problem - (MSAP)

When attempting to solve the MDSTP on a graph, one usually recxainines the
very similar ‘easy’ problem of constructing a minimal cost spanning arborescence
(MSAP). In all the formulations of MSAP which are known to the authors. flow
variables are used (see for example Gavish. 1982) in the same fashion as in the MDSTP
formulations presented above in Section 2.1. Aneja, 1980, presents a formulation of
the MDSTP without the flow variables. His 1s a set covering formulation in which
the number of consiraints grows exponenually with the size of problem instances.
We present a very simple formulation of the MSAP which does not require flow
variables nor does the number of constraints grow exponentially with the size of
problem instances. In this new MSAP formulation we ‘borrow’ a version of TSP
subtour elimination constraints (Miller. Tucker. and Zemlin, 1960).

Minimize = = 3, e 4 ¢y ¥;

Subject to
Ty =1 forall j=1,2,....n (12)
v, —uj+ny; < (n-1) for all ,5 € V" U {0} (13)
yi; = 0orl for all 7,5 € VU {0} (14)

where u; and u; are arbitrary real numbers.

7.




Nute that those cycle (subtour) elimination constraints (14) are for all 7.5 -
V" {0} including the ‘artificial” root veriex 0 (contrary to 1.5 = 0 in the TSP
sormulation}. Also note that the TSP subtour ehnunation constraints of the type
Vics :J-;? Yy, < § - land ¥, ¢ S]é§ ¥, > 1forall § 2 1 would not be appro-

priate for this MSAP formulation.

3.2 Set Covering Formulation - C

First. we present a set covering type formulation for the MDSTP. modified for
the directed graph by Wong. 1984. and originally presented by Aneja. 1980, for the
undirected graph.

Minimize = = S, ;0 4 ciy9, (15)
Subject 10:

S“.ﬂ{_“{‘\-] SN, Yy > 1 forall Ny Z V suchthat 02 Nyand Ny~ ¥y =0

(16)
(N} denotes the complement of N} in V)
vy, Oorl forall (1.31 - A (171

In his selution scheme for formulation C. Aneja. 1980, solves optimaly the linear
programning telaxation of C. An interesting result due to Wong. 148d. is that
:fp = :Epl - -1‘}, - :]{”P). (T.e.. the linear programming relaxations of the set
covering formulation C and the flow formulation A. have the same optimal values.

The number of constraints in formulation C is exponential in the size of the
problem. There is too little *structure’in this formulation to be usefull in Lagrangean
relaxation schemes. In order to amend this ‘weakeness” we add a number of redundent
structural constraints in the next formulation.

3.3 Modified Set Covering Formulation - D

Minimize = = T, ;e 4 ¢iy¥) (18)
Subject to:
Yo Yy = 1 for all j € V3 (19)
S(ig)eayy 2 Ve -1 (20)
v, —u; ~ny,; <(n-1) forall (1,71 € A (21)

:(,,])g('(p) Yy 21 for all p € 17 and all cuts {C(p)} (22)

where ('(p) is a cut (a subset of arcs in A) between the vertex 0 and the vertex
pel




Yy, = Oor 1l forall (2.7)¢ 4 (23)

u, and u, are arbitrary real numbers.

The objective function (15} and the constraints (22]. (23) define the MDSTP in
a formulation equivalent to C. Constraints (19, (20). and (21) are redundent. The
constraints in (19) ensure that only one arc enters each vertex in 1]. Constraints (20)
state that at least 1 — 1 arcs are selected in any solution where injtially V; = 17 and
in principle V) Z V.. Constraints (21) are the subtour elimination constraints. Con-
straints (21) are not the ‘complicating’ constraints in this case. The complicating
constraints are the set covering constraints (22) which ensure a tree structure solution
which spans all the vertices in V). Dropping the constraints (22) results. through the
(21) constraints in a minimal weight forest solution to the remaining problem.

Corollary 1: :PP E :E‘P(‘ :fp).

This result simply follows from the fact that we .ave added constraints (19) to
an equivalent formulation to C. The other constraints types ({20} and (21)) would
be satisfied in the C formulation through constraints (16).

4. LAGRANGEAN RELAXATION

In this section we describe a number of Lagrangean relaxations for the mathe-
matical formulations presented in Sections 2 and 3. Lagrangean relaxation approach
for solving “hard’ problems is based on the observation that by removing the compli-
cating constraints from a mathematical formulation. the resulting problen is ‘easily’
solvable. A <olution to the reiaxed problem constitutes a lower bound on the solution
to the original problemi. The thrust in such an approach is to obtain a maximal lower
bound which. if it does not solve the original problem. can be integrated into an
mmplicit enumeration scheme such as branch and bound.

4.1 Lagrangean Relaxations of (A)

We present two Lagrangean relaxations of formulation A. In the first one the arc
selection constraints are relaxed. resulting in a shortest path type problem. In the
second relaxation the conservation of flow constraints are moved into the objective
leading to a more difficult subproblem.

4.1.1 The First Relaxation

In formulation (A). the complicating constraints are the arc selection constraints
(3). which ensure that the unit flow from the root vertex 0 to a vertex p.p € 1] passes
only through the arcs selected in the solution. Below we present the Lagrangean
relaxation obtained by moving the constraints (3) multiplied by nonnegative Ap
into the objective function. For a given vector of multipliers X. the problem is
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Minimize z(A) = S(!, cau¥y — Siuea Sty Agplyg - T
J J

which after rearrangement of terms has the following form
Minimize z:(A) = :(1.1)6.4(C1J = Coery Ayplyy :(1,1)5.4 Spety Ayprygp  (24)
Subject to:

1. for 2 =0,

SJE"u{O}Iljp_:]e\'u{o}‘?}tp: 0.for:# 0,p p forallpe 17 (25)

-1, for i = p,
0< z,,<1. forall (1,5) € A,pe V) (26)
Y, = Oor 1. forall(1.7)e A (27)

The *best’ Lagrangean value is obtained by maximizing =(\) over nonnegative
Ms (Ayyp 2 0. for all (z.5) € A.p < V]). For those optimal Lagrangean multipliers
(A,;p) the following relationship holds (see Gavish, 1978, and Wong. 1984. for the
dual formulation of A):

Gy = ey Ay 20 forall (ij) 2 A4 (28)

By observing that the ahove ({24) - (27)) Lagrangean formulation has the Inte-
grality Property (Geoffrion. 1974). the lower bound value obtained for the MDSTP by
solving (24) - (27) is equal to the value for the linear programming relaxation to the
problem. In this case. the main advantage for examining the Lagrangean relaxation
of A would depend on how fast. in comparison. can such a relaxation be solved. In
addition. such a solution could be more amenable for developing good heuristics.

The (2%) inequalities suggest a fast solution procedure to obtain the maximal z( )}
solution for the Lagrangean relaxation of A based on the repeated use of the shortest
path elgorithin with cost modifications along the way. In the algorithm outlined
below. we succssively adjust the values of the A;),’s using the subgradient method
described in Held et al. (1974) while preserving the dual feasibility of these multipliers
via the (28) inequalities. We enforce for all (1,7) € A throughout the algorithin
below (in each modification of multipliers) the following constraints : Tpev, Adiyp =
¢i;- Then the objective of the Lagrangean problem is equivalent to a shortest path
problem.

Denote by (L A1(p)) the value of (L A1) obtained by the Algorithm LA1 outlined
below, given that p,(p € 17) is the root node of the Steiner tree. Denote by Z(LA1(p))
the weight of the tree generated by =(LAl(p)) solution (i.e.. assign the actual costs
¢ij to the arcs in the Steiner tree). Let sp(l.p) denote the shortest path from [ to p
in the network with arc costs (A,;,).(1.7) € A.

.10 -
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Algorithm LA1
Step 0 : (Imitwalizat.on)

Set Ayp = (2 forall (i) € Ape

{

A M pest = 02y = x: lter = 0. Implter = 0;

Idivide = (preset parameter); & = 2; Iterlim = Maximum number of iterations;
¢4 = smaller gap on &:¢p.qy = relative precisicn desired on z(A)peepi st =0

Step I : Solve the following (Lagrangear relaxation) problem:
minz) = Yoeyy S(i,j)EA AypTiyp subject to constraints (26) and (27).
This problem can be solved with a shortest path algorithm as follows:

For each p € 17 compute all the shortest paths from p to k € 1 using arc costs
{A,;p} and denote its cost by &}, Select the solution with the minimal §;, value.

Step 2 - Updating the bounds
Lower bound :
If 2(A) > 2(A)peq then

HMpest = 2(A)e and for all (i.7) = Ap € Vi A plbest) = Ay rgplbest) =
Yyp- Stbest) = st Implter = 0

Upper bound :

Consider the subgraph G' = (V" _ {0}..4") where 4’ = {(i.7):z;p > 0 for some
p< V1}. Obtain the shortest path tree structure for this subgraph by computing the
shortest paths from 0 to each node of V7. Let {y,, = 1} for each arc (i.;) in this
shortest path tree and 0 otherwise.

The current solution vector (y,r) is always feasible for the original problem and
its cost :I(y.r) = :(z,j)EA €131y

If 24(y.7) < zpeyy then

Zpest = (y.7), Implter = 0
Step 3: Updating A
(1) If Implter = ldivide fhen

Change the value é and restart from the best solution z(A)pq (€. & = &/2,
Implter = 0, 2(X) = z(A)pegy. st = st(best)/2.X;p = Ajjplbest),q5, = yplbest) for
all (1.7) € A.p€ 7).

- 11 -
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Else - Compute the ascent direction 4 and the step sf for the current
solution.

Ygp T Lop Yy ferallig) D Ape V)

st = {(:M,L_;(/\)‘

(1) Ay = Ay = Sty (J)€ Ape 1y

The new multipliers A, are obtained by solving the following problem:

min{ A=A S0 A = 6y A0 2 0.(0,5) € Ap g V)

The vector X is the projection of A on {SPE‘] Aup = Gy A 2 000g) € Ap <
1}

Note - The solution of the projection problem follows the procedure suggested
by Held et al. (1974, pp. 77).

Step 4 o Stoping Conditions
ta) If Tter > Iterlim then Stop

(bi H & < €4 then Slop

(cV I ehi“'(»;'»f—x—“;” < €l sf then Si()p

Otherwise Go To Step 2

4.1.2 The Second Relaxation

Following a different relaxation approach. we dualize on the flow constraints (2)
using A, as the Lagrangean multipliers. The number of multipliers reduces ton 17 .
which is considerably less than in the previous relaxation. The objective function
becomes:

Minimize z(A) = :(z,j)e.-l CijYy — :pe\-] AOP(SK"‘TOJP - SJG\'T]'O;» -1 -
pey Arp(Shev Tpip = et Tympt D= Shevuzop Spety Mpl it Typ—Shev 7yy)

After rearrangement of terms the objective is converted to:
Minimize z()) = S(t,j)‘EA ci3¥i; *+ Tpety S(i,j)eA TypCigp — “pel;y Copp  (30)
Subject 1o (3), (4), and (5) where ¢, = Ajp—Apforall (i.j)€ 4and pc 1.

Note that the A,;’s in this relaxation are unrestricted in sign and the ¢,;p can be
handled implicitly storing n? entries instead of n entries.

-1z




In order to strenghten the lower bound obtained from such a relaxation we amend
1t with the following constraints:

Yievyy o1 forall) <1y (30)
and r,,, =y, forallti.j)< dand)cl] (31)

The constraints (30). (31) are redundent in the formulation A, but are helpful
in increasing the Lagrangean bound. Note also that (30) is a relaxation of the (tree)
constraint which ensures that only one arc enters a node in 17 (i.e., T,y y,; = 1 for
all j ¢ 17). The ‘tree’ constraint is tighter but not easily solvable.

Before presenting a solution procedure for the problem defined by (29). (3), (4).
(5). (30). and (31), we make the following observations:

{1} From the selection constraints (3) we notice that:
(a) If y,, = 0 then r,;, = 0forall p< 1)
(b) Ify,, = 1 then
(1) r,,, =1 which follows from (31). and
(M) z = Vif oy, 0oand xypy = 0000 oy, > 0Ap 2 5.

Note that for the same reason as in the first relaxation of A. the maximum lower
bound for the MDSTP obtained by solving this relaxation can not exceed the bound
obtained from the linear programming relaxation of the problem.

Algorithm LA2

Step 10 (Initialization) Set A, = /\?P: Iter = 0: Implter = 0: =(A)pop = Oizpegy =

cost of the hest feasible solution found so far: Idivide = preset parameter: & = 2:sf =
0: Iterlim = maximum number of iterations: ¢g = smaller gap on &:¢p, = relative
precision desired on z(A ) 1.

Note that /\?) are randomly generated. ¢ is obtained by computing the shortest
paths from one node of 17} to all other nodes in 17.

Step 2: Solve the Lagrangean Problem:

Iter = Iter = 1. Implter = Implter + 1. Set y;; = 0.7, = 0. for all (i.j) €
A,p € ‘.].

(1) For each arc (1.7) € 4
(i) Compute M,; = ¢;; + Tpeyy pz, min{0:¢,5,}
(1) If j € Vy set M,, = M, ~ ¢,

(i11) If M,, < 0 then set y,, = 1 and
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For all p < 17 set
1for ¢,y < 0ory=p
Toyp =
0 otherwise

(2) For each j € V7. if M,; > 0 for all (:,j) € A then determine ! such that
My, = ming, )e 4{M,;} and set y;; = 1. for all p such that ¢,, < 0 or p = j set
7)), = 1. otherwise set r,,, = 0.

(3) Compute z(\)
Step J: (Updating the bounds)
(1) 1 =tA) = 2(A), 4 then
HMpeor = (A Apegg = Aqgplbest) = 5y, st(best) = st.Implter = 0.

(2) I the solution (y..r) is feasible for the original problem then compute its cost
and denote the value by :p.

If :p < e then set zp, o — zp: Set lImpiter = 0:
Step 4: (Updating the X)

(1) If Implhter = Idivide then set & = f—f, Implter = 0. =(X) = =z(A), .51 =
stihe sty ‘2.‘\,], = /\,,,(besl}.qu = 7,1,(1'(51) forall: = Vipe V).

rlse compute the ascent direction = and the step st
(C v xoyp - Syav 1y, — 1) forall pe 1y
Av'l]z: (:]-5\"1'1117'2]{\'1‘]”,) for all P ‘.1.1.1‘ 0])
Ny L “ :
(Srevapp = Siev g+ 1) for all p € 1

Qf — 6:?'(1?_:(A)
” Y

(i) Ayp i= Mg — stapi € Vip € 1)

Step 5: (Stoping condition)

(a) If Tter > Jterlimit Stop
(b) If & < ¢ Stop
(c) 1f L—(;—)fiL < Cheut Stop
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Otherwise Go To Step 2.

4.2 Lagrangean Relaxation of (D)

The complicating constraints in the D formulation are the set covering - (22)
constraints. The major difficulty is that the number of constraints in (22) is expo-
nential in the size of 1) set. On the other hand the number of y,; variables is exactly
n(n - 1),/2. This implies that in the linear programming relaxation of this formula-
tion. most of the constraints in (22) are nonbinding. The difficulty lies in finding the
binding constraints. By removing the constraints (22) and adding them to the objec-
tive function multiplied by the appropriate (nonnegative) Lagrangean multipliers we
obtain the following relaxed formulation:

Minimize 2(X) = ©, i g 00 = S en Agll = Sy iecip) Yoy

Subject to constraints (19). (20). (21) and (23} where II is the index set of all
cuts ¢, between the vertex 0 and the vertices p £ V5.

This formulation can be rewritten as:

Minimize 2(X3) = ¥ A, = 35,02 4058 (32)

Subject to constraints (191, (201, (21). and (23} where:

ey - :l,{ﬂ A, for(iigye Citpy for some p 2 1)

¢ for ti.g) = C'{pi

This last problem ({32). (19). (20y. (21)}. and (23)) for fixed values of A can be
solved in polynomial time. (Again from Lagrangean duality we get ¢,; > 0 for all
(1.j) = A.) For a given A vector denote this problem by LD1.

The question now reduces to one of finding A™ which maximizes the value of z(A}).

ie. 2(A%) = Mazy>o{z(A)}.

. ()" .D
Theorem 2 : z(\") > :7p.

Proof : This result is based on the observation that the set of constraints (19),
(20), (21). and (23) do not have the Integrality Property (Geoffrion, 1974,).

4.2.1 Dual Ascent Procedure for Initial A, Values

In this section we describe a dual ascent procedure for computing a lower bound to
the undirected version of the MDSTP using the D formulation of the problem. Mod-
ifing this dual ascent procedure for a general directed graph is left as an algorithmic
exercise.




First we explain and provide an outline of the algorithm followed by a small
numerical example and conclude with a detailed description of a dual ascent procedure
for finding good multipliers to LD1.

The algorithm begins by solving the problem LD1 with 1. = {0} _ 17 and all A
values equal to zero. Let L g be the cost of this solution. The network structure of this
solution is that of a *sparse’ forest F of disconnected components. 1n case of a directed
graph. this problem can be solved with a modified Tarjan's algorithm (Tarjan, 1977).
We differentiate between two component types. Components which contain at least
one node belonging to 17 {0} are denoted by T = {T.T,.T....}. where 1 is the
component which contains the root node. The second set of components consists of
the points S. S T 174 1] not contained in any of the components in T.

At this point we pick a component T;..k # 0. and compute the minimal cost
of expanding this component. Let & = Min o, jev @yt & is the multiplier
value over the cut seperating the nodes in T} from all the other nodes. The cost
matrix is updated to:

¢ — & forallye T2 Vo Ty
= (33)
otherwise

As a result of cost matrix update. one or more arcs on the cut have a reduced
cost of zero.

Let Lg = Lp, . - & where t is the iteration number.

The component T} is merged via the zero cost arcs with a number of other
components. This process continues till T; is merged with Ty at which point another
component in T is selected. At each iteration at least one component is added to T}
thus this merging of components stops at most after :S - T. - 1 steps. When the
process is completed we have only one component Ty which contains a subset & of
nodes (Steiner points). §§ C 171 17. We remove from T all the nodes s,s € S; which
are dangling nodes (i.e.. their degree is < 1). Let Sy be the set of terminal nodes.

Lp=1Lp, - Zecs.cps

where ps is the adjacent node of node s.s € Ty. This last ‘trimming’ step is
repeated until all the terminal nodes (degree < 1) are nodes in 1] only.

Lpg is the lower bound value to the MDSTP.

In order to illustrate those steps we use the following example. The example
consists of 3 required nodes (1, 3. and 4. where node 1 is designated as the root node)
and 4 potential Steiner points. The network matrix (the arc weights) is symmetric,
which in the directed graph version implies two arcs of the same weight and oposite
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direction between two adjacent nodes of the graph. The initial lower bound obtained
for this example 1s 3. The lower bound after two multiplier adjustnrients is 8, while
the optimal solution t¢ the problem is 9.

Example 1 :

11213 4l51617
1(-'3'5 5,664
2{3'-13:3,404'6
3(5/31- 511167
a5 3i5 -i6l1 &8
506 ai1i6. 718
616 4 6.1 7.- 9
T4 6 T8 89

Figure 2 : The original ‘distance’ matrix,

The 1nitial ‘forest” soluvion connects node 1 to node 2. node 3 to node 5. and
node 4 to node 6. This solution has a value of 5. We pick the tree containing the
nodes 3 and 5 together with the arc from 3 to 5 as our T} tree in the algorithm. The
corresponding &1 value i< 3 (the arc weight from node 2 to node 3) and the new lower
bound 1s 5 - 3 = & The modified distance matrix is as follows:

1 2 3 4 5 6 7
1l 3 23 6 14 4
2la - 0011 2 6
SERER
103 1:0 - 11 6
503 101.1,-]2 5
614201120 7
T4 6l4°6]|5]7;

Figure 3 : The modified ‘distance’ matrix after one descent.

A new tree is selected since the previous one contains the root node 1. TlLe niw
tree is the arc from node 4 to node 6 together with the two nodes. The new §;
corresponds to the arc from node 3 to node 4 and has a weight of 2. The new lower
bound is 5 + 3 - 2 = 10. Since the expanded new tree contains the root node and
there are no trees remaining. we trim the tree from the dangling not required nodes
and obtain a tree which contains the nodes 1. 2, 3, and 4 and the arcs (1.2), (2.3).
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and (3.4) for the total of 10 - 2 = & This solution corresponds to a feasible Steiner
tree of value of 11 instead of the optimal value 9.

T

1:2:3°4 56 7
V-3 213 6:4 4
2(3/-10]1;1]2 6
3{270'-1o 1]114
af3’1 0 -711 6
5| 371 1 + 1] 1 -]205]
[6]4/2 1 102]-17
7146 416 5|7

Figure 4 : The final modified "distance’ matrix.

4.2.2 The Dual Ascent Algorithm

Step 1 : We start with all A, = 0 and solve the problem ((32). (19). (20).
(21}. and (23)) to obtain z(0). The solution to this problem is in the form of a not
necessarily connected set of trees T which might not include all the nodes in \" (i.e..
a 'sparse forest). In case we obtain onlv one tree then we have the optimal solution
for the Steiner tree problem. Denote by L g the cost of this solution.

Step 0 Let T be the number of trees in the forest and let T; be the set of
nodes in tree k. One of these trees contains the root node. Denote that tree by 7.

Denote by S the set of nodesin 1" . _ T} (i.e.. the potential new Steiner points).
Step 3¢ Pick one of the treesin T ' Ty,. Tree Ty, for example. Compute

— ‘M‘."JET,,,J«{T,,,{EIJ}
Let: LB:LB"*L._\. El]:E‘l]‘L‘ fora]]ieTm,].eTrn.orjETnl.iQTn)

Step 4 : ( Merging) Every component in T \ 7,, and S with exactly one zero
cost arc to Tin (i.e.. ¢;; = 0 j € Tmy1 € Tyy) is merged with Ty, creating a new
forest. (In case of components with multiple zero cost arcs to T, see Remark 1.)
Rename the trees in the new forest. Repeat Steps 3 and 4 until T}, is merged with

To.

Step 5 : If [T| # 1 then go to Step 2, otherwise: eliminate all the terminal
nodes in Ty which belong to 1"\ 1] and reduce the corresponding Lg value by the
corresponding arc costs. l.e.. Lp = L -~ ¥ cg cp, s. Lp is the lower bound value
for the Steiner tree problem.

Remark 1 : If we add multiple zero cost arcs between Ty, and another tree in
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T then a cvcle is created. Thus. at each mierge operation only one arc can be added
between anv pair of trees. Since without loss of generality we can assume {different)
integer arc weights. we can expect that the number of zero cost arcs between a pair
of trees in a merge step is small. This suggests a parallel processing algorithm for
the construction of the new trees (merged trees) at Step 5. In each case were more
than one (say k) zero cost arc exists between a pair of trees. k new merged trees will
be stored and processed in parallel. At the end. following Step 5. we obtain the best

lower bound by examining all the trees grown in parallel.

5. COMPUTATIONAL RESULTS

The solution methods which were developed and described in the previous sections
provide a lower and upper hounds on the value of the optimal Steiner tree solution
for a given graph. Optimal solutions were obtained for the problems for which the
difference between the value of the upper bound and the lower beund was less than
one. In order to investicate the comperative performence of the solution methods
developed in this paper. they were programmed and tested on a set of problems
taken from Beaslev (19nd). We present the results of these tests in TABLE 1
below. The algorithms LA1 and LA2 were programmed in FORTRAN and the Dual
Ascent Algorithm (D.A. Algorithm in Table 1) was programmed in PASCAL. The
data set is the one tested in Beasley (1984) and consists of 18 randomly generated
problems for undirected graphs. For algorithms LA1 and LA2 we have considered the
directed version of these problems by duplicating each arc and assigning directions.
The three algorithms were tested using a VAX 8600. In all the tests the number of
subgradiant iterations was restricted to 800. the initial & value was set to 2 and the
parameter Idivide was set 10 20 for LA1 and to 40 for LA2.
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Problem Algorithm LAT | Algorithm LA2 | D.A. Algorithm
Number | V A Vi | Lower | Upper | Lower Upper | Lower } Upper
Bound | Bound | Bound Bound | Bound : Bound

1[50 | 126 | 9 | 81.99 | 82* | 8144  82* 2 83
| 2 |50 |126] 13 | 8300 | 83 [ s288 90 [ 0 | 124
3 |50 [126] 25 [a3res [ 138 [1sr0r 177 | 107 | 160
4 | sof200] 9 | s000 ! st [sses w48 | 3
5 |50 {200 13 | 60.95 . 61' | 60.58 | 65 39 | 109
| 6 50 [200 ] 25 12165 0 122* |121.35 0 148 | 81 | 154
|7 ] [l 3 [noer it Jaos7el 123 | 92 | o13s
I R AR U RO X TR CYRN R ES R L OO B I 125j
o o as [ 205w 2200 {2071 234 | 207 255 |
10 a5 300} 13 | asg0  s6t | sast 121 | 6119
1 [ ra s00 ] 1o | w00 osx [ wnre 12 |61 192 |
a2 e fseo | s fameae are faeeze s | ose20q |
13 100 )20 | 17 {1600 165t [1e2ir 192 | e 263 |
i w020 25 |23 235 [22056 i | 131 810
1o [100 250 | 50 | 317.60 3180 | 30127 353 | 249 387
|16 |00 400 ] 07 [rore0 mr |h22es a2 | i s |
17 oo [a00 | 25 {12807 s [12a52 143 | 10 e |
| s J100 400 ] 50 {21556 2a 20052 aso | w2 260

TABLE 1 : Computational results for the three algorithms for Steiner tree
problem on graphs.

Out of the I& problems attempted. 15 were solved optimaily by the LA1 algorithm.
Only the first problem was solved optimally by the LA2 algorithm and the Dual
Ascent algorithm did not produce a single optimal solution. In terms of the quality
of the lower bound values, LA1's lower bound values dominate the values generated
by LA2 and the dual ascent algorithm. (The optimal solution is noted by *.)

SAMMERY AND CONCLUSIONS

We have presented a number of mathematical formulations for the directed and
undirected Steiner tree problem on graphs. These formulations have been used to
develop Lagrangean based lower bounding procedures for the problem. In compu-
tational tests (on 18 problems used by Beasley (19%4. 1987) for testing undirected
Steiner tree problems). it has been shown that one of the algorithms (LA1) generates
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lower bound values that are close 10 the optimal solutions. The nonfeasible solutions
generated by the Lagrangean based procedure have been incorporated into heuristics
which attempt to generate “good™ feasible solutions. Here again algorithm LA1 has
generated optimal solutions to 15 out of the 1& problems. For the other 3 problems
the gap between the feasible and Jower bound values were under 2%. Note that in
case of an undirected graph. Beasley (1984) reports solving to optimality only 6 out of
the 18 problems. and Beasley (1987) again for the undirected graphs reports solving
to optimality 15 out of the 1% problems using Cray X-Mp:48& machine. The combined
results (Beasley and ours) solve optimally 17 out of the 18 problems.

Based on the above results. it is our believe that algorithm LA1 can be used as
an effective tool in Biranch and Bound based procedures for solving the problem.

acte g lidgment © We thank J.E. Beasley for providing us with a copy of his test
problem..
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