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ABSTRACT

A Steiner Problem in graphs is the problem of finding a set of edges (arcs) with
minimum total weight which connects a given set of nodes in an edge-weighted graph
(directed or undirected). This paper develops models for the directed Steiner tree
problem on graphs. New and old models are examined in terms of their amenability
to solution schemes based on Lagrangean relaxation. As a result, three algorithms
are presented and their performance comparred on a numbcr of problems originally
tested Iy Beasley (1984, 1987) in the case of undirected graphs.

RESUME

Etant donne un graphe 6; AV.A) el un sous-ensemble de soiniets VI de V. le
probleme de Steiner consiste a determiner un graphe partiel de G de longueur mini-
male permettant de relier entre eux tous les sommets de VI en utilisant event uellemeni
un ou plusieurs soniets de V , V]. Le present article traite de ce probleme dans le cas
des graphes non-orienies. Differentes modelisations v sont examinees. ainsi que des
methodes de solution basees sur )a technique de ]a relaxation Lagrangienne. En guise
de resultals. iTois alVoriIhmes sont presentes et testes sur un ensemble de problemes
originalement utilises par Beasley( 1984. 1987 )dans le cas des graphes non-or;ntes.
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1. INTRODUCTION

1.1 Graph terminology

A directed graph G = {V'.A} consists of a tlnite set of vertices V (l'; = n)and a
set of arcs .4 ( .A = m). Each arc in A is an ordered pair (vi,vj) of distinct vertices
,.1V (A C V x V). A weighted graph G = {,.4;9}. is the graph G together with

a nonnegative real function g defined over .4. Since our concern is only with weighted
graphs. we drop the functioii g from our notation for graphs unless otherwise specified.

A subgraph G' C G is a graph G' {V. A '}. where I" C V and .4' C A and
such that each arc a . of G' (at. E A') is incident to the same vertices in G' aiid in
6. The weight of a subgraph G'. denoted by I(G'I). is the sum of the weights ck (or

c, for aj = (,. I)) over all the arcs ok. in A'.

A ,t nipath joining vertices r, and rl in G is a sequence of vertices vs. , ...,vt
such that the ar( (1 ,. ,- .4 or ( u, 1. , ) c .4 for each i. A set of vertices
V V is weakly connected if there is a semipath of vertices in 1' joining any pair
cf vertices in U. A path from 'S to vt in G is a sequence of arcs in A such that
( s 1). ( . l.rs_.. . ( .. ( v, .s ,_1 .... (rt . Vt). 7he path is simple if all the

vertices {i,. r .......... are distinct. A path is a cycic if ts = vr. A set of vertices
S C Vis strcngly conncttdif thereis a path from any vertex in S to any other vertex
in S which does not contain any vertices in V\ S. A maximal strongly connected set
is a strongly (,,,t cl ornpon idt of G. An arborcsccncc B. (B C G) is a set of arcs
such that

(i) if ( I., I .( 11. are distinct arcs of B. then t, 1 w (at most one ar(
entering a verlex I

(it) B doe, not contain a cycle:

(iii) B is weakly connected. (B is a directed tree.)

A graph G {'.A} is said to be connfcdd if the set V is weakly connected.
Let G' = {1",A'} be a subgraph of 6 {i. A} and I" I- I". then G' is said to be a
coinected subgraph with rspcct Ic V" if there exists a semipath in G' between each
pair of distinct vertices in I". Furthermore. if 6' is an aborescence, then subgraph
G' is said to be an aborcsccncc subgraph of G with respect to V", and if 17' = I" = V
then G' is a spanning arborcscencc of G. Note that one vertex in I" is designated as
the root for the aborescence,

1.2 Problem Statement

Let 6C {V, A} be a weighted connected graph. Let V1 C V and G(I'1) {, -
G: such that Gi is a connected subgraph with respect to I'l}. The problem is to find
the least weight graph in G(V 1 ). Such graph (denoted by G*(Vl )) is called a dircrcfd
Stf-ncr graph ofG uith rcspc0 to V1 . If G*(V') is an aborescence then it is called a



dirt ctid St tunr tru of ( with respct to 1 or the minimal arborcsccrif( of G with
rtsptct to 1 *. The vertices of the graph G"( V1 ) not from the set V1. arc referred to
as 5t(1 r points.

Our graph notation attempts to tie together the notational conventions developed
by Bondy and Murty (1976), Hakimi (1971) and Tarjan (1977). An arc from :' to IJ
is denoted either by (v. ij) or simply by (i,j) if no ambiguity results.

We restrict the discussion to weighted graphs with strictly positive weight func-
tions and to the problem of finding the minimal arborescence of G with respect to
V1, i.e.. the directed Steiner tree problem. Any solution to this problem. designates
one vertex in V] as the root vertex of the resulting minimal arborescence of G with
respect to 1. To facilitate the forthcomming mathematical formulations, we aug-
ment tho graph G with an additional vertex denoted as vertex 0 and with a set of
arcs (0. c,). for u, . IV]. The weight function g assigns to these arcs high positive
identical weights to assure only one such arc ir, the optimal solution to the directed
Steiner tree problem.

The complexity status of the Steiner tree problem on graphs is well settled. Karp.
1972. proves the N P-completeness of this problem by polynomial transformation from
Exact (over by 3-Sets problem. The problem remains NP-complete if all the arc
weights are equal. if G is a bipartite graph with no arcs joining two vertices in V)

(or two vertices in V 1 ). and also in case G is a planar graph. For more detailed
refefence list on the complexity of this problem see the classic book by Garey and

Johnson. 1979. As far as a literature review of past research on the Steiner tree
problem on graphs. the readers are directed to the very fine recent paper by Winter.
1987.

2. MATHEMATICAL FORMULATIONS WITH FLOW VARI-
ABLES

In the mathematical formulations that follow, the decision variables are of two
basic types: (i) a binary (selection) variables - yi,, which accept value I if the arc
(v,r,) is selected in the solution and the value 0 if not. and (ii) flow variables either

i'j,, (or xij) representing the amount of flow through the arc (vi.vj) directed from
the root vertex 0 to vertex p in I (or the total flow on the arc (viv)).

2.1 Mathematical Formulation - A

Minimize z = ,(ij)EA ctiY-. (1)

subject to:



1. for 0.

S' , , =0. for 10 1. for al 1' V2
-1. for I p

X1.P '_ y13. for all (v. v,) E A. p - 11 (3)

XI)P > 0, for all (1,,. 1 ) C A.p c I"' (4)

Y13 = 0 or 1. for all (r',rv ) E A (5)

Given the objective of minimizing the total weight of the selected arcs (the arcs
for which y,j 1). the cons'ralrts have to ensure the arborescence structure (with

respect to V] I. Constraints (2) impose the conservation of flow on all vertices in
V (Vl1 - J0}) and ensure that one unit of flow leaves the root vertex 0 for each
destination vertex 1' in V1. Constraints (2) also state that one unit of flow reaches
ea(h vertex in 1. Thus. there has to be a path (in G) from the vertex 0 to each one
of the vertices in V1. Constraints (3) ensure that flow is allowed only through the
arcs selected in the solution. Constraints (4) are the flow nonnegativitv constraints
and (5) are the binary value conslTraint. for the appropriate decision variables.

.4 not,: In case the weighl function g of the graph G = {'. A: g} is not strictly
positive. lhen in order to ensure a tree structure for the solution to the MDSTP we

add the constrains 1,,- 1 = I for all I ,j 1"] (2a). Since in this paper we restrict
the discussion to strictly positive functions g. constraints (2a) are rtdundent and
subsequently dropped.

A more compact mathematical formulation to the one presented in (A) is ob-
taiwd by simply aggregating constraints (3) with respect to the index -. In this case
we obtain:

ZpI " ' I Y13 . for all (vi. ) A (3

We denote the mathematical formulation which contains the equations (1). (2).

(3'), (4), and (5) as (A').

It is of interest to examine the implications of aggregating constraints (3) into the
form of (3'). Since both formulations construct the same weight solution if solved op-
timaly, what could be the advantage of attempting to solve one set of equations versus
the other set of equations ? The answer to this question is in most cases experimental

in the sense that a number of researchers (Magnanti and Wong, 1981, Cornuejols et
al.. 1977) were much more successfull in constructing efficient solution schemes for
the disaggregated formulation (A) than the more compact (A') formulation. In
order to formalize this experimental experience we examine the linear programming
relaxations (constraints (5) become > 0. and yKj < I for all (z,,v) G A) of both



forinul itions. Denote the objectiv'e funci1oln ValuIe for 1i11 V,' rela Xat io(Il for (A) as

ZLP and for (A) as "LP"LP z

Theorem 1 : -A'

Proof : 11 is clear that an\y feasible solution for the linear progranllling relax
ation of (A) is also feasible for the linear prograniming relaxation of (A'). In the
reverse direction this is not true in general. One can illustrate it by examining a
equilateral triangle graph with 4 vertices. (one in the center) and 7 directed arcs (see

Figure I ). The 1 set consisis of vertices I and 2.

,\0

Figure 1 Equilateral triangle graph.

The flow variables z 0 3 1 = 2., 31 1 
= 2.x121 =.x20 1 are clearly feasible in

the LP relaxation for (A') and not feasible for the LP relaxation for (A) *

Given two (different) equivalent integer programming formulations (P1) and (P2)
for an optimization (minimization) problem. Denote by (RPI) and (RP2) the respec-
tive formulations obtained by relaxing the integrality constraints. If :RPI > zRP2

and not equal in general, then formulation (P1) is called a strong formulation
with respect to (P2). This concept of strong formulation is stated in Geoffrion, 1979

and Van Roy, 1986.

In our case, we proved that (A) is a strong formiulation with respect to (A').

The next mathematical formulation for the minimal arborescence problem with

respect to V1 requires only two indices for its flow variables. It is based on a similar

TSP formulation from Gavish and Graves, 1982.

Mathematical Formulation - B

Minimize '(lj)E A CiZYy., (6)

-



Subject to:
-n

-] 1Xkj - Z-S 1. for all k 1 7)
v n 71-"la,

J=1 I t A ,--0 XIA 0. for all A- i , 1  (8)

Xzj < ,V1 y?). for all (v, E A (9)

1  0. for all (r,, 1) E A (10)

Y =0or 1 for all ( Z", 1 ) 4 E A (11)

The formulations (A) and (B) are equivalent in terms of determining the same
optimal solution. In terms of the linear programming relaxation, formulation (A)
is a strong formulation with respect to (B) (the proof of Theorem 1 holds for this
case too). \VWhat is also clear is that any feasible solution (in terms of flow) of the
LP relaxation for (A') is also feasible for the LP relaxation of (B) and visa versa.
Thus. (A') and (B) are fully equivalent.

3. MATHEMATICAL FORMULATIONS WITHOUT FLOWN' VARI-
ABLES

3.1 A Note on the Minimal Spanning Arborescence Problem - (MSAP)

When attempting to solve The MDSTP on a graph, one usually recainines the
very similar "easy" problem of constructing a minimal cost spanning arborescence
(.MSAP). In all the formulations of MSAP which are known to the authors, flow
variables are used (see for example (avish. 1982) in the same fashion as in the MDSTP
formulations presented above in Section 2.1. Aneja, 1980, presents a formulation of
the MDSTP without the flow variables. His is a set covering formulation in which

the number of consraints grow.- exponentially with the size of problem irstai, rts.
We present a very simple formulation of the MSAP which does not require flow
variables nor does the number of constraints grow exponentially with the size of
problem instances. In this new MSAP formulation we 'borrow' a version of TSP
subtour elimination constraints (Miller. Tucker. and Zemlin, 1960).

Minimize : = "(Zj)EA cijYtL

Subject to

-. ,=Oy = 1 for all j 1,2,...,n (12)

u, - t. -fly,. < (n -1 ) for all i,j E V U {0} (13)

Y.J 0 or I for all i,j E V U {0} (14)

where u, and v, are arbitrary real numbers.

. ~~. nnunlnum u wnua mnudmln l



N,te that those cycle (subtour) elimination consi raitt ( 14) are for all i
V { 0} including the 'artificial' root vertex 0 (contrary to i O =0in the ''.,P

ormnulation ). Also note that thle TSP -UhtouT elimlfination constrairi s of the type
<S - I and y, -, I for al]l I -- would not be appro-

priate for this, MSAP formulation.

3.2 Set Covering Formulation -C

First. we present a set covering type formulation for the MIDSTP. modified for
the directed graph by Wong. 1984. and originally pres.-nted by Aneja, 1980. for the
undirected graph.

Nlinimize -- 0j) A c13 Y,) (15)

Subject to:

1-: 1~~N y n. for all N, V such that 0 N,.V and N I 1]1

(NI denotes thle complement oif NV] in

Ylj - 0 or I for all (i. i +A (17i

In his solution scheme fur formudlton C. Aneja. l9Ni. sovsoptlimialN thle linear
programming relaxation of C. An intereSting9 result due to W~ong. P ~ . Is tha
A -C 11 c.. thle Iner or~~nn relaxations Of the set
-L P LP - -LP inPa LP rainl

covering form~ulationl C and tilie flow formulation A. have thfe same opimial values.I

The mnmber of constraints in formulation C is exponential lit the size of the
problem. There is too little -structure* in this formulation to be useful] in Lagrangean
relaxation schemes. In order to amlend this 'weakeness' we add a number of redundent
structural constraints in the next formulation.

3.3 Modified Set Covering Formulation - D

Mlinimize : =(:WA C1)YI3  (18)

Subject t~o:

1= I for allj V] (19)

(i,))E A Yu i'- (20)

VI- J- ny,) < (n 1 for all (LJ) E A (21)

!:(a,j)EC(p) Y, > I for all p C VI~ and all cuts {('(p)} (22)

where ('(p) is a cut (a subset of arcs in A) between the vertex 0 and the vertex
PEl



, = 0 or I for all I1.j) .4 (231

u and u, are arhilrarv real numbers.

The objective function 1, and the constraints (22). (23) define the MIDSTP in
a formulation equivalent to C. ('onstraints (19). (20). and (21) are redundent. The
constraints in (19) ensure that only one arc enters each vertex in V]. Constraints (20)
state that at least V- - 1 arcs are selected in any solution where initially c = V] and
in principle V1 - V. Constraints (21) are the subtour elimination constraints. ('on-
straints (21) are not the 'complicating' constraints in this case. The complicating
constraints are the set covering constraints (22) which ensure a tree structure solution
which spans all the vertices in 1). Dropping the constraints (22) results. through the
(21 ) constraints in a minimal weight forest solution to the remaining problem.

Corollary 1: "LP -LC -)LP

This result simply follows from the fact that we :tave added constraints (19) to
an equivalent formulation to C. The other constraints types ((20) and (21)) would
be satisfied in the C formulation through constraints (16).

4. LAGRANGEAN RELAXATION

In tijis section we describe a number of Lagrangean relaxations for the inathe-
maiical formulations presented in Sections 2 and 3. Lagrangean relaxation approach
for solving 'hard' problems is based on the observation that by removing the conpli-
cating constraints from a mat heinatical formulation, the resulting problem is 'easily
solvable. A solution to the relaxed problem constitutes a lower bound on the solution
to the original problem. The thrust in such an approach is to obtain a maximal lower
bound which. if it does noI solve the original problem, can be integrated into an
implicit enumeration scheme such as branch and bound.

4.1 Lagrangean Relaxations of (A)

We present two Lagrangean relaxations of formulation A. In the first one the arc
selection constraints are relaxed, resulting in a shortest path type problem. In the
second relaxation the conservation of flow constraints are moved into the objective
leading to a more difficult subproblem.

4.1.1 The First Relaxation

In formulation (A), the complicating constraints are the arc selection constraints
(3). which ensure that the unit flow from the root vertex 0 to a vertex p.p E I'I passes
only through the arcs sel,,cted in the solution. Below we present the Lagrangean
relaxation obtained by moving the constraints (3) multiplied by nonnegative A,,
into the objective function. For a given vector of multipliers A. the problem is



M inim ize :(A) = .4 - 1" lJ,( X lip

which after rearrangement of terms has the following form

Minimize z(A) = !-(,.).4 (ct - !p;-t 1 Az.ll,)Yi) - !Z(ij),A Ep'_V] A'Jp ')P (24)

Subject to:

I I for i2*= 0.

E-"v{'Jp Z,-vqo1 xjp O. fori O,pt for allpE l (25)

-1. fort1 , P,

0 < _ 1. for all (i,j) E A,p C i (26)

YI) = 0 or 1. for all (i.3) E .4 (27)

The 'best* Lagrangean value is obtained by maximizing z(A) over nonnegative
A's (AU > 0. for all (i.j) C .4.p - "1 ). For those optimal Lagrangean multipliers
(Aip) the following relationship holds (see Gavish, 1978. and Wong. 1984. for the
dual formulation of A):

c1J - , _,J,' > 0 for all i .4 (2S)

By observing that the above ((24) - (27)) Lagrangean formulalion has the Inte-
grality Property (Geoffrion. 1974). the lower bound value obtained for the MDSTP by
solving (24) - (27) is equal to the value for the linear programming relaxation to the
problem. In this case. the main advantage for examining the Lagrangean relaxation
of A would depend on how fast. in comparison, can such a relaxation be solved. In
addition, such a solution could be more amenable for developing good heuristics.

The (28) inequalities suggest a fast solution procedure to obtain the maximal z(A)
solution for the Lagrangean relaxation of A based on the repeated use of the shortest
path -lgorithm with cost modifications along the way. In the algorithm outlined
below, we succssively adjust the values of the A.P's using the subgradient method
described in Held et a]. (1974) while preserving the dual feasibility of these multipliers
via the (28) inequalities. We enforce for all (i,j) E A throughout the algorithm
below (in each modification of multipliers) the following constraints : A'7' ,jp :
C,). Then the objective of the Lagrangean problem is equivalent to a shortest path
problem.

Denote by z(LAI(p)) the value of :(LAI) obtained by the Algorithm LAI outlined
below, given that p, (p E I') is the root node of the Steiner tree. Denote by (LAI(p))
the weight of the tree generated by :(LAl(p)) solution (i.e.. assign the actual costs
ci. to the arcs in the Steiner tree). Let sp(l,p) denote the shortest path from 1 to 1i
in the network with arc costs (AA,).(i~j) ,4.

- 10 -



Algorithm LAI

Shp 0 (Initahzat,on)

Set A for all (i) Ap l- i

.-(A)bes, 0; O;bfst : ler 0. Implter = 0;

Idivide (preset parameter): 6 2; Iterim = Maximum number of iterations;
q, =smaller gap on 6: tbs1 = relative precision desired on z(A)b ,; st = 0

Stcp I Solve the following (Lagrangeaii relaxation) problem:

mrk :I Epml !(i,)EA Auvpxiv subject to constraints (26) and (27).

This problem can be solved with a shortest path algorithm as follows:

For tach p 6 V] compute all the shortest paths from p to k E V] using arc costs
and denote its cost by S,. Select the solution with the minimal S, value.

Step 2 Updating the bounds

Lower hound :

:f(A) -' --(A)t,,, t fh~n

ztA)If -s-(A). and.for (Il(i.j) .4.1 E 1I.A,jp(bcst = A1P.*1Jsr (, s

, .st(btst) -st. Implter - 0

Upper bound

Consider tle subgraph G' = (V- {0}.4') where .4' {(i..j): X, > 0 for some
p V 1 }. Obtain the shortest path tree structure for this subgraph by computing the
shortest paths from 0 to each node of V]. Let {y,j = 1} for each arc (i..) in this
shortest path tree and 0 otherwise.

The current solution vector (y,x) is always feasible for the original problem and

its cost Zf(y, ) = !:(zJ)A Cz Yzi

If zf(y.x) < zbest then

zb,,s = zf(yx), Implter = 0

Step 3: Updating A

(i) If hmplter = Idivide then

Change the value 6 and restart from the best solution :())Ssl (i.e.. 6 = 6/2,
Implter = 0. z(A) = z(.A)bst.st 2= s1(bfst)/2. ,.p = A1j3 (bcst),1)1 . = j)1p(best) for
all (ij) c A,p E V]).1 -I1 -



Elst Compute the a cuft dnl, on and the step st for the currenil
solution.

' - } - Y,}" f,or (II (i.j) .p P t

St

(it)A1 31 , A l,- st 13,. (i.j C A4.p 1

The new multipliers A,11, are obtained by solving the following problem:

niln{ AI - A A i, = cA1 ,Jr, A > 0.(i,j) C A.p - Vt }

The vector A is the projection of A on { El- Aiji = c,,.A, 3 , > O.(i.j) t -. p

,ohf - The solution of the projection problem follows the procedure suggested
by Held et al. (197-14. pp. 77).

>'9p 1 Sloping ('onditioi

Ia If It, r "t Trum 1hen Stop

() If t tel Stop

(ci If < :(AJ.>. J~ then Stop

Otherwise (;o To Step 2

4.1.2 The Second Relaxation

Following a different relaxation approach. we dualize on the flow constraints (2)
using A,,, as the Lagrangean multipliers. The number of multipliers reduces to n1 V.
which is considerably less than in the previous relaxation. The objective function
becomes:

Minimize :(A) = !-(,J,-.4 c,jy, - E...pV 1 AO(Z- )ElxO)p - Z-E1'X, op - 1) -

1'pE I, App(l :rEl.p~p-1 ')p'*1,p,+ e1 )- x-',:,. O,p I-pcI Alp(-)EUi* ,jp-'El Xz,)

After rearrangement of terms the objective is converted to:

Minimize z(A) = -(,J)CA C YiJ ' Eptii Z(ij)E.4 xljpi ip - -p~l' Opp (30)

Subject to (3), (4), and (5) where = Ail, - Aq, for all O.j) E .4 and p C V,.

Note that the Ai3"s in this relaxation are unrestricted in sign and the ,), can be
handled implicitly storing n2 entries instead of n3 entries.

1 2-



In order to strenghlen the lower bound obtained from such a relaxation we amend
it with the following constraints:

I. yj 1 for all VE 1  (30)

and x, y, j for all ( j) .4 and 1 " (31)

The constraints (30). (31) are redundent in the formulation A, but are helpful
in increasing the Lagrangean bound. Note also that (30) is a relaxation of the (tree)
constraint which ensures that only one arc enters a node in V1 (i.e., j', E - Yzj = I for
all j V 1 ). The 'tree* constraint is tighter but not easily solvable.

Before presenting a solution procedure for the problem defined by (29). (3), (4).

(5). (30). and (31), we make the following observations:

I From the select ion constraints (3) we notice that:

(a) If y,j 0 then .x,.1 , 0 for all 1) : V

(b) If y,j = I then

(I) Xza I which follows from (31 . and

(I11 x 1 if C, 0. and 0. if (I 0 p A 1 .

Note that for the same reason as in the first relaxation of A. the maxinmum lower
bound for the MDSTP obtained by solving this relaxation can not exceed the bound
obtained from the linear programming relaxation of the problem.

Algorithm LA2

St t, 1: (Initialization ) Set A,,, - All: Der = 0: I plter = 0: z(A)t,, t = 0: zb, =

cost of the best feasible solution found so far: Idivide = preset parameter: b 2: st
0: Iterlim - maximum number of iterations: (6 = smaller gap on b:q, relative

precision desired on z( A) s.

Note that A0p are randomly generated, z,,st is obtained by computing the shortest
paths from one node of V'] to all other nodes in V].

Step 2: Solve the Lagrangean Problem:

]ter = Iter - 1. Inplter = Inplter ± 1. Set y 0ij = O.xij 0. for all (ij) E

.4,p E V)j.

(1) For each arc (i.J) E .4

(i) Compute M,j = c,, - jC-1,v1 p. , min{0: C,,,}

(ii) If j E V"] set A,, M,= -- , .

(iii) If 'Al, < 0 then set y,j = I and

-----



For all p -- 1"] set

1 for c,,,, ' 0 orj - p

0 otherwise

(2) For each j V . if M, > 0 for all (i,j) ' .4 then determine 1 such that
M1, = hinl:(lj))A{Ml} and set yl, = 1. for all p such that ,)p < 0 or p = set

01t, = 1. otherwise set 0.,P = 0.

(3) Compute z(A

SfIp : (lpdating the bounds)

I) If :( A - :( A),,, t  then

-(.,,,,t = ((\).Ab, . s) = " st(best) = st.Jlmtlir = 0.

(2 (If the solution (9..r x i- feasible for the original problem then compute its cost
and denote the value by - F .

If :F - , then set - F: Set Inpiter = 0:

Stcp 4: (Updating the A)

(i) If Implter Idivide th(n set , - . Implter 0. z(A) = :(A),, =
1t,..t "2. A\t A " l(bf- ) ),. " ls t ). , for all i -- V.1 ,  V] "1

rbst compule the ascent direction and the slep 0t

( _ 0 , ) - 01  - I) for all p I

=V' -*1 _ v XJ11 ) for all t ' .1. O.p

(E-"-1.  pjp - 1'j: 1, p,- 1) for all p 1 *1

q=

! (ii) A ,P := A , , - s f),, -I G V.p P E ]

SIhp 5: (Sloping condition)

(a) If Ihr > Iterlimit Stop

(b) If < ( Stop
(c) If iA- ")" Stop
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Otherwise Go To Step 2.

4.2 Lagrangean Relaxation of (D)

The complicating constraints in the D formulation are the se' covering - (22)
constraints. The major difficulty is that the number of constraints in (22) is expo-
nential in the size of l1 set. On the other hand the number of y, variables is exactly
n(n - 1),'2. This implies that in the linear programming relaxation of this formula-
tion. most of the constraints in (22) are nonbinding. The difficulty lies in finding the
binding constraints. By removing the constraints (22) and adding them to the objec-
tive function multiplied by the appropriate (nonnegative) Lagrangean multipliers we
obtain the following relaxed formulation:

Minimize -( A) = '(.). 4 cjy) - -c, , A,r (1 - V- (j)EC(p) Yuj)

Subject to constraints (19). (20). (21) and (23) where 1- is the index set of all
cuts c), between the verlex 0 and tlhe verlices p I1].

This formulation can be rewrillen as:
flA _ (32

Minimize :(0) ! _ i.) A -(',j .(32)

Subject to constraints 1191. (20. (21). and (23) where:

C "J - r\, for (i.j)1 ('t for somel) 7)

\IJc for 1.j) ((p)

This last problem (32). (19). (201. (21). and (23)) for fixed values of A can be
solved in polynomial time. (Again from Lagrangean duality we gel CJ > 0 for all

o.J) .4.) For a given A vector denote this problem by LD1.

The question now reduces to one of finding A' which maximizes the value of z(A).
I.e.. marA>0{s(A)}.

Theorem 2 : z(,) > _.D

~LP,

Proof: This result is based on the observation t hat the set of constraints (19).
(20), (21), and (23) do not have the Integrality Property ((,eoffrion, 1974,).

4.2.1 Dual Ascent Procedure for Initial AP Values

In this section we describe a dual ascent procedure for computing a lower bound to
the undirected version of the MDSTP using the D formulation of the problem. Mod-
ifing this dual ascent procedure for a general directed graph is left as an algorithmic

exercise.
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First we explain and provide an outline of the algorithm followed by a sinall
numerical example and conclude with a detailed description of a dual ascent procedure
for finding good multipliers to LD1.

The algorithm begins by solving the problem LDI with I- = {0} - 1 and all A
values equal to zero. Let LB be the cost of this solution. The network structure of this
solution is that of a -sparse' forest F of disconnected components, Iii -ase of a directed
graph. this problem can be solved with a modified Tarjan's algorithm (Tarjan. 1977).
We differentiate between two component types. Components which contain at least
one node belonging to 1*1 ,{0} are denoted by T = {To.T 1.T2 ...}. where Jo is the
component which contains the root node. The second set of components consists of
the points S. S _V V1 not contained in any of the components in T.

At this point we pick a component T.k 0. and compute the minimal cost
of expanding this component. Let .k.= M nFT.Zq Tk{c)}. . is the multiplier
value over the cut seperating the nodes in TA from all the other nodes. rhe cost
malrix is updated to:

C b for allj e T4.i V T4{I (33)
c,. otherwise

As a result of cost matrix update. one or more arcs on the cut have a reduced
cost of zero.

Let LB, LB, - bA where t is the iteration number.

The component Tk is merged via the zero cost arcs with a number of other
components. This process continues till T is inerged with To at which point another
component in T is selected. At each iteration at least one component is added to T1,
thus this merging of components stops at most after :S - T - I steps. When the
process is completed we have only one component To which contains a subset Sl of
nodes (Steiner points). S, -- V, V1. We remove from To all the nodes s,s c S1 which
are dangling nodes (i.e.. their degree is < 1). Let So be the set of terminal nodes.

LB = LB 1 - S, cp,

where ps is the adjacent node of node s.s E To. This last 'trimming* step is
repeated until all the terminal nodes (degree < 1) are nodes in V1 only.

LB is the lower bound value to the MDSTP.

In order to illustrate those steps we use the following example. The example
consists of 3 required nodes (1, 3. and 4. where node I is designated as the root node)
and 4 potential Steiner points. The network matrix (the arc weights) is symmetric.
which in the directed graph version implies two arcs of the same weight and oposile
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direction between two adjacent nodes of the graph. The initial lower bound obtained
for this example is 5. The lower bound after two multiplier adjustiients is 8. while
the optimal solution l,, the problem is 9.

Example 1

1- 2 3 4 5!6 7

1 3 5 5:616 4

2 3 3 34 4.6

3 5 3!- 5116 7

4 5 3 5- 6 1 8

5 6 4 1 6 7 8

6 6 4 6 1 7,- 9
7 4 6 7 S8 89

Figure 2 The original 'distance' watriv.

The initial 'forest" solution connects node I to node 2. node 3 to node 5. and
node 4 to node 6. This solution has a value of 5. We pick the tree containing the
node., 3 and 5 together wit l the arc from 3 to - a,, our Tk. tree in the algorithm. The
corresponding I value is 3 f(the arc weight from node 2 to node 3t) and the new lower
bound is T - 3 -. The mjodified distlIce matrix is as follows:

1 2 3 4 5 6 7

2 3 2 3 6 4 4

2 3- 0-0 1 2 6
3 '2 0 0 1:1 4

4 3 10 1 1 6

5 3 1 1 ] 25

6 4 2 1 1 2 -7

7 4 614 '6 5 7 -

Figure 3 The modified 'distance' matrix after one descent.

A new tree is selected since the previous one contains the root node 1. T..,
tree is the arc from node 4 to node 6 together with the two nodes. The new 64.
corresponds to the arc from node 3 to node 4 and has a weight of 2. The new lower
bound is 5 - 3 - 2 = 10. Since the expanded new tree contains the root node and
there are no trees remaining, we trim the tree from the dangling not required nodes
and obtain a tree which contains the nodes 1. 2, 3, and 4 and the arcs (1.2), (2,3).
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and (3.4) for the total of 10 - 2 S . This solution corresponds to a feasible Steiner
tree of value of 11 instead of the optimal value 9.

1 12 3 34 .56 7

!3 2 3 6 4 4-

2 3 -0 i 1 2 6

I42. TTh
5 3 1 01 1

6 4 ' 4 t 2 1 1 12 [7

7 4 4i6 4 6 57

Figure 4 :The final modified 'distance' miatrix.

4.2.2 The Dual Ascent Algorithm

Strt, I \\e start with all A,, = 0 and solve the problem ((32). (19). (20).

(21. and (23)) to obtain z(O. The solution to this problem is in the form of a not
necessarily connected set of trees T which might not include all the nodes in V (i.e..
a 'sparse* forest ). In case we obtain only one tree then we have the optimal solution

for the Steiner tree problem. Denote by LB the cost of this solution.

Step -' : Let T be the number of trees in the forest and let T, be the sel of
nodes in tree k. One of these trees contains the root node. Denole that tree by T(1 .

Denote by S the set of nodes in V , (i.e.. the potential new Steiner points .

Stp 3 : Pick one of the trees in T ' T0 . Tree T.. for example. Compute

Let: LB LB -- , ? - L. for all i c Tm.j 9 Tm. or j E Tm,.i T771

Shep 4 ( Merging) Every component in T \ T,n and S with exactly one zero
cost arc to T. (i.e.. cu = 0 j E Tm,i 9' Tm) is merged with Tm creating a new
forest. (In case of components with multiple zero cost arcs to Tm see Remark 1.)
Rename the trees in the new forest. Repeat Steps 3 and 4 until Tmn is merged with
TO.

Step 5 : If TI # 1 then go to Step 2, otherwise: eliminate all the terminal
nodes in To which belong to V \ I and reduce the corresponding LB value by the
corresponding arc costs. I.e.. LB = LB - -sso cp,.. LB is the lower bound value
for the Steiner tree problem.

Remark 1 : If we add multiple zero cost arcs between Tm and another tree in
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T then a cycle is created. Thus-. at each merge operation only one arc can be added

between any pair of trees. Since without loss of generality we can assume (different

integer arc weight-. we can expect that the number of zero cost arcs between a pair

of trees in a merge step is small. This suggests a parallel processing algorithm for

the construction of the new trees (merged trees) at Step 5. In each case were more

than one (say k) zero cost arc exists between a pair of trees. k new merged trees will

be stored and processed in parallel. At the end, following Step 5. we obtain the best

lower bound by examining all the trees grown in parallel.

5. COMPUTATIONAL RESULTS

The solution methods. which were developed and described in he previous sections

provide a lower and upper bounds on the value of the optimal Steiner tree solutionl

for a givenl raph. Oplinial solutlions were obtained for the problems for which tlhe

difference between the value of the upper bound and the lower brund was less than

one. In order to investigate the comperative perforinence of the solution methods,

developed in this paper. they were programmed and tested on a set of problems

taken fromI Beasley ( 1441i. We present the results of these tests in TABLE I

below. The algorithms LAI and LA2 were programmed in FORTRAN and the Dual

Ascent Algorithm (D.A. Algorithm in Table I) was programmed in PASCAL. The

data set is the one tested in Beasley (194 and consists of 18 randomly generated

problems for undirected graphs. For algorithms LAI and LA2 we have considered the

directed version of these problems by duplicating each arc and assigning directions.

The three algorithms were tested using a VAX 8600. In all the tests the number of

subgradiani iterations was restricted to 800. the initial 6 value was set to 2 and the

parameter Idivide was set to 20 for LAI and to 40 for LA2.
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Problem Algorithm LAI Algorithm LA2 D.A. Algorithm

Number V A 1  Lower Upper Lower Upper Lower Upper

Bound Bound Bound Bound Bound Bound

1 50 126 9 81.99 82* 81.44 82* 72 83

2 50 126 13 83.00 83* 82.88 90 60 124

3 50 126 25 137.88 138* 137.07 177 107 160

- 50 200 9 59.00 59* 58.95 77 8 93

5 50 200 13 60.98 61* 60.58 65 49 109

6 50 200 25 121.65 122* 121.33s 148 81 154

7 75 18s 13 110.97 111* 108.79 123 92 138
S 75 1. 1 103.94 104' 101.81 118 73 ': 125

9 75 1,, 3S 219.7, 220* 207.81 234 207255

10 75 300 13 85.90 86* 84.81 124 61 175

I1 7", 300- 19 S.00 88* 87.79 127 64 192

12 7.5 300 31 172.20 174 166.20 228 139 204

13 100 2.50 17 165.00 165* 162.77 192 94 263

14 100 250 25 234.91 235* 224.56 277 131 3 10

15 100 250 50 317.60 318* 301.27 353 249 3 7

16 100 400 17 127.00 127* 122.65 162 73 25 6

17 100 400 25 128.17 131 124.52 143 101 163

18 100 400 50 215.56 218 209.52 280 1.'2 260

TABLE I : Computational results for the three algorithms for Steiner tree
problem on graphs.

Out of the 18 problems attempted. 15 were solved optimally by the LAI algorilhm.

Only the first problem was solved optimally by the LA2 algorithm and the Dual
Ascent algorithm did not produce a single optimal solution. In terms of the quality

of the lower bound values, LAI's lower bound values dominate the values generated

by LA2 and the dual ascent algorithm. (The optimal solution is noted by *.)

SAMMERY AND CONCLUSIONS

We have presented a number of mathematical formulations for the directed and
undirected Steiner tree problem on graphs. These formulations have been used to

develop Lagrangean based lower bounding procedures for the problem. In compu-
tational tests (on 18 problems used by Beasley (1984. 1.871 for testing undirected
Steiner tree problems). it has been shown that one of the algorithms (LAI generates
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lower bound values that are close to the optimal solutions. The nonfea-ible solutions

generated by the Lagrangean based procedure have been, incorporated into heuristics
which attempt to generate -good" feasible solutions. Here again algorithm LAI has
generated optimal solutions to 15 out of the 18 problems. For the other 3 problems
the gap between tie feasible and lower bound values were under 2'/(. Note that in
case of an undirected graph. Beasley (1984) reports solving to optimality only 6 out of
the 18 problems. and Beasley (1987) again for the undirected graphs reports solving
to optimality 15 out of the 1 problems using Cray X-Mp,48 machine. The combined
results (Beasley and ours) solve optimally 17 out of the 18 problems.

Based on the above results, it is our believe that algorithm LAI can be used as
an effective tool in Blranch and Bound based procedures for solving the problem.

.. . , ,qm, .\e thank I.E. Beasley for providing us with a copy of his test

problein.
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