OTC FILE COPY

AD-A189 752

Ada COMPILER
VALIDATION SUMMAERY REPORT:
Certificate Number: BB8032211.09047
Tartan Laboratories Incorporated
Tartan Ada VMS/VMS
Version 2.0V
MicroVax 11

Completion of On-Site Testing:
88-03-20

Prepared By:
1ABG m.b.H., Dept 571
Einsteinstrasse 20
8012 Ottobrunn
Federa! Republic of Germarny

Prepared for:
Ada Joint Program QOffice

United States Department of Defense

Washington, D.C. 20301-3081

EVE Contrgi hNunber:

ENF-VER-0IS
SZT-AVF-015

Ada is @ registered trademark of the United States Government

{Ada Joint Program Qffice).

i DISTAIR TON STATEMENT A

Royore ot dor pablic relegss;

e -
PR

Ty ywesign?

19. KEYWORDS (Continue on reverse side if necessary and ident:fy by block number)

q
Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

\ 1815A, Ada Joint Program Office, AJPO

4 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Tartan Ada VMS/VMS Version 2.0V, Tartan Labr=~tarie: Inearporated, TABG, MicroVAX Il under MicroV'MS
Version 4.6, ACVC 1.9.

4

et S N A NP AT Ny ;.‘,-' ', 'I','-.:_-.",-. -.'-. S ey, --_'-c ¥ \\\ -\. '. : ' -.-s "\’\.'r-. ﬂ‘-»

LRI Bk AL PO B T X O T K AR PN IO “fa? 4 Va0 2% ua- JhaVate e Nataiat iav da ety aild' i ia” el aVi" s A" A aAE el

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM
1. REPORT NUMBER ! E !z: GOVI ACCESSION NO. |3. RECIPIENT’S CATALOG NUMBER
-
4. TITLE (and Subtitle) o 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summar ReRort Tartan 20 March 1988 to 20 March 1989
Laboratories Incorporated, Tar da VMS/VMS
Version 2.0V, MicroVAX II (Host and Target). 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
IABG,)
Ottobrunn, Federal Republic of Germany.
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
IABG, .
Ottobrunn, Federal Republic of Germany.
11. CONTROLLING QFFICE NAME AND ADDRESS 12. REPORT DATE
Ada ngnt Program Office . c 20 March 1988
United States Department of Defense T —RUMBER OF PAGES
Washington, DC 20301-3081 ' 44 p
14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (of thisreport)
UNCLASSIFIED
IABG FICATION/DOWNGRADING
' 15a. QECIASS]FICATION/DOWNG

Ottobrunn, Federal Republic of Germany.

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. if different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

B = g~

Pt e L)

Ada Compiler Validation Summary Report:
Compiler Name: Tartan Ada VMS/VMS
Compiler Version: Version 2.0V
Certificate Number: HB8032211.09047

Host: MicroVax Il under
microVMS, Version 4.6

Target: same as host

Testing Completed 88-03-20 Using ACV(C 1.9

This report has been reviewed and is aoproved.

- e - - - - — T

TABG m.b.f., Dept SZT

Dr. H. Hummel
Einsteinstrasse 20

8012 Ottobrunn

Federal Republic of Germany

- " - ——— —— - —— - ————

da Validation Organization
Dr. John f. Kramer

Institute for Defense Analyses
Alexandria VA 22311

Ada J&nt Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC 20301

-
[4

a&;&mmm&:&m&m;@mm&wg

V

AN ILENRE NN N A M NL -
CONTENTS
CHAPTER 1 INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT . 1-2
1.3 REFERENCES . . . C e e e e . 1-3
1.4 DEFINITION OF TERMS 1-4
1.9 ACVC TEST CLASSES . 1-5
CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS . . 2-1
CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS . . . 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER . . 3-2
3.4 WITHDRAWN TESTS . . G . 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-5
3.7 ADDITIONAL TESTING INFORMATION . .. 376
3.7.1 Prevalidation o . 3-6
3.7.2 Test Method . 3-8
3.7.3 Test Site . 3-7 R ——
| Fer
MG kT ’“ﬁﬁﬁfrc_{
APPENDIX A DECLARATION OF CONFORMANCE ; e N ‘
h‘k o ‘2‘\,}
APPENDIX B APPENDIX F OF THE Ada STANDARD T
a1 on —-—-»—:
abint iy Do '
) Lo i £ ‘|
: T |
‘ 1 A !
f
[

mmwﬁmm&mamzmu ey

T R T T T R B TS SR W S L I o U N U R WU R A R O R s v ata’ ¥R b B P 2tk b0 sl ala’ 208" 4 abD

APPENDIX C TEST PARAMETERS

1

i e

-

‘APPENDIX D WITHDRAWN TESTS

P
IO

R My .0—'

@ RS 10 X

Lo o o e
"~y
-

S

L) -, T T T e T i T e T i e S A ST IO SR S L PR I O N e [.
Gy e e oyt O e I L N A W e T S Q7 et A L R GV

Y .

AR TH I IECNE LRI s ITTTUTETR

o

CHAPTER 1

INTRODUCTION

N

This Validation Summary Report (VSR) describes the extent to which @
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms wused within it and thoroughly
reports the results of testing .this compiler wusing the Ada Compiler
Validation <Capability (ACV(). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent feature
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is

not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length . of identifiers or tne maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or impiementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during wvalidation testing. The validation process includes submitiing a
suite of standardized tests, the ACVC, as inputs fo an Ada compiler and
evaluating the results.~ The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language <constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution,

1-1

SIS T A e TR T PP P ¢
A A R UGS DA VA VL A S SRR

Ty -
P I

ar
-

-

~

-
o -

A O LEIXXL A O 5T o INSIEL e

..

Nf\;ihfw sTag

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiter that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada
Validation Organization (AV0). On-site testing was compieted 88-03-20 at
Tartan Laboratories Incorporated in Pittsburgh.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AV0 may
make full and free public disclosure of this report. 1In the United States,
this is provided in accordance with the "freedom of Information Act" (5
U.S.C. H#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:

IABG m.b.H., Dept SIT
Einstetnstrasse 20

8012 Ottobrunn

Federal Republic of Germany

R T LR IR o

‘F .P’-‘l LAV I 3) yo vt T X ..
f;f;_"...'{' '(;_f alla A'A 'fn ’L\L L'("J(.J“ h\:fu Y-Sy A‘ a_ A.‘f "\'\ " J'\ “r ."L" - .‘f;ft":.":-..:

AL AL LA e b B ol Gatita b Gulhiind €0t e Dl B SRl Aol a0 RO L8 M R0l a A A AV ath ahd o d ohe o g™ et
(g

INTRODUCTION

Questions regarding this report or the validation test results shoulc be o]
directed to the AVF listed above or to: A

Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard Street ' "
Alexandria VA 22311 3

1.3 REFERENCES

'p] for the Ads Programming Language, r
81SA, february 1983 and 150 8652-198°. 5

Dlx

£1¢
]

~ I

pee Moo
IL-STL-

b-‘ K'

gfere
NSI/MIL-S

ry

Adz Compiler Validation Procedures and Guidelines, Ada Joint P
Program Office, ! January 1987.

3. Ada Compiler Validation Capabiliiy Implementers’ Guide, SofTech,
Inc., December 1986. W

4. Ada Compiler Validation Capability User’s Guide, December 1986.

s "" " }f{?’{"c "x:‘?‘

; w st

‘ '_‘1"’:.‘]

L 4

P
ol L

. oy
oy s A, B
s @ oL

PRSP,

P P}

‘,l‘ l,

““5" -
P ENNNY PN

o

'f-.’-*.J-h.-'- -’-f-).'.-" ------------ A]
AR A R N R R A T A AT T TN N AT AT AT AS
'~ ‘h X NAGON LN, (_. e f Q*-'nA, r \ .w " . e w\ ‘ \J Y w NN \f\ \i:'

........

AR AN S WAL LA A LA L ANAL

INTRODUCTION

\J

MU A A R R R R R A A NN N N I N T I O O IR AT Y)

1.4 DEFINITION OF TERMS

ACV(

Ada
Commentary

Ada Standard
Applicant

AVi

AVO

Compitler

Faited test
Host
Inappiicaﬁle
test

Passed test

Target

Test

Withdrawn
test

Wil '..o'l’.l'.l‘. o‘

AT,

N

Y

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ads programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form Al-ddddd.

ANSI/MIL-STD-1B15A, February 1983 and 150 B8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler wvalidations according to procedures
contained in the Ada Compiler Validation Procedures and

Guigelines. T T

The Ada Validation Organization. The AVD has oversight
authority over all AVF opractices for +the purpose of
maintaining & wuniform process for validation of Ada
compilers., The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report. g compiler is any language processor, including
cross-compilers, translators, and interpretiers.

An ACVC test for which the compiler generates a result 1that
demonstrates nonconformity to the Ada Standard.

The computier on which the compiler resides.

An ACVC test that wuses features of the language that a
compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

An ACVC test for which @ compiler generates the expected
result.

The computer for which a compiler generates code.

A prcgram that checks @ compiler’s conformity regarding a
particular feature or @& combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files,

An ACVC test found to be incorrect and not wused to check

conformity to the Hhde Standard. test may be ncorrect
1-4
\:»_:._‘,'.;'.}-.1 a ~.L-.;~.'r-;.;,‘; PRI I, Py P T N e OO L AP NC AT S VRO
B RTAY o 0 ANK By WY a e e o Ajﬂ.&ﬁ%ﬁ&n}

o
“ul ol

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured wusing the ACVC. ~ The ACVC
contains both legal and illegal Ada vprograms structured into six test
cirasses: A, B, C, D, E, and L. The first letter of a test name identifies
the <c¢lass to which it belcngs. Class A, C, D, and E tests are executable,
and special program wunits are wused to report their results ovcing
execution, {lass B tests are expected to produce compilation errcrs.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated es reserved words by an Ada compiler, A (Class A {est s
passed if no errors are detected at compile time and the program executes
to produce @ PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class € tests check that legal Ada programs can be correctiy compiled and
executed. Each Class € test is self-checking and produces a PASSED,
FAILED, or NQOT APPLICABLE message indicating the result when it is
executed,

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on & compiler by th. Ada
Standard for some parameters--for example, the number of identifiers
permitted in 2 compilation or the number of units in & library--a compiler
may refuse to compile & Class D test and still be & conforming compiler,
Therefore, 1f 3 Class D test fails to compile because the capacity of the
compiler is exceeded, tne test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
teatures addressed by Class E tests during compilation. Therefore, a Class
E test is pascted hv 2 comoiler if it is compiled successfully and executes
to produce & PASSED message, or if it is rejected by the compiler for an
allowable reason,

T T

BN

.y tu - T N
N N e A A R A

T

""""""
............

INTRODUCTION

Class L tests check that incomplete or illegal Ade pregrams involving
multiple, separately compiled wunits are detected and nct allowed to
~xecute., Class L tests are compiled separately and execution is attempted.
. Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declaratiocns in the wmain program or any wunits referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. 1t also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ade Standard that
would circumvert a test objective. The procedure CHECK_FILE is used 1o
check the contents of text files written by some of the Class { tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests oproduce messages that
are examined to verify that the units are operating correctly. I{f these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended %o
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of S5 characters, contain
lines with 2 maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable 1o
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1is wvalidated. A test that is
inapplicable for one wvalidation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language constiruct or an erroneous language consiruct is withdrawn from the
ACVC and, therefore, is not wused in testing a compiler, The tests
withdrawn at the time of this valideation are given in Appendix D,

Ty AT T YT YT

1-¢

.
s
Ll
.
¢
4
’
'
¢
¢
"
v
|
E]
r

i

®

¢'0

0

0

A}

o

M)

1,

:

o

«"

K)

N CHAPTER 2

i CONFIGURATION INFORMATION

“-1

N

, 2.1 CONFIGURATION TESTED

W The candidate compilation system for this validation was tested under the
) following configuration:

D M

i Compiler: Tartan Ada VMS/VMS, Version 2.0V

-

- ACVC Version: 1.9
- Certificate Number: 88032211.09047

bl Host and Target Computer:

f Machine: MicroVax II

45 Operating System: microVMS

N Version 4.6

. Memory Size: 9 Megabytes

":

’l

-

”“,

-

.4

L

o

N 2.2 IMPLEMENTATION CHARACTERISTICS

X One of the purposes of validating compilers is to determine the behavior of
o a compiler in those areas of the Ada Standard that permit implementaiions
jj to differ. (lass D and E tests specifically check for such implementation
e differences. However, tests in other <classes also characterize an
j implementation. The tests demonstrate the following characteristics:
)

®
"'

" 2-1

l
@

~

l‘

O B A A o S A A g R o o T s gt SRR S O A ST SO ST PR ARt

} Hddd. ol BB AT NI AN W N OO

CONFIGURATION INFORMATION

Caracities.

The compiler correctly processes tests containing loop statements
nested to &5 levels, block statements nested to 65 levels, and i
recursive procedures separately compiled as subunits nested to 17 |
levels, It correctly processes a compilation containing 723
variables in the same declarative part. {(See tests DS5SA03A..H (B
tests), DS6ODIB, D64OOSE. .G (3 tests), and D29002K.)

Universal integer celculations.

An implementation is allowed 1to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation processes 64 bit integer calculations. (See tests
D4AQ02A, D4ADDO2B, D4AOO4A, and D4A004B.) .

Predefined types.

This implementation supports the additional predefined type
LONG_FLOAT in the package STANDARD. (See tests B86001C and

B860010.)

Based literals.

An implementation is allowed to reject & based literal with a
value exceeding SYSTEM.MAX_INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR (See test E24101A.)

Expression evaluation.

Rpparently some default initialization expressions {for record
components are evaiuated before any value is checked to belong to
a component’s subtype. (See test C321174.)

Assignments for subtypes are performed with the same precision as
the base type. (See test (357128.)

This implementation uses no extra bits for extra precision. This
. implementation wuses all extra bits for extra range. (See test
N C35903A.)

‘: Sometimes NUMERIC_ERROR is raised when an integer literal operand
N in & comparison or membership test is outside the range of the
N base type. (See test (452324.)

. No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base

type. (See test C452524.)

r
r

D U R s Y T o o P i G, LI IR SR
R nl i) » L AL A IR L i St ')‘.“j
5 . KX LIS a0 X KX M oal Ny N w . J AW, g o Y Uy DL S e Y

. v . ’. » - \ o N \ v ta NN N _} "R \

CONFIGURATION INFORMATION

Apparently underflow is not gradugl. (See tests (45524A..7.)

Rounding.

The method used for rounding to integer is apparentiy round away
from zero . (See tests C46012A..Z7.)

The method used for rounding to longest integer is apparently
round away from zero (See tests C46012A..7.)

The method used for rounding to integer in static wuniversal real
expressions is round away from zero. (See test C4A014A.)

Array types.

An implementation s allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘'LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_INT. for this
implementation:

Declaration 0f an array type or subtype declaratidn with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR. (See test
£360034.)

NUMERIC_ERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

NUMERIC_ERROR is raised when an array type with SYSTEM.MAX_INT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having 3 'LENGTH exceeding INTEGER’LAST
raises NUMERIC_ERRQOR when the array type is declared. (Sce test
£52103X.)

A packed twn-dimensional BOOLEAN array with more than INTEGER’LAST
components raises NUMERIC_ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGCR'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
vhen declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
stice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test ES52103Y.)

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expressicn’s subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT_ERROR is raised when

2-3

R SEN RN XA LERN NN KRR KN KR R RAN A AT A AT MU N Y S N N S Y UN R N UV A U OV R I O, g St Bin 950 80 60 6°06 B & B gt
. . a8

CONFIGURATION INFORMATION !

checking whether the expression’s subtype is rompatible with the
target's subtype. (See test (52013A.) :

Discriminated types,

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with & compatible discriminant constraint,
This implementation accepts such subtype indications. (See test

£E38104A.)

)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR is

raised when checking whether the expression’s subtype is "
compatible with the target's subtype. (See test C520134.) ;
Aggregates. Y
¢
3
In the evaluation of 2 multi-dimensional aggregate, all <choices {

appear to be evaluated before checking against the index type.
(See tests C43207A and C432078.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bound:.

(See test E432128.)

I TR SR gt g

Not all choices are evaluated before CONSTRAINT_ERROR is raised if
3 bound in 2 nonnull range of & nonnull aggregate does not belong f
to an index subtype. (See test £432118.)

Representation clauses.

An implementation might legitimately place restrictions on

representation clauses used by some of the tests. If a o
; representation clause is used by a test in a way that viclates a :
)) restriction, then the implementation must reject it.
[Enumeration representation clauses containing noncontiguous values ;

for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A3900S5F.)

Enumeration representation clauses containing noncontiguous values

for character types are supported. (See tests (355071..4, $
J {35507M. N, and C55B16A.) .
Enumeration representation clauses for boolean types containing :
representational wvalues other than (FALSE => 0, TRUE => 1) are
supported. (See tests (C35508I..J and C35508M..N.) $
»
2-4 g
X
.:
)

-~ RIER)

A2 Ve T 3 'R » ™ T N » et " » " [Wb Wi g
a0 I T D o LG e A e g

EWETORIN =

i

AYE g

CONFIGURATION INFORMATION

Length clauses with SIZE specificaticns for enumeration types are
supported. (See test A39009B.)

Length clauses with STORAGE_SI1ZE specifications for access types
are supported. (See tests A39005C an¢ C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported., (See test A390056G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test (B7B6Z2A.)

Pragmas.

The pragma INLINE is not supported +for procedures. The pragma
IJNLINE is not supported for functions. (See tests LA3004A,
LA30048, EA3D04C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_I0. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_I0 and DIRECT_IO.
{See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_I0. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE22088B.)

An existing text file carn be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE2102C.)

2-5

R N e R R R N R N T T I I oo N T O T O T R T S O T POy 0
r r 4

-

Y

TT T TR RN AR BT RN RN N\ NI\ Wmmumn“mmmmm”mm
3 h v YT ITTR o1~ [53 %)]

CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for text 1/0 for botk reading and writing. (See tests
CE31114. . FE (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
"file for sequential 1/0 for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct 1/0 +for both reading and writing. (See tests
CE2107F..1 (5 tests), CE2110B, and CE2111H.)

file cannot be associated with 3 single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
canrot be deleted for SEQUENTIAL_IQ, DIRECT_10, and TEXT_I0. (See
test CE2110B.)

(
An internal sequential access file and an internal direct access]
]

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE2108A and CE2108C.)

Generics,

Generic subprogram declarations and bodies can be compiled in
separate compilations. {See section 3.5 for restrictions. See
tests CA1012A and CA2009F.)

Generic package declarations and bodies can be- compiled in
separate compilations. {See section 3.5 for restrictions. See
tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. {See section 3.5 for vrestrictions. See test
CA3011A.)

TTTETEEYETYM SR SEEIIFIVIALIC UL g e TY WY,

_— i

o
¥ |

e

-

: -
-

PP A

S e Y o

'

)

LAk af au ‘.’..‘-'I‘I

4

e

A I S N N L L L I P R L o
A Yo ‘r“ar PR L

BEL LR REAR R UARR AN KRR AN RN RA R

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 1tests had been withdrawn because of test errors.. The AVF
determined that 367 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 290
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading

for 75 tests were required to successfully demonstrate the test. objective.
{See section 3.6.)
The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.
3.2 SUMMARY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL
_____________ JAL B o b EL Ll
Passed 108 1044 15095 17 10 44 2728
Inapplicable 2 7 33 0 B 2 367
Vithdrawn 3 s 21 0 1 0 27
TOTAL 113 1053 1874 17 19 46 3122

(8]
1
—

N R e N R R T A P A T g NSO
) - _ - e e = * |
N B P RN N A

b
(adind)

.l Va3 tEyLt . e
UN 76 LY W L -a 8 &0 8°2 8l B ‘o g e paf Pat » gk

Y LR LA AT XTI 3 Sl T AR TR N ormes * R v - A, . " YUY .
L 1 Lol ’ N N * A S0 8 ') A pvh ate v S 258 0% &,

- w

TEST INFORMATION

"

3.3 OSUMMARY OF TEST RESULTS BY CHAPTER

o "

o~

RESULT CHAPTER TOTAL
S 2.3 .4 5 & .1 _8_9 10 13 .12 .13 _18 _____
; Passed 182 469 476 242 166 98 141 327 127 36 232 3 229 2728
: Inapplicable 22 103198 6 0 0 2 0 10 0 2 0 24 367
[Vithdrawn 2 14 3 0 0 t 2 o0 0 0 2 1t 2
2 TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

Pyt g g Tl

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of

.(

\ this validation:

)

A

: B28003A E28B005C C34004A (35502P A35902C C35904A

" (359048 C35A03E (C35A03R (C37213H (€37213J (€37215¢C

: (372156 (€372156 (C37215H (C38102C C41402A C453532A

’ C45614C A74106C CB85018B (87B04B (CC1311B BC3105A

% ADIAO1A CE2401H CE3208A

:: .

: See Appendix D for the reason ihat each of these tests was withdrawn,

v 3.5 INAPPLICABLE TESTS

b

) Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or

; withdrawn. The applicability of a test to an implementation is considered

o each time a validation is attempted. A test that is inapplicable for one

validation attempt is not necessarily inapplicable for a subsequent
attempt. Ffor this validation attempt, 367 tests were inapplicable for the
reasons indicated:

E28002D and E2B005D use pragmas LIST and PAGE which are ignored by
this compiler. This behaviour was ruled acceptable by the AVO
(dated 88-01-14).

NP HIFLEIT] @ 2SS X1 @ ST

: NN,

N N
WO e A

e T T T e e s A Y

TEST INFORMATION

(35702A uses SHORT_FLOAT which is not supported by this
implementation.

The following tests use SHORT_INTEGER, which is not supported by
this compiler:

(452318 C453048 C455028 CA5503E C455048
C45504¢E (456118 C456138 C456148 C456318
C45632F BS2004¢E C53B078 B55809D

The following tests use LONG_INTEGER, which is not supported by
this compiler:

€45231¢C C45304C €45502¢ €45503(C €45504¢
C45504F C45611C €45613¢C C45631C €45632C
B52004D CS5BO7A BS5BOSC -

C45231D requires a macro substitution for any predefined numeric
types other <than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C45531M. C45531IN, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

455310, (C45531P, (459320, and (45532pP use coarse 48-bit
fixed-point base types which are not supported by this compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSiEM, but TEXT_10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_I0.

CA2009A, CA2009C..D (2 tests), CA2009F, BC3007B..C (2 tests) This
compiler enforces the following two rules concerning declarations
and proper bodies which are individual compilation units:

0 generic bodies must be compiled and completed before their
instantiation.

3-3

TEST INFORMATION

0 recompilation of a generic body or any of its ‘transitive
subunits makes all wunits obsolete which instantiate that
generic body.

These rules are enforced whether the compilation wunits are in
separate compilation files or not. The rules are in conflict with
the said tests. AI408 and AIS06 allow this behaviour wuntil June
1989.

CA3004E, EA3004C, and LA3004A wuse the INLINE pragma for
procedures, which is not supported by this congiler,

CA3004F, EA3004D, and LA3004B use the INLINE pra.ma for functions,
which is not supported by this compiler.

AE2101C, EEZ2201D, and EEZ201E wuse instantiations of package
CEQUIMTIAL_I0 with wunconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler,

AE2101H, EE2401D, and EE24016 wuse instantiations of opackage
DIRECT_IO with wunconstrained array types and record types having-
discriminants without defaults. These instantiations are rejected
by this compiler,

CE2107B..D (3 tests), CE2107G..1 (3 tests), CE2111H, CEJ111B..E (4
tests), and CE3114B, and are inapplicable because multiple
internal files cannot be associated with the same external {ile
for the operations attempted in these tests. The proper exception
is raised when operations are attempted which are not supported.

CE2108A, CE2108C are inapplicable because temporary sequential and
direct files are not given names.

CE2105A..B (2 tests) are inapplicable because files of mode
IN_FILE cannot be created for SEQUENTIAL_IO and DIRECT_IQ.

CEZ2108A and CE2108C are inapplicable because temporary files do
not have names for SEQUENTIAL_IO0 and DIRECT_IOQ.

The following 290 lzsts require 2 {floating-point accuracy that
exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)

AN AR
\..x_‘hh\" - '\ DL."- L\ e Sy _‘."\. 4\1‘\.‘.‘: ": { ':\ _‘n"

=
T EA O oA

-
. m

T3

"
o
v
s"

-:;Jl' . }

@

Pt U N

Sa ey,
s ol e

NIRRT TP O TN K T O O O O HSARICARAR A BA® L0 0,0 2,0 0.0 0 0000 (R0 R AN 's Sta ity S0a iin Uy ate AUs Eie-aho"ase s ot ran LR Sad ‘e ot veg eal D

TEST INFORMATION

C35706F..Y (20 tests) £35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..2 (22 tests)
C45241F. .Y (20 tests) C43321F..Y (20 tests)
C45421F..Y (20 tests) £45521F. .7 (22 tests)
€45524F..7 (22 tests) C45621F..7 (22 tests)
C45641F..Y (20 tests) C46012F..2 (22 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
{(0itherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 75 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B33301A B34007H
B35701A E36171A B36201A B37101A B37102A B37201A B37202A
B37203A B37302A B38B003A B38003B B3BOOBA B38008B B38009A
B38009B B38103A B38103B B38103C B38103D B38103E B43201C
B43202C B44001A B48002A B48002B B48002D B4BOO2E B4BO0Z2G
B48003E B49003A B4900SA B49006A BASDOTA B49009A B4AD10C
B54A20A BS4A25A BSB002A B58002B B59001A B59001C B590011
B62006C B64001A B67001A B67001B B67001C B67001D B74103F
B74104A B35007C B91003B B91005A B9SO01A B95003A BYSO007B
B95031A B95074E BC1002A BC1109A BC1109C BC1206A BC30O0SB
BC3009¢C

For the two tests BC3204C and BC3205D the compilation crder was changed to

BC3204Cc0, ..Ct, ..C2, ..C3, ..C4, .. CS, ..C6, ..C3M
and
BC3205D0, ..D2, ..DIM

respectively. This change was necessary because of the compiler’s rules.
for separately compiled generic units. When processed in this order the

expected error messages were produced for BC3204CM and BC3205D1N,

respectively,

3-5

St

R LI P
-\. B .J‘.\" '(",-'('

T Y A U T Ty |

CAC WSS TTIN T IIITI T

TEST INFORMATION

The compilation files for BC3204D and BC3205C <consist of several
compilation wunits each. The compilation units for the main procedures are
near the beginning of the files, When processing these files unchanged a
link error is reported instead of the expected compilation error because of
the compiler's rules for separately compiled generic units. Therefore, the
compilation files were changed by appending copies of the main procedures
to the end of these files. When processing these second occurences of the
main procedures the expected error messages were generated by the compiler.

Test E28002B checks that predefined or wunrecognized pragmas may have
arguments involving overloaded identifiers without enough contextual
information to resolve the overloading. It also checks the correct
processing of pragma LIST. This compiler ignores pragma LIST sp that this
part of the test was not taken into account when grading the test as
passed.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Tartan Ada VMS/VMS was submitted to the AVF by the applicant for
review. Analvsis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tartan Ada VMS/VMS using ACVC Version 1.9 was conducted
on~site by a validation team from the AVF. The configuration consisted of
a MicroVax ‘11 operating under microVMS, Version 4.6.

A magnetlic tape containing all tests except for withdrawn tests and t:sts
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magrnetic tape. Tests requiring modifications during the prevalidation
testing were not included in their modified form on the magnetic tape.
They were provided by Tartan Laboratories Incorporated and reviewed by the
validation team.

The contents of the magnetic tape were not loaded directly onto the host
computer. The tests were vread on a VAX-750 and transferred to the host
computer using an ether-net connection.

After the test files were loaded to disk, the full set of tests was
compiled on the MicroVax 11, and all executable tests were linked and run.
Results were transferred to the VAX-750 by ether-net where they could be
printed, checked and archived.

3-6

SR : : -
Mm = QA N AN, e T T s
‘XJL’J&LW&M AJ.M'{A.. A.ﬂ.fm‘_ AN e A‘:-(Alf- PR LI

A O RASAN AR TN AN “e b ap ap v T A IR ‘e e Wk et bak tal Cah tad dah bad’ Sab ekl Ty " o
b 3 . . . - 4. n A .

K

] TEST INFORMATION
:(

A The compiler was tested wusing command scripts provided by Tartan
' Laboratories Incorporated and reviewed by the validation ‘team. The
i compiler was tested using all default switch settings.

%

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation 1listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

- - -

3.7.3 Test Site

o

Testing was conducted at Tartan Laboratories Incorporated in Pittsburgh and
was completed on 88-03-20.

e

-~

[A
- , @ DRI

-

L

S o

-
a'a

.

-~

L aal - P N N i 0" o e B BT S N SV I R I 2PN PO
) ~ . Pl Lol " e . v -
: L LS . " [™ u‘ o v \ I‘ q“ \-(‘-, R \ ", .\.’\\ '\ -'n_" L g Oy T -.\J';lf f.:'- 'f"'..J' ‘--.:F‘..’.:'F s ..': i)' S
he, Al N n

e o T)

APPENDIX A
DECLARATION OF CONFORMANCE
Tartan Laboratories Incorporated has submitted the

following Declaration of Conformance concerning the
Tartan Ada VMS/VMS.

»

10 LN G I L R R A o T N S S , .
RN T R W I R AP I O A IOV

- TEICRRRTYTY o VTN T .

AL AR AL LA LA U AL KA AU IS U UG DN ORI LR TR I iy USCOW LW DN U W IV DR DY Y YT e T a8 0 40 8w 80 6 8.6 N0 B0

DECLARATION OF CONFORMANCE
DECLARATION OF CONFORMANCE

Compiler Implementor: Tartan Laboratories Incorporated
Ada Validation Facility: IABG m.b.H., Dept. SZT
Ada Compiler Validation capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Tartan Ada VMS/VMS
Base Compiler Version: Version 2.0V
Host and Target Computer: MicroVAX II under MicroVMS 4.6

Imnplementor’s Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) 1listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada Language compiler(s) listed
in this declaration shall be made only in the owner’s corporate name.

W% Date: ZWS/Y

Tartan Laboratories Incorporated
Donald L. Evans, President

Owner’s Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, take
full responsibility for irplementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program
Office. I declare that all of the Ada Language compilers listed, and
their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

%% pate: ZW 5%

Tartan Laboratories Incorporated
Donald L. Evans, President

v

I B

- ¢ w -
- -, Aot

e

v sa -

s .
49 o0

el).

¥ e_%

KL RANDENNSC - IRAPIAOONTEN L=y e

-

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to impliementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Tartan Ada VMS/VMS, \Version 2.0V, are described in the {following
sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included

in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647, .
type FLOAT is digits 6 range -168#0.7FFF_FF8HE+32 .. 16HO.7FFF_FFBHE+3Z;
type LONG_FLOAT is digits 9 range -1680. 7FFF_FFFF_FFFF_FFBRE+32 ..
1680.7FFF_FFFF_FFFF_FFBHE+32 ;
type DURATION is delta 0.02 range -86400.0 .. 86400.0;
-~ DURATION’SMALL = 241.0HE-6

end STANDARD:

E-1

YUV L S AR ETOR TOUTE ¥ o Bte @%p 41 - « B Yy o .
LB © A $ed t U XN *a g% W MW L UV UL v $a0-0.0'8.4'0 FURTVIVCOTT U WY Sult Al Sl 4. a8

1

L)

o

3 APPENDIX F OF THE Ada STANDARD

“

N

4

3

A

Kn

o CHAPTER §

k: APPENDIX F TO MIL-STD-1815A

)

ol

I This chapter contains the required Appendix F to Military Standard, Ada Pro-
s gramming Language, ANSI/MIL-STD-1815A (American National Stendards Institute,

Inc., February 17, 1983).

“

e

R S.1. PRAGMAS

X

b

5.1.1. Predefined Pragmas

w ,

i& This section summarizes the effects of and restrictions on predefined pragmas.
.

o

f& - Access coliections are not subject to automatic storage reclamation so
o pragma CONTROLLED hacs no effect. Space deallocated by means of
: UNCHECKED _DEALLOCATION will be reused by the allocation of new objects.
R .

;E. - Pragma ELABORATE is fully supported.

Y - Pragma INLINE, is supported but has an effect on the generated code only
o when the call appears within the same compilation unit as the body of the
. in-lined subprogram.
i
K - Pragma INTERFACE, is not supported. The implementation-defined pragma
" FOREIGN_BODY (see Section 5.1.2.2) can be wused to interface to sub-
L7 programs written in other languages.

- For global control over listings, compiler option switches should be used

o rather than pragma LIST.

P

:2 - Tartan compilers currently optimize both the time and space aspects based
e on what is best in the local context. Future releases of the compiler
i will have option switches to decrease the level of sophistication of the
fz optimizations. Because it is generally wvery difficult to establish
(-2 global time and space tradeoffs, pragma OPTIMIZE <cannot be effectively
»j Supported in the form suggeszted in the LRM.

- - Pragma PACK is fully supported.

Q - The effect of pragma PAGE can be achieved by inserting form-feed charac-
j ters into the Ada source file.

o
o - Pragma PRIORITY is fully supported.
"
‘: - The effect of pragma SUPPRESS can be achieved by a global compiler option
o .

N -2

Y B

N

]

f

IS s P I LI VI R L W R R I R .
.' ", -’f d '. ". L4 .d’\f\f\i’.‘- "y V"‘(.‘.i"‘-, l".f" ¥y fr,hr,\r [4 \‘ oy "
AL 2 Y, A « L dhin i Bhte Mg M W M o N X X

A [Y > T at, -, 00,
. AN N

1A’ et

-

e s ATNETTTT X Ta

A0 Ba et Wa® €0 280 00 %3 TV s uVa at0 a'd a8 uth all abh' ath* A aasaeh R m oo . "
. , L - T m A X "W LS ‘A.

APPENDIX F QOF THE Ada STANDARD

switch.

- Future vreleases of the compiler will support the {olfouing pragmas:
MEMORY_SIZE, SHARED, STORAGE_UNIT and SYSTEM_NAME.

A warning message will be issued if an unsupported pragma is supplied.

5.1.2. Implementation-Defined Pragmas
Tartan provides the following pragmas.
5.1.2.1. Pragma LINKAGE_NAME

The pragma LINKAGE_NAME associates an Ada entity with a8 string that is mean-
ingful externally; e.g., to a8 linkage editor, It takes the form

pragma LINKAGE_NAME (Ada-simple-name, string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package
specification. This entity must be one that has a runtime representation;
€.g., 8 subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity
in the same package specification,

The effect of the pragma is to cause the string-constant to be used in the
generated assembly code as an external name for the associated Ada entity. It
is the responsibility of the user to guarantee that this string constant is
meaningful to the linkage editor and that no illegal linkname clashes arise.

9.1.2.2. Pragma FOREIGN_BODY

A subprogram written in another language can be called from an Ada program.
Pragma FOREIGN_BODY is used to indicate that the body for a non-generic top-
level package specification is provided in the form of an object module. The
bodies for several subprograms may be contained in one object module.

Use of the pragma FOREIGN_BODY dictates that all subprograms, exceptions and
objects in the package are provided by means of a foreign object module.

The pragma is of the form:
pragma FOREIGN_BODY (language_name [, elaboration_routine_namel)

The parameter language_rame is intended to allow the compiler to identify the
callting convention wused by the foreign module (but this functionality is not
yet in operation). The programmer must ensure that the calling convention and
data representation of the foreign body procedures are compatible with those
used by the Tartan Ada compiler. Subprograms called by tasks should be
reentrant,

The optional elaboration_routine_name argument provides a means to initialize

g-3

A R A Y
AR A

WL L XABISEIITT.TS

HASAABEI L@

APPENDIX F OF THE Ada STANDARD

the package. The routine specified as the eleboration_routine_name, which will
be called <for the elaboration of this package body, must be a global routine
in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declara-
tions, object decarations that wuse an unconstrained type mark, and number
declarations. Pragmas may also appear in the package. The type mark for an
object cannot be a task type, and the object declaration must not have an in-
itial value expression. The pragma must be given prior to any declarations
within the package specification. 1t the pragma is not located before the
first declaration, or any restriction on the declarations 1is violated, the

. pragma is ignored and a3 warning is generated.

The foreign body is entirely responsible for initializing objects declared in
a package utilizing pragma FOREIGN_BODY. 1In particular, the wuser should be
aware that the implicit initializations described in LRM 3.2.1 are not done by
the compiler. (These implicit initializations are associated with objects of
access types, certain record types and composite types containing components
of the preceding kinds of types.)

Pragma LINKAGE_NAME should be used for all declarations in the package, in-
cluding any declarations in @& nested package specification to be sure that
there are no conflicting link names. 1f pragma LINKAGE_NAME is not used, the
cross-reference qualifier, /CROSS_REFERENCE, (see Section 3.2) should be used
when invoking the <compiler and the resulting cross-reference table of
linknames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linknames (see also Section 3.5).

Example:

package Fortran_RunTimes is

pragma FOREIGN_BODY ("fortran™);

--The language name is a comment only, it is not checked for validity.
end Fortran_RunTimes;

with Fortran_Runtimes;

package Fortran_Library is
pragma FOREIGN_BODY ("fortran", "init_seed");
function SquareRoot(x:float) return float;
function Exp (x:float) return float;
function Random return float;

private
pragma LINKAGE_NAME (SquareRoot, "Sart™);
pragma LINKAGE _NAME (Exp, “"Exp");
pragma LINKAGE_NAME (Random, "Rnd");

end fortran_Library;

The user may compile @ body written in Ada for @ specification into the
library, regardless of the language specified in the pragme contained in the
specification. This capability is usefuil for rapid prototyping, where an Ada
package may serve to provide a simulated response for the functionality that a
foreign body may eventually produce. It also allows the wuser to replace a

B-4

e e L S e Lt L L e Lt S S SO A

N VN T N AN RN T AR 7O AR O R T N TV W WY AT Yy O R O O O R OO I O O O U T P O O O 1 1 &Y,

Y ‘ APPENDIX F CF THE Ada STANDARD

'\' .
" foreign body with an Ada body without recompiling the specification.
I‘l
‘o
j& The wuser can either compile an Ada body into the library, or use the command
& ALIB FOREIGN_BODY (See Section 4.7) to use an Ada body from another library.
The Ada body from another library must have been compiled under an identical
) specification. The pragme LINKAGE_NAME must have been applied to all entities
j* declared in the specification. The only way to specify the linkname for the
.2 elaboration routine of an Ada body is with the pragma FOREIGN_BODY.
;Zf:
o 5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
R
;$ No implementation-dependent attributes are currently supported.
::l
Wt
Q 5.3. SPECIFICATION OF THE PACKAGE SYSTEM
) The parameter values specified for the VAX in package SYSTEM [LRM 13.7.1 and
[N) .
3. Appendix C] are:
||
)
f package system is
: type address is new integer;
o type name is (VAX, MIL_STD_1750A, MC68000);
" system_name : constant name := VAX;
x storage_unit : constant := B;
X memory_size : constant := 1000000,
b max_int : constant := 21474B3647;
0 min_int t constant = -max_int - 1;
! max_digits : constant := 9,
% max_mantissa : constant := 31;
y fine_delta ~ : constant := 2#1.08e-31;
§~ tick : constant = 0.01667;
P subtype priority is lnteger range 10 .. 200;
d defauvlt_priority: constant priority := priority’first;
runtime_error t exception;
b end system;
%]
kS
'y 5.4, RESTRICTIONS ON REPRESENTATION CLAUSES
1"
!z Restrictions on representation specifications:
N
‘ - Length clauses [LRM 13.21:
ﬁ
v + A length clause for T'SIZE is permitted for any type or first sub-
“ type T for which the size can be computed at compile time. A length
5 clause for 2 composite type cannot be used to force a smaller size
o for components than established by the default type mapping or by
- length clauses for the component types.
j? + There are no restrictions on other forms of length clauses except

the restrictions specified in LRM 13.2. The size specified for

B-3

APPENDIX F OF THE Ada STANDARD

T°STORAGE_SIZE of an access type or task type 1 is assumed to in-

clude a small amount of hidden administrative storage.
- Enumeration representation clauses [LRM 13.31:

+ All integer codes in the representation aggregate must be
INTEGER'FIRST and INTEGER'LAST.

- Record representation clauses [LRM 13.4]:

between

* Record representation clauses are permitted only for record types

all of whose components have a size known at compile time.

+ Representation specifications may be specified for some components

of a record without supplying representation specifications

for all

components. The compiler will freely allocate the unspecified com-

ponents,

- Address clauses [LRM 13.51]:

* When applied to an object, an address clause becomes a linker direc-

tive to allocate the object at the given logical address.

For any

object not declared immediately within a top-level library package,
the address clause is meaningless, with the possible exception of
objects declared inside a task, if the target permits a task to run

in a separate address space.

x Address clauses applied to local packages are not supported by Tar-

tan Ada.

t Address clauses applied to subprograws and tasks are implemented ac-

cording to the LRM rules.

* When applied to an entry, the specified value identifies an

inter-

rupt in a manner customary for the target. Immediately after a task
is created, a runtime call is made for each of its entries having an
address clause, establishing the proper binding between the entry

and the interrupt.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan
records contain dope information for arrays whose bounds depend

criminants of the record. These components cannot be named by the user.

3.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax

sociating interrupts with task entries. Tartan Ada implements the
¢lause

B-6

Ada in
on dis-

for as-
address

Ty ST I

- T

C ol Rt A AW ANl 2 b s 0 ate.e 5 B~ ok atA
. UY UWURITRNK Vol g v, Va ety g g N TNy Wy et o tatal a8 /o ta vt 2e¥. 4.0 0808 e,8'e

(AGA0
W '.l'_‘.l

APPENDIX F OF THE Ada STANDARD

for toentrv use at intlD;

by associating the interrupt specified by intlD with the toentry entry of the
task containing this address c¢lause. The interpretation of intID is both
machine and compiler dependent.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKED_CONVERSION with a restriction that requires the
sizes of both source and target types to be known at compile time. The sizes
need not be the same. If the value in the source is wider than that in the
target, the source wvailue will be truncated. If narrower, it will be zero-
extended. Calls on instantiations of UNCHECKED_CONVERSION are made inline
automatically.

5.8. IMPLEMENTATION-DEPENDENT CHARACTERISTICS OF INPUT-QUTPUT PACKAGES

Tartan Ada supports all predefined input/output packages [LRM Chapter 14) with
the exception of LOW_LEVEL_IO (which is planned for a8 future release).

SEQUENTIAL_10 and DIRECT_IO may not be instantiated on types whose represen-
tation size is greater than 32255 bytes. Any attempt to read or write values
of such types raises USE_ERROR.

SEQUENTIAL_JO and DIRECT_IO may not be instantiated on wunconstrained array
types, nor on record record types with discriminants without default values.

An attempt to delete an external file while more than one internal file refers
to this external file raises USE_ERROR.

When an external file is referenced by more than one internel file, an attempt

‘to reset one of those internal filtes to OUT_FILE raises USE_ERROR.

An attempt to create a file with FILE_MODE IN_FILE raises USE_ERROR.

Since the implementation of the input-output packages uses buffers, output to
one file cannot necessarily be read immediately from another +file associated
with the same external file.

The FORM parameter of file management subprograms is ignored.

An attempt to read a non-existent dats record through the operations of
SEQUENTIAL_IO or DIRECT_IO raises DATA_ERROR, except that END_ERROR is raised
when reading beyond the end of file.

If the '"™'S record management services (RMS) return a status value that cannot
be mappec. onto a predefined Ada exception, the exception DEVICE_ERROR is
raised,

B-7

N AT T PSR LY. o5 -

00 (N Y Y N T e e €) e e . . N .
O A i M ORI M E N ‘ AR A NN SN 'Iﬂ'_*d‘ .." ,f -

I.,Faif!‘.t

A ¥ 3w sy

MRS A R I A A I NI UN Y 2 82 &'a §78 $°R $* ANV Y REUY 2.0 8o 08 Lot By’

APPENDIX F QF THE Ada STANDARD

5.9. OTHER IMPLEMENTATION CHARACTERISTICS

The following information is supplied in additicn to that required by Appendix
F to MIL-STD-1815A. .

5.9.1. Definiticn of & Main Program

Any Ada library subprogram unit may be designated the main program for pur-
poses of linking (using the ALIB command) provided that the subprogrum has no

Farameters.

Tasks initiated in imported library units follow the same rules for termina-
tion as cther tasks [described in LRM 9.4 (6-10)1. Specifically, these tasks
are not terminated simply because the main program has terminated. Terminate
alternatives in selective wait statements in library tasks are therefore
strongly recommended.

5.9.2. Implementation of Generic Units

All instantiations of generic wunits, except the predefined generic
UNCHECKED_CONVERSION and .UNCHECKED_DEALLOCATION subprograms, are implemented
by code duplications. No attempt at sharing code by multiple instantiations is
made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be
compiled before the unit can be instantiated. 1t does not impose the restric-
tion that the specification and body of a generic unit must be provided as
part of the same compilation. A recompilation of the body of a generic unit
will obsolete any units that instantiated this generic unit.

9.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:
DURATION'DELTA is 0.02 sec
DURATION'SMALL is 0.015625 sec
DURATION'FIRST is -86400.0 sec
DURATION'LAST ic 86400.0 sec
5.9.4. Values of Integer Attributes

Tartan Ada -upports the predefined integer type INTEGER. The range bounds of
the predefined type INTEGER are:

INTEGER'FIRST is -22¢3]
INTEGER'LAST is ztx31-1

«

o N A R
" -

I 0l o

- ol

-

1

vl
A e

Ny Y

ARUATA U LA A A A KA RO OO AL A A2t o' atd obs ada e lp sdst ig™ 0"t

APPENDIX F OF THE Ada STANLARD

The range bounds for subtypes declared in package TEXT_10 are:

COUNT'FIRST is 0
COUNT'LAST is INTEGER’LAST - 1

POSITIVE_COUNT'FIRST is 1
POSITIVE_COUNT’LAST is INTEGER’LAST - 1

FIELD'FIRST is O
FIELDLAST is 20

The range bounds for subtypes declared in packages DIRECT_I0 are:

' COUNT'FIRST is 0
COUNT'LAST is INTEGER'LAST

POSITIVE_COUNT'FIRST is 1
FOSITIVE_COUNT'LAST is -COUNT’LAST

’

5.9.5. values of Floating-Point Attributes

-

Tartan Ada supports the predefined floating-point types FLOAT and LONG_FLOAT.
FLOAT maps onto the VAX F-format floating-point representation; LONG_FLOAT,
4 onto the D-format. Ffuture wversions of Tartan Ada will support all four VAX
formats (F-, D-, G-, and H-format) in an implementation-dependent library

package.
Attribute Value for FLOAT
DIGITS 6
MANTISSA 21
EMAX B4
EPSILON 1660,1000_000#E-4
approximately 9.53673E-07
. SMALL 1660,8000_000¢E-21
h approximately 2.58494E-2¢6
: LARGE 1660 . FFFF_FBOKE+21
E approximately 1.93428E+25
f
: SAFE_EMAX 127
SAFE_SMALL 1640.1000_0008E-31
approximately 2.93874E-39
SAFE_LARGE 1680 . 7FFF_FCOH4E+32
approximately 1.70141E+38

T e R s

CAPPENDIX F OF THE Ada STANDARD

FIRST
approximately

LAST
approximately

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS

MACHINE _OVERFLOWS

o

((] S "
"[".‘I .'\'?, W ..l 5 I‘;’A) “l“’l."". (2 ’..‘ »

o S L)

O e)

-1680.7FFF_FFBHRE+32

-1.70141E+38

1640.7FFF_FFBHE+32

1.70141E+38
2

24

127

-127

TRUE

TRUE

g D N
NSty sty ST e

.

AT " .)
R) "‘.“‘.l‘l X l'O‘l. LM UnOLR O 2

e
A A

» f_' @ '/'1""("1'

LS
s

[R

las B2+

APPENDIX F OF THE Ada STANDARD

Attribute Value for LONG_FLOAT

DIGITS 9

MANTISSA 31

EMAYX 124

EPSILON 1680.4000_0000_0000_000KE-7
approximately 9.3132257461548E-10

SMALL 164#0.8000_0000_0000_000KE-31
approximately 2.3509887016446E-38

LARGE 1680 . FFFF_FFFE_O000_0004E+31
approximately 2.1267647922655E+37

SAFE_EMAX 127

SAFE_SMALL 16#0.1000_0000_0000_0O00HKE-31
approximately 2.9387358770557€-39

SAFE_LARGE 1680, 7FFF _FFFF_0000_0004E+32
approximately 1.7014118338124E+38

FIRST ~16H0.7FFF_FFFF_FFFF_FFBHE+32
approximately ~1.7014118346047E+38

LAST 1680, 7FFF _FFFF_FFFF_FFBHE+32
.approximately 1.7014118346047E+38

MACHINE _RADIX 2

MACHINE _MANTISSA 36

MACHINE _EMAX 127

MACHINE _EMIN -127

MACHINE _ROUNDS TRUE

MACHINE _QVERFLOWS TRUE

B-11

LY ‘\"jy"_\"\ S0 T e %] I \‘.\-.' LA TR TL I PR yw - -
Bt e Ny, N e A A N A A T A S N T RN

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .IST in its file

name. Actual values to be substituted are represented by names that begin
with a doiiar sign., A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. Ada aggregate notation is wused to denote 1long strings. The

multiplication operator is meant to be overloaded to achieve repetition so
that e.g. 239 x 'A' is equivalent to (1..239 => 'A'),

Name_and Meaning______ ______________ Value e
$BIG_ID1 239 « AT 0§ '1!
ldentifier the size of the
maximum input line length with
varying last character,
$BIG_ID2 239 ¢« A & 2!
Identifier the size of the
maximum input line tlength with
varying last character,
$8I1G_ID3 120 ¢« "A7 & '3 8 119 2 'A°
ldentifier the size of the
maximum input line length with
varying middle character.
$BIG_ID4 120 « A" & "4 & 119 + p°
Identifier the size of the
maximum input line length with
varying middle character.
$BIG_INT_LIT 237 « '0' & 298"

An integer literal of value 29§
with enough leading zeroes so
that it s the size of the
naximum line length.

(-1

B WA el et el Gl et Sl iinl St i b A s AU AS 270 Al e Cd oo

R A R N N Y U I T R O Y T O ¥ 90t Wi Wa Wi W 0 N AR 0.2°0 1’ 000,00 .2 v .0 ¢) Vo ¥ Ry (A S MW PV

:
" TEST PARAMETERS
; .
‘ Name_and_Meaning o —o_____ NalUe o
]
" $BIG_REAL_LIT . 235 2 '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
X zeroes to be the size of the
X maximum tine length,
)
K $BIG_STRING!? Mg 120 ¢ AT & '
: A string literal which when
g tatenated with BIG_STRING2Z
yields the image of BIG_IDI1.
i $PIG_CTRING?Z YR 119+ AT B It T
A string literal which when
" tatenated to the end of
BIG_STRING1 yields the image of
BIG_IDR1.
b $BLANKS 220 % ' "
N A sequence of blanks twenty
[characters less than the size
q of the maximum line length.
$COUNT_LAST 2147483646
A universal integer
\ literal whose value is
\ TEXT_JO.COUNT'LAST,
X $FIELD_LAST ‘ 20
4 A universal integer
“ literal whose value is
1 TEXT_IO.FIELD'LAST,
$FILE _NAME_VWITH_BAD_CHARS X}llaHe sy
; An external file name that
[either contains invalid
, tharacters or s too long.
$FILE_NAME VITH_WILD_CARD_CHAR XYZ1
q An external file name that
:' gither contains a wild card
tharacter or is too long.
$GREATER_THAN_DURATION 100000.0
' A universal real literal that
q lies between DURATION'BASE'LAST
and DURATION'LAST o¢r any value
in the range of DURATION.
q
&
¢ -2
'0
4

! ", L& Wy T g Y ™ o o g W 5 & $,m T oo S . e v - .
Xy e Ry . Y " LAY - u" | N AL ML A G R T N P TR A G o L N IR L e
O.‘-'. W0 N WY ..l Lk N by -'N oo “ i S - \' g S -" . ' N . -'. -""-'.‘ ~ "‘- 3

IA LN AN R TARAT A AN R W RN ol tal SR S0 0 ¢ Hal W od U 0 0,0 0t 6 0 WY O T N Ty Ty x i v a w W e W

TEST PARAMETERS

Name_and_Meaning___ __ oo Value e

- - -— -

¥ $GREATER_THAN_DURATION_BASE_LAST 100000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

. $ILLEGAL _EXTERNAL _FILE_NAME! BAD-~CHAR® "
2 An external file name which
¥ contains invalid characters.

$TLLEGAL _EXTERNAL_FTLE_NAMEZ MUCH_TOO_LONG.. (truncated)
An external file name which
is too long.

Y $ INTEGER_FIRST -2147483648
. A universal integer litereal
whose wvalue is INTEGER’FIRST. |

$ INTEGER_LAST 2147483647
A universal integer literal
whose wvalue 1s INTEGER'LAST.

g -

$INTEGER_LAST_PLYUS_1 2147483648
A yniversal integer literal
whose value i1s INTEGER'LAST + 1.

e Al

$LESS_THAN_DURATION -100000.0
* universal rea! literal that
lies between DURATION’BASE’FIRST
and DURATION'FIRST or any value
in the range of DURATION.

.o

o £ R

$LESS_THAN_DURATION_BASE_FIRST -100000000.0
A universal real literal that is
less than DURATION'BASE'FIRST. b

™

r-.(‘-

$MAX _DIGITS 9
Maximum digits supported for
floating-point types.

$MAX_IN_LEN 240 b
Maximum input iine length
permitted by the implementation.

-‘l\l

- $MAX_INT 2147483647
- A universal integer literal

e whose vaiue s SYSTEM.MAX_INT.

N

X $MAX_INT_PLUS_1 2147483648

” A universal integer literal

N whose value is SYSTEM.MAY INT+1.

[] ‘
; i
N €-3 i

\

S S N T R R DI DL L P A T P O R PP RIS - N
(o ’ NN A AR A " - LI R S VL IO TP TN PRI L. W
) ™ ™ Ny T S vy T s A g R N A P A N A AN NN A RS

=
" - W

T X XX M "™

TEST PARAMETERS

Name_angd _Meaning o ceeeeeeem

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose wvalue s ZH1IR
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN_REAL_BASED_LITERAL
A wuniversal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including tne quote
characters.
$MIN_INT
A universal integer literal
whose value is SYSTEM.MIN_INT.
$NAME
A name of & predefined numeric

type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order W NZEero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

c-4

"2:v g 235470 8 "1t

"16:" & 233+'0" & "F.E:"

TUY g 238 x AT &Y

-2147483648

$NAME

BH777777777776H

4 .-.l.‘ o ‘17,' I' PN o 4 e My ") s W2 J d ‘& = 7
A et e A A AR NS T

(L LRV LV SV LU T P05 0 05 U0 0 U8 B 5% 86 y . PLGL LS St SR LAt) G e La Wi b0 0 0" o' 4L 2%t
N IV WWUY LW VLN T, Il At r .wwvmvmwamvvvvn?

I S o x ML A

;

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ads Standard. The following 27 tests had beern withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"Al-ddddd" is to an Ads Commentary.

P28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);’* not appear
in a listing that has been suspended by a previous “pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly vyields & value
outside of the range of the target type T, raising
CONSTRAINT_ERROR. ‘

£35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A33902C: Line 17's assignment of the nomimal wupper bound of a
fixed-point type to an object of that type raises
CONSTRAINT_ERROR, for that value lies outside of the actual range
of the type.

£35904A: The elaboration of the fixed-point subtype on line 2B
wrongly raises CONSTRAINT_ERROR, because its upper bound exceeds
that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against that of
various types passed as actiual generic parameters, may in fact

raise NUMERIC_ERROR or CONSTRAINT_ERROR for reasons not
o anticipated by the test.
W
F.

R 2 N Y
L)
[}
—

b @

T R R e T A T P g e gt

«WITHDRAWN TESTS

LACE N @XLCINIYY @ sDIPIFFLQ " AT 7L T g

C35A03E, C3S5A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard doesn’t support this assumption.

(37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

£372134J: The aggregate in line 451 wrongly raises
CONSTRAINT_ERROR.

£37215C, (€37215¢, £372156, C37215H: Various discriminant
constraints are wrongly expected to be incompatibie with type
CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT_ERROR.

C41402A: 'STORAGE_SIZE is wrongly applied 1o an object of an
access type. .

(45332A: The test expects that either an expression in line 52
will raise an exception or else MACHINE_OVERFLOWS is FALSE.
However, an implementation may evaluate the expression correctly
using a type with a wider range than the base type of the
operands, and MACHINE_OVERFLOWS may still be TRUE.

C45614C: REPORT.IDENT_INT has an argument of the wrong type
(LONG_INTEGER),

A74106C, C85018B, C87B04B, CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT_ERROR. Errors of this sort
occur in lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they
are legal.

ADIAO1A: The declaration of subtype INT3 raises CONSTRAINT_ERROR
for implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the
wrong values.

CE3208A: This test expects that an attempt to open the default
output file (after it was closed) with mode IN_FILE raises
NAME_ERROR or USE_ERROR; by Commentary AI-00048, MODE_ERROR should
be raised.

.....

