
RlIF C FIlE AVF Conrol Nunr AVF -VSP-O :
SZT-AVF-015

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 86032211.09047
Tartan Laboratories Incorporated

Tartan Ada VMS/VMS
Version 2.OV
MicroVax 11

Lfl
Completion of On-Site Testing:

88-03-20

Prepared By:
w IABG m.b.H., Dept SZT

L, Einsteinstrasse 20
8012 Ottobrunn

KFederal Republic of Germany

Prepared For:

Ada Joint Program Office
United States Department of Defense

Vashington, D.C. 20301-3.081 D T E:
SEPi1 3 1988v

8

Ada is a reoistered trademark of the United States Government
(Ada Joint Program Office).

. "-,.r. '. f r 'CAi -

I ~ r S D V ~ T A T ~ 2t0T

71 -'

rr

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 2-- A L2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (arndSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Tartan 20 March 1988 to 20 March 1989

Laboratories Incorporated, Tartan Ada VMS/VMS
Version 2.0V, MicroVAX II (Host and Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

IABG,
Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 20 March 1988
United States Department of Defense 13. NUMER OF PAES
Washington, DC 20301-3081 44 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
IABG, 1Sa. RE5LSJFICATION/DOWNGRADING
Ottobrunn, Federal Republic of Germany. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Tartan Ada VMS/VMS Ver:;ion 20V, Tartan ,a"<r: V.c-p,-ated, IABO, MicroVAX 1I under MicroVMS
Version 4.6, ACVC 1 . 9

Ii
I' - 'I~ L %,.a ,Ii a' . - w .-' " r " ,". o w - r - ' __ ' " M4I

Ada Compiler Validation Summary Report:

Compiler Name: Tartan Ada VMS/VMS

Compiler Version: Version 2.0V

Certificate Number: #88032211.09047

Host: MicroVax II under
microVMS, Version 4.6

Target: same as host

Testing Completed 88-03-20 Using ACVC 1.9

This report has been reviewed and is aoproved.

IABG m.b. *, Dept SZT
Dr. H. Hummel
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

d-TI ldation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jknt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

I4!

CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-5
3.7 ADDITIONAL TESTING INFORMATION 3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method3-6
3.7.3 Test Site 3-7 Fc,

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD -- ~------

APPENDIX C TEST PARAMETERS

'APPENDIX D WITHDRAWN TESTS

62

CHAPTER I

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent feature.
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be 'ImFlemented that is
not in the Standard.-

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length. of identifiers or tne maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hirdware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.-

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.\ The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects

* illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

S

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada
Validation Organization (AVO). On-site. testing was completed 88-03-20 at
Tartan Laboratories Incorporated in Pittsburgh.

* 1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. 9552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-13? (Fern Street)
Washington DC 20301-3081

or from:

IABG m.b.H., Dept SZT
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexardria VA 22311

1.3 REFERENCES

ANSI/MIL-STL 1815A, February 1983 and ISO 8652-198'.

2. 2npi1r ylijjion Q dU C u nd 5uiefjint, Ada Joint
Program Office, I January 1987.

Inc., December 1986.

4. Aj Compilr Validation Cipiifli Itlj gqit, December 1986.

S,

I.

p

,S

2

_3 "'p

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form A]-ddddd.

Ada Standard ANSIIMIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this "S
reonrt. a compiler is any language processor, including

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this r.eport, the term is used to
designate a single test, which may comprise one or more
files.

6fithdrawn An ACVC test found to be incorrect and not used to check "4
test conformity to the Ada Standard. A test may be incorrect

1-4

INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belngs. Class A, C, D, and E tests are executable,
and special program units are used to report their results oc ing
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class r tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and excution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by th, Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, tne test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. Hnwever, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed h% a ccmoiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and rot allowed to
execute. Class L tests are compiled separately and execution is attempted.
. Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any

declarations in the main program or any units ref-erenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides th mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used

to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to

check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is
checked by a set of executable tests. These tests produce messages that

are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For

example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

d

1-6

i

CHAPTER 2

A CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this va!idation was tested under the
following configuration:

Compiler: Tartan Ada VMS/VMS, Version 2.OV

ACVC Version: 1.9

Certificate Number: 88032211.09047

Host and Target Computer:

Machine: MicroVax IT

Operating System: microVMS
Version 4.6

Memory Size: 9 Megabytes

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of vafldating compilers is to determine the behavior of

a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

2-i

CONFIGURATION INFORMATION

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 leveis, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (B
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4A002B, D4AOO4A, and D4AOO4B.)

Predefined types.

This implementation supports the additional predefined type
LONG FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may raise
NUMERIC-ERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR (See test E24101A.)

Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC-ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

0 V2-

- " -- -' " --

CONFIGURATION INFORMATION

Apparently underflow is not gradual. See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is round away from zero. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC-ERROR or
CONSTRAINI ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'ILAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises NUMERICERROR. (See test
C36003A.)

NUMERIC ERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

NUMERIC-ERROR is raised when an array type with SYSTEM.MAXJINT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See test
C52103X.)

A packed tw -dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC-ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT-ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to be
evaluated in its entirety beiore CONSIRAINTERROR is raised when

2-3

i4-

CONFIGURATION INFORMATION

checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical boundL.
(See test E43212B.)

Not all choices are evaluated before CONSTRAINTERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE :> 1) are
supported. (See tests C355081..J and C35508M..N.)

2-

; z2-4.

CONFIGURATION INFORMATION

Length clauses with SIZE specificaticns for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE_- SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_- SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIALIO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN FILE and OUTFILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

Modes IN FILE, OUT-FILE, and INOUT FILE are supported for
DIRECTIO. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL-10 and DIRECTIO.
(See tests CE21O2G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL-IO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUT-FILE mode, can be
created in OUTFILE mode, and can be created in IN-FILE mode.
(r-ee test EE3102C.)

2-5

4

CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107F..I (5 tests), CE211OB, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writins.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL_,O, DIRECT_1O, and TEXT_O. (See
test CE2110B.)

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE210BA and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See section 3.5 for restrictions. See
tests CA1OI2A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See section 3.5 for restrictions. See
tests CA200?C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See section 3.5 for restrictions. See test
CA3O11A.)

2-

IJ
I

I)

2-6

I

6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors.. The AVF
determined that 367 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 290
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 75 tests were required to successfully demonstrate the test. objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
-- -- -- -- - A- _B __C D _ L _ - -- -

Passed 108 1044 1505 17 10 44 2728

Inapplicable 2 7 348 0 8 2 367

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-2

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

---------- 1------2

Passed 182 469 476 242 166 98 141 327 127 36 232 3 229 2728

Inapplicable 22 103 198 6 0 0 2 0 10 0 2 0 24 367

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 -WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35AO3E C35AO3R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C A74106C C85018B C87BO4B CC1311B BC3105A
AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered

0 each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 367 tests were inapplicable for the
reasons indicated:

E28002D and E28005D use pragmas LIST and PAGE which are ignored by
this compiler. This behaviour was ruled acceptable by the AVO
(dated 88-01-14).

3-2

S

TEST INFORMATION

C35702A uses SHORT-FLOAT which is not supported by this
implementation.

The following tests use 5HORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632F 852004E C55BO7B 055BO9D

The following tests use LONG INTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55BO7A B5SBO9C

C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORTINTEGER, LONGINTEGER, FLOAT,
SHORTFLOAT, and LONGFLOAT. This compiler does not support any
such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

BB6001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSIEM, but TEXTtO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_10.

CA2009A, CA2009C..D (2 tests), CA2009F, 1C3O09B..C (2 tests) This
compiler enforces the following two rules concerning declarations
and proper bodies which are individual compilation units:

o generic bodies must be compiled and completed before their V.'

instantiation.

3 -3 4V2

3-3

W P P -A ',

TEST INFORMATION

o recompilation of a generic body or any of its transitive
subunits makes all units obsolete which instantiate that
generic body.

These rules are enforced whether the compilation units are in
separate compilation files or not. The r-u es are in conflict with
the said tests. A1408 and A1506 allow this behaviour until June
1989.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this conyiler.

CA3004F, EA3004D, and LA3004B use the INLINE pra ,ma for functions,
which is not supported by this compiler.

AE2101C, EE2201D, and EE22O1 E use instantiations of package
.E0UEt.TIAL_I0 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

* AE2IOIH, EE240ID, and EE2401G use instantiations of package
DIRECT_1O with unconstrained array types and record types having.
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2107B..D (3 tests), CE2107G..I (3 tests), CE2111H, CE3111B..E (4
tests), and CE3114B, and are inapplicable because multiple
internal files cannot be associated with the same external file
for the operations attempted in these tests. The proper exception
is raised when operations are attempted which are not supported.

CE210BA, CE2108C are inapplicable because temporary sequential and
direct files are not given names.

CE21O5A..B (2 tests) are inapplicable because files of mode
IN-FILE cannot be created for SEQUENTIAL 10 and DIRECTIO.

CE21O8A and CE21OBC are inapplicable because temporary files do
not have names for SEQUENTIALIO and DIRECT 10.

The following 290 tasts require a floating-point accuracy that

exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)

3-4

..... tWA '%AXM ' " K, 7kY RKIt WWW - -,
-

I I I . . I - L - -, ' *v .

TEST INFORMATION

C35706F..Y (20 tests) C35707F. .Y (20 tests)
C35708F. .Y (20 tests) C35802F .Z (22 tests)
C45241F..Y (20 tests] C45321F. .Y (20 tests)
C45421F. .Y (20 tests) C45521F .Z (22 tests)
C45524F .Z (22 tests) C45621F .Z (22 tests)
C45641F. .Y (20 tests) C46012F .Z (22 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AV'F in cases where
legitimate implementation behavior prevents the successful completion of an
'otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 75 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B33301A B34007H
B35701A E36171A B36201A B37101A B37102A B37201A B37202A
B37203A B37302A B38003A B38003B B38008A B38008B B38009A
B3ODB B38103A B38103B B38103C B38103D B38103E B43201C
B43202C B44001A B48002A B48002B B48002D B48002E B48002G
B48003E B49003A B49005A B49006A B49007A B49009A B4AOOC
B54A20A B54A25A B58002A B58002B B59001A B59001C B590011
B62006C B64001A B67001A B67001D B67001C B67001D B74103E
B74104A B85007C B91003B B91005A B95001A B95003A B95007B
B95031A B95074E BCIOO2A BCI1O9A BC11O9C BC1206A BC3005B
BC3009C

For the two tests BC3204C and BC3205D the compilation order was changed to

BC3204C0, ..C1, ..C2, ..C3, ..C4, .. C5, ..C6, ..C3M
and

BC3205DO, ..D2, ..D1M

respectively, This change was necessary because of the compiler's rules.
for separately compiled generic units. When processed in this order the
expected error messages were produced for BC3204CM and BC3205DIM,
respectively.

3-5

I ' ' U MIZJ PV-v W U P U U p J

TEST INFORMATION
4-

The compilation files for DC3204D and BC3205C consist of several
compilation units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files unchanged a
link error is reported instead of the expected compilation error because of
the compiler's rules for separately compiled generic units. Therefore, the
compilation files were changed by appending copies of the main procedures
to the end of these files. When processing these second occurences of the
main procedures the expected error messages were generated by the compiler.

Test E28002B checks that predefined or unrecognized pragmas may have
arguments involving overloaded identifiers without enough contextual
information to resolve the overloading. It also checks the correct
processing of pragma LIST. This compiler ignores pragma LIST so that this
part of the test was not taken into account when grading the test as
passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Tartan Ada VMS/VMS was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tartan Ada VMS/VMS using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a MicroVax II operating under microVMS, Version 4.6.

A magnetic tape containing all tests except for withdrawn tests and t:sts
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were not included in their modified form on the magnetic tape.
They were provided by Tartan Laboratories Incorporated and reviewed by the
validation team.

The contents of the magnetic tape were not loaded directly onto the host
computer. The tests were read on a VAX-750 and transferred to the host
computer using an ether-net connection.

After the test files were loaded to disk, the full set of tests was
compiled on the MicroVax ii, and all executable tests were linked and run.
Results were transferred to the VAX-750 by ether-net where they could be
printed, checked and archived.

3-6

.. -- =.. - = -. -
r

K~ L. / " -€ ." - "" "f r ." " ",".".-v -.. .-..- ,. .

TEST INFORMATION

The compiler was tested using command scripts provided by Tartan
Laboratories Incorporated and reviewed by the validation team. The
compiler was tested using all default switch settings.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Tartan Laboratories Incorporated in Pittsburgh and
was completed on 88-03-20.

3

3-7

6

K-1 &K TW-yW'V x Ii
APPENDIX A

'

DECLARATION OF CONFORMANCE

Tartan Laboratories Incorporated has submitted the
following Declaration of Conformance concerning theA
Tartan Ada VMS/VMS.

A6AU

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Tartan Laboratories Incorporated
Ada Validation Facility: IABG m.b.H., Dept. SZT
Ada Compiler Validation capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Tartan Ada VMS/VMS
Base Compiler Version: Version 2.OV
Host and Target Computer: MicroVAX II under MicroVMS 4.6

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada Language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.
__ __ _ __ _ __ _ Date: 2 !

Tartan Laboratories Incorporated

Donald L. Evans, President

Owner's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, take
full responsibility for implementatinn and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program
Office. I declare that all of the Ada Language compilers listed, and
their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

/ ~Date: t!

Tartan Laboratories Incorporated
Donald L. Evans, President

I

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in

chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Tartan Ada VMS/VMS, Version 2.OV, are described in the following
sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included

in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type FLOAT is digits 6 range -16#O.7FFF_- FF8Ei 32 .. 16#0.7FFFFF8#E+32;
type LONG-FLOAT is digits 9 range -16#0.7FFFFFFFFFFFFF8#E+32

16#O.7FFFFFFFFFFFFF8#E+32 ;
type DURATION is delta 0.02 range -86400.0 .. 86400.0;

-- DURATION'SMALL 2N1.0UE-6

end STANDARD;

S-

.1 % '" % " % '. - % -, '' ' % " • ' - - ' ' ' . % . , ,-•, ", "- " w-

APPENDIX F OF THE Ada STANDARD

CHAPTER 5
APPENDIX F TO MIL-STD-1815A

This chapter contains the required Appendix F to Military Standard, Ada Pro-
gramming Language, ANSI/MIL-STD-1815A (American National Standards Institute,
Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas

This section summarizes the effects of and restrictions on predefined pragmas.

- ALcess collections are not subject to automatic storage reclamation so
pragma CONTROLLED has no effect. Space deallocated by means of
UNCHECKEDDEALLOCATION will be reused by the allocation of new objects.

- Pragma ELABORATE is fully supported.

- Pragma INLINE, is supported but has an effect on the generated code only
when the call appears within the same compilation unit as the body of the
in-lined subprogram.

- Pragma INTERFACE, is not supported. The implementation-defined pragma
FOREIGNBODY (see Section 5.1.2.2) can be used to interface to sub-
programs written in other languages.

- For global control over listings, compiler option switches should be used
rather than pragma LIST.

- Tartan compilers currently optimize both the time and space aspects based
on what is best in the local context. Future releases of the compiler
will have option switches to decrease the level of sophistication of the
optimizations. Because it is generally very difficult to establish
global time and space tradeoffs, pragma OPTIMIZE cannot be effectively
supported in the form suggested in the LRM.

- Pragria PACK is fully supported.

- The effect of pragma PAGE can be achieved by inserting form-feed charac-

ters into the Ada source file.

Pragma PRIORITY is fully supported.

- The effect of praoma SUPPRESS can be achieved by a global compiler option

WN-2

APPENDIX F OF THE Ada STANDARD

sw itch.

Future releases of the compiler will support the following pragmas:
MEMORYSIZE, SHARED, STORAGEUNIT and SYSTEM-NAME.

A warning message will be issued if an unsupported pragma is supplied.

5.1.2. Implementation-Defined Pragmas

Tartan provides the following pragmas.

5.1.2.1. Pragma LINKAGENAME

The pragma LINKAGENAME associates an Ada entity with a string that is mean-
ingful externally; e.g., to a linkage editor. It takes the form

pragma LINKAGENAME (Ada-simple-name, string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package
specification. This entity must be one that has a runtime representation;
e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity
in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the
generated assembly code as an external name for the associated Ada entity. It
is the responsibility of the user to guarantee that this string constant is
meaningful to the linkage editor and that no illegal linkname clashes arise.

5.1.2.2. Pragma FOREIGNBODY

A subprogram written in another language can be called from an Ada program.
Pragma FOREIGNBODY is used to indicate that the body for a non-generic top-
level package specification is provided in the form of an object module. The
bodies for several subprograms may be contained in one object module.

Use of the pragma FOREIGN-BODY dictates that all subprograms, exceptions and

objects in the package are provided by means of a foreign object module.

The pragma is of the form:

*pragma FOREIGNBODY (languagename [, elaboration-routine name])

The parameter languagename is intended to allow the compiler to identify the
calling convention used by the foreign module (but this functionality is not
yet in operation). The programmer must ensure that the calling convention and
data representation of the foreign body procedures are compatible with those
used by the Tartan Ada compiler. Subprograms called by tasks should be
reentrant,

The optional elaboration-routine name argument provides a means to initializek BP-3)

APPENDIX F OF THE Ada STANDARD

the package. The routine specified as the elaborationroutinename, which will
be called for the elaboration of this package body, must be a global routine
in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declara-
tions, object decarations that use an unconstrained type mark, and number
declarations. Pragmas may also appear in the package. The type mark for an
object cannot be a task type, and the object declaration must not have an in-
itial value expression. The pragma must be given prior to any declarations
within the package specification. If the pragma is not located before the
first declaration, or any restriction on the declarations is violated, the
pragma is ignored and a warning is generated.

The foreign body is entirely responsible for initializing objects declared in
a package utilizing pragma FOREIGNBODY. In particular, the user should be
aware that the implicit initializations described in LRM 3.2.1 are not done by
the compiler. (These implicit initializations are associated with objects of
access types, certain record types and composite types containing components
of the preceding kinds of types.)

Pragma LINKAGENAME should be used for all declarations in the package, in-
cluding any declarations in a nested package specification to be sure that
there are no conflicting link names. If pragma LINKAGE NAME is not used, the
cross-reference qualifier, /CROSSREFERENCE, (see Section 3.2) should be used
when invoking the compiler and the resulting cross-reference table of
linknames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linknames (see also Section 3.5).

Example:

package FortranRunlimes is
pragma FOREIGNBODY ("fortran");
--The language name is a comment only, it is not checked for validity.

end FortranRunTimes;

with FortranRuntimes;
package FortranLibrary is

pragma FOREIGNBODY ("fortran", "init seed");
function SquareRoot(x:float) return float;
function Exp (X:float) return float;

function Random return float;
private

pragma LINKAGENAME (SquareRoot, "Sqrt)
pragma LINKAGENAME (Exp, "Exp");
pragma LINKAGE NAME (Random, "Rnd")

end Fortran-Library;

The user may compile a body written in Ada for a specification into the
library, regardless of the language specified in the pragma contained in the
specification. This capability is useful for rapid prototyping, where an Ada
package may serve to provide a simulated response for the functionality that a
foreign body may eventually produce. It also allows the user to replace a

B-4

I *ONI

APPENDIX F OF THE Ada STANDARD

foreign body with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command
ALIB FOREIGN BODY (See Section 4.7) to use an Ada body from another library.
The Ada body from another library must have been compiled under an identical
specification. The pragm2 LINKAGE NAME must have been applied to all entities
declared in the specification. The only way to specify the linkname for the
elaboration routine of an Ada body is with the pragma FOREIGNBODY.

5.2. IMPLEMENTATION-DEPENDENI ATTRIBUTES

No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the VAX in package SYSTEM ELRM 13.7.1 and
Appendix C) are:

package system is
type address is new integer;
type name is (VAX, MILSTD_1750A, MC68000);
system-name : constant name :: VAX;
storageunit constant :: 8;
memory size : constant :: 1000000;
max-int : constant :: 2147483647;
min int constant :: -maxint - 1;
maxdigits : constant :z 9;
max-mantissa : constant :: 31;
fine delta : constant :: 2#1.0#e-31;
tick : constant.:: 0.01667;
subtype priority is integer range 10 .. 200;
defaultpriority: constant priority:= priority'first;
runtime error : exception;

end system;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

Restrictions on representation specifications:

Length clauses [LRM 13.2):

, A length clause for T'SIZE is permitted for any type or first sub-
type T for which the size can be computed at compile time. A length
clause for a composite type cannot be used to force a smaller size
for components than established by the default type mapping or by
length clauses for the component types.

, There are no restrictions on other forms of length clauses except
the restrictions specif'ed in LRM 13.2. The size specified for

B-5

.0, 111r,1111

APPENDIX F OF THE Ada STANDARD

T'STORAGE-SIZE of an access type or task type i is assumed to in-
clude a small amount of hidden administrative storage.

- Enumeration representation clauses CLRM 13.31:

* All integer codes in the representation aggregate must be between
INTEGER'FIRST and INTEGER'LAST.

- Record representation clauses [LRM 13.4]:

* Record representation clauses are permitted only for record types
all of whose components have a size known at compile time.

* Representation specifications may be specified for some components
of a record without supplying representation specifications for all
components. The compiler will freely allocate the unspecified corn-
ponents.

- Address clauses ELRM 13.5):

* When applied to an object, an address clause becomes a linker direc-
tive to allocate the object at the given logical address. For any

* obje.ct not declared immediately within a top-level library package,
the address clause is meaningless, with the possible exception of
objects declared inside a task, if the target permits a task to run
in a separate address space.

* Address clauses applied to local packages are not supported by Tar-
tan Ada.

* Address clauses applied to subprogra,ns and tasks are implemented ac-
cording to the LRM rules.

* When applied to an entry, the specified value identifies an inter-
rupt in a manner customary for the target. Immediately after a task
is created, a runtime call is made for each of its entries having an
address clause, establishing the proper binding between the entry
and the interrupt.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan Ada in
records contain dope information for arrays whose bounds depend on dis-
criminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for as-
sociating interrupts with task entries. Tartan Ada implements the address
clause

B_-6

APPENDIX F OF THE Ada STANDARD

for toentry use at intID;

by associating the interrupt specified by intID with the toentry entry of the
task containing this address clause. The interpretation of intlD is both
machine and compiler dependent.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKEDCONVERSION with a restriction that requires the
sizes of both source and target types to be known at compile time. The sizes
need not be the same. If the value in the source is wider than that in the
target, the source value -will be truncated. If narrower, it will be zero-
extended. Calls on irstantiations of UNCHECKED-CONVERSION are made inline
automatically.

5.8. IMPLEMENTATION-DEPENDENT CHARACTERISTICS OF INPUT-OUTPUT PACKAGES

Tartan Ada supports all predefined input/output packages ELRM Chapter 14) with
the exception of LOW-LEVEL-10 (which is planned for a future release).

SEQUENTIAL-10 and DIRECT 10 may not be instantiated on types whose represen-
tation size is greater than 32255 bytes. Any attempt to read or write values
of such types raises USE-ERROR.

SEQUENTIAL-IO and DIRECTIO may not be instantiated on unconstrained array
types, nor on record record types with discriminants without default values.

An attempt to delete an external file while more than one internal file refer!
to this external file raises USE-ERROR.

When an external file is referenced by more than one internal file, an attempt

to reset one of those internal files to OUT_FJILE raises USE_ERROR.

An attempt to create a file with FILEMODE IN JILE raises USE-ERROR.

Since the implementation of the input-output packages uses buffers, output to
one file cannot necessarily be read immediately from another file associated
with the same external file.

The FORM parameter of file management subprograms is ignored.

An attempt to read a non-existent data record through the operations of
SEQUENTIAL-10 or DIRECT 10 raises DATA ERROR, except that ENDERROR is raised
when reading beyond the end of file.

If the '"S record management services (RMS) return a status value that cannot
be mappeL onto a predefined Ada exception, the exception DEVICE_ERROR is
raised.

B-7 i,

APPENDIX F OF THE Ada STANDARD

5.9. OTHER IMPLEMENTATION CHARACTERISTICS

The following information i.s supplied in addition to that required by Appendix
F to MIL-STD-1815A.

5.9.1. Definition of a Main Program

Any Ada library subprogram unit may be designated the main program for pur-
poses of linking (using the ALIB command) provided that the subprogram has no
Farameter).

Tasks initiated in imported library units follow the same rules for termina-
tion as other tasks [described in LRM 9.4 (6-10)]. Specifically, these tasks
are not terminated simply because the main program has terminated. Terminate
alternatives in selective wait statements in library tasks are therefore
strongly recommended.

5.9.2. Implementation of Generic Units

All instantiations of generic units, except the predefined generic
UNCHECKED CONVERSION and .UNCHECKED DEALLOCATION subprograms, are implemented
by code duplications. No attempt at sharing code by multiple instantiations is
made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be
compiled before the unit can be instantiated. It does not impose the restric-
tion that the specification and body of a generic unit must be provided as
part of the same compilation. A recompilation of the body of a generic unit
will obsolete any units that instantiated this generic unit.

5.9.3. Attributes of Type Duration

The type DURATION is defined with the following characteristics:

DURATION'DELTA is 0.02 sec
DURATION'SMALL is 0.015625 sec
DURATION'FIRST is -86400.0 sec
DURATION'LAST is 86400.0 sec

5.9.4. Values of Integer Attributes

Tartan Ada -upports the predefined integer type INTEGER. The range bounds of
the predefited type INTEGER are:

INTEGER'FIRST is -2t,31
INTEGER'LAST is 2,,31-1

B-B

APPENDIX F OF THE Ada STANDARD

The range bounds for subtypes declared in package TEXTI0 are:

COUNT'FIRST is 0
COUNT'LAST is INTEGER'LAST - I

POSITIVECOUNT'FIRST is I
POSITIVECOUNT'LASI is INTEGER'LAST - 1

FIELD'FIRST is 0

FIELD'LAST is 20

The range bounds for subtypes declared in packages DIRECTIO are:

COUNT'FIRST is 0
COUNT'LAST is INTEGER'LAST

POSITIVECOUNT'FIRST is I
POSITIVECOUNT'LAST is COUNT'LAST

5.9.5. Values of Floating-Point Attributes

Tartan Ada supports the predefined floating-point types FLOAT and LONG-FLOAT.
FLOAT maps onto the VAX F-format floating-point representation; LONGFLOAT,
onto the D-format. Future versions of Tartan Ada will support all four VAX
formats (F-, D-, G-, and H-format) in an implementation-dependent library
package.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000000#E-4
approximately 9.53673E-07

SMALL 16#0.8000_O000E-21
approximately 2.58494E-26

LARGE 160.FFFFF8O#E+21
approximately 1.93428E+25

SAFEEMAX 127

SAFE-SMALL 1690.1000_000#E-31
approximately 2.93874E-39

SAFELARGE 16#O.7FFF FCOUE+32
approximately 1.70141E+38

E-9

APPENDIX F OF THE Ada STANDARD

FIRST -16#O.7FFF FF8#E*32

approximately -1.70141E+38

LAST 160.7FFFFF8#E+32
approximately 1.70141E+38

MACHINERADIX 2

MACHINE-MANTISSA 24 p

MACHINEEMAX 127

MACHINEEMIN -127

MACHINE ROUNDS TRUE

MACHINEOVERFLOWS TRUE

16

"ML~

APPENDIX F OF THE Ada STANDARD

Attribute Value for LONGFLOAT

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 1600.4000_0000.,0000000#E-7
approximately 9.3132257461548E-10

SMALL 16#0.8000_00000000_000#E-31
approximately 2.3509887016446E-38

LARGE 16#O.FFFFFFFEOOOOOOOUE+31

approximately 2.1267647922655E437

SAFEEMAX 127

SAFE-SMALL 16#0.1000_0000_00000O0E-31
approximately 2.9387358770557E-39

* SAFE-LARGE 16#0.7FFF_FFFF_OOOO_.OOOE+32
approximately 1.7014118338124E438

FIRST -16#0.7FFFFFFFFFFFFF8#E432
approximately -1.7014118346047E438

LAST 16#O.7FFFFFFFFFFFFFB#E+32
.approximately 1.7014118346047E+38

MACHINERADIX 2

MACHINEMANTISSA 56

MACHINEEMAX 127

MACHINEEMIN -127

MACHINEROUNDS TRUE

MACHINE OVERFLOWS TRUE

B-11

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum, length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. Ada aggregate notation is used to denote long strings. The
multiplication operator is meant to be overloaded to achieve repetition so
that e.g. 239 * 'A' is equivalent to (1..239 => 'A').

$BIG_1D1 239 * 'A' & '1'
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 239 'A' & '2'
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 120 * 'A' & '3' 119 * 'A'
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 120 , 'A' & '4' & 119 ' -A'
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINTLIT 237 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

0

TEST PARAMETERS

$BIG-REAL -LIT 2135 *'0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maxmumn line length.

$BIG..STRINGI ' 1 20 * 'A' £ '

A string literal which when
catenated with BIG-STRING2
yields the image of BIG9I.

$PIGSTRING2 ''5119 * 'A'? 1'&
A string literal which when
catenated to the end of
BIG -STRING1 yields the image of

$BLANKS 220
A sequence of blanks twernty
characters less than t he s iz e
of the max imum line length.

$COUNT LAST 2147483646
A universal integer
literal whose value is
TEXT IO.COUNT 'LAST.

$FIELDLAST 20
A universal integer
literal whose value is
TEXT 10. FIELD' LAST.

$FILE -NAMEWITH-BAD-CHAPS
An external file name that
either contains invalid
characters or is too long.

$FILE -NAMEWITHVILDCARDCHAR XYZ*
An external file name that
either contains a wild card
character or is too long.

$GREATER -THAN -DURAT ION 100000.0
A universal real literal that
lies between DURATI0N'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C

TEST PARAMETERS
I

* --

$GREATERTHANDURATION BASELAST 100000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE _NAME1 BAD-CHAR#A

An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 MUCHTOOLONG.. (truncated)
An external file name which
is too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST,

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
universal real literal that

lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -100000000.0
A universal real literal that is
less than DIRATION'BASE'FIRST.

SMAXDIGITS 9
Maximum digits supported for
iloating-point types.

SMAX IN LEN 240

Maximum input i ine length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS] 2147483648

A universal integer literal
whose value is SYSTEM.MAXINT+1.

C-3

L ---. ---. € .--------? ..-, -..-......,

TEST PARAMETERS

SMAXLENINTBASEDLITERAL "2:" 9 235.'0' 0 "11:"

A universal integer based

literal whose value is 20110l
with enough leading zeroes in

the mantissa to be MAXINLEN

long.

SMAXLENREALBASEDLITERAL "16:" & 233*10' "F.E:"

A universal real based literal

whose value is 16:F.E: with

enough leading zeroes in the

mantissa to be MAX_]NLEN long.

SMAX-STRINGLITERAL " & 238 * 'A' & ..

A string literal of size

MAX INLEN, including tne quote

characters.

$MININT -2147483648

A universal integer literal
whose value is £YSTEM.MIN-INT.

$NAME $NAME

A name of a predefined numeric

type other than FLOAT, INTEGER,

SHORT_FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NEGBASED_-.INT 8V777777777776

A based integer literal whose

highest order ,,nzero bit

falls in the sign bit

position of the representation
for SYSTEM.MAXINT.

C-4

1I
.'i' ~. *~'***',

• " --, - -r J , w % - "I IN ' '' " ! ' m ' r

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had beer withdrawn at the time of
validation testina for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

E28003A: A basic declaration (line 36) wrongly follows a later
declaration.

. E28005C: This test requires that 'DRAGMA LIST (ON);' not appear
in a listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value
outside of the range of the target type T, raising
CONSTRAINT_ERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual range
of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINTERROR, because its upper bound exceeds
that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against that of
various types passed as actual generic parameters, may in fact
raise NUMERIC ERROR or CONSTRAINTERROR for reasons not
anticipated by the test.

D-1

,WITHDRAWN TESTS

C35AO3E, C35AO3R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises
CONSTRAINT-ERROR.

C37215C, C37215E, C37215G, C37215H: Various discriminant
constraints are wrongly expected to be incompatible with type
CONS.

* C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINLERROR.

C41402A: 'STORAGE-SIZE is wrongly applied to an object of an
access type.

C45332A: The test expects that either an expression in line 52
will raise an exception or else MACHINEOVERFLOWS is FALSE.
However, an implementation may evaluate the expression correctly
using a type with a wider range than the base type of the
operands, and MACHINEOVERFLOWS may still be TRUE.

C45614C: REPORT.IDENTINI has an argument of the wrong type
(LONGINTEGER).

A74106C, C85018B, C87B04B, CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINTERROR. Errors of this sort
occur in lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively (and possibly elsewhere).

BC31O5A: Lines 159..168 are wrongly expected to be illegal; they
are legal.

ADIAOIA: The declaration of subtype INT3 raises CONSTRAINT ERROR
for implementations that select INT'SIZE to be 16 or greater.

CE240IH: The record aggregates in lines 105 & 117 contain the
wrong values.

CE3208A: This test expects that an attempt to open the default
output file (after it was closed) with mode INJILE raises
NAME-ERROR or USE ERROR; by Commentary AI-00048, MODEERROR should
be raised.

D-2

.~~~ N.* * .* ~

