AR LTI DL ML O WU WA I N I TR S W 1 N NN YU W IR S ORI

't

Technicai Report
Tochnic

AD-A199 721

| CRONUS, A DISTRIBUTED OPERATING e
SYSTEM: PHASE I

(Y it
iy
-7

5k
oo

" ;}.

oY
-
'

BBN Laboratories Incorporated

s
2

3 Richard E. Schantz, Robert H. Thomas, R. Gurwitz, G. Bono, M. Dean,
. K. Lebowitz, K. Schroder, M. Barrow, and R. Sands

4
v

L
>
)

ATy
£y

%
J‘.l'
st

2

A

L aoe o 4
A
‘l 'l
l' " I..-. l.

» 3 1

v €« 2 b

L

.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC

P ELECTE ;
0CT 0 4 1388 -

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command - o
Griffiss Air Force Base, NY 13441-5700

-.'il"‘ .,

~

a
-

. Yom

»

A ARRBSL N rrn
. . 3 -
» | &
. L Yy

A

AN

<5
,:,‘_.
e %

%

“
Ay
88 10 3 106 A
N
® o
INTASIEN
T T T N AT TSN T S N 0T o S T S Y
! ‘S""f'u T, :G'“- o ‘3-\ R '-"-}‘:i‘-‘.ﬁ‘.‘- » il -}‘-“.\‘.a‘ _ .'.‘-'.-,-'-r-’~"~:-"-$'-$"f~*,W"qﬂ‘.ﬁx-% SN
A .'h 73 " N a N l‘::l. AR LY R R X 2 A AT ,’I".J‘._f.' S s \.’*,\.’.‘ "f“"-("(',F~,"k‘
AN ATt A AT I T L S Dot A PR W N T O e e e S Py (e L Iy N e

A¥ L ANEIE LI DS UL 0T e T NI 0T §40 670.0°5,0 §.0 08 ot £0% Us"p 887, 15" oA0 pllg 208" "iegV8 8.0 b AR AR LSRR WA R XS 4
Pt Tty ot s . .

L
'rsé..
» ’ .& = :
Y
L* a ;.."'
L it
has been reviewed by the RADC Public Affairs Division (PA) A
ble to the National Technical Information Service (NTIS). At 2N
11 be releasable to the gemeral public, including foreign natioms. o
_f'uﬂc-m-s_si—az’ has been reviewed and is approved for publication. ';‘:’:
W &
ey
.l) \.‘\
. /./‘/ 7 / . :::'::"’
APPROVED: 7 (i et lit //, (lrs (27 cei. :_3_,,
n . ’ -:'.F-,
THOMAS F. LAWRENCE St
Project Engineer
3 3 8 o
%]
NS e X
h - : y g
e p" \
ot : F‘kﬁ'
% S sl
- \ .
. " APPROVED: (“ ol ¢) //JS L-_?;.‘. -
N O
o RAYMOND P. URTZ, JR. o
::: Technical Director : e
- Directorate of Command & Control ;
o ‘ A
e N
Sty
" G
a Q s
o FOR THE COMMANDER: y ..
u "-":-"
o JOHN A. RITZ RN
Moy Directorate of Plans & Programs AN
“.f' llfkn‘
v N
b RO
¢ 3T
; T
Y Ry
If your address has changed or 1f you wish to be removed from the RADC mailing - ';
& l1st, or £f the addressee is no longer employed by your organization, please Fod
o notify RADC (COTD) Griffiss AFB NY 13441-5700. This will assist us in main- :-::\
i taining a current mafling 1list. 5:‘-‘;‘
- o
.- ».":‘ >
' Do not return coples of this report unless contractual obligations or notice -:.}:';
P on a specific document requires that it be returned. °
A
o,
ey
Rt
fa
.

ST N ". TR MINTRI AN TN
':-. RN RN }‘3 YL -.\. ﬁQE
s -."\ \‘*\. NN

‘- I e B ‘h.

h‘f‘-w--s PR R SO WO W AR OO ht e et 849 S0 0a 50" 00" 0l UYLy VTNV R
W
)‘.!
A
a4
®
_
B
4"!:
M
ey
"y UNCLASSTFIED
:.: SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
. REPORT DOCUMENTATION PAGE Pl
:. ta REPORT SECURITY CLASSIEICATION Tb RESTRICTIVE MARKINGS
K UNCLASSIFIED N/A
::o 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
A.i: N/A Approved for public release; distribution
) 2b DECLASSIFICATION ; DOWNGRADING SCHEDULE P
N unlimited.
g N/A
N 4 PERFORMING ORGAN'ZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
) 5885
* - RADC-TR-88-82
L
od 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
r:I 3 (if applicable)
a.t BBN Laboratories Incorporated Rome Air Development Center (CQTD)
15
6c. ADDRESS (City, State, and ZIP Code) 7b ADORESS (City, State, and ZIP Code)
10 Moulton Street
. . iffiss AFB NY 441-5700
::'. Cambridge MA 02238 Criffiss AF 13441
4,
3 8a. NAME OF FUNDING /$FO!ISORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRGANIZATION (If applicable)
' Rome Air Development Center COTD F30602-81-C-0132
‘ 8c. ADDRESS (City, State, and Z.?7 Code} 10 SOURCE OF FUNDING NUMBERS
: PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO NO NO ACCESSION NO
:‘ 63728F 2530 01 07
g: 1. TITLE (Include Security Classification)
{o CRONUS, A DISTRIBUTED OPERATING SYSTEM: PHASE I
W
)
12 PERSONAL AUTHOR(S) Richard E. Schantz, Robert H. Thomas, R. Gurwitz, G. Bono, M. Dean,
’ K. Lebowitz, K. Schroder, M. Barrow, and R. Sands
N 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15 PAGE COUNT
) Final rrom Sep 81 1O _Sep 84 April 1988 84
:‘ 16. SUPPLEMENTARY NOTATION
o N/A
J
K
17 COSAT! CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
3 FIELD GROUP SUB-GROUP Distributed Operating System Interoperability
4 12 07 Heterogeneous Distributed System Survivable Application
) System Monitoring and Control
" 19 ABSTRACT (Continue on revers2 if necessary and identify by block number)
! .
:o This is the final report for the first phase of development for the CRONUS DOS Design and
Implementation Project. CRONUS is the name given to the distributed operating system (DOS)
and distributed system architecture application development environment being designed and
. implemented by BBN Laboratories for the Air Force Rome Air Development Center.
)
b
»:
$
4
4
v
[
K
’
b 20 DISTRIBUT'ON - AVAILAZILIIY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
J [Junceassiped uNLMITED [0 sami a5 RPT] OTIC USERS UNCLASSITIED
» 222 NAME OF RESPONSIBIE INDIV-DiAL 22b TELEPHONE (include Area Code)|22¢ OFFICE SYMBOL
q Thomas TF. Lawrence (315) 330-2158 RADC (COTD)
DD Foim 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED
)
N
1
@

"v IR S A Ty s '1'\ "y
4-' q&,' # ; J'
u'. A $ ':’A ¢, “:.::"'-'. A"’s"‘ﬁ. W9, |0. (i 3

Y, LY Ly
J' -\f’w""}'*r '*_(, \,.\

. |0ul'¢l'~l.ol. ..ln- -l'.'lui-l.

S e
Al l a ‘.Qh]‘ .‘I () * A% .':'*

TN
'r #J. :"&N I. -

‘vf‘-'
A2
Lo
L &
s

e e
4
-~
- - a . J

S

a_n
R
?&

o
2
@

. t&

x
-

TN 4
Yy
< @ M

R
a

A.,,?”

Y
P

S _So_on B

N
SN
. B I ll

.
o
1]

“

AT 4
v % 'n:-

S
ﬁ,'.'v'y'\.

LA

.
DA
L

CA
“
’ '."’\'.'.
MY

’
KA

ph
2

SO
ol @ -

AL

P'd
Fg
‘Jo

v w8 N g S bl AN "al Sal fall Sah Yol wag ¢ad’ 0 0al R Sl D Nl B Sl 28 a0 0 0 8,0 60 B Sl B Sl R A Gl B Uk 0l Pl Gl B LANANO S 4 S0 04 o et 16,
haty
ot
At
L3tJ
4
n.~
Bty

Table of Contents
o
i
0:'.0:‘
.lq.l“
1 Introduction. 1
1.1 The Role of a DOS. 2 h‘;
2 OVervIiew. 5 oy
2.1 Background. 5 e
2.2 Functional Description. 5 ::s:_',‘?
2.3 System Design. 6 '
2.4 System Implementation........... 8 T
2.5 Test and Evaluation... 9 ;ﬁ-g‘
RS
3 The Cronus Architecture and Design..... 10 lﬂ‘.
3.1 General Hardware Architecture...... 10 NASY
3.2 Key Ideas and Implications........ 12
3.3 Software Architecture. 14 AT
3.4 The Cronus Object Model 16 .‘-‘:x""
3.4.1 Cronus Objects and Operations............... 16 Rt
3.4.2 Layered Structure..........., 18 ‘}",f
3.4.3 Message Passing Core. 21 (: f
3.4.4 Primitive Operations................. 22
3.4.5 Object Location and Message Routing......... 23 :';-»-
3.4.6 Properties of Messages........................... 24 :;."
3.4.7 Message Encodement............ 25 .'S o
3.4.8 Extending Beyond a Local Network................. 27 ‘{_,}
3.5 Basic Cronus Types. i 29 NG
3.6 Access Control i1n Cronus....... 3¢ ®
3.7 File System........, 32 e
3.7.1 Primal Files.. 34 ROy
3.7.2 Reliable Files., 37 N
3.8 The Cronus Catalog.......... ..o ... 44 r?\:};
3.8.1 Implementation of the Cronus Symbolic ‘;\'f\
Catalog o
.. 47 AR
3.9 Automating Crenus Manager Development. 51 ":-',;
3.9.1 Manager Facilities Provided Automatically........ 51 NN
3.9.1.1 Multiple Object TYpPeS......o v... 52 YN
3.9.1.2 Dispatching. 52 R
3.9.1.3 Multitasking. 53)
3.9.1.4 Access Control 53 N
3.9.1.5 Inheritance of Operations....... 53 :N'f.\-
3.9.1.6 Message Parsing and Validation... 54 i
3.9.1.7 Storage For Instances of Objects. 54 ::.j-.
3.9.2 Client Facilities Provided Automatically. 55 Ao

:'.J'

3.9.2.1 Subroutine Interfaces.. .. . C e 55
3.9.2.2 Generic User Interfaces. 55
3.9.3 Documentation. 55
3.9.4 Experience to Date. 56
3.10 Cronus Monitoring and Control System.. 56
3.10.1 Role of the MCS. 56
3.10.2 Functional Areas. 57
3.10.2.1 Fault Detection..... 57
3.10.2.2 Logging 58
3.10.2.3 Fault Isolation. 58
3.10.2.4 Fault Correction..... 59
3.10.2.5 Resource Allocation and Policy
Management
.. 59
3.10.3 Current Implementation............ B0
3.10.3.1 Host Probes and Service Probes... 60
3.10.3.2 Transaction Log. 61
3.10.3.3 Status Display Programs. 61
3.10.3.4 Starting and Stopping Services................ 61
3.10.3.5 Graphical User Interface.... 61
3.10.3.5.1 Graphical Presentation....... 62
3.10.3.5.2 Interactive. 62
3.10.3.6 Configuration Menagement. 63
3.10 3.7 Structure of the MCS. 64
3.11 Resource Management in Cronus..................... 64
3.11.1 General Approach........... 64
3.11.2 A Resource Management Example............ 67
4 Test and Evaluation......... 71
4.1 Areas of Intermal Use.. 71

7

! Accesé{oﬂ_?af B
Fns ORAZI

! DTIC TAB
Unannouneed

' Justifientton |

§ oo e o

i By o
L Distribution/

| Availability Codes B
[T iAvall and/or
Dist Special

v\

0
g

\‘)‘-." <. <,

”\im’x a’

RIS FL PSR
MY '~. 4"-"..- .\w
N \ 3»{ "

\)".f -----

)

---'

P

".-

ATV 1 A L SR SERARAE Y AL

o \,x lﬂ“*\'\’ v *Mf N2 s \ A NGAC AR “ f\u**\“xr
. $\\f\!‘ \f,‘! 5* -..- -I a -P‘ \4‘»"\. LA ‘
IR AT \ifg{fn.ﬁl w " Al ':5.\&'{‘)‘.'0\'(;', s

R T R Y U O D T ooy Va0 Hall Gl WAl V.0 g S8 0 0" IR IR N IR o PURY TR OO O R e il
bl; It
3 o
4¢ Q;\J.
3 be
o] 0N ¢
®
¥ It
14, La
a:‘ .F.':')'
K-
)(‘ l-u’."‘u
L}
Py)
-)I
.

-
-
by v
r-

A\ .\\-N

).‘ / -'\."t ¢
,:G (ﬁ“ » \
o byt
N S
a Y

“5. ‘ 1 Introduction £

5 “ This is the final report for the first phase of development 3§,f

R . for the Cronus DOS Design and Implementation Project .~ Cronus is ::Jf;
* the name given to the distributed >perating system (D¢S) and u?:,
" distributed system architecture application development o
W Vg

environment being designed and implemented by BBN Laboratories
for the Air Force Rome Air Development Center.

> - J:
¥

W This is not the first DOS developed by BBN. The field of

A distributed operating systems and its supporting technology base

LY has evolved rapidly since our early attempts cver the preceeding

2 ten years at coupling the operation of otherwise autonomous

- systems. In this respect Cronus represents an amalgamation of

: much of what we have learned from previous DOS efforts combined

» with the experiences of others pursuing similar goals, new

_: underlying technology. and updated views of what distributed

-

operating systems and programming distributed systems are all

about .

: |
§ \~,\ ﬁéﬁ»ﬁ
! The Cronus distributed operating system is intended to o)
,é promote resource sharing among interconnected computer systems, {2{&
! and manage the collection of resources which are shared. Its s
_ major purpose is to provide a coherent and integrated system 1’¢.
‘N based on clusters of interconnected heterogeneous computers to 3$¢\
.

o support the development and use of distributed applications.

Distributed applications range from simple programs that merely

: require convenient reference to remote data, to collections of

' complex subsystems tailored to take advantage of a distributed

’ architecture. One of the main contributions of Cronus is a

] unifying architecture and model for developing these distributed
applications, as well as support for a number of system provided

W,
L,y

4

b functions which are common to many applications. The Cronus
Xy project 1s starting from a desire to achieve the basic concept of
h an integrated distributed computer utility and evolving a design
. and implqmentation toward experimentally validating its system
[.. - PR)
model. [° . s, o) , /e ! I
e
/’1
/;,_\/ - ! . ! 3
e L
)
v
)
] -1 -
L]
q
*
) W Py W W S 0% F N A Y R P e e e S tire 3 - % TR ATE T LT N LT N L e T e, N e e YT N e A
it :h v ~{~¢\$b¢¥'\'5'~'\’ N N N N A AN A X S I PR Ot A DU A Y
Y " N {J\IJ‘,(\'JJ-'I') AU NG A AT A A AL A A A AT LT DR DT
N@ﬂ NS »J*Qpﬁ’\wppﬁﬁﬁwﬁby»pppﬁ}pﬁpﬁﬁﬁ\-
4 1 N » - o - - 0 ! [P oS / -
T il . Tt T N LT N A e S P A e 2 A R o S S S R R S N S

- -

.

o
Pt

P R

.
P
-

DG

. -
10 O

=3

Py’

7, o S T

-
»

ko o ’m‘&l‘g'x -

[t ek 3

L I

X223

+ @33
T

1.1 The Role of a DOS

It is now a practical reality that the world 1s and will
continue to be populated by distributed computing resources.
This is a direct outgrowth of two somewhat distinct but related
phenomena. The first factor is the increase in the number of
computerized activities associated with any given organization of
significant size along with the inherent distribution within the
organization itself. The second factor is the tremendous
decrease in the price and size of computer systems and modules
making it economically feasible for a system designer to
contemplate a collection of intelligent computer systems
(components) as a solution to some date processing requirements.

As a result of the first factor, organizations ofien find
themselves with a number of 1ndependent, sometimes unique
computer systems, each supporting some of their overall data
processing requirements. When this situation arises, it is quite
natural to seek degrees of interoperability between the
previously independent computer systems by interconnecting them

via a computer network. One important role of a DOS is to
support and control interoperability between at least some of the
resources developed by the constituent host systems. The second

factor (the feasibility of using collections of machines to
provide some integrated service) leads to a quite a bit different
view of the role of a DOS. The contribution of any single host
toward supporting the overall system functionality may be
limited. A number of potential benefits ere often cited for
organizing a set of services around a collection of cooperating
systems. Among these are the potential for increased efficiency
through functional specialization, modular expansion, forms of
enhanced reliability, and potentially improved performance
through extended parallelism.

Applications which could make use of distributed resources
come in a variety of forms, each often attempting to initially
utilize their distribution as a means of achieving a different
goal. It is believed by many that a distributed architecture is
key to increasing the reliability, or improving the performance
or modular expandability of computing systems. Distribution is
key to system reliability because physical distribution (even
over relatively short distances) typically means independent
failure patterns. It is key to system performance because of
potential for increased efficiency through functional
specialization and because distributed processing components can
exhibit a great deal of real parallelism. It is hey to system

A

e
a0
- .," . A

-

[

CRRAAS
o
el

®
s
&

™
+

z_ =X
B
=

@ 25 5

v,
A
v Te e

AP

. AT 87 47, b 3 Rp HTp 870 3a 85 BV 7 8V 5% 2% R g V2 0% 0 g 00 00 870 00 70,00 88 8 0 'R 600 0 R 0 D B A R B Rt Bl e §a0 R0 E 500 .0 B 9.0 RV AT ® $en Bav 9o @.F 3.
fatihh)
d o“&.
o ey
! OV
.

)

i;:

KX

e

' modularity and evolvability because of the requirement for well

"y defined functional interfaces and protocols and the convenience

:' of adding additional computing elements.

§‘|

)

ﬂ

o There are other approaches to reliability, performance and
‘ modularity besides a distributed one. In isolation other

bt approaches could even be as promising. However, when taken all

H together, and included with such other desirable features such as

interoperability between heterogeneous system resources, and
) shared access to common services, a distributed processing
4& computer utiiity appears to be the only approach capable of
simul taneously achieving many or all of these objectives.

% Distributed processing systems represent not so much a difference

h in terms of what is computed but rather in how a system 1s

ﬁ structured to provide the computational facilities.

2

® Despite the growing existence of distributed resources, it

is ascidedly not a reality that these resources can be easily
integrated into a coherent collection responsive to the needs of
the organization deploying them. Bits and pieces of extremely
valuable functionality applying distributed resources to emerging
immediate problems continue to be developed, but there have been
few attempts (o try to elther capiure the basis of distributed
oy applications to make it available for subsequent ones, or to
develop an application 1n such a way that it can be easily
s integrated with preceding. concurrent or planned applications 1n
o an integrated fashion as part of the overall automation
Y objectives of the organization. It is the distributed operating
system and its associated hardware, firmware and software which
organizes an otherwise 1ndependent collection of computers i1nto
. an effective computing facility.

'

oae

o The two distinct aspects of a DOS, for preplanned and
@ unplanned integration, are reflected in the various parts of our
DOS design. Some parts are oriented toward the interoperability
of similar functions found on many individual systems, thereby
providing a degree of uniformity in an otherwise heterogeneous
Y environment. Other parts are more concerned with value added to
individual functions within an environment which is completely T
d designed to operate with companion functions in a more
E.
'I
@
y
o
’
Y
@
k!

1 3e]
Iy i
5

."‘.“-' --‘ B
NN
AN e

A

homogeneous fashion.

AR NN SN “::b?ti-:'::;\;_r;‘.‘_%‘ 2 3:;&(‘ § SRR
O S R NE Cu NN s 5&% NSRS R R

...-;fur ») u...u..-n.,‘-nln. N ag . e x e ol o Ve fn-‘

A LI N ¥ { L - L LI
AR AU SRF AR > w.......w R, . RAAAPTIA
R Rl Lof el A N T T e T T Wt o
TR ENNNIRNE BT TR A A u\m.\)- Aih &

—n

1ssues associated with trying to
We then provide an overview of
We conclude with a synopsis of our test

o

(Y

0

-

174}

[}

-l

o
Ex [~}
& o
. [=]
. -"]
- Hal
H (7]
. L%}
) o
LA

"
X 2

o -
o 9 o
b 6] v
= 3]
5 ()] -
K =]
; - ®
2 — 9
. [(o]
] - 7]
K o] o

[V

-

[=]

-

and administrative
effectively utilize distributed system technology.

1s the
In the rest of this report we discuss the background for the
project and how it

It
implementation to provide a hands—on vehicle for addressing the

implementation to date.

the architecture and describe the system design and
and evaluation experiences to date.

technical

A L,

PSPl S

VA
i .« w. - ., N- n— .,
AR R

IR D WS G W

-:";'.i y
L

«,
N
A

5]
5 & &
X1

"{'(l‘r

b7

Overview
.1 Background

Recognizing the potential that a distributed systems
architecture has for meeting future command and control
application requirements for i1nteroperability., survivabillity and
extensibility RADC has been supporting the development of
applicable technologies through 1ts Distributed System Technology
Program. One of the areas being pursued 1s that of distributed
operating systems. A distributed operating system (DOS) 1s that
software which integrates, coordinates and controls a collection
of computer systems interconnected by means of one or more
communication networks. A DOS serves to facilitate development
and operation of application programs requiring the resources of
multiple machines for reasons of functionality. survivability,
scalability. and/or performance.

TESO
G5, '-'_-'t‘u
’ -I.' 'vl ':, "'n’.‘-{'

Cats
rd
x."

In 1981, after a number of study projects. and experience
with a number of prototype distributed system 1mplementations,
BBN began work on developing for RADC a distributed system
testbed and DOS software. This distributed system testbed is
intended to provide a base for building and evaluating
distributed applications. The DOS Design/Implementation project
was divided i1nto four parts: functional description. system
design, system implementation, and test and evaluation.

¥

2.2 Functional Description

e
Vs
'x_?.

e T T TN
[

The first part of the Cronus project involved assessing the
requirements for use of distributed system technology 1in
supporting future C2 systems. This resulted 1n a Crounus Systen
Functional Description which lays the framework for the system
development. Two prominent themes, which are similar to the
development of the C2 systems themselves, emerged from the
functional description effort. The first is that the problem
area 1s multi-dimensional and potentially very large, and the
second 1s that the systems developed must evolve in such a way
that attention can be focused on specific parts of the overall
problem at different times. The functional description enumerated
the various functional areas and system properties which were
thought necessary for successful demonstration of distributed
applications.

‘n\;n S Y
o & A%

Py

Pl
e

LN

s_
A2
2

..
a]

22

P

3 ‘\q~“"h.' m b R L e %l":l"!-'-‘g."".- N S R R Ca et AN e T s AN 5 -.\"-'.‘-p"ﬁ.":\
LN ~:~*~$~f.f e O N « N g NI y

' " v, A e 4 PR e e (a8 Ca - -

B e S L e e R
- LY " » v)

I A DM O K M M i Y N 0") 0 A v ALY R he . N L L M e BN LY, M

The system objectives were to establish a comprehensive
distributed system architecture, and then to integrate a
collection of computer systems into a coherent and uniform
computing facility within this architecture. This computing
facility should exhibit the following properties:

o survivability of system functions

o scalability of system resources

o global management of system resources
o substitutebility of system components

o convenient operation of the system

Qur approach to developing Cronus has been to establish a
general system framework into which each of the above-mentioned
objectives fi1t, and then to elaborate in these areas on a
priority basis. The Cronus effort to date has concentrated on
developing an extensible distributed system architecture,
establishing an initial Cronus hardware testbed facility,
designing and implementing a model fc: host-independent access to
system resources. establishing system-wide uniformity in a
variety of DOS functional areas. and begun to address issues of
survivability, resource management, and monitoring and control.

The functional areas which were determined to be necessary
1nclude flexible 1nterprocess communication. a system-wide global
name facility. authentication and access control, a distributed
file system, distributed process management, & uniform user
interface., and monitoring and control software

2 3 System Design

The second part of the effort involved the design of a
system meeting the above functional requirements. Because of the
experimental nature of the effort, a system design approach which
supported system evolution was adopted. This design allowed a
multi-phase implementation effort, where some parts of the system
could be designed and i1mplemented before other parts. The system
desi1gn was documented in a series of Cronus System/Subsystem
reports These reports describe the overall system structure,

EhAR LR A B e
- " <, - ol T
‘,ﬂ -.\- \‘“ "’.t."--"-. -‘\:-.f-'-‘:.-"._'.._ i . ‘."'»'.' e,
L‘ P X W TR TG E e e

IR
X, 0 4,0,

e

Ly
.
e

O T RO O N O W Wy AU AN AR AU A OO U OO ORGSO OO O

established the major components of the system, and developed
designs for those parts of the system which were to be
constructed during the i1nitial phase of 1mplementation The
intent of our 1ni1tial design work was to establish a solid
framework which could be extended 1n an orderly way i1n all of the
areas of 1nterest, focusing on demonstrating particular aspects
of distributed system technology.

The Cronus system design 1s based on an obj)ect-oriented view

of the system. The Cronus system kernel includes a host
transparent object-based 1nterprocess communication facility,
focusing on the 1nvocation of operations on objects. The kernel

itself supports the abstractions of a host object for monitoring
and control purposes, and process objects for supporting Cronus
object managers. A Cronus library provides a standardized
interface for 1nvoking operations on objects. including
conversion to and from a standard data exchange format for
inter-processor communication (thus accounting for heterogeneity
within the cluster). The rest of the system consists of system
and application objects and managers, along with client commands
and subsystems which allow users to access these objects and
perform operations on them. Some of the system obj)ects are
migratable, and serve as a basis for reconfiguring the system,
while other objects are replicated to support survavability. The
1initial set of object managers used as building blocks supporting
Cronus application software include:

o Catalog managers., which collectively implement a system-
wide symbolic name space;

o authentication managers, which provide principal and group
objects supporting authentication and access control,

o file managers, which 1mplement a distributed file system,
o device managers, which allow connection of terminals., line

printers. etc.

Initi1al application software provides the user 1nterface and

monitoring and control functions. The system design 1s
extensible through the addition of new object types. 1ncluding
application—-specific objects. In this way, the development of

system functions (such as a catalog manager) serves both as an
example of how to use system mechanisms for supporting
application development, and as a building block for new
applications.

T
g

X
n
1

N
«
x

g;g

y
s

(e}
L4

ey
l‘.'
P4

Py
I'd

:;'I

I"
Y %

..g
e,
2

g

P R T O O U T o N R O o T A R R R O T U O o ooy S ¥

®
o
7.‘
K
i
‘.'
M
2.4 System Implementation
"\ .VV‘ A
v,.) l.‘
The third aspect of the Cronus project 1s the development r.ﬂy
ﬁ and implementation of a testbed facility. This 1ncludes the : J%
m selection and i1ntegration of a variety of hardware components " J
K representative of the diverse selection expected to be found 1n a ”&
: command and control date processing facility. [t also 1nvolves
Uﬁ the implementation of the Cronus design for these hardware {h,
k- components. 3&:)
Al
> The initial hardware components specified and selected for
. integration into the Cronus testbed were C/70 UNIX and VAX/VMS as
3« general-purpose application hosts (demonstrating processor and
¢ operating system heterogeneity) and special-purpose
? microprocessor—based Generic Computing Elements (GCEs),
o, interconnected via an Ethernet local area network for
z communication within a cluster, and standard Internet gateways
._ for communication between clusters. In all cases, these
K~ components represent either an instance of a larger class of
a: hardware types, or a demonstration vehicle (with possible later
\: substitution of a component more appropriate to a given
) operational context). An additional system component, a
" decicated single user workstation, was also included in the
original architecture. Because of the current volatility of @
f workstation technology, workstation integration was deferred from ﬁiﬂ)
3: immediate attention. However, we have recently selected and fq:f
e integrated a SUN microsystem workstation to serve the role as a I,
o dedicated C2 workstation. A recent system upgrade also included ?;i
) evolving the C/70 based UNIX software onto 4.2BSD VAX-UNIX s
systems.
3 \-N v
L. oy
L. :\;
2 To ensure the substitutebility of the network communication 5\¢‘
’:- medium, the system iniplementation is based on the standard DoD \SNQ
B protocols, IP and TCP. bty
e e
e oy
: Both the Cronus design and implementation are proceeding 1n }SQ
A phases. Our approach to implementation is first to concentrate }{E.
;: on an initial version of basic system functionality, &?‘
. demonstrating the uniformity, coherence, and flexibility of the VAN
d system concept within the heterogeneous cluster environment. . ’
' Although the general approach to system survivability and ;':"
- cluster-wide resource management in Cronus has already been f:(:
.j defined and some initial demonstration software 1s in place, ?fn
1 developments in these areas are the dominant functional ﬁzﬁ'
:ﬁ extensions specified as part of the next phase of implementation. o
-..':
v
N
W - 8 -
o
o

‘v%\' e (~ 5"'.':& 'u.‘. : T ‘ S " P --:- > - } -;(\ "o -':v: '— '\?'\}’ 'J' J{' {:\..:'-: “.\ M
*Nf& A O N L (\ ~ £ T, Wt O
) e e ' ik W ﬁ T ATAT AR M A A

'}-\ ‘h'&'t"""\ '-

T8 0 BBt TR Bad Sk 9u¥ 0ot § 0 il 00 ¢V gl 8al a8 ut hep el Egt Sat g at, uae diat darat, 1" aVA" gl =0l e 00 g _pla=afin ghe - alis bRt g i Sali il ol it it gl LA gttty Al-y,

2
n““. ¢
g
X
To date we have implemented the Cronus object system support oS
w. software for each host in our testbed configuration. In ﬂ;b
.* addition, we have implemented a variety of object managers which F‘ﬁ
g- represent major system functional units. These include catalog) %ﬁ
Vel managers, file managers, and authentication managers all running ﬂvﬁ
$ on many of the host types in the configuration and i1ntegrated (]
’ with initial application programs. An initial monitoring and
5‘ control capability has also been developed. ﬁh‘
W E:
i o)
y N
4\ Aol
B PR
2.5 Test and Evaluation
i' 1 ,\.‘:‘-
|” The fourth aspect of the Cronus project 1s system test and Qkﬂ
[evaluation. The general approach taken is to promote the use of gﬁff
v' Cronus system components to support the daily activities of the Q?:j
N Cronus developers and further development of the system. This LY,
0_ focus was intended to accomplish multiple objectives. First, it
K causes the use of system components which shake out reliability 5&6
%‘ and performance problems early in the development cycle. Second, ?,}
‘ it concentrates effort on the problems of developing software for ‘ﬁgﬁ
é- a Cronus cluster. Since a major role of emerging distributed yﬁ :
K operating systems is support for the development of distributed e
applications, this form of test and evaluation helps in smoothing
N the transition from in-house usability to use by outside
) organizations. Use of the system by the system developers has
‘ﬁ meant early emphasis on the distributed file system aspects of
G Cronus, as well as attention to the problems of integrating
o existing software development tools into the Cronus environment.
This too 1s an i1mportant area for continued i1mplementation
o effort.
K-
\
5
‘-
N o
Y _ 2
: B
- A
- A
o ®
2 .‘
o Y .:f
K e
W9 AN*
It G
® °
-
4
140 - 9 -
‘&

.)

\\ \ ' -_" T, L : """. ..' ”
&:,\',"-\:_\ .'q‘\' \ _ q‘\.ﬂ.‘.r J' '-'\ “(\'\.p\ \ \‘.‘\.._ e ST
* o ; R I T P LY URURE

NI oy e e

“”\ ~1‘$ e \55(“- ..v’

DO 1 ‘agte ¢'s g'a 42 T O O TRIR OO B0 0.8 >R avA-aVE ataTahav gy ViR Kot ety ie ot bl Y 882 B'a &', NRR NP "c'.‘

3 The Cronus Architecture and Design

L¢' .

) {‘?ﬁw
: 3.1 General Hardware Architecture .ﬁ%m:
o8 o)

\ Cronus operates in an environment made up of i1nterccnnected :&5&:
N computer communication networks. This 1nternet environment WY
includes both geographically distributed networks which span tens .

. to thousands of miles and local area networks which span f .f'
; distances of up to.a mile or two. From an architectural point of ey $
i view, it 1s useful to think of this environment as being composed bt
: of clusters of host computers, where the hosts within a cluster §~}E
3 are separated by distances of up to a few miles and are typically bt

under a unified administration.

; A cluster 1s specified by an explicit enumeration of its ﬁéw
! host components. The configuration of a cluster may change over Jﬁﬁ
time by the addition and removal of hosts. These changes are AR
’ expected to occur relatively slowly. Since a cluster, 1n effect, o
) acts to define the boundaries of a Cronus system, a cluster 1s ‘iﬁjp
: the domain over which a class of names are guaranteed to have {;ﬁ:f
» meaning and be interpretable. The names of interest here are both 3§¢j
: low level unique identifiers and higher level symbolic names for %ﬁ&”i
D objects. RELH,
, g?i
: A cluster may include hosts on several networks, and several .AJ\
clusters may exist on the same network. However, performance t{:ﬁ
considerations will generally lead to clusters that consist of ftxﬁ
hosts on a single local area network or on a few local networks SN
interconnected by means of high performance gateways. Therefore, TN
although a cluster 1s a logical rather than a physical concept, T{{ﬁ'
: clusters will tend to be aligned with local area networks. $¥3¢
;I:{:::’\'E"
: oot
Cronus currently operates in a cluster defined by one or Y
e more local area networks. Extensions to multi-cluster .,,_’-
architectures are currently being designed. The principal :Hﬂ?f
[elements in a Cronus cluster include: \ﬁi\‘
S o)
SRS
) 1. A set of hosts upon which Cronus operates. S
» J.'\- .h.‘
q 2. One or more high performance local area networks which G A
, support communication among hosts within a Cronus cluster. }{u’
: :q:'\'v
\ 3. An internet gateway which makes the cluster part of the N
. internet by supporting communication between cluster hosts RN
e and hosts external to the cluster. et
) o
g i
i - 10 - Kir
. -
R R o R e e e s s
3508)) . '\'"V"' LT T Ve V) fﬂ:‘.-".-".-:'z".-:‘a". "f_‘."\('”'. "-{"‘-'.'-"'«':‘.' “an '-.'\')‘-.\-"\ A et '\.-"-':'.'.'.P‘ 3
it i J.ﬂm; SO I 1!.-'.. e sl o8, Y0 P PN U T N e N T T T e N, C0 B P R o Ve R AR 2 N i L YRR SR O VL VRS LTI

-JA

'

A R @ Py

- T %

“

e

i

) A TR R R R

g o

o

P

The Cronus host set is a heterogeneous collection of hosts
which can be divided according to function i1nto three broad
classes:

1. Hosts dedicated to providing Cronus functions.

The functions the hosts provide include file and data
storage, user authentication, catalog management, device
control and terminal access. The hosts which support these
functions are called Generic Computing Elements (GCEs).

GCEs are small, dedicated-function computers of a single
architecture but varying configuration. Each GCE provides
one or more basic Cronus functions. Since GCEs have the
same architecture, they provide a replicated hardware
resource which, with appropriate software, enhances the
survivability of basic Cronus functions.

2. Utility and application hosts.

Although these hosts may support some Cronus functions
supported by GCEs, their primary role 1s to support user
applications. The utility and application hosts include a
variety of machines with unrelated architecture. They are
typically mainframe hosts which may serve a number of users
simul taneously.

These hosts run operating systems which are largely
unmodified. The software necessary to integrate them into
Cronus runs as an adjunct to rather than a replacement for
the hosts’' primary operating systems. Hosts can be included
in Cronus with varying degrees of system integration, with
some supporting and providing access to only limited
subsets of the services defined by the Cronus environment.

3. <Single user workstations.

Workstations are powerful, dedicated computers which
provide substantial computing power and graphics capability
to a single user. They are used both to provide user access
to Cronus and for their ability to run applications. They
differ from mainframes in that they support a single user
and from terminals in that they offer significant
computational resources.

Since we began the Cronus design three years ago, a new host type
has emerged: the inexpensive personal computer as exemplified by
the Apple Macintosh or the IBM PC. We are currently considering

- 11 -
A PR T A Y N PRy E N a4 PR T P
LS, e AR s e T A e T e A AN - R A L
Ny AU X "ol e PR SN % Ay g e -"-"‘::"':-".1' L AT AT
o \

Yy
R

b}

Ve
MY
l‘ll.‘

“TeaTa T
N
. ™
el

.
1.:‘, " :' e

\ o o yav o oo 9 J W n '8, L Sk A % 204 o _.‘
; RAGY
‘ Cd
“ b
; v

P
o
‘ PC¢
the architecture impact, if any, of these single user machines.
v{

" o
. huly
¢ a.;'l,
‘e iy
g o

3.2 Key lIdeas and Implications

Al » “‘.;
> ity
4 There are several key ideas which form the basis fco (le ?ﬁéﬁ
) Cronus design. These are: WL e

4 1. The Cronus object model. b
X The basic system organizing principle for Cronus is an {E‘
) abstract object model. Cronus can be thought of as a ﬂ,#
3 collection of objects organized into classes called types. ‘“w
; The services Cronus supports are implemented by processes ;" 4
4 that manage various object types: files. processes, RN
@ directories, etc. Cronus attempts to treat all types
! uniformly. in accord with 1ts object model. Within the v‘}k
n object model, location independence and dynamic run time @éﬁﬁ
g binding to objects are important concepts behind the ?} v
X design. The object model is extendeble to application 4{::0:
h development. The system design is based on the idea that ot

to a user there is essentially no difference between
providing "system” services and "application” services. ,‘\;

} Eﬁ%
W 2. System—wide availability of essential services. Q&
0 \'

3

The services provided by Cronus include: ‘

" obj i =il

i o ject management for many types of Cronus objects. g“;“
e
>

¥ o A standard interprocess communication (IPC) facility *55\
) e
b ,:«{:\. !
td o A system—wide distributed file system. RXK
@ o
" o A system-wide symbolic name space for all types of objects. :?*‘
) o Facilities for process management. \

. o User and process authentication.

@

’_ o A standard access control discipline for all system and
.& application resources.

Do,

"W o A user interface that provides access to all Cronus and
W application services.

@ —
» o
- u:
| 12 o
4. A%
0

'&‘ &

"l"l\ LA
T o W
o~ x-rw LS4

;wﬁ.*x‘“..,

ﬂ\x*

; \}NJ‘\’W' ‘*‘_\“\;\Jﬂn \'.! < \‘ . ‘: LA
h,a\ A ,. I" .ﬁ‘.ﬁg Whig “l.'hlﬂ -,

u ‘.“.“\'\‘("}‘.:':,‘xu
u. Yy AR LSRN

Pl

o Monitoring and control services for the entire system, the
individual hosts, individual services, and applications. o
ﬂf5¢

)

K

At the heart of the Cronus concept is the availability of
these services to all Cronus applications. The coherence
and uniformity of Cronus is directly enhancedq when
applications and application host operating systems utilize

-

2.

w‘q [et
KNt
55

the Cronus—-supplied services as the single source of these Y]
services. To the extent that applications and applicetion wn'Q
hosts choose to utilize parallel but incompatible services, 5?4*
coherence and uniformity are diminished. For many existing ﬁ ?hv
applications and hosts integrated into the Cronus gﬁr'i
architecture, we anticipate a gradual evolution from -
dependence on local mechanisms to reliance on Cronus v
functions for similar globally menaged services. ﬁ,%sa
{ 42
3. Generic Computing Elements (GCEs). ’ﬁ$$$
ditiy!
(K
The concept of the GCE is important to the Cronus design.)
As previously noted, a GCE is an inexpensive host that cen biﬁﬂa
be flexibly configured with small or large memory, and with il
or without disks and other peripherals. GCEs are 'ﬁﬂﬁ@
configured for, and dedicated to specific Cronus services, \&ﬁ
such as file storage, Cronus catalog managment, and user ;5~\¢
authentication. Because they are dedicated to Cronus, it T \
is possible to control and optimize the performance and ;Eiﬁq
reliability of the Cronus services supported on GCEs. PB;J&
)
NN
4. Minimal dependence on a particular LAN technology and other }ﬁ::%
system hardware. }3%;
Cronus accesses the local network capabilities indirectly A X
through an interface called the Virtual Local Network (VLN) R .ﬁx
Y rather than directly. The VLN interface embodies an #z Vﬁ
abstraction of local network capabilities. The cluster ﬂ\h
configuration used for Cronus development includes an SN
‘ Ethernet. By building Cronus to use the VLN interface, it ®
is possible to replace the Ethernet with any local network PR
that provides the basic transport services Cronus requires :}jia
simply by developing software which implements the VLN ?::\;
interface for the new network. Cronus has already been e
ported to a Pronet Ring network base with only network e
device drivers needing recoding. Writing Cronus system ®
software in a high level language (C) and using Cronus J{#é?
mechanisms internal to the implementation both reduce ﬁﬁ%
dependencies on constituent operating system functions. Es?f
{ This makes Cronus components easy to port to new hardware 'ﬁ‘ti
| which is anticipated to increase the effective system Ry
; o
|

RN
Lol ,.-‘*‘.. ..:)_-I' .

t*‘\'\ AR Yal 'p’*\ = '\-‘_\.-\'.':'r
PO Y St

3
P S A AT R AT R N e et A R R AR R T
A G e A RSN
A T N A A O AL LA
/ Ly Y W / \:h.

e A% % §.%,

-

Rk & DTN

prars

P

lifetime through a number of periods of hardware evolution.

el
[9,]

Flexible host integration.

" - -

When a new application host is integraled into Cronus there
are a range of integration possibilities which occupy
different points in a cost versus degree of integration

» e

2 space. ;fi;L
’ el

. When a host is integrated with minimal effort, little more Htf:
. than a communication path between the host and the rest of t:f:
u Cronus will be present. The host will be able to obtain o

many Cronus services through the communication path, but

¢ its own resources may be inaccessible to external process t e
Y4 through the normal Cronus mechanisms. Further effort can ;?ﬂh
) be devoted to integrate the host more fully 1nto Cronus. %Q
r' i i “l:::;
i 6. Use of Standards ”j
@
N Cronus uses recognized standards in several key areas.
K> These directly contribute to both the coherence of Cronus
™ and interoperability with other systems. Standards are
2 used predominantly as interfaces internai to the system
o itself, as a means of simplifying the introductfion of new
system components which a:-eady adhere to one or more of
D, the standards. Use of st 1iards also extends the system
lifetime by allowing conv. ~ent component upgrade as the
: technology changes. The indards that it uses include:
.!
ot o DoD Internet (IP) and Trar mission Control (TCP) Protocols.
; o ARPA standard gateway.
Py
% o Ethernet.

o
[}

IEEE 796 bus (MultiBus).

o

]V o UNIX Constituent Operating System

~

¥

)

o

K

2 3.3 Software Architecture

v

‘B The basic system organizing principal underlying Cronus s
J an abstract object model. With this model all system activity can
. be thought of as operations on a collection of objects managed by
) the system and organized into classes called types. Examples of
@

'Q

b

b

c'

L

LOLPE PSS 8 NN
AR S }.':;‘:
bR ')((f- f'\,,‘\-)y"h LY
o Sy T e iadalintiad
¥ .' -.‘ - ln’ 3 Jﬂ,u. .A“ u“.

object types are files, processes. and directories of catalog

entries. The type of an object defines the operations that can o
be invoked on 1t. The underlying structure of Cronus, which 1s aﬁﬁk
largely hidden from client processes, consists of the primitives ﬁhﬁ
and mechanisms for delivering the operations to objects and $$$&k
delivering the results, if any. of operations back to the akhﬂﬁ
invoking client. -
s)
hase
Cronus is implemented by a number of processes that reside gnﬂy‘
on hosts which are part of the cluster. Some processes, called :&bﬁ%
object managers, play a special role 1n implementing objects. {é;;ﬂ

Generally, when an operation is invoked on an object, 1t is o
delivered to a manager for the object which performs the Fﬁ?ﬁi
operation. Other processes run application programs. 3Stiil kﬁﬁﬂ'
other processes provide services and functions for wser:s For i}g&
example, the user interface runs as a process ﬂﬁh{!
W
There are three interrelated parts to Cronus: :33x$(
1. The Cronus kernel, which supports the basic elements of the é@ %
object model: processes, communication between objects, N,H&aﬁ
object addressing, and the relationship between obj)ects and &%ib#

their menager processes. The Cronus IPC 1s a major part of

]
al
e

the kernel.

7
K

-

)

2. A group of basic object types, along with the object
managers which implement them. The basic object types
include files, processes, devices, and user records.

:.‘ ‘#{ b g % 4
Py X

§

. S

X0

-

3. User interface and utility programs which provide RN’
convenient access to Cronus objects and services. The user Sjgx
interface and utility programs make use of the Cronus IPC _}ﬁﬁzﬂ
and the basic objects to provide their services. ?iw)
R0
In addition, Cronus includes a set of rules for building and igjqﬁg
accessing new types of objects, which spell out the methods for .{?:%0

integrating new object managers. Typically object managers for ?{Bj
new types make use of the Cronus IPC and existing object managers AR
to implement their new types. Application programs developed for ;gj{}f

Cronus may make use of existing types by means of the Cronus IPC,

‘ or may include managers for new types. ;{y‘,
> B
| g
| NNAS
| :n‘.,{.:f
[
e

A

|
-
[0,
|
"; v
NS
2
%

T P RS B DR HY K A S R R b S At T .F;: *
AR A e ok P a0l A P Sy A
e L A e M AN IR ALY Frerr e R L S0 AN
LGN XX ‘n"‘t. Loy, ‘Q“.‘\...I'!‘"-. 2 8.0.0, (™ xﬂni-ﬂﬂ‘&‘ 3 1

TR N T g% @8 Tak Hab S8 82 82 87 & TN TS o.¢ 'y RV A2 AYe 42 A%s 4728 Jat" ‘Dol ot fha¥ fav ot g

0.t
f’: ~ ::o'
4 .5,
,‘:‘ :-’ »:5-' +
o4 s
St SN
& u'z
K P !
o |

3.4 The Cronus Object Model

i
i} 3.4.1 Cronus Objects and Operations k|¢‘
3 WAL
5 The object model i1n Cronus provides a framework for both the ¥ Jﬂ
o system itself and application subsystems. Cronus system A
lv components, such as processes and files, are implemented as)
o cbjects; and operations on them support syster services. Ly
g Application programmers are encouraged to use the object model CV g
, for the standard access paths it provides to pre—-existing Q?.‘
[objects, and for the facilities that are available to create new 1:
W objects and object managers. atit
-
o '~.~~.‘~.
) The definition of an object in Cronus 1s tailored to the %}ﬁ‘
; distributed nature of the system. Special emphasis is placed on ;fy‘
m allowing efficient access to objects without detailed information ikf
J. about their current physical location. P
@
?- All Cronus objects have several components: ?‘?
ke G
K 1. A Unique Ildentifier (UID). A UID is a fixed length {*“
Jd structured bit string guaranteed to be unique over the ”:
k' lifetime of the system. It serves as a handle for a LGS}
. particular object. It consists of a unique number or "?
hp UNQ and an Object Tvpe field. The UNO guarantees ﬁrﬁ
b, uniqueness and incorporates the host upon which the +
f cbject was created. The Type serves to classify the h,
i, object. ‘
l: s
Although ultimetely. all references to objects are w“f
,‘ through UlDs, Cronus implements a symbolic name space Q};ﬁ
i which provides a mapping between user—-defined symbolic NN
*Q names and object UIDs in order to facilitate user b?;
! references to objects. “t:x
nh LS
- 2. A Set of Operations. Processes may perform operations .rg
}: on an object by sending request messages to the object’s ﬁﬁ‘
hﬂ manager. An object manager is a process or set of é.'
*’ processes responsible for maintaining and manipulating }{:,
3y an object. By convention, all managers are responsible $‘¥‘
) for performing several generic operations on their g
’ objects. In addition they may perform any number of *
& object specific operations. 5:
o P!
‘ﬁ\ 3 An Object vescriptor. This 1s data associated with the f",
ﬁf object. It is maintained by the object’'s manager. It :ﬁf
B consists of several required fields and any number of -

: = (_" 1\:‘ W \}\}» JQ' ». \‘ k-\.ys e \‘ -',."
N VN3\ 3\“
‘ﬂﬁ&k tﬁ

5?'/

object specific fields. Some of the generic operations
are defined for accessing object descriptors. Cronus
achieves a consistent system model partly from the
uniform i1ntegration and handling of these object
attributes.

A mechanism is provided to group the objects associated with
a particular manager. Each object has an associated Object Type.
\ A manager may declare itself a manager of one or more object
X types. A functional area is typically supported by a set of
() functionally .quivalent and cooperating manager processes
distributed on various hosts of the system.

14 A useful property of type managers 1s that they may be

3 accessed by simply knowing the object type that they are

Y responsible for. A special UID is provided this, the geperic UID
¢ of a given type. Generic UlIDs are used for creating new objects

and for status probes.

b An object’'s type is also used to describe its attributes.

! In particular the set 'of operations associated with an object and
the parameters necessary for each operation mar be determined
from the object’'s type.

A key element of the object model is the Cronus kernel which
supports communication between client and ob)ect manager
A processes. The kernel is message oriented, and it supports
object-oriented addressing. When an operation is invoked on an
ctiect, the kernel delivers the operation (in a message) to the
¢ appropriate object manager. Messages corresponding to operations
are sent as messages addresssed to the objects. The object
addressed is the operand., and the message data contains the
operation and any additional parameters necessary to specify the
operation. When the manager for the object receives the message,
it performs the operation requested. Responses are sent as

fa

¢

~

[/

& The actual set of operations available on en object of a
¥ given type consists of the set of generic operations and a set of
) type specific operations. The generic operations are Create,
d Remove, Locate, and several operations which read and write

; standard fields in the object descriptors. Examples of type
P specific operations are Read (for files) and Lookup (for

" directories).

4

4

’.‘l. e

} ~' "\-),‘-J’u'\t{ W‘\f‘\-'\ VN‘N‘R.*'&..\;\JV ' ¥
e
! A .l' QOO AC K RSN ""t‘. W@ RN, n'.'o'. l’-'o "‘l"‘l‘. I c'l.- l"‘l‘, |£’t‘ 0 o‘. ﬂsﬁmm

'y

|‘I

A
whe

300

"

D) h\' "\T .'\ Ly "Qqﬁ [RERES) ."."l,;‘ﬁ"'-;’l- \,‘yln ’J 'V'}-r-’.'..

5.‘ ¢'?"‘Q' }‘ R .;"(".b S _“‘ Wy AL N
R R AR A v

messages from object managers to requesting clients.

When invoking an operation a process need not specify the
host where the addressed object resides. To deliver the message,
the kernel must determine the appropriate host using the object
UID. In general, three somewhat different classes of objects
are accessed through the kernel. These are:

1. Primal Objects

These are forever bound to the host that created them.

Migratory Objects

These are objects that may move from host to host as
si1tuations and configurations change.

Structured and Replicated Objects

These are objects which have more i1nternal structure than a
single "atomic” object. An example is a reliable
(replicated) file which has a number of identical primal
files 'as its constituent parts.

The important thing about primal objects is that, given the
UID of a primal object, the kernel always knows where to find it,
since the host it resides upon is coded in the UID. Non-primal
objects may move from host to host or may be replicated at
several hosts. The kernel uses an object location procedure to
find non-primal objects. This procedure locates an object by
means of a mechanism that broadcasts the generic operation Locate
(as a message addressed to the object). This ensures that every
manager for the object’'s type receives the Locate operation
message. Because Locate is generic, it is defined for all object
types and implemented by all object managers. Any manager that
manages the object will reply, thereby locating the object.

3.4.2 Layered Structure

Cronus provides a set of facilities for the composition of
messages and their transmission to provide a systematic
communication facility among Cronus processes. There are three
parts to this communication support:

L

I d

" .
<

A L CAT KA IO A L S

LSAL L Sad Gl G 0 R AL atE '8 AV AN VA oV AN APASS A ot Balt SaR Sud Vol Falut ol 0y aVe 400 S 0 0 0 0t 0 0 R B Dl B8 S0 R B ot SuVoBet et RE JVR oSe-oWh S0 250 o%¢ T8 '8 0"

o An interprocess communication (IPC) transport facility,
based on the object model and object-oriented addressing,
provides Cronus primitives for uniform, host-i1ndependent
communication among processes.

o Conventions for passing data using Cronus canonical data
types permit messages to be composed without concern for
the heterogeneity within a cluster.

o] Protocols and conventions for constructing messages used
1n 1ntercomponent tnteractions., especially the 1nvocation
of operations and the replies

The Message Structure Library (MSL) organizes these
conventions and protocols by providing routines for the
composition and examination of messages.

The IPC mechanism of Cronus 1s built upon the primitive
functions Invoke, SendToProcess. and Receive. These primitives
support the asynchronous communication of uninterpreted data
octets among Cronus processes, by means of the abstractions of

invoking an operation on an object or sending & message to a
process.

Messages., the entities communicated by the IPC. may be sent
either reliably or with minimal effort. In addition, notions of
both a small message which can be carried by a single datagram on
the underlying transport mechanism, and a large message which may
require an arbitrarily large number of datagrams are supported.
although this distinction 1s hidden by the IPC library routines
Messages may be sent and received all at once or 1n pieces. The
si1ze of the chunk of data manipulated is 1ndependently selected
by the sender and receiver. Large messages of i1ndefinite size
form the basis for i1nterprocess stream communication

The Message Structure Library (MSL) is used to format
messages, but 1s i1ndependent of the IPC. It provides a mechanism
for inserting and extracting typed, structured data 1nto a
message buffer in a position- and machine-independent manner.
Associated with the MSL are conventions, called the Operation N
Protocol., for the patterns of communication that arise 1n
performing operations on Cronus objects. '

T P O S
.4 d“'f‘.- N-'_.J'\. K

LA - -
Jﬂx..,‘- \v'\.f__-.\J'_.-
o,)‘NJ.'J‘ RN

vg.. S get $.0 b G0 L0 R0 00 0 U 8 00" B R 8 WY LUP LNV R VUV N Wow e A A A fal tal ta AP AR AT AT

Cronus 1s based on a layered architecture. This provides !
the opportunity to use only a subset of Cronus for 'a specific or '\‘:}-
limited application, and to easily replace individual parts of 3y
the implementation with alternative but equivalent Y, ..
implementations, should the need arise for optimization purposes. Pé;\;:

Y.

A top down iayout of the layers of the Cronus model follows.)

-:‘\\\\

————————————————————————————————— :'-_,"-
Sy

e

Yy

PR

| Manager Design Conventions | ‘\r&-
= m s e e m - — - - | E« e
[Access Control Conventions | ! A
e e e e e e e e - | X
1 * 1
| Ob)ect Manager Standards | Pt "..

' | 1

{ Request & Reply standards (OP} | 1'7‘:“:; 'f
it | E’s*
| Message Encodement (OP) | W)
e | foategthy
| Message Passing Protocols | hoteu

{small [packet] & large [stream]] .
e e e l !-r*-:’n'
| LA

i IP Protocols ! LA

) ¢-‘~.x

|- | l{';"}‘
LAN | A

; Ml

_________________________________ AN
o

VS

The lowest levels consist of communication and message ::‘-';-.$
routing protocols. The next two consist -of the definition and -3:::-':
standards for using the Operation Protocol (OP) to send and :u-.:'r::h
encode requests and replies. Above these are the standards for O

! implementing an object manager (i1ncluding the set of required __.
: object operations). The highest levels consist of conventions :'_-':'_.':‘_
for using the mechanisms provided in Cronus. \,‘\
p A,
) RN
X '.::\::\

Although the Cronus system concepts are language
independent, and implementations exist for other languages, we ~

: > ‘.-
have concentrated our major i1mplementation effort on the C OGN
programming language. A C language subroutine interface is ;'_x_"
provided to perform common tasks such &s message generation and P
parsing. In addition to these, higher level tools are available '.\‘;-‘.("

. for the development of new managers, 1ncluding parameter:zed -“'\‘

\:‘.:::T.:.h

'L.'-\‘

WA A

R

- 0 - i
' 2 Hr\.-
.“..-\4
4 ®
Y TN
NG, '-"_,, A e A L e A D A A A T NN N N e N T N T e :-.;'_-.‘:-.
! .l’ () vy rs - Qg ‘-J)\- AN A SN ~{:\. T R T S T i R A N L S S Ny
et %y T Lot a8 AN AN) AL AN N O e e NSNS
A s SO A N < Y e T g T T T T A TR A L A A N
AU Ul l’l'l"a'l’!‘l'u“’c L AN A Ay 'd!.‘! ."‘. O ') ..‘l'l» . 4% % 1% T TN, .t. B~ o e N iy W T) W ™ e ™ R > N ¥

routines for designing manager control structures.

The following sections describe each of the layers of the
Cronus Model begining with the lowest level protocols and
continuing through to a brief description of the C language
interfaces.

3.4.3 Message Passing Core

Process—to-process messages form the basis of all Cronus
Operations. A Cronus Operation in the simplest case consists of
a request message from a client to an object, and a reply message
from the manager of the object sent back to the client. A
complex operation may 1nvolve many sub-requests to various
managers and replies to each of the requests

The paradigm for a Cronus Operation 1s as follows. A client
process determines the object UID on which i1t should perform an
operation. Using the object and the operation it constructs and
sends & request message.

<object uid, operation, data>.

The apropriate object manager receives the request in this form.

<client uid, object uid, operation, data>.

The manager services it and sends a reply message back which the
c'ient receives as.
<menager uid, reply data>.

It 1s 1mportant to note that the actual locations of the
client, the object, and the object manager can be transparent to
both. In order to support this flexibility in a heterogeneous
environment, the lowest level of Cronus consists of host
independent protocols for message definition end routing.

The Operation Protocol 1s a protocol designed for the host
independent encodement of messages. Message data 1s encoded as a
list of values of the form.

- ‘. ..
T l',l‘
N

¥

% % N

A
.

"
<

e
>

“~p W
e

o

55
59

I

@ P

d

- g
‘-

DI

o

PR

o h
- e ap
TEE

BERAIME

5

L

ey

A .5."..". A ARNARIE

-‘
S

K

1 @

T,
UL AIINS

v @

«
-

<data type, encoded value>.

A key 1s associlated with each vaelue to reference it.
Encoding and decoding algorithms for each data type depend on the
local host's internal data structures. OP defines many standard
data types for values, such as integers and character strings.

In addition. higher level constructs such as arrays and
substructures are possible.

The Cronus Interprocess Communication (IPC) facility 1s used
to deliver messages to the apropriate destination. An operation
switch Peer To Peer Message Protocol is used to route messages
between hosts. This protocol provides reliable routing,
sequencing., and delivery of 1nter-host messages. In the case of
communication failures, 1t also provides provisions for message
rerouting and error notification.

3.4.4 Primitive Operations

The primitive operations available to Cronus Processes are
Send . Invoke , and Recejve . Send is used to send a message
directly to a process. Invoke is used to perform an operation on
an object. An Invoke is delivered to the manager of a given
object. based on its type. Receive i1s used to receive the next
message.

A simple client/manager operation 1llustrates how these
functions are used First. the manager process waits 1n a
Recejve state for a message to arrive. A client process sends a
request to the manager using the Jpvoke operation on one of the
manager 's objects. The client then typically does a Receive and
walts for a reply. The manager services the request and Sepnds a
response back to the client. The client gets his reply and the
manager performs a Recejve to wait for the next operation.

The distinction between the Invoke and Send primitives here
13 an 1mportant one. The client need not know the specific
identity of a manager tn direct a request to it using Invoke.
The target of an Invoke is the object UID. It is the IPC
mechanism that routes the message to the object’'s manager.

> '?;;
7

U

".-".rr‘g

AR
A'. .b

x
L3
>

t".

LA
Yl

—-
L]
-
a2

]

‘l.

" Yy
.

I
r_'n]

v ¥ A € R

gy
S
JC X X) i

[
-,‘

4

7T

o

PPV R 4
ALY
FEP

4

v
Y,
s

L A

»
.

AN
»
)

NS

L]
"
]

ﬁ T e
1 [l
o

7
<

- n

s

-y

A TRUA TR IRV ING

The separation of the Invoke operation from the Receive that
generally follows it allows for complex asyncronous operations oo
and optimizations involving parallel execution. In particular 1t 'F@l
1s possible for managers to Invoke sub-operations while bﬁvﬁ
simultaneously being available to start new operations. lﬂéﬁ‘

To encourage use of asyncronous message handling, a simple ’:4f'
multitasking facility has been i1mplemented for use within Cronus "\ ﬁil
managers. New requests are associated with tasks, each of which :t(
may perform simple Invoke/Receive operations without complex)
state saving and restoring techniques. G

3.4.5 Object Location and Message Routing

A consideration that 1s unique to the distributed

environment is the location of resources. It 1s often 1mpossible SRR
to guarantee the availability of certain hosts in a NN
configuration, yet it 1s desirable to use them when they are ﬁkﬂh
available. Cronus provides support for these specialized ~${ﬁ:!
problems by defining objects which may be moved from one host to :{:d:'
another, or which may be replicated on several different hosts, °
and by supporting a dynamic binding procedure for these objects. ﬁiﬁ?
0]
ﬁﬁ\f
BSLE
Cronus objects types fall into three catagories. Primal i:'*%
Migratable . and Replicated . Primal objects remain where they E\:_'

are created., migratable objects may move from time to time, and
replicated objects may be located on several hosts S
simultaneously. In this context. an object’'s location refers to -
the host on which a menager process may service requests directed ‘ﬁ

to the object.

If a primal object’'s host 1s active and 1ts manager process 5*:""
is running, 1t may be accessed. Primal objects are the simplest -
kind of objects, and they require no cooperation between the
various type managers on the system which handle them. The IPC

mechanism routes an 1nvoke to a primal object by using the host o

of origin from th~ object’'s UID, and delivering the message to

the appropriate manager process on that host. e
'l':f
.:,_\.

e
AN

SN

L4 J‘,"J‘
NS

- 23 = NS
~ AN

A
] ‘ [)
- RN,

. . . o e e e N AL - e e e v LAY
N R e C N SR AC T RS (S "N’\"\'\‘\"\.’ﬁ‘."\. e e i N
f.'f_f-"f. A A A A A A S i R . e ¥ J'J'-F_‘f(.l." - > ‘ﬂ\f iy Ty »
o e T et T N N N N L N A 'b""‘ P A J\-: '_'\."'\v -F"ﬁ\d\l‘"-i'\-"‘ -~ \:.\:,}. "
-.-.:.',w.'s.'\.ﬁf-\,_’. St \6.,«._,\.{.‘_ _,' -, .-.J,..'., _ry\\. e ml e o " .:'i*\\ﬁ!\""'\\Aﬁ "e

LAl Tl SA) ot Call Tad Uoh 4ol tah Pal Sp8 Vil Vol wal Vol VR Py Vol Mok Vel ol SRR 1 Uah G0 Vol aR nl 6.8 Wak WoR 0 Ua0 ol Wol Nl Ual Vol Saf Sat viad Oa) Vel God bak GO Vol Gh Sof Wl Suh @, \3‘) t "
‘
SRy
ol
LY, .'
i"r. Ll
{
-"’ "« Y
RO
:?ﬁfr{
Qe
s',‘f"‘r
The notion of a migratable object 1s somewhat morc
generalized. Migratable objects may move from one host to » ﬂ»¢
0"‘.')
another. The object managers are responsible for much of the “?“%J
mechanism necessary to support migrating objects. They |b?$b:
implement. by convention, manager to manager protocols for moving &ﬁq&
objects, and forwarding for misdirected messages to previously L%t et
migrated objects. s
LT
!?~\A
‘ ("ﬁ"-.‘
; The operation switch binds 1nvocations to migratable objects i"{%ﬂ
: by first broadcasting a Locate request to all potential managers i}f§
! of an object. The correct manager, 1f 1t 1s available., answers geted
the request, and the message gets delivered to 1t. As an <
optimization, the current locations of recently accessed objects E;&jﬁ

is cached.

Replicated objects are the most complex. A replicated -
object 1s maintained simulataneously by a number of menager
processes. Its manager processes keep copies of the object data.
which they syncronize by means of manager to manager
’ comunication. Invocation binding is handled in the same way as
for migratable objects, the difference being that any of the 4
available managers of a replicated object may answer locate
requests. Currently the first one to respond 1s chosen for the
, operation invocation.

o S
-
—
-

-,

3.4.6 Properties of Messages

LS

o

(s

L
L

, The message passing primitives have a number of properties ﬁ:};
{ beyond transmitting datagrams. These consist of routing options, $5¢
: header 1nformation passed to the receiver, and support for error E e,
i recovery. Invoke and Send functions 1nclude the following <
, options. :!
: h\"!, \
) LY q."-
g
: a. Maximum time. The maximum amount of time allowed for a g:,‘
n message to be routed. ‘igif
- ., .-.I
” . -x'-l {J
i b. Low Effort Option. Normally, messages are passed between Ol
hosts using a reliable transmission protocol. Messages v; ,
/ which are passed for informational purposes often don’t b{3=
! need guaranteed delivery, therefore a routing option 1s \’;,;
N
Y available which attempts to minimize the overhead 1n {?j,
sending the message. e
| Oy
L
3 WUSAN
v“.x.' ",
-\‘.A“:)\'
' ;‘\:..\ \
g '\’\ s
! - 24 - A
[W i
4
i ?Tﬁﬂt
' SN A AT AT AT ST NI A R NN R B R A AT N N W A P T T P R T T T W L Y AN AN
‘:‘d‘ :;4_‘;:.’&:".\ e N e Y AT NN :;.;:'9" ﬁx)‘ﬁ” :(\I__a_:f“a_:f::"f_'_f‘:.’:.-". NS .»:,\N.'“:)
A o A A A P AN A S T N N R A RN LSRR
‘e, 'é'-' b 0. N ON] ’ - ,4 \ .' B -'l % f . .- A ate .\' D A ' B .l~\0 Ny) Lad K > X “{ "¢ -"“"’ N‘.‘ e, \ -{\'-M' "\‘-')4

c¢. Broadcast Option. When this option 1s selected, a copy
of the message is sent to each host 1n the configuration.
This important feature is used for object location and
status queries.

d. NACK Option. If this is set, a negative acknowledgement
will be generated and delivered to the sending process if
there is a timeout or routing error.

e. Start Large Message. Requests that a direct connection be
established between the source and destination processes
to facilitate the transmission of large amounts of data.

When a message 1s actually delivered, the destination
process receives, in addition to the message, a header consisting
of :

a. The sender’'s routing information. This may include the
handshake data used to esablish a large message
connection.

b. The actual target UID. Obviously this is mandatory for
Invokes, since a single manager may manage many objects.

¢. The source UID. This is the basis for access control in
Cronus. Before servicing a request, a manager may
determine the requesting user and access rights
associated with the requesting process based on its UID.

A C library interface exists for these primitives. It
provides a uniform i1nterface for small and large messages, as
well as default values for all the routing options.

3.4.7 Message Encodement

The Operation Protocol! is used to encode Cronus messages.
It is designed to facilitate the transfer of structured binary
data between clients and managers. Message data is converted to
a list of (key, type, value) triples of the form:

< <keyl, typel, valuel>, <key2, type2, value2>, ...>

where each value has been encoded into a machine i1ndependent

TN e Y AT VIR N AR AN RCRLAL AL RERRSY L) ", a e W Wa WY Wy W, X W 2)) ‘
.;Qv.‘.-.\e__i\.p\}-\i AN .HN}“\J-"J&-.C.‘ ‘_._-':\»&:7}:\& PNy NG :}x‘_ﬁxp, e N LA LA T -.:,\
AR S TR TR S NG AT N R ‘ A N A AR R
- .' o . '\”5 ’\{ »,!\,,‘ﬁg L o Ry LGt %

L ah A A h.mn.\ " FY 0% 0%, oY

8 a0 iR B 6 A0 a0 e 00 8 0 h e Vs h g f¥e Ve Ty GV QUL R Te Ve fon B'a B0 RVaRUL g0s h0e ARy Ayt

80,00
o Apn
‘;"*‘Z{".&'-" ,
| i O
Clnsnd
Ve O
o
¢ ey,
external representation, for the type and each key 1s used as a ._
handle to reference a particular value. All messages are "\¢h¢
transmitted 1n this format. On the receiving end the message 1s .ﬁﬂ:
decoded into a local format for the type which is compatible with 0%4\§
the local architecture and programming language. zsh..ﬁ
QRO
byt g S
Message data 1s order independent; the only requirement is uﬁ,tﬁ]
that each key be unique. The host independent design allows Ef%g{:
messages to be modified and resent without any data reformatting. e
S
L B
A set of C language library routines called the Message 'ATWI.
Structure Library (MSL) is provided to simplify the task of I:#jn
creating, modifying, and decoding OP messages. In particular ﬁﬂy.e
these include. a PutMSValue function which encodes a value into ﬂgﬁ?nf
1ts typed external format, associates a given key with the value, ﬁ&x‘-
and adds the key value pair to a message being composed; and a OO
GetMSValue function which finds the value associated with a given ;E"ﬁ"
key in an OP message and converts 1t to internal format. Eﬂwa &
A ety
Y
II"‘
In addition toc the application dependent values, OP messages ggg"k
by convention contain a number of standard key-value pairs. LA
These are used by system tools to irace messages and analyze !'Hﬁ'““
message traffic, and by high level standardized functions which 5}6&:
are used to sort and match requests and replies. Standard keys lzsmﬁﬁ
include: .c:::::::
() \
Global Request ID: A UNO which identifies an operation i
between a client and a manager; all messages associated with %~v
this operation including any necessary manager to manager o
message 1nteractions are labelled with this idenitifier. i
AN
Request ID: Another UNO which identifies a specific Sﬁé;&
request/reply interaction. LAl

At
Pd
29

Message Type: Labels the message as a request, a reply, or
simply an informational posting.

, ;?{:;:’/

Operation (requests only): The object operation associated
with a request.

x5
’J

General Reply Code (replies only): A general status

indicator describing the degree of success of the requested
operation.

A

- -') 'y e A

UY) 1
X)
Q‘II 0.

"
's'l'a

O.A.f.Q

N

1
?,
0
000

’.’f{'.‘:’.:‘- ’ - - r,- .I,;n“ -2

AR A s ¢ ; L N AL A \
,‘.‘("*..‘f: oy () \f.‘ﬂhj;: . Y

Rt X

The message passing, date encoding, and object binding
mechanisms provide the Cronus system developers and Cronus
application developers a powerful base for supporting remote
invocations and remote procedure call type i1nteractions in
distributed computations.

3.4.8 Extending Beyond a Local Network

Cronus makes extensive use of broadcast facilities provided
by its communication base (typically a local area network or LAN)
to locate object manegers and objects dynamically. It 1s often
true that a selected collection of hosts to be integrated 1nto a
Cronus system are not limited to a single LAN. In order to extend
Cronus utilities across several local area nets and allow hosts
which are not on a LAN to fully participate in Cronus, it 1s
necessary to provide some means of forwarding broadcast packets
between LANs or to the off—-LAN hosts. Since Cronus IPC already
uses internet addressing, regular (i.e. non-broadcast) messages
can already traverse multiple networks without special handling.

Cronus uses broadcasts primarily to locate objects and for
collecting status reports. Cronus broadcast packets are generated
(end received) exclusively by the Cronus kernel (operation
switch). One possible approach, therefore, is to put the
broadcast-packet forwarding function into the operation switches.
This approach limits the availability of multi—LAN broadcasts to
Cronus, and further burdens and complicates an already busy and
complex program. Another problem with using the operation switch
to forward broadcast packets lies in configuration control: all
the operation switches would have to know about all the off-net
sites, or a subset of operation switches must take care of
forwarding packets to off-net sites which were generated by other
operation switches.

A second approach is to teach gateways about forwarding
broadcast packets. Gateways already give one the correct access
to the network, and there are proposals to do just this for the
address resolution protocol (RFCs 917 and 925). The problem with
this approach i1s that current gateways are not particularly
flexible, nor do we have sufficient control over the gateway to
be able to add new destination networks to 1ts broadcast-—
forwarding tables. Also, 1n a future filled with many Cronuses
governed by different agencies which may not own the gateways

'}'f'{'f',f".‘"--' .\f'\
Ay ® n, -
TS N WL Y R S N ‘p..’.).uﬂl

~ .
o
O D WO

VO R LM O LR AN R T N
Vs &*Hﬁ\:h}' _\,_*k a

' e N
.‘._:*_.\a

2

T

S S

PRy

P -

- -

e A iy o

0

‘. (A0

u./ LN R A A VR N T R A Y U U TN YUY Y YUY Y U DY IR DY U W YR Y

involved (which in turn may be manufactured or programmed by
several different companies) administrative control over this
mechanism may present a problem.

A third approach is to build a separate program (which we
call a broadcast repeater) which listens for broadcast messages
on i1ts LAN, and forwards the packets to other LANs. Such a
program can be simple, flexible, and has epplication as a general
network utility outside its use in Cronus. For example, many
applications rely on broadcasting datagrams to distribute
information. Rather than teaching these programs about a network
composed of several LAN sub-networks, a network of broadcast
repeaters can convey the information transparently across network
boundaries.

The broadcast repeater system has two halves. a passive.
listening half, and an active, broadcasting half. The passive
half, on LAN A. listens for broadcast messages. When it receives
a broadcast message (recognized by being a message addressed to
the broadcast address of LAN A) 1t can filter it according to a
variety of fields in the packet, and forward the packet to any
active repeaters on other LANs which may be interested in this
packet. An active repeater on LAN B then replaces the
destination address with the broadcast address of LAN B
{preserving the rest of the packet and recalculating the
neccessary checksums) .

We have taken the broadcast repeater approach because of its
flexibility and simplicity.

The broadcast repeater system serves as a transparent medium
for relaying broadcast packets from cne LAN to another. and also
for forwarding broadcast packets to off-LAN hosts. To achieve
this transparency the repeater requires access to the raw network
layer, which may not be provided by many network implementations.
Only one system per network need have this capability, however.
An active repeater needs to be able to write an IP packet to the
network with the same source address as the original datagram on
the source network. The repeater must be able to specify the
host of origin of the message in order to serve as a transparent
medium.

- AN S ENAN ALANy
“a ~ ‘*~ “Sﬁ L, NJQ N N o

‘g.....l'l,..,uq'l‘ \ ‘.

:§ 3 "\‘5:&’~'~t 4-3; ""4.3\&'-3'\" DAt \f ". ;.. I O R -.‘\\:}\'\ N
.‘l...l‘.‘l ||

A%
'..'. 3 U Ka -I‘l'l.l‘.

‘e 8's &5

JN
v

FYY'YE € “g¥a - Bl D B B e - oYY N .,
XTI Y URVURUALY c VLN UL LSS UV LN UG "My Il ta b Al iy 200 Nab" 8" 4, Sl bt L2 42 aM gk i it e g g ol

ale o e -
W e

e
N
Y
1
g

A passive repeater may also forward the packet directly to a
" destination host (presumably an isolated host located off the
3 LAN) rather than to a LAN repeater. 1In this case the passive
a} repeater simply replaces the destination address with the address
' of the destination host and forwards the packet. Of course,
) since the packet is a UDP datagram, and since it is traversing
" gateways, it is not guarantieed that the packet will arrive at an
\ of f-LAN site. It is the role of higher levels of protocol to
h take the appropriate steps to insure delivery if that is desired.
@‘ This is precisely the way UDP is specified, although experience
ﬁ on LANs has shown that very few datagrams actually do get lost.
I
X Passive repeaters send packets to active repeaters through
P TCP connections. TCP provides guaranteed, sequenced delivery,
ﬂ and automatic notification of either end of the conmection going
@ down. The drawback of using TCP is that a single repeater can
) talk to a limited number of other halves: hosts limit the number
@ of TCP connections a single process can hold. Fortunately, this
¢ limit is likely to be large enough for our application, and
o should it become a problem, then the use of TCP can be dropped in
%' favor of a sequenced datagram protocol.
I
" Another potential problem with this scheme 1s "ringing':
. passive repeaters forwarding re-broadcast packets back to their
! net of origin, where they are again forwarded to other nets.
{ Ringing can be avoided simply by having the passive repeaters not
y forward broadcasts which have an origin off of their LAN. If a
) broadcast has an off-LAN origin it may be safely presumed that
, the packet got to this LAN via a repeater which forwarded 1t to
all the places the packet should go.
!
3
N
e 3.5 Basic Cronus Types
? The basic object types supported as part of the initial
o Cronus development effort and their corresponding object managers

include:
Process objects and process managers that support the
Cronus system and application processes.

2. VUser identity objects, called principals, objects which are
collections of principals, called groups, used to support

[
"
RO o N Ay ~
":\‘:-\‘".: ¥ \f.\“':’:"s"k
NN TR T gty

T I R R I R I U W ™ C WU WU U W0 WU WU WU WO VU U WL W W WO WL WL VU WU WU WU WU WL WL & W i W WU W WU N "‘;l'i

Y o T
=Y o BN

-

user authentication and access control. These objects are
managed by an authentication manager.

3. File objects and file managers that provide a distributed
filing system.

Sy 1
é3§»¢?- e
L]

5

4. Catalog and directory objects and catalog managers that
implement the Cronus symbolic name space.

‘.
R
3 5o
P o . T

5. Device objects and device managers that support the
integration of 1/0 devices into Cronus.

RN
2w
Gty SN

&
Pd

Py
k.

2.6 Access Control in Cronus fat

i

+

All client access to Cronus objects is subject to access 7

control. The goals of the access control mechanisms are: .

]

1. Prevention of uneuthorized use of Cronus and unauthorized v

access to data and services maintained and provided by e

St

Cronus. ?{“ﬂ
2. Preservation of the integrity of the system and 1ts] .

components . NN

V)

3. Support for a uniform user view of access control to Cronus ‘Q?'

resources and functions. %&;

)

4. Surviveble authentication and access control in the ¢W’

presence of a wide range of host and communication ﬂ?r‘

" A

failures. Wy

L
St
R

The basis of access control in Cronus is the ability of the -
Cronus IPC to reliably deliver the identity of the invoker of an m..

operation to the receiver of the message. The recipient of a g
request can then decide on the basis of the sending client’s PIRI

identity whether or not to perform the operation requested o< the X

particular Crcnus object. fo
° e
., For this to be a useful basis for access control there must .“‘
: be a meens for reliably associating authorizations with clients. ﬁw%
4 Mechanisms are required to establish bindings between client Ivyw
: processes and eauthorities, and for object managers to determine @_ﬁx
‘; the authecrity bindings for client processes. TNy
¥
iy NN
'-.":-."

LA
P¢~§
- 30 - G

] ®

ENGINIDIN TN AT - PR -v\-.. AT TR LN '\.-,,- =3 ._.-.. o

w’y N’ r' f‘l ',"l tf o '(:J'A.l\:- \ 'k .N‘\\‘}. ~"'\‘|F~. ' ':_ . V‘ } ‘\‘) :
N ‘ oy -c" TR

RS Ty '8 6 0 g R g A S 2 a VR N vl e Vel B VAl ta) val vad " AN N RN Y U YT Ty Y

K]
"

'ﬁ

)

2

Ultimately, most activity within Cronus 1s the result of

%& requests 1nitiated by users. Human users are represented

f{, internally to Cronus by objects of the basic type "principal”.
fﬁ The authority bindings are. therefore, a correspondence between
! client processes and principals. By extending the notion of a

X principal beyond human users to i1nclude system elements. such as
'_ object managers, all activity in the system can be thought of as
%: initiated by principals.

)

e

?b From the viewpoint of access control, the identity and

o authority of the principal (user) corresponding to a client

process requesting an operation must be checked prior to

{ﬁ performing the operaticn. Access control 1n Cronus involves two
kﬁ things:

b

& 1. Identification Authentication, determining the i1dentity of
%Y the principal requesting a particular operation.
o

;i 2. Authorization Verification, determining whether a given

& principal has been authorized to perform an operation on a
3 particular object.

D™,
. For example, when an object manager must decide whether to
@ perform an operation, it must know the 1dentity of the principal
N requesting the operation (Ildentification Authentication) and the

: rights the principal may have with respect to the operation and
Y object (Authorization Verification).

Cronus uses access control lists to support authorization
verification. In 1ts simplest conceptualization. an access
control list (ACL) is a list of principals that serves to limit
access to an object for a particular action to those principals
on the list. This simple i1dea 1s extended i1n two ways.

1. The UID for a group of principals may appear on an ACL.
This mekes it possible to authorize a group of principals
rather than authorizing each individually. (Like principal,
group is a basic Cronus type.)

2. A set of rights i1s associated with each UID on an ACL.
There 1s a right associated with each possible operation.
Each right in the set represents authorization to perform
one or more particular operations. This makes 1t possible
for an ACL to selectively control access to an object on a
per-operation basi1s, and for the rights to be customized

~ -

B T R T S G L L S S
S "'-_:f:\'.:.-"é\si’:\"t::\ “’N
IS SRS
R G AR R T)

. - %

-
e

. [) 8 e el

e
-~
2 g

L

o ‘t'r':'ix'-r

" WM

| 45 aF ae g

R A

&‘H‘r'.

L

vl e

XA

;

for each type.

When a user (U) attempts to start a Cronus session, a
process (Pl) 1s allocated. The authority-binding for Pl cannot be
established unti1l the user demonstrates by the Login operation
that he is U. The Log:in operation 1nvolves an authentication
dialogue between the user and Cronus through which the user
supplies a name and password that is checked against information
stored with the principal object 1n the user registry. If the
name and password are valid, the set of groups to which the user
belongs 1s computed from a list of group UIDs maintained with U's
principal record. Since groups can contain groups, this is a
transitive closure computation. The user’'s principal UID 1is
combined with the result of the computation to form a set called
the access group set (AGS). The AGS 1s then bound to the
authenticating process through i1ts process manager. Processes
subsequently created by an authenticated process 1nherit the AGS
of the creating process.

In order to perform an access control check for an operation
cn an object. the manager for the object needs to determine the
AGS binding of the client process. The identity of the client
process 1s known to the manager because its UID is delivercd by
the Cronus Operation Switch along with the message that requests
the operation. The AGS binding of the client can be obtained by
1invoking the BindingOf operation on the client process. After
obtaining the AGS of the client process, the manager can perform
the access control check by comparing the AGS with entries on the
ACL.

When new objects are created, they are given an access
control list which may be initialized under client control
There are generic operations which apply uniformly to all objects
for further manipulating access control lists.

3.7 File System
Cronus supports a variety of different file types. Object
managers for three types of files are part of the basic Cronus

system design.

o} Primal files.

Ly

TN TR N TS BT S T T N W TR
- - NP
\ > > ¢ w_e‘.$¢x¢5
a N N A

\a‘k;f*f\¢

TR N
P T e

e

.:’-: A:J "." Syl
CA p
‘. PR

Ly
Ly ais

Pt
”
o

S
le <

LA

L5 %%
AN

RRAU CATYANRR ATURRU RO U R U TAZ U R LR RO R W O Y R W WO R RO RO TR R T U T W TV Ky T N P Y I Ny W v wu T vy

B>
"a N

®

1

0

%

%

o

b

A primal file 1s stored entirely within a single host and

;S 1t 1s bound to the host that stores 1t. Primal files

%ﬁ provide mechanisms for supporting atomic updates and S
ig' rollback to a prior consistent state. Other Cronus

dg managers are a major user of primal files.

%

:. o Fast files

R | | | | . |
il Fast files are primal files without provision for atomic
i update, rollback or other internal consistency measures.
W As a consequence their performance is significantly better
ol than regular primal files. Fast files have been used

extensively when integrating existing software tools to the

) distributed file system environment.
o
? o Reliable files

N

n Reliable files are implemented by one or more primal

. files. Each primal file used to implement a reliable file
e contains all of the file data. The reliability of these
vk files derive from the fact that the file is accessible as
3 long as at least one of the primal files that implement 1t
‘:‘ 18.

) A reliable file can be moved from host to host. When a
g reliable file 1s moved, the primal file or files which

) implement i1t change.
»
) 5
X Other types of files can be supported by developing
appropriate object managers and using an approprilate data storage

: medium. For example, a type of ""dispersed” file which had 1ts

. contents distributed over several hosts could be implemented by
?3 several primal files each of which would be used to contain part
N of the contents of the file. Alternatively, Cronus can be used
.o as a uniform and convenient remote access path to existing
.\ constituent operating system file systems and files. This 1s
'~ another aspect of the evolutionary nature of the Cronus system
%{ architecture.
: o
K~
®

T,

[4

L J
""."": e

AN A
|
w
w
|

@
M
., T AT et
K 2oy) T N e,
Ly . Lo LA
B S0 VATl

W ~
¢ N
.,l,. Y] bﬂ’f’.‘f:!\,q“ q" ‘.‘ ovay .A. " =

o

'

+
P

U~

.

ot o R

Pl
280

.

.,

s,

3.7.1 Primal Files

The primal file system 1s partitioned among hosts that store
primel files. Like other Cronus objects, primal files are
accessible to processes by means of the Cronus kernel. There 1is

a Primel File Manager process on each host that supports primal
files.

A primal file 1s bound to the host that stores it. The host
field of the UID for a primal file always specifies the host that
stores the file. Hence the UID for a primal file always contains
a valid "hint"” 1denti1fying the host that stores it.

Primal files cannot be moved from one host to another. A
copy of a primal file stored on one host can, of course, be
created on another host, and the original can be deleted.
However, the copy 1s a different primal file with a different UID
which happens to have the same data as the original.

Most of the operations provided by conventional operating

systems (create, read, write, etc.) are supported for primal
files.

Cronus provides conventional access to files bracketed by
open and close operations, and 1t also supports a type of access
to files, called "free” access, for which bracketing open and
close operations are unnecessary . “Open” and '"close” operations
are supported for situations thet require reader-writer
svynchronization and to permit optimization of file i1/0 iIn
sitatulons where repeated read or write operations are performed.
Supporting open/close requires that the File Manager maintain
state 1nformation for open files and be prepared to deal with the
problem of files that are opened and are never explicitly closed

(e g.. because the «c¢l:. .t's host has crashed). Furthermore open
and close represent significant overhead when only small amounts
of data are to be written or read. Supporting two modes of

access (open/close access and free access) enables a client to
choose the mode appropriate for the situation.

Free reads and writes are synchronized in the sense that

multiple reads and writes are serializable. This means that the
File Manager 1n effect, performs each read or write operation 1n
1ts entirety before performing another operation. A client

)
W N

R W N Yy

Nt
v B

L\ o

2 Ag

L]
B
et |

P s

Ok BN T
g 1}
o &" [,-.;‘\','

-3
-~

:r',“r
.l.

Pl

Sy
L
[B4

5

@y

P4

WUV UW VW UN AFOVIRAOATY, . RO A AT A WU R NIV W S WURD WL UL YOO

process may read or write data 1n a primal file (subject to
access control considerations) without opening 1t, unless
another process has opened the file 1n such a way that free
reads and writes are forbidden.

When & file 1s opened, two parameters specify the access
state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired. There are two types of synchronization supported:
“frozen" which permits either N readers or a single writer; and
“thawed” which permits any number of simultaneous writers and
readers. When a file is opened with "“"thawed” access, readers of
the file see updates made by writers of the file. Opening a file
with “thawed” access prevents other processes from opening 1t
“frozen'".

A file may be opened so long as the access state requested
does not conflict with the current access state of the file. The
access states defined for a file are:

idle;

frozen read open,

frozen readwrite open.
thawed open;

(free) read 1n progress:
(free) write in progress.

Table 1 defines the compatibility of the access states with
client open, read and write operations. An OK for an (OPERATION,
ACCESS STATE) entry 1n the table means that a client process can
perform the operation on a file when the file 1s 1n the
corresponding access state; a NO entry means that the operation
will tfail when the file is in the corresponding state; a DELAY
operation means that the operation will be delayed until the
operation 1n progress {and any others that may be queued) are
completed.

In order to support file system recovery, data that is
written to a file that has been opened for (ReadWrite, Frozen)
access does not become part of the permanent file data until the
file is closed. It 1s possible to close a file opened for

a
-

U >3

—~aQ

O
"l\'l“

‘l';.-'-,-‘.n
_rs x°
ll(.-‘t RS
.(‘\'

K

. —

.

e E;\'
‘.'_) .. -

Py T
%
o

ﬂ,
o
-

2.

l‘.
X
,‘

>

R]
et

?7% A
‘."-'4‘! LRI

ey
.
5

L &
LN

" o
v Oy

il

I) I-'l'. ' .' -

r¥Yy
e
]

LSRN, @ ¢

-

~ S 3
}l A\"\. S oy

Py
v
»

L
DA

[R
..

L3O
LSS

)
LR

e.%

-

AN

DNy

\n 'l' -

<

ACCESS STATE o

~
o

7o

-
e

=<

1dle frozen frozen thawed read 1n
write 1In :
read readwrite progress -
progress -
OPERATION -
frozen :ﬁ,
read OK OK NO NO OK TN,
DELAY :‘ :
open f"'
!
frozen DA
readwrite OK NO NO NO DELAY }:..'
DELAY ol
open §;:.
25
()
thawed 0K NO NO 0K DELAY f'f’
DELAY :ﬁ
open Iu»}
Lo
free OK 0K NO 0K OK
DELAY
read
free OK NO NO OK DELAY
DELAY
write

Access State Compatibility
Table 1
(ReadWrite, Frozen) access in a way that aborts writes made to
the file while 1t was open.

‘;é:i\t-:!v'n‘t‘!--~'~n°l‘l'i*l"‘!'!fi"""‘t' 0'2,0°2 0% 8° 0 4 050 0" R TR0 S A R O Rt B Gt Gt R 08 b 6 00 B0 00 a Bad. U ha? 8.0 4% gat gy -'-.::;.:‘.
":'t .:.‘
i el
A o
]
A e
o ")
& 0N
-'l S0y
B LY.
When a process 1s destroyed with files open. the files are
L closed and eny writes to (ReadWrite, Frozen) open files are v v
$ aborted. The normal close operation may onily be 1nvoked by the Wy f
f process that opened the file. An alternate close operation can ::q%
:' be used by other processes to close a file during cleanup. ﬁh
v !
ﬂ The Primal File Manager does not acknowledge write requests _ X\)
a until the data has been written to non-volatile ;torage. A Aty
M client process can be sure that the data has bee. written when Rﬁ?
$‘ the acknowledgement is received. even :1f the Prii1al Fi1le Manager f’ ;
L or 1ts host should crash shortly afterwerd A
fh Primal Fi1le write operations are atomic with respect to host)i:ft
ol crashes. That i1s, i1f the Primal File Manager host should crash éﬁ}
>, during a write operation. after the host and Primal File Manager LN
2& have been restarted and the Primal File Manager has performed its kb
Q recovery procedures, the write operation will have either]
s occurred 1n its entirety or no part of 1t will have occurred. [f -b{:
s the crash occurs after the data has been safely written but }iu
[before the acknowledgement has been sent, the acknowledgement ﬂ}ﬁj
o will never be generated. yvi:
K\ f?lfu
@
A As with other object types, access to a primal file is iﬁﬁt
*H controlled by its access control list (ACL). Access to a primal Qﬁﬁr
t‘ file may be granted to other wusers by adding entries to the ACL. $$}
o~ Similarly, access to a file may be revoked from a user by e
- removing the corresponding entry from the ACL. -ﬁm;
", AT
% e
b D
c'-’,:' ;':.:::-
o .;._'_
S 3.7.2 Reliable Files NN
° ... 2
The principal motivation within Cronus for maintaining &{}
multiple copies of a Cronus object derives from reliability f}{
considerations. The objective is to increase the probability “whrz
that the object wi!l be available for access at any given time by 'i}jt
keeping copies (in Cronus we shall call them images) of the et
object at a number of hosts. Although any given host that stores - e g
the object may fail, so long as at least one of the hosts ﬁ{tf
maintaining an image is accessible, the object will be. Iﬁxﬁ‘
A
'h-'.H-’-
e
",::_1\
LA
:"\-r
- 37 - :;x"

R S R :&g\‘“ SRR *gut'-“y % .~‘§> o ‘:: e
e : e o W\ o~ w e, > TN
‘ \ -W“ “&Ml N -&:&ﬁ‘aﬁl “ DY SR NS . ~

1‘1.1!;.1.

L]
»
»

5%,

hY

PR @ LE@ N

Secondary benefits include performance improvements that may
result from distributing the object access load among the hosts
that store it, and from the possibility that client access to an
image maintained on its own host will be more responsive than
access to an image on a remote host.

Increased object aveilability does not come for free. The
cost is increased complexity in managing the object. Most of the
complexity is a consequence of the fact that the system works to
ensure the mutual consistency of the images; when one image
changes, all others should be updated to reflect the change.

Reliable files are an example of a replicated Cronus object.
In Cronus, different approaches to handling the coordination and
consistency of replicated objects are possible for each different
object type. These details for different forms of replication
are handled within the managers for the object type in question.
In this section we discuss the design considerstions for reliable
file objects.

Concurrency control requires that sites managing images of a
file cooperate to synchronize client access to the file. In
addition, since strong concurrency control mechanisms require the
participation of more than one site, situations may arise where
an insufficient number of file image sites are accessible to
perform the concurency control. Unless the system is willing to
permit unsynchronized access to an accessible file image 1n such
situations, some of the reliability benefits of multi—image files
will be lost. The danger of unsynchronized access is, of course,
that accessors may cause different images of a file to become
inconsistent .

The approach to concurrency control for reliable files is
based on the presumption that file availability is important
enough that 1t is permissible to risk the consistency of file
images and to grant access to file data when synchronization
cannot be achieved. That is, when a choice must be made, file
availability or survivability is considered more important than
mutual consistency of file images. The reliable file manager will
try to achieve strong synchronization prior to file access in
order to maintain the consistency of the file images. However,
should the synchronization fail because thec file sites required
to achieve 1t are inaccessible, the client will be informed and
access to the file will be permitted only if the client gives

- ’(*\f

R R WU N R WU U WU WU NIRRT TUR AP TR AR AR AR S X RN "N N AN TR T AN TN X A

explici1t consent to continue.

This approach to concurrency control will be practical only

1f:
1. File access patterns are such that 1t 1s relatively
unusual for multiple concurrent updates to occur.
2. Hosts are reasonably reliable so that host failures that
prevent strong synchonization are relatively rare.
3. There 1s a simple and inexpensive way to detect

inconsistent i1mages of a file. We believe that the
Version Vector mechanism developed at UCLA [Parker1983] s
a good one for this purpose

A Cronus Reliable File (RF) 1s a collection of one or more
primal files, each of which represents an 1mage of the reliable
file. No two images of a reliable file are stored at the same
site.

The number of images of a reliable file may change over the
lifetime of the file, as may the sites which maintain the
individual imeges. The desired number of images 1s called the
cardinality of the file. The actual number of file images may be
different than the file cardinality. For example. when a file 1s
first created its cardinality will be greater than the number of
images until all of the i1mages are created. Similarly. 1f the
cardinality of a file is changed. it takes finite amount time for
the number of images to be adjusted. Thus. the cardinality 1s
properly thought of as an objective.

o
X "y
.4‘{. .

Each Reliable File Managers (RFMs) maintains a UID table for ox;
the reliable files that it manages. Unlike simpler objects, such . N
as primal files, the management of reliable files requires tihe E&h
cooperation of RFMs. Each RFM participates in the management of *\it.
a collection of reliable files (the ones in 1ts UID table), but {;ﬂf

not all RFMs participate in the management of all reliable files.

=2

When a client invokes an operation on a file, the underlying
interprocess communication facilitv routes the operation to an
RFM capeble of performing 1t. Any interactions among RFMs that
are required to perform the operation are transparent to the

A AR

"u"" o "3"\'4-_ a"'.)‘ IS

o ‘a a”}.a_ NS
xoy .-._),'\.xs N ‘p- oy
33'5{‘;‘. s s S A%.

$~ ., a

YU ‘K [N'KHE ® - ‘Rt a 'y g0 8 R0 0 §.9 B o6 pat Sut §.0 Pat o Pav Sa% Buc G Jat Bat BeVoln i v 80 B2 00 08t 00 R 00" et Nat 0a° 0 PR" v‘-..'-..

client process.

3

h (4
: Access to the primal files that comprise a reliable files 1s "..
) limited to RFMs. No other process may directly access a primal quw
? file used to implement a reliable file, even 1f the process has Quﬁ?

the UID for the primal file; this is enforced by the Cronus

; access control mechanism. RFMs reside only on sites that also Ay
: have primal files managers (PFMs). The menager’'s image of the %&ﬁg

file is stored at the manager's site.

x

LA

Y
OORK
In order to maintain the consistency of images of reliable
files and the integrity of internal file data (for primal as well i}\ﬁ
1\ as reliable files), the manner in which clients access the files Qﬁaj
' must be controlled and synchronized. " '
! Wl
PR VI Vol
¢ The reliable file approach to synchronization can be o
4 characterized as a best effort approach consisting of the FS}‘:
,: foilowing steps: ! v{
: %y
. 1. try to synchronize access; byt “\i
¥ D
2. if synchronization cannot be achieved permit access if the —
. client so desires; §~J$
K 3. be prepared to detect and deal with inconsistencies that . J|#
: may result from unsynchronized access later. ﬁxft
b
: A specific concurrency control mechanism must be chosen. fﬁuj
w Although much has be written about concurrency control and %:{:i
3 synchronization for multiple copy files and data bases, there is &Qﬁ}
4 little practical experience on which to base a choice. We have ??\$A
! decided to use a simple mechanism at least initially. Should the P
e mechanism prove to be inadequate (for exemple, because it cannot . Aq,
; achieve synchronization often enough, given the failure patterns ﬁ}fg
: observed in Cronus), it can be replaced with a more capable (and };xj
v, complex) one. N
. _‘:::.-(
ST
’ Synchronization will be accomplished by means of a - :
N primary/secondary image approach. Each reliable file will have , R%;
-, one primary image and one or more secondary images. All attempts : %ﬁ
' to synchronize access to a reliable file will require ¢6\h
X synchronization with the primary image. We refer to the manager . 4\”
. of the primary image as the primary manager for the file; h\ °
2, LS
: N
) ﬁ:J:
': &fl'
- 40 - NEOS:
'L N
g o
D
'y
",

W W WY L C e ~ 0 \’
e '.ﬁ.f.:.. : 35_3& '\. ‘g*-“* { N ?.N SRR e f«- E‘ R TR
.':'I,o l.!'t.t W ,\"el..\l"::‘l P R A S ..' o N ' ~ - .‘ N&? : ’ 3 {bﬁ'f‘-*'\-(‘, Y

R N A O T A AR R O KR Y KX N PRI LW UV UV U UV LY 208,208 VLA abAt N UV i e P A Gal Al Sa iad b ARl gy 0 R e
aigt.
)

N
el
) .‘.]
"':s'o'.'lf
'lﬁ':'o‘
MUK
managers of other i1mages are called secondary managers. "'V‘ >
N
ey
When a client attempts to access file data 1n a way that 0:::':|:i:!:~
requires synchronization, an attempt will be made to synchronize '.::nt‘;o:‘:c
with the primary image of the file. If the client's access itk L
attempt is initiated with the manager for the primary image, xR}
synchronization occurs as for primal files. If the access "‘ #O:'.sf
attempt is initiated with the menager for a secondary image of f"%f"'
the file, the secondary manager interacts with the primary :,.":"::
manager to gain the appropriate kind of access (non-exclusive Nty ‘
read, exclusive write). '
Qg
RFMs use a locking discipline to support synchronization. ﬁ,‘ -
This discipline works roughly as follows. When an attempt to N
open a file for reading 1s handled by a secondary manager, the < VY
manager tries to set its lock for the file to "reserved for e
reading”. The attempt to set the lock fails if the file 1s ".
already locked for writing. Next, the menager interacts with the -'_'“~_-
primary manager to try to set the primary manager’'s lock for the :ijii
file. If this succeeds. the secondary manager sets its lock to YRS
"locked for reading’” and proceeds with the open. 1If the primary :__"fy‘
has the file locked for writing, the secondary manager clears 1ts VIASRE
lock and reports to the client that the file is busy. When the L. 2
file is closed, both the local lock and the primary manager’s tﬁ: ;i
lock for the file are cleared. Attempts to open a file for ':\r
writing are handled in an analogous fashion. :'.h'.:'_.;:ﬁ
o
If synchronization for any operation fails because the ! ’
primary manager cannot be reached, the operation may proceed, but . :':\
only with the explicit consent of the client, and, of course. at vk

some risk. The risk is that different images of the file may be
undergoing unsynchronized access, and, as a result, the file
images. may diverge into inconsistent states.

A client may specify 1ts intent with regard to _"_: ¥
unsynchronized access when it initiates a file operation by means PE ey
of an optional operation parameter. Alternatively, the client .:-_':.::f._,.
may choose not to specify the action to be taken when it invokes e "‘\".
the operation, in which case, if synchronization cannot be !s_f S
achieved, the manager will ask whether it should proceed with or '_\\.'; W
abort the operation. ,.\{: \

RN
AN
e W tiy¢
\.::’-.:,\:.\
b o
e F.".n
-‘h’-..“u" -v"
Q‘.\"‘“ﬁ":\ ¢
S
-— - W
4 A
> ®
TR
"t APy T R R R N e P S S TR S Tt Lt g S R U L U L T) T S S ey
e L SN s T S
T e e N e e
al RO 0 S WS VS N S i P N, ,&.aha:‘.\?i‘ SRR RS

PP

"W

Pt [Y

"'.'c a8

R

Inconsistent images of a file can be detected by means of a
version vector mechanism developed at UCLA. A version vector
for a reliable file, RF, is a set of N ordered pairs, where N is
the number of sites at which RF is stored. A particular pair
(Si, Vi) counts the number of times updates to RF were initiated
at Si. Thus, each time an update to RF originates at Si, Vi is
incremented by one. The version vector is part of the object
descriptor for RF.

Two images of a reliable file are said to be consistent if
the modification history of one is the same as or is an initial
subsequence of that of the other. It can be shown that two
1mages are consistent if one of the vectors is at least as large
as the other in every (Si, Vi) pair. The larger vector is said
to dominate the smaller, and the image corresponding to it
represents a .later, consistent version of the image corresponding
to the smaller vector. 1If two vectors are such that neither
dominates the other (that is, some pairs in one are larger than
some pairs in the other and vice versa), then the corresponding
file images are inconsistent with one another.

RFM's must interact with one another in order to maintain
reliable files. For example, when a reliable file is updated,
the new file data must be transmitted to each site that has an
image of the file.

Occassionally a RFM that must participate in such an
interaction will be inaccessible. It is important that when, if
ever, such a RFM becomes accessible the interaction occur. It is
the responsibility of the i1nititiating RFM to ensure that the
interaction occurs.

The operations supported for primal files are also supported
for reliable files. Three additional operations are supported
for reliable files. The Change_Cardinality operation changes the
cardinality of a reliable file. The File_Sites operation
produces a list of the sites that are thought to be maintaining
images of the file, with the primary file site distinguished.

The Move_Image_To_Site operation moves a file image from one site
to another (removing the image ai the source site).

— 42 -

| . P] nﬂ " "~ \
I B o

.0 TSttt u % .'00. n'f‘ﬂ‘ W, .'. il ’!'n'. Wi l’.'n'.":’.‘a'-‘a’- LR 'n'.':'"".'l‘:'t'.‘o

h ‘p

Tt

3

e e

AL S R Ry - W AT AT T A A e L ZAINL N e PhS
N ¢ ‘\\.'\th\, _}._,\': \F.-'"'\ .'.-.“.‘._ KRR ,,‘»;‘J&._.II({J

Tu create o reliable fiic, the client ianvouiie- the Create
opc.ation specifying the cardinality of the file as a parameter
The RFM that receives the Creaie operation becomes the primary
manager for the file.

When a reliable file is first written and whenever the file

cardinality is increased, the RFM selects sites to store 1mages =
of the file. The acquisition of new sites involves three steps. i
L
P
1. The seiection of the new sites. ro
o~
A

2. Obtaining commitments from the RFMs at the selected sites

to store images of the file.

5
"]
=5

%’

3. Updating file descriptors at each of the file sites to
reflect the new sites.

ihe RFM at which write operations are performed is ‘?qw
responsible for distributing updates to the other file images. '$N¢
It does this by interacting with the other RFMs sites in the 'ﬁﬁx
following way: " b*
e

1. It increments its (Site, Version) element of the file)
version vector. ﬂmgg
W
2. It attzmpts to interact with each other RFM that manages ;k&ﬁ%
an image of the file. l'\.&:
X g

3. Should i1t fail to complete the image update with any RFM,
it adds a record to a PendingActions data base for
completion at a later time, specifying the file and the
RFMs it was unable to update.

uf
:)]‘
x
aly

¥

A_"
*
-

a ¥

s

Bl
Version vectors are used to detect inconsistent images of ™Y
reliable files. In the current design, both the descriptor for a EE@C'
file and the file itself are protected by version vectors. }(?“'
S
e \

a ¥
x

Version vectors are compared in two situations:

3y

i 3

T L
I.A

19 ""’

1. When an image of a file is updated. The RFM initiating
the image update supplies its version vectors, and the
responding RFM compares them with its own.

cu

LA,

2. When an attempt is made to lock a file for read or write

1

2 2 Be B U BN
Ll
;1:,. ‘

’
A

-

Pl
o> T
«"-

-~
S

- 43 -

.l
e N
.‘NI‘I"‘J’

;ﬂ

2

B AT AT AT AT AP AT AT RS WAR
,w,vfxfa',*&Jrfjf-,u’\’\fa AT
i) .(%-. s,.l.,x,s..'._.s.,ﬁ':,s. o
n }'ﬂ b o M N N R T R N W

Ed

S

N‘. e .I“\’\ \'."»' LI
o . O ISR
v MY '-’\)\-.- "‘.' AL x JrR

‘)‘;ﬁ. LN ’.\"":f:&
Sy "".‘_‘J"[r)

S Al
3,
A A

T T T O T PR WA R RV R) B UaR Bl Sl $0 00 “rp cal var.-aige-ava 20 00 0 8 el) B 90V Bat 0s- de”

. - o o
-

L w e e -
£ e e e e
DO I)

5
ol

access. Ihe secundary RFM attempting to iock the file

KR supplies the primary RFM with its version vectors and the

% primary RFM does the comparison. See the Cronus System

" Subsystem Specification [BBN Report No. 5884] for more

ﬁ details on reliable files and the use of version vectors.

H

v,

a": ;

)

tf‘ 3.8 The Cronus Catalog

54

K

0 Cronus supports two system—-wide name spaces for referencing
objects.

K\

!:

*‘ At a relatively low level there is the name space of object

;ﬂ UIDs supported by the Cronus kernel and object managers. Every

ﬁ Cronus object has a UID. Each object manager maintains a record

() of UlDs for objects i1t manages in a UID Table. When a manager

e creates an object it creates an entry for the new object in its

" UID Table. Each manager’'s UID Table defines a part of the UID

i’y name space. The entire Cronus UID name space is defined by the

b union of the UID tables of all the object managers. Thus, there

) is no single identifieble catalog of UIDs supporting the UID name
space. Rather, the Cronus UlD name space is implemented in a

0 distributed fashion with each object manager responsible for

e implementing part of it.

o

¢I

w At & higher level there is a symbolic name space for Cronus

objects. The implementation of the symbolic name space is

T supported by the Cronus Catalog. The principal function of the
‘: Cronus Catalog is to provide a mapping between the symbolic names
. that people use to refer to objects and the UIDs that are

i required to actually access the objects.

N
.“

o Access to objects is supported by means of the invocation
,:~ mechanism of the Cronus kernel. Typically access to an object
oy will be initiated in one of two ways:
o~

- 1. Directly through the UID name space.

The accessing client process has the UID of the desired
object and invokes an operation upon it. The Cronus kernel
delivers the requested operation along with the UID and
any other parameters to the appropriate object manager.

The object menager consults its fragment of the UID Table

- '7': : ’;' : .:;:){-:_n:_l.;: '-..': v._: ,:...: SN ST e e e ST e S S A S
e e e e g o e N e LN e A
/ "* l"* s A - - N, . . --.,\.P - '.-_\ n
5 3 y e A
» » A ~ .0 _Ya¥ P+

to access the object as .uecessary to perform the regucesicd
operat:ion.

2. Through the symbolic name space.

The accessing process has a symbolic name for the object.
In this case, access ‘= accomplished first by consulting
the Cronus Catalog to find the UID for the object named.
This involves a name lookup operaticn using the catalog.

If successful, the lookup finds the catalog entry
corresponding to the name which contains the U.b for the
object. With the UID for the object, access to the oojcct
can proceed as described 1n (1) above.

In either case, access control is nerformed by the object
manager responsible for the object.

An object may have zero, one. or more symbolic names. When
an object is given a symbolic name, an entry for the name is made
in the Cronus Catalog, and when the name for an object is
removed, its entry is removed from the Cronus Catalog. The
Cronus Catalog is a Cronus object which is managed by the Cronus
Catalog Manager.

Symbolic names are location independent in the sense that a
name for an object is independent of its host location within
Cronus and that a name that refers to an object may be used
regardless of the location within Cronus from which it 1s used.
In addition, symbolic names are uniform i1n that common syntactic
conventions apply to names for different types of objects
(including file, groups, etc.).

The symbolic name space is structured hierarchically as &
tree, much like the UNIX and Muitics file name hierarchies.
However, in Cronus any object may be given a symbolic name. The
tree contains nodes and directed labeled arcs. Each node has
exactly one arc pointing to it, end can be reached by traversing
exactly one path of arcs from the root node. Nodes in the tree
represent Cronus objects which have symbolic names, and non-
terminal nodes correspond to directories which are objects
implemented by the Catalog Manager.

- 45 -

Tt "Wt o T o i PR - Yt W W e - ‘P "
A NN R TR N RSO S R S R
N N s N N N N A T

. B AR R AR S R S CH D P CNANAT IR .

A .:'.'»" ORI SRS TR SN ST -s:_ h ','-'-,. A "n'\:,x’-. SR AN, LR RO

LN
--.N %)
SN
*x&&

N

Qe
.ilx't ¥

. e o e 4 me
o N -
U PR tig Nag Sy

@
a
-
W

®
-'c"
")
>
e
[

®

The ccocmplete nem: of a node, and a symbelic name for the
corresponding object, is the name formed by concatenating the
labels on the arcs traversed on the path from the root node to
the node in question. The syntax for a complete name is:

b x oty
where “x” and "y" are arc labels, the "{","}" brackets indicate
optional presence, the ":“ is a punctuation mark to separate name

components, and "*"” 1is the Kleene star.

It is also possible to name nodes relative to a directory.
Such a relative or partial name is formed by concatenating the
labels on the arcs traversed on the path from the directory in
question to the node. The syntax for a partial name is:

i x - try

The Cronus catalog also supports "links”. The catalog entry
for a link identifies another point in the symbolic name sprace
called the link target. The catalog entry holds a complete
Cronus symbolic name for the link target. Links are catalog =d
as terminal nodes in the name hierarchy tree.

In addition to the generic operations, the Catalog Manager
supports Enter, Lookup, and Remove_entry operations. The Enter
operation establishes a symbolic name for a Cronus object.
Lookup interprets symbolic names. The Lookup operation is
performed by using the Cronus Catalog in a straightforward
manner . [t begins with a designated directory (the root for a
complete name or an implicitly or explicitly specified directory
for a relative or partial name. Directories are used to evaluate
the components of a name until either the last component of the
name 1s consumed and its catalog entry is found in which case
the lookup succeeds, on a name component cannot be found in a
directory in which case the lookup fails. The catalog entry
corresponding to a symbolic name includes the UID of the object
named .

For some types of objects it is useful to be able to think
of a collection of the objects as a sequence of "versions'" or
“revisions” of the same logical object. The Cronus Catalog
supports versions for certain object types. For types for which
versioning is supported, the Enter operation permits the same

~ 46 -

FOFAENEA TN RV A

AN e S ALt PP A O T S
I A A AT A " . [l N g S RN Ay
AN AN AN z'_f._f:\“\r,..:_.:_'r._;‘&:\{._4‘,,_::.)" :_ﬁ%.,;
gy 2 2 ol L L i Lt L, e N T n e L e e, T AT s oA

‘
L
)
K
lI
P
N
4
¥
R
g
[
£
4
Hy
K 2
»
)
{
\
[
P L
LSRN
WL
N/ e
Ll = N

AR A LY NI T NOUOYOR T r SR A 2 90 0780 1t ‘8.5 8ol Ba¥ B2 Fab B2 ¥avlin ol oia” ol in’ ¥l O ' atd

Name to be entered into a given directory more than once. The
first time a Name 1s entered the result 1s version I of the
object. Subsequent entries of the same Name result 1n
successively higher versions of the object. All of the catalog
operations which take a name parameter allow the specification of
a version number extension to the name, with aprropriate
defaulting i1n their absence.

3.8.1 Implementation of the Cronus Symbolic Catalog
The Cronus Catalog is 1mplemented i1n a distributed fashion
by a collection of Catalog Managers on several Cronus hosts The
following are some design considcrations for the Cronus catalog
1. The catalog shouldn't be stored at ONLY ONE site.

Reliability consideration.

This implies that the information in the catalog should be
distributed and possiviy repiicated in some fashion.

2. The entire catalog shouldn't be stored at ANY SINGLE site.
Scalability consideration.

This implies that the catalog should be dispersed among
several sites 1n some fashion.

3. It should elways be possible to access an object when the
site that stores the object 1s accessible.

Reliability consideration.

This implies that the catalog entry for an object (or a
copy of 1t) should be stored at the same site as the
object. In addition, there should be sufficient
information at that site to enable 1t to selectively
control access to the object.

The UID Table exhibits this property. The Cronus symbolic
catalog should also.

4. There is little utility in maintaining a catalog entry for
an object in a more reliable fashion than the object
itself.
— 47 -

ARSI T T e U DN I R e e T SN M R LT PN _ by . e
ARG, S G -; AN i" oSOy \l:* e \.- o S .xk PN S-;.x \.\3:3__ b :& 7
A A S A "\ ‘ﬂ" YOl - S T ‘- ~ \"N\ vah \}"' "S" N
VG YR LT, S, . . ‘n..\ '-.-

LS

LR

,’""’l’-
»
Sy

P T

[PETY o B,

'.l

@ s

-

Common sense consideration.

This suggests that there is little utility 1n replicating
catalog entries for objects beyond that required by (3).

A directory is a collection of catalog entries. Directories
are implemented by Cronus files. Directories are Cronus objects
with symbolic names. The UID 1n the catalog entry for a
directory 1s the UID of the directory.

Cronus files are stored in their entirety within a single
host. Therefore, a directory 1s stored 1n 1its entirety within a
single host. This means that the smallest unit of dispersal for
the catalog 1s the directory.

The LookUp operation involves following branches
corresponding to components of a Cronus symbolic name through a
number of different directories. The location of the root
directory, the start point for the lookup, is known to the Cronus
Catalog software. With no further restrictions on the dispersal
of the catalog the name lookup could require following branches
(entry names) through a number of different directory sites.

It 1s desirable to place further restrictions on the
dispersal of the catalog in order to limit the number of sites
that must be 1nvolved in a lookup operation. A useful
restriction is to

Require that the catalog structure for entire subtrees
below a certain cut (the "dispersal cut”) through the
catalog tree be stored within a single site. We call a
subtree that 1s rooted at the dispersal cut a "dispersal
subtree"”.

Require that the catalog structure above the dispersal cut
be stored within a single site. We call the structure
above the dispersal cut the 'root portion” of the
hierarchy.

The first restriction ensures that lookup operations within
a subtree that is below the dispersal cut can be confined to the
site that stores the catalog portion corresponding to the
subtree, and the second ensures that determining the site that

N s

g
t

BRSO
nl'vi'; .
0 A, 1.‘. n,‘

o

o
Pl

"
.

2oy
e

7,

R

4R ¥ SN o
3

o

a" b atataVa" Wat laV ol e ta Wav 9 ac Rt be dav 02" Gas ¥at hadigatieg e ia? dat @t gat 03%. 82" ata" 0a% Bev . fav T —— . "'\.'\ ;

stores the catelog portion for any given dispersal subtree can be '
confined to the site that stores the root portion of the fﬂ W
hierarchy.

t (M
}
“V’ oy
San
The 1mpact of these two restrictions 1s that lookup Oy 0!
operations require at most two catalog sites. o
SN
-’-_‘.b,;
‘-!- .’l"- "
We now observe that it 1s useful to replicate the root n?:c}
portion of the citalog hrerarchy. Furthermore, a good way to EFTLHJ
replicate 1t 1s to maintain it at each site that maintains a KRV,
dispersal subtree. The reasons {or doing this are.
1. To distribute among several sites the load resulting from

lookup operations.

2. To allow some lookup operations to be confined to a single
site.
3. To i1ncrease the availability of the root portion of the

hierarchy.

For this to be a practical dispersal, 1t must be possible to) o
maintain the various copies of the root portion of the hierarchy *7,£$'
in a mutually consistent fashion. A mechanism for maintaining $\ *:
this consistency is described in the Cronus System/Subsystem 85
Speci1fication. It 1s based on the observation that in many ?ﬁf‘ﬁ,
multi-user systems the root portion of the hierarchy changes only :dbﬂf
very slowly over time. and in quite limited ways. This is) vt“:
typically so because only a few users are suthorized to make :ﬁqpﬁhv
changes to the root portion. and because changes generally occur 3ﬁg:*"
as the result of the addition or deletion of a user or project. ﬁ}hﬁl
This means that the mechanism need not be powerful enough to hﬁg\r‘
handle the most general form of the multiple copy update problem. QJ\SX

) ®

For considerations 3 and 4, the objective is to ensure that ?ﬁh:N.
an object 1s accessible symbolically whenever the site that ;}P? N
stores the object 1s. i.}¢~.

w0
) o
The primary symbolic access path to a file 1is: Q%ﬁ:f:
Symbolic neme --> Cronus --> UID —-> UID --> object fﬂ;zf:
Catalog Table RS
) ®
AR,
A
ROSARS
ity
- 49 - ! ‘_:E
(% -.:'i"..‘\'
) o
e e i i T T :'-:7%\«?}::&3:5:-’-:?21;?'%\'
N e ey Y e Y e 2 5}5&5}’:-2:-’552%36:-5:«1 N I LA A R AT

vy NSIRANII IEFSARUARO AN YRV A YRR PR FE R SRS FARE I WU Wy O W W IO IO N X O O WA A A NG A AN XN
!' N
i ﬁ
|4 et
O ®.
a. "'. .
B e
¢ -
) ‘.
N el
i A
The problem to be addessed 1s how to handle the situation
Q when the Cronus symbolic catalog 1s 1naccessible. ‘:f
P, LY
Dy C
N "
! There seem to be two approaches to this problem:
)
. 1. Replicate the catalog sufficiently to ensure that it is
o available with the degree of reliebility that is desired.
': 2. Recognize that not every object will require the same
b degree of reliability, and replicate the catalog
:a information required to access a particular object (1.e.,
its catalog entry) to the degree desired and store it at
the site that stores the object.
N
o
o . A _
] In Cronus we are currently using approach (2). The idea is
; to maintain a secondary symbolic access path to objects. The
® secondary access path is supported at each object managing host
> by collections of copies of Cronus Catalog entries. The catalog
) system software 1s responsible for maintaining the consistency A
M between the distributed catalog entry copies and the Cronus g;h
o8 Catalog.)
L
j Under normel conditions, a symbolic reference to an object i}i}.
;¢ is accomodated by a Lookup using the Cronus Catalog in the normal ij*
ﬂj fashion, following catalog entries from one directory to another ::f'
N until the Lookup either terminates on an entry for the symbolic N
- name or fails because there 1s no entry (i.e., the name 1s not T
» catalogued).
k- In situations when the catalog 1s unavailable, the secondary
¢: symbolic access path would be used for the Lookup. The Lookup
. would succeed whenever the object itself can be reached, since a
L copy of the catalog entry for the object is stored at the same
o~ site as the object, 1f the object has a symbolic name.
>
f One can ask why not always use the secondary access path
. since 1t will always succeed when the object is accessible. The
, answer 1s that a Lookup by means of the primary path is
ff “directed” whereas one by means of the secondary path is
“undirected” (e.g., there 1s no a priori knowledge of which host
: or hosts should be consulted to perform the Lookup and it is
" likely that wher the host is found the name to catalog entry
’ mapping will take longer (o perform since it may be difficult to
[]
~
N
N - 50 -
M
-
L
",
\- LR AL ..-. T ."l LRSS, 1. w.\< - --‘_-..‘ -._‘- AR -\"‘ PRCRIR S AR LS P P RO TS ARG AT TN AT AT
£ G R B0 LS SR S R A SRR RSN N A N
oy N e B N A e S T e T I N T N

LA

Gy
v

structure the search though the catalog entry copies.

3.9 Automating Cronus Manager Development

In previous sections we have discussed the elements of the
Cronus object system support. As these parts of the system
became available, the first Cronus object managers (file and
catalog) were coded by making calls on the library routines
previously mentioned. With this experience we easi1ly recognized
that much of the effort that went into developing & manager, and
client software to access that manager 's objects fell into a
predictable pattern, was repetitious, and was largely the same
from object type to object type.

With this in mind, we initiated an effort to elevate the
abstractions which an application object manager developer uses.
We provide for specification driven automatic code generation for
much of the object framework which 1s common to all managers.
This "manager compiler” automatically generates code to handle
invocation, message receipt, parsing., dispatching, reply
generation, access control etc. In sum, the application
developer need only deal with and provide code for the problems
(operations) which are specific to his application. The rest of
the software needed to handle all of the intermediary details is
automatically provided as part of the manager structure 1tself.
In the rest of this section we discuss the current automated
facilities provided to application developers for developing new
Cronus object managers.

3.9.1 Manager Facilities Provided Automatically

One begins development of a Cronus application manager by
defining the various object types, the operations upon them., and
the access control constraints. The criteria for determining
exactly what should be objects are not by any means absolute, but
often times objects will correspond to “real world"” entities or
abstractions pertinent to the user of the software.

In many cases, applications make use of existing data
outside the Cronus environment The data abstraction features of
the object model favors this, since only the manager of a given

Es
-

5%
]). at

. {l'l
4ﬁf{;sﬁ

'._'v'x

]
4
,

2
i

A L A M UM AL L W WL W W WU W L e W W W A W O i T W W W W W i AW W W W W W U WO W T W P T VO VU WWUWNY YR '..';.
) :;,: ::
[— SRR
o
R,
Iad e Uy
2:?‘ bt
iy
object is aware of its internal organization. Representations :““"
may even vary between managers of the same object type on ‘qnfq
different hosts (thereby providing a convenient mechanism for gh!
dealing with similar data from different sources). }ﬂﬁﬁ
s
_ O
Once defined, the object definitions are coded in a non-
procedural specification language, compiled, and stored in the %:;\”
“protocol database”. The database is then used to generate the éfﬁ{‘
code for the "automatic” components of the manager.)ﬁ"}{‘
™ ','--_'v- ‘
ARy
o:'.:t';i;
3.9.1.1 Multiple Object Types % 'qg.:
.) O.’l.:‘
An implementor may choose to have a single process manage 54 :
multiple, related Cronus object types (such as Principals and 50
q Groups, or several varieties of files). This can be advantageous
with request to code sharing, concurrency control, faster access PP
between data structures, or reduced process contention. The !55k
manager development software allows any number of types to be ,:ﬁ:'
managed by a given manager. The mix is functionally transparent)
to the rest of the system, and may even vary between hosts. i.§
o
) ‘;::,:i
¢ ‘:
Sy
3.9.1.2 Dispatching ALY,
OYY
The actual tape dependent processing for an operation is L
. performed by an implementor-supplied procedure. Dispatching to f}&?~
N the appropriate procedure (based on the operation requested and ﬁiéﬂ
X the object type) i1s done by the manager software after the :«j&u
. implementation—-independent processing described below has been ﬂyﬁ;.
2 performed. e

o e
? A given cperation processing routine can be used in the ;w '
f implementation of more than one type (assuming, of course, that 'y \
o
- the operation parameters and semantics are equivalent). The ;h;}ﬂ
L processing routines are currently all written using the stendard XA
® C programming language. L J
o) ~'.
) ey
. e
X e
L -"‘-- ’fn \
e
:‘:-.‘:\"
? DAY
- iy
LN
!ﬂ BN
¢ S
?n-"\ A '

L e L™ L . ' » Y
J'.-qi_--l‘ ~(.~' -..\'.:\{.\- -hh.'\
e 'p"_-:'., -'f:\)':\" AT,
L] b .]

s e

R

3.9.1.3 Multitasking

=

In order to facilitate interleaving of operations and to
minimize the amount of time to initiate processing of an
operation, the manager software supports a coroutine-style
tasking facility, whereby multiple operations are processed
simultaneously. The dispatcher (itself a task) creates a new
task for each incoming operation.

~.

- "

e X X

To ease concurrency considerations, the tasking package is
non-preemptive. A task will relinquish control to another task
only by explicitly doing so, or when it awaits a reply from a
{nested) operation invocation. The latter could occur, for
example, during access to a Cronus file used in the internal
object representation. It also occurs when obtaining the
client’'s bindings during the access control check.

s

X, ‘T .'lj

A

e

’-
b |

o

x_ X _B
Y g |

3.9.1.4 Access Control

Each Cronus object has an access contrel list associated
with it, defining the access rights available to individual users
or groups of users. The application developer may declare that
the client must have a specified set of access rights in order to
invoke a given operation on an object. Possession of this access
will automatically be checked by the manager software. Of
course, the application is free to impose additional procedural
constraints and checks, and may reference the access control list
directly.

?;‘

l.l‘ { :;-l’
2
)

Y
Pl s

f(ft,;
%

3.9.1.5 Inheritance of Operations

~ Nt
1. "
.I .v

The manager software supports "inheritance” within a
hierarchy of types, with respect to both operation parameter
definitions and code sharing.

WA A
R
l' ,I ‘\ll'

v’

»
LI 4

56

This is the mechanism used to support the generic operations
defined for all Cronus types. These are defined for type
CT_Object (the top of the type hierarchy), and include opera‘ions
for locating the object or manager, obtaining descriptive
information about it (available operations, interpretation of

WEERAUEL, WEEVEIVY LWL A U VA TN N TSTNANATTONTCTTY N

':' s 'v'l-?

W
"."’i
. . . . i’:gblét"'f
access rights, etc), manipulation of access control lists and °
attributes, and status information. Although functionally RN
distinct, these may effectively be viewed as part of the manager '..':.f'_"'" :,
software. :: et
. '..\
iy
KRR
, e T
3.9.1.6 Message Parsing and Validation :;h)
X Aot
n 15,00
The manager software attempts tc shield the application from ::.1:"'1
the unwieldy data representations required for network s ‘:':'.‘
communication in a heterogeneous environment. Operation ®
“arguments"” are passed to the processing routine in internal R
programming language . zpresentalious. Appropriate supplementary WU" ‘
information is also provided for arreys, variable-length, and
optional data elements. fr Q}‘:l'g:
'.'l".u":‘!‘
®
The manager software also provides argument validation at T
what might be called the lexical and syntactic levels. This L-}::-j-,:-
includes checking that required arguments are present, and that :-:"-.:’_'\:C&
date types match. Of course, additional validation may also be :;:Ia-
performed by the application. '~ﬂf.:~:}
® ,
‘5:._.; \
NG
A
3.9.1.7 Storage For Instances of Objects ﬂ"J-:‘::H-
s
Virtually every Cronus object has some type specific data ® ®
assoclated with it. The manager software provides for efficient "-:':-\.
automatic management of such data, including retrieval each time ‘:'f-:":-:':-':
the object 1s referenced. Both fixed and variable-length SN
e AL
components may be specified. Of course, such data may also R
contain pointers into external data spaces known only by the ERVRNE
implementation. » e
NV
.-_\I'\.‘_:
N
Such automated storage management will eventually include ADANAN
mechanisms for generic backup/recovery, replication, and NN
migration of objects. VoL
' ®
~ Ty
W
NI
.'-:"H:\
A
‘,*\J.-s.'
AN
NN
' ®
-\'-."l!
S AN
"--"-n_".-. (]
‘,n\‘.n""-\‘
".\‘.$'Q
- 54 - bt f\:."u)'

.I’-‘\r'v-

b
P
‘.1
Y«
;_. l"I"l
('l.;I

265008

3.9.2 Client Facili.i1es Provided Automatically

Support 1s also provided for developing the clieni software)

necessary to manipulate the objects. Of course, any manager may nﬂq
X

also be the client of other managers. 04ﬂw

3.9.2.1 Subroutine Interfaces TR

The manager software automatically generates subroutine
stubs encapsulating the necessary argument processing >z -
(linearization and collecting data into the message body). AR
operation invocation, response argument parsing, and error ot

) , , L) ﬁ’
detection involved in an operation invocation. This effectively AR
provides an RPC-like interface to all Cronus operations. qﬁbﬁ~ﬁ

3.9.2.2 Generic User Interfaces 8 X

The manager software also generates tables driving a Hﬂﬁ%"
generic, technology-retargetable user interface subsystem. This .
allows the direct command level invocation of any operation h}ﬂ&%
defined in Cronus. It is tremendously valuable as a debugging fV:p&
aid, and has also proved quite useful! as a standard user gég\
interface (encapsulated slightly via command scripts) for those '
operations which map directly to user-level commands. KA

ANy
3.9.3 Documentation *:ﬁx#

Once annotations have been provided to the object
definitions, the manager software can generate formatted
descriptions suitable for inclusion in hardcopy system
documentation (the entire section 3 of the Cronus Users' Manual g
was produced in this fashion). -

W

Sl ST A A P T AR TR R RS W T O, P o T n T e T e N T T CTe : - g
'\"\n":"y"\f‘f'-’ ‘\:'9 S f\ ~ N,;'f "‘l\' ";”}"‘p" oY "(7’ N .‘f‘.uf'\{' PL SRR, .'\.‘_ » RN o N,
A S e o T
mﬁ;&iﬁbﬁﬁﬁhngéihﬂybz§$hnﬁéwL oV b | g N zbdhxf AT N AN ALY " Y S e P e T

HETR AR IR LRI BRI GBI FPUT U N LN U NE N S

L tak S0 B R .2 "8 b ‘tal

22 2.3 A AR S L8 RRIEA S0 §.5 30 San T’JI; 2 (7
. N
o,

- ‘I ;
itffff':
®
"::v'm:l:l‘:
tﬁ"v"'\
RLNOD
R
et
!n.t‘m't
3.9.4 Experience to Date)
:.:o'.:c'.:n
We have already used the automated manager development tools 0,0:n,':g
to generate a number of Cronus object managers which are 1n daily :0:.:0:.:::
use, including the Cronus Authentication Manager. We estimate l:::o:':ef‘
that using the automated tools we reduce the lines of code needed :.'.':!;tf':
to be written by the application developer to about 1/6 that of a
hand coded manager, without any noticeable change 1n performance. e, \
As Cronus itsel! is extended in areas of resource management and 0::':::::
survivability, we anticipate including "off-the-shelf” and :;: ‘=~
customizable approaches to these object attributes as part of the c"‘f
manager development package. Wl
75N
RN
) i -hﬁ.:p;
3.10 Cronus Monitoring and Control System -.\rb&
u'\';“.‘
3.10.1 Role of the MCS ey
This section describes the existing and planned monitoring ut\;
and control system for the Cronus distributed operating system. Wt A
The Monitoring and Control System (MCS) includes monitoring and l
control of hosts, of the Cronus managers on those hosts. and of _.)
network communication. The monitoring and control station pCALL
provides the functionality of an operator's console for the]
Cronus Distributed Operating System. The MCS treats Cronus as an -.,‘ iy
integrated system, decomposed by function rather than by host. :;_-',:
The MCS is designed to be integrated with and supports the n.‘c:
abstract object orientation cf the overall system architecture. o~ N
-\.-J\ ¢
In their role as caretaker, operators use the MCS to review .
resource usage, to examine status and trouble reports from the _ﬁ-
services, to monitor host and peripheral device availability, and -": ¥\ h
to activate and deactivate managers during routine hardware :)’:’}_:
maintainence. As system specialists, operators use the MCS to ::",‘J‘-
relocate managers. to modify policy parameters that influence Q04
e resource allocation decisions, to evaluate the effect of changes .. 9
) in policy parameters, to centrally monitor experiments, and to :x::(j'-‘
) diagnose system problems. :?::'::
: NN
Where practical, the MCS also monitors and controls :\‘_:\:‘
Constituent Operating System (COS) functions, the processor and DR
J peripheral hardware and the network from the same station. but
such functions are limited by our desire to modify the '?E}-
constituent software as little as possible. .{:_‘
s
A PR
2 KRt
® ..
Y >.n.. '-"
AN
- 56 - é“,‘."-:.
» o
® ®
LN v v
o L b R ORI AN X ;,:;-:‘«w:??&‘i
..f.\')_ c.-'{: -f"\'-" s -.‘_-.‘_ e ,r,.:,!_\ ’- ..-,;-:'_,- :..‘__-.‘A, '::-(‘f"«'\ LN Ay ‘~. oY _;-. : o \15‘ ‘ . d‘\$ e/

so L ta atB aiav e Iar Fac e Bad tat dal Dot v gt §a0 pat 8¥a '8 400 ¢ 00 Hip YR Bta Rua- 4V -Alecalaabaratatat ko val vav vad dal Al Yyt

Cronus 1s restarted from the Monitoring and Control System.
For hosts, the MCS supports resetting the hosts and starting
Cronus. For some hosts, such as those without disks, the MCS
will download an executable image to start Cronus. For other
hosts, the MCS will invoke programs executed by the host's
constituent operating system to start Cronus.

3.10.2 Functional Areas

The following describes typical activities currently
envisioned for the Cronus operator and MCS software.

3.10.2.1 Faulr Detection

Problem areas can be first identified by the operator, a
component such as a host or manager, or by the MCS software
itself. Operators recognize problems either from a report by
another user, by having the MCS software detect anticipated fault
conditions, by personally noticing unexpected system behavior, or
by examining data collected by the MCS. The problem is then
reported to the MCS and if the MCS cannot correct the problem
itself, the operator is prompted to take action. An audible
alert accompanies the report of a critical event.

The MCS and manager software detect problems in a number of
ways. These strategies 1nclude a report from another system
component or user, an unacknowledged polling or other request. or
violation of a MCS recognized system parameter constraint.
Priorities are assigned by the originator of system and MCS
generated reports to guide the MCS and operator in scheduling
their review.

The forwarding of fault messages from system services to the
MCS forms the simplest MCS problem detection strategy. The
warning 1s forwarded to the operator for review, sometimes with
additional information supplied from the configuration database
or from recorded data regarding the defective component's
immediately past behavior.

The MCS periodically polls all system components to see if
they respond and to determine their current status. Component
failures are reported, along with the time the failure was first
discovered. [If the failure occured recently, the component can
be restarted from the MCS. Status polling and manager control

"

R M T M M T A MY M kT, Y e N Y

X :Q‘;-\.’v" Y AAL LG CORGAT G
S A AT A D e

o ~ A Y A e A S

" N oy MR LNLC .ﬁSk

AJ‘}A ™ A

L 1"""1 R,
LA
l"‘)' s -"

P

el
AT
LN

'I
8
.
L

- 58 -

[/ & AR R AR 9 AL AR LT 2" o N WY o S 2 SRS AN P S NP SRR SL UL I LN

D ";"J\{:(gl".ﬂ\ g / N .‘hf".-'\"’,-"f .I.‘f:.-f\w':f,:l.'l'?f Are AT .r\-'_'.' P e e e e e
Wy, " A A Y Y e A A A IS

’ >y mnd o B R e s e e i e

ELIC R M M Y e B ot S Mg Ml Rt .}t‘&. (3 200 0 e 3 A M ¢ o %0 h o O i n 2 oy a .t 7, o™

functions are carried out using standard Cronus generic
operations, making it easy to extend monitoring and control
functions to new resources and application “types’” whiach are
subsequently added to the system.

Thresholds and other constraints are also applied to
collected system parameters, measured rates and resource usage.
When a constraint is violated, a report to the operator is
generated. For example, the operator is alerted if too many
authentication failures occur, since thet may indicate an
intruder. More common situations, such as rising disk usage or
high soft error rates, often forshadow more serious upcoming
problems, and can be detected and reported this way.

3.10.2.2 Logging

Various data reported to and collected by the MCS is
recorded. This allows long term statistical evaluation and
comparison. It also provides a journel for reviewing events that
led to a system fsilure. For example, health and status reports
are recorded by the system. This information can be viewed later
by an operator or included in reports. The contents can be
analyzed for performance evaluation.

3.10.2.3 Fault Isolation

A more difficult problem occurs when a program fails
unexpectedly. The cause of the problem could be: a bug in the
program, insufficient access rights by the client or a manager
for some data or resource needed to satisfy the request; IPC,
network or host congestion triggering timeouts; component failure
leaving a non-reliable resource inaccessible; and so forth.

Using the MCS for fault detection, the operator starts with
a high level view of the system, possibly narrowed by some
initial sense of what caused the problem. For example, if the
problem is frequent access request denials, the operator might
start by examining the catalog and authentication managers as a
whole functions to see if the problem was system-wide. Then, the
particular managers servicing the request could be examined, to
determine their current state. Then the processors and process
managers crunning the managers might be checked, or perhaps the
behavior of the Cronus kernel on the effected hosts depending
upon what was causing the failure. The MCS software supports all

L APRA ey
.’. .
=3

ST
-
R
o
Slae i

¢
wA
i @

. a)
o
}

B

n

e

x
(#ﬁ

A Ra* 00 1 i teki Y e 2tk AT e E 5.8 .8 Vad V.t 1a8° AR AR R R R RS A A AR R R oYY PRI i "Wy P gt “aty dio dém gra Bt " ..3’.

O'Q..‘
‘ o)
»
> -
; Vo
: NN
: S
§ . Dol
of these individual "views” of the system. and provides a
. convenient mechanism for 1nteractively moving between different ,};'q
f views as well as for constructing additional special purpose R.¢(
E views. hnyh:
; o
atta
' 3.10.2.4 Fault Correction LNy
A
? A problem can be corrected at several levels. The MCS may ﬁﬁ?;
; be able to identify and correct the fault automatically. For }?le
! example, if the MCS notices a failed manager, 1t can be restarted :{2{¢
automatically. The restart operation 1s reported to the
l operator. If the restart rate exceeds some threshold, the MCS x;{ 0
| either automatically or under operator control could take the }ﬂwu
' host offline from the MCS station. r:t v
1 ol
h When the MCS is not programmed to handle the failure. the !
4 operator must correct the problem. The MCS alerts the operator,
provide information end guidance, and accepts and 1nvokes Qgﬁf
commands from the operator to correct, eliminate or bypass the Sl
problem area. &5f{
LY (
Finally, there are the problems that require attention by k g{
the vendor. Hardware component failures and software bugs are ®
; both situations where the operator may not have the necessary @TFN‘
resources to correct the problem and other specialists may be }}3&‘
required. The MCS will, however, allow the cperator to take the }:a:(
component out of service until the problem has been corrected. :ﬂuil‘
- ,‘\. --\

3.10.2.5 Resource Allocation and Policy Management

6

? The operator can control managers and the resources they

; manage. Managers can be started or stopped, replicated to

! increase redundancy (provided they implement the appropriate
consistency model) or relocated to a different host. The

operator can adjust policy parameters that control the placement
of new object instances such as files, the size of caches, quotas
limiting the activity of a particular principal or manager, or
can instruct the managers to relocate instances of migratable

¢ objects. One of the major roles of polling is to collect
periodic snapshots of resource allocation and consumption
patterns in order to coherently display these to the operator on
either a collective functional or individual host basis.

¢

3 - 59 -

‘* At S ALY \5\ r% N R S ﬂﬁ %.5' > ‘\FN SR \. \‘\T\ \f-' e N A
"-}t\\‘} k‘}\. ‘-3."‘"&3:""“'} \‘ .\.\ \.'s.\ \.-\.* ‘.hx-s.‘('\.-.‘\'-.\. "'
Y ‘)\. NSRRI \J L ehen n’u"': j&"' - i«.“':" Shi "t& S ; N %‘ k '

T Gt e T R S T TR

R e .-ﬂ

kX

The MCS maintains recent historical views of the monitored
parameters to help the operator 1dentify trends in the affected
parameters. Based on these representations of 1mmediately past
resource allocation patterns, or based on values exceeding some
predefined thresholds, the operator can adjust the resource
management policy for the effected resource (see Cronus Resource
Management).

3.10.3 Current Implementation

During the initial phase of Monitoring and Control System
development, we implemented a set of functions to retrieve
manager and host status information and several portable programs
to display the data on common terminals. These programs run as
clients on many Cronus hosts. The status programs display the
results of their monitoring and command activities either as a
3¢6ii1cs ui reporte ur as a table, whichever is appropriate. A
graphical interface that 1ntegrates most of these functions 1s
ealso available on hosts with the required graphics hardware.

The information monitored by these programs includes network
traffic statistics, host and manager status, and manager specific
resource information such as available file space, cache hit
rates and processor loading. In addition, manager transactions
logs are recorded and accessible throughout the cluster using the
Cronus file system.

3.10.3.1 Host Probes and Service Probes

Host probes are supported on all Cronus hosts to reply to
"are you there” requests. S.rvice probes are similar monitoring
entities in all Cronus services. The service probes are
implemented as part of each manager. When a "report status”
request is received by a particular manager process, the probe
packages the current status and long term statistical data and
transmits it to the requesting client. The operation switch also
suppoerts a "list services” request, to which it responds with a
list of the currently active managers. Programs construct lists
of available hosts and services by brc ccasting an "are you
there” request and examining the replies to determine the
internet addresses of the active hosts.

i@

. Ay gV

- TN _NoWe Y § e TRy

RS

AV oV e R AR b 08 AN a2 a¥ B a0 et D alh a0 AR R VA PR B Nt A PRV SAT ot GaV taT 04t gav Gat 2% Q2% $2° 82" 00" §at ga¥ fat gov o

3.10.3.2 Trensaction Log

Each manager records a transaction log. A central trap log
manager similarly records trap reports submitted by other
managers. Any of the log files may be examined from any point in
the Cronus cluster. Commands may be sent to the managers to
change the dcgree of detail of the information recorded in the

log files.

3.10.3.3 Status Display Programs

Commands exist for displaying the status of host, primal
process, primal file, and directory objects, and for listing the
active managers of a particular hest. The replies are displayed
in either textual or graphical format.

3.10.3.4 Starting and Stopping Services

Managers may be started and stopped by invoking an operation
on the associated Cronus process. These requests are subject to
access control based on the operator’'s access rights. Similar
requests may be used to stop all Cronus menager activity on a
particular host. When this command is received by the process
manager, all Cronus processes will be terminated. The request
may specify that the managers should not be restarted until
instructions to do so are received; otherwise a specified set of

managers will be 1mmediately restarted. The program 1i1mages
needed to restart Cronus may be loaded from a remote location for
hosts that cannot store the i1mages locally. Some hosts are

automatically restarted from the MCS 1f they fail to respond to
active poll requests.

3.10.3.5 Graphical User Interface

We have also developed a graphical MCS user interface. This
program provides 1ntegrated access to the entire collection of
monitoring and control facilities. It replaces the individual
commands and tabular data formats of the previous MCS
implementation with icons and graphs. It also displays
historical data, to indicate trends, and alerts the operator when
certain situations occur, such as host or manager crashes.

LRI AR - . " “e
O I NN ‘f_ &$ é_ ~¢ fN.\)\ e \»:, .- AT
LU AR » X

DA
~radn & SR AN § :wts§ ";“uh RO
ol M, .)
P 4% %) et 'ﬁ k":& T

."3%.

”&’ﬂ

iyt
1 s

) S e
) 2%
) i
i 3.10.3.5.1 Graphical Presentation =
3 Economical graphics devices make a sophisticated MCS iE?-
: graphics interface practicel. The MCS interface presents Qx‘
K graphical, in addition to the traditional textual and tabulear Y
4 displays. The goal is to allow the user to view relatfonships &

. between data values in a way that appeals to the users physical

I intuitions. S

¢ N

'? The simplest case consists using a gauge to display resource :33’

usage. The operator can recognize trouble when the meter reaches e

g a certain positicu, rather than comparing two numbers ’T.
representing the available and consumed resource amounts. A o

y particular icon can simultaneously present several values, each o

» encoded differently. For example, when metering the primal file é}:,
service, we use the length of a bar gauge to represent percentage }»}y

‘ of file space occupied, a number on the face of the meter to ﬁ}~

{ display the actual values, and the brightness to indicate how fﬁi

e fast retrieval requests are serviced. We meke the gauge blink if

u the response time gets too long, thus drawing the operator's -{u

& attention to the gauge. Historical data is shown on a graph, e

k where the trend and the rate of change are apparent. Diagrams f&h

{ can be used to displey relationships. For example, showing -:&:

$ network traffic by the thickness of connecting lines between »
manager icons quickly gives the user a sense of where the bulk of

W the system activity is occuring and what pathways are relatively ?f}_

o idle and could be either eliminated or other traffic rerouted to ';QR~

k better divide the use. Thus, by effective use of graphics, we Eh‘i

§ allew the MCS user tc apply relatively quick visual perceptions, }i}

> normally used to evaluate physical objects, rather than the NG
slower analytical processes needed to evaluate tabular data or

- data presented on simple, unrelated graphical objects, ﬁj{
N POy
) ..':‘ -

; 3.10.3.5.2 Interactive T
. t -
N Another goal for the MCS interface is that the operator ﬁ'j
; should not need to remember complicated sets of options or names y:w
w of specific hosts. When the operator is expected to enter a -:j:-
Y, command, the full range of appropriate choices are presented; a R
R mouse c<ur<~r may then be used to select the desired command. The S
Q operator can choose items by selecting a visible icon denoting e
> the item. ;}

- G
" We also seek to guide operator attention when unexpected QFK
;: events, such as host crashes, occur. For this we use multiple ‘{Q(:
AB windows. A special message window is alway visible. This is N
> o

) A

) SNt

: N,

{ - 82 - ",
s }q
@

Tt L e
e o ; -~ - . y
PRI A ««., ' {: \ ﬁﬂhﬁh o ;dgﬁféﬂ& e J#ikhﬂkﬁﬁdbi? 3

a RN

used by the MCS to request action by the operator. If a report
indicates operator attention 1s required. a notice 1s posted 1n
the message window, with details provided 1n another window that
the operator may select to review the situation. [f the report
specified which components were affected. a special menu will be
provided for that report window that will allow the operator to
quickly select views showing the affected components, with the
affected components highlighted to help the operator locate them
on the screen.

OQur in:ti1al i1mplementation provides high level views showing
ccmposite data, such as overall available file space, total
active processes 1n the cluster. live host counts and network
traffic. Exploded views are accessed by selecting the 1cons

representing a service or host. Selecting a service 1con gives a

breakdown by host of the hosts supporting managers for that
service. Selecting a host 1con gives a brecakdown of the managers
running on that host. Selecting a manager 1con, gives more
detailed information on the selected manager. The user may also
reduce the level of detaill by using menu selections to return to
summary views.

Icons for quick access to associated managers are provided.
This reduces the need to step through several views when

switching between service and host oriented views. Also, the
same information may appear on several views. The MCS system
continuously polls the cluster. It allows the user to examine

various views of the system and to start and stop managers and
hosts.

3.10.3.6 Configuration Management

A configuration manager 1s used to provide a single,
consi1stent view of the current system and of 1ts configured
resources. This 1nformation can be used to 1dentify which
managers participate i1n providing a particular service, to
determine the hardware configurations for which a new software
revision must be produced, and to format new views for the MCS
operator.

63 -
N N T N N R N e P e e e N e N e L e e AT S TR AT AT A Lt W TR A gt R0
T e R A R e R R R N RS A
-..J‘..-\ .-"‘.. ,.f\f..-f'xi:..u “J.\- X \\J'_- . \.'\f\- . _.-.\-. ..'\wf\f'!',\'u"- - ."\.‘,*\J y ,\p '~ -_" o,
-f"* Pl f.._h‘ d J' }_u - ' f N, f. - - ".\ ._J'~< o .‘I -'f- . -_' " A -\, n, \- b, ~‘ A ' .. .

Lol SN DR 4
3 ‘l ‘l
’r
3 L ¥
Pl i
ICRFG)

7
[
o
.

"
r
,"v‘
"r
P

(RO LEErA

LN
L 4

fﬁrﬁﬁﬁﬁ

ok
o i

o
PRCAYAR.
PR R

P
t
v

AN

AN

T
L]
NI
‘;‘JQa‘r‘r o
F A AP AL AL
R s

O R

'\'_'n '." _'.n

’
v oo

3

A]
RARREOA

@y

3.10.3. 7 Structure of the MCS

The MCS consists of several cooperating processes These
components may run on one or several hosts, and some components
may be appropriately duplicated. It stores data using the Cronus
file system. [t uses the Cronus IPC to communicate among 1its
components and with the services 1t monitors.

There are five functionel components. the user 1nterface,
data routing. analysis, recording and retrieval, outbound command
dispatching and poll regulation. configuration management, and
service monitors and probes.

The MCS functions can be executed from anywhere 1n the
cluster. Fairlure of the MCS or 1ts operator does not endanger
DOS survivability. To achieve this, the MCS follows three
guidelines. key operator 1nteractions can be accomplished from
any access point (Cronus access control mechanisms distinguish
Cronus operator requests from those of the non-operator user).
the MCS functions are split 1nto separate components which mav be
distributed and reliable, as appropriate, and Cronus object
managers are designed to operate independently of the MCS, with
the MCS providing 1nstrumentation and control fcr the operator
and nonessential advisory services to managers based upon 1ts
global system purview.

3.11 Resource Management in Cronus
3.11.1 General Approach

As a distributed system architecture, Cronus faces a number
of resource management 1ssues not present 1n non-distributed
architectures. Strategies for effectively controlling the
redundancy and configuration flex:bi1lity i1nherent in Cronus are
needed to take advantage of the distributed system environment
These strategies for resource management are often conveniently
separated 1nto policies and mechanisms.

A policy 1s a goal or guideline set by a system
administrator constraining the decisions made by a resource
allocator An 1ntelligently formulated policy 1s based on an
effort to maximize an overall benefit measure for the system.
For example. a system-wide policy might be to evenly distribute
resource utilization with the i1ntent of minimizing the 1mpact of
a single system outage

P2
G Ny B NS
f{t Pali

T

Py

o
Ls

X\T
>
-

a_ 5 ¥ % _ &
\55\&%{
2T LI

>

>

i'l.

A M
G N
‘l .“-

» N
ll'
ap

Pl g

A mechanism 1s an 1nternal system structure designed to

implement a class of policies. For example, operating svstems
sometimes divide the processor menager 1nto two components. a
dispatcher or scheduler and a policy module. The dispatcher

maintains a list of processes requesting the processor, sorted on
a numeric priority field. Periodically, the dispatcher gains
control of the processor, whereupon it activates the process with
the highest priority on the list. The dispatcher thus implements
a mechanism for priority scheduling, but does not determine a
policy. The policy module, on the other hand, is responsible for
neriodically computing the priority of each requesting process,
typically based on administratively-determined parameters,
together with measurements obtained from the dispatcher. Varying
the values of the parameters considered, or i1nstructing the
policy module to utilize additional parameters are both
techniques for changing the resource management policy using the
standard priority mechanism. The separation of policy and
mechanism plays an important role in Cronus resource management .

In the Cronus system model, there are currently two general
aspects of resource allocation which are particular to the
network environment and must be effectively managed. One of
these i1s the binding of a request from a client to a particular
resource manager for those resources which are available

redundantly. Redundancy comes in two forms: replicated objects
(e.g., a multi-copy file) and replicated managers, any of which
can create a new 1nstance of an object type. In both cases the
selection of an object manager to provide the given service 1s an
important resource management deciston. The other 1mportant
aspect of resource management 1s the ability to dynamically
migrate objects. This 1s a powerful tool for matching system

resources to tasks 1n a manner that attempts to maximize some
measure of system performance, reliebility, or survivability
Both static reconfiguration (e.g.., moving an entire collection of
migratable objects at once), and dynamic reconfiguration (e.g.,
moving an i1ndividual object 1n direct response to demand for 1ts
use) are possible 1n the Cronus architecture and design.

The general approach to resource management in Cronus 1s to
individually control the management of the classes of objects
which make up the system. This approach extends Cronus resource
management concepts to the abstract resources developed by
applications. Resource management for an individual abstract
resource (type) 1n Cronus 1s based on integrating a number of
carefully planned mechanisms already in the system architecture.
In addition to resource management by resource type, application

- 65 - -
[]
'.q;".:'. !‘
N N S S S AN O
A .~'~‘\" AR Ao e
» AN N AT AN T, AT
‘i‘i‘nmm\ A A AT AT TSI T A YN

EAP AT
MY
) e
- o v,
N ("

,

B
s

el

v .

e
P

" e om e an o

and system 1nterface code can, 1f they choose to do so, control
resource management decisions to incorpcrate larger purviews such
as implementing an aepplication specific policy which manages
collections of object types used in a specific context.

In Cronus we achieve global and easily controllable resource
management by requiring the object managers to cooperate in
enforcing a resource management policy for their resource type.
An object manager can redirect operations to a peer manager on
another processor on the basis of current resource status. In
the case of files, this means a file manager can redirect a
request for creation of a file to an alternate file manager which
may have more storage available. Part of the basis for decisions
to redirect requests are parameters, settable dynamically by
system administrators through monitoring and control functions,
which control the resource management strategy. The creation of
objects and resource management in general thus becomes a
responsibility that is decentralized among object managers on
each processor based on a global allocation policy. both in terms
of sharing current status and possible redirection of operations
between managers. The ultimate objective is to develop a type-
independent model (and associated mechanisms) for resource
management in Cronus, to be used off-the-shelf by future object
type managers. This model would be cepable of supporting a
variety of policies.

The Cronus resource management model is based on the the
integration of the following set of primitive mechanisms.

o the ability of the kernel to route a request for a given
type to any available manager of that type., using the
Locate mechanism

o the ability of a Cronus manager to redirect a request to a
more appropriate peer to accomplish resource management
objectives

o the ability of managers to periodically accumulate current
status of their peers via a standard mechanism (Report
Status) to be used as a basis for selecting a site for
redirecting an operation

o The ability of users or applications to optionally indicate
specific location preferences with requests

o the ability to monitor and regulate the functioning of the

vy v
A

1’ v..?

X

75 "'

2,
PR

e
"f‘ﬁ:‘)“l

il

R gy
-
v

»
4

’HJN';I)

- ’
MPRPARY
P I S
»
»
B -" ;
e

VY rY
)

[]
>

A
Y

’I
o

Y

-

-

T dald Seb a5 a0 Vgl "

el Yol Vel Va} Yaf vad vl 948 Sah U, - LY L Nolh So0 Wal S R) Hal Galk & A Ul dob M D MG B S Sl $alh P T

resource management policy from the monitoring and control
station

o the ability of applications to utilize system mechan:sms
(e.g. broadcast, Report Status operations) to build
special-purpose resource management strategies tailored to
their needs.

There is a hierarchy of desirable locations for 1mplementing
resource management policies: object managers., shared libraries,
and finally application programs or users themselves. Managers
are the most desirable because there are & limited number of
them, they are readily identifiable and addressable, and they are
most likely to be under administrative control (sc policy
parameters could easily be adjusted from the MCS). We anticipate
that many decisions can be negotiated between managers based upon
information periodically obtained via the generic operation
ReportStatus. The Monitoring and Control Station also uses the
ReportStatus operation to present the operator with a global view
of how well the resource management policy 1s proceeding. of
course, these policies refer to automatic decisions made by the
system, mechanisms for explicit user control of resource
allocation continue to be available for those applications
requiring it. Other application-dependent facilities could be
built upon these explicit control mechanisms to implement user
preferences and requirements.

3.11.2 A Resource Management Example

One aspect of resource management in Cronus involves a
mechanism in which a manager of some givén resource can, upon
receipt of a service request, determine that 1t is not well
suited to handle the given request and then make an attempt at
finding another manager (of the same resource type) that i1s more
likely to satisfactorily complete the client’'s request. More
specifically, file manager resource management offers a flexible
way to take advantage of a distributed filesystem and provide a
mechanism to transparently improve file system performance for
the client. Within Cronus, we have initially experimented with
filesystem resource management for the file creation operation.
In the future the same approach to resource management will be
extended to cover other file operations and as well as other
object types.

LR o IR,
«

¥ hd
o
%

q??i
X
S

"(" »
A

.

e

& YTy

FArEE &Y g 3 ‘ﬂ.:\;.

I, 2
X
22l o

kA

‘J

x

-

Calr L J
[
e e
AR

- .'_v‘ P
AP

hanktendiaht bbbl i bbb b et tde e A R R R L R A RS g ol BB 0B o Bl o 9,0 o0 0.0 S 0 R0 Rob Lo Jhaf Sab fav g0 a5 el dae guf 4ot §av S8° 4" A<

Before discussing how the various mechanisms are used in
file system resource management, 1t is useful to review the basic
steps in file creation within Cronus. A Cronus file can be
created by either specifying the destination host on which to
have the file created or with a generic create with which the
system will locate a host for the client and send the request to
that location. 1If the client has specified the host on which the
file is to be created then that host's file manager will either
service the request or, if there are circumstances which prevent
it from doing so, it will reject the request and send a negative
acknowledgement to the client. Alternatively, if the client has
not specified the target host for file creation then any host is
free to answer the request from the client’'s operation switch
request to locate a file manager. When a file manager has
answered a locate, the client’'s original create request 1is
forwarded by the operation switch to that manager. It is useful
to note that without resource management, answering the locate
request implicitely allows that manager to be selected for the
file creation without any regard for its ability to handle the
request with any degree of efficiency or reliability.

The basic elements needed for performing resource management
for Cronus files lie mostly in the file managers themselves.
Upon receiving a file creation request, the manager must be able
to analyze what its current capabilities are for successfully
providing that service. The method used for calculating what the
"health’ of a given file manager is at any given moment is
through an objective function. This function inputs the values
of several variables kept by the manager and returns a single
value which will tell the file manager if it should go ahead and
perform the file creation or take alternative action. Currently
the variables maintained for the objective function to use as
inputs are.

Fil em ¢ ,

This variable relates to the percentage of available
space in the the Cronus filesystem on that host. If
this percentage ever falls below a preselected limit
then the objective function will return a value that

@NLANATNS]

would indicate this file manager unfit (except under

emergency conditions) for file creation regardless of -
' the values for other variables. This file manager k;"
, would still service other types of requests (such as :QQL

reading. deleting and reportstatus operations) since ﬁﬁ%
¥ these operations don't require additional disk storage. j"

.‘--

@

s
ISt

- 68 -

L
s i

D P N S A A R A S AN SN DS AT AT AT AT T
A N % ..-r._’ .:_"\- N _,\‘j\’ :;\ \.- AN ::'\,‘ N e N
v L5 AT T T e
_ ALY \“*ﬁ sjs ;” \$\,\ ,’.\fsj\'nw\

YN
A O U L L

828" 3%9.4°%] Tpua Ala R AT AN AN Nl VAT Vo Sl IR CRAMKRR KAR XWX

]

Host Load Average

The load on the host on which the file manager resides
is tested to see if the level appears high enough to
prevent the manager from expediently completing the
requested operation. In the event of a heavy load, a
file manager is still capable of successfully cdrrying
out the operation but performance considerations make
it desirable to find a better candidate to service the
client.

Objective Variable

An objective variable is included to provide to ‘the

operator a tunable’ parameter for affecting how
managers will accept or reject operations based on
their objective function values. This variable 1s

intended to be set from an operator at the MCS
intimately familiar with the entire Cronus cluster. If
the operator decides that a particular file manager 1is
in fine shape then this variable should be set to a
high value. If for any reason the operator decides
that some file manager should not bear much of the
systemwide file creation load (or none at all) then
this value 1s set low (or to zero to keep it from
performing any creations at all).

If the objective function returns a vaelue that tells the

file manager not to perform the operation itself the manager

attempts to forward the request to a 'healthier’ file manager.
Obteining the status of alternate sites for handling this request

1s done by broadcasting to all other peer file managers the

generic operation reportstatus. Included in the reportstatus

reply are parameters which are used to compute the objective
function for other managers. The manager computes objective

functions for at least some other peer managers, and selects one
with a better objective function. If it can’'t find a manager

whose status is better than it's own it can do the operation

itself, if at all possible, or else it may be forced to reject
the client's request. If{ a candidate has been found to assume

the file creation request then the original creation request

forwarded to that host and the responsibility for servicing the

client falls to that host's file manager.

»
b 4

13
oS
RS
ve

[
'

a
Pty

Sygy

N
«
row

P
\'I‘:

P
AN
v
9
D
2t
P

‘r:r;‘:{".'t! -
& .
e x
L4 l'
L
oy
£l
-

“x

G
<
P

thadl

2
<
1

P 4

1

~

LAY
—“.

'y
2

-
o

g
P t:\]‘q
g @

AN
5
o e
@ o

AN
R
L}

-,'}
I 1
”
.
<x

Sr v
\."

Xy
.'I Py

o
5

e,

W)

We are currently experimenting with these mechanisms and

tunable parameters before applying the general resource
management strategy to other resources and attempting to

into the automated manager development software.

it

incorporate

NC ok oty o

RN

+ e 3747 AV, gV o AW, 8, BV RV VRV RV, i gV vy 0. g Sla $ia gba @Y i SV $Va 8" &'] O'0 BT 6 8.0 §.0 0,4 TR AT W™ .'::;':“
e
.‘.',0.:.!
o-_?\'\-. N
R
\A")’-
i ti!
s "
NG
4 Test and Evaluation -
YRS
'f:%__l
The testing and evaluation of new technology 1s a difficult f&'{:
undertaking. DBest results seem to emerge when a new technology ; & i
or product is made available to potential users early 1in the ‘Sﬁ\.
development cycle. However, on the other side of this issue, b
early models of a technology or product are most likely to be
very flawed and incomplete., and likely to dissuade any serious N
use except by really committed organizations. Without some }\¢‘ﬁ
degree of serious use there can not be any serious test and st
evaluation. In the case of Cronus in particular, because 1t 1is a bﬁ%ﬁi
large and evolving system, early use by an outside user community SN
1s just not feasible. But precisely because i1t 1s large and I
evolving, early use can help identify areas of deficiency at a {&}?,
time when they are easier to 1denti1fy and correct. ﬁ%ﬁqgt
BT
To deal with this apparent contradiction we have focussed i5ﬁﬁj
our initial system test and evaluation activities on our own use el
of the system as 1ts parts become availlable. In some cases this SOOI
implies nothing more than a standard, "layered” bottom up 2{%?%
development process, where new levels of functionality make :ﬂ?ﬁﬁ’
direct use as clients of interfaces developed for the lower tﬁﬁhkﬂ
layers. In other cases, this implies additional tasks and effort Ll Y
to taillor emerging system functionality toward areas which would .
be of immediate use to us in our role as software designers, fﬂ;&n‘
developers, and maintainers. In the rest of this section we }523@:
discuss both aspects of our approach to test and evaluation, and f{%jy
make a few preliminary conclusions of results to date. 'ibgﬁﬁ
-._!\..

4.1 Areas of Internal Use .J
There are three major aspects of our internal use of the S
emerging Cronus system and software. These are. '“},“.
(Rl

RS

a N

o Applying the basic Cronus decomposition and distribution ﬁ{\:q
methodology to the development of the system 1tself. :bﬂ?f.

P

Sy

o Using network support software on testbed hosts to N
provide initial access to the cluster machines for lvﬂri'
puipu.2s of software development. ;f}:?:
\::‘:}Mx- 4
o Constructing specific Cronus services and i1ntegrating {fbiﬁl
specific software development tools to allow the use of }}b{ﬂ

Cronus components as an aid in developing and supporting

L T g ' LI - .
(Ao ety ':-Q. Ny A V"}'C‘-“; e
X

(yr_.,. ” PR
A o
8 ..a.:jmzﬁlﬁ G e

9 v R A Vav SR Map € el vy S 0 N a0 R 0 R 0 a Y aVA e S st at A a4 ath” 28R o ta Y Aa ¥ By R A ey “die Ada’ At AV

i :“;i'&}
‘ atet
e
'n_'--_“’ -
:"I_;" ;J.‘.
At
SR
e
additional Cronus software development.
hniy
i
By applying the Cronus decomposition methodology we mean ﬂﬁ; X
that major parts of the system itself and many of its intended §§ '
applications are structured as interactions among and between s -4
abstract objects distributed throughout the system and clients -
requesting the manipulation of these abstract objects. Files, A
processes, principals, directories, etc. are system objects (i.e. }ifQ
supplied along with the basic system) which are on equal footing 2;}£=
with application specific objects and object managers. Thus, ALt
when we are developing catalog managers, authentication managers R
and support for other system objecis we are utilizing internal -
interfaces and relying on the correct functioning of the same A}Q(
support software as will the future application developer. In ?ﬁ'ﬂ
addition, some system components make direct use of others in Rng“
their implementation. As examples, the catalog manager uses ¢¢ ﬂ
Cronus primal files for storing directory objects, and the gt
"names” of access control groups are cataloged in the Cronus -
catalog. These implementations provide eariy and heavy use of e
many system components. ?fﬁ‘
S
gt
Enhancements and refinements made to the object system L
support code as a result of initial use in developing parts of =
the system’'s intended functionality has resulted both in better ﬁy“ﬁ
performance of these functions and better support for future ;;}:
distributed applications. Our approach is to initially ﬁ}ﬁ}‘
experiment with "hand coded” implementations to gain experience ’::L
with the real issues and problems which will face the progiammer S
before developing high level tools for future Cronus application SN
programmers. The first few Cronus object managers were coded by ‘v‘Q
manually inserting calls to support library routines, while the iﬁ}ﬂ
. last few have benefited from this experience and the subsequent h}ﬂ?
‘: automation of a number of steps in the development procedure. g&b”
. Y
@ ®
: . Tn
ﬁ Our testbed environment consists of a number of different ?iﬁf
2 types of systems. Networking these machines together via the ::}:y
" local area network was an early project effort. The current -{\j
X design of Cronus requires as a support component implementations ﬁ:?:‘
X of the IP/TCP protocols, in addition to local network support, EAE
,; for each participating host. For some hosts, these 5»f?
: implementations already existed and came with the system, for r:}
- others they needed to be procured from a separate vendor, for ijﬁ*
- still others we had to design and build our own. In each case, (t f!
~ the software needed to support Cronus IPC was largely untested ﬁég-:
; especially under load conditions. S
/ i
‘J x .(: .
: i;k:
. - 72 - PO

e\
RS }\':\ g
PR, oo Al

«

-

o ci e e]
R A SR O 1

N -
Py

g
¥
#

]
|

T O T N R e R Y N W Wy
RSP AN NSRRI

NN o':ﬁ'.

As a means of both improving the accessibility of our
machines to development staff and to evaluate the adequacy and
reliability of the network support code, we began by developing
support for standard network protocols such as Telnet and FTP to
stimulate daily use of the newly developed or acquired software.
In addition, to ascertain the adequacy of network performance,
exteasive measurements of Ethernet, IP and TCP response time and
throughout were made. These were reported in Cronus Interim
Technical Report No. 2 (BBN Report No. 5261).

While the evaluation approach was very positive, the results
were mixed. One implementation of network software (C/70 UNIX)
proved buggy but fixable, one implementation (M68000 CMOS GCE)
proved to be fairly reliable after some initial problems were
cleared up, and one 1mplementation (Compion software for VAX-VMS)
proved very unreliable and problem prone. It 1s scheduled to be
replaced by another i1mplementation as soon as possible.

The final aspect of current test and evaluation was to
orient initial use of the system toward software development
eapplication programs. This too has a dual purpose. First, 1t
will exercise additional Cronus components on a dally basis,
including file manager, catalog manager and user authentication.
Second, the software tools and applications developed for or
integrated into Cronus establish a starting point for providing
future application developers a set of software development tools
which support more convenient use of resources distributed
throughout the cluster. Initial use 1nvolved the development of
a distributed file system and integration of standard word
processing and basic software production (compiler etc.) tools
which can operate in the distributed file environment. Early
expertence has led to a number of improvements, especially 1n
performance, of the basic system functionality, as well as the
recognition of a number of areas requiring additional effort.
Three of these i1mportant areas i1dentified as requiring additional
work in the next phase of the effort include the survivability of
key system functions (e.g. catalog survivability), continued
performance improvement and improved tools for distrituting new

versions of system components to the many and varied hosts of the
configuration.

Using the system as a basis for a continuing program of test
and evaluation has proven extremely valuable 1n validating .
approaches and uncovering problems, althrough 1t 1s becoming more g
costly as we become dependent on more of the system being RAE

SN S N
RN
t.v. ».

e Py
iy

‘;.'5
" 3%

>

R

PO O O N T O Y W O P DN O P P R Y N L N W I ST S T O YT O PO YO Y PO TOR TR o T O O R T U R O WO WU WU W WL

available daily. This has resulted in devoting more project
\ resources to system maintenance activities, and consequently less
;;‘ to new development.

:’:-' .:
L oA
<. T
L N
) o
e P
-f.- .'.".r
“;'- ;-'{
o P
f:‘ .(:‘_
~ o
"" Ca Y w
. >
N ‘. ..."
- :'_,-::.
‘.‘ ."-.
[Y g
o ‘-::‘-
. .
8 e
- Y
" P
- SN
2
e NS
- e
‘ o
.,_ :;--r..
\'. " N
IS
N wndn
e N
. .i N
) ~ v -
.y A
o e
~
R
: "-
'(\ Y iy O SN RN AT N . ® J-- ;
b ﬂ\. 'f\? \Ig " \C"'G‘ Yy 'V'V'& "-'“3\'." _ ‘" '} ::\ :'J“' '\('\'-’. AP ‘(. o "’r' "\"".'Fﬁ ";'._r-. RN
d " Y '(-_ - { N Co o

".N' \
N,

‘ . A
ﬂ\:&mhxﬂ A 1L.mnh1|*'n ‘*‘ni"nhli‘ﬂ '?‘ (A, J"i.x

s
s

s .t % O.J.! (X '.‘ni... Al .‘.o.\|.|. 5 V.

WAL W S R D W O P T W OO < T

D T MISSION
- ' _— of
Rome Air Development Center

RADC plans and executes nesearch, development, test
and seleeted acquisdition programs in support of
Command, Conirol, Communications and Intelfligence
(C31) activities. Technical and engineering
support within areas of competence 4s provided 2o g

ESD Program 0f4§ices (P0s) and othen ESD elements

to pernform effective acquisition of C31 systems.

The areas of technical competence Linclude

communications, command and control, battle

management, Lingormation processing, survedillance

densons, intelligence data collection and handling,

s0lid state sciences, electhomagnetics, and

. propagation, and electrondic, maintainability,

1 and compatibility. 2
cﬁ

-

3

2 2 2 oY P r3op I pRop oS

14

/£

s
~
)

(4

Y

Vol o e Thg
5%
L

= e T L A A R A R R e Pt L R L L S L R R
% \.')'-.":Q'::"&“' el J.'mf--fx‘:-,‘f'-':s"'i."n.'-"ﬂ.*-f-."'x}-.' -.‘f'ﬂ."-..j:-u'{-.}:g,* Sy -{N'-"» "\f\"{\.“”ﬂ{"\. e,
Ly)l'(u""’" g R e W * g < J-‘(‘n T 7N
b 0 -_',,"- Aot) ~3,.-.-.,.~y~. '« g LNl Vg Digate) .*-\. ["
e Wy A" Ak " '&&.‘aﬂ&n.) {d‘ﬁ MmN ﬁ. '

