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EXECUTIVE SUMMARY 

BACKGROUND 

Pseudonoise (PN) spread-spectrum communication systems that distribute 
signal energy over a wide bandwidth possess low-probability-of-intercept 
and antijam capabilities. The required power gain for signal detection is 
obtained using a filter matched to a PN sequence known to the sender and 
receiver, but not to a potential unfriendly interceptor. Within the spec- 
trum of the wideband signal employed there may lie strong narrowband inter- 
feres (including jammers); such interference is particularly troublesome 
at HF frequencies, where many narrow communication bands with considerable 
power are present.  In order to realize the full performance advantage of 
such a spread-spectrum system, a receiver must suppress this interference 
prior to matched filtering with the appropriate PN sequence. 

PURPOSE 

The estimation and suppression of strong narrowband interference can 
be carried out through the use of frequency-domain filters in real time. 
The required finite Fourier transform of the time data is generally per- 
formed using basis frequencies that are integer multiples of the reciprocal 
of the time period over which the measurements are made.  As a result of 
the spreading effects of the sidelobes of the sin(x)/x function, which is 
the Fourier transform of a rectangular time window, considerable energy 
from non-basis frequencies in a narrow band may be distributed over basis 
frequencies outside the band. Conventional approaches often suppress the 
sidelobes by weighting the time data before performing the Fourier trans- 
form. This results in data distortion prior to the suppression of any of 
the interference and in the sacrifice of some frequency resolution. 

This paper develops an approach in which the N unweighted time-domain 
values of a sampled band-limited signal plus interference and the N Fourier 
amplitudes are treated as the components of a vector in an N-dimensional 
space.  The subspace that best fits strong narrowband interference in a 
least squares sense is excised.  Such an approach accounts for and sup- 
presses the sidelobes of a narrowband interferer. 

RESULTS 

It is shown that one may associate a unit vector in the N-dimensional 
space mentioned above with each frequency in the continuous range of fre- 
quencies less than the Nyquist frequency and may select any subset of N- 
orthogonal vectors from this set for a basis (coordinate axes). Although 
the basis may correspond to the usual choice of frequencies that are 
integer multiples of the sampling frequency divided by N, an infinite 
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number of possible frequency "reference frames" exist. Any unit frequency 
vector has components along the coordinate axes that are determined by the 
central and side lobes of the sin(x)/x function. The projection of the 
data vector along any unit frequency vector is the finite Fourier transform 
for that frequency. The "Fourier vector" for any frequency is defined to 
be the corresponding unit vector multiplied by the Fourier amplitude. 

Assume that there are J positive frequency interference bands within 
which the basis frequency Fourier amplitudes exceed a predetermined noise 
threshold and a total of K such basis frequencies within these bands, where 
K << N.  (The initial noise threshold should be set high enough to satisfy 
this requirement — then lowered after the interference thus identified has 
been suppressed.) This report approximates the continuous range of frequen- 
cies in positive frequency band j by L(j) frequencies, resulting in a total 
of L frequencies in the J bands, where N >> L > 4K.  (The lower limit here 
is established in an appendix.) The subspace V of the N-dimensional space 
that best fits the Fourier vectors for these L frequencies and the corres- 
ponding negative frequencies in a least squares sense is then obtained. 

The desired subspace V is found to be determined by the eigenvectors 
belonging to the M largest eigenvalues of two L x L  real symmetric matrices, 
where M -  2K. By projecting the data vector onto the subspace orthogonal to 
V, the amplitudes in the interference bands are made negligible compared to 
the noise threshold and the sidelobes of these bands are simultaneously 
reduced. 

CONCLUSIONS 

The methods described here should lead to considerable improvement over 
conventional approaches (i.e., the same amount of narrowband noise excision 
will lead to much less signal degradation and the same amount of signal 
degradation will result in much more narrowband noise excision), but the 
degree of improvement is presently unknown. This enhancement should be 
particularly useful in a high-noise environment with many closely spaced 
strong narrowband interferers. It is believed that the processors becoming 
available will make the required digital processing feasible in real time. 
Although the vector space approach was developed with a PN spread-spectrum 
communication system in mind, it should be possible to adapt this approach 
to other systems. 

RECOMMENDATIONS 

It is recommended that testing be performed to compare the performance 
of vector space methods with conventional methods for excising narrowband 
interference. The specific system and hardware requirements to implement 
vector space signal processing methods must be identified and compared to 
the requirements for known frequency-domain and time-domain approaches. 
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SECTION 1 

INTRODUCTION 

1.1 BACKGROUND 

There is considerable interest in the military applications of pseudo- 

noise (PN) spread-spectrum communication systems because of their low- 

probability-of-intercept and antijam capabilities [1,2].  At MITRE, in par- 

ticular, wideband (~1 MHz) systems of this type are being investigated for 

HF communications [3-5).  In such systems the required power gain for 

signal detection is obtained using a filter matched to a PN sequence known 

to the sender and receiver — but not to a potential unfriendly intercep- 

tor.  Although this type of processing reduces the effect of narrowband 

interferers, the system performance can be improved significantly by sup- 

pressing the most powerful interferers of this kind prior to matched 

filtering [6]. 

Narrowband interference can result from narrowband communication 

systems that lie within the band of the spread-spectrum system or may be 

caused by intentional jamming.  Its estimation and suppression can be 

carried out adaptively in the time domain [6,7] or through the use of 

frequency-domain filters in real time [8]. The latter approach appears to 

be more promising, but the design of suitable interference suppression fil- 

ters is subject to problems resulting from the distribution of some of the 

energy from a narrow band in sidelobes [9,10]. This paper develops a vec- 

tor space approach in which the subspace that best fits strong narrowband 

interference in a least squares sense is excised; such an approach suppres- 

ses the sidelobes that complicate conventional frequency-domain methods. 

An adaptive time-domain technique requires finding the parameters of a 

model that is based on assumptions concerning the nature of the interference 
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and how slowly it is changing. On the other hand, since the spectrum of 

the PN sequence is relatively flat across the wide band that is employed, 

it is easy to recognize strong narrowband interference in the frequency 

domain — a filter is designed to suppress the amplitude at all frequencies 

at which its magnitude exceeds a predetermined noise threshold. At MITRE, 

analyses and experiments involving HF interference in wide bandwidths have 

shown that frequency-domain methods can achieve impressive signal-to- 

interference improvements over time-domain methods [5]. 

The required finite Fourier transform on the time data is generally 

performed using basis frequencies that are integer multiples of the recip- 

rocal of the time period over which the measurements are made.  Consider- 

able energy from non-basis frequencies in a narrow band is distributed over 

basis frequencies outside the band as a result of the spreading effect of 

the sidelobes of the sin(x)/x function, which is the Fourier transform of a 

rectangular time window. This spreading effect complicates the problem of 

interpreting the frequency continuum and of designing filters to excise the 

interference. It is common to suppress the frequency sidelobes by employ- 

ing time-domain windows that weight the data prior to performing the finite 

Fourier transform [9,10]. This is accomplished, however, at some sacrifice 

in frequency resolution and by distorting the data prior to suppressing the 

interference. 

This paper takes a new approach to the interference problem by empha- 

sizing that the continuous range of frequencies 

Fo      Fo 

in a band-limited time series can be treated equivalently. The fact that 

there is only a finite number N of time observations spaced at intervals 

T = F ~ means that one is working in an N-dimensional vector space.  Each 

1-2 



frequency is represented by a specific direction in this space, but only N 

such frequency vectors are linearly independent. Any subset of N ortho- 

gonal frequency vectors can be chosen as coordinate axes; and, although the 

usual choice is frequencies that are integer multiples of (NTQ)~ , there 

are an infinite number of equivalent frequency "reference frames." Side- 

lobes result from the projections of vectors associated with other frequen- 

cies onto the coordinate axes. The rules for designing filters for narrow- 

band interference suppression should take into account the vector subspace 

that best fits the continuum of frequencies in such a band and should be 

independent of the particular frequency coordinate axes chosen. This paper 

employs a least squares method to determine that subspace and then projects 

the data vector onto the subspace orthogonal to it.  It is worth pointing 

out that the independence of phenomena from the particular coordinate frame 

used has played a major role in the development of physics in this century 

[11]. 

The discussion in this paper is restricted to the theoretical back- 

ground and the mathematical formalism for the vector space approach, and 

examples of its practical application are not given.  Although considerable 

improvement in performance is expected over conventional frequency-domain 

methods, the signal processing requirements will be greater. The degree of 

improvement and the specific system and hardware requirements must be iden- 

tified in future work. 

1.2 OUTLINE OF THE PAPER 

Sections 2 through 6 are concerned with the development of a vector 

space theory for a time series and its Fourier transform.  Sections 7 

through 10 address the problem of considering the subspace spanned by 

strong narrowband interferers when designing a filter to suppress them. 
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Finally, Section 11 presents the results and conclusions and makes recom- 

mendations for future work. Appendix A evaluates an integral that is 

approximated by a sum in Section 7 and gives arguments concerning the 

number of terms that must be included in the sum. 

Section 2 considers a band-limited time series (e.g., a radio signal 

plus the background noise and interference) that is defined over all time 

and reviews the sampling theorem for such a time series and its Fourier 

transform.  Section 3 shows that the sampled time values can be regarded as 

the components of a vector in an infinite-dimensional space, with each time 

corresponding to a different orthogonal basis vector in this space; i.e., a 

different coordinate axis. A Fourier transform is a transformation to a 

new basis corresponding to the continuous range of frequencies with magni- 

tudes less than the Nyquist frequency, but does not change the original 

data vector.  Each frequency has a unique vector associated with it that is 

orthogonal to all other frequency vectors, and the component of the data 

vector along this direction is the Fourier transform for that frequency. 

The time and frequency bases are therefore two different ways to express 

the same vector, i.e., the same information. 

Actual measurements are confined to a finite time interval, so Section 

4 points out that this is equivalent to mapping a data vector in the 

infinite-dimensional background space into an N-dimensional space.  In 

fact, N of the time basis vectors in the original space and the correspond- 

ing coordinates are mapped directly into the new space, while the remaining 

basis vectors are mapped into the null (zero) vector and all information 

about them is lost. 

On the other hand, as Section 5 demonstrates, the effect that the 

mapping onto the N-dimensional space has on the frequency basis vectors is 

different, since all frequency vectors are changed by this mapping. Every 

such vector representing a specific frequency in the infinite-dimensional 
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space has an image in the N-dimensional one and, as mentioned earlier, in 

the latter space one can choose any subset of N orthogonal frequency vec- 

tors as a basis.  Section 6 demonstrates how an arbitrary data vector in 

the N-dimensional space can be expressed as a linear combination of the N 

vectors in any one of the infinite number of possible frequency bases. The 

coordinates for the basis chosen can be found by means of a finite Fourier 

transform.  With any frequency one can associate a "Fourier vector," which 

is the finite Fourier amplitude for that frequency multiplied by the unit 

vector associated with it, and the N-dimensional data vector can also be 

expressed as an integral over all the Fourier vectors. 

Although in practice only real time series are of interest, Section 7 

addresses the problem of excising a single strong narrowband interferer in 

a complex time series. This is because a "single band" in a real time 

series actually consists of one in the positive frequency region and an- 

other in the negative frequency one, so the problem is first simplified as 

much as possible.  Suppose there are K basis frequencies in the band, such 

that the Fourier amplitudes for all of these frequencies have magnitudes 

exceeding the noise threshold NQ. After calculating the Fourier vectors 

for L frequencies in this band, where L is at least four times larger than 

K (as discussed in Appendix A), but much less than N, we find the subspace 

of dimension M ~ K that best fits these L Fourier vectors in a least 

squares sense. After this subspace is excised by projecting the data 

vector onto the subspace orthogonal to it, the Fourier amplitudes for fre- 

quencies in the band all have magnitudes much less than N , and the side- 

lobes of this band are also suppressed. The required subspace is deter- 

mined by the eigenvectors corresponding to the M largest eigenvalues of an 

N x N Hermitian matrix.  However, in Section 8, it is demonstrated that 

this is transformed easily into an L x L real symmetric matrix problem. 

Section 9 then generalizes the results to a single interferer in a 

real time series, and in Section 10 it is shown how to suppress an 
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arbitrary number of interference bands. The subspace excised is the one 

that best fits L Fourier vectors in the positive frequency interference 

bands and the L complex-conjugates of these Fourier vectors.  (The latter 

are included to account for the negative frequencies.) Some expressions 

are given for the 2L x 2L real symmetric matrix whose largest eigenvalues 

and corresponding eigenvectors must be found.  Finally, it is shown that 

the problem can be re-expressed in terms of two L x L submatrices. 

Note that our treatment of the infinite-dimensional time series from 

which the finite-dimensional data measurements are taken assumes that the 

Fourier transform exists, whereas in the literature it is often assumed 

that such a Fourier transform does not exist [10]. Although such assump- 

tions may require a different theoretical treatment of the mapping from the 

infinite-dimensional space to the N-dimensional one, the final results 

should not differ from those in this paper. 
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SECTION 2 

SAMPLING OVER INFINITE TIME 

2.1 BAND-LIMITED TIME SERIES 

Let g(t) be a real time series (e.g., a radio signal plus background 

noise) that is a function of the time t and for which the Fourier transform 

G(f) is defined as a function of the frequency f.  Only band-limited func- 

tions such that 

G(f) = 0 for |f | > FQ/2 , (2-1) 

where FQ is a positive frequency, will be considered in this paper.  The 

Fourier transform and its inverse are given by 

GO 

G(f) = [g(t)e"j2,lftdt (2-2a) 

and 

F0/2 

g(t) = |G(f)ej2,lftdf , (2-2b) 

-F0/2 

respectively. The fact that g(t) is real leads to the usual condition: 

G(-f) = G*(f) , (2-3) 

where the asterisk indicates complex conjugation. 

Let h(t) be another such band-limited function with the Fourier trans- 

form H(f).  The inner product of g(t) and h(t) is defined by 
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00 

(h,g) = (g,h) = Jh(t)g(t)dt 

FQ/2 

= JH*(f)G(f)df , 

(2-4a) 

(2-4b) 

-F0/2 

and the norm of g(t) is 

||g|| =  (g.g) 
1/2 

JjgCO 
n!/2 

'dt 

(2-5a) 

(2-5b) 

FQ/2 

J  lG<f> "df 

-F0/2 

2.2 SINUSOIDAL TIME SERIES 

1/2 

(2-5c) 

A sinusoid having a frequency Fa such that FQ/2 > F > 0 can be writ- 

ten in the form 

wa(t) = Aacos(2nFat - *a) 

= A cos($ )cos(2nF t) + sin(* )sin(2itF t)l , 
3  I 3 3 3 3     J 

(2-6a) 

(2-6b) 

where the phase $    satisfies 

2n > * > 0 , 
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and where Aa is a real positive constant. The generalization of the Four- 

ier transform in Equation (2-2a) to such a function is 

00 

Sa(f) = r wa(t)e"
j2,lftdt (2-7a) 

A 
a 

2 [e j*a&(f _ Fa) + ej*»&(f + Fa)] , (2-7b) 

where 6(f) is the Dirac distribution (which is often incorrectly called the 

Dirac delta function).  In addition, the inner product in Equation (2-4) 

generalizes to 

00 

(coa,c^) = f wa(t)0|j(t)dt (2-8a) 
Soo 

= (AaAb/2) cos(*a - *b)6(Fa - Fb) , (2-8b) 

so two such sinusoids are orthogonal if either 

a     b 

or if 

* - *. = + rt/2 or ± 3n/2 . 
a    b   ~ 

However, since the right-hand side of Equation (2-8b) is not defined for 

Fa = Fb, such functions do not possess norms like that in Equation (5). 
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2.3 THE SAMPLING THEOREM 

The famous sampling theorem [12] says that it is sufficient to sample 

id-limited function such as G(f) at the rate FQ ir 

plete information about it. The sampling interval is 

a band-limited function such as G(f) at the rate FQ in order to obtain com- 

To = 1/Fo • (2-9) 

For the sampling times 

t = kT0 ; k = 0, ± 1, ± 2, (2-10) 

one defines 

g. = g(kT.) ; k = 0, ± 1, ± 2, (2-11) 

Let us also introduce the function 

©(f)  = 

f 0  ;   f < -F0/2   , 

1   ;   -FQ/2   < f   < FQ/2   , 

I 0   ;   F0/2  <  f   . 

(2-12) 

According to the sampling theorem, one can replace Equation (2-2) by 

G(f) = ©(f)T0^ gke-
j2nkTof (2-13a) 

k=-» 

with the inverse relation 

F0/2 

8u  - G(f)ej2nfkTodf   ;   k = 0,   ± 1,   ± 2, (2-13b) 

-FQ/2 
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The inner product in Equation (2-4) can be rewritten in the form 

(h,g) = T0(h,g)T  , (2-14) 

where 

(h,g)T = )  h* 

k=-«> 
k^k (2-15a) 

F0/2 

= |-     H*(f)G(f)df 

-F0/2 

(2-15b) 

The norm in Equation (2-5) becomes 

|g|| = ^ ||g||T , (2-16) 

where 

gk 

1/2 

(2-17a) 

F0/2 
-,1/2 

(1/T„)  ' |G(f)|2df 

-F0/2 

(2-17b) 

The sampled time series represented by the sinusoid in Equation (2-6) 

is 
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w . = co (kT.) 
ak     a v  0 ' 

A cos(2nF kT - $ ) ; k = 0, ± 1, ± 2,   .   .   . (2-18) 

Corresponding to the result in Equation (2-13a), the Fourier transform in 

Equation (2-7a) can be replaced by the discrete-time transform 

00 

Qa(f)  =  G(f)T0^ooake"j2nkTof   , (2-19) 

k=-°» 

and  this  is still equal  to  the right-hand side of Equation  (2-7b). 

In place of Equation  (2-8) one now has 

<<W    =   T0<Wa'(*\3>T       ' (2-20) 

where 

K'Vl   =]T    Wak<*U (2-21a) 
o   . 

k=-<*> 

A AK a    b 
cos(*    -  *J&(F.   -  FJ   . (2-21b) 2T      ww»*w. "b'"v*a Lb 

2.4 COMPLEX TIME SERIES 

The real time series gk in Equation (2-11) can be regarded as a 

special case of a complex time series 
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x. = x(kT.) ; k = 0, ± 1, ± 2, . . .  , (2-22) 

where x(t) is a complex band-limited function of the time. The discrete- 

time Fourier transform is written 

0(f)To2_iXke 

k=-°° 
& 

-j2nkT0f (2-23a) 

and the inverse relation is 

F0/2 

Xk = X(f)ej 2nfkT o  df   ;  k = 0,   ± 1,   ± 2, 

-F0/2 

Since, in general, 

(2-23b) 

x* t  x. ; k = 0, ± 1, ± 2, k r      k (2-24a) 

in contrast to Equation (2-3), one usually has 

X(-f) * X*(f) . (2-24b) 

The generalization of the inner product in Equation (2-15) for any two 

band-limited complex time series x and y is 

(y,*)P (x,y). •I yfxk 
k=-» 

(2-25a) 

F0/2 

= i-    Y*(f)X(f)df (2-25b) 

-F0/2 
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SECTION 3 

INFINITE-DIMENSIONAL VECTOR SPACE FORMALISM 

3.1 TIME REPRESENTATION IN C 

The preceding section discussed the values gk of a real band-limited 

time function g(t) sampled at times kTQ , k = 0, ± 1, ± 2, . . .  , where 

1/2TQ is the Nyquist frequency.  It is possible to regard the gk's as the 

components of an infinite-dimensional real vector g [13,14], i.e., 

g = ( • • • t  g_i» g0> gxi • • • ) • (3-1) 

The inner product in Equation (2-15) can be viewed as the scalar (or dot) 

product of two such vectors [13,14]: 

(h,g)T = h*-g = ^T h;gk . (3-2) 
k=-°° 

We shall refer to this infinite-dimensional vector space with the scalar 

product defined in Equation (3-2) as R*. 

If only the time representation of such a series were going to be con- 

sidered, there would be no need to introduce a complex vector space, since 

one measures only real time series in practice. But, in order to also be 

able to consider the usual frequency representation, in which there occur 

complex amplitudes, one must work in an infinite-dimensional complex vector 

space C*. The complex time series in Equation (2-22) defines an infinite- 

dimensional complex vector 

X = (. . . , X_j, Xp, x^ , . . . )    . (j-o) 
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From Equation (2-25a), the scalar (or dot product) is 

(y»x)T = [(x,y)T ]* = y*-x (3-4a) 

-E 
k=-« 

yfx k k (3-4b) 

The norm of x can thus be written: 

I I'll, = [«*'«] 
1/2 

Jt=-oo 

1/2 

(3-5) 

Let us introduce a set of real orthonormal vectors 

e(k) =(..., e_1(k) , eQ(k) , ex(k) ,...); 

k = 0, ± 1, ± 2, . (3-6a) 

in C such that 

e.(k) = 5jk ; j, k = 0, ± 1, ± 2, (3-6b) 

Thus, e(k), for a specific value of k, is the vector with a one in the kth 

position and a zero in all other positions; such a vector represents an 

infinite sampled time series with the value 1 at time t = kTQ and the value 

0 at all other times t = 1TQ with 1 t k. The vectors in Equation (3-6) are 

orthonormal because 
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(e(j),e(k))T = e(j)-e(k) = S.k ; 

j, k = 0, ± 1, ± 2  (3-7) 

For an arbitrary vector x in C*, Equation (3-3) can now be written: 

-E e(k)xk , (3-8a) 

k=-<» 

with the inverse 

xk = e(k)-x ; k = 0, ±  1, + 2,   .   . .  . (3-8b) 

The infinite set of linearly independent vectors in Equation (3-6) is 

said to form an orthonormal basis for c", and the xk's are the coordinates 

in this basis.  For a particular value of k one can call e(k) the unit vec- 

tor in the k-direction.  The complex conjugate 

I x* = ^ e(k)x* (3-9) 

k=-<*> 

of the vector x is also a vector in this space. Of course, for a real time 

series represented by the vector g in Equation (3-1), 

g* = g = Y\  e(k>ek i (3-10a) 
k=-» 

that is, 
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g* = g ; k = 0, ± 1, ± 2, . . .  . (3-10b) 

3.2 FREQUENCY REPRESENTATION IN C 

In order to have a basis corresponding to the complex Fourier ampli- 

tude X(f) in Equation (2-23a), let us define the complex vectors e(f) by 

e(f) - ©(f) V e(k)ej2nkTof . (3-lla) 

k=-°° 

The inverse transformation, which is similar in form to Equation (2-23b), 

is 

FQ/2 

e(k) = T0    e(f)e
_:j2nkTofdf ; k = 0, ± 1, ± 2, . . .  . 

-F0/2 (3-llb) 

The vectors e(f) satisfy the relations 

e(-f) = e*(f) (3-12a) 

and 

(e(f ),e(f))  = e*(f )-e(f) = e(f)9(f )F08(f-f ) .      (3-12b) 
o 

From a comparison of Equations (3-8a) and (3-lla), it is clear that, for 

F /2 > If I > 0, e(f) represents the complex time series o 

h (f) = ej2nkTof ; k = 0, ± 1, ± 2, . . .  . (3-13) 
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The vectors e(f) are also a basis for c", since when Equations (2-23b) 

and (3-llb) are substituted into Equation (3-8a), the result is 

F0/2 

x =     e(f)X(f)df , (3-14a) 

-F0/2 

with the inverse 

X(f) = T0e*(f)-x . (3-Ub) 

Equations (3-8a) and (3-14a) are two different ways in which to represent 

the same vector x in C . Just as the sampled time values x are the coor- 

dinates of x in the basis e(k) ; k = 0, ± 1, ± 2, .   .   .   , the Fourier 

amplitudes X(f) are the coordinates in the basis e(f) for F0/2 > f > -F0/2. 

Note that when x is expressed as in Equation (3-14a), we have, in place of 

Equation (3-4), 

FQ/2 

(y.x)T = y*-x = i-    Y*(£)X(f)df , (3-15) 
o o  J 

-F0/2 

as in Equation (2-25b). 

3.3  POSITIVE AND NEGATIVE FREQUENCY DECOMPOSITION 

An arbitrary complex vector x can be written 

x = x(+) + x(-) , (3-16) 
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where 

F0/2 

(+) =    c(f)X(£)df (3-17a) 

contains only positive frequencies and 

x(-) =     e(f)X(f)df (3-17b) 

-Kn 

F0/2 

e*(f)X(-f)df (3-17c) 
J0 

contains only negative ones.  In general, the vectors x(+) and x(-) are 

independent of each other, and they are always orthogonal, i.e., 

(x(-),x(+))  = x(-)*-x(+) = 0 . (3-18) 
o 

The result in Equation (3-14) is, of course, still valid when the time 

series under consideration is represented by a real vector g, as in Equa- 

tion (3-10), but the Fourier amplitude G(f) is now subject to the con- 

straint in Equation (2-3). One can write 

FQ/2 

g E(f)G(f)df , (3-19a) 

-F0/2 

with the inverse 

G(f) - Toe*(f)'g • (3-19b) 
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We can still decompose g into a positive frequency part g(+) and a 

negative frequency part g(-), as in Equations (3-16) and (3-17): 

g = g( + ) + g(-) • (3-20) 

But now, because of Equation (2-3), 

g(-) = g(+)* • (3-21) 

3.4 REPRESENTATION OF A SINUSOID 

To conclude this section, let us consider a real vector u> in C" 

representing the sinusoid in Equation (2-18). Thus, 

wa = 2^ e(k )coak (3-22a) 

E A,    >     e(k)cos(2nFakT0   -  *a) (3-22b) 
k=-°° 

= j- [e-i*«e(Fa)  + ej*ae*(Fa)]   . (3-22c) 

The scalar product of two such sinusoids can then be written 

(a)a,(^)  = w-uk 
o 

A A 
= 2^—cos(*a - *b)S(Fa - F ) , (3-23) 

o 
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as in Equation (2-21). 

The vector u> can be decomposed into a positive and a negative fre- 

quency part as in Equation (3-20), i.e., 

wa = »( + ) + <» (-) , (3-24) 

where 

«„(±) = Aa(±)e(±Fa) (3-25a) 

I e(k)wak(±) . (3-25b) 

Here we have used 

A  -. . 
Aa(±) = j=-«+J'» , (3-26a) 

wak(±)  = Aa(±)e±j2nF.kTo   . (3-26b) 

These vectors satisfy 

«(-)* = «( + ) (3-27) 

and 

(eoa(±),(^(±))T = coa(±)*-c^(±) = Aa(±)*Ab(±)5(Fa - F ) ,      (3-28a) 
o 

(«( + ), H,(-))T = » (+)*••%(-) = 0 . (3-28b) 
o 
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SECTION 4 

FINITE TIME SERIES 

4.1 TIME REPRESENTATION IN CN 

Actual measurements of a band-limited time series are made over a 

finite time interval and not over infinite time, as the sampling theorem 

assumes.  Since there is only a finite number N of samples, one is mea- 

suring the components of a vector in an N-dimensional space. This section 

discusses the time-domain mapping from the infinite-dimensional vector 

space C" considered in Section 3 to an N-dimensional one, and Sections 5 

and 6 discuss the effect in the frequency domain. 

Suppose we are interested in the complex time series 

xk ; k = 0, + 1, ± 2, . . . , 

discussed earlier, but have knowledge of only N successive values, say, 

xk;0<k<N-l, (4-1) 

where it is assumed that N is even.  These values can be regarded as the 

components of a vector x in an N-dimensional complex vector space C 

[13,14]: 

x = (x0, Xj, • . • , xN1) . (4-2) 

Just as the scalar product in C" was defined in Equation (3-4), the 

scalar product of two vectors x and y in C is [13,14] 

(y,x)N = <x,y)* = y*-x (4-3a) 
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N-l 

k=0 
• E y*x*' (4-3b) 

where the components of y, 

yw ; 0< k < N - 1 , 

are also taken from an infinite time series. 

The norm or length of x is 

11*11, - [**•*] 
1/2 

rN-i 

lk=0 

1/2 

(4-4) 

For a basis in C one may employ the real vectors 

e(0) = (1,0,0, ,0) , 

e(l) = (0,1,0, . . . ,0) , 
(4-5) 

e(N-l) = (0,0,0, . . . ,1) . 

These satisfy the properties required of an orthonormal basis, i.e., 

(e(j),e(k))N = e(j)-e(k) = &jk ; 0 < j,k < N - 1 (4-6) 
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Thus, x may be written: 

N-l 

Y (4-7a) 

k=0 

with the inverse 

x. = e(k)-x (4-7b) 

4.2  MAPPING OF VECTORS FROM C* TO C 

One can formally define a map M from C°° to C by requiring that 

r „ 
e(k) -2> « 

e(k) ; 0 < k < N - 1 , 

0  ; k > N or k < 0 
(4-8) 

An operator M that will perform this map is defined by 

N-l 

M = ^ ^  e(j)m.ke(k) 

j=0 k=-» 

(4-9a) 

where 

m.. = < 
Sjk ? 0 < j,k < N - 1 , 

0 ; k > N or k < 0 . 
(4-9b) 

Another way to write M is simply 
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N-l 

M = V e(k)e(k) . (4-10) 

k=0 

This operator transforms a basis vector in c" to one in C in the following 

way: 

M-e(n) = 

N-l  » 

Y Y  e(j)m.ke(k) 
j=0 k=-» 

e(n) 

N=l 

V e(j) ^  m.k e(k)-e(n) 

j=0    k=-»  '- 

N-l 

Y  e(j) V m.k6kn , 

j=0     k=-» 

so, when use is made of Equation (4-9b), we find that 

M-e(n) = 
e(n) ; 0 < n < N - 1 , 

0   ; n > N or n < 0 , 
(4-11) 

which is the desired result. 

For an arbitrary vector x in C having the form in Equation (3-8a), 

Mx = M- 

k=-«° 

e(k)xk 
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E Nk)]' 
k.=-°° 

With the aid of Equation (4-11), the result is 

Mx = x , (4-12) 

where x has the form in Equation (4-7a).  We can say that M is an operator 

from c" to C — note that it does not affect the N components of x given 

in Equation (4-1), but it destroys all information about the remaining 

components in C°°. 

The map from C to C is not one-to-one.  Suppose x and x' are two 

different vectors in c" having the property 

( 0;0<k<N-l, 
xk " xk = (4-13a) 

I arbitrary ; k > N or k < 0 . 

Then 

x = x' , (4-13b) 

so there is no way to distinguish between x and x' using only the N mea- 

sured components of the time series — x and x' have the same image in C . 

In fact, given any vector x in C", there is an infinite number of vectors 

x' in C such that 

x' * x , 

but with the same image in C as x. 
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The above treatment is still valid when only real vectors having the 

form of g in Equation (3-10a) are considered. Thus 

g = M-g (4-14a) 

N-l 

= Ve(k)gk (4-14b) 

k=0 

is a real vector in C . There is an infinite number of real vectors g' in 

C" such that 

g' *  g , (4-15a) 

but for which 

g' = g . (4-15b) 

Suppose that x and y are any two vectors in C  that are orthogonal; 

i.e., which satisfy 

(y,x)  = 0 . (4-16a) 
o 

In general, 

(y,x)N * 0 , (4-16b) 

i.e., the images of x and y in C are not necessarily orthogonal.  On the 

other hand, suppose that x and y are not orthogonal in C*, i.e., 

(y,x)  t 0 . (4-17a) 
o 

4-6 



It is possible that 

(y,*)N = 0 . (4-17b) 

4.3 OPERATORS IN CM 

An arbitrary operator BN in C has the form 

N-l N-l 

EE 
j=0 k=0 

where the numbers 

BN = ^ Y\  e(j)bjke(k) , (4-18) 

bjk ; 0 < j, k < N - 1 , 

which are generally complex, can be regarded as the elements of an N x N 

matrix: 

b = [bjk] • (4-19) 

When BN operates on an arbitrary vector x in C , it is easy to verify that 
N one obtains a new vector y in C , 

y = V* , (4-20) 

that has the form 

N-l 

y = ^e(k)yk , (4-21a) 

k=0 
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where 

N-l 

yk -V bklx: ; 0 < k < N - 1 . (4-21b) 

1=0 

If the elements of the matrix b are real, then BN is a real operator and, 

given an arbitrary real vector g in C , the vector 

h = BN-g (4-22) 

is also real. 

A particular example of such an operator is 

N-l N-l 

IN = Y  ^e(j)&jke(k) (4-23a) 
j=0 k=0 

N-l 

= Ve(k)e(k) . (4-23b) 

k=0 

It is easy to verify that, given any vector x in C , 

IN-x = x , (4-24) 

so I is the identity operator in C . 
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SECTION 5 

FREQUENCY BASES FOR A FINITE TIME SERIES 

5.1  FREQUENCY BASIS MAPPING FROM c" to CN 

The results of the preceding section will be rewritten in the fre- 

quency representation, and the consequences that a mapping onto a finite 

time interval has in the frequency domain will be analyzed.  In this sec- 

tion the discussion will be confined to the basis vectors in the frequency 

domain, and in the next section the frequency representation of an arbi- 

trary vector will be considered. 

Equation (3-lla) defines the frequency-domain basis vectors e(f) in 

C°°.  If such a vector is mapped to C , using the operator M defined in the 

preceding section, we obtain 

fe(f) = M-e(f) (5-la) 

N-l 

= 0(f)Ve(k)ej2nkTof . (5-lb) 

k=0 

It follows that the scalar product of two such vectors is 

(fe(f'),fe(f))N = fe*(f')-fe(f) (5-2a) 

= N0(f)0(f')D(f' - f) , (5-2b) 

where 
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D(f)=l£e-J
2nkTof (5-3) 

k=0 

is a cyclic function of f with period FQ• 

The function D(f) can be written in the form 

D(f) = exp[-j(N - l)rtT0f]D°(f) , (5-4a) 

where 

sin(nNT f) 
D°<f> = Nsin(tfrof) <5"4b> 

approximates the behavior of the function sin(x)/x in an N dimensional 

space.  This function has the properties 

D(-f) = D*(f) (5-5) 

and 

F0/2 

NT0 D(f - f")D(f" - f')df" = D(f - f') . (5-6) 

-F0/2 

It has a maximum at f = 0, where 

D°(0) = D(0) = 1 , (5-7a) 

and, more generally, 
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D°(kFn/N) "   ^VlN     I k = 0,  ± 1,  ± 2, 

l=-» 
(5-7b) 

It   is worth noting that 

where 

D°(f) = ^U(f + nF0) , 

n=-°° 
(5-8a) 

U(f) 
sinnNTQf 

"NT0f 
(5-8b) 

is the Fourier transform of 

u(t) 

NT, 
0  | t<- 

NT0 
;   2  - * - 2  ' 

NTQ 
0 ; — < t 

(5-8c) 

That is, D°(f) is a frequency-aliased [12] version of U(f), which results 

because the function u(t), which is not band-limited, is sampled at the 

rate F .  Since other properties of D°(f) have been frequently discussed in 

the literature [9], we will not go into much detail here or provide any 

figures. The region 

Fo      Fo 
N"<f <N" 
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is frequently called the main lobe of D°(f), while the kth sidelobes are 

given by 

F F o   ,_,  .,   ..  o 
ks-< |f| < (k + 1) r  , 

where 

1 < k < | - 1 

5.2 UNIT FREQUENCY VECTORS IN CN 

Whereas the vectors e(f) and e(f ) in C are always orthogonal for 

f * f T their images fe(f) and fe(f ) in C do not generally have this prop- 

erty, according to Equation (5-2).  In fact, from Equation (5-7b) it fol- 

lows that fe(f) and fe(f ) are orthogonal only when 

kF 
f - f' = — ; k = ± 1, ± 2 ± (N - 1) . (5-9) 

From Equations (5-2) and (5-7a), the length of fe(f) is 

||fe(f)||N = [fe*(f)-fe(f)]   = W   . (5-10) 

Since the scalar product of fc(f) and fe(-f) is 

(fe(f),fe(-f))N = fc*(f)-fe(-f) = N0(f)D(2f) , (5-11) 

fe(f) and fe(-f) are not, in general, orthogonal. 
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It was pointed out in the previous section that any vector in CM is 

the image of an infinite number of vectors in C°°.  Since there is an infi- 

nite number of different vectors in c" that, like e(f), map into fe(f), 

frequency loses the unique and unambiguous meaning that it has in infinite 

time. For example, one of the vectors e'(f) t  e(f) that maps into fe(f) is 

N-l 

c'(f) = 0(f)Y"e(k)ej2,lkTof (5-12a) 

k=0 

F0/2 

= 0(f)NTo    e(f')D(f' - f)df' . (5-12b) 

-F0/2 

Instead of using the vectors fe(f), it is convenient to introduce unit 

vectors tyf) defined by 

yf) = -±  fe(f) (5-13a) 

— M-e(f) (5-13b) 

N-l 

= 0(f)— y~,e(k)ej2nkTof  . (5-13c) 
NN k=0 

These are unit vectors, since 

ll*f)MN = 1 • (5-1*) 
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Furthermore, the scalar product of two such vectors is 

(5<f ),s*f))N = e(f)e(f )D(f - f) , (5-15) 

so D(f - f ) can be regarded as the complex cosine of the angle between 

\Kf ) and \<f). These vectors satisfy 

SK-f) = ^(f) (5-16a) 

and 

<^f),*(-f))H = ©(f)D(2f) (5-16b) 

5.3 ORTHONORMAL FREQUENCY BASES IN C 

,N  . Since C is an N-dimensional space, we can choose N orthogonal vectors 

from the set 

v(f) ; |f I < j- 

as an orthonormal basis — there is an infinite number of possibilities. 

To obtain all possible orthonormal bases, let us first consider the set of 

frequencies 

f, = 

o N 
k rr ; o < k < £ - l , 

-(N - k)^-  ; | < k < N - 1 

(5-17a) 
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Note that 

fN.k = -fk ; 1 < k < | - 1 . (5-17b) 

Now consider the more general set of frequencies 

Fk=F+fk;0<k<N-l, (5-18a) 

where f has a value in the range 

Fo  - 
g- > f > 0 . (5-18b) 

From Equations (5-7) and (5-15) the set 

v(f"k) ; 0 < k < N - 1 , (5-19a) 

is an orthonormal basis; i.e., 

(Mr),v(Fk))N = v*rf.)-SKfk) = &.k ; 0 < j,k < N - 1 .       (5-19b) 

Because of Equation (5-13c), 

N-l 

v(Fj = — > e(n)e:i2'InTofk ; 0 < k < N - 1 

n=0 

The inverse of this equation is 

(5-20a) 
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N-l 

e(n) = — V v(Fk)e
_:i2,tnTofk ; 0 < n < N - 1 . (5-20b) 

k=0 

With the aid of Equation (5-15), it is easy to show that, for an arbi- 

trary choice of basis frequencies, 

N-l 

*(f) = 0(f) ^\f"k)D(Fk - f) . (5-21) 

k=0 

This relation enables us to express the unit vector v(f), which is parallel 

to the mapping of the frequency vector e(f) in C* into the space CN, in 

terms of the N unit vectors v(Tk) chosen for a basis.  Here D(Tk - f) is the 

complex cosine of the angle between the basis vector ^K^k) and the arbitrary 

frequency vector tyf). A consequence of Equations (5-15), (5-19b), and 

(5-21) is 

N-l N-l 

^D(f - Fk)D(Fk - f') = ^D*(Fk - f)D(Fk - f') 

k=0 k-0 

= D(f - f ) , (5-22a) 

a special case of which is 

N-l 

E 
k=0 

^~jD(Fk - f)|2 = 1 . (5-22b) 

After multiplying Equation (5-21) by NTQD(f - I), integrating over f and 

making use of Equation (5-6), we find that 
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F0/2 

S*f.) = NT0    *(f)D(f - f ,)df ; 0 < j < N - 1 . (5-23) 

-F0/2 

From the above equations, it also follows that 

F0/2 

SKf) = NTQ0(f)    v(f')D(f' - f)df' . (5-24) 

-F0/2 

5.4  SELF-CONJUGATE BASES 

For an arbitrary choice of J  in Equation (5-18), the set of vectors 

VC-Fk) = v*(Fk) ; 0 < k < N - 1 , (5-25) 

differs from the original set. This is not of any concern as long as we 

are considering arbitrary complex vectors, but, when our interest is in 

real vectors, it can be very desirable to have the set of basis vectors 

equal to its complex conjugate set; that is, for the basis to be self- 

conjugate.  One way to guarantee this property is to choose 1=0, in which 

case the set of basis frequencies is given in Equation (5-17) — this is 

the basis almost always used in the literature.  In this case there are two 

real vectors, 

(5-26a) 

**»/a> = *<fN/2> > 

N/2 - 1 positive frequency vectors, 
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SKfk) ; 1 < k <£- 1 , (5-26b) 

and N/2 - 1 negative frequency vectors 

*fX> = *-fN-K> = *<*.-•«> 5 J+ 1 <k <N- 1 (5-26c) 

Equation (5-20) can, in this case, be written 

N-l 

Kffc>  = -iye(n)ej2nnk/N  ;  0  < k  < N -  1   , 
NN n=0 

(5-27a) 

and 

N-l 
/ \   1 \ '-, c  \ -i2rtnk/N  „ .       ...  - (n) = — > v(f„)e J      ; 0 < n < N - 1 

iN k=0 

(5-27b) 

Another choice of f, such that the basis vectors and the complex con- 

jugate set are identical, is 

1  2N 
(5-28) 

In this case, the basis frequencies 

(2k + 1) gjj- ; 0 < k < |- 1 , 

(2N -2k-l)xsr|r£k£ll-l, 2N ' 2 

(5-29a) 
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satisfy 

L-k-i  =-fk;0<k<|-l. (5-29b) 

The basis now consists of  the N/2 positive frequency vectors 

v(fk)   |0<k4-lf (5-30a) 

and the N/2 negative frequency ones 

v(fk) = *-?,_„_ x) - ^(fN_k_!) 5 | < k < N - 1 . (5-30b) 

Equation  (5-20)  can now be written 

N-l 

SKfk) - -i ye(n)ejnn(2k+1)/N  ;  0  < k  < N -  1   , (5-31a) 

n=0 

and 

N-: 

e(n)  = AVv(flt)e-:',m(2k+:l)/N  ;   0  <n  <N -  1   . (5-31b) 

k=0 
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SECTION 6 

FREQUENCY REPRESENTATION OF A FINITE TIME SERIES 

6.1 BASIS FREQUENCY FOURIER AMPLITUDES 

It has been shown that the frequency-domain basis vector e(f) in C* 

has the image 

fe(f) = ^Tv(f) 

in the vector space C to which actual measurements correspond, where SKf) 

is a unit vector, and that one can choose N of the vectors ^Kf) for an 

orthonormal basis.  This section discusses the frequency-domain represen- 

tation of an arbitrary vector in C . 

When Equations (3-llb) and (5-20b) are substituted into Equation 

(4-10) for the mapping operator M from c" to C , the result is 

N-l  FQ/2 

M = Wl0  ^ ^*k>D<Fk " f)e*(f)df • (6-1) 
k-0   ^ K-U -FQ/2 

When this operator is applied to a vector x in c" expressed in the fre- 

quency representation, as in Equation (3-14a), we obtain 

N-l 

x = Vv(Fk)X(Fk) , (6-2a) 

k=0 

where the discrete Fourier amplitudes X(I ) are given by 
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F0/2 

X(fk) = W        D(fk - f)X(f)df ; 0 < k < N - 1 . (6-2b) 

-F0/2 

Thus, just as Equation (4-7a) gives the time-domain representation of the 

vector it in C , Equation (6-2) gives the frequency-domain representation 

using one of the frequency bases given by Equations (5-17) and (5-19). 

From Equation (6-2a), 

X(f"k) = V(Fk)-x ; 0 < k < N - 1 . (6-3) 

N 
Note that the scalar product in C , which was introduced in Equation (4-3), 

can also be written 

N-l 

k=0 

When Equation (5-20b) is inserted into the right-hand side of Equation 

(4-7a), we also find that 

N-l 

X(f J = — Vx e";i2'mTofk ; 0 < k < N - 1 , (6-5a) 

n=0 

which has the inverse 

N-l 

x - — V'x(Fb)e
:'2nnTofk ; 0 < n < N - 1 . (6-5b) 

NN  k=0 
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The two cases of special interest are for the basis frequencies fk in Equa- 

tion (5-17) and for the basis frequencies fk in Equation (5-29).  In the 

former case 

N-l 

X(fk) - J-Vx e-J2nnk/N ; 0 < k < N - 1 , (6-6a) 

n=0 

and 

N-l 

xn = ^-yX(fk)e
j2nnk/N ; 0 < n < N - 1 , (6-6b) 

W k=0 

while in the latter case we have 

N=l 

1W1 
X(fk)  . J_^Xne-Jm1(2k+l)/N  .   o  <k  <N -  1   , (6-7a) 

n=0 

and 

N-l 
x    = J^Vid   )eJ"n(2k+l)/N  .   o  <n   <N -  1   . (6-7b) 

n=0 

If we are considering a real time series gk and its vector g, instead 

of Equation (6-2) we have 

N-l 

g = V"^(Fk)G(Fk) , (6-8a) 

k=0 
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where 

F0/2 

G(fk) = W D(fk - f)G(f)df ; 0 < k < N - 1 . (6-8b) 

-F0/2 

Because of Equations (2-3) and (5-5), we find that 

G*(Fk) = G(-Fk) ; 0 < k < N - 1 , (6-9a) 

so it is convenient to use one of the two sets of basis frequencies that is 

identical to its complex conjugate set, i.e., either the set in Equation 

(5-26), in which case G(f0) and G(fN  ) are real and 

G*(fk) = G(fN_k) ; 1 < k < | - 1 , (6-9b) 

or the set in Equation (5-30), in which case 

G*(fk) = Gd^,^) ; 0 < k < | - 1 . (6-9c) 

Otherwise, if we use an arbitrary choice of basis, each of the amplitudes 

G(fk) for N/2 < k < N - 1 is a linear combination of the complex conjugate 

amplitudes for 0 < k < N/2 - 1 . 

6.2 FOURIER AMPLITUDES FOR ANY FREQUENCY 

Let us now return to the case of an arbitrary complex time series. In 

order to excise narrowband interference, we will need to know the component 

of x in the direction of \Kf)> i.e., 
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X(f) = V(f)-x , (6-10) 

an expression that has the same form as Equation (6-3) for the basis fre- 

quencies. If we write x in the time representation as in Equation (4-7a) 

and use Equation (5-13c) for v(f), we have 

N-l 

X(f) = ©(f) —Vx e~j2nkTof . (6-lla) 
NN k=0 

On the other hand, if we express x in the frequency representation, as in 

Equation (6-2a) and make use of Equation (5-15), we find that 

N-l 

x(f) = e(f)^j)(f - Fk)X(Fk) . (6-iib) 

k=0 

Thus X(f), which we shall call the finite Fourier amplitude for frequency 

f, can be obtained from either the time series components x using the 

finite Fourier transform in Equation (6-lla) or from the discrete Fourier 

amplitudes X(Tk) for the basis frequencies using Equation (6-llb). 

Equation (6-2b) is an expression for the discrete Fourier amplitudes 

for the basis frequencies in terms of the Fourier amplitudes in C*, but 

there is no way one can solve for the latter. This equation does tell us 

that the amplitude for any of the basis frequencies is a supposition of 

both positive and negative frequency amplitudes in C". If it is substi- 

tuted into the right-hand side of Equation (6-llb) we find that 

F0/2 

X(f) = JiToif) D(f-f')X(f')df (6-12a) 

-F0/2 
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F0/2 

= NTo0(f) D(f-f )X(f')df   . (6-12b) 

-F0/2 

A special case of  the above is 

F0/2 

X(fk)  = NTQ D(fk   -  f)X(f)df   . (6-13) 

-F0/2 

When the above equations are substituted into Equation (6-2a), we find, 

with the help of Equation (5-21) that 

V2 

x = W *(f)X(f)df (6-Ua) 
-F/2 

F0/2 

= NTQ     *(f)X(f)df . (6-14b) 

-P0/2 

6.3 FREQUENCY PROJECTION OPERATORS 

The unit operator IN introduced in Equation (4-23) can be written, in 

the frequency representation 
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N-l N-l 

iN -Y, E^fk)&kiV:(fi) (6_i5a) 

11-X 

2^^(Fk)v*(Fk) . (6-15b) 

k=0 1=0 

N-l 

•E' 
k=0 

Another operator of special interest is the projection operator 

PN(f) = 5Kf)V(f) • (6-16) 

Given an arbitrary vector it in C , consider the vector 

x(f) = PN(f)-x (6-17a) 

= *(f)[5*<f)-*] (6-17b) 

« Mf)X(f) , (6-17c) 

We see that x(f) is the projection of the vector x in the direction of the 

unit vector ^Kf) corresponding to the frequency f.  Since X(f) is the 

finite Fourier amplitude for frequency f, we shall refer to x(f) as the 

finite Fourier vector for that frequency. Because of Equation (5-21) 

N-l 

I 
k=0 

IN- 1 

x(f) = Y\fk)X(f;fk) , (6-18a) 

where 

X(f;fk) = D(fk - f)X(f); 0 < k < N - 1 . (6-18b) 
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The properties of projection operators are discussed in reference 14. 

6.4 POSITIVE AND NEGATIVE FREQUENCY AMPLITUDES 

In Equations (3-16) and (3-17), we saw that an arbitrary vector x in 

C* can be written as the sum of a positive frequency part x(+) and a nega- 

tive frequency part x(-), where x(+) and x(-) are orthogonal. The image of 

x(±) in C is 

x(±) = M-x(±) . (6-19) 

From Equation (6-2) it follows that 

N-l 

x(±) = )\fv)X(±(Fj , (6-20) 
•k' s~'    k 

k=0 

where 

F0/2 

X(+,fk) = W        D(fk - f)X(f)df ; 0 < k < N - 1 ,       (6-21a) 

and 

0 

FQ/2 

X(-,fk) = W D(fk + f)X(-f)df ; 0 < k < N - 1 .       (6-21b) 

0 

This result resembles Equation (6-2b), except for the restriction on the 

range of integration.  In fact, X(Tk) is related to the amplitudes above by 
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X(fk) = X(+,fk) + X(-,fk) ; 0 < k < N - 1 . (6-22) 

Although only positive frequency amplitudes in c" contribute to Equa- 

tion (6-21a) and only negative frequency ones to Equation (6-21b), both 

x( + ) and x(-) have components along all of the frequency basis vectors, not 

just the positive frequency basis vectors in the case of x( + ) and the nega- 

tive frequency ones in the case of x(-).  Furthermore, in contrast to Equa- 

tion (3-18), which tells us that x(+) and x(-) are orthogonal in C*, we 

have 

(x(-),x(+))N = *<-)*•*<+) (6-23a) 

N-l 

= V[x(-,fk)]*X(+,fk) (6-23b) 
k=0 

F0/2   0 

= N    df   df'x*(f')D(f' - f)X(f) .      (6-23c) 

0  -F0/2 

Thus, x(+) and x(-) are not generally orthogonal, and there is no way we 

can determine these two vectors from a knowledge of only x, but when 

D(P - f) is small for the range of values for which X*(f ) and X(f) are 

large in Equation (6-23c), we can determine them approximately. 

M 
It is ambiguous to talk about decomposing an arbitrary vector x in C 

into a "positive frequency" part and a "negative frequency" part.  Suppose 

we make some choice of basis vectors TR for a particular choice of I in 

Equation (5-18) and consider another choice 

fk=f +fk;0<k<N-l, (6-24a) 
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where 

F 
jp> f > 0 ; F # f . (6-24b) 

It follows from Equation (6-llb) that 

N-l 

X(fk) = ^D(fk - F)X(F) ; 0 < k < N - 1 . (6-25) 

n=0 

We see that each amplitude X(Tk) is a linear combination of all of the 

amplitudes X(I ). There is no decomposition of the two sets of amplitudes 

into subsets of "positive frequency" and "negative frequency" amplitudes 

such that the primed amplitudes of a given frequency sign are a linear 

combination of only unprimed amplitudes having the same frequency sign. 

6.5 SINE WAVES 

To conclude this section, let us look at the effect that the projec- 

tion into a finite time series has on the vector GO in Equation (3-22) 

representing a sinusoid with a frequency F .  The projection of «a onto C 

is 

co = M'» (6-26a) 

N=l 

= Aa  Vs(k)cos(2JiFakT0  -  <fra) (6-26b) 

k=0 

= ^^"[e'^-^KFJ  + ejW(Fa)]   , (6-26c) 

6-10 



and the scalar product of two such sine waves is 

<^'i)a>N = '%*<»> (6-27a) 

A AK 

+ cos 

|cos[(N-l)FfT0(Fa - Fb) - («>a - ^)]W(FA   -  Fb) 

[(N-l)rfT0(Fa + Fb) - (•. + 4>b)]D°(Fa + Fb)J .      (6-27b) 

Consequently, the length of w is 

( \1/2 

\\K\\  '  JFM1 + cos[2(N-l)itr0Fa - 24.a]D°(2Fa)l (6-28) 

The length of w therefore depends on both the frequency F and the phase 
<(> , except when D°(2F ) = 0. 
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SECTION 7 

INTERFERENCE EXCISION IN A COMPLEX TIME SERIES 

7.1 NARROWBAND INTERFERER IN AN INFINITE TIME SERIES 

Before the excision of an arbitrary number of narrowband interferers 

is discussed, the problem will be simplified as much as possible by allow- 

ing only a single interferer.  Since a single interference band for a real 

time series actually means two interfering bands, one in the positive fre- 

quency region and another in the negative frequency one, this section and 

the next one will consider a single narrowband interferer in a complex time 

series. 

The finite time series in which we are interested is taken from the 

infinite band-limited series 

xk = sk + bk ; k = 0, ± 1, ± 2, . . . , (7-1) 

where 

sk ; k = 0, ± 1, ± 2, . . . , 

is the signal and 

bk ; k = 0, ± 1, ± 2  

is the narrowband interference. For the purposes of this paper, the signal 

is a pseudonoise sequence. The random noise with which one is usually con- 

cerned can be included in the signal and will not be discussed. The Four- 

ier transform of this time series has the form 
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X(f) = S(f) + B(f) , (7-2) 

where X(f) is expressed in terms of the series xk by means of the discrete- 

time Fourier transform in Equation (2-23a) and where S(f) and B(f) are 

similarly related to sk and bk , respectively. 

The spectrum of the signal is spread throughout the frequency range 

Fo        Fo 
->f *-j- 

and is relatively flat. We assume that B(f), on the other hand, is essen- 

tially zero outside a narrow frequency band 

F2 > f > Pj , (7-3a) 

where 

— > F2 > Fx > 0 (7-3b) 

and 

F2 - Fl « r (7-3c) 

That is, 

B(f) = 

0 

B(f) 

0 

0 < f < ?l 

F, < f < F2 
F2 < f , 

(7-4a) 
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and 

B(f) = 0 ; f < 0 . (7-4b) 

7.2 NARROWBAND INTERFERER IN A FINITE TIME SERIES 

In practice, of course, we measure only the finite time series 

xk = sk + bk ; 0 < k < N - 1 , (7-5) 

and we know only xk, not sk and bk separately, for this time interval. 

After choosing one of the basis frequency sets allowed by Subsection 5.3, 

we have, as a result of a finite Fourier transform, 

X(Fk) = S(Fk) + B(fk) ; 0 < k < N - 1 . (7-6) 

Here S(fk) is the Fourier transform of the finite series sk and B(fk) is 

that of the finite series bk, but, of course, we can only calculate X(fk) 

and not S(fk) and B(fk) separately.  The corresponding vectors in C are 

x = s + b , (7-7) 

where the time and frequency representations of x are given by Equations 

(4-7a) and (6-2a), respectively, and where, similarly, 

N-l       N-l 

k^O       k=0 

s = Y"e(k)sk = ^v(k)S(Fk) , (7-8a) 

N-l        N-l 

ic^O       k=0 

ii-i       n-l 

= ^Te(k)bk = ^\Kk)B(Fk) . (7-8b) 

7-3 



The discrete Fourier amplitudes X(fk) in C
N are related to the contin- 

uous amplitude X(f) in C* by Equation (6-2b).  Likewise, 

F„/2 

S(fk) = ^FT    D(fk - f)S(f)df ; 0 < k < N - 1 , (7-9a) 

-FQ/2 

but, because of Equation (7-4), 

F; 
B(fk) = 1W      D(fk - f)B(f)df ; 0 < k < N - 1 . (7-9b) 

Fi 

A consequence of this last equation is that the narrow interference band 

defined by Equations (7-3) and (7-4) contributes to all of the amplitudes 

B(rk), not just to the amplitudes for those basis frequencies that lie in 

the band.  In fact, even though the integral in Equation (7-9b) is over a 

small positive-frequency range, it results in a contribution not only to 

the "positive frequency" amplitudes fk such that 

0 ^  <F,N/2,-l  I 

but also to the "negative frequency" amplitudes.  All of this is a result 

of the finite width of the central lobe of D(f) and of its sidelobes. 

7.3 THE EXCISION PROBLEM 

Let us suppose that some noise threshold N has been established such 

that 
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No » |S(fk)| ; 0 < k < N - 1 , (7-10) 

and that we wish to excise interference that exceeds this threshold. It is 

not necessary to be concerned about narrowband interference whose peak 

amplitude is comparable in magnitude to that of the signal, since its power 

will be small.  We assume that there exists some narrow band of basis fre- 

quencies Ik : 

FK > Tk > T3   , (7-lla) 

where 

and 

Fo  _   - 
2~> fK > fj > 0 (7-llb) 

-   -    Fo 
£„ - f, « j- , (7-llc) 

such that 

|B(Fk)| > No ; J < k < K . (7-lld) 

Although the data enables the calculation of only the amplitudes X(fk) in 

Equation (7-6), and neither S(fk) nor B(fk), within this band, 

X(f~k) « B(Fk) ; J < k < K . (7-12) 

We cannot excise the interference simply by putting 
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X(fk) = 0 ; J < k < K , (7-13) 

because a great deal of power in the narrowband may be distributed among 

basis frequencies outside the range in Equation (7-lla).  Therefore, there 

may be a number of basis frequencies outside that range for which B(fR) is 

not negligible compared to S(fk).  A method is needed to account for the 

contributions that non-basis frequencies in the band make to basis frequen- 

cies outside of it through the integral in Equation (7-9b). 

We know from the discussion in Sections 5 and 6 that any choice of 

basis frequencies allowed by Equations (5-17) and (5-18) is appropriate. 

Clearly, the rules employed to design a filter to suppress the interference 

and the results of applying this filter should not depend on the basis 

chosen.  If the rule in Equation (7-13) is applied for a particular basis, 

it cannot be valid for any other basis. 

The rule in Equation (7-lld), strictly speaking, is basis dependent. 

This is because, even if Equation (7-lld) is not satisfied for any value of 

k, it is possible for some amplitudes B(f) for frequencies lying between 

the basis frequencies to exceed the noise threshold — any such frequency 

is a possible basis frequency in some other basis.  It will generally be 

sufficient to test the basis frequency amplitudes only, but, if one wishes 

to be more particular, the amplitudes for the frequencies halfway between 

the basis frequencies can also be checked. 

7.A  LEAST SQUARES FORMALISM FOR THE INTERFERENCE SUBSPACE 

We will seek the subspace of the vector space C that best fits the 

narrowband interference, and we will then delete this subspace to suppress 

the interference.  In this subsection a least squares formalism for finding 
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the subspace is given, and a matrix solution is found in the next subsec- 

tion.  Finally, in Subsection 7.6 we will show how to excise the inter- 

ference by projecting the data vector onto the subspace orthogonal to it. 

We know from Section 6 that one can easily evaluate the Fourier 

amplitude X(f) for non-basis frequencies. We can, by such calculations, 

find some range of frequencies such that, in place of Equations (7-11) and 

(7-12) we have 

|X(f)| * |B(f)| >No ; F2 > f > Fx , (7-lAa) 

where 

f
K + 1 > F2 > fK (7-"b> 

and 

f, I Fx >  £,_, . (7-Uc) 

In practice, we need only an approximate knowledge of P2 and F:.  (As a 

matter of fact, in order to be certain that the interference band is prop- 

erly suppressed, one may wish to include some frequencies for which |X(f)|, 

although very large, does not satisfy Equation (7-14a) — then F2 may be 

larger than f . and F, smaller than T  ..) 
K+l 1 J—1 

Let us now choose some number, say L, of frequencies in the range in 

Equation (7-14), where 

N»L>K-J+1 , (7-15) 

and let us label these frequencies as follows: 
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•p J p - 1 , . . . , L , (7-16a) 

where 

F2 * *L > *L-I  >   • • • > *2 > *i * Fi • (7-16b) 

The exact number L and the correct way to choose these frequencies will not 

be decided in this paper. It is argued in Appendix A that L should be at 

least four times larger than K - J, i.e., 

N » L > 4(K - J) + 1 . (7-17) 

In fact, the frequencies may even be selected so that they are equally 

spaced, by dividing the interval between the frequencies Fx and F2 into 

L - 1 equal parts. But the formalism to follow does not depend on the 

specific method by which we choose the frequencies in Equation (7-16), and 

we will leave it to practical experience to make the final determination. 

Using either of Equations (6-11), we can now calculate 

X(*p) = B(*p) ; 1 < p < L . (7-18) 

N 
According to Equation (6-17), the Fourier vectors in C for these frequen- 

cies are 

*(*p) = *(*p)X(V 
= *C*P>*

(V J 1 < P < L . (7-19) 

The vector x(4> ) is the projection of the data vector x onto the direction 

of the unit vector ^K • ). 
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Let us consider an arbitrary complex unit vector fl and the projection 

operators [14] 

PN(u) = uu* , (7-20a) 

P°(fl) = IN - PN(u) . (7-20b) 

The vector 

PN(0) •*(•„) = u[u*-x(«|>p)] (7-21a) 

is the projection of x(<|» ) onto the direction of u, and the vector 

Pj(0)-ft(*p) = ft(*p) - u[u*-x(*p)] (7-21b) 

is the projection of x(«j> ) onto the subspace of C orthogonal to u. 

Let us now ask: What is the vector u such that the sum of the squared 

distances 

L 

A0 = ^yp|p;(u)-x(<j.p)|
2 (7-22a) 

p-1 

is a minimum? Here u is a weighting factor that will be briefly discussed 

below. The vector u that answers this question is the best fit in the 

least squares sense to the subspace defined by the interference band fre- 

quency vectors in Equation (7-19) [15]. This is the same as asking for the 

vector u such that the sum of the squared distances 
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L L 
A= XXjVtt>-*<*P>|2  =^p|u*-x(4>p)|

2 (7-22b) 
p=l p=l 

is a maximum. 

Equation (7-22b) should be regarded as an approximation to the 

integral 

A- J df |u*-x(f)|2 (7-23) 

». 

over the interference band, where the frequencies P and P were defined in 

Equation (7-14).  If the frequencies • are chosen to be equally spaced, 

with 

•i - *j , (7-24a) 

•L - f3   , (7-24b) 

the simplest possible choice for the weights u in Equation (7-22) is 

(  (P2 - P.)/(L - 1) ; 1 < p < L - 1 , 
Wp = (7-24c) 

I        0       ; P = L . 

If one employs some other numerical integration scheme, with or without 

uniform intervals between the • 's, then the appropriate weighting factors 

y > 0 should be employed [16]. The integral in Equation (7-23) is 

straightforward but tedious to carry out, and the result is given in 

Appendix A, which also contains a discussion on the lower limit for L in 

7-10 



Equation (7-17).  Our reason for using an approximation instead of the 

exact integral is that this allows us to greatly reduce the size of the 

matrix whose largest eigenvalues we must find, as will be shown in Section 

8. 

7.5 SOLUTION OF THE LEAST SQUARES PROBLEM 

According to Equation (6-18), we can expand each of the vectors x( $ ) 

in terms of its components along the basis frequencies: 

N-l 

k=0 

*<•„) = £\fk)X(*p,fk) ; 1 < p < L , (7-25a) 

where 

X(*pffk) = D(fk-4>p)X(*p) ;0<k<N-l;l<p<L.       (7-25b) 

We can also express any unit vector u in terms of its components along the 

basis frequencies: 

N-l 

u = V\Fk)U(Fk) . (7-26a) 

k=0 

Thus, in Equation (7-22b), 

L N-l 

A= ^ ^pp|U*(Fk)X(«|>p,Fk)|
2 . (7-26b) 

p=l k=0 
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It is possible to write the last equation in the form 

A = U+KU , (7-27) 

where K is an N  x N matrix having the elements 

P=i 

(7-28a) 

^»«pD<rk  "   *p) |XC4»p) |2D<+p  -  £x)   ; 

P=l 

0  < k,   1   < N-l (7-28b) 

Here U is the column matrix 

0(«,) 

U(ft) 

u<fN-l> 

(7-29a) 

and the + symbol, when used as a superscript on any matrix, indicates the 

Hermitian conjugate or adjoint matrix, i.e., the complex conjugate of its 

transpose. Thus, 

U+ = [U*(f0) U*(f1) . . . U*(fN_1)] . (7-29b) 
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From Equation (7-28a), we see that the elements of K satisfy 

Kbl = K*  ; 0 < k, 1 < N - 1 , k1     Ik'    —  *    —        ' (7-30a) 

so K is Hermitian, i.e., 

K = K (7-30b) 

Since K is Hermitian, all of its eigenvalues 

X ; 1 < a < N , (7-31a) 

are real [13,14].  Let us arrange them in decreasing order: 

\ > \   > • • • > \ (7-31b) 

The corresponding eigenvectors 

ua(fN-a> 

; 1 < a < N , (7-32a) 

satisfy 

KUa = X Ua ; 1 < a < N (7-32b) 

Eigenvectors corresponding to different eigenvalues are always orthogonal, 

and for equal eigenvalues they can always be constructed so that they have 

this property: 
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(U°)+UP = iap ; 1 < a, (3 < N . (7-32c) 

Each of these eigenvectors corresponds to a vector in CN, i.e., 

N-l 

u" = ^TVFk)U
a(Fk) ; 1 < a < N , (7-33a) 

k=0 

and, because of Equation (7-32c), 

(fla)*-uP = 6ap ; 1 < a, 3 < N . (7-33b) 

The column matrix U in Equation (7-29) and the corresponding vector u 
in Equation (7-26a) may now be written 

N 

U = VKJJ" , (7-34a) 
c*=l 

N 

u = ^\ua , (7-34b) 

a=l 

where the coefficients 

Ka  =  (U°)+U =  (ua)*-u ;   1   < a < N  , (7-35a) 

satisfy 

N 

£jKj2  = 1  • (7-35b) 
ce=l 
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When Equation (7-34a) is substituted into Equation (7-27) and use is made 

of Equation (7-32), one finds that 

N 

A= XjK«|2X« * (7-36a) 
a=l 

From the definition of A in Equation (7-22b), it cannot be negative; 

therefore, the N eigenvalues in Equation (7-31) satisfy 

Xa>0;l<o<N. (7-36b) 

Examination of Equation (7-28) shows that K is a singular matrix and that 

only the first L eigenvalues are nonzero. Therefore, 

Xa=0;L+l<a<N, (7-36c) 

where we recall that L, the number of frequencies chosen in the inter- 

ference band, satisfies equation (7-17).  Equations (7-35b) and (7-36a) 

give us the answer to the question asked in connection with Equation 

(7-22a):  A has its minimum value when u is equal to u , the unit vector 

corresponding to the largest eigenvalue, ^, of K. 

The eigenvalue problem can actually be simplified, because it is easy 

to show that K is equivalent to a real symmetric matrix. This will not be 

discussed here because we are going to transform the problem into one in- 

volving an L x L matrix in the next section. 
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7.6 PROJECTION ONTO THE ORTHOGONAL SUBSPACE 

It has just been found that A is maximized when u is equal to the unit 

vector u corresponding to the largest eigenvalue of the matrix K. This 

choice of u simultaneously minimizes A in Equation (7-22a).  Let us recall 

that A is the sum of the squared projections of the vectors x($ ) in the 

narrowband onto the subspace of C orthogonal to Q. As a result of this 

latter projection, Equation (7-21b) says that we are left with the vectors 

pJOi1)-*^) = *(*p) - AMOI1)*-*^)] ; 1 < p < L . (7-37) 

Suppose one now asks for the vector u such that the sum of the squared 

absolute values of the projections of the vectors in Equation (7-37) onto 

the subspace of C orthogonal to u is a minimum — the answer is fl , the 

eigenvector corresponding to the second largest eigenvalue of K. 

Let us now consider the projection operator 

M M 

K = X/N(°a> = X/a(°a)*' (7_38) 
06=1 06=1 

which is the sum of the projection operators defined by Equation (7-20a) 

for the eigenvectors belonging to the M largest eigenvalues of K, where M 

is some number that is less than L, the number of nonzero eigenvalues.  Let 

c" be the M-dimensional subspace of C spanned by the M vectors 

\f   ; 1 < a < M , 

i.e., an arbitrary vector in CQ can be written as a linear combination of 

these vectors [14]. We see that CQ is the M-dimensional subspace of C 
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that best fits in the least squares sense the L frequency vectors x($ ) in 

the interference band. The vector 

n 

PN-x = VY[(u
a)*-x] (7-39) 

a=l 

is the projection of the data vector x in Equation (7-7) onto CQ. The 

method by which C0 has been constructed means that it will include most of 

the contributions that the sidelobes from the frequencies <|> make to the 

basis frequency Fourier amplitudes outside the band. 

Let us define CQ~  to be the subspace of C that is orthogonal to C0 . 

Thus, the operator 

P° = I - PN (7-40a) 

is the projection operator onto C0~ ; i.e., the vector 

x° = Pj-x = x - Vua[(ua)*-x] (7-40b) 

0*1 

is the orthogonal projection of the data vector onto C0~  [14]. This is 

the subspace of C of dimension N-M that minimizes in the least squares 

sense the effects of the narrowband interference on the data. 

The representation of x in terms of the basis frequencies is 

N-l 

x° = y\(fk)x
o(f 

k=0 
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where the components 

X(fk) = **(fk)-*° ! 0 < k < N - 1 , (7-41b) 

are the Fourier amplitudes with the interference from the narrowband sup- 

pressed. Because of Equations (6-2a), (7-26a), and (7-40b), 

M     N-l 

1=0 

X°(fk) = X(fk) - Vlf (F^VlU"^)!*]^) ; 0 < k < N - 1 .      (7-42) 

What criterion determines M, the dimension of the subspace to be 

excised? Since, according to Equations (7-11) and (7-12), the original 

criterion for defining the interference band was 

|X(Fk)| > No ; J < k < K , (7-43) 

we should choose M to be the smallest number such that 

|X°(Fk)| « No ; J < k < K . (7-44) 

Strictly speaking, one ought to verify that 

|*°(4>p)| « No ; 1 < p < L , 

but, in practice, this will almost always be the case when Equation (7-44) 

is valid.  If one is particular, one can check this relation for frequen- 

cies that are about halfway between the basis frequencies.  (See the re- 

marks in the last paragraph of Subsection 7.3.) 
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The time series 

*! , 0 < k < N-l , 

vith the interference minimized is now found by means of the inverse 

Fourier transform of the amplitudes X (fk) 

N-l 

x° = ^-yx°(Fw)e
j2nnTofk ; 0 < n < N-l . (7-45) 

JET Z-- "  " 
k=0 
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SECTION 8 

SIMPLIFIED MATRIX SOLUTION 

8.1 TRANSFORMATION TO A SMALLER MATRIX PROBLEM 

It has been shown that the problem of excising a single narrowband 

interferer in a complex time series involves finding the largest eigen- 

values and the corresponding eigenvectors of a Hermitian N x N matrix. But 

N, the number of time samples in the series of interest, is generally a 

very large number. In this section it will be demonstrated that the prob- 

lem can be transformed into one involving a much smaller real symmetric 

matrix. 

According to Equations (7-11) and (7-12), the problem is to excise a 

narrowband in which K - J + 1 basis frequency amplitudes exceed the noise 

threshold No.  By some criterion yet to be definitely established, we have 

chosen L frequencies 

4>p ; i < p < L , 

in this band, some of which may coincide with basis frequencies, and have 

calculated the corresponding Fourier amplitudes and Fourier vectors, which 

are given in Equations (7-18) and (7-19). As stated in Equation (7-17), L 

is much smaller than N. The subspace that best fits the Fourier vectors 

for the L interference frequencies is given by the eigenvectors corres- 

ponding to the largest eigenvalues of the N x N matrix K defined by Equa- 

tion (7-28).  However, K has only L nonzero eigenvalues, so a transfor- 

mation that changes the problem to that of finding the eigenvalues and 

eigenvectors of an L x L real symmetric matrix will now be employed [15]. 
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Because of Equation (5-4), Equation (7-28b) for the elements of K can 

be written 

L 

Kxi  -  «Fx  " Fi>^P
D°<FK  -  •p)|X(*p)|

2D°(*p  - rx)   , (8-1) 
p=l 

where 

C(f) = exp[-j(N - l)iff0f] (8-2a) 

has the property 

t(f - £') = C(f)C(f) . (8-2b) 

All of the terms in the sum in Equation (8-1) are real. 

Let us define a real N x L matrix X; i.e., 

X = [xkp] , (8-3a) 

with the elements 

Xkp = >flTD0(Fk - *p) |X(«frp) |;0<k<N-l;l<p<L. (8-3b) 

The transpose X of X is the L x N matrix with the elements 

XT=X,.  ;0<k<N-l;l<p<L. (8-4) 

We also introduce the N x N diagonal matrix Z given by 
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\x  = «ki«fk) ; o <k,i <N - i (8-5) 

Therefore, 

K = ZXX Z* . (8-6) 

When one inserts this result for K into Equation (7-32b) and multi- 

plies both sides from the left with XTZ* , the result is 

(XTX)(XTZ*Ua) = X (XTZ*Ua) ; 1 < a < L (8-7) 

Let us define the column matrix 

; 1 < a < L , (8-8a) 

by 

Va = — XTZ*Ua ; 1 < a < L (8-8b) 

We define the L x L real symmetric matrix H by 

H = X X , (8-9a) 

so Equation (8-7) becomes 

HVa = X Va ; 1 < a < L (8-9b) 
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Consequently, the problem of finding the largest eigenvalues of the N x N 

Hermitian matrix K has been reduced to that of finding those of the L x L 

real symmetric matrix H, where L << N.  The eigenvectors Va can be chosen 

to be real and, according to Equation (7-32), 

(V")TVe = &ap ; 1 < a, 0 < L . (8-9c) 

8.2  INTERFERENCE EXCISION IN THE NEW FORMALISM 

Once one knows the eigenvalues and eigenvectors of H, one can easily 

determine the column matrices Ua, whose components are required to minimize 

the interference, as shown in Section 7.  The required relation, which 

follows from Equations (7-32b) and (8-8), is 

Ua = — ZXVa ; 1 < a < L . (8-10a) 

a 

That is, 

Ua(fk) - pT «
f
k>^\p

Vp ;0<k<N-l;l<a<L,   (8-10b) 

«     p=l 

gives the basis frequency components of the vectors ua that best fit the 

subspace spanned by the Fourier vectors x(<|> ) in the interference band. 

The above allows us to rewrite Equation (7-42) for the Fourier ampli- 

tudes X (^k) with the interference suppressed.  Let us define 

Av'v" 
Tpq = ^X |x(*p) | |x(*q) | 2_J-

LJ-; i < p»q < L •      (8-iD 
06=1  a 

8-4 



In addition, we introduce 

and 

T
kq = X/<*P - VD<fk - VT

Pg <8-12a> 
p=l 

L 

- «rk - vED°(r* - *P>Tpq i 
P=i 

0<k<N-l;l<q<L, (8-12b) 

L      L 

Si - Y, Ec(*p • ^)D(Fk • w*** - Fi}        (8-i3a) 

p=l  q=l 

L       L 

-   «*L   -  F,)^  £V<fk   -   •p)TpqD°(^   ••  Fx) (8-13b) 
p=l  q=l 

L 

= ^\qD(*q - Fx)   ;  0  < k,l  < N - 1  . (8-13c) 

q=l 

Then the results can be expressed in either the form 

N-l 

x°(Fk) = x(fk) - y^xcFj) ; o < k < N - 1 , (8-U) 
1=0 
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or the form 

L 

X°(Fk) = X(Fk) - ^~\pX(*p) ; 0 < k < N - 1 . (8-15) 

p=l 

Note that the effect on the basis frequency Fourier amplitudes X(f ) out- 

side the interference band depends on 

lD^x -•p)|;k<Jork>K;l<p<L. 

The elements of H in Equation (8-9) are 

N-l H
Pq = Y?*kX*«= 1 -p,q -L • (8_i6a) 

k=0 

But, because of Equations (5-22a) and (8-3b), 

Hpq = €^7|X(*p)| D°(«>p - •q)|X(4'q)| ; 1 <p,q <L .    (8-16b) 

As was discussed in Subsection 7.6, one needs to find only the M lar- 

gest eigenvalues and the corresponding eigenvectors of H, where M is the 

smallest number required to satisfy Equation (7-44). Note that the Fourier 

amplitudes X(<J> ), whose magnitudes appear in the matrix elements of both K 

and H, can be expressed as linear combinations of the basis frequency 

amplitudes by means of Equation (6-llb): 

N-l 

X(*p) = Yj>l*v  - f"k)X(Fk) ; 1 < p < L . (8-17) 

k=0 
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Here the coefficients D(4> - f. ) are subject to the conditions in Equation 

(5-22b).  Since 

K - J + 1 « N 

of the basis frequency amplitudes exceed the noise threshold, M might be at 

least as large as this number.  Because considerable interference power is 

distributed among the basis frequencies outside the band, M could possibly 

be a little larger than K - J + 1. On the other hand, if some of our 

interference band actually includes sidelobes, M may be smaller than this 

number.  In general, we can only conclude that 

M ~ K - J + 1 . (8-18) 

8.3 TWO EXAMPLES 

In this subsection, we will discuss two trivial examples that illus- 

trate two extremes.  In the first case the contributions of the non-basis 

frequencies in the interference band to basis frequencies outside the band 

are completely ignored, and in the second case these contributions are 

given too much weight. Since the examples are for illustrative purposes 

only, the rule about L being at least four times the number of basis fre- 

quencies in the band will be ignored and L will be set equal to that num- 

ber; i.e., 

L = K - J + 1 . 

In the first example, we choose the L frequencies in Equation (7-16) 

to be equal to the basis frequencies in the band; i.e., 
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+P  =  fa-i+P   J   1   < P  < K - J + 1   . (8-19a) 

Consequently, 

*    -  *    = F - F =f -f Tp Tq J-l+p J-l+q J-l+p J-l + q 

= (p-q)jj- ; 1 < p,q < K - J + 1 , (8-19b) 

where the definition of the basis frequencies in Equations (5-17) and 

(5-18) has been employed. But, from Equation (5-7b) 

D°(*p - •,) = D(fJ-1 + p - fa_1 + q) = 6pq ; 1 < p,q < K - J + 1 .  (8-20) 

The specific values assigned to the weighting factors u are not important 

here.  Therefore, in Equation (8-16), 

H
Pq = SpqMP I* (FJ-i + P> I2 5 1 < P,q < K - J + 1 . (8-21) 

Thus, H is diagonal and its eigenvalues are the squares of the absolute 

values of the basis frequency Fourier amplitudes:  Xj is the largest element 

of H, Xj is the second largest, etc., with \_J+1 the smallest element. 

Although an arbitrary ordering of the magnitudes of the elements in 

Equation (8-21) can easily be handled, in order to simplify things as much 

as possible (and because it does not affect the final result) we will assume 

that 

\ " nJk<Fa-i+a>|
2 5 1 < «<K - J + 1 . (8-22) 
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A consequence of Equations (8-9b) and (8-21) is that the eigenvectors in 

Equation (8-8a) have the elements 

V = S  ;l<a,p<K-J + l (8-23) 

Let us choose the dimension of the subspace to be excised to be 

M = L = K-J + 1 . 

Then,   Equations  (8-11)  and  (8-12) yield  the results 

T       =   S       ;l<p,q<K-J+l, pq pq    » r '^    - > (8-24a) 

\q   =   KtJ-i+q   ;0<k<N-l;l<q<K-J  +   l (8-24b) 

Finally, according to Equation (8-15), the Fourier amplitudes with the 

interference excised are 

x°(Fk) 
fX(£k) 

U(fk) 

0 < k < J - 1 

J < k < K , 

K + 1 < k < N 

(8-25) 

a result that does not depend on the particular ordering chosen for the 

size of the matrix elements in Equation (8-21).  Here we have the unaccept- 

able approach discussed in connection with Equation (7-13):  the amplitudes 

for the basis frequencies in the interference band are set equal to zero 

and there is no effect on the remaining basis frequency amplitudes. Thus, 

choosing the frequencies in the interference band to be equal to the basis 

frequencies in the band results in no weight being given to the contribu- 

tions that non-basis frequencies in the band make to basis frequency 

amplitudes outside of it. 

8-9 



The second trivial example we will discuss is that in which the fre- 

quencies chosen in the interference band are halfway between the basis 

frequencies.  Instead of Equation (8-19a) we now choose 

Fo 
•P " fJ-i+P + 2N ! 1 < P < K - J + 1 , (8-26) 

where use has been made of the fact that the interval between basis fre- 

quencies is FQ/N. Equations (8-19b) and (8-20) are still valid, but, in 

place of Equation (8-21), it is found from Equation (8-16) that 

F 
Hpq = *pqup |X(^.1+P + 2N) |2 5 1 < P,q < K - J + 1 .      (8-27) 

Therefore, H is also diagonal in this example. 

As we did in Equation (8-22), we shall assume that the magnitudes of 

the elements of H above are ordered such that 

F 
K  = K |X<fa-i + a + 2^) |2 J 1 < « < K - J + 1 . (8-28) 

This leads to the previous result in Equation (8-23) for the elements of 

Va.  If we once more choose 

M = L = K-J + 1 , 

we find from Equations (8-11) and (8-12) that 

T  =&  ;l<p,q<K-J+l, (8-29a) 
pq   pq    - r      M - 

Tk  = D(fk -•);0<k<N-l;l<q<K-J+l.    (8-29b) 
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It follows from Equation (8-15) that the Fourier amplitudes with the inter- 

ference from the frequencies in Equation (8-26) excised are 

K-J+l 

p=l 

X°(fk) = X(fk) • )      D(fk - 4>p)X(4>p) (8-30) 

In  the above we have 

|D(fk   -   <Ul N sin (J + P " k - I )N 

0<k<N-l;l<p<K-J  +   l (8-31) 

These values are close to the peaks of the sidelobes of the function D(f), 

so in this example too much weight is given to the contributions that 

non-basis frequencies in the band make to basis frequencies outside of it. 

8-11 



SECTION 9 

INTERFERENCE EXCISION IN A REAL TIME SERIES 

9.1 NARROWBAND INTERFERENCE IN A REAL TIME SERIES 

In the two preceding sections it was shown how one can excise inter- 

ference due to a single narrow band from a complex time series.  Those 

results will now be generalized to a single interference band in a real 

time series, which means that there is such a band in both the positive and 

the negative frequency regions. 

The measured time series is taken from the following real series in 

infinite time: 

gk = sk + bk ; k = 0, ± 1, ± 2, . . . , (9-1) 

where both the signal sk and the narrowband interference b are real.  As 

was the case earlier, random noise can, for the purposes of this paper, be 

included with the signal, which is a pseudonoise sequence. The Fourier 

transform has the form 

G(f) = S(f) + B(f) , (9-2) 

but now the negative frequency amplitudes for G(f) are related to the posi- 

tive frequency ones by Equation (2-3).  Similarly, 

S(-f) = S*(f) , (9-3a) 

B(-f) = B*(f) . (9-3b) 
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In the positive frequency region B(f) is still given by Equations (7-3) and 

(7-4a), but the negative frequency values of B(f) are now given by Equation 

(9-3b) instead of by Equation (7-4b). 

As in Equation (7-5), one actually measures only the finite time 

series 

gk = sk + bk ; 0 < k < N - 1 , (9-4) 

and knows only gk, not sk and bk separately. Because the time series is 

real, it is convenient, as discussed in connection with Equation (6-9), to 

use either the basis frequencies fk in Equation (5-17) or the basis fre- 

quencies tk in Equation (5-29).  Since the former basis is the common 

choice in the literature, we will use it in the rest of this paper, so the 

correct finite Fourier transform and its inverse are given by Equation 

(6-6). 

The above choice of one of the two special bases described in Sub- 

section 5.4 might at first seem to violate the requirement that both the 

rules for suppressing the interference and the results should not depend on 

the particular basis chosen. Actually, the discussion that follows could 

be formulated in terms of any of the bases allowed by Subsection 5.3, but 

at the expense of some added complexity in that discussion and in the equa- 

tions.  Since in practice it is desirable to use one of the two bases that 

are equal to their complex conjugates, it would not serve any purpose to 

use the more complicated expressions in the rest of this paper. As long as 

we strictly adhere to the vector-space techniques for interference excision 

described in Sections 7 and 8, the final result for the vector g with the 

interference excised is independent of the frequency basis employed.  Our 

use of a special basis is similar to the manner in which an elementary par- 

ticle is sometimes described in its rest frame or in which two such 
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particles are described in their center-of-mass frame, even though the 

theory itself is fully relativistic [17]. 

The basis frequency Fourier amplitudes are, as in Equation (7-6), 

G(f. ) = S(fw) + B(f. ) ; 0 < k < N - 1 . (9-5) 

These amplitudes G(fk) satisfy Equation (6-9b) with G(fQ) and G(f  ) real. 

Similarly, S(fQ), S(fM/2), B(fQ), and B(fN/2) are real and 

N 
S*(fk) = S(f„_k) ; 1 < k <f-  1 , (9-6a) 

B*(fk) = B(fN.k) ; 1 <k <f-  1 (9-6b) 

As in Equation (7-7), the corresponding vector in the N-dimensional space 

C is 

g = s + b (9-7) 

The discrete Fourier amplitudes G(fk) are related to the continuous 

amplitudes G(f) by Equation (6-8b), with a similar relation between S(fk) 

and S(f), as given in Equation (7-9a).  However, because of Equation 

(9-3b), Equation (7-9b) is replaced by 

B(fJ = W [ D(fk - f)B(f)df +    D(fk - f)B(f)df 

-F, 

0 < k < N - 1 . (9-8) 
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Therefore, both the positive frequency integral and the negative frequency 

one contribute to all of the basis frequency amplitudes. 

9.2 MATRIX FORMALISM 

Just as we did in Subsection 7.3, we can establish some noise thresh- 

old No that is much larger than the signal amplitude over the entire fre- 

quency range.  It is also once again assumed that the interference exceeds 

this threshold at the basis frequencies in some narrow band given by Equa- 

tion (7-11), but now, instead of Equation (7-lld), we have 

|B(fk) | = |B(fN_k) | > No ; J < k < K . (9-9a) 

Equation (7-12) is replaced by the relation 

G(fk) = B(fk) ;J<k<K;N-K<k<N-J. (9-9b) 

We chose L frequencies in the positive frequency band, just as was 

done in Equations (7-15) and (7-16), and in addition, we must employ the 

negatives of these frequencies: 

+P " "*p-L 5 L + 1 < p < 2L . (9-10) 

Equations (7-18) and (7-19) for the positive frequency Fourier amplitudes 

and Fourier vectors are replaced by 

G(*p) = B(*p) ; 1 < p < 2L , (9-lla) 

where 

G(4>  ) = G*(4> ) ; 1 < p < L , (9-llb) 
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and 

g(4>p) - SK*p)G(4>p) = 5K*p)B(*p) ; 1 < p < 2L , (9-12a) 

where 

g(4>L+p) - g*(4>p) ; 1 < P < L . (9-12b) 

Similarly, instead of Equation (7-25), we have 

N-l 

g(4>p) = ^5Kfk)G(*pffk) ; 1 < p < 2L , (9-13a) 

k=0 

where 

G(«t»p,fk) = D(fk - 4>p)G(4>p) ;0<k<N-l;l<p<2L.   (9-13b) 

Our goal, as it was for an interference band in a complex time series, 

is to find the subspace that best fits the interference, and we can proceed 

directly to the approach outlined in Section 8. The matrix H in Equation 

(8-9a) is now the 2L x 2L real symmetric matrix 

H = GTG . (9-14) 

Here the elements of the N x 2L real matric G are given by the following 

generalization of Equation (8-3b): 

Gkp = ^D°(fk - «>p) |G(*p) |;0<k<N-l;l<p<2L,  (9-15a) 
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where 

G
N-X,L+P  = Gkp   ;   1   <k  <|;   1   <p  <L  , (9-15b) 

Go.L+P = Go,P 5 1 <P <L . (9-15c) 

We have also used the fact that the weighting factors u satisfy 

uL+p = up ; 1 < P < L . (9-16) 

Thus, the elements of H are 

N-l 

H  = > C 
pq  /_, 

k=0 

G
kp
G
kq (9-17a) 

= ^yT|G(*p)| D°(«frp - 4>q)|G(<frq)| ; 1 < p,q < 2L .      (9-17b) 

As was the case in Sections 7 and 8, the eigenvalues of H are real and 

non-negative, and we order them so that 

\>X2>...>X2L>0. (9-18a) 

The corresponding eigenvectors Va are the solutions of the following gener- 

alization of Equation (8-9b): 

HVa = XaV
a ; 1 < a < 2L , (9-18b) 

where the eigenvectors satisfy the orthogonality relations 

(Va)+V0 = 6ap ; 1 < a, (3 < 2L . (9-18c) 
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In this case the Va's are column matrices: 

V" = ; 1 < a < 2L (9-18d) 

2LJ 

9.3 CONSTRAINTS ON THE EIGENVECTORS 

Because of Equation (9-15), the elements of H, defined by Equation 

(9-17), have the property 

HT   ,   = H L+p,L+q      pq = H 
qp 

L + p , q p,L+q     L+q,p ) 

; 1 < p,q < L (9-19) 

This relation may be written in the form 

H = CHC , (9-20a) 

where the real symmetric matrix C has the elements 

C  = &     +6   , ; 1 < p,q < 2L 
pq     L + p , q     p , q + L      " n1 " (9-20b) 

and is its own inverse. 

When one multiplies both sides of Equation (9-18b) on the left by C, 

the result is 

H(CVa) = X (CVa) ; 1 < a < 2L (9-21) 
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Consequently, CVa is also a solution of Equation (9-18b), and, if the 

eigenvalue Xa occurs only once, CV
a must be equal to Va times a factor +1. 

On the other hand, if X is a multiple root of the eigenvalue equation, we 

can construct the eigenvectors so that Va and CVa are so related. We thus 

have 

V° = ±CVa ; 1 < a < 2L , (9-22a) 

that is 

V"  = +Va ; 1 < p < L ; 1 < a < 2L . (9-22b) L+p    - p  >    — r —    »    —    — \       / 

Half of the eigenvectors have the above property with the + sign and the 

other half have this property with the - sign.  We shall return to this 

matter in Subsection 10.A, where it will be demonstrated that the problem 

is equivalent to that of finding the eigenvalues and eigenvectors of two 

L x L real symmetric matrices. 

The generalization of Equation (8-10b) for the components of the unit 

vectors u* that best fit the subspace spanned by the Fourier vectors g(<f> ) 

in the interference band is 

2L 

Ua(fk) = — t(fk)Y\pr ;0<k<N-l;l<a<2L,  (9-23a) 

<»     p=l 

where Ua(f0) and U
a(f  ) are real and 

0a(fk) = [Ua(fN_k)]* ;l<k<|-l;l<a<2L.       (9-23b) 
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Consequently, the vectors 

N-l 

u" = ^*(fk)U
a(fk) ; 1 < a < 2L , (9-24a) 

k=0 

are real and satisfy 

G^u" = 8ap ; 1 < a, 0 < 2L . (9-24b) 

Equation (9-23) requires that 

V
L+P = <Vp>* 5 1 < P < L ; 1 < a < 2L . (9-25) 

Consequently, Va is real when it satisfies Equation (9-22) with the + sign 

and imaginary when it satisfies that equation with the - sign. 

9.4 INTERFERENCE EXCISION BY ORTHOGONAL PROJECTION 

As in Subsection 7.6, we choose M vectors u° belonging to the M 

largest eigenvalues of H and project the data vector g onto the subspace 

orthogonal to these vectors, obtaining 

M 

g° = g - ^ua(ua-g) . (9-26) 

p=l 

Equation (7-41) is replaced by 

N-l 

g° = ^^Kfk)G°(f "k '   v k 

k=0 
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where the components 

G°(f. ) = **(f.)-g° ; 0 < k < N - 1 , (9-27b) 

are the Fourier amplitudes with the interference suppressed. 

Instead of Equation (7-42) we have 

N-l 

«=1     1=0 

and the remaining amplitudes can be found from 

n       ii-x 

G°(fk) = G(fk) - ^Ua(fk)^[O
a(f1)]*G(f1) ; 0 < k < | , (9-28a) 

G°(fk) = tG°(fN_k)]* ; j +  1 < k < N - 1 . (9-28b) 

Because of Equation (9-23a), we can replace the above equation by 

N-l 

G°(fk) = G(fk) - V^jGCfj) ; 0 < k < N - 1 , (9-29a) 

1=0 

or by 

2L 

G°(fk) = G(fk) - ^TkpG(«(>p) ; 0 < k < N - 1 . (9-29b) 

p=l 

In the above equation 
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2L 

where 

p-1 

T
kq  =   «f

k   -   •,>>   D°<fk   -  VTPq   !   0   <k  <N-  1   ; 

1   < q   < 2L  , (9-30a) 

2L 

3d = ^T
M

D(
^ - f:) ; 0 <k,l <N - 1 , 

q=l 

V°'(Va)* 

(9-30b) 

Tpq   -   ^X |G(4>p) | |G(*q) |^  -E—2-    ;   1   < p,q   < 2L   . (9-31) 
X a=l 

These results generalize Equations (8-11) through (8-14). 

As in Subsection 7.6, M is chosen to be the smallest number such that 

|G°(fk)| « No ; J < k < K , (9-32) 

for the basis frequencies in the positive frequency part of the band.  The 

corresponding relations for the negative frequencies will then be satis- 

fied.  (See also the comments following Equation (7-44).) Then the time 

series 

g° , 0 < k < N - 1 , (9-33a) 

with the interference suppressed is found from the inverse finite Fourier 

transform: 
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N-l 

' = -±- y,C,(£1)«
32rtk/" ; 0 < k < N - 1 . (9-33b) 

1=0 

For the reasons discussed at the end of Subsection 8.2, M is expected to be 

approximately equal to 2(K - J + 1), the number of basis frequencies in the 

interference band. 
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SECTION 10 

EXCISION OF MULTIPLE INTERFERENCE BANDS 

10.1 GENERALIZATION OF PREVIOUS RESULTS 

The results of the last section can now easily be generalized to 

include any number of interference bands in a real time series.  Some 

relations will be given for the real symmetric 2L x 2L matrix H whose 

largest eigenvalues and corresponding eigenvectors must be found and also 

for its submatrices. Then it will be shown that the problem is easily 

transformed into one involving two L x L matrices. 

We can continue to write the real finite time series in the form of 

Equation (9-4). The finite Fourier transform satisfies Equations (9-5) and 

(9-6), and the corresponding vector in the N-dimensional space C is given 

by Equation (9-7).  However, Equation (9-8) is replaced by one with the 

required number of integrals over the different interference bands. 

As was the case earlier, we establish a noise threshold No that is 

much larger than the signal amplitude over the frequency range.  Suppose 

that we are able to distinguish I different bands such that in the positive 

frequency region, Equation (9-9) generalizes to 

G(fk)   =B(fk) 

|G(fk)|   >N 
;Ja<k<Ka;l<a<I, (10-la) 

where 

| > Kx   > J,   > K I_1   > JI_1   >   .   .   .   > K1   > Jx   >  0   . (10-lb) 
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For the negative frequencies the amplitudes are the complex conjugates of 

the corresponding positive frequency ones. 

Just as we did in Equations (7-16) and (7-17), we choose L frequen- 

cies <f> in positive frequency band a, where 

N » La > 4(Ka -Ja)+l;l<a<I. (10-2a) 

The total number of such positive frequencies in the interference bands is 

I 

L = V La . (10-2b) 

a=l 

Let us also define 

Lo  = 0 , (10-3a) 

a 

Ia = \Lb ; 1 < a < I - 1 , (10-3b) 

b=l 

I, . L . (10-3c) 

Thus, 

positive frequency band a = {• : L* , + 1 < p < ta} . (10-4) 

As in Equation (9-10), the negative interference frequencies are: 

*P • -*P-L 5 L + 1 < P < 2L , (10-5a) 
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so 

negative frequency band a = 

= {4>p : L + La_1 + 1 < p < L + La} . (10-5b) 

The procedure outlined in Equations (9-11) through (9-33) for suppres- 

sion of a single narrow band in a real time series is still valid, the only 

exception being that Equation (9-32) is replaced by the requirement that M 

be the smallest number such that 

|G°(fk) | « No ; Ja < k < Ka ; 1 < a < I . (10-6) 

We now expect M  to be approximately equal  to 

}T<\ 2^K    -   Ja    +    1) 
a=l 

Instead of trying to excise all of the interference at once, it is 

probably best to initially assign a very high value to No, because the 

strongest interferers may have sidelobes that exceed or are comparable in 

magnitude with the amplitudes of less powerful interferers.  Once the in- 

terference bands with the largest amplitudes have been excised, one can 

lower the value of N and repeat the procedure a number of times.  In this 

way the real symmetric 2L x 2L matrix whose largest eigenvalues and corres- 

ponding eigenvectors must be found can be kept small enough for practical 

calculations; i.e., one can assume that L << N. 
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10.2 DECOMPOSITION OF THE MATRIX H 

Equation (9-17b) is a particularly useful form in which to write the 

elements of the 2L x 2L real symmetric matrix H.  Let us define the real 

symmetric matrix 

D = D (10-7a) 

by 

D
Pq " D <*P - V ; X ^P'^ ^2L ' (10-7b) 

and the diagonal matrix T by 

r  = S  V |G( 4> ) I; 1 < p,q < 2L pq     pq   Kp I v Tp' l»    - r '*• - (10-8) 

Then 

H = T D r (10-9) 

Note that, as was the case for H in Equation (9-20), 

D = C D C , 

r = C T C . 

(10-10a) 

(10-10b) 

The matrix C may be expressed in the form 

°L \ 
\  °L 

(10-11) 
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where IL and 0L are, respectively, the L x L unit and zero matrices.  Simi- 

larly, the matrices H, D, and T  can be written 

H(+) H(-) 

H(-) H(+) 
(10-12a) 

D = 
D(+)  D(-) 

D(-)  D(+) 
(10-12b) 

r = 
r(+) oT 

oL r<+> 
(10-12c) 

where all of the L x L submatrices are real and symmetric. 

According to Equation (10-9), 

H(±) = r(+)D( + )r(+) (10-13) 

From Equations (9-17) and (10-5a), 

Hpq(±) = ^yT |G(*p)| D°(«>p • *q) |G(*q)| 

Hqp(±) ; 1 < p,q < L 

(10-lAa) 

(10-14b) 

Similarly, according to Equations (10-7) and (10-8), 

Dpq(±) = Dqp(±) = D°(*p 5 *q) ; 1 <p,q < L , (10-15a) 
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and 

roo< + > = 5oa^l
G(*D)l ; 1 <P,Q <L pq pq  P 

(10-15b) 

10.3 FURTHER DECOMPOSITION OF H 

Let us employ the notation 

•* = <h-     ;l<p<L, Tp    TL    +p '    - ^ -  a ' (10-16) 
a-l 

to designate the frequencies in positive frequency band a, where 1 < a < I 

The real submatrix H(+) above may be written: 

H( + ) 

H(l,l) H(l,2) 

H(2,l) H(2,2) 

H(I,1) H(I,2) 

H(1,I) 

H(2,I) 

H(I,I) 

(10-17) 

where, from Equation (10-14), the elements of the La x Lb sub-submatrix 

H(a,b) are 

H (a,b) 
pqv ' ' 4V£|G<*;>I D°<<C - •;>|G<<)I 

Hgp(b,a)   ;   1   < p   < La   ;   1   < q   < Lfc 

(10-18a) 

(10-18b) 
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Therefore, 

H(b,a) = HT(a,b) ; 1 < a,b < I , (10-19) 

so the matrices H(a,a) on the diagonal of H(+) are symmetric. 

Similarly, the submatrix H(-) has the form 

H(-) = 

J(l,l) J(l,2) . . . J(1,I) 

3(2,1) j(2,2) . . . J(2,I) 

J(I,1) J(I,2) . . . J(I,I) 

(10-20) 

where the elements of the L  x L sub-submatrix J(a,b) are given by 

j
Pq<a'b> = ^v^iG<*;) i D°(*p+ •;>iG(<)i 

= Jqp(b,a) ; 1 < p < La ; 1 < q < Lb 

(10-21a) 

(10-21b) 

As a result, 

J(b,a) = J (a,b) ; I < a,b < I , (10-22) 

so the matrices J(a,a) on the diagonal of H(-) are symmetric. 

Just as we did for H(+), we can write D(+) in the form 
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D( + ) = 

D(l,l) D(l,2) 

D(2,l) 6(2,2) 

D(Irl) D(I,2) 

D(1,I) 

D(2,I) 

D(I,I) 

(10-23) 

where the elements of the L x Lb sub-submatrix D(a,b) are 

D (a,b) = D°(4> - •") 

Dqp(b,a) ; 1 < P < La ; 1 < q < Lfc 

(10-24a) 

(10-2Ab) 

Here we have 

D(b,a) = D (a,b) ; 1 < a,b < I , (10-25) 

so the matrices D(a,a) on the diagonal of D(+) are symmetric. 

Similarly, one can write D(-) in a form like that in Equation (10-20): 

D(-) = 

E(l,l) E(l,2) 

E(2,l) E(2,2) 

E(I,1) E(I,2) 

E(1,I) 

E(2,I) 

E(I,I) 

(10-26) 
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where 

E    (a,b)  = D(4>a   +  <frb) 

Eqp(b,a)   ;   1   < p   < La   ;   1   < q   < Lfc 

(10-27a) 

(10-27b) 

Once again we have the property 

E(b,a) = E (a,b) ; 1 < a,b < I , (10-28) 

and the matrices E(a,a) along the diagonal of D(-) are symmetric. 

Finally, let us write for T(+) 

IX + ) = 

Hi) o(i,2) 

6(2,i) r(2) 

0(1,1) 0(1,2) 

0(1,1) 

6(2,1) 

r(i) 

(10-29a) 

where 0(a,b) is the La x Lb zero matrix and where the diagonal matrix T(a) 

has the elements 

rpq(a) = 6„^;|G(*p)|; 1 <P,q <La (10-29b) 

Then, according to Equation (10-13), 

H(a,b) = r(a)D(a,b)T(b) ; 1 < a,b < I , 

J(a,b) = r(a)E(a,b)r(b) ; 1 < a,b < I 

(10-30a) 

(10-30b) 
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10.4 TRANSFORMATION TO L x L MATRICES 

Let us introduce the unitary matrix 

S = 
{T 

h   h 
•ih JIL 

(10-31a) 

the inverse of which is 

S"1 = S+ 

4T 
h       ^L 

h -*h 
(10-31b) 

A similarity transformation on H with this matrix yields the equivalent 

real symmetric matrix 

R = SHS 1   , (10-32a) 

which has the form 

R = 
R( + ) 0 

6   R(-) 
(10-32b) 

where 

R(±) = H(+) ± H(-) (10-32c) 

Thus, the problem of finding the eigenvalues and eigenvectors of the 2L 

x 2L matrix H has been simplified to the corresponding problem for the two 

L x L matrices R(+) and R(-). 
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In fact, when Equation (9-18b) is multiplied on the left by S and use 

is made of Equation (10-32a), we find that 

RWa = X Wa ; 1 < a < 2L , (10-33) 

where 

SVa ; 1 < a < 2L , (10-34a) 

has the form 

wa( + ) 

wa(-) 
; 1 < a < 2L (10-34b) 

In the above Wa(+) is an L x 1 column matrix.  Because of Equation 

(10-32b), 

R(±)Wa(±) = X Wa(±) ; 1 < a < 2L (10-35) 

It follows that each of the eigenvalues X of H is either an eigenvalue of 

R( + ) or an eigenvalue of R(-).  In the former case, 

R(+)W
a(+) = X Wa(+) , 

Wa(-) = 0 , 

(10-36a) 

(10-36b) 

whereas in the latter case 

R(-)Wa(-) = X Wa(-) , 

Wa(+) = 0 . 

(10-37a) 

(10-37b) 
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The inverse of Equation (10-34a) is 

V° = S 1Wa ; 1 < a < 2L (10-38) 

If X is an eigenvalue of R(+), we then have 

Va = 
ST 

Wa( + ) 

wa(-) 
(10-39a) 

But, if X is an eigenvalue of R(-), 

Va = 
ST 

jwa(-) 

-jwa(-) 
(10-39b) 

If we choose the eigenvectors Wa(+) to be real, which is always possible, 

then the eigenvectors in Equation (10-39a) are real and satisfy Equation 

(9-22) with the + sign on the right, while the eigenvectors in Equation 

(10-39b) are imaginary and satisfy Equation (9-22) with the - sign on the 

right — exactly half of the 2L eigenvectors of H have the former proper- 

ties and the other half have the latter properties.  This result is in 

agreement with the properties of the eigenvectors of H that were discussed 

in Subsection 9.3. 

Because of Equation (10-13) we can write 

R(±) = IX+)[D(+) ± D(-)]r(+) (10-40a) 
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That   is, 

Rpq(±)  =  >hrir|G(4>p)|[D
0(4>p  -   •q)  ±  D°(*p  +  •q)]|G(*q)|   ; 

1   < p,q  < L  . (10-AOb) 

The results just obtained are useful when employed in association with 

Equations (9-29) through (9-31) for the Fourier amplitudes G°(fk) with the 

narrowband interference suppressed. It was pointed out in connection with 

those equations that we need only the M largest eigenvalues of H and their 

corresponding eigenvectors such that Equation (9-32) is satisfied. Let us 

suppose that, of these M largest eigenvalues, M+ are eigenvalues X (+) of 

R(+) and M are eigenvalues X (-) of R(-), where 

M = M+ + M  . (10-41) 

Then,   Equation  (9-29b)  can be written 

L 

G°(fk)  =-• G(fk)  -]T[Tkp< + )G(*p)  +  Tkp(-)G*(*p)]   ;  0   <k  <|, (10-42a) 

p=l 

G°(fk) = G*(£„_k)  ; j + 1 < k < N - 1 . (10-42b) 

Here 

L 

q=l 

0<k<N-l;l<p<Lf (10-43) 
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where 

Tqp(±)  = ^yT|G(fp)||G(*q)|[2qp( + )  ±  Qqp(-)]   ;   1   < P,q  < L  , (10-44a) 

Q    ( + ) 

X 

ot=l 

w;(±)wj(±) 
X (±) ;   1   < p,q   < L (10-44b) 
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SECTION 11 

SUMMARY AND DISCUSSION 

The main results of this paper are as follows: 

a. The N measured values of a band-limited time series (e.g., a radio 

signal plus interference) that has been sampled at the Nyquist 

rate can be regarded as the components of a vector in an N- 

dimensional space.  Each frequency in the continuous range of 

frequencies less than the Nyquist frequency is represented by a 

specific unit vector in this space, but only N of these vectors 

are linearly independent. Any subset of N orthonormal frequency 

vectors can be used as a basis (set of coordinate axes). Multi- 

plying the unit vector for a particular frequency by the finite 

Fourier transform for that frequency yields a Fourier vector. 

b. Filters to suppress narrowband interference should not depend on 

the particular frequency basis chosen; that is, the rules for 

designing them and the results obtained should be the same (at 

least, within a reasonable approximation) regardless of the fre- 

quency coordinates employed. The goal should be to excise the 

subspace that best fits the continuous range of Fourier vectors in 

a narrow interference band, thus accounting for the sidelobes of 

the band. 

c. To find the desired subspace for an arbitrary number of narrowband 

interferers, this paper has employed a least squares approach. 

One looks for the unit vector such that the sum of the squared 

absolute values of the projections of the Fourier vectors in these 

bands onto the subspace orthogonal to that unit vector is a mini- 

mum. This requires finding the largest eigenvalues and the 

11-1 



corresponding eigenvectors of an N x N Hermitian matrix.  (To sup- 

press the interference, the data vector is projected onto the 

subspace orthogonal to these eigenvectors.) A simple transfor- 

mation makes it possible to reformulate the eigenvalue and eigen- 

vector problem in terms of much smaller real symmetric L x L 

matrices, where L << N. 

This paper has given a theoretical treatment of the narrowband inter- 

ference excision problem and has not discussed the practical application of 

the vector space methods described here.  Although considerable improvement 

in performance is expected over conventional frequency-domain methods for 

suppressing narrowband interference, the degree of this improvement is 

presently unknown, and testing must be performed.  (The signal-to- 

interference improvements using vector space methods should be particularly 

significant in a high noise environment with many closely-spaced strong 

narrowband interferers.) The specific system and hardware requirements to 

implement vector space signal processing methods must be identified and 

compared to the requirements for known frequency-domain and time-domain ap- 

proaches. Although these requirements will certainly be greater for vector 

space methods, it is believed that the processors becoming available will 

make the digital processing feasible in real time. 

Many other questions remain to be addressed.  For example, how many 

frequencies in a narrowband (the frequencies <f> in Equations (7-16) and 

(10-4), that is) should be used, when proper consideration is given to the 

degree of accuracy desired and to the computational requirements? This 

question is part of the problem of determining the numerical method to be 

employed in approximating the integral in Equation (7-23), including the 

choice of the weighting factors y . 

The application of the vector space approach to narrowband inter- 

ference suppression is not necessarily restricted to the least squares 
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technique discussed in this paper, and approximations requiring less signal 

processing should also be investigated.  It should be possible to reformu- 

late more conventional frequency-domain filter design techniques in terms 

of the results in Sections 5 and 6 and the principle that such techniques 

should be independent of the particular frequency basis selected. This 

would provide a better theoretical understanding of such filters and 

suggest methods for improving them. 

The motivation for the investigation reported in this paper was the 

excision of strong narrowband interference in a pseudonoise spread-spectrum 

communication system, in which case the spectrum of the PN sequence itself 

is relatively flat and such interference is easy to recognize.  It should 

be possible to adapt the techniques described here to other systems in 

which strong narrowband interference is present. 
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APPENDIX A 

EVALUATION OF AN INTEGRAL 

It was pointed out in Subsection 7.4 that Equation (7-22b), which one 

seeks to maximize by the proper choice of the unit vector u, should be re- 

garded as an approximation for the integral in Equation (7-23).  That inte- 

gral will be evaluated in this appendix, and it will then be shown, by 

comparing the result to that given by Equation (7-22b), how we obtain the 

restriction 

L > 4(K - J) + 1 (A-l) 

in Equation (7-17). 

The same steps that led to Equation (7-27) make it possible to con- 

tinue to write A in that form, where now, however, in place of Equation 

(7-28) one has 

F
p2 

Kkl = I df D(fk - f) |X(f) |2D(f - fx) ; 0 < k,l < N - 1 . (A-2) 

Because of Equations (5-4) and (6-llb), 

N-l N-l 

K„i   = ]T  Y\  exP["J(N -  1)rfro<Fi   " Ti   + T,  - Fi)]X*(ri)Q°jklX(F.)   ; 
i=0 j-0 

0   < k,l   < N -   1   , (A-3) 

A-l 



where 

Q°.kl = J df D°(f - f^D^f - f^D^f - fk)D°(f - fx) ; 

0 < i,j,k,l < N - 1 .        (A-4) 

The identity 

 1 cot a - cot b 
sin a sin b "   sin (a - b) 

leads to the result 

[sin(x - xi) sin(x - x.) sin (x - xk) sin(x - x )]" 

= A(i;j,k,l) cot(x - x.) + A(j;i,k,l) cot(x - x.) 

+ A(k;i,j,l) cot(x - xk) + A(l;i,j,k) cot(x - xL) , (A-5a) 

where 

A(i;j,k,l) = [sin(x. - xj) sin(x. - xk) sin(x. - x^]"  .   (A-5b) 

When Equations (5-3), (5-4), and (A-5) are substituted into Equation (A-4), 

the result is 

1 ** 
Q° Lki • —7 [df [P(f;i;j,k,l) + P(f;j;i,k,l) 13kl  AM

4
 1 8N ^ 

• P(f;k;i,j,l) + P(f;l;i,j,k)] . (A-6) 

A-2 



In the above expression 

4 2N 

P(f;i;j,k,l) = A(i;j,k,l)V ^\(n) x 

m=l n=l 

x sin{2nnT0(f - f.) + Nf3m(i; j ,k,l)} , 

where 

(A-7) 

^(n) = 0L,(n) = ^(n) = 

'2;l<n<N-l  , 

1 ;    n = N     , 

,0;N+l<n<2N, 

(A-8a) 

«4(n) 

' 0 ; 1 < n < N - 1  , 

-1 ;    n = N     , 

, -2 ; N + 1 < n < 2N , 

(A-8b) 

and 

(^(ijj.k.l) = nT0(f. + fj - fk - fx) , (A-9a) 

f32(i;j,k,l) = iff0(f. - f. + fk - fx) , 

f33(i;j,k,l) = rtT0(F. - fj - Fk + fx) , 

(A-9b) 

(A-9c) 

e4(i;j,k,l) = rfT0(3f. - f. - fk - f:) (A-9d) 

After carrying out the integration in Equation (A-6), we obtain 

QiHki = -rlRiMJ.k.l) + R(j;i,k,D + R(k;i,j,l) + R(l;i,j,k)] ,   (A-10) 
ljkl  8N4 
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where 

U     2N —        — 
r2-.  ^ sin[rfT0n(F2   - ?  ) ] 

R(i;j,k,l) = A(i;j,k,l) )  ) am(n) JtFn"  x 

m=l n=l 

x sin{rfTo[n(F2 + Fx) - 2nf.] + Npm(i;j,k,l)} .  (A-ll) 

Equations (A-3), (A-5b), and (A-8) through (A-ll) give us the elements of 

the matrix K when the integration is exact. 

Suppose we decide to evaluate the approximation in Equation (7-22b) by 

using equally spaced interference frequencies • in Equation (7-16). To 

simplify, we shall assume that F2 and P, in Equation (7-14) coincide with 

basis frequencies; i.e., in Equation (7-11), 

F2 = fK , (A-12a) 

Px - I3   • (A-12b) 

The following results are easily extended to the general case in which this 

assumption is not valid. 

Let us divide the intervals between basis frequencies in the inter- 

ference band into P equal parts, so that in Equation (7-16) 

L = P(K - J) + 1 . (A-13) 

Thus, from Equations (5-17) and (5-18), 

_   (P - DF0 

•p • f J +  NP^  
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= I + jp[j + E=lj ; 1 < p < P(K - J) + 1 . (A-14) 

We can still write the elements of K as in Equation (A-3), but now, instead 

of Equation (A-6), we have 

Qijki = -^rY  up[p(*p;i;j,k,l) • P<* ;J»ifk,l) 
8N *—A      L p=0 

P(*p;k;i,j,l) + P(*p}l;i,j,k)] , (A-15) 

The simplest possible numerical integration scheme involves setting the 

weighting factors u equal to the values given in Equation (7-24c). The 

result has the form of Equation (A-10), but instead of Equation (A-ll) we 

now have 

4n P-,    sin[rtT0n(F2 - F )] 
R(i;j,k,l) = A(i;j,k,l)^ ^ajn) — 

m=l  n=l 
T0NP sin(nn/NP) 

x sin   {rfT0[n(F2   +  Fx)   -  2nf.]   + NpB(ijj,ktl)J   .   (A-16) 

v< In practice we expect to have approximately 10 pseudonoise sequence 

bits equal to one data bit, so we should have 

N > 104 

Therefore, in Equation (A-ll), which is the exact result, almost all of the 

contribution comes from the smal] 

are small.  For such values of n 

contribution comes from the smallest values of n and for n > 10  the terms 

A-5 



nn .    n 
NP - 10P 

If 

P > A , (A-17) 

we can use the approximation 

sin (£) - § ; „ < 10] 

in Equation (A-16).  Under these conditions the nth terms in Equation 

(A-ll) and (A-16) are approximately equal.  Furthermore, the above choice 

for P guarantees that 

nn (  n 
NP - 2 

for all values of n in Equation (A-16), with the equality holding only for 

n = 2N.  Consequently, 

si n iB) 

always increases in value as n increases.  (If P is smaller than 4, the 

larger values of n might give significant contributions to Equation (A-16) 

and the result there would not be a good approximation to Equation (A-ll).) 

Thus, Equations (A-13) and (A-17) give us the result in Equation (7-17). 
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