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Electron transport in III-V semiconductors, especially the GaAs/AlGaAs material system, is
studied in various nonequilibrium situations. Throughout the study, a Monte Carlo simulation
method is used for the analysis of transport properties in the semiclassical Boltzmann transport
picture. The present work essentially consists of two aspects. The first topic is hot electron
transport in GaAs, focusing on the electron impact ionization effects. The dependence of impact
ionization rates on the details of the band structure is investigated by using two (local and non-
local) pseudopotential methods. The spatial evolution of the ionization rate and the average
electron energy are studied in nonuniform fields characteristic of p*-n junctions. The effects of
field fluctuations due to the random distribution of dopants are studied as well. The possibility
of new GaAs electron-emitting diodes is explored numerically and compared with the

corresponding Si devices.

The second aspect deals with the effects of conduction band discontinuities on the electron
transport. In particular, one-dimensional heterostructures are modeled to study the nonlinear
transport across heterointerfaces. First, two heterostructure avalanche photodiodes are studied.
It is found that overheating, enhanced energy relaxation, and carrier confinement as a conse-
quence of the structure in real space have a pronouned influence on the energy and momentum
distribution. As a result, the energy distribution can directly reveal the band structure of the
material. The dependence of the impact ionization rate on the band structures of the neighbor-

ing layers is also addressed.
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The effects of a nonequilibrium phonon distribution on the electron transport are studied as
well. The phonon distribution can be considerably perturbed when a large number of carriers
propagate across an interface, experience an abrupt energy gain, and subsequently relax through
strong phonon emission. An algorithm is developed for the microscopic analysis of phonon
dynamics. It is observed that the hot phonons change the scattering rate significantly, and heat

the electron energy distribution.

To investigate quasiballistic electron motion, tunneling hot electron transfer amplifier struc-
tures are studied at 4.2 K. The numerical results demonstrate the existence.of nearly ballistic
transport in the base and in the collector barrier, and confirm that the experiments can indeed
measure the energy distribution of injected ballistic electrons. The device characteristics, such as

transfer ratio and transit time, are also investigated in detail.
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CHAPTER 1

INTRODUCTION

Recent advances in semiconductor crystal growth techniques such as molecular heam epi-
taxy’? (MBE) and metalorganic chemical vapor deposition® (MOCVD) have made possible the
fabrication of ultrasmall devices, and have opened new possibilities for "band gap engineering” of

semiconductor heterostructures with spatially modulated gaps.*

By using the variability of the
boundary conditions which can be imposed on the electronic wavefunction, electrical and optical
responses in these structures can be tailored virtually at will. Most of the effort in this area has
been devoted to III-V compound semiconductor materials, especially the GaAs/Al,Ga,_,As
material system. Along with the possibility of forming latticed-matched artificial structures with
AlL,Ga,_,As, GaAs itself is known to have electronic properties which are in many ways superior
to Si.5~® Compared to Si, GaAs shows a significantly higher electron mobility in the low field
regime due to the smaller electron mass and a considerably enhanced drift velocity at high fields
in short channel devices resulting from the overshoot phenomenon. Because of the relatively
weak momentum relaxation processes at low electron energies through polar optical phonon
scattering (in contrast to deformation potential scattering with large momentum change in Si),
electrons in GaAs can initially gain considerable energy from the field without significant relaxa-

tion in momentum distribution and have a velocity overshoot persisting over a considerable time

and distance. These properties and the direct band gap make GaAs a suitable material for high

speed electronic and optoelectronic devices. ®
Some of the devices which rely on these properties include superlattice structures,®
modulation-doped structures,'® quantum-well heterostructure lasers,'! heterostructure avalanche

photodiodes,!?13 real-space transfer switching,'* and ballistic transfer structures.!>!® In many of o,

.!
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these devices, electrons often experience a reduced dimensionality in the motion (size quantiza-
tion effects) and the displacement in the momentum distribution due to the differences in materi-
als between adjacent layers. A wide range of novel effects such as impact ionization enhance

t,12:18 real-space transfer,!* and hot phonon effects!”!® has been observed in addition to stan-

men

dard textbook phenomena such as the particle in a box problem (e.g., red light out of GaAs
g g

quantum wells'?), the Aharonov-Bohm effect,?® and varicus tunneling effects.?! These effects are

based on electron transport far from equilibrium, and are essential in the operation of the dev-

ices mentioned above.

Since experimental studies of the nonlinear transport are often very difficult due to its
microscopic nature, numerical studies with a microscopic point of view are necessary for better
understanding. Conventional device modeling techniques based on the drift-diffusion equations
are inadequate to correctly treat the nonlinear transport problems since these macroscopic
models cannot accurately account for the electron motion (or electron distribution) in momen-
tum space which is essential in understanding the nonlinear effects. Instead, a technique which
has shown great success for the study of nonlinear transport is the Monte Carlo simulation
method 22 By stochastically tracing electron movements i both real space and momentum
space, the Monte Carlo method can generate the exact numerical solution of the Boltzmann
transport equation without solving the complicated integro-differential equation directly.®® The
fact that the simulations are based upon the simple first principles gives the Monte Carlo tech-
nique great flexibility in the inclusion of complicated details such as a realistic band structure,
many scattering mechanisms, complicated boundary conditions, and time- and space-dependent
parameters. The many-particle scheme proposed by Lebwohl and Price** is the most suitable
when the collective eflects are appreciable and the transient information is of prime concern
The self-consistent electric field can naturally be included in the simulation by solving the Pois

son equation simultaneously.




It is the purpose of this thesis to study the electron transport in various nonequilibrium
situations in III-V semiconductors, especially the GaAs/AlGaAs material system. Throughout
this thesis, a Monte Carlo simulation method has been used for the first-principle analysis of
transport properties under the semiclassical Boltzmann transport picture. In Chapter 2, various
models to implement complicated boundary conditions into a Monte Carlo method will be
described. The treatments of coupled plasmon/phonon scattering, the Pauli exclusion principle,
tunneling, and band bending will be discussed in detail. A quantum mechanical correction (colli-
sion broadening) to the Boltzmann transport equation and its influence on the electron transport

will also be analyzed.

Chapter 3 includes the study of hot electron transport in GaAs. The dependence of impact
lonization rate on the details of the band structure will be addressed. The effects of nonuniform
electric field in p*-n junctions will be investigated along with the fluctuation in the dopant dis-
tribution. The results will be compared with the hot electron characteristics of Si to explore the

possibility of new GaAs electron-emitting devices.

Chapters 4 through & are devoted to the modeling of GaAs/AlGaAs one-dimensional
heterostructures. [he effects of the conduction band discontinuity on the electron transport will
be discussed along with the models used in the analysis. In Chapter 4, the nonlinear transport
across heterointerfaces will be studied in two heterostructure avalanche photodiodes.’*!® The
evolution of the electron energy and momentum distribution will be investigated both in time
and space. The enhancement of impact ionization in these structures will also be studied in con-
junction with the dependence on the band structures. Chapter 5 will address hot phonon effects
which can occur when a large current flows into a well layer. An algorithm to incorporate pho-

non dynamics will be described.




To investigate the qua.siba,lllistic nature of electron motion and to examine the validity of
hot electron spectroscopy, the tunneling hot electron transfer amplifier structures proposed by
Heiblum et al '® will be studied in Chapter 6. Special attention will be paid to the transport in
the collector barrier, a region where the Heiblum’s device differs from the similar planar doped

barrier transistor.!® The switching characteristics will also be discussed.




CHAPTER 2

MONTE CARLO SIMULATION METHOD

2.1 Introduction

The Monte Carlo method consists of simulating the motion of one or more electrons inside
of a crystal, subject to the action of the forces (e.g., an electric field) and of given scattering
mechanisms. The duration of carrier free flight time and the scattering events involved in the
simulation are selected stochastically, based on the given probabilities describing the microscopic
processes. In real devices, especially heterostructure devices, electrons also experience boundary
conditions such as reflections at the interface. The accuracy of the calculation is strongly depen-

dent on the physical model of these microscopic processes.

This chapter is devoted to a description of models used in the simulation. The basic Monte
Carlo scheme and the treatment of conventional scattering processes (such as electron-phonon
interactions and ionized impurity scatterings) have been well documented in the literature =%
and will not be repeated here. Particular attention will be paid to more complex situations
which occur in heavily-doped or novel structures. In Section 2.2, the treatment of coilective
effects, which are important for a degenerate electron gas, will be discussed. Emphasis will be on
two topics, coupled plasmon/phonon scattering and the Pauli exclusion principle. A widely used
treatment to implement tunneling, the transfer matrix meshod, will be discussed in Section 2.3
along with techniques to obtain the effective mass at energies within the band gap. In Section
2.4, the band bending due to the formation of accumulation and depletion regions at the inter-
faces will be discussed. The last section of this chapter will deal with a quantum mechanical
correction to the semiclassical Boltzmann transport equation. The spectral density technique

will be described for the inclusion of collision broadening into a Monte Carlo simulation.




2.2 Collective Effects

As the electron concentration increases, interactions between electrons become nonnegligi-
ble. Also, the effect of band filling (or the Pauli exclusion principle) which has been neglected in
the calculation of scattering rates cannot be disregarded. Normally, Coulombic interactions
between electrons are categorized into two scattering mechanisms: the interaction between two
independent electrons with short wavelength (electron-electron scattering) and the interaction
between an electron and a collective excitation of an electron gas at long wavelength (plasmon
scattering). A cutoff wavevector q, between the individual and the collective excitation of an
electron gas is not well defined. Roughly, one half of the Thomas-Fermi wavevector®® has been

used as q, where the collective excitation starts to damp strongly %

As the plasmon frequency
approaches to the longitudinal optical phonon energy, the coupling between these modes and the
Frohlich polaron (polar optical phonon scattering) becomes significant. In this section, a theoret-

ical model of these coupled modes will be discussed. Inclusion of the Pauli exclusion principle

will also be explored.

2.2.1 Coupled plasmon/phonon scattering

The scattering rate of the coupled plasmon/phonon modes can be calculated by3°

1 2 dsq diw 282
—_— = | — | — 1 1+n, ) =— S(q,w) Kw+Er —FE= o
Tpl—pop(T(') i f(21r)3 j or i k—‘ff)( Q) e°q2 (qw) & =1 7 (2.1)
and

6T(ql(‘))

where ¢, represents the dielectric constant in free space Since T = 0 K 1s assumed 1n this for-

malism, only the emission events are considered. Thus, f? 1s either 0 or 1 and Dy, 1S 0 n the cal




culation. The total dielectric function calculated in the random phase approximation can be

written!

€T(ql(“J) = 6L(q)"‘))"}'ee(q)("})_lr (23)

where the dielectric function of the lattice takes the form

2 2
Wo—wro
(qw) = l—€e(——5—) (24)
* WP—wfo
and the electronic dielectric function is denoted
ee(q’w) = [ew+€,°['(q,w)—1]+i [eieL(qrw)]' (2'5)
Then, the total dielectric function can be simplified as
WP—wd .
er(@w) = (oo ) HerH(a,w)—1]+i [6(q, ). (2.6)
WP —wio
The real and imaginary parts of the Lindhard function are written®!
/o1
. 14+{(—+=4')
2 m kF 1 ‘/ ! ] 2
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where q' =q/kp and V/ =m"hw/k°kE. The parameter D is the number of equivalent valleys (i.e.,
1 for the T valley), and kg is the Fermi wavevector. When =0, Im[1/er(q,w)] has resonance
frequencies known as the dispersion relation and is dominated by these resonance frequencies in

the integration over the frequency w. By application of the Dirac formula®?

1 _ 1 . )
x—x' +in —P[x—-x’ | = imdx—x') (29)

and the use of following relationship

qx—xo)
&f(x)) = Y—rm5—

for the zeros x, of f(x), the scattering rate in the region where =0 can be obtained by

- d3q 2¢’m 1
T pl-po,,(i') Ef @) ed’ | der(q,w) I (2.11)
dw

where w, 's are the solutions of the equation er(qw)=0. For the region where ¢ is nonzero,

the resonance frequencies are broadened out and should be integrated over the possible energy-

momentum phase space.

The resulting dispersion relation gives the following four coupled modes® as shown in the

Fig. 2.1: two phonon-like modes at small and large wavevectors, a plasmon-like mode at small

wavevectors, and the Landau damping mode which results in the excitation of electrons from the

Fermi sea through the damping of collective motion Depending on the plasmon frequency

w3=(ne2/6°€°°m')1/2, the w, and w_ branches in the figure respectively become plasmon-like and

phonon-like for w3> wLo, and vice versa for w£<wLo. The Landau damping mode corresponds
eL

to the region where €™ is nonzero. In a different approach, the Landau damping mode can be

treated as individual pair electron-electron scatterings as briefly discussed previously ® To dis-

tinguish the collective plasmon interaction and the individual pair interaction, a cutoff
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Figure 2.1 A schematic plot of the dispersion relation of various modes contributing to the

coupled plasmon/phonon scattering processes. A degenerate electron density of
1X10"cm™ and Ep ~ 0.13 eV have been assumed.
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wavevector has been introduced based uponr the singularities of the dielectric function in such

treatments. The approach which uses the total dielectric function is more rigorous.

The calculated scattering rates by these coupled modes at n=1Xx10"®cm™2 are shown in Fig.
2.2 as a function of energy. For plasmon- and phonon-like modes, the scattering rates have been
obtained in the limit of either short or long wavevectors. By making the short wavevector

approximation, the Lindhard function becomes

2 2

wp(a) 3 Iokf
H(a=0,) = 1=t wla) = wp (14— —a’), (2.12)

W,

P

which gives the following dispersion relation:

[wq)+ariol £ {{wi(q)+wio]?—4w? (q)wio}/? .

wi(q) = 5

(2.13)

In actual calculations, w,(q=0) has been used. The phonon-like mode at long wavevectors has
been treated as uncoupled polar optical phonon scattering (q—00 approximation). As can be
seen in the figure, the scattering rate is zero below the Fermi energy and sharply increases after-
wards until it reaches the maximum. The Landau damping is the most dominant mechanism at
low energies, and the plasmon-like mode (w,) becomes important as the energy increases. The
contribution by the phonon-like modes (wy o and w_) is negligible. Figure 2.3 shows the coupled
plasmon/phonon scattering rate as a function of electron density for an electron of E=0.3 eV. It
is observed that as the density increases, the scattering rate increases up to a point and then
decreases. This decrease is due to the shift in the Fermi energy toward higher energies with the
increase in density, thereby shifting the onset of scattering. Although the maximum scattering
rate increases with density, the scattering rate with large density can be still in the increasing

stage and relatively small at E=0.3 eV as shown in Fig 2.4.
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2.2.2 Pauli exclusion principle

When the electron gas is degenerate, the assumption that the occupation probability f(’k‘) is
much less than one is no longer valid. The [1-f(K)] factor neglected in the standard Monte Carlo
simulation is expected to be of considerable importance. Inclusion of the fermionic nature of
electrons (the Pauli exclusion principle), however, requires a knowledge of the distribution func-
tion. Attempts have been made to incorporate degeneracy into a single particle Monte Carlo
method with only limited success.® The ensemble Monte Carlo method, for which the distribu-

tion can be obtained naturally at all times, is the appropriate choice.3®

The procedure generally used to include the Pauli exclusion principle is as follows. The
occupation probability f(Tc') is updated during the simulation by dividing the number of electrons
in each mesh cell in momentum space by the number of total states available. Electron drift is
treated as in the nondegenerate case. When a scattering occurs, the final state is selected first
without considering the exclusion principle. Based upon f(m, the rejection method is then
applied to test if the chosen final state is unoccupied. If the transition is rejected, the scattering

event is treated as a self-scattering and the state of electron is not changed.

The size of the mesh cells in momentum space should be chosen carefully, depending on the
number of electrons in the ensemble. While it is preferable to keep the size of the mesh small for
better resolution of the distribution function, it must be large enough so as not to introduce a
significant statistical error when the maximum occupancy of a cell by the ensemble electrons is
rounded off to an integer. It is important to ensure that calculations are not dependent on the

number of electrons in the ensemble and the size of the mesh cells.

The method discussed above, however, requires a significant amount of memory in space
dependent simulations. Instead an approximate, but much simpler, method can be used in dev-

ice simulations since the degeneracy effects are important only in heavily doped regions In these
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regions, large charge density results in low electric fields and low electron temperature. Strong
electron-electron interactions tend to restore the Fermi-Dirac distribution.®® Therefore, the occu-

pation probability function can be validly approximated as

fl ,T(., ~ 1
(rkt) EE‘—EFIT,t)] (2.14)

1 + ex
) p[ kBTe(?»t‘)

where the Fermi energy Eg(f,t) is obtained from the local electron density and the electron tem-

perature T (T,t) is from the local average energy.

2.3 Tunneling

As the control of epilayer growth becomes more accurate, quantum mechanical effects such
as tunneling should be included at the interfaces along with classical transfer. In general, these
effects can be incorporated into the Monte Carlo simulation from an independent-particle point
of view.3%® Inclusion of many particle effects such as interference®® is inherently difficult due to
the stochastic nature of the Monte Carlo method. Although the effective mass approximation is
no longer valid at abrupt interfaces, it is commonly used due to the lack of a simple alterna-

40

tive.™ More precise results can be obtained by using an empirical Bloch wavefunction

approach.’ In the calculation of tunneling probability two methods, the WKB approximation

d,*243 are widely used under the effective mass approximation. In

and the transfer matrix metho
this section, the transfer matrix method, which is the more accurate of the two, is described in

detail.

Figure 2.5 shows the schematic of an arbitrary one-dimensional potential barrier. Instead
of using a continuously varying potential energy, the barrier is approximated as a summation of
constant potential energy segments. It is assumed that energy and paralle] momentum are con-

served throughout the calculation. The wavefunction 1 in the jth region is given by
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¥i(x) = Ajexp(rk;x) + Bjexp(—ik;x) (2.15)

where k; is obtained from the energy-momentum conservation assumption. From the continuity
of ¥j(x) and (1/m;’) (d;/dx) at each boundary,*! determining A, and B, can be reduced to the

multiplication of the following n {2 X 2) matrices:

[Ao M [A1] n " [An] [Mn Mm] [An] (2.16)
By~ " |B, =HL 1 By) ™ Mgy Mao) (B, ) -
By setting B;=0, the tunneling probability P(ky) can be written as
ko/m, A |7 k,/m, -
P(ko) = (=——) D2=( ) M 72 (2.17)
ko/mg ~ |Aql ko/mg

If nonparabolicity is included, the effective mass is a function of kinetic energy (thus, position in
real space) even in the homogeneous material system. The effective mass in the forbidden gap

(i.e., in the barrier region) can be defined by using the extension of a k-7 method. >4

The model discussed above describes the tunneling process in which electrons stay in the
same valley in momentum space, and does not include the elastic intervalley transfer between
band minima. Negative differential resistance has been reported in a single barrier structure
through the X minima in the GaAs-AlAs system*”*® and the valence band in the CdTe-HgCdTe
system.*® The tight binding method can be used to estimate these effects of the mixing between

valleys 4130

Although generally used, the assumption of parallel momentum conservation does not have
a rigorous theoretical justification other than the hand-waving argument of lattice homogeneity
in the direction parallel to the interfaces. Due to the position dependent effective mass, the total
energy (kinetic plus potential) in the direction of propagation is not conserved even when
scattering is not present. This seems to suggest that tunneling should be treated three-

dimensionally in principle. Further study is needed to clarify this point.




o

- T T T TR

wiew

18

2.4 Band Bending

In the tunnel structures, tunneling currents are extremely sensitive to the actual shape of
the barrier through which charge carriers tunnel, and to the voltage drop in the electrodes as
well as in the barrier. Thus, it is essential to perform self-consistent calculations of the energy-
band diagram which includes the effects of band bending and the buildup of space charge in the
quantum wells. In some cases, energy-band prc©les even indicate that the dominant carrier
transport mechanisms are quite different from those expected when these effects are neglected.
An algorithm to obtain realistic energy-band profiles is discussed in this section, primarily in

single- and double-barrier structures 3'%3

Figure 2.6 illustrates a schematic of the potential profile of a single-barrier structure with
an undoped AlGaAs layer sandwiched between heavily doped GaAs contact layers. For the cal-
culation of band profile in this structure, the following boundary conditions are generally used:
(1) Far away from the barrier layer, the semiconductor properties are bulk-like. (ii) There is no
interface charge. (iii) Under no bias, the Fermi level remains constant throughout the entire
structure. Under an external bias V,, the quasi-Fermi level in each contact layer is constant up
to the mnterface with the barrier. These quasi-Fermi levels must differ by eV, With these boun-
dary conditions, the Poisson equation 1s solved self-consistently. Starting from an iniiial charge
distribution, the potential profile and the charge distribution are iterated self-consistently. Since
the quasi-Fermi level is always known (conditions (i) and (iii) above), the charge distribution
which corresponds to a given potential profile can be readily obtained. In double-barrier
resonant tunneling structures, the Schrodinger equation is solved simultaneously with the Pois-
son equation to include the charge buildup in the quantum-well Jayer The quasi-Fermi level of
the contact layer, from which most of the carriers in the well layer come, s generally used 1n ihe

well layer also 3
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LP~3016

Figure 2.6 A schematic of the potential profile ot a single-barrier structure with an undoped
AlGaAs layer sandwiched between heavily doped GaAs layers. The <olid line
includes the band bending, and the dashed liue does not.
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2.5 Collision Broadening

The development of methods to calculate the electron transport properties of materials far
away from equilibrium conditions is an unsolved problem in physics today. An understanding of
the behavior of electrons in high electric fields is becoming increasingly important in semiconduc-
tor structures which approach angstrom sizes. Such effects as collision broadening, finite colli-
sion lifetimes, the intra-collisional field effect, and extremely high electron scattering rates must
be considered in studies of these nonequilibrium problems. For systems which are not highly
perturbed from equilibrium and where such effects are of only limited importance, semiclassical
calculations based on the Boltzmann transport equation prove to be very useful in predicting
physical properties. As mentioned previously, Monte Carlo methods in particular are very flexi-
ble and powerful for transport caiculations in this semiclassical regime. Unfortunately, these
methods fail in the high-field, high-scattering rate environments which are of increasing interest
in microstructured semiconductor devices.>* In situations where the quantum mechanical nature
of the system becomes important, a technique which has the power to calculate electron tran-
sport has not vet been found. Although a reasonably complete theoretic framework has been

establish ” quantum transport has, to this point, proven to be computationally intractable.

Collision broadening is the spread of the electron energy-momentum relation due to scatter-

ing. This quasiparticle nature of the electron is best described by the finite width of the spectral

function®® of an electron interacting with its environment In a seminal paper, Chang et al.®

explored the idea of including collision broadening into Monte Carlo calculations of electron
transport in semiconductors. Their approach was to include the broadening of the electronic
states using the ideas developed by Barker®® in his work on quantum transport and the intracol-

lisional field effect. This paper by Chang et al.’® has received much comment and has spurred

further research into the problem.50:8! .80

Recently, Lugli et a included the broadening of the
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electronic states in a model Monte Carlo calculation using a more precise method, which makes
use of the many-body spectral function. Their work used a single parabolic band with no upper

band edge and the Born approximation for scattering.

In this section, a method which includes one particular quantum effect, collision broaden-
ing, into the semiclassical Monte Carlo method by applying the spectral function technique is

described in detail. Comparisons will be made with the treatment of Chang et al.>

and Lugli et
al.% It should be emphasized that this treatment does not constitute a complete quantum tran-

sport method. It incorporates only one of many quantum phenomena into a semiclassical tran-

sport calculation. A ful' quantum treatment is still a problem for the future.

The method discussed here is based on the semiconductor model that was employed by
Chang et al.’® The full band structure of the bulk GaAs conduction band is calculated using an
empirical nonlocal pseudopotential method.®? The band structure is needed for a quantitative
and even qualitative understanding of high-field transport in semiconductors because of the large
effect of the density of states on the scattering rates. Our model still simplifies the electron
dynamics by approximating the full electron scattering at high-electron energies from all the
scattering mechanisms by an interaction with a single nonpolar optical phonon mode with fre-
quency wy. The coupling between the electrons and the phonons is chosen so that the cross sec-
tion at an energy of 0.6 eV above the conduction band edge is equal to the total cross section of
electrons scattering from all the scatterers in GaAs.® Thus, the well-known analytic formulas®
are used up to 0.6 eV and the method described below is used above 0.6 eV for the calculation of
scattering rates.

The electron scattering rate due to the phonons is calculated in the Fock approximation®

by self-consistently solving the equation,
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oKE)= [ d% 5(€) (2.18)

(27)® E—huwp—e(K—K' )—X (K—K ,E—hwp)

for the electronic self-energy ¥ which gives the perturbation of electronic states. The scattering

rate can be obtained from the relation
.i_ - _.E_ Im S(E(K)). (2.19)

In Eq. (2.18), g(K") is the coupling between the electrons and the phonons, and €(K) is the disper-
sion relation for the electrons as given by the band structure calculation. The use of Eq. (2.18)
for the self-energy includes the approximation that phonon absorption processes are negligible.
At the temperature of 77 K which was used in this calculation, the phonon occupation coefficient
for absorption is of the order 102 while the emission coefficient is of order 1. In the case of non-
polar optical phonons, g(l-c') is well approximated by a constant. As pointed out by Chang et
al.,®® when the electron-phonon coupling is independent of the wavevector, the self-energy is a

function of the electron energy alone, I(K,E) = Z(E).

The electron scattering rates calculated by the conventional analytic method and the
method discussed above are shown in Fig. 2.7 as a function of energy. The phonon energy
wp = 29 meV and the electron-phonon coupling g = 0.2 eV have been used. Due to the decrease
in the density of states, the scattering rate by the self-energy method starts to deviate from the
rate by the conventional method at high energies. Figure 2.8 shows the self-energy as calculated
self-consistently from Eq. (2.18) and the self-energy calculated by the Born approximation (where
the £ on the right-hand side of Eq. (2.18) is replaced by an imaginary infinitesimal 16). 1n the
Born approximation, the imaginary part of the self-energy Im X(E) is proportional to po(E—hwy)
where po is the density of states. Thus one can see from Fig. 2.8 that the conduction band
extends to approximately 4 eV. It is also evident that the Fock approximation results i consid-

erably reduced scattering near the center of the band where the density of states is high. This
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approximation is therefore needed for a more accurate calculation of the scattering rates at high

energies.

Collision broadening is introduced into Monte Carlo calculations by the inclusion of a dis-
tribution for the electron energy after each collision. In the usual semiclassical transport calcula-
tion, the rate of transition of the electron state from before to after a phonon collision is given

by the golden rule:

WEK) ~ |V |28 e(Kp)—e(K;)—tre) (2.20)

where V is the effective electron-phonon potential. The final state is given exactly by the initial
state and the phonon energy. As described in some detail by Reggiani et al.®® the quasiparticle
nature of the interacting electron can be included by replacing the delta function in the golden
rule by a joint spectral density K. The joint spectral density K is a convolution over the initial

and final state spectral functions,

K(Rek) = [ SEAR E-trwgA(K, E). (221)
The transition rate in this case is given by

WEK) ~ [V 12K K. (2.22)

In Eq. (2.21), the spectral function for the interacting electron is calculated from the self-energy

by

_ —2 ImE(l?,E) 99
A(KE) = [E—e¢(K)—ReZ(K,E)]* + ImZ(KE)}* (2.23)

The final electron state after scattering by a phonon is given by the joint spectral density distri-
bution K(K;k;) reflecting the spread in the quasiparticle energy. It is obvious that this method
of including the broadening of the electronic states reduces to the golden rule when the bare elec-

tron spectral function, A(K,E) = 2r{E—¢(K)), is used in Egs. (2.21) and (2.22).
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Since the self-energy is a function of the electron energy alone, K is a function of only the
initial and final electron energies, K(K.K;) = K(¢(Kp),é(k;)). The quasiparticle energies E are
integrated out in Eq. (2.21). In Fig. 2.9, the joint spectral density K(¢,¢) is plotted as a func-
tion of the final energy ¢ for three values of the initial energy €. As can be seen in the figure, K
is asymmetric with an enhanced tail which extends into the region of the band where the density
of states is largest. This tail is due to the peak in the density of states near the band center.
For ¢ below the peak in the density of states, this tail in K extends out for ¢ > ¢, while for ¢

above the peak, this tail extends out for ¢ < ¢.

It is also important to note that the integral fdefK(e,-,ei) = 1. This, of course, is needed for
conservation of the electrons. This integral over K gives a check on the numerical calculation.
Finally it should be pointed out that this model includes the real part of L(E), unlike the model
of Lugli et al.,% which gives the renormalization of the electronic-band energies due to the pho-
nons. This makes the model completely consistent with the quasiparticle picture of the elec-

trons.

To study the importance of collision broadening, Monte Carlo calculations of the electron
energy distribution in a uniform electric field have been performed in GaAs using the model
described above at 77 K. Polar optical phonons and intervalley scattering have been included
for energy loss of low-energy electrons and intervalley electronic motion respectively. The possi-
bility of impact ionization has also been considered. Figure 2.10 shows the steady-state electron
distribution for an external field of 500 kV/cm. Included in this figure are results of calculations
using three different forms for the transition rate. The solid curve in Fig. 2 10 gives the result
for a simulation using the golden rule transition rate as given by Eq. (2.20). The dott.u curve
gives the electron distribution with the full collision broadening as described above included.

The dashed curve is a simulation using a Lorentzian approximation to the broadening similar to
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that used by Chang et al.®® In this approximation, the width of the state before the scattering
Im3{¢) has been used to broaden the transition rate. For this initial state broadening, the

spectral density distribution is

K(e6) = 1 -2 ImX(¢)

T (e—e—hw)? + (Im(g))* (2.24)

This approximation simplifies the calculation of the joint spectral density K(¢,¢) considerably
while including an approximate broadening of the electronic states. This Lorentzian state
broadening reproduces many of the features of the full broadening calculation. It should be pos-
sible to improve on this approximation by including the spread in both the initial and final

states as suggested by the work of Barker.%®

It is easily seen from Fig. 2.10 that the collision broadening has a profound effect on the
calculated electronic distribution. Although the average energies of all three models are equal
within the accuracy of the calculation, the simulations which included broadening have a much
larger spread in the electronic distribution with a maximum at a somewhat lower energy and a
particularly pronounced enhancement in the high-energy tail. This is because with the collision
broadening, the electrons at the energy range where the density of states is high (here, between 1
eV and 2 V) tend to be scattered away from the original energies due to the large spread .u the
spectral density. Thus, the broadened distributions have a very nonthermal (nonexponenual)

high-energy tail.

Unlike this result, Lugli et al.® found a run-away phenomenon when collision broadening
was included. The average electron energy of their broadened distribution was significantly
higher than that calculated using the golden rule. The inclusion of the precise band structure
inhibits this run-away. The reason for this can be seen by considering the function K plotted in

Fig. 2.9. High in the band the scattering probability is skewed towards lower energies due to
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the larger density of states there. For the strictly parabolic dispersion relation used by Lugli et
al.,% the density of states always increases. In our results, the electron energy distribution is
larger in both the high- and low-energy regions, than the golden rule results with little or no
change in the average energy. There is no run-away when the full band structure of the semi-

conductor is considered in the electronic model.

The high-energy electron population enhancement due to broadening is in the region of the
band where processes such as impact ionization begin to occur. This significant change in the
electronic distribution will have a large effect on the calculated rates of any high-energy effects.
The accurate calculation of these processes would seem to require, therefore, the inclusion of the
broadening of the electronic states. However, caution is needed for the numerical application of
this spectral density function technique. Since the spectral density is not a classical probability
density, one often has to make approximations, such as limitiug the final energy within certain
energy ranges or making the spectral density always positive definite,® in order to implement
this quantum mechanical quantity into a semiclassical calculation. It is important to make sure

that the results are not significantly affected by these approximations.

L _.a
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CHAPTER 3

STUDY OF ELECTRON IMPACT IONIZATION RATE IN GaAs

3.1 Introduction

Carrier multiplication by impact ionization is an essential mechanism in semiconductor

devices such as photodiodes and IMPATT diodes,% and has been subject to many theoretical

63,67 6771

and experimental investigations.®*%7=7 Most of the analytical theories

contain several adju-
stable parameters whose physical meaning are not easy to understand. Recently, a Monte Carlo
algorithm which does not contain adjustable parameters and includes a realistic band structure
was developed and applied by Shichijo and Hess®® to investigate high field transport in GaAs.
More refined Monte Carlo calculations of the impact ionization rates over a wide range of electric
fields have been carried out by Brennan and Hess.”? The data of these calculations®7? are in
good agreement with experimental data, for example, given by Bulman et al.”® In these calcula-
tions, a steady-state model for uniforr_n electric fields has been used. The steady-state wodel 1s
appropriate for analyzing the data measured in the p-i-n diodes or punch-through p-n diodes
with long depletion regions. However, most of the rate measurements have been carried out

7475 or Schottky barriers’® where the electric fields are not con-

either in abrupt p*-n junctions
stant. Also, the random distribution of dopants results in fluctuations of the electric fields and

affects electron transport.®® It is, therefore, desirable to study the impact ionization in nonuni-

form electric fields, which can includes nonlocal effects, as has been pointed out by Capasso et

al .78

In this chapter, the electron impact ionization in GaAs is studied in various situations with
an empirical pseudopotential band structure. lncluded scattering mechanisms are polar »ptical

phonon scattering and equivalent intervalley scattering as well as nonequivalent intervalley
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scattering. Section 3.2 deals with the dependence of the impact ionization rate on the details of
the band structure. In Section 3.3, the spatial evolution of the ionization rate and the average
electron energy will be discussed for field variations typical for p*-n junctions or Schottky bar-
riers. The effects of field fluctuation due to the random distribution of dopants will be studied
in Section 3.4. The final section is devoted to the study of a new type of device (avalanche elec-

tron emitting diodes” %)

which is heavily dependent on the impact ionization process.
3.2 Band-Structure Dependence

63,72

In the previous studies, the empirical local pseudopotential method (as developed by

) was used to obtain the band structure This band-structure calcula:

Cohen and Bergstresser
tiop can be improved by using the empirical nonlocal pseudopotential method of Chelikowsky
and Cohen®® in which the effect of nonlocality or energy dependence of the pseudopotential is
included. This difference in method brings changes in the band structure, and affects the calcu-

lation of impact ionization rates. By carefully studying these changes, one can get important

informatior on the basic characteristics of impact ionization.

Figure 3.1 shows the first conduction band of GaAs calculated by the local and nonlocal
pseudopotential method. Compared with the local band structure, the nonlocal band structure
has slightly lower energies for all values of k. This difference in energy between the two bands is
more pronounced at high energies. A comparison of the density of states computed with both
methods is shown in Fig. 3.2. As can be seen, the profile of the nonlocal method exhibits a
higher peak in the density of states. The states are also shifted to lower energies in the nonlocal
calculation. Since the scattering rate by phonons is proportional to the final density of states.
one can expect that the energy loss of electrons will be higher for the nonlocal case and the aver-

age energy will be lower. Accordingly the impact 1onization rate should be smaller.
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The impact ionization rates calculated by a Monte Carlo method with these two band
structures are shown in Fig. 3.3. The data for *%2 local method are directly from Brennan and

Hess.”?

As expected the impact ionization rate is considerably lower for the nonlocal method
than for the local method in the entire range of electric fields. This difference is relatively small
at high fields and increases as the field decreases. The reason for this is that the high-energy tail
of the distribution is sensitively affected by the details of the band structure and especially by
the increase in the density of states. At low electric fields, it is this high-energy tail (the lucky
and nearly lucky electrons) which contributes most to the ionization rate. At high fields, the
distribution function is heated so much that the bulk of the spherically symmetric part of the

energy distribution function contributes to the ionization, and the band structure has less

influence.

Note also that the increased scattering for the nonlocal band structure leads to the disap-
pearance of the small anisotropy of o which is observed for the local band structure. In other
words, increased intervalley scattering shifts the anisotropy to much lower fields for the nonlocal

case,

3.3 Ionization Rates in Nonuniform Fields

There are two widely used ways to define the impact ionization rate. One is based on the
rate of the change of the particle density, and the other on the rate of the change of the current
density. Beni and Capasso® have shown that these two definitions are in general not the same
and the difference is proportional to the derivative of the drift velocity. Of course, in homogene-
ous steady-state problems, these two definitions give the same result. However, in the spatially
transient case, the difference may be significant. It is generally accepted that the definition
based on the current density must bc used in the transient cases 8 Therefore, the connection

between these two definitions and the microscopic model used in an actual Monte Carlo
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simulation (the inverse mean free path between ionizing collisions) should be investigated for the

appropriate evaluation of the impact ionization rate in nonlocal problems.

Thornber® has derived the ionization rate from the Boltzmann equation, and has shown its
equivalence to the definition of the ionization rate in terms of the current density. In his deriva-

tion, the electron impact ionization rate is give by

eche
a(X;t) = % S % [d%p; [d®py [d®p) Rij(FiFiFiiBl) LY / Jo(Xot) (3.1)
ij

where J(X,t) is the electron particle flux density and Ry (7:,7;,Pi;P)) is the rate at which a (17))

carrier scatters to (j,P;), creating an electron-hole pair (i,5;)—(k,Px). This equation can be written

as
,t < T o= sch —p b = =
a(X;t) = ARY). S [d%n i@ Bt) 3 [ a3 fd®p; fd®py Rij(FB; PP (3.2)
Jo(X;t) ijk
1 A 3 -
= d°p R (X7t
) Sl_:f i R(P) {(ZPut)

where v,(¥,t) is the electron drift velocity. The function f(X7},t) is the probability distribution
of the conduction band and R(}) is the rate at which a (1,7|) electron ionizes. The rate per unit

time of creating a pair by impact ionization is defined as

1
Ta(%:t)

= ?fdsp. R/(F) TR0, (33)

Then Eq. (3.2) becomes

_ 1 _ 1
R DR (3.4)

which is precisely the inverse mean free path between ionizing collisions. Hence, the microscopic
model used in Monte Carlo calculations, Thornber’s definition, and therefore the definition of the

impact ionization rate in terms of the current density are all equivalent. This means that we
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can directly compare the measured data with the calculated results by the Monte Carlo simula-
tion. Thornber’s definition (and therefore the microscopic model) is valid as long as the underly-
ing Boltzmann equation picture is correct and applies to nonlocal problems. More detailed dis-

cussions on the applicability of this model can be found in Ref. 81.

For the microscopic model, it is essential to know Ry(P,P;P:Pi) and (%P, t) precisely.
The Keldysh formula®® has been used to compute Ri(F;). However, the use of the Keldysh for-
mula makes it difficult to find the precise final states of electrons and holes. Approximations
used to restart these particles at zero energy and neglect created (or secondary) electrons are
good for steady-state situations. This is because the actual energies of final states are close to
zero in general, and the nonlocal effects of secondary electrons are not in the steady-state calcu-
lations by definition (device length is assumed to be infinite). However, for the transient case,
the created electrons which may have an energy distribution quite different from the launched
electrons have nonnegligible effects. It is then necessary to keep track of the secondary electrons
to obtain the exact nonlocal effects. The importance of secondary electrons becomes significant

when the impact ionization rate is high.

The electric field profiles considered in this section are shown in the inset of Fig. 3.4.
Under the depletion approximation, these profiles describe the electric fields in abrupt p*-n junc-
tions or Schottky barriers which are commonly used to measure the impact ionization rate. The
zero of the coordinate system x=0 is located at the junction interface at which the Monte Carlo
electrons are launched. Electrons are launched with zero energy. In the calculation, the empiri-
cal nonlocal pseudopotential band structure shown in the previous section is used. The material
parameters, such as the ionization threshold and coupling constant for phonon scatterings, are
the same as in Ref. 72. Due to the very high electric field and low doping density (=~10'"%cm™3)

in the n region, ionized impurity scattering is not included
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Figure 3.4 shows the electron impact ionization rate in GaAs with the corresponding field
profiles. As can be seen, the ionization rate is very low for a considerable distance (the dead
space) before it reaches steady state. Similar characteristics are observed for the average energy
as shown in Fig. 3.5. Since the electrons are launched at zero energy, a certain distance is
needed for the electron gas to gain enough energy to impact ionize. The dead space is one of the

typical nonlocal effects. Grant®?

expected this distance to be the distance needed for electrons to
be ballistically heated to the threshold energy. Since, however, electrons lose energy through ine-
lastic collisions while they gain energy from the electric field, longer distances than those
obtained from the simple ballistic transport theory are computed. A precise definition of the
dead space is not straightforward in general. Here, we define it as the distance needed to reach
the maximum of the impact ionization rate. Since the transient rates in the steady regime after
the dead space are in good agreement with the steady-state rates, the distance as defined above
is equivalent to the distance needed to reach the steady-state ionization rate. As can be seen
from Fig. 3.4, the length of the dead space decreases as the maximum field increases since the
electrons are heated up more quickly. This length corresponds to the distance which is needed
to ballistically gain about 3.4 eV (which then corresponds to approximately twice the impact
ionization threshold energy and two and one half times the band gap energy for electrons in

GaAs). The rate measured in p*-n junctions are usually plotted vs. 1/E with a dead space

correction®? estimated by Grant’s method.

Figure 3.6 shows the impact ionization rates for electric field profile (a) of Fig. 3.4 pointing
in two different crystallographic directions (<100> and <111>). For comparison, the steady-
state ionization rates are included. An anisotropy seems to develop at low fields. The agree-
ment of transient and steady-state data after the dead space means that the simple steady-state

method with a uniform field can be used to calculate the ionization rate in this range.
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In these calculations, the electrons have been launched at the maximum field. In p*-n junc-
tions, the field does not increase infinitely fast to its maximum strength because of the small
depletion region on the p* side. A similar slower increase will occur in a Schottky barrier
because of image force effects. If a factor of 100 is assumed for the ratio between doping levels
Na/Np (which is typical for p*-n diodes), an additional 100 A is added to the depletion region
for profile (a) of Fig. 3.4. Figure 3.7 shows the result including this correction. Electrons are
launched at x=—100 A and the appropriate field profile is included between x=—100 A and x=0
along with profile (a) of Fig. 3.4 for positive x values. As expected, the ionization rate is higher
at a given x in the dead space and reaches the peak faster for this case. In the steady regime,

the rates of two cases are in good agreement.

The correction by including secondary electrons has also been estimated, and is shown in
Fig. 3.7. Since the ionizing and secondary electrons are indistinguishable after the ionization
event, one need only follow a single electron after the event, with proper weighting, to model the
entire enseﬁ;ble. In this calculation, the excess energy of an ionizing electron is randomly distri-
buted between possible final states by the energy conservation law, and the two final electrons
are assumed to have identical energy and momentum for simplicity. Thus, if a sample electron
experiences an ionizing collision, all the subsequent contributions by that electron are weighted
by the factor of 2. This correction has a negligible effect on the dead space since only a very
small number of secondary electrons are created in this region. However, as the number of
secondary electrons grows by reaching the regime with the high ionization rate, the ionization
rate becomes smaller than that without the correction because the secondary electron distribu-
tion is cooler than the launched electrons with a dead space for each secondary electron. To
accurately account for this effect, the Keldysh formula must be replaced by a more precise

theory which can give Rijy(P;,F;,Pk;P)) rather than Ry(P)), as suggested by Kane®*
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3.4 Effects of Random Distribution of Dopants

The effects of field fluctuations due to the random distribution of dopants on impact ioni-
zation were first addressed by Shockley in his celebrated paper on p-n junctions.’® Shockley
assumed that dopants are incorporated in the junction independently, and therefore follow the
Poisson distribution. This assumption is justified because dopants are usually incorporated dur-
ing growth or processing under the condition of high temperature. At these temperatures, the
thermally generated intrinsic electron and hole concentrations are high enough to screen the elec-
trostatic interactions between dopants. Portraying dopants as a continuum with fluctuating
density, Shockley calculated the root-mean-square voltage deviation between two points

separated by a distance d,%
2
v = [4—‘}(;(ND+NA)<11‘/2. (3.5)

Here q is the magnitude of the electronic charge, € is the permittivity, and Np and Ny are aver-
age donor and acceptor concentrations. Equation 3.5 is derived by considering ap infinite
depleted semiconductor with uniform average doping. Since only the high field region of the p-n
junction is of interest in connection with impact ionization phenomena, it is valid for Shockley
to neglect the effects of the edge of the depletion region. From Eq. (3.5), Shockley proceeds to

derive an effective electric field for impact ionization,
F

Fy
F

Feﬂ =

—
W
=)

—

WU

Here F is the electric field and F; is a quantity representing the fluctuations in the field which is

given by

2
F, = (V)/d (3.7

Ewn/q
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where E,), is the threshold energy for impact ionization. In deriving Egs. (3.6) and (3.7), Shock-
ley assumes that the average electric field is constant, which is a rather weak approximation.
Since the effective field is larger than the average field, Shockley predicted strong enhancement

in the impact ionization rate due to the field fluctuations.

More accurate results can be obtained with the use of a computer. With the location of
each discrete dopant randomly chosen in a p-n junction, the realistic field fluctuations can be
calculated by solving the Poisson equation in three dimensions using a method such as the finite
difference SOR algorithm 8% Treating the impurities as infinitesimal point charges would result
in singularities in the solution of the Poisson equation. These singularities would contribute to
the calculated fluctuations (which are still finite) in an unphysical way if included into the field
fluctuations without modification, since the effect of the core electrons is totally neglected.
Thus, it is more appropriate to use a pseudopotential and therefore cut off the potential varia-
tions within the first Bohr-radius. For simplicity of calculation in this model, it is assumed that
the carriers which contribute to the current do not significantly affect the potential energy
profile. It is also assumed that the applied bias affects only the average potential energy profile,
but not the fluctuations.

The particular case considered is a GaAs junction doped with 3.6 x 10'® cm™3

acceptors on
one side and 3.6 X 10'® cm™3 donors on the other side. The root-mean-square voltage fluctua-
tions between two points in space is plotted in Fig. 3.8 as a function of the distance between two
points. Shockley’s result, given by Eq. (3.5), is shown also for comparison. The curves show
reasonably close agreement. In the calculation, the spatial coordinate normal to the p-n junction
has been denoted by x, and the transverse coordinates by y and z The normal component of

the electric field F,(x,y,z) is obtained by numerically differentiating the potential Throughout

this section, the normal component of the electric field will be referred to as the field in the
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remainder of the text. The fluctuations in the field are given by
6Fx(x)yvz) = Fx(xvy,z) - I_‘;x()()' (38)

Here Fx(x) is the field averaged over y and 2. The fluctuations are, then, superimposed on the
field, averaged over y and z, for a p*-n junction under high reverse bias in order to calculate the
electron impact ionization rates. This average field is calculated from the depletion approxima-
tion, which gives excellent agreement with more exact calculations of the average electric field
except near the edge of the depletion region. Since the latter is a low-field region, it is not
important to impact ionization. Statistical analysis is performed on one-dimensional cuts of the
field as a function of x, with y and z held constant. The probability density of the root-mean-

square (rms) field fluctuations for the one-dimensional segments can be computed from

N [ Fo(x,y,2) — Fy(x) 2 1/2

Flyz)=| ¥

by N (3.9)

From Eq. (3.9), one can see how much the field fluctuates in the normal direction to the junc-
tiom.

To save computer time the electron impact ionization rates are not calculated for the entire
three-dimensional volume. Two one-dimensional electric field profiles are chosen from the proba-
bility density of the rms fluctuations of Eq. (3.9): one for which the standard deviation is greater
than 50% of those for one-dimensional cuts in the sample mesh, and one for which the standard
deviation is greater than 90%. The former represents a typical example and the latter an
extreme case. These two electric field profiles are shown in Fig. 3.9 along with the average elec

tric field given by the depletion approximation for a reverse bias of 24 volts.

The impact ionization rates in GaAs for the electric fields given in Fig 3.9 are shown in
Fig. 3.10. The same transport model and the same empirical band structure are used as given in

Section 3.3. The effect of the secondary electrons is not included since it 1s negligible as
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discussed in the previous section. In the dead space where the ionization rates are very low in
spite of the high field, the ionization rates are almost the same in the three cases even though
the local fields have quite different values. This is because the electron distribution is too cold to
respond to the variation in the local field sensitively and, therefore, the nonlocal effects are dom-
inant. When the electrons gain sufficient energy by reaching the steady region after the dead
space, the ionization rates become affected by the local fluctuations resulting in a spatially
fluctuating ionization rate. When the electric field varies slowly in space with respect to the
mean free path of an electron, the transient ionization rates depend only on the local field and

not explicitly on the position.3®

As discussed in the previous section, such is the case in the
depletion approximation. However, the field fluctuations shown in Fig. 3.9 are not slowly vary-
ing. The response of electrons to these large field gradients is delayed. Therefore, adjacent posi-
tive and negative field fluctvations tend to cancel. Hence, the big fluctuations such as observed
near x = 1500 A in the 90% case in Fig. 3.9 result in a delayed and relatively small change in

the ionization rate near x = 2000 A (Fig. 3.10).

This nonlocal effect 1s clearly shown in Fig. 3.11 for the average electron energy. To gain
energy an electron must travel a distance through a field while suffering from inelastic collisions.
Since the fluctuations are very rapid when compared to the ionization mean free path, the
energy gain of the electrons from the ups and downs of the field are virtually averaged out and
the average electron energy in Fig. 3.11 shows rather small changes. These small changes in
average energy also result in small fluctuations of the ionization rate as discussed above. There-
fore, a significant increase in the ionization rate due to the field fluctuation is not observed,

unlike in Shockley’s steady-state analysis.®®

This is different from the case of impact ionization
in a superlattice where the changes in potential energy are large and vary less rapidly compared

to the mean free path.!? No averaging-out will occur if electrons gain a considerable amount of

energy within a very short time period (< 7, where 7y, is the phonon scattering time constant).
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3.5 Avalanche Electron Emitting Diodes

The recent report of efficient silicon cold cathodes by van Gorkom et ai.””’® has triggered
renewed interest in such solid-state electron sources. Current densities as high as i000 A/cm?
and reduced brightnesses of 900 A/(cm%sr'V) for a 1 um diameter emitting area have been
reported, making these devices attractive for use in numerous applications. Although p-n
emitters were proposed long ago, only recently have they been proven practical with high-
current density and efficiency. The device consists of a shallow p*-n** junction fabricated at
the semiconductor surface with the n** channel at the surface as shown in the inset of Fig. 3.12.
Cesium is typically absorbed onto the surface in order to lower the work function to approxi-
mately 1.7 eV. Reverse biased in avalanche breakdown, electrons entering the depletion region
from the p-type side of the junction gain energy from the field and impact ionize, creating free
electron-hole pairs. Due to the very high electric field, the avalanche multiplication (i.e., impact
ionization) is an essential part of the device operation in this structure. Electrons which have
sufficient energy upon reaching the surface may then overcome the work function and be emitted
into the vacuum. The efficiency is defined as n = j,,./jjunc Where jy,c is the current density in
the vacuum and jj,,c is the current density through the junction, normal to the surface. The

maximum field in the junction is typically 1.5%10° V/ecm."

The study of these devices is interesting from a practical point of view in an effort to
design more efficient devices, and also from the point of view of high-field transport physics. In
this section, the potential performance of GaAs devices is studied. The results are compared to
the calculated®” and the experimental” data for Si. The transport model used in these calcula-
tions is essentially the same as described in the previous sections. Unlike GaAs, the first two

1’87

conduction bands are included in the Si model,”’ since the second conduction band is degenerate

with the first at the X point and can therefore have a significant population at high electric
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fields.®® In GaAs, the second conduction band lies at least 1 eV above the first and would have
a correspondingly small population. Even though the devices are heavily doped on both the n-
and p-type sides of the junction, ionized impurity scattering is not included. Since only the
high-energy electrons are of interest, and for these electrons Coulombic scattering prefers small
angles, the momentum distribution will not be disturbed. It is assumed that the effect of the
holes on the avalanche process is to simply create additional electrons near the p-type side of the
junction, which will behave identically to the thermally generated electrons leaving the p-type
region. Under these assumptions, the electrons created by hole-initiated ionization are accounted
for in the model. Band-to-band tunneling has not been included in the model, though a 10%
tunneling contribution has been estimated using an analytic model.”” In this section, the secon-
dary electrons created by impact ionization events are accounted for, as described in Section 3.3,
to include the effect of avalanche multiplication on both the number and distribution of elec-
trons reaching the barrier at the surface. In addition, a numerica! enhancement of the high-

energy tail of the distribution®® has been used to speed convergence of the calculation of 7.

Finally, the transmission of the electrons over the barrier into the vacuum must be treated.
For the classical case (i.e., parabolic energy bands), one can define a directional component of the
energy such as E, oc k2 The quantum treatment of the transmission would require a Bloch
function description of the electrons in the semiconductor*! with the added complications of sur-
face effects. Instead, a simple, analytic model for the transmission coefficient has been used in
this treatment. In order to account for the fact that not all electrons with total energy Er can

surmount the barrier, we have used an effective transmission probability

TealEp) =1 s | Ex> ¢ aEE.>0
a(Ex) = _[Ei'-] ¥> 9, _aT{_l (3.10)

where ¢ is the work function and ]:1 is the component of the crystal momentum normal to the
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surface. This treatment is exact in the limit of a spherically symmetric distribution function and
parabolic energy bands. Qualitative results such as the comparison of different materials and cal-
culated trends should not be seriously affected by assuming Eq. (3.10). Comparison with experi-
ment shows that a constant-factor scaling of the efficiency is sufficient to obtain good agreement

with experiment.

In Fig. 3.12, results of the Monte Carlo calculations are compared with published experi-
mental data’ for n vs. ¢. For the experimental data, the best-fit function 7 = 0.6exp(—¢/0.41)
(where ¢ is in eV’s) has been used. For GaAs the device parameters used in the calculation are
N, =1x10%¥ cm™ and Np =5x10%cm™  The Si devices are assumed to have
N, = 1X10"® ¢cm™ and Np = 5X10" cm™3. In each case, the device is assumed to be biased
such that the maximum electric field is 1.5X10% V/cm. Corresponding depletion widths are
W,=1070 A and W,=210 A for GaAs, and W, =980 A and W, =20 A for Si. The undepleted
o** channel width d is 70 A for both the GaAs and Si devices. These values of d are chosen
based on the silicon emitters which have been demonstrated. The f;sults show that GaAs has a
much smaller calculated efficiency than Si. The calculated data for Si follow a curve which is
nearly parallel to the experimental data. The difference in magnitude may be partially attri-
buted to the assumption of Eq. (3.10) for the transmission coefficient. However, the major rea-
son for the difference appears to be of experimental origin: it is known that the measured
efficiency is highly sensitive to the surface contamination. In a more recent experiment, emitters
with clean surfaces show an efficiency of 4%~5% and up to 8% at ¢ = 1.7 eV.% The efficiency
is also strongly dependent on the actual dopant distribution. Diffusion of the dopant distribu-
tion results in lower maximum electric field and, thus, smaller experimental efficiencies.®® Con-
sidering these two points, we conclude that the calculated data represent an upper boundary

value. For GaAs, the calculated efficiency is also nearly parallel to the experimental Si data. We
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would expect that the difference between the measured efficiencies would be consistent with the
difference in the calculated values, so the Monte Carlo simulation indicates roughly an order of

magnitude greater efficiency for comparable Si sources.

The calculated efficiency is plotted as a function of d for both GaAs and Si in Fig. 3.13.
Note that for both materials, the efficiency is, to a good approximation, exponential in d. The
steeper decrease of the efficiency for GaAs is indicative of the higher scattering rates (larger den-
sity of states). The control of d in fabricating the device is therefore even more important for
GaAs devices. Note that the higher n-type doping levels possible in Si allow one to make the

channel narrower than for GaAs while maintaining the same current-carrying capability.

For both Si and GaAs, the work function is larger than the threshold energy for impact
ionization, ¢ > E,;. Thus, it is clear that impact ionization is at once essential for, and detri-
mental to, the operation of the device. The junctions must be biased in avalanche breakdown
for a sufficient number of electrons to reach the surface to obtain practical values of j,,., and yet
by impact ionizing, many electrons lose nearly all of their energy and are then unable to sur-
mount the barrier. A soft threshold for impact ionization is necessary to enable a significant
number of electrons to remain in the high-energy (Ep > ¢) tail of the distribution. From various
investigations,5889! it can be seen that the threshold in Si is softer than in GaAs. Also, the
higher density of states, and therefore higher scattering rates, at energies near ¢ in GaAs
decrease the fraction of electrons in the high-energy tail. These effects both contribute to the
lower efficiency of GaAs as indicated in Figs. 3.12 and 3.13. The device performance could be
also enhanced by relocating the generation of secondary electrons nearer to the p—type side of

the junction. Present devices have not been optimized in this respect.

Ad
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CHAPTER 4

_ ELECTRON TRANSPORT ACROSS HETEROJUNCTION BAND DISCONTINUITIES
IN STRONG ELECTRIC FIELDS

r 4.1 Introduction

There have been significant theoretical efforts to understand the eflects of heterointerfaces
on the carrier transport.®=% Most of the efforts have been devoted to the transport properties
in a direction parallel to the interfaces such as quasi-two-dimensional transport in field effect
devices. %% However, the study of carrier transport across heterointerfaces is also essential for
L the understanding of many interesting nonlinear effects such as ionization enhancement in

heterostructure avalanche photodiodes (APD’s).!%13

In this chapter a detailed study of nonlinear electron transport across heterointerfaces in
strong electric fields is presented, based on an ensemble Monte Carlo simulation method. Unlike

most of the previous studies on this subject 4%

particular attention has been devoted to
microscopic features such as the evoiution of the energy and momentum distribution function 1n
space and time, from which one can deduce macroscopic results. It is shown that the combined
effects of real-space and momentum-space structure bring pronounced peaks and anisotropy in

energy and momentum distribution respectively. The dependence of the ionization rate on the

band structure of the neighboring layer is also discussed.

4.2 Description of Model

Monte Carlo simulations of electron transport have been performed for various 1
configurations and material compositions of the AlGaAs/GaAs svstem. Figure 4.1 shows two
single-quantum-well heterostructures in which detailed studies have been carried out. The struc

tures shown in Fig. 4.1(a) and (b) may represent part of the i region of a reverse-biased
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Figure 41 Energy-band diagram of AlGaAs/GaAs single-well heterostructures for (a.

guantum-well APD and (b) doped quantum-well APD.
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quantum-well APD!? and the p*-i-n*-i region of a reverse-biased doped quantum-well APD'3
respectively. Generally superlattice structures are studied in connection with novel versions of
these devices. However, only one period has been simulated in this chapter in order to clarify

the fundamental physics of nonlinear transport.

Each layer in Fig. 4.1 is assumed to be ideal and free of defects and oriented along the
< 100> direction. Electrons are generated in a region prior to layer 1 by an external source
such as light and injected into the layers that are depleted by a reverse bias. To rule out the
possible nonlocal effects in the energy distribution when electrons enter the well layer from layer
1, a length of 1500 A has been chosen for the width of layer 1. The energy and momenta of the
generated electrons are assumed to obey a Maxwell-Boltzmann distribution before they are
accelerated by the high fields. Since the semiclassical transport is intended to be studied, the
well layer is rather long (a width of 400 A is assumed for the GaAs layer unless otherwise
specified). Therefore, size quantization and resonance effects are of minor importance. The
actual size of layer 3 is unimportant for the results which we report. Unlike in Fig. 4.1(a), the
electric field in Fig. 4.1(b) is not uniform. The electric field in layer 1 varies from 500 kV/cm to
100 kV/cm due to the change in the build-in-field, while the field in layers 2 and 3 is fixed to
100 kV/cm. Such field distributions could be obtained in multiquantum-well structures by
means of ap appropriate periodic doping profile.’® The Al mole fraction for layers 1 and 3 is
chosen to be 0.36 unless otherwise specified. To get the conduction band offset, the 70,30 rule”
has been used. The empirical band structure in GaAs is calculated as in Chapter 3, while for
AlGaAs the "analytical" band structure as described in Ref. 98 is used. Since the electrons in
the AlGaAs layers are hot due to the high electric field, inclusion of a more realistic (but
currently not available) band structure for AlGaAs may be of importance. The material param-

eters used in this study are summarized in Table 4.1.
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Material parameters for the simulation program

Valley separation relative

Effective mass ratio Nonparabolicity to the I'-valley minimum
(m/myg) (eV™h) (eV)
T valley 0.069 0.67
L valley 1.47 (longitudinal) 0.44 0.29
GaAs 0.12 (transverse)
X valley 158 (longitudinal) 0.36 048
0.24 (transverse)
I valley 0.069-+0.103%x 0.67-0.94#x
ALGa;_,As L valley 1.47 (longitudinal) 0.44-0.038*x 0.29-0.647#x
0.12+0.036#x (transverse)
X valley 1.58+1.21*x (longitudinal) 0.36 0.48-1.156%x

0.24 (transverse)
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Included scattering mechanisms are polar optical and deformation potential scattering as
well as impact ionization. Electron-electron scattering is also included in the well layer to
account for the charge accumulation which can occur. Impact ionization rates are calculated by
using the estimator proposed by Thornber®! as discussed in Chapter 3. The jonization threshold
energy and the p factor (of the Keldysh formula) for GaAs are chosen to be 1.7 eV and 0.5
respectively. For AlGaAs, the threshold energy has been chosen proportional to the increase in
the energy gap over GaAs. In the calculation, the effect of secondary electrons has also been
included for some extent. For simplicity, the ionizing and ionized (secondary) electrons are given

zero energy after ionization occurs.

At the interfaces, electron transfer for the L and X valley electrons is treated classically by
conserving electron energy and parallel momentum. With classical, it is meant that an electron
can cross the interface only when it has high enough energy to overcome the barrier. This
simplification is motivated by the fact that the time constants for tunneling are relatively long
compared to the short transients due to the high field. For the I' valley electrons, the tunneling
process is included along with the classical transfer. By conserving energy and particle flux, the
WKB approximation is used to calculate the tunneling probability. The reflections at the inter-

9

faces are assumed to be specular. The quantum interference effects by the reflections®® are unim-

portant since the inelastic mean free path is much shorter than the well width.

In the calculation, a constant time step (2 X 107!% sec) discretization scheme is used. This
allows the tracking of the time evolution of electron transport parameters. For the electric field
profile, the self-consistent correction is not included. At high fields such as used in these calcula-

tions, the band distortion by the trapping effects in the well is not important.!?
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4.3 Results and Discussion

While crossing the interface and propagating into the GaAs layer, electrons gain excess
energy from the conduction band offset and, therefore, exhibit an overheated energy distribution.
Figure 4.2 shows the electron energy distributions with an electric field of 500 kV/cm in struc-
ture (a) of Fig. 4.1. The energy distributions in layers 1 and 3 are calculated with 40 A from
the interface while the displayed distribution for layer 2 represents an average over the whole
layer. In this figure, the energy distribution in layer 2 is shifted to higher energy (by the
amount of the band edge discontinuity) as expected, and exhibits two peaks, one at very low
energy near the I' valley minimum and the other at high energy. The reason for the low-energy
peak is two-fold. The shift in energy distribution enhances the impact ionization and creates
cooled electrons in the I' valley. Also, the heterointerface barriers tend to confine (by reflection)
cold electrons in the well region. However, most of the cold electrons are reheated quickly due to
the high field applied and, thus, the low-energy peak is reduced in spite of the high ionization
rate. As the field decreases, the low-energy peak also decreases along with the ionization rate as

shown in Fig. 4.3. The confinement effect is negligible in this case.

The overheating causes strongly enhanced electron-phonon interactions. Therefore, elec-
trons ip layer 2 relax to the steady-state distribution rather rapidly. As shown in Fig. 4.4, this
quick relaxation results in nearly the same distribution as in the situation illustrated in Fig. 4.2,
although the initial distribution in layer 1 is different due to the different Al mole fraction. The
small peaks for layers 1 and 3 are due to the low energetic electrons which overcome or tunnel

through the potential barrier.

For the simulation of structure (b) in Fig. 4.1, however, electrons experience strong relaxa-
tion and confinement due to the relatively small electric field in the GaAs layer (100 kV/cm) I

this case, a smooth distribution enters the GaAs layer from layer 1 and relaxes to a distribution

D
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with three steep peaks which are clearly related to the I', L, and X valley energies as shown in
Fig. 4.5. The process of relaxation can be understood from the study of the time development of
the energy distribution which is shown in Fig. 4.6. The zero of the time coordinate is set when
electrons start to be injected into layer 1. However, the actual time when electrons start to
enter layer 2 is about 2 psec later since they have to travel through layer 1 first. As shown in
the figure, the electron distribution is initially very hot (t=2.5 psec) while a peak begins to
develop near the I' valley minimum due to the strong impact ionization. As the electrons experi-
ence increasingly the enchanced electron-phonon interactions, the distribution cools down to
lower energy and the peaks near L and X valley minima start to form. By the time t=6 psec,
electrons have reached the layer 2-layer 3 interface and exhibit a distribution with three pro-
nounced peaks. Finally, the peak near the I' valley minimum grows as the distribution reaches

the steady state.

In principle, there may be several possible reasons for these peaks. To clarify this point, a
calculation withouu the conduction band offset has been performed. In this case, GaAs is used
for layers 1, 2, and 3. The electric field of 300 kV/cm is used for layer 1 and 100 kV/em for
layers 2 and 3. The results are plotted in Fig. 4.7. Again, the electron distribution in layer 1 is
obtained within 40 A from the interface while the distribution in layer 2 is calculated as an
average of the whole layer of 400 A width. The results for this case show that an overheated,
smooth distribution enters layer 2 (this is true even in the presence of a discontinuity as for Fig.
4.5) and relaxes to a cool, smooth distribution. Steep peaks near the valley minima as observed
in Fig. 4.5 do not appear. Therefore, the peaks near the I' and L valley minima are due tc the
effects of the well. Clearly the enhanced probability of impact ionization and the associated
energy loss, and the confinement effect due to the well boundary (the layer 2-layer 3 potential
barrier) will lead to an accumulation of cooler electrons at the I" valley minimum. Indeed, a pro-

nounced peak can be found at low energies as shown in Fig. 4.5. The growth of the peak near




- N W

T—vf -T—— ‘r. s e e

69
15 T T T T T
{
I
_ i Layer 1 (AIGaAs)
o |1 -\ ——— Layer 2 (GaAs)
S 10H . Layer 3 (AlGaAs) _
> I
5 |}
5 i !
5 |t
: \
c |! A
Lo I \
I -
AN VANAVA
]
O — .z
O 1 2 3
Energy (eV)
-P-2868

Figure 4.5 Electron energy distributions in structure (b) of Fig. 4.1. The electric field in
layer 1 is 500 kV/cm, while the field in layers 2 and 3 is 100 kV/cm.




70

sl 3 -==25 psec _
~ i ,"‘.\ — 3.5 psec
= < f4 0 == 6.0 psec
c oo ‘ A \
3 :- .: [ E ... .\ ‘_\ ......... 12 psec
g 4 | :c .: ‘ :»0.: o... -\ \ lN/ \\ —
=N E S IR X
5 i)
S 3Hia i
c |
.Q
3
=2
N-L
A

Energy (eV)

LP-285¢

Figure 4.6 Time evolution of electron energy distribution in layer 2 for structure (b) of Fig
4.1. The operating conditions are those of Fig 4.5.




71
8 ! B ' T ™

- ._
— A — Layer 1
£ I\ Layer 2
-— ‘ D SR e )
S 6 ;D
> I
S
o ]
—
e
Yo
B4
c
Q
3
o2
Q

O
0
Energy (eV)
LP-2872
Figure 4.7 Clectron energy distributions in layers 1 and 2. GaAs is used for all the layers.

The electric field in layer 1 is 300 kV/cm, while the field in layers 2 and 3 s 100
kV/cm.

_—— —a




-

-

72

the I' minimum in Fig. 4.6 (between t=6 psec and t=12 psec) is due to the further confinement
of cold electrons. Due to the potential barrier, the elect*»ns in the L valley minima also experi-
ence confinement. However, the band offset for the L valleys is very small (0.07 eV when the Al
mole fraction is 0.36), and the confinement by this small barrier alone can not explain the dis-
tinctive peak exhibited in Fig. 4.5. These peaks at higher energies close to the L and X minima
can be explained by the following two effects. When electrons enter the quantum well and
abruptly gain energy from the band offset, the distribution experiences the strong enhancement
of intervalley scattering.® Hence, due to this enhancement and the differences in the band
structures, the L and X valleys are overpopulated at the beginning stage. However, the scatter-
ing rates of electrons from the L and X valleys back to the I' valley are small due to the small
density of states at the I' minimum (compared to L and X). Combined with the rapid cooling of
the distribution as it propagated in the GaAs layer, the electrons at the L and X valley minima
encounter a bottleneck for their return to lower energies. Therefore, as the overheated electron
gas cools down fast, very pronounced peaks develop at the L aid X minima in contrast to the
case of homogeneous structure which shows only relatively broad peaks encompassing the ener-

gies close to both L and X minima.

These effects occur, of course, only if the well 1s not too wide. As the well width is
increased, the energy distribution gradually approaches the smooth form of the steady-state dis-
tribution as shown in Fig. 4.8. For the case of the larger well width, the cold electrons can be
reheated by the relatively high electric field (100 kV/cm) while the total number of ionization
events is virtually constant. Therefore, the population in the low-energy peak decreases
significantly and the bottleneck effects diminish also due to the longer relaxation. The disttibu-
tion shows similar changes as the electric field applied becomes smaller. Figure 4.9 shows the
energy distribution 1n the GaAs layer with the electric field in layer 1 ranging from 500 kV cm

to 100 kV/cm. Although the distribution entering the GaAs layer is very different in each case,
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electrons in the GaAs layer have very similar distribution through the rapid relaxation process.
. Yet the distributions are not fully relaxed and show the dependence on the initial condition.
The electrons injected with smaller energy (i.e., smaller field) have a less populated high-energy

tail and, therefore, a smaller I' valley peak. Also the peak at the L valley minima becomes less

- pronounced with smaller injection energy since the less overheated distribution can relax faster.
As the band offset is decreased, the confinement and the bottleneck effects are expected to
decrease rapidly. When the offset is reduced to 0.10 ¢V, the peaks at the I' and L. minima virtu-
ally disappear as shown in Fig. 4.10. It is also interesting to note that the distribution for the
smaller potential energy gain (i.e., smaller band discontinuity) has a larger high-energy tail
This is because with larger band discontinuities the distribution cools down more due to the

stronger confinement of cold electrons.

The above effects of electron reflection, enhanced intervalley scattering and impact ioniza-

. tion due to overheating, and the backscattering bottleneck correspond to the band structure of
the material in a significant way. Figure 4.11 shows a two-dimensional plot ((001) plane) of the

momentum distribution function in structure (b) of Fig. 4.1. In this figure, the momentum dis-

] tribution clearly reveals the cubic symmetry of the crystal. A pronounced accumulation of elec-

trons in the I'-sphere and L~ and X- ellipsoids makes the band structure highly visible. It is
interesting to note that the shift due to the electron drift (in the < 100> direction) 1s rather
small in spite of the still high electric field of 100 kV/cm. Therefore, the standard approxima- 1
tion of small drift in hot electron theory is justified However, the picture of a displaced Fermi-
sphere is totally incorrect. The constant energy surface is a very special one in this case, and
one should rather call 1t a displaced Boltzmann cube. The cubic symmetrv of the crystai s also
found in the distribution function for homogeneous GaAs. However, due to the lack of accumus-
lated electrons at the valley minima, the structure is less pronouned and the distribution of elec

trons is more diffuse, as shown in Fig. 4.12. When a high electric field is applied, the cubic
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symmetry is not clearly reflected in the momentum distribution as shown in Fig. 4.13. Since the
distribution is so widely scattered, the details of the band structure (i.e., I-sphere, L- and X-
ellipsoids) are blurred. The picture of a displaced sphere can be more successfully used in this

case. A larger shift in the distribution is also noted in this case.

We now turn to macroscopic transport effects, in particular, to impact ionization. Impact
lonization in heterostructures is a process of high complexity due to its nomlocal nature and
heavy dependence on (subtle) details of the band structure. The electron impact ionization rate
« in the GaAs layer is studied below as a function of distance. The zero of the coordinate sys-
tem is chosen at the layer 1-layer 2 interface. Figure 4.14 shows the rate « in structure (a)
shown in Fig. 4.1. In this figure, & exhibits what one could term an overshoot at a certain dis-
tance after the electrons enter the GaAs layer. To clarify the reasons for this effect, the evolu-
tion of the energy distribution function has been studied as the electrons leave the AlGaAs layer
and transfer to the GaAs layer experiencing the same field everywhere (i.e., in structure (a)).
This study shows that there are two pronounced effects which influence @. The first is the well-
known enhancement of the ionization due to the band edge discontinuity which overheats the
electron gas and increases, therefore, the ionization probability.!?> This effect alone would lead to

a monotonical decrease in o from its overheated value to the steady-state value.

The second effect arises from the difference in the band structure of the neighboring materi-
als. Depending on the the density of states at high energies, the high-energy tail of the distribu-
tion can be larger or smaller in different materials. If the density of the states is large, the
scattering by phonons increases. As a result, the energy loss becomes high and the high-energy
tail of the distribution is suppressed. In our particular band structure models, the density of
states at and above 2 eV is larger in AlGaAs. Therefore, the high-energy tail in the distribution

is smaller in the AlGaAs layer than in the GaAs layer. As electrons propagate into layer 2, they
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abruptly gain energy from the band edge discontinuity. This enhances the ionization rate.
However, in the first portion of the well, the distribution still has a rapidly decreasing high-
energy tail, which exhibits the shape typical for AlGaAs as shown in Fig. 4.15. Since the
scattering rate at high energies is smaller in GaAs (small density of state), electrons can be
accelerated toward the more accessible high-energy tail in GaAs fast enough so that the ioniza-
tion rate can increase while the overheating of the distribution is relaxed on average. Therefore,
« increases over a distance which is needed for the high-energy distribution to adjust itself to
the GaAs band structure. Subsequently a decrease to the steady-state value follows. As the
electric field in layer 2 is decreased, the two effects competing with each other may still result in
a monotonically decreasing a. Even though electrons begin to adapt to the band structure with
more accessible high energy states, the distribution can be cooled down fast enough by the relax-
ation to overcompensate for the increase of the tail. The ionization rate for structure (b) of Fig.
4.1 is shown in Fig. 4.16. Due to the smallness of the field in the GaAs layer (100 kV/cm), the
relaxation becomes dominant and the ionization rate monotonically decreases as electrons pro-

pagate in this case.

As mentioned previously, impact lonization is very sensitive to the details of the band
structure. However, the current knowledge of the band structure (especially AlGaAs) is not pre-
cise. As a consequence, we do not know if the overshoot of o indeed exists in this material sys-
tem. However, the physical reasons for the effects are clear and therefore there may exist a

material system which will show an effect of this kind.

Finally, even though the electron ionization rate in the narrow gap layer (GaAs) has been
enhanced by the heterojunction as shown in Fig. 4.14, this enhancement may not be large
enough to compensate for the small ionization rate in the wide gap layer (AlGaAs) where virto-
ally no ionization occurs. In spite of this point, the a/F ratio can be still enhanced significantly

The enhancement of @ improves as the field becomes low.
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4.4 Conclusion

A numerical study of nonlinear transport across heterojunction interface in strong electric
fields has been performed. Two typical heterostructures have been chosen to analyze the effects
of a quantum well on the electron energy and momentum distributions. In the quantum-well
APD structure with a high field in the well layer, electrons experience negligible confinement in
the well layer in spite of heavy ionization and a potential barrier. On the other hand, the doped
quantum-well APD structure (relatively small field in the well layer) shows much stronger relax-
ation and confinement. Reflections at the heterointerface, carrier overheating at the potential
step, and the L — I, X — T back scattering bottlenecks produce pronouned structures in the
energy and momentum distributions which directly reveal the band structure. It is also found
that the ionization rates are heavily dependent on the band structure of the neighboring layer.
An ionization overshoot effect may exist in these structures due to the band structure difference

between two adjacent layers.
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CHAPTER 5

ELECTRON HEATING BY HOT PHONON EFFECTS IN HETEROSTRUCTURES

5.1 Introduction

Recently the effects of the nonthermal phonon distributions known as hot phonon effects
have received mucb attention. The slow energy relaxation rate of photo-excited hot carriers in
time-resolved measurements'”1%1% has often been attributed to a nonequilibrium phonon distri-
bution in bulk GaAs'®? and quantum wells.!?01931% A)so the phonon side band operation in
photo-excited quantum-well heterostructure lasers has been explained by nonequilibrium phonon
effects.18105-197 The phonon distribution can be perturbed as well when a large number of car-
riers propagate across an interface, experience an abrupt energy gain, and subsequently relax
through strong phonon emission. As a general rule, the phonon distribution will be disturbed
whenever a significant number of phonons (especially zone-center phonons) are emitted in a time

scale shorter than the phonon decay time constant.

To understand the physical mechanism of this process, Lugli and coworkers have applied a
numerical approach and studied the evolution of the phonon distribution and its effects on the
energy relaxation rate when hot electrons are injected by a strong light pulse.'®%® No such
numerical effort has yet been made to analyze the phonon distribution and its effect on the car-
rier transport in a heterostructure with charge carriers propagating across an interface. This
situation is very important in many problems involving thermionic emission such as quantum-

well laser diodes.

This chapter presents a numerical study of the effects of nonthermal phonon distributions
on electron transport across heterolayers. For the microscopic analysis, not only the electron

dynamics but also the phonon dynamics are studied in detail. In Section 5.2 the model applied

A
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in the analysis is briefly described. The effects of conduction band discontinuity on vhe phonon
distributions are explained and thoroughly discussed along with the influence of a wide range of

operating conditions in Section 5.3. The conclusion will be followed at the end.

5.2 Method of Analysis

The specific structure under consideration is a GaAs-AlGaAs single-well heterostructure as
shown in the inset of Fig. 5.1, which is essentially the same with the structure discussed in
Chapter 4. Each layer is assumed to be undoped with an unintentional impurity concentration
of 1X10*em™2. The Al mole fraction used for layers 1 and 3 is chosen to be 0.2 which résults in
the conduction band discontinuity of 0.17 eV at the interface assuming AEC=O.7OAES.97
Throughout the simulation, it has been assumed that ‘ectrons are injected into the well layer
after traveling through layer 1. As discussed in the previous chapter, layer 1 is chosen long
enough (1500 A) to rule out possible nonlocal effects of the electron energy distribution. A 400
A -thick GaAs layer forms the well layer. In the well layer, size quantization and resonance
effects are not included since the width is longer than the inelastic scattering mean-free path.
For moderately high electric fields (~ 50 kV/cm), the scattering mean-free path is approximately
50-100 A % The specific width for layer 3 i1s not important for this study. For the simulation,
an ensemble Monte Carlo method is used along with a realistic band structure in the GaAs
layer. Included scattering mechanisms are polar optical phonon (POP) and intervalley phonon
scattering as well as electron-electron scattering. Detalls of the treatments (including the boun-

dary conditions at the interface) and the material parameters can be found in Chapter 4.

To account for the hot phonon effects the treatment of POF scattering, which involves the
zone-center longitudinal-optical (LLO) phonons, has been modified to include a nonequilibrium
phonon distribution. Although intervalley scattering also occurs mostly via phonon emission. 1ts

contribution to the hot phonon effects ts negligible since intervalley scattering mainly mvolves
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near zone-boundary phonons with large phonon wavevectors. When the angular dependence of
the phonon distribution in momentum space q is neglected, the perturbation in the phonon dis-
tribution An, can be obtained by dividing the net number of emitted phonons AN, by the pho-
non density of states D, (i.e., An;=AN_/D,). The density of states D, is proportional to q°.
Thus, the perturbation An, by phonons with large q is suppressed rapidly as q increases and
POP scattering (which involves zone-center phonons) can be more effective in perturbing the
phonon distribution than intervalley scattering even though intervalley scattering has a larger
scattering rate. Therefore, only the perturbation in the LO-phonon distribution by POP scatter-
ing is considered. Drvring the simulation, the phonon absorption and emission events by POP
scattering are monitored both in time and space. Based upon this information from POP
scattering and the phonon-phonon relaxation processes which include the decay to zone-
boundary acoustic phonons, the position-dependent LO-phonon distribution ny(x,t) is recalcu-
lated every 100 fsec as a function of the amplitude q of the phonon wavevector. The anisotropy
of ng(x,t) which may occur in the presence of strong electric fields is not included in this study.
For the phonon-phonon relaxation process, the phenomenological relaxation time Toh—ph Das been
measured to be 7 psec at 77 K,!1% and this value is used in absence of direct measurement data
for 300 K. Since the relaxation time 7,,_p) is not a strong function of temperature,'!! Tph—ph 2t
300 K should indeed be fairly close to 7 psec.!'> With the newly calculated phonon distribution
ny(x,t), the POP scattering rates are also recalculated and the probability distribution of the
final states after POP scattering is modified to reflect this new phonon distribution. Possible

effects of screening have not been included.

5.3 Results and Discussion

As the electrons enter the well from the barrier (layer 1), electrons experience an abrupt

energy gain at the heteroirtrrface. The cverheated electrons then relax rapidly and cause the
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nonthermal phonon population in the well to increase. When electrons are injected with higher
energy, more phonons are generated. However, as the average injection energy increases, inter-
valley scattering becomes more important and, thus, many of the phonons involved in the pro-
cess become zone-boundary phonons which are, as mentioned, ineffective in disturbing the pho-
non distribution. Therefore, the injection of electrons with average injection energy well above
the T-L separation is not desirable for the study of hot phonon effects. Hot phonon effects are
also diminished in the presence of strong electric fields within the well since electrons can be
quickly reheated and populate the cnergy range of predominant intervalley scattering. In Fig.
5.1, simulation results are shown for a uniform electric field of 50 kV/cm throughout the layers

2 The mesh size used for the calculation of

(1-3) and an injection current density of 1X10%*A/cm
the position-dependent quantities has been 50 A and ihe cero of the coordinate system x=0 is
at the layer 1-layer 2 interface as shown in the inset of Fig. 5.1. The steady-state LO-phonon
distribution is shown in Fig. 5.1 at three different positions in the well. The deviation from the
equilibrium phonon distribution is relatively small at the layer 1-layer 2 interface and grows as
the electrons travel further into the well. This is because at the entrance in the well, the POP
emission rate is relatively small due to the high average injection energy and the existence of a
short "near ballistic” range for the injected electrons. Near the layer 2-layer 3 interface, the
reflections due to the potential barrier lead to an accumulation of low-energy electrons. These
electrons with low energies tend to emit phonons within a narrow range of relatively large
wavevectors as can be seen from simple considerations of energy and momentum conservation.*®
Therefore, they cause a long tail in the disturbed phonon distribution as is shown in the figure.
Similar elongation in the disturbance of the phonon distribution has also been observed in Ref.

108. These effects do not exist in very wide wells since the electrons gradually relax to equili-

brium toward the layer 2-layer 3 interface.
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The nonequilibrium phonon distribution affects the POP scattering rates considerably. The
equilibrium and nonequilibrium POP scattering rates are compared in Fig. 5.2. The rates with
hot phonon effects in this figure correspond to the LO-phonon distribution at the layer 2-layer 3
interface in Fig. 5.1, where the phonon perturbatior is pronounced. It is important to note that
stronger enchancement is observed in the absorption rate compared to the emission rate, espe-
cially at low energies. This change in the scattering rate results in the difference in the electron
energy distribution. Figure 5.3 shows the electron energy distribution at the layer 2-layer 3
interface. Clearly, inclusion of hot phonons leads to an increase in the electron temperature as
shown by the fact that there are more electrons at high energies. Due to the strong enhance-
ment in the phonon absorption rate, cold I' valley electrons in the well can reabsorb the non-
equilibrium phonons which have been emitted by the hot electrons injected over the barrier.
Thus, with the inclusion of hot phonons, more electrons transfer to the L valleys and contribute
to a more pronounced peak at the L minima. It is interesting to note that the backscattering
bottleneck effect!!® is also observed at the energy of the L valley minima. Another interesting
point is that two different procedures which have been used to calculate the hot phonon effects
give almost identical energy distributions. Procedure (A) is the method dcscribed above in
which both the POP scattering rate and the probability distribution of the final states after
POP scattering is updated. In procedure (B), the POP scattering rate is recalculated based on
the updated phonon distribution, but the probability distribution of the final states for thermal
equilibrium is used to choose the final states after POP scattering. Evidently, procedure (B) has
a different preference for the phonon wavevectors involved in the scattering and generally results
in different final electron states compared to procedure (A). However, since a constant phonon

energy is used for POP scattering, the change in electron energy is the same in both procedures.

The heating by the reabsorption of hot phonons reduces the confinement of electrons in the

well. Figure 5.4 shows the time evolution of the number of electrons in the well (normalized to
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the steady-state value) after the injection current is turned off at t=0. Due to the residual elec-
trons in layer 1, the response to the switch-off is delayed. As can be seen in the figure, electrons
are emitted from the well about two times faster than without the inclusion of hot phonon
effects. The corresponding development of the average electron energy in the well with time is
shown in the inset of Fig. 5.4. Due to the emission of electrons with high energies above the
barrier, the average energy falls rapidly and then approaches equilibrium in the well. As
expected, ihe difference in average energies (with and without the inclusion of hot phonon
effects) decreases with time but is still sizable after several picoseconds due to the presence of hot

phonon absorption.

As the electric field in the well decreases, the electrons experience stronger relaxation
toward lower energies which results in an energy distribution close to equilibrium. The decrease
in the average injection energy also leads to a reduction in the electron temperature in the well.
As the electron distribution cools down, the effect of phonon reabsorption from the nonequili-
brium distribution grows since an increasing fraction of electrons resides near or below the
threshold energy for POP emission where only absorption is allowed. Figure 5.5 shows the elec-
tror energy distribution in the well when the electric field is zero in all layers, which is analogous
to the operating conditions in quantum-well laser diodes. In contrast to Fig. 5.4, the injection of
electrons into the well layer is started at t==0 from the layer 1-layer 2 interface by thermionic
emission in this calculation. The same injection current density as for Fig. 5.1 is assumed. Since
the simulation is very time-consuming under these circumstances, electrons are simulated only
for the first 12 psec. The distribution displayed in Fig. 5.4 represents an average over the whole
layer 2 (400A) at t=12 psec. As shown in the figure, a significant portion of the electrons near
the threshold energy for emission absorbs phonons and moves to higher energy. About 30%
iucrease in the electron tewpuiavure is therefore observed (inset of Fig. 5.5) compared to about
15% increase in the previous case (inset of Fig. 5.4). The hot phonon distribution will have an

even larger effect in steady state since the effect is still growing with time at t=12 psec.
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The injection current density is an important parameter as large current densities enhance
. hot phonon effects. A smaller but still considerable disturbance of the phonon distribution is
seen in Fig. 5.6 with an injection current density of 1X10°A/cm’. With very high injection
currents, the perturbation of near zone-boundary phonons may also become important. The hot
= phonon effects will, of course, be more visible at lower temperature. Due to the small phonon
occupation at thermal equilibrium, phonon absorption i1s possible only ir nonequilibrium situa-
tions at low temperature.
5.4 Conclusion
The effects of the nonequilibrium phonon distribution on electron transport across heteroin-
-

terfaces have been studied by an ensemble Monte Carlo simulation method. A strongly dis-
turbed phonon distribution is observed as a consequence of the conduction band discontinuity.
The hot phonon distribution causes in turn more energetic electron distribution because of pho-
non reabsorption and reduces, therefore, the confinement of electrons in the well. As the average
electron energy decreases in the well, the effect of phonon reabsorption gains significance since
more electrons are near or below the threshold energy for POP emission where only absorption is

allowed.
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CHAPTER 6

ELECTRON TRANSPORT
IN TUNNELING HOT ELECTRON TRANSFER AMPLIFIERS

8.1 Introduction

The idea of ballistic transport in thin semiconductor layers has received considerable atten-
tion. However, experimental verifications of such transport have been rare and indirect.
Recently, Levi et al.'® and Heiblum et al.!® have independently reported direct observation of
ballistic transport with the use of hot electron transistors as an electron energy spectrometer.
Based on studies of the collector current-voltage characteristics, they have deduced the energy
spectra of electrons which travel through the heavily doped short base region, and have shown
the existence of a ballistic (or quasiballistic) peak. Since then, a number of theoretical ana-
lyses!*~117 have been performed to investigate the details of this nonequilibrium transport
phenomenon and to assess the feasibility of hot electron spectroscopy. Most of these efforts have
been devoted to studying transport in the base as a function of the collector barrier height. For
the spectrometer with a planar doped barrier structure,'® such analyses are appropriate since the
collector current is controlled mainly by the collector barrier height (collector-base bias). For the
tunneling hot electron transfer amplifier (THETA) structure,!® however, the collector current can
in principle be influenced not only by the collector-base bias but also by the details of transport

in the relatively thick (~ 1000 :\) collector barrier region with a retarding field.

In this chapter, the electron transport in a THETA structure is studied numerically. The
evolution of the electron energy distribution (width and location of the peak) in the base and the
collector barrier is simulated in detail to examine the validity of hot electron spectroscopy. The
device characteristics as a transistor including transfer ratio and transit time are also investi-

gated. The simulation results are compared to the experiments of Heiblum and coworkers.!®
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8.2 Computational Model

The conduction band profile of the structure under consideration is schematically shown in
Fig. 6.1. The structure consists of two undoped AlGaAs layers between three heavily doped
GaAs layers (Np = 1X 10" cm™, where Np, represents the donor concentration). The Al compo-
sition and the widths of the two AlGaAs layers are 0.3, 120 A, and 1000 A respectively. These
conditions are chosen to match the experiment by Heiblum et al.'® A slightly larger base (400
A) has been chosen to encompass the width of the grading region. The compositional grading
itself is not included in the simulation. For the electron transport study, an ensemble Monte
Carlo method has been used. Analytical I-L-X band structures with nonparabolicity are incor-
porated for both GaAs and AlGaAs. Using AE,=0.68AE, for the conduction band discon-
tinuity,% the particular Al mole fraction, 0.3, corresponds to a bandedge discontinuity of 0.25
eV at the layer boundaries. Material parameters that have been used are described in Chapter

4

Included scattering mechanisms are polar optical phonon and intervalley phonon scattering
for the undoped AlGaAs layers (barriers), and elastic ionized-impurity and coupled
plasmon/phonon scattering as well as intervalley phonon scattering for the heavily doped GaAs
layer (base). Due to the degenerate electron concentration, the polar optical phonon modes in
the base are strongly coupled to the collective plasmon mode and the electron-hole excitation
througb long-range polarization fields. The scatterings by the coupled plasmon/phonon modes
are basically treated as discussed in Chapter 2. In addition to the three-dimensional treatment
i Chapter 2, a quasi-two-dimensional correction is also included in this study. As the device
dimension shrinks, the plasmon mode is strongly influenced by the reduced dimensionality The
electron gas does not, of course, support a collective motion perpendicular to the luyer interface

whose wavelength is larger than the layer width The exact inclusion of such effects involves a
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great deal of complexity and has not been included in this study. Instead, a maximum
wavelength limit is simply imposed to the plasmon-like mode based on the base width (device
limit). The possibility of interaction with two-dimensional plasmons which propagate parallel to
the layer interface still exists. Since, however, the electrons entering the base initially have negli-
gible parallel momentum, the coupling to the two-dimensional plasmon can be neglected due to
the tight restriction in the energy and momentum conservation as discussed in the following.

Our treatment poses as a first-order approximation to include two-dimensional effects.

Let X be the momentum of initial state and X' the momentum of final state after scatter-

ing. Then the energy conservation for plasmon emission gives

.RVEIN Buwy(q) = K
2m 2m

-k (6.1)

when a parabolic band structure is assumed with the effective mass m*. Tbe plasmon dispersion

relation in two dimensions!'!® gives

wi(q) = aq + g’ (62)

—

where a = 2¢’Ep/hk® and B = 3Ep/2m°. Here, Eg is the Fermi energy. Assuming K~g=K', Eq.

(6.1) gives

* 21/2
A . m (ea+f) " o (6.3)

2k ki q

Therefore, for a given k, there is a critical angle ©, above which an appropriate q (in turn, final
state) can not be found. Assuming aq>> Bq* which is appropriate at long wave length, an esti
mate of ©, ~ 40° is obtained with m"/my = 0.067 and E(K) = 0.4 eV for an electron density of
1x102ecm™2at T =0 K. As Em decreases, O, also decreases to a smaller value. This estimate
shows that two-dimensional plasmon scattering 1s an ineffective scattering mechanism unless the

electrons have considerable parallel momentum (1e., 0<8<8,). Although the conservation of
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perpendicular momentum (K 1=T€l’) can not be justified in full due to the lack of translational
invariance, this estimate shows qualitatively that two-dimensional plasmon scattering is of lim-

ited importance.

Some of the calculated inelastic scattering rates are shown in Fig. 6.2 as a function of
energy. Two different procedures have been used to obtain the total inelastic scattering rates.
Procedure (A) includes the device limit (base width) in the plasmon-like mode as described
above, while procedure (B) does not. As can be seen in the figure, these two procedures exhibit
sizable differences in the scattering rate. Although the Landau damping mode is the most dom-
inant scattering mechanism and is treated independent of the base width in this study, the
difference between the two treatments (A and B above) of the plasmon-like mode affects the out-
come of the transport study to a considerable degree. This further emphasizes the importance of
precise treatment of the finite base size. For ionized impurity scattering, the well-known
Brooks-Herring model has been used along with Thomas-Fermi screening.?® After the scattering,
electron states are randomly chosen based on energy and momentum conservation. Due to the
broadened resonance frequencies, the Landau damping mode involves more difficulties in the
selection of final states than other mechanisms. In this study, the amount of energy loss hw for
a particular scattering event by the Landau damping mode is determined by a precalculated dis-
tribution F(w) shown in Fig. 6.3. After choosing fw, the change in momentum is decided by
another look-up table. The final state of the electron excited from the Fermi sea is subsequently
picked based on the changes in the scattered electron. The Pauli exclusion principle (zero tem-

perature) is included for the final-state selection.

Since the temperature considered is very low (4.2 K), it is assumed that electrons are
injected into the base mainly by tunneling through the emitter barrier. Assuming further that

the emitter barrier tunneling probability D(E) depends only on longitudinal electron energy E,,
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Calculated inelastic scattering rates for T’ valley electrons in the base. Procedure
(A) for total inelastic scattering rate includes the device limit (base width) in the
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Qrax

as f iq-{—Im 1 }, and is calculated as described in Chapter 2. Nonparaboli-
q
Qmin

é(q,w)
city is included in the calculation. To obtain the probability distribution for a

specific initial energy E, F(w) should be renormalized to the area under F(w) from
Rw=0to E — Ep.
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it can be shown that the energy distribution of the injected electrons is proportional to
(Ep—E)D(E,) for E,<Ep at 0 K, where Ep is the Fermi energy in the emitter. In the simula-
tion, electrons are continuously launched at every 10 fsec from the emitter barrier-base interface
based on the energy distribution discussed above, and are tracked until they leave the device or
join the cold base electron sea. The cold base electrons are not simulated unless excited from the
Fermi sea through scatterings by the Landau damping modes. The transfer matrix formaiism
discussed in Chapter 2 is used in the calculation of tunneling probability D(E,). Parallel
momentum is initially neglected since it is much smaller thar the perpendicular momentum.
Coherent interference effects® are not considered in this study. At the interfaces, electron
transfer for the L and X valley electrons is treated classically by conserving energy and parallel
momentum. An electron can cross the interface when it has high enough energy E, to overcome
the barrier. The valley to which the electron belongs is assumed to be unchanged during the
transfer. For the T' valley electrons, quantum mechanical reflection is included. The reflections
at the interfaces are assumed to be specular. When an electron in the base has smaller energy
than the interface barrier height, it is assumed that the electron either reaches the base electrode
or recombines with a hole. Since the continuous launching scheme is used as mentioned above,
the collector current can be obtained by the number of electrons that reach the collector region

per unit time. Finally, the effect of band bending is not included in the simulation.

6.3 Results and Discussion

The electron energy distributions are shown in Fig 6.4 for two different locations and an
emitter-base bias V,, of -0.35 V and a collector-base bias V3 of -0.10 V. The injected energy
distribution is estimated as described above and shows a peak at ~ 15 meV below the Fermi
level with a full width of ~ 35 meV at half maximum. The distribution after the base 1s

obtained at the collector barrier side of the interface based on the incoming electrons from the
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base. The electrons traveling back to the base are not considered in the distribution. Since the
electrons which are backscattered into the base from the collector barrier can reenter the collec-
tor barrier after suffering further scattering in the base, the distribution after the base is a func-
tion of V. This dependence, however, is not prominent in this study due to the relatively large
conduction band discontinuity AE,. Hence, the distribution calculated at a particular V, can
reflect the intrinsic base transport characteristics. The zero of the potential energy is chosen at
the beginning of the collector barrier which is AE, above the base potential. As can be seen in
the figure, the electrons preserve the shape of the injected distribution after traveling throu_gh
the base. While the width is slightly widened by the scattering, the peak of the distribution
after the base has not been displaced, thus demonstrating the ballistic (or quasiballistic) tran-
sport in the base. Indeed, a significant portion (~ 55%) of the electrons which enter the collec-
tor barrier has passed through the base without a collision. Some electrons which suffer small
angle scatterings (especially elastic) overcome the potential barrier and contribute to the long tail
in the distribution. Contributions by the electrons excited from the Fermi sea is negligible. No
distinctive secondary peak due to phonon replica is observed in the tail. As discussed previ-
ously, the scattering by the Landau damping mode is the most frequent mechanism in the base.
However, the ' — L intervalley scattering is more detrimental to the base transport due to its
randomizing nature.® Electrons which suffer the intervalley scattering in the base have little

chance to overcome the barrier and eventually contribute to the base current.

To investigate the experimental evaluation of the distribution, we have calculated the
derivative 9l./0V,, and plotted it also in Fig. 6.4. It is seen that 91.,/3V., exhibits a pro-
nounced peak which can be clearly related to the ballistic peak of the distribution after the vase
region (thus, the injected distribution) The location and the width of the peaks obtained from

these three different curves are identical within the simulation error. Such coincidence implies
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that at sufficiently large negative V, only ballistic (or quasiballistic) electrons contribute to the
collector current, and the distribution at the end of the collector barrier still resembles closely
the injected distribution. This is clearly shown in Fig. 6.5 where the energy distribution at the
collector barrier-collector interface is plotted for various V. For Vi, =V, + AE, (here, V, =
-0.10 V), the distribution reproduces the shape of the injected distribution after traveling
through the base and the collector barrier. More than 75% of the transmitted electrons are
ballistic in thi case. As the negative bias increases, the electrons keep virtually the same distri-
bution, losing only the portion which is reflected by the potential barrier. A slight giowth in the
peak is also observed, which is due to reduced scattering in the collector barrier. These results
prove clearly the concept of ballistic transport and its detection in THETA devices. As V
becomes less negative, the bulk of the scattered electrons start to enter the collector. Since the
collector current in this regime is strongly influenced by the details of scattering in the collector
barrier, it is difficult to deduce information on the base transport from 081./3V.,. The evolution
of the energy distribution and J81./8V,, have also been studied at V,, = -0.40 V. Due to the
increase in injection energy, electrons are subject to stronger scattering in both the base and the

collector barrier. However, no qualitative deviation from Fig. 6.4 is observed as shown in Fig.

6.6.

Figure 6.7 illustrates the ballistic transfer ratio in the collector current as a function of V,
for V,, =-0.35V and -0.40 V. At large negative V, the ballistic transfer ratio is large and
varies slowly with V. Perfect ballistic transport is not realized even at very high bias due to
the elastic small angle scattering by ionized impurities in the base. A drastic decrease in the
ballistic ratio follows as V., becomes less negative. Since the massive contribution of scattered
electrons 1o the collector current causes this decrease, the location of the sudden drop in the

ballistic transfer ratio for V,, = -0.35 V matches well with the increase in 91.,/3V shown in Fig.
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tions at a given energy represents the ratio of collector current with that energy
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6.4, as discussed previously. With an increase in injection energy, ballistic transport becomes

less probable for a given V due to the increased intervalley scattering rate.

Thus, the results of our numerical study are in excellent overall agreement with the experi-
ment by Heiblum et al.}® However, there are points that need consideration for a complete com-
parison. In the experiment, the width of the distribution obtained from JI.,/dV,, (~ 60 meV) is
larger than in the simulation (~ 35 meV). Most of the broadening comes, in our opinion, from
the band bending at the emitter-emitter barrier interface. Due to the formation of the accumu-
lation region, the injected distribution of the tunneling current can be widened considerably.®®
Similar band bending occurs at both the interfaces of the base region and may affect the electron
transport considerably. To investigate such effects, a one-dimensional analysis as described in
Chapter 2 can be used. Due to the finite base resistance, the choice of base potential should be
considered carefully when the base width is very small. The reflections at the collector contact,
which is less than ideal, can also broaden the distribution in the experiment. The experimental
result for 01,/3V, shows that as V, becomes less negative, a smaller and relatively flat distribu-
tion follows tiic ballistic peak when compared to the numerical result plotted in Figs. 6 4 and
6.6. This suggests that the simulation predicts a larger population of electrons at low energies
and, thus, a stronger energy loss in the direction of propagation by scattering than the experi-
ment includes. Considering that the base transfer ratio agrees closely in both cases, the scatter-
ing rate in the collector barrier (mostly polar optical phonon) might have been slightly overes-

timated. In the simulation, about 36% of the injected electrons transfer the base ballistically

In normal transistor operation, positive V is applied to obtain high I /I, ratio. Due to
strong intervalley scattering in the collector barrier, ballistic transport through the device is
highly improbable with positive V. However, electrons still travel significant distances ballisti-

cally and, thus, have a higher velocity than the saturation velocity. Figure 6.8 shows the total
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transit time as a function of V. There exists a negative V, range which minimizes the transit
time, corresponding to the condition of large ballistic probability and simultaneously relatively
little deceleration of the electrons by the applied retarding field. As V, becomes less negative,
the transit time increases sharply at the onset of intervalley scattering and gradually approaches
to a saturation value. At V., = 1.0 V, the transit time is approximately 0.71 psec and 0.74 psec
for V,, = -0.35 V and -0.40 V, respectively, while the base transit time is approximately 0.05
psec and 0.06 psec. It is difficult to define a base transit time with negative V, due to the back-
scattering of electrons from the collector barrier. Without considering the backscattered elec-
trons which hardly contribute to the collector current, the base transit time for negative V is
expected to be close to the value with positive bias. The total transit time is the parameter
which gives the ultimate limit of the switching speed. To reduce the switching time, a short
base width is desired. However, a short base width brings large base resistance, which also lim-
its the switching speed. Higher doping in the reduced base may be the solution for this problem.
While keeping the base resistance low, higher doping in the narrow base may cause considerably
smaller increase in the scattering rate of the injected electrons than in the bulk due to the
reduced dimensionality in the density of the final states. Figure 6.9 shows the collector current
switching characteristics as V, switches from -1.0 V to 1.0 V with V,, =-035 V. At t =075
psec, the collector current reaches to more than 90% of the steady-state value, which shows good
agreement with the total transit time. There is a possibility that the current rise time can be
much shorter than the transit time. When a small negative V is applied for the off state,
mobile electrons can be effectively stored in the collector barrier and contribute to the collector
current rapidly when the bias is switched to positive. An overshoot in current is expected in this
situation. As the current density increases, the band bending in the collector barrier due to
mobile electrons becomes more important. The effect of a self-consistent field has been found to

be negligible even at 500 A/cm? Notice, however, large current density can also bring the
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nonequilibrium phonon distribution known as hot phonon effect'®! in the base and can alter the

base transport significantly.

8.4 Conclusion

In this chapter, the electron transport in a THETA device with a base width of 400 A and
the collector barrier width of 1000 A has been numerically studied at 4.2 K. Using an ensemble
Monte Carlo method which includes coupled plasmon-phonon interaction and the Pauli exclusion
principle in the heavily doped base region, we have shown the existence of nearly ballistic trans-
port in the base and the collector barrier for a negative V. From 81,/3Vy, the ballistic peak of
the distribution after the base (thus, the injected distribution) has been recovered which
confirms the ideas of hot electron spectroscopy in THETA structures by Heiblum and coworkers.
With positive V,p, ballistic transport through the device is highly improbable due to strong
intervalley scattering in the collector barrier. However, electrons still travel much of the device
ballistically and, thus, have a higher velocity than the saturation velocity. The total transit
time which gives the ultimate limit of the switching speed is approximately 0.71 psec at V =
-1.0 V when V,, = -0.35 V. To obtain optimum transit time and current gain, the electron

injection energy in the base should be lower than the threshold for I' — L phonon emission.
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CHAPTER 7

SUMMARY

Electron transport in III-V semiconductors, especially the GaAs/AlGaAs material system, is
studied in various nonequilibrium situations. Throughout the study, a Monte Carlo simulation
method is used for the first-principle analysis of transport properties under the semiclassical
Boltzmann transport picture. Physical models to include such complicated effects as coupled
plasmon/phonon scattering, band filling, quantum mechanical transmission, and band bending
are studied in detail. The spectral density function technique is also discussed in conjunction
with the possible inclusion of collision broadening, a quantum mechanical effect, mnto a semiclas-

sical Monte Carlo simulation.

The nonlinear transport study in the present work essentially consists of two aspects. The
first topic is hot electron transport in GaAs, focusing on the electron impact ionization effects.
The dependence of impact ionization rates on the details of the band structure is investigated by
using two (local and nonlocal) empirical pseudopotential methods. The spatial evolution of the
ionization rate and the average electron energy are studied in nonuniform fields characteristic of
p*-n junctions and Schottky barriers. An appropriate definition of the imapct ionization rate in
transient problems is discussed along with the Keldysh model. The effects of field fluctuations
due to the random distribution of dopants are studied as well, and are found to have only hm-
ited importance on the enhancement of the impact ionization rate. The possibility of new GaAs

electron-emitting diodes is explored numerically and compared with the corresponding Si devices.

The second aspect deals with the effects of conduction band discontinuities on the electron
transport. In particular, one-dimensional heterostructures are modeled to study the nonlinear

transport across heterointerfaces. First, two heterostructure avalanche photodiodes are studied.
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Particular attention is paid to microscopic features such as the evolution of the energy and
momentum distribution function in space and time, from which one can deduce macroscopic
results. It is found that overheating, enhanced energy relaxation, and carrier confinement as a
consequence of the structure in real space have a pronouned influence on the energy and momen-
tum distribution. As a result, the energy distribution can have a structure which directly
reveals the band structure (of the material). The dependence of the impact ionization rate on

the band structures of neighboring layers is also addressed.

The effects of a nonequilibrium phonon distribution on the electron transport are studied.
The phonon distribution can be perturbed whenever a significant number of phonons (especially
zone-center phonons) are emitted on a time scale shorter than the phonon decay time constant.
Such a situation can occur when a large number of carriers propagate across an interface, experi-
ence an abrupt energy gain, and subsequently relax through strong phonon emission. An algo-
rithm is developed for the microscopic analysis of phonon dynamics. It is observed that the hot
phonons change the scattering rate considerably and heat the electron energy distribution due to

the reabsorption of nonequilibrium phonons.

To investigate the quasiballistic nature of electron motion and to examine the validity of
hot electron spectroscopy, the tunneling hot electron transfer amplifier structures are studied at
4.2 K. Special attention is paid to the transport in the collector barrier, a region in which the
tunneling hot electron transfer amplifier differs from the similar planar doped barrier transistor.
Our model includes the effects of coupled plasmon/phonon interaction and the Pauli exclusion
principle along with more conventional features. The numerical results demonstrate the
existence of nearly ballistic transport in the base and the collector barrier, and confirm that the
experiments can indeed measure the energy distribution of injected ballistic electrons. The dev-
ice characteristics such as transfer ratio and transit time are also investigated in detail, and dis-

cussed along with the optimum operating conditions.

9.
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