)
)
0
o)
<)
P
T
(&)
i

peaid LN

PURDUE UNIVERSITY

0

'¢, - DTIC
3 ~® ELECTE%
C ~ éU SEP2 31988 %

s , | |

CENTER FOR STATISTICAL
DECISION SCIENCES AND
DEPARTMENT OF STATISTICS

88 9 92 D8Z




ON SEQUENTIAL RANKING AND SELECTION PROCEDURES*

by
Shanti S. Gupta S. Panchapakesan
Department of Statistics Department of Mathematics
Purdue University Southern Nlinois University
West Lafayette, Indiana Carbondale, Nlinois

Technical Report # 88-32C

ELECTLF

~_DTIC

Department of Statistics
Purdue University

June, 1988

* This research was supported in part by the Office of Naval Research Contract N00014-88-K-
0170 and NSF Grant DMS-860696-1 at Purdue University.

A




ON SEQUENTIAL RANKING AND SELECTION PROCEDURES

Shanti S. Gupta S. Pauchapakesan
Department of Statistics Department of Mathematics
Purdue University Southern Illinois University
West Lafayette, Indiana 47907 Carbondale, Illinois 62901
:
Abstract

This paper describes some sequential selection procedures for selecting the normal population
having the largest mean, and for selecting the Bernoulli population having the largest success prob-
ability, with emphasis on recent developments. Both the indifference-zone and subset approaches
are discussed. Some results for the exponential family including a decision-theoretic approach are

also described.
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ON SEQUENTIAL RANKING AND SELECTION PROCEDURES

Shanti S. Gupta S. Panchapakesan
Department of Statistics Department of Mathematics
Purdue University Southern Ilinois University
West Lafayette, Indiana 47907 Carbondale, Illinois 62901
1. INTRODUCTION
Problems of statistical inference that are now commonly known as ranking and selec-

tion problems gained the attention of statistical researchers in the early 1950's. Early
work in this area by Bahadur [1}, Bahadur and Robbins {2], Bechhofer [4], and Gupta (21]
related to single-sample procedures. Interest in sequential selection procedures arose in
the early days and has steadily continued cver since. However, it was a decade before a
substantial amount of original research on sequential tmethods for ranking and selection
problems was published in the form of a monograph by Bechhofer, Kiefer and Sobel {11]
which still serves well as a constant sonrce of results and ideas.

Two-stage and multi-stage procedures, in general, can be viewed as closed sequential
procedures, the number of stages needed to make the final decision being bounded above.
Selection procedures involving two or more stages arise not only in the context of effi-
ciency compared to single-stage procedures but also arise out of necessity when nuisance
parameters are present depending on the requirements set on a procedure.

Selection procedures have been studied under various goals such as selecting the best
among k (2 2) populations, sclecting the ¢ best (1 < # < &), and selecting the populations
better than a standard or control. In all these casces, the procedure is devised to select a sub-

set of the k given populations which is of ¢ither a fixed size gr a random size. The fixed-size

subset selection in the classical formulation is known as the jndifference-zoge (1Z) approach
and the other type is called the subset selection (SS) approach. More will be said about

these in the next section.
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Besides the monograph of Bechhofer, Kiefer and Sobel [11] devoted entirely to se-
quential procedures, a few other books on ranking and seclection are: Biringer, Martin
and Schriever [14], Gibbons, Olkin and Sobel [20], Gupta and Huang [24], and Gupta and
Panchapakesan [27]. The last book [27] mentioned provides a comprehensive survey of de-
velopments in this field up to 1978 with an cxtensive bibliography. Dudewicz and Koo [16)
have given a categorized bibliography. Recently, Gupta and Panchapakesan [28] have sur-
veyed developments in the subset selection theory over a period of more than thirty years
with emphasis on historical perspectives. A nice review of developments in the multi-stage

selection theory since 1979 is given by Miescke [3S].

In the present paper, we do not attempt to give a complete account of sequential
methods in ranking and selection. Qur purpose here is to provide a basic background, give
highlights of some of the early developments and their impact on some current develop-

ments.

Section 2 gives a general background for scquential selection procedures, explaining
the basic aspects of the indifference-zone and subset approaches. The specific procedures
discussed here center around selecting the normal population having the largest mean,
and selecting the Bernoulli population having the largest success probability. These are
discussed respectively in Sections 3 and 4 for the indifference-zone approach, and in Sec-
tions 5 and 6 for the subset selection approach. Scction 7 deals with subset selection from
exponential family distributions and a decision-theorctic approach to the problem.

L F SEQU IAL SELECTION

Let my,...,7% be k given populations. From cach 7;, a sequcnce of independent
observations Xj;, Xiz,... is available to the experiinenter. Let X;; have a density fp; with
respect to (w.r.t.) a o-finite measurc on R, which is the Lebesgue measure or a counting
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measure. The parameters 6;,: = 1,...,k, are assumed to be unknown. Let 8] < ... < 8
denote the ordered ;. No prior knowledge is assumed regarding the true pairing of the
ordered and unordered 8;. Our goal is to select the population 7; which has the largest
associated 6; and is called the best population. In case of a tie, we consider one such
population is tagged as the hest. Let Q = {8 : 0 = (6,....,6:), 6; € 6, i = 1,...,k}
denote the parameter space, where O is taken to be some interval (finite or infinite) on
the real line. Let D(6;,8;) > 0 be an appropriately defined distance measure between the

populations =; and 7;. For 6* > 0, define
Q8% = {81D(Bu—r). 0y) 2 7). (1)

In the case of location parameters 6;, for example, a natural choice is D(fx-1},6(1)) =
b1k — Bx—1)-
Under the 1Z approach of Bechhofer [4], a valid procedure R selects one of the k

populations as the best with a guarantee that
Pg(CS|R) > P* whenever § € €}(8°) (2)

where Py(CS|R) denotes the

robability of a correct selection (PCS) using the rule R

under the parametric configuration §. The minimum probability level P*(+ < P* < 1)
and é* are specified in advance by the experimenter. The complement of (6*) in (1) w.r.t.
Q is called the jndifference-zone since we have no PCS requirement for @ in this part. The
part §(6”) is known as the preference-zone.

In the subset selection (SS) approach of Gupta [21, 22], a valid procedure R selects a

random-sized subset of the given populations with a guarantee that

Py(C'S|R) 2 P* for all § € 2 (3)

3
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where a correct selection (C'S) occurs if the best population is included in the selected

subset. We note that there is no indifference-zone in the $S approach.

The probability requirements (2) and (3) are usually referred to as the basic probability
requirements or P*-requirements or P*-conditions of the respective formulations. In either
of these classical approaches, one proposcs a “rcasonable” procedure which involves some
quantities to be defined so that the P*-requircient is met. This involves the all-important
first step of finding the least favorable configuration (LFC) of 8 (in Q(6*) or Q, depending
on the approach) for which the infimwun of P(CS|R) over the appropriate space takes
place. The necessary quantities involved in the rule R are then determined such that this
infimum is at least P*. Since the procedure is proposed ad hoe, one would then study
its properties, evaluate its performance according to suitable criteria, and compare the

performance with that of any kuown alternative procedures.

A selection procedure, though not always explicitly so stated, typically consists of

three parts: (1) a sampling rule, (2) a stopping rule, and (3) a terminal decision rule.

Procedures are usually categorized according to the types of rules employed in the above

three parts. The terminal decision identifies a procedure as a fixed size or a ragdom size
subset selection procedure. A sequential procedure is said to be closed or gpen according
as the number of observations that can be drawn from each population is a bounded
or an unbounded random variable. When the number of stages involved in a sequential

| procedure is a bounded random variable it is said to be a truncated procedure. A sequential

procedure with elimination may eliminate one or more populations (which appear to be

inferior) before reaching the final stage at which the terminal dcecision is made. Typically,
further sampling from eliminated populations is discontinued although this is not the case

with some procedures studied in the literature.
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Sampling may be done one-at-a-time or vector-at-a-time. The former is an adaptive

sampling in which the population to be sampled from next depends on the data accumu-
lated until then. Plav-the-winner sampling rule of Robbins [42] in the case of Bernoulli
populations is an instance of this case. In the vector-at-a-time sampling, a vector of ob-
servations (one from each) is taken from the nou-eliminated populations.
E TION FROM NORMAL POPULATIONS: IZ AP ACH

Let 71,..., 7 be k normal populations with unknown means 6, ..., 0, respectively,
and a common variance o2. For defining the preference-zonein (1), we take D(Ok-1),0p1)) =
0(x) — bz —1); thus

Q8") = {8194) — bjx—1) 2 6° > 0}.

Our goal is to select the population associated with 64 and any valid rule should satisfy

the P*-requirement (2). We will discuss the known ¢? case first.

3.1 Case A: Known o2. Let X; j» J = 1,2,... be a sequence of independent observations

from n;, ¢ = 1,...,k. nless stated otherwise

time. Let Y;, = El Xijy i = 1,..,k, and let Y, < ... < Y{1jm denote the ordered
J=
Yim.

Stein’s Procedure, Rnyz:s. Stein [47], using a slightly more general model than ours,

proposed an open sequential procednre with _climination which is a straightforward appli-

Ai= gl[.Y,'j —Tj —o*(tj — 1)/fj]. 1=1,....k,
j=

where X ; is the average of the observations at stage j. and ¢ ;j is the number of populations
sampled from at this stage. Stein’s procedure is described below:
Procedure Rnrz:s: At stage m (m = 1,2,...), eliminate all populations =; for which

Ai < (0%/6*)en(1 — P*) and proceed to stage (1 + 1) to take an additional observation
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from each remaining population. Stop the experiment at any stage m, if there is at most
one i for which 4; > (02/6*)¢n(1 — P*). If there is exactly one such 7 at termination, then 1
select that ; as the best; otherwise (i.e. no such A;), sclect 7; corresponding to the largest \

A; at termination.

Bechhofer-Kiefer-Sobel Procedure, Ry;z.an1's. In their monograph, Bechhofer, Kiefer

and Sobel [11] considered selection from populations helonging to a Koopman-Darmois
family. Their procedure is an open sequential one with no elimination. This procedure
is specialized by them [11, pp. 264-265] to the normal case at hand. For each m (m =
1,2,...), let W,,, = ’:g: exp{—6*(Yipm — Yjijm)/0?}.

Procedure Rnrz:Bis: Stop sampling when m = N, the first positive integer for which
W < (1 — P*)/P*; select the population corresponding to the largest Yin.

A drawback of the above procedure, as noted by Bechhofer and Goldsman (7], is that if
O(x) — 6}s) is small, then N (the stopping time) can be large with a considerable probability.
Further, the variance of N can be large. To overcome these undesirable effects, Bechhofer
and Goldsman [7] proposed a truncated version (described below) of the above procedure.

Bechhofer-Goldsman Procedure, Rnrz:56. This procedure modifies the stopping rule
of Rnrz:BKs as follows: Stop sampling when, for the first time, either W, < (1 — P*)/P*
or m = ng, whichever occurs first. Here ng = ny(k,6*, P*) is predetermined as the smallest
positive integer which guarantees the P*-requirement (2). The terminal decision rule is:
Select the population corresponding to the largest Yy, where N is now the bounded
stopping time.

Bechhofer and Goldsman [7) have tabulated the ny values for k = 2(1)5, 6* = 0.2(0.2)

| 0.8, and P* = 0.75,0.90,0.95,0.99.
Another well-known procedure in the litcrature is that of Paulson [39}, who was the

6
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first to consider a closed procedure with elimination, a fcature to be characterized by some
later authors as Paulson-type. Paulson, in fact, considered a class of procedures indexed by
A € (0,6*), using triangular stopping regions. Let ax = {02/(6* = \)}n{(k-1)/(1 - P*)}
and let W) denote the largest integer less than ay/A.

Paulson Procedure, Rnyz:.p: At the beginning of stage m (m = 1,...,W)), take one
observation from each population not elimninated thus far. Now eliminate all populations

n; for which

Yin <max,,, —ax+mi
r

where the maximum is over all populations 7, that reinain at the beginning of stage m.
If all but one population are climinated, then stop sampling and select this one remaining
population; otherwise, procecd to stage (m + 1). If two or more populations remain
after stage V), then take an additional observation from each one of them and select the
population 7; corresponding to the largest ¥y 41).

Although Rn1z.p guarantees the P*-requirement, the optimum value of A in (0, 6*)
was not settled by Paulson. However, based on his calculations, he recommended the
choice of A = 6*/4. Bechhofer and Goldsman [10] prefer A = §*/2 because this minimizes
Wi + 1, the maximum possible total number of stages to termination, for any given set of

k, 6*, and P*.

mprovements in Paulson's Procedure. Fabian [19] improved Paulson’s procedure by
obtaining better lower bound ou the PCS. Considering the choices of A = 6*/2 and A =
6*/4, Fabian’s improvement is achicved by replacing ¢ = (k — 1)/(1 — P*) by ¢/2 for
A =46"/2 and by 1/¢ for A = §*/4, where ¢ satisfies (¢ — 2¢'/3)c = 1. Recently, Hartman
[30] improved upon Fabian's results by replacing the reciprocal of ¢ by 1 — (P*)M/(+=D),

Some Comparison Results. Bechhofer and Goldsman [10] have done Monte Carlo

7
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studies to compare the performances of Rnjz.n1s, RN12.86.RN1Z:pH (.. Rnpz:p With
Hartman modification), the two-stage procedure of Tamliane and Bechhofer [49, 50] and
the single-stage procedure of Bechhofer [4]. Let us call the last two procedures Rnrz.78
and Rn1z.B, respectively. The performances of these procedures were studied by Bechhofer
and Goldsman [10] in terms of achieved PCS. E(N'), and E(T), where N and T are the
total number of stages needed to terminate and the total number of observations taken up
to termination. Their results indicate that Rx;z.p3¢; does well in terms of E(N) except
when the §; are all very close to cach other and P* is higl. in which case Ryz.pn With
A = 6*/2 is recommended. When b > 5, they recommend Ry yz.py with A = 6*/2 for the
equal means (EM) configuration and A = 6*/4 otherwise. For reasonably high P* with

E(T) as the criterion, Ry1z.py scems preferable with choices of A as indicated above.

Kao-Lai Procedure, Rnsz:.i1- A class of truncated procedures with elimination was
proposed by Kao and Lai [34] employing confidence sequences for the (k — 1) differ-
ences O — 6; (i # [k]). Taking E(T) as a meuasure of efficiency, it has been shown
by Kao and Lai [34] that asymptotically (P* — 1) their procedure is more efficient than
BRyniz.Bks,RNn1z:.p, and RN1z.p except when 6 is in the least favorable (slippage) config-
uration or in the EM-configuration; in these configurations, their procedure is at least as

efficient as the others.

A Generalized Goal. Fabian [18] considered a generalized goal for ranking populations.
For our problem of selecting the best population, this corresponds to §*-correct selection
(6*—CS) which means selecting any 7; for which 6; > ;) — 6*. Such a ; is called a
good population. For § € Q(6*) in the IZ approach. the hest population is the only good
population. Fabian [18] has shown that, for the single-stage procedure of Bechhofer [4], a

stronger claim can be made, namely, that P(8*—C S|R) > P* for all § € Q.

8
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Kao and Lai [34] have given a sequential procedure (by slightly modifying the elim-
ination rule of Rnz.x1) which guarantees a minimum probability P* of a 6*—~CS. As
pointed out by Edwards [17], this is done at the expense of considerably slower elimination
of inferior populations. Edwards [17] gave a slightly different but more general procedure,
which he called an extended-Paulson sampling plan. His procedure guarantees a minimum
probability of a §*—CS while keeping asymptotic (P* — 1) sample size properties same

as those of the 1Z procedures Rnjz.Brs, Rniz.p, and Rnyz.8-

Other Developments. Hoel [31] has discussed a method of constructing Paulson-type
procedures based on log-likelihood ratios, which can be applied to the normal means prob-
lem. For appropriate choices of the index defining a family of procedures, Hoel’s procedure

is precisely RNz p.

Recently, Bechhofer and Goldsman [8] have considered selection of normal population
with the largest mean when the underlying model is a two-factor experiment with no
interaction. Their procedure is a natural adaptation of Rysz:prs. In a later paper (9],
they studied a truncated version of this adapted procedure and carried out Monte Carlo

studies of performances of these procedures and a single-stage procedure of Bechhofer [4].

3.2 _Case B: Unknown 0%, When o2 is unknown, there does not exist a single-stage pro-
cedure that can guarantee the P*-requircment under the IZ formulation. This is because
the necessary sample size cannot be determined without the knowledge of 02. Bechhofer,
Dunnett and Sobel [5] proposed a two-stage procedure where the first stage samples are
used to provide an estimate of o?; the additional sccond-stage sample size, if necessary,
can be determined accordingly. Paulson [39]. and Kao and Lai [34] have given procedures
by modifying their earlier procedures for the case of known 2. These involve first taking

m (2> 2) observations from each population and then procecding sequentially by taking one

9
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observation from each noneliminated population. Robbins, Sobel and Starr [43] proposed
a procedure for which the P*-requirement is asymptotically (6* — 0) satisfied. Details of
these procedures will not be discussed here. These procedures, except that of Kao and Lai

(34], have been discussed in Gupta and Panchapakesan [27, Chapter G).

Let m,..., 7 be k Bernoulli populations with associated success probabilities py, . . .,
Pk, respectively. Consider the preference-zone 5o = {p: p = (p1y-.-,Pk)s Pt} — Ple-1] 2
6"}, where pj < ... < pyy are the ordered p,. and 0 < 6% < 1is specified in advance.
For selecting the population associated with pyy (the best population), Sobel and Huyett
[46] studied a single-stage procedure based on a sample of size n from each population.
This procedure is Rgrz.sy: Select the population corresponding to the largest number of

observed successes.

For this problem, Paulson [40, 41] proposed truncated sequential procedures with
elimination. There are also a number of other procedures studied by several authors; these
procedures differ in their sampling and/or stopping rules. A detailed discussion of these

procedures can be found in Gupta and Panchapakesan [27, Chapter 4].

Recently, Bechhofer and Kulkarni [12] proposed a closed sequential procedure. Their

sampling rule involves taking at cach stage one observation from a population to be deter-
mined by the accumulated data up to that stage: in other words. it is a one-at-a-time adap-
tive sampling. Also, a maximum n is set for the nuber of observations that can be drawn

from any population.

Let n;m and Z;,, denote, respectively, the total munber of observations taken from
m; and the number of successes among them through stage m, ¢ = 1,...,k and m =

0,1,...,kn. Stage 0 (i.c. no observation is yet taken) is introduced for convenience in

10
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describing the procedure Rp;..px of Bechhofer and Kulkarni [12], which is as follows:

a. At stage m (0 < m < kn — 1), take the next observation from the population which
has the smallest number of failures among all 7; for which n;, < n. In case of a tie
among such 7;’s, take the next observation from the one which has the largest number
of successes. In case of a further tie, select one of this further tied set at random and
draw the next observation from that population.

b. Stop sampling at the first stage m at which there exists at least one «; satisfying
Zim 2 Zjm + n —njy, forall j #14. (4)

c. Select as the best one at random from those 7;’s which satisfy (4) at termination.

Bechhofer and Kulkarni [12] have shown that the PCS for Rgjz.px equals that of
Rprz.su uniformly in p for & > 2. Several optimmal properties of Rprz.5x have been
established by Kulkarni and Jennison [36]. Exact numerical results are given by Bechhofer
and Kulkarni [13] for performance characteristics such as the distributions of Ny, the
number of observations taken at truncation from #; associated with pi)» and of the total
number N = ,-Zk:, N() at truncation. Because of the nature of time-consuming recursive
formulae, their numerical results are limited to the cases of (k,n) = (2,20) and (3,7) for
the distributions of N(;, and N, and are limited to (k = 2, n < 100) and (k = 3, n < 40)
for E{N(;)} and E{N}. The scope of these studics is extended to k = 4 and 5 by Bechhofer
and Frisardi [6] employing Monte Carlo simmlation.

The sampling rule of the Bechhofer-Kulkarni procedure is not a play-the-winner rule
(see Bechhofer and Kulkarni [13]); it is referred to as the least failures rule by Kelly [35)
who proposed it for a Bernoulli multi-armed bandit problem.

The idea behind the stopping rule of the Bechhofer-Kulkarni procedure is that the

sampling can be curtailed as soon as there exists one or more populations which have

11




at least as many successes as the maximun possible number of successes from any of the

other populations even if all the n observations were taken from them. This criterion
as given in (4) is referred to as strong curtailnent by Jennison (32] who also consid-
ered weak curtailment given by (4) with > replaced by >. With either curtailment, the
Bechhofer-Kulkarni procedure achieves the same PCS as does the Sobel-Huyett single-stage
procedure uniformly in p = (p1,....pe). As noted by Jennison [32), strong curtailment is
preferable to weak curtailment since the former yields a samnple size no larger than that
yielded by the latter.

Jennison and Kulkarni {33] have considered similar procedures for the goal of selecting
the s (1 < s < k — 1) best of k Bernoulli populations. Recently, David and Andrews [15)
have proposed procedures with strong and weak curtailments for selecting the best of &
objects in a Round Robin-type paired comparison experiment. They have shown that the
probabilities of selecting a particular object are the same under both curtailments for the
Bradley-Terry model, but are not so, in general.

F NORMAL POPULATIONS: SS APP

Let m,...,m be k& normal populations where #; has mean 6; and variance o?, i =
1,..., k. Before discussing sequential procedures for different goals, we state the single-
stage procedure of Gupta [21] when 0? = ... = 0} = o? (known). His procedure is based
on X;, i =1,...,n, the means of random samples of size n from the k populations and is

given below.

Gupta’s Single-stage Procedure, Rngs.: Select #; if and only if

X; > max X; - Do (5)

1<i<k v

where the constant D = D(k,P*) is the smallest positive number for which the P*-

12




requirement (3) is satisfied. This constant D is given by

/ &Yz + D) d®(x) = P* (6)

where ® denotes the standard normal distribution function.
Let p; denote the probability of selecting the population associated with 6, ¢ =

1,...,k. Then it is known that p; < p; < ... < pi (i.e. the procedure is monotone), where

p= [ B 0latD b0V o) da) @
Joo imi

5.1 Barron-Gupta Procedure, Rnss.pG. This procedure is devised for selecting a subset

containing the best (i.e. one having the largest ;) assuming that o = ... = o} = o?
(known) and that the successive differences of the ordered 6; are known (this means that

the p; in (7) are known). Their procedure employs vector-at-a-time sampling. As before,
let X;;, Xi2,... be a sequence of observations fromn 7;. At stage j, we have the observations
Xij, i=1,...,k. Define

1 ifY; > mraxY,,' — Do

ij= t=1,...,k,
0 otherwise

where D is given by (6). In other words, Y;; = 1 if ; is selected by Gupta’s rule in (5)
based on stage j observations (n = 1) and };; = 0, otherwise.

(1]
Now, for any stage m, define S;,, = T Yi; so that Si, has a binomial distribution
=

B(m, pi) with parameters m and p; (given by (7)). This fact is used by Barron and Gupta

[3]) in constructing their procedurc. As we will see, this procedure continues sampling from

Barron and Gupta [3], in fact, defined a class of procedures based on a pair of sequences
of real numbers, ({b;}, {c;n}), satisfying for m > 1 the following conditions: (i) bm <

—_— —
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bm+15 €m < Cm1, (i) bm < Cm, (iii) lim by = 00, and (iv) Pr{':ril[b,.. < Sim < cm]} =0
for alli = 1,...,k. For each such pair, the Barron-Gupta rule is as follows.

Procedure Rnss.aG: At stage m (m = 1.2,...), tag cach untagged population ; for
which Sim & (bm,cm); tag it “rejected” if Sin < b and “accepted” if Sim 2> cm. Stop
sampling when all the populations are tagged. At termination, select all those populations
that were tagged “accepted.”

It should be noted that once a population 7; is tagged, it remains so irrespective of
later changes in S;,,. Barron and Gupta [3] have studicd in detail several properties of this
procedure including its performance compared with the single-stage procedure Rnss.c-
5.2 Swanepoel-Geertsema Procedure, Rnyss.s;. This procedure is devised for select-
ing a subset containing the population with the largest 6; assuming that the o? are
unknown and possibly unequal. It is a sequential procedure with no elimination employ-
ing vector-at-a-time sampling, and is based on constructing a selection sequence. For each

n > 1, let B, be a subset of the k populations defined by n observations from each. Any

sequence {B,} is a selection sequence if
Pr{nu) € B, foralln > 1} > P*

for all § € Q where m(y) denotes the best population and 0 < P* < 1 is given.
Swanepoel and Geertsema [48] construct a sclection sequence {Bn} where B, =

{m1,...,ma} and

B, ={7y: X,(n) 2 ‘12?Sxk Xi(n) = sarh(k, P*,n)}

. . . . 2402
where Yg(n) is the mean of n observations from ;. s,r is an estimator of m:x !‘%3&,
SPEr

and h is a constant depending on &, P*, and n. The stopping time N is defined to be the

14
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first integer n > 1 such that |B,| < m, wherc |B,| denotes the size of B, and m is an

integer chosen in advance with 1 < m < k — 1. At termination, we select the subset By .

In the unknown true configuration of 8, let s denote the number of 6;'s equal to 6. If
s < m, then N < 00 a.s., |By| < m, and By includes the best population with minimum

probability P*.

$.3 Gupta-Liang Procedure, Rnss:gL- Gupta and Huang (23] proposed and studied two
procedures based on log-likelihood ratios which can be applied to location and scale pa-

rameter cases. One of these two procedures is with elimination. Their goal is to select all
mildly ¢ best populations (i.e. those 7;’s for which 6; > 6j;_y41) — 6* for a specified §* > 0,

in the location case).

Recently, Gupta and Liang [25] have considered a similar setup (with some slightly
modified assumptions) and proposed a sequential procedure applicable to location and
scale cases but with a modified goal. For the location case with ¢t = 1, the Gupta-Huang

goal is to select all good populations. The Gupta-Liang goal is to select a subset which

event of selecting a subset consistent with this goal is denoted by CS(6*) [Note that

CS(6*) is different from 6*—~CS).

For the normal means problemn with a common known variance o2, let X;;, Xia,...
be a sequence of independent observations from #,;, i = 1,...,k. For m > 1, define

Yim = ,51 Xij. Let S,n denote the set of contending populations at the beginning of stage
J=

m and |Sy| denotes the size of S,,,. We now define the Gupta-Liang procedure.

Procedure Rnss.gr: Choose a 8, in the interval (0,5 /2). At stage m (m = 1,2,...),
take one observation from each population in S,,. Include in Sim41 oply those #3’s in Sy
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for which

2 .
m:, < log 1"_ I:‘ for all x, € Sp, 7 # ¢;

and eliminate all other x;’s from any further consideration. Now, label as good only those
#i's in Sm41 that have not beep labeled so far and for which

&
2 (}’rm - },"ll) -

. 2 _ 52 -
A Yim = Yim) + 0 5 10g L orall 1 € St £

Stop sampling if either |S;p41] = 1 or Spu41 does not contain any unlabeled population,
and make the terminal decision: “Select all the populations in S;41”; otherwise, go to
stage m + 1.

It should be noted that a population is not labeled unless and until it qualifies to be
called good. Once so labeled, it is not examined for labeling again. It is also possible that a
labeled population is eliminated at a later stage. The populations that are selected are the
ones which have been found to be good at some stage and which have survived elimination.
The choice of §; in (0,6*/2) assures that the procedure terminates with probability one.
The procedure guarantees that the PCS(6*) is at least P*. The question of an optimal
choice of §; is open.

N TI

As in Section 4, 7y,. .., 7 are Bernoulli populations with success probabilities py, .. .,
Pk, respectively. Gupta and Sobel [29] proposed and studied a single-stage procedure
based on n independent observations from each population. Let X; denote the number of
successes from #;, ¢ = 1,..., k. The Gupta-Sobel procedurc Rpgss.gs is: Select =; if and
only if X; > ltggk X; ~ d, where d = d(k,n, P*) is the sinallest positive integer for which
the P*-requirement is satisfied.

Sequential procedures are important in practice when the cost of sampling is high or

when the observations are scarce so that it is difficult to have the sample size needed by a
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fixed sample size procedure in order to achieve the desired level of the PCS. In the Bernoulli

model, they have the added importance of ethical considerations when the experiment
concerns comparisons among drugs; one would want a drug with a small success rate 8;
{ j to be identified soon. Since a subset selection rule also serves as a screening procedure \
before selecting one of the drugs as the best, it inakes sense to eliminate poor drugs rather

quickly so that more observations can be used for the remaining ones.

Recently, Sanchez [44] considered a class of sequential procedures which take no more
than n (common sample size in Rpgs.Gs) observations from each population and result
in the identical terminal decision as does Rpss.gs. All the procedures in this class share
the same stopping rule S* and terminal decision rule T* (to be defined later). An optimal
] procedure in this class is defined to be the one which minimizes the expected value of N,
1 the total number of observations taken until termination. In order to determine an optimal

procedure, we should consider procedures that take observations one-at-a-time. However,

this turns out to be a difficult task (sce Sanchez [44]). In this context, Sanchez [44]
investigated a procedure which uses a modification of the so-called least-fajlures sampling
rule of the Bechhofer-Kulkarni procedure Rp;z.p1 described in Section 4. Although this
procedure is not optimal, it seems to perforn well enough to be of practical interest.
Sanchez has considered asymptotic [44] as well as small sample [45] performance of this

procedure, the latter based on simulation.

We now complete our discussion by formally describing the modified least-failures pro-
cedure of Sanchez [44]. Let n and d be the common sample size and the constant of the

Gupta-Sobel procedure Rpss.gs. Observations are taken one-at-a-time. Let Zim, Yim,
and n;n denote the number of successes, number of failures, and the total number of

observations, respectively, from #; through stage m. Let Ss and Sg denote the subsets of

17
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selected populations and of excluded populations, respectively, into which the populations

are assigned possibly at each stage according to the following rule:

Assign 7; to Sg if ,,, + n;iu Yjm 2 n —d;
J#i

y Assign 7; to Sg if yim + maxzrjn 2 n+d+1; 8)
j

No assignment is made otherwisc.

Sanchez Procedure, Rpss:.s: Least-failures sampling is employed until for some =,
Nim = n and Yim = lxgxsxk ¥jm at which time this =; is assigned to Ss. From this stage
on, additional observations are taken from =; (j # ¢) until the first stage when 7; can be
assigned to Ss or Sg according to (8). Sampling is stopped when no population remains
to be assigned. The terminal decision is: Select all the populations in Ss.
) 7._SELECTION FROM EXPONENTIAL FAMILY
i In this section, we discuss some recent results of Gupta and Miescke [26] and Liang [37)
for selection from k populations belonging to a one-parameter exponential family. Liang’s
approach is classical with the goal of CS(6*), same as that of the Gupta-Liang procedure
J Rnss.gL described in Section 5. Gupta and Miescke [26] adopted a decision-theoretic
approach to sequential selection. Their treatment includes multi-stage selection. They
4 have obtained results for selection of subsects of random as well as fixed sizes.
7.1 Liang Procedure, ReFss.- Let m1,...,7¢ be k populations where x; has density
f(z)6;), where

f(z]0) = ¢(0) exp(0x)h(x), x real ,

and § € O, an interval on the real line. For specified 6* > 0, any population =; is
defined to be good if 8; > 6 — &*. Liang [37] considered the goal of selecting a subset

which contains the best population and excludes any that is not good (same goal as that

18
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of Rnss:gL in Section 5). His sequential procedure with elimination is based on certain
conditional likelihood functions and it achieves the P*-requirement for CS(6*). The details
are omitted here.

7.2 Gupta-Miescke Decision Theoretic Approach. Consider the one-parameter exponen-
tial family F given by

F = {c(0) exp(8z)h(z), = € R}eco

where © C R is an interval. We consider the class P; of permutation invariant sequen-
tial procedures with or without elimination, employing vector-at-a-time sampling. Let
Xi1, Xi2,... be a sequence of observations available to the experimenter from #; (with
associated parameter #;). At stage m (m = 1,2,...), let n,, observations be taken
from the eligible populations. Let Wi, = :’_‘_j‘: Xij, where N, = ;Z::l n;j, denote the
sufficient statistic for #;, based on all observations from x; through stage m, and let

Wm =(W]m,-.-,ka), m= 192,-.. B

For§ = (6,...,6:) € R = 0%, L,.(Nt1,....tm,tm+1) denotes the loss incurred when

the procedures stops at stage m with a record {t;,...,tn.tm41}, where t;, j=1,...,m,
denotes the subset of {7,..., 7} that is eliminated at stage j, and t,,4+; denotes the
subset finally selected at termination. Note that {t,,...,tm4+1} is a disjoint decomposition
of {my,...,m}. It is assumed that: (a) Ly, is permutation invariant, and (b) L,, increases
if a record is changed in any way making a better population eliminated before an inferior
one.

A patural terminal decision, at stage m, selects only those populations among the
noneliminated ones which yielded the largest values of W;,,. Gupta and Miescke [26] have
shown that between any two procedures which differ only in their terminal decisions, the

procedure that uses a natural rule for terminal decision has a smaller risk.

19




It is reasonable to speculate that, within stages where a procedure with elimination
does not stop, natural subset selections are optimal as in the case of terminal decisions.
However, this has been proved by Gupta and Miescke [26] only in the case of multi-stage
procedures with the sizes of the subsets selected at each stage fixed, under the assump-

tion that F is strongly unimodal [i.e. exponential density is logconcave]. For additional

comments, see Miescke [38].
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As pointed out earlier, we have not attempted to provide any sort of comprehensive
survey of sequential selection procedures. We have discussed only a few of the selection
procedures which are dealt with in the books mentioned in Section 1. These few procedures
are included to make the discussion of recent results contextually clear. There are other
problems of current interest which are not included here. For example, there is some
interest in multinomial selection problems with truncation and curtailed sampling. There
are several papers relating to multi-stage procedures; cspecially, two-stage procedures.
These are not included here. Also, we have not discussed sequential procedures for selecting
populations better than a standard or control.
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