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IHE WIGNER DISTRIBUTION FUNCiION

WITH MINIMUM SPREAD

INTRODUCTION

A number of advantageous features associated with smoothing a Wigner

distribution function (WDF) were discussed in a recent report [1]. At that

time, it was shown that the WDF with minimum quadratic spread, about the

line t = 1 t in the time-frequency plane, was a two-dimensional Gaussian

function, when constraints of finite energy and mean-square duration were

imposed [1, app. G]. However, a more appropriate measure of spread about

the origin in the t,f plane is adopted here and minimized, yielding a unique

waveform and corresponding WDF. Additionally, a reward measure for

concentration is shown to yield identically the same optimum WDF.

An additional property of smoothing two-dimensional WDFs was also

demonstrated; namely, if two Gaussian mountains are doubly-convolved with

each other, the effective area of the result is greater than the sum of the

two effective areas, unless the contours of both WDFs have the same tilt and

ratio of major-to-minor axes [1, app. J]. A quantitative investigation of

the effect of mismatch in these parameters on thp effective area is

conducted herein.

It is assumed that the reader is familiar with the content and approach

of the earlier report; accordingly, this follow-on effort will be briefer

and will not review the considerable history and background of the WDF.

1
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MINIMUM QUADRATIC SPREAD

It was shown in [1, (102) and (106)] that the short-term spectral

estimate is equal to the double convolution of the WOF of the waveform s(t)

being analyzed with the WDF of the weighting u(t) employed. That is,

Z

S ~u (tf)l 2 )dtl exp(-i2irft 1) s(t I) u*(t - t 1))1

tf

SfdtI df1 Ws(t 1 ,fl) Wu(t - tIf - fl) = Ws(tf)tWu(tf) (I)

where @ denotes convolution. Here,

Wu (t,f) = fdt exp(-i2nfT) u(t + u*(t- (2)

is the WDF of complex weighting u(t); a similar definition holds for WDF

W . (Generalizations to non-Wigner smoothing functions for W are givens u

in [1, app. F].)

Since the WDF W of waveform s(t) has some good energy localizations

properties (and some deleterious negative oscillations), it is desired that

the smearing in the t,f plane, implied by convolution (1), be minimized.

That is, we would like WOF W of weighting u(t) to be as concentrated asu

possible about the origin of the t,f plane. The ideal of an impulse,

S(t)6(f), is not a legal WDF, and must he discarded. Since the left-hand

side of (1) can never be negative, we can be assured,by this smoothing

procedure of two WDFs that we will always get a physically-meaningful

distribution in the t,f plane; that is, the smoothed distribution will

always be non-negative for all t,f and have a volume equal to the energy of

waveform s(t). For example, see (1, (111) et seq.].

2
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PENALTY MEASURE AND SPREAD

In order to confine WDF Wu near the origin, we define a penalty

measure which is zero at t,f = 0,0 and which increases quadratically with t

and f. Namely, the penalty measure is

P(t,f) = a2t 2 + 42 b2f 2  4rctf , a,b,c real , (3)

and the corresponding spread of the WDF W is defined asU

I = ffdt df Wu(t,f) P(t,f).(4

Contours of equal penalty in (3) are tilted ellipses in the t,f plane; these

would be selected upon observation of a calculated WDF W of waveform s(t)s

in regions of interest, ie., high activity.

Therefore, real constants a,b,c are presumed known. Define quantity

2b2 2

Q= -c (5)

Then, in order that penalty

P(t,f) > 0 for t,f g 0,0 , (6)

it is necessary that

Q > 0 . (7)

The property (6) was not satisfied by penalty furiction (f - c t)2 in

[1, app. G]; that function was zero all along the line f = c t, allowingc

the WDF to become impulsive there.

3
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We also want WDF W in (1) and (4) to have unit volume, for twou

reasons. First of all, this will guarantee that the short-term spectral

estimate on the left-hand side of (1) will have a volume equal to the signal

energy, regardless of weighting u(t) employed. Secondly, without this

volume constraint, u(t) and W would collapse to zero, giving au

meaningless spread value of I = 0 in (4). Thus we require that

1 = udt df W(t,f) = fdt Iu(t)I (8)

Subject to this integral constraint, we want to minimize spread I in (4),

and find the particular weighting u(t) and corresponding optimum WOF W .u

Notice that we are imposing no constraint of positivity on W .u

DERIVATION OF SPREAD

Substitute (3) into (4) to get spread

I = Jfdt df W2(t,f) (at2 + 4,2bf2 + 4,tf) (9)

where WDF W is given in terms of u(t) according to (2). By using theu

results in [1, (G-4) and (G-5)], we can express (9) solely in the time

domain as

I = a2 fdt t2 Ju(t) 2 + b2 fdt Ju'(t)J2 + 2c fdt t Imfu'(t) u*(tl =

= dt [a2t2 lu(t)1 2 + b2 lu'(t)1 2 + ict u(t) u'*(t) - ict u*(t) u'(t)]. (10)

For reasons to become apparent shortly, define complex constant

B + ic(11)

4L2 
;( l
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then, by using (5), we find

b2 IB12  a2  (12)

Now consider the quantity

I (t)= b 2 u'(t) + Bt u(t))

b2 u'(t)I 2 + b2 81I 2t2 lu(t),I + b2Bt u(t) u'*(t) + h2 B* t u*(t) u'(t) -

b 2 Iu'(t)I 2 + a2t 2 u(t) + (2 + c)t u(t) u'*(t) +

+ (CO - ic)t u*(t) u'(t) (13)

Comparison of (10) and (13) immediately reveals that

Idt T(t) = I + C' Sdt t [u(t) u'*(t) + u*(t) u'(t)] (14)

We now integrate by parts, letting

U = t u(t), dV = dt u'*(t) , (15)

to find that

gdt t u(t) u'*(t) = - dt [u(t) + t u'(t)] u*(t) =

= - I dtu(t)12 - Sdt t u'(t) u*(t) (16)

We presume that u(t) goes to zero at t = ±D, consistent with energy

constraint (8).

When (16) is employed in (14), there follows

Cdt T(t) = I - f Sdt U(t)j 2  (17)

5
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Thus the desired expression for spread I is given by (17) and (13) as

I = bf dt lu,(t) + Bt u(t)l 2 + po dt ju(t)l 2 (18)

This general result holds for any weighting u(t); it is obviously positive

in all cases, since Q > 0.

OPTIMUM WEIGHTING

The last term in (18) cannot be altered; it is equal to V7, as seen by

reference to constraint (8). Furthermore, the minimum value for the

remaining term in (18) is zero and is obtained for weighting u(t) which

satisfies the differential equation

u'(t) + B t u(t) = 0 for all t (19)

The only solution to (19) is

uo(t) = A exp(- i Bt ) for all t , (20)

where complex constant A is chosen for unit energy, and B is given by (11).

That is, u (t) has Gaussian amplitude-modulation and linear frequency-

modulation. The phase of A is ambiguous.

The resuitant minimum value of spread I in (18) is obviously

22 2
b = Q 2b c , (21)

where we employed (5). It is always positive, as seen by reference to

requirements (6) and (7).

6
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OPILMUM WOF

lhe WOF corresponding to optimum weighting (20) is obtained by

substitution in (2), and use of [1, (H-17) and (H-18)), as

Wo(t,f) = 2 exp a2t2 + 41r2b2f2 - 4ct] (22)

The area of the contour ellipse at the I/e relative level is 1/2 in the t,f

plane, as expected.

Observe that the numerator of the exp in (22) is identically the

quadratic penalty function P(t,f) imposed in (3). That is, the contours of

optimum WDV (22) are identical to the contours of equal penalty of P(t,f) in

(3). This result is intuitively satisfying: the optimum WOF packs as much

volume inside a given penalty contour as possible, to the extent that the

resultant WDF values are equal all along that given penalty contour.

Observe also, that although positivity of the WDF W was not imposedU

as a constraint in the minimization of spread I in (4) or (9), the resultant

optimum WOF in (22) is, in fact, everywhere positive. Although the optimum

weighting (20) has an ambiguous phase, the optimum WDF has no ambiguity;

there is a unique optimum WDF, namely (22).

7
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ALTERNATIVE REWARD MEASURE

Instead of penali~in the spread of WDF W about the origin in t,f
u

space, we could alternatively utilize a measure which rewards concentration

about t,f = 0,0. In particular, consider reward function

R(t,f) = exp[-a2 t - 412b2f2  4rctf] (22a)

and reward value

V = { dt df R(t,f) W u(t,f) (22b)

for WDF W . The origin value of R(t,f) is 1; in order for R(t,f) to decayu

to zero as t and/or f tend to infinity, we must have condition (7) satisfied

again. Notice that the contours of equal reward are ellipses in the t,f

plane.

The maximization of reward value V, subject to volume constraint (8) on

Wu, is conducted in appendix A. It is shown there that the optinim

weighting is again (20), and that the optimum WDF is (22). The maximum

value of reward V is

V 1 (22c)1max I +I + a b c22

More general results, for arbitrary reward functions R(t,f) in (22b), are

presented in appendix A.

8
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GENERALIZATION TO SMOOTHED WOF

A general class of distributions* has been presented in [2, (1.7) and

(1.8)]. In current notation, that class is given by [1, (F-1)] as

tf
D(t,f) E Wu(t,f) (D V2(tf) =

= J dt exp(i2mut - i21ft) U(v,'-) q2 (v,") , (23)

where WOF Wu is given by (2), and V2(t,f) is a general two-dimensional

smoothing function. The complex ambiguity function of u(t) is

;xU(V,T) = dt exp(-i2wvt) u(t + u*(t- , (24)

while

q2 (u,t) = S1dt df exp(-i2nut + i21rfC) V2(t,f) (25)

is a double Fourier transform of the smoothing function V . Observe that

if there is no smoothing, then

V2(t,f) = 6(t) 6(f)

q2(v,r) = 1 for all v,t

D(t,f) = W u(t,f) . (26)

*This section is based upon a suggestion by Leon Cohen, Hunter College, New

York, NY, that the optimum WDF results here actually apply to a wider class

of distributions.
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Now it is shown in appendix B that the following second momcnts uf

generalized smoothing distribution D can be expressed in terms of

derivatives of Xu and q at the origin:

ddf t2 D(t,f) = - -j [X (0,0) q2(O,O) - 2 (0,0) q2(O,O) 4-2

(dt df t f D(tf) X(0,) q (0,0) +4 (O,0) q'(0.0) +

+- XU(0'0 q2((0,0)]

dt df t f (t,f) 0- q ( (0,0) +

-+Ooo( q (0,0) + X (0,o) 2.X(0,0)] .

dt df f 2 O(t,f) - TTl [ (0,0) q2(0,0) + 2 '(0,0) qc(0,0) +
4w2

+Xu (0 0) qTr(00)) . (27)

Here, for example, superscript u denotes a partial derivative with respect

to u, which is then evaluated at the origin v,t= 0,0.

If follows ininediately that if origin value

q2(0,0) = 1 , (28)

and if the five origin derivatives

q (0,0) = q ) q (VU0.0) qu'(00) = q, or (0.0) = 0 (29)

then (27) reduces to the moments that would have resulted from employing the

no-smoothing result (26) in (27). Thus, distributions D(t,f) resulting from

(23), with properties (28) and (29) for q2' have the same second moments

10
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as the WOF W (t,f). Hence, the spread I of distribution D(t,f) is
u D

given by (see (9))

1D = JJdt df D(t.f) (a2t 2 + 42h2f2 & 4wctf)

= ydt df Wu(t,f) (a't' + 4,b 2f2 + 4,rctf) I , (30)

which is exactly the spread I of WDF W u(t,f). That is, smoothed

distribution D(t,f) in (23) has the same spread as WDF W u(t,f), when

smoothing function V2 (t,f) (actually transform q2 ) satisfies the

properties in (28) and (29). Notice that these properties are considerably

less restrictive than requiring

q2(U.0) = q2 (0,T) = 1 for all ut, (31)

which arises when one is interested in maintaining the marginals (2, (1.6)].

We must also observe from (23) that the volume under generalized

smoothing distribution D is equal to the product of the volume under Wu

and the volume under V But the latter quantity is unity, by virtue of

(28). What all this means is, that if we minimize spread I in (30),

subject to a unit volume constraint on D, the end result is precisely (18)

and (20), and the optimum WDF Wu is again given by (22). The

corresponding distribution D is obtained by substitution of (22) into (23)

and specification of the complete V2 or q2 functions. The properties in

(28) and (29) are not sufficient to completely specify q2 or D; all that

is specified by (28) and (29) are the second order moments of D in (27). It

should also be noted that all the conditions in (29) cannot be met by the

general tilted Gaussian q2 function employed in [1, (F-9) and sequel to

(F-12)].
'I
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SENSITIVITY TO MISMATCH

In [1, app. 3], it was shown that if two Gaussian mountains are

doubly-convolved in x,y space, the effective area A3 of the resultant is

greater than the sum of the individual areas, except when the two elliptical

contours have the same tilt and the same ratio of major-to-minor axis (shape

factor). Here, we wish to investigate, quantitatively, the increase in

effective area above the minimum value, when the tilt and shape factors are

not at their optimum values. This situation can arise when observation of

WDF W of waveform s(t) is contaminated, in a particular region of

interest in the t,f plane, by interference effects, thereby making

estimation of the tilt and the shape factor of the elliptical contours

somewhat inaccurate.

The general situation is considered mathematically in appendix C.

Ellipse 1 has

area A, tilt 1, shape factor F1 > (32)

while ellipse 2 has

area A , tilt 32, shape factor F2 . (33)

The 
ratio

A3

A1 + A2

is presented in (C-13) in terms of a number of auxiliary quantities.

12
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The initial example we consioer is where ellipse 1 has seven different

areas, namely

A1 = .5,1,2,3,4,5,6 1  F1  = 2 (35)

Ihe tilt is fixed at w/4 radians and the shape factor at 2. On the other

hand, ellipse 2 has

A = 2 13 F=to F =22 2 4 4 2 (36)

That is, the shape factor is perfect at F2 = Fl = 2, but the tilt is

swept over a w/2 range (greater discrepancies than w/2 lead to obvious

periodicities and symmetries centered about B2 = 1 as well as about

B /2 1 and about 2 = B1 + %). The situation under

investigation is depicted in figure 1, where ellipse 2 is dotted.

The effect of mismatch in tilt is presented quantitatively in figure 2.

As expected, ratio (34) is I at 32 = 1l = w/4, regardless of area A1.

lhe most degradation (upper-most curve) is realized for A1 = 2, i.e., when

the areas of the two ellipses are equal. The maximum increase in area is

only 25 percent, when 0 2 is off by r/2 radians; however, if the shape

factor is significantly larger than 1, the sensitivity to the tilt would be

much greater, as figure 1 shows.

The final example utilizes the exact same parameter values as (35) for

ellipse 1, while ellipse 2 has

A 2 F = 2 to 6. (37)2 ~ 24 2

13
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Now the tilt is perfect at B2 = 81 = w/4 , but the shape factor F2

varies above the best value of 2. The situation is depicted in figure 3,

where ellipse 2 is again dotted.

Ratio (34) is plotted in figure 4 versus the shape factor F . Again,

the upper-most curve corresponds to the case where A, A2 = 2. There

is no need to compute ratio (34) for F2 < F1 = 2, because the values for

F2 =F 1r are the same as those for F2 F 1/r. Additional cases of

interest can be investigated by use of the program listed in appendix C.

14
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Figure 1. Contour Ellipses for Mismatched Tilt

1.20

1.15
A3

A,+ W1

ir Tr
TT 4

Figure 2. Area Ratio (34) for F1  2, F2 =2, A2 =2, P1 =r/

15
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Figure 3 . Contour Ellipses for Mismatched Shape Factor

1. 12

A3

1.04

2 3 4 F
Figure 4 . Area Ratio (34) for F1 =2, A 2 = 2, PI = w/4, P2 7 r/4
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SUMMARY

The most compact WDF W that can be used for two-dimensional smoothingu

of a measured WDF W is a Gaussian function in two variables, when thes

measure of spread is quadratic in the time and frequency variables t and f,

or the reward measure is exponential. Furthermore, this two-dimensional

convolution guarantees a non-negative modified distribution, since the

result is equivalent to a short-term spectral estimate. Extensions to a

particular class of generalized distrioutions yields the same optimum WOF.

The corresponding waveform has Gaussian amplitude modulation and linear

frequency-modulation.

The additional smearing caused by mismatched smoothing functions to the

true parameters of a measured WDF has been investigated numerically for a

few examples, and found not to be overly sensitive to the exact values.

However, the multitude of parameters has prevented simplification of the

area spread factor; accordingly, a program allowing calculation of

particular cases is included to allow for further investigation.

The WDFs for the Hermite functions of order n are given in closed form,

in terms of a Laguerre polynomial of order n. This result is extended to

cross-WDFs in appendix A; in this manner, we can investigate the WDF of an

arbitrary waveform when expanded in a weighted sum of Hermite functions,

including linear frequency-modulation.

17
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APPENDIX A. MAXIMIZATION OF REWARD VALUE

We want to find that WDF, W u(t,f), which is maximally concentrated

about the origin in t,f space, where the measure of reward for concentration

is

R(t,f) = exp[-a2 t - 42 b 2f - 4wctf] , a,b,c real (A-i)

Thus, the maximum reward occurs at the origin,

R(O,O) = 1 , (A-2)

and the contours of equal reward are ellipses in the t,f plane. In order

for R(t,f) to decay to zero as t and/or f tend to infinity, we must have

Q > 0, (A-3)

where

=ab - c . (A-4)

The reward value associated with WDF W is the real quantity

UV = "dt df R(t~f) W u(t,f)(A5

which we wish to maximize, where

W (tf) = dr exp(-i21fr) u(t + ) u*(t - (A-6)

in terms of weighting u(t). We must constrain the volume of Wu, in order

that V in (A-5) not tend to infinity as u(t) is simply increased in level.

Thus, we have integral constraint

1 = SJdt df Wu(t,f) = Jdt Iu(t)1 2 (A-7)
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ALlLRNAT1VE FORM FOR V

If we substitute (A-6) in (A-5), there follows

V = dt dtr r(t,tc) u(t + _) -t(A-8)

where

r(t,tC) = df exp(-i2rft) R(t,f) .(A-9)

A more useful alternative form for (A-8) is

V = dx dy K(x~y) u(x) u*(y) ,(A-10)

where kernel

K(x,y) = r(x-v , x-~ (A-11)

EILNFUNCTIONS OF K

In this and the following subsection, kernel K is Hermitian, but

otherwise arbitrary; it is not limited to form (A-1i) with (A-9) and (A-1).

Suppose and onj are the eigenvalues and eigenfunctions of kernel

K; i.e.,

dx K(x,y) n (x) x Xn 0 (y) for n =0,1,2, .. ,(A-12)

where x 0> I > K 2. ,and

Jdx 0*(x) o (x) =nm (A-13)
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Then the kernel can be expanded according to

0

K(x,y) = 0*(X) 0n(y) (A-14)

n=O

Also, there follows immediately

Jdx dy K(x,y) n (x) 0n(y) = X (A-15)

EXPANSION OF u

Suppose we expand weighting u in a series of eigenfunctions of Hermitian

kernel K:

U(x) = gn 0n(x) ' where gn = dx u(x) on(x) (A-16)

n=O

Then general reward expression V in (A-10) becomes

V = fdy u*(y) Idx K(x,y) gn 0 n (X)

n=O

= g dY u*(y) Xn 0n(y) = Ign 2 Xn (A-17)

n=O n=O

where we used (A-12) and (A-16). At the same time, the energy of u in

(A-16) is

Eu = fdx Iu(x)I2 = Ignl 2  (A-18)

n=O
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Now if the energy E of u is constrained at 1, as in (A-7), then theu

best choice of coefficients IgnI to maximize V in (,-17) is, since

0 > X > .2 '', obviously

1go1 = 1 and gn = 0 for n > I (A-19)

That is, the optimum weighting is

u (x) = 0o(x) exp(io) , (A-20)
0 0

where constant e is arbit'ary, while the maximum reward is

V = . (A-21)max o

That is, the zero-th order eigenvalue and eigenfunction of general Hermitian

kernel K in (A-12) are the solutions to the problem of interest here, namely

maximization of reward value V in (A-10) by choice of weighting u. For a

general kernel, a recursive numerical procedure could be employed on (A-12)

to determine X and o , if desired.
0 0

The formulation in these last two subsections is actually general enough

to cover the earlier penalty function considered in (3) et seq. The only

difference is that the eigenvalues {xnI now increase with n, and we must

select the eigenfunction corresponding to the minimum eigenvalue, in order

to realize the least penalty. This approach is the subject of appendix D.
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SPECIAL CASE OF EXPONENTIAL REWARD

We now specialize the general results of the previous two subsections to

the reward function (A-1). Substitution in (A-9) and use of (A-4) yields

r 2 1 2 c
r(t,-t) - 2V b exp 2 ; (A-22)

compare [1, (F-9) and (F-12)). Then (A-li) immediately gives Hermitian

kernel

K(x,y) = 1 L x 2D* + y 2 + 2xy(Q-1) (A-23)
2yw-b 4b2

where

D = Q + 1 + i2c (A-24)

At this point, we refer to Mehler's expansion [3, (67)) to obtain

(after some labor)

00

K(x,y) = (xn n n ) (A-25)

n=O

where

X (= ( V"Q )n (-6

(1 + r)n+

0n(X) = A exp - /2 e/b.) (A-27)n2 bn (2 Q'

and

-A
2  (A-28)
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ihe function Hen (x) is the Hermite polynomial [4, 22.2.15]. It is easily

verified that (A-27) satisfies orthonormality relation (A-13).

OPTIMUM WEIGHTING

Since Q > 0 by (A-3), the eigenvalues in (A-26) satisfy

0 > Xl > X2 . Therefore, the maximum reward is

1 1

Vmax o 1 + I + (A-29)

and the corresponding weighting is

uo(t) =o(t) = A exp 2 c] (A-30)
0 0b 2

from (A 27) and (A-28). This is identical to (20) combined with (11).

Therefore the optimum WDF is again (22) for reward measure (A-i), as well as

penalty measure (3). The waveform in (A-30) has Gaussian amplitude

modulation and linear frequency-modulation.

HIGHER-ORDER HERMITE FUNCTIONS

[or n > 0, the reward values !nin (A-26) are all less than optimum

value x. We have succeeded in obtaining these explicit values without

having to evaluate the WDFs of the corresponding Hermite waveforms in

(A-27). We now rectify this situation. The WDF of 0 n(t) in (A-27) is

given by integral
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Wn(t,f) - dx exp(-i2wf't) 0 (t + ) _)

nl n 2 n 2

-A 1 2 Sdr exp[-i2vft 8 + B~ , c2 - B*( -

*He n(F (t + 1)) He n (F(t - 12)), (A-31)

where
21/2 1/4 01/4

B + ic , F ='A1 2 = - - (A-32)
b 2  'b ' = b

Now a more general integral result already exists in closed fornm; from

[5, p. 292, (30)], we have, in a form more useful for present purposes,

Cdx exp(- 1 x2 + ax) He (b + x) He (b - x) =
2 m n

(l)m ! (b - a)n-m L (n-m)(b 2 - a2) exp(a 2/2) for m < n

(A-33)

where Lm (x) is the generalized Laguerre polynomial [4, 22.2.12). When

(A-33) is used on (A-32), there follows, for the WOF of waveform 0n (t) in

(A-27), the compact result

Wn (t,f) = (-1) n 2 Ln(2U) exp(-U) , (A-34)

where

a2t2 +42b2f2 4 f

U at +4bf +4wctf (A-35)

This result reduces to (22) for n = 0. Again, contours of equal values of

the WOF are ellipses in the t,f plane.
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CROSS-WDFs

Suppose a general waveform u(t) is expanded in a set of orthonormal

Hermite functions with linear frequency-modulation (a positive real, B real)

0n(t) = 1/4 exp[- 1 + iB)t 2 ] Hen('' t)/n.T (A-36)

according to

u(t) 2 . un 0 n(t) (A-37)

n=O

Then the WDF of u(t) becomes

W (t,f) = dt exp(-i21fr) u(t + T) u*(t -)

= "5 um u* W (t,f) , (A-38)
e7_ mn mn

m,n=O

where cross-WDF

Wmn(tf) gd exp(-i21fT) om(t + 2) n -2) (A-39)

When (A-36) is substituted in (A-39),and (A-33) is utilized, the

cross-WDF can be expressed as

W zn-m Ln-m)(IZl 2) exp(-IzI2/2) for m < n
mn(t,f )  2_-)" L

(A-40)

where

z =Z2 (t + i(2wf + Bt)],

2 2 2 2 2 2 2
Izj2 = (C2 + a )t + 4,r f + 4wrtf] (A-41)
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These results generalize [6, pp. 456-7] and [7, p. 547].

The origin value of (A-40) is

Wmn(0,0) = 2(-1) m 6mn , (A-42)

consistent with unit energy of n(t) and their even or odd character. The

cross-WOF in (A-40) is a function only of the three variables m,n,z, where z

is the complex rombination in (A-41). The parameters a and B in (A-36) are

perfectly general; when they are specialized to match (A-27), and when we

set m = n, then (A-40) reduces to (A-34). Equations (A-38) and (A-40)

afford a direct calculation of the WOF of a general waveform u(t), once the

coefficients are determined by

Un f dt u(t) o*(t) (A-43)
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APPENDIX B. MOMENiS OF DISTRIBUTION D

The generalized smoothing distribution D is given by (23) in terms of a

double Fourier transform of product

P(v, 't) (uv,-) q2 (Vt) (B-1)

Therefore, the inverse relation is

P(v,T) = Jdt df exp(-12iut + 12.wfT) D(t,f) (B-2)

If we let superscript v denote a partial derivative with respect to V, there

immediately follows from (B-2),

P(O,O) - Sldt df D(t,f)

PV(oo) = -12i S dt df t D(tf)

PC(O,O) = i2w Jidt df f D(tf)

PUV(o,o) = -412 YS dt df t2 D(t,f)

PVT (0,0 ) = 412 Jfdt df t f D(t,f)

P -t(0,0) = -4w 2 dt df f2 D(t,f) (B-3)

When these relations are written out explicitly in terms of X. and

27



TR 8317

q2p according to (B-i), we find that the moments of D are

dt df D(t,f) = [I(0,0) q 2 (0,0)

dt df t D(t,f) = L [C V(0,0) q 2(0,0) + XZ(0,0) q(O,O)]

4dt df f D(t,f) = Zi- [ r(0,0) q(0) + \(0,0) C(0,0)]

Jdt df tD(t,f) 4w 2 -* XIi (0,0) q 2(0,0) + 2X(,)q~00

VT+Xu(0,0) q (0,0)2

dt df t f D(t,f) = [x (0,0) q2(O,0) + X (O,O) q(0,0) +
42 u

~,jdt df+ D ut°f °) -- r2(0,) +qu(0,0) q 2X(0,)q~00

4w

+Xu(OO) ql(0,0)] (B-4)

Since q2 is a double Fourier transform of V of exactly the same form

as (B-2), it follows immediately, by similarity to (B-3), that the required

derivatives of q2 in (B-4) can be found from smoothing function V2 as

28



TR 8317

q2(O,O) S'dt df V2 (t,f)

qV(o,o) = -i21r J dt df t V2(tf)

q C(,o) = i2r jS dt df f V2(t,f)

2r

q = V2S df t V2(t,f)

q2 (0,0) = 4w2  dt df t f V2 (t,f)

qrC(O,O) = -4,r2 SSdt df f2 V2 (t~f) (B-5)

COMPLEX AMBIGUITY FUNCTION PROPERTIES

lhe required derivatives of K in (B-4) can be determined from

definition (24). We list them here for completeness and future reference:

(u(OO) = Sdt ju(t)12

Xu(o,o) = -i2,, fdt t ()

yQo,o) i Id Imf, u,(t) u*(t)j

V (0,) -4w2 Sdt t2Iu(t)I2

u (0,0) = 2w dt t Imu'(t) u*(t)l

4 (o,o) - Sdtlu,(t)2 (B-6)
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These quantities are all real, with the exception of the two single

derivatives, both of which are purely imaginary. These second-order

derivative values of Xu can be expressed solely in terms of u(t) and u'(t).

Since we can express complex ambiguity function K in terms of the WDF

W according tou

Tu(V,) = JJdt df exp(-i2wvt + i21f"t) Wu(t,f) , (B-7)

it readily follows from (B-6) that

SS dt df W(t,f) = dtj u(t)) 2

dt df t W u(t,f) = dt tlu(t)12

Sfdt df f W (tf) = L_ dt Imfu'(t) u*(t

i dt df t2 W u(t,f) = Sdt t 2 )u(t)I 2

dt df t f Wu(tf) = Jdt t Imfu'(t) u*(t)

rJ dt df f 2 Wu(t4f) 1 Sdt u(t)12  (B-B)
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APPENDIX C. GENERAL TILTED ELLIPSE

It will be convenient to be able to specify the area, tilt, and shape

factor of an ellipse directly, instead of trying to solve for these

quantities from the general form

1 2 1l

2 ax + 2 by + a"pxy l (C-l)

employed in [1, (J-2)]. Accordingly, as done in [1, app. 0], we employ the

rotated coordinates depicted in figure C-l below. The equation of the

ellipse in x',y' space is

Xo + (C-2)

I,,

IK

Figure C-l. Rotated Coordinate Axes
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But since the area of this ellipse is

A = X' y,' (C-3)

while its shape factor is

X1

F = , , (C-4)Y o

it is a simple matter to find that

A F , 2 A/F y ,2 (C-5)

leading to the desirable form

x 2  F 2 A (C-6)

Furthermore, the coordinate axes in figure C-1 are related according to

X' = xC +- yS ~
S C = cos(3) , S = sin(R) (C-7)

y = -xS + yCJ

Substitution in (C-6) yields

12 2 - FS2 ) 2 y2 + FC ) xy SC - A 2 (C_8)

which is of the form (C-1) under identifications

a = - FS , b + FC2)

p Y with y = SC - (C-9)

Once area A, tilt 8, and shape factor F are specified, (C-9) affords a ready

calculation of a,b,p; quantities C and S are given by (C-7). Since
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p = sin(o) in [1, (3-6)], we have

sin(@) - Y , cos(e) =,(C-lO)

which are needed below.

In order to distinguish the two Gaussian mountains being doubly

convolved in [1, (3-2)], we label them with subscripts 1 and 2,

respectively, thereby obtaining

2 I 2  =csl

a 1 -" + FIS , b = A1 -F- + FIC , S1  = sin(B ) , C1  cos )

Y1l S lCI - F1) , sin(e) - -, cos(e) I (C-I)

and

2  2

Y2 S C2(- F2  sin(O) 2 cosc( = (C-12)

We are now in a position to evaluate the effective area A3 of the

resultant convolution; namely from [1, (J-9)-(J-ll)], we have

A3  - CD (C-13)

A1 + A2 Cabcos(e) + V-dcos(0)
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where

D = ab cos2 () + cd cos2 () + ad + bc - 2fabcd' sin(@) sin(O) . (C-14)

The minimum value of (C-13) is 1, attained when shape factors F1 = F2

and tilts Dl = 0,,. More generally, when we specify

AI1I F 1 for ellipse 1 ,

A 2,2,F2 for ellipse 2 , (C-iS)

equations (C-li) and (C-12) allow for evaluation of all the parameters

needed in (C-13) and (C-14). A ;ample program in BASIC is attached.

Subroutine E computes a, b, sin(@), cos(e) as given by (C-9) and (C-10) in

terms of given area A, shape factor F, and tilt 1 (=B).
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10 G IlIT
20 PLOTTER 1S$"GRAPHICS''
so GRAPHICS ON
40 WItNt'nL -PI 4,PI/4,1,1.25
50 GRID P1 8,05
tii F1=2, SHAPE FACTOR
70 BKzPI 4 TILT
:C80 = AREA
90 F2=-

100 DATA.,12345,
110 DIM A1t1'''
110 PEAD At'
130 FOR I=1 TO 7
140 A1=1' I.
150 CALL E' Aql,L l, As, Bv,St , Ct
1io Ab=A:*BW
170 FOR B2=-PI 4 TiO P1.4 STEP P1. 00
180u CALL E'.A2,F2,B2,Cs,Ds,Sp,Cp.
190 Cd=CE*Ds=

C'0 t'Ab=C t Ct +Cd*Cp*Cp+As+Ds±Bs*C;-2. *SQPKAb*Cd *3t tSp
210 A3 =C'nA*2x.P*A+2

5 j0 PLOT B2, A312
z: 1 4E:N:T B2
240 PENICF

'-L0 FAUSE

290 SEAt,F,E,As,Es,St,Ct )
LI0 B=S IN'B'
1 U C =CC'sk'.B

120 G-SrR*' 1.N -F)
u3 Sq-SORr1.+G*G)

340 St 1 S

380 T=' *PI/A
-490 l-IT*.C.SFtS2*F,

400 Es=Tt (52.F+C2tF)
410 SUBEII
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APPENDIX D. KERNEL APPROACH TO PENALTY FUNCTION

The general formulation in (A-i) through (A-21) will be applied in

this appendix to the penalty function (3):

P(t,f) = a2t 2 + 4 b2f 2 * 4rctf (D-i)

Substitution in (A-9) (in place of reward R) yields

r(t,t) = $df exp(-i21fr) P(t,f) =

= jdf exp(-i2wfT) (a 2t2 + 4w2 b 2f2 + 4wctf) =

= a2 t 26() - b 26"(c) + i2ct6'(t) (D-2)

Then kernel K follows from (A-l) as

K(x,y) = r , x- y2 -

2
- ( + Y)2 6(x - y)- b26"(x - y) + ic (x + y) 6'(x - y) , (0-3)

which is Hermitian.

The integral equation (A-12), that must be solved, can be simplified by

use of the facts that
1 a2 C i .6 x 2?

dx(x + y)2 6(x - y) 0n(x) = a y 2n(y)

b2  dx 6"(x - y) n(x) = -b2'"(y)
n

ic (dx (x + y) 6'(x - y) n (x) = -ic[2yo (y) + en(y)] (D-4)
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where the last two results are obtained by integration by parts. Then

(A-12) yields differential equation

b 2o(y) + i2cy 0'(y) + (Xn + ic - a2 y) n(y) = 0 . (D-5)

If we try solution

, I ,2
0oky) = A exp 2 >Y (D-6)

in (0-5), we find it to be acceptable if we take

B -o 6 + I c X F

b2  
(0-7)

lhese results agree with (11) and (20), as expected. To find the general

solution of (D-5), we try solution form

0(y) = exp(- i By 2) H(y) , (0-8)

with B still given by (D-7). This form in (0-8) is no loss of generality

since H is still arbitrary. Use of (0-8) in (D-5) results in

b 2H"(y) + 2y H'(y) (-b 2B + ic) +

+ H(y) (-b 2B + b2 B 2y 2  i2cBy 2 + 'K + ic - a2 y 2 0 . (0-9)

When the value for B in (D-7) is utilized, (D-9) simplifies to

b 2H"(y) - 2C' y H'(y) + (K - fr") H(y) = 0 (D-10)

(As a partial check, if H(y) = A, then x = Y , as in (0-7).)

Now, in (D-9), let

H(y) = G(Fy) , H'(y) = F G'(Fy) , H"(y) = F2 G"(Fy) , (D-11)
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where F is arbitrary for the moment, thereby obtaining

b2F 2 G"(Fy) - 2f'y F G'(Fy) + - V) G(Fy) = 0 . (0-12)

Now let x = Fy to get

Gilx - 2 O G'(x) + - G(x) =0 (D-13)b2F2 x Gb(F2

If we now let (without loss of generality)

2 1/2Q 1/4
b ' (D-14)

then (D-13) simplifies further to

G"(x) - x G'(x) + j2 'G(x) = 0 . (D-15)

We now appeal to [4, 22.6.21] and observe that if

2( - n = integer , (0-16)

then a solution of (D-15) is

G(x) = He n(X) , n = 2n) (0-17)

Also, (0-11) yields

H(y) = G(Fy) = Hen (Fy) , (0-18)

while (0-8) gives

1 20n(y) = A exp(- By ) Hen(Fy)/J.' , (D-19)

with

b ,/ , A 2 = 0l1/ , (-20)

38



TR 8317

where the unit energy normalization of 0n has been imposed. The

corresponding eigenvalue follows from (D-17) as

k= n I(1 + 2n) =\ar -c(l + 2n) (D-21)

The minimum obviously occurs for n = 0.

Result (D-19) agrees with (A-27). However, the ). given here byn

(0-21) differs from that given by (A-26), because we are solving for the

minimum penalty here versus the maximum reward there.
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LINCOM CORP., NORTHBORO, MA 01532 (Dr. T. Schonhoff) 1
MAGNAVOX GOV & IND ELEC CO, Ft. Wayne, IN (R. Kenefic) 1
MARINE BIOLOGICAL LAB, Woods Hole, MA 1
MARINE PHYSICAL LABORATORY SCRIPPS 1
MARTIN MARIETTA BALTIMORE AEROSPACE, Baltimore, MD

(S. Lawrence Marple) 1
MASS. INSTITUTE OF TECHNOLOGY (Prof. A. Baggaroer) 1
MBS SYSTEMS, NORWALK, CT (A. Winder) 1

MIDDLETON, DAVID, 127 E. 91st ST, NY, NY 1
NADC (5041, M. Mele) 1
NAIR-03 I
NASC, NAIR-O0,03 2
NATIONAL RADIO ASTRONOMY OBSERVATORY (F. Schwab) 1
NATO SACLANT ASW RESEARCH CENTRE, APO NY, NY 09019 (Library

R. E. Sullivan and G. Tacconi) 3
NAVAIR (03, PMA 264) 2
NAVAL INTELLIGENCE COMMAND 1
NAVAL INTELLIGENCE SUPPORT CTR 3
NRL UND SOUND REF DET, ORLANDO, FL I
NAVAL OCEANOGRAPHIC OFFICE 1
NAVAL SEA SYSTEMS COMMAND-SEA-O0, 63, 630, PMS-409, PMS-1l 5
NAVAL SYSTEMS DIV., SIMRAD SUBSEA A/S, NORWAY (E. B. Lunde) I
NCSC 1
NICHOLS RESEARCH CORP., Wakefield, MA (T. Marzetta) 1
NORDA (Dr. B. Adams) 1
NORDA (Code 345) N STL Station, MS 39529 1
NORTHEASTERN UNIV. (Prof. C. L. Nikias) 1
NORWEGIAN DEFENCE RESEARCH EST, NORWAY (Dr J. Glattetre) 1
NOSC, (C. Sturdevant; 73, J. Lockwood, F. Harris, 743,

R. Smith; 62, R. Thuleen) 5
NPRDC 1
NPS, MONTEREY, CA (C. W. Therrien, Code 62 Ti) 2
NRL, Washington, DC (Dr. J. Buccaro, Dr. E. Franchi,

Dr. P. Abraham, Code 5132, A. A. Gerlach, W. Gabriel
(Code 5370), and N. Yen (Code 5135) 6

NRL, Arlington, VA (N. L. Gerr, Code 1111) 1
NSWC I
NSWC DET FT. LAUDERDALE 1
NSWC WHITE OAK LAB 1
NUSC DET FT. LAUDERDALE 1

ii mm W m -
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NUSC DE1 TUDOR HILL 1
NUSC DET WEST PALM BEACH (Dr. R. Kennedy Code 3802) 1
NWC 1
ORI CO, INC, New London, CT (G. Assard) 1
PENN STATE UNIV., State College, PA (F. Symons) 1
POHLER, R., 1034 Evergreen St., San Diego, CA 92106 1
PROMETHEUS, INC, Sharon, MA (Dr. J. Byrnes) 1
PSI MARINE SCIENCES, New London, Ct. (Dr. R. Mellen) 1
PRICE, Dr. Robert, 80 Hill St., Lexington, Ma 02173 1
RAISBECK, Dr. Gordon, P.O. Box 4311, Portland, ME 04101 1
RAN RESEARCH LAB, DARLINGHURST, AUSTRALIA 1
RAYTHEON CO, Portsmouth, RI (J. Bartram, R. Connor)

and S. S. Reese) NICRAD 87-NUSC 013 3
RICHTER,W. 7615 Heritage Dr., Annandale, VA. 1
ROCKWELL INTERNATIONAL CORP, Anaheim, CA (L. Einstein

and Dr. D. Elliott) 2
ROYAL MILITARY COLLEGE OF CANADA, (Prof. Y. Chan) 1
RUTGERS UNIV., Piscataway, NJ (Prof. S. Orfanidis) 1
RCA CORP, Moorestown, NJ (H. Upkowitz) 1
SAIC, Falls Church, VA (Dr. P. Mikhalevsky) 1
SAIC, New London, CT (Dr. F. Dinapoli) 1
SANDIA NATIONAL LABORATORY (J. Claasen) 1
SCRIPPS INSTITUTION OF OCEANOGRAPHY 1
SE-O0-, -63, 63-D, PMS-409, -411 5
SONAR & SURVEILLANCE GROUP, DARLINGHURST, AUSTRALIA I
SOUTHEASTERN MASS. UNIV (Prof. C. H. Chen) 1
SPERRY CORP, GREAT NECK, NY I
SPWAR-05, PDW 124 2
STATE UNIV. OF NY AT STONY BROOK (Prof. M. Barkat) 1
TEL-AVIV UNIV, TEL-AVIV, ISRAEL (Prof. E. Winstein) I
TRACOR, INC, Austin, TX (Dr. T Leih and 3. Wilkinson) 2
TRW FEDERAL SYSTEMS GROUP (R. Prager) 1
UNDERSEA ELECTRONICS PROGRAMS DEPT, SYRACUSE, NY (J. Rogers) I
UNIV. OF ALBERTA, EDMONTON, ALBERTA, CANADA (K. Yeung) 1
UNIV OF CA, San Diego, CA (Prof. C. Helstrom) 1
UNIV. OF CT, Storrs, CT. (Library and Prof. C. Knapp) 2
UNIV OF FLA, GAINESVILLE, FL (D. Childers) 1
UNIV OF MICHIGAN, Cooley Lab, Ann Arbor, MI (Prof T. Birdsall) 1
UNIV. OF MINN, Minneapolis, Mn (Prof. M. Kaveh) 1
UNIV. OF NEWCASTLE, NEWCASTLE, NSW, CANADA (Prof. A. Cantoni) 1
UNIV. OF RI, Kingston, RI (Library, Prof. S. Kay,

Prof. L. Scharf, and Prof. D. Tufts) 4
UNIV. OF SOUTHERN CA., LA. (Dr. A. Polydoros PHE 414) 1
UNIV. OF STRATHCLYDE, ROYAL COLLEGE, Glasgow, Scotland

(Prof. T. Durrani) 1
UNIV. OF TECHNOLOGY, Loughborough, Leicestershire, England

(Prof. J. Griffiths) 1
UNIV. OF WASHINGTON, Seattle (Prof. D. Lytle) 1
URICK, ROBERT, Silver Springs, MD 1
VAN ASSELT, HENRIK, USEA S.P.A., LA SPEZIA, ITALY 1
WERBNER, A., 60 Elm St., Medford, MA 02155 1
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WESTINGiHOUSE ELEC. CORP, WALTHAM, MA (D. Bennett) I
WESTINGHOUSE ELEC. CORP, OCEANIC DIV, ANNAPOLIS, MO

(Or. H. L. Price and H. Newman N00024-87-C-6024) 2
WILSON ARTIC RESEARCH, INC. I
WOODS HOLE OCEANOGRAPHIC INSTITUTION (Dr. R. Spindel

and Dr. E. Weinstein) 2
YALE UNIV. (Library, Prof. P. Schultheiss and Prof.

F. Tuteur) 2


