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THE WIGNER DISTRIBUTION FUNCTION

WITH MINIMUM SPREAD
INTRODUCTION

A number of advantageous features associated with smoothing a Wigner
distribution function (WDF) were discussed in a recent report [1]. At that
time, it was shown that the WDF with minimum quadratic spread, about the
line t = Bct in the fime-frequency pilane, was a two-dimensional Gaussian
function, when constraints of finite energy and mean-square duration were
imposed [1, app. G]. However, a more appropriate measure of spreaa about
the origin in the t,f plane is adopted here and minimized, yielding a unique
waveform and corresponding WDF. Additionally, a reward measure for

concentration is shown to yield identically the same optimum WDF.

An additional property of smoothing two-dimensional WDFs was also
demonstrated; namely, if two Gaussian mountains are doubly-convolved with
each other, the effective area of the result is greater than the sum of the
two effective areas, unless the contours of both WOFs have the same tilt and
ratio of major-to-minor axes [1, app. J]. A quantitative investigation of
the effect of mismatch in these parameters on the effective area is

conducted herein.

It is assumed that the reader is familiar with the content and approach

of the earlier report; accordingly, this follow-on effort will be briefer

and will not review the considerable history and background of the WOF.
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MINIMUM QUADRATIC SPREAD

It was shown in [1, (102) and (106)] that the short-term spectral
estimate is equal to the double convolution of the WDF of the waveform s(t)

being analyzed with the WDF of the weighting u(t) employed. That is,

2
2 .
lSu(t,f)‘ = )Idt1 exp(—l?wft1) S(t]) u*(t - t]) =
tf
= Sfdt] df] Ns(t],f]) Wu(t - t],f -~ f]) = ws(t,f)®wu(t,f) . (1)
where & denotes convolution. Here,
4
: Ty % T
wu(t,f) = dT exp(-i2#fT) u(t + 2) u*(t - 2) (2)

is the WDF of complex weighting u(t); a similar definition holds for WDF
ws. (Generalizations to non-Wigner smoothing functions for wu are given

in [, app. F].)

Since the WDF HS of waveform s(t) has some good energy localization
properties (and some deleterious negative oscillations), it is desired that
the smearing in the t,f plane, implied by convolution (1), be minimized.
That is, we would Tike WDF wu of weighting u(t) to be as concentrated as
possible about the origin of the t,f plane. The ideal of an impulse,
§(t)8(f), is not a legal WDF, and must be discarded. Since the left-hand
side of (1) can never be negative, we can be assured,by this smoothing
procedure of two WDFs,that we will always get a physically-meaningful
distribution in the t,f plane; that is, the smoothed distribution will
always be non-negative for all t,f and have a volume equal to the energy of

waveform s(t). For example, see [T, (111) et seq.].
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PENALTY MEASURE AND SPREAD

In order to confine WDF wu near the origin, we define a penalty
measure which is zero at i,f = 0,0 and which increases quadratically with t

and f. Namely, the penalty measure is

2.2
P(t,f) =at + 4w2b2f2 + 4wctf , a,b,c real , (3)

and the corresponding spread of the WDF wu is defined as
[ = H dt df W (t,f) P(1,f) . (4)
Contours of equal penalty in (3) are tilted ellipses in the t,f plane; these

would be selected upon observation of a calculated WDF wS of waveform s(t)

in regions of interest, i.e., high activity.

Therefore, real constants a,b,c are presumed known., Define quantity

Q = azb2 - c2 . (5)
Then, in order that penalty
P(t,f) >0 for t,f #0,0, (6)
it is necessary that
Q>0. (7)

The property (6) was not satisfied by penalty function (f - Bct)2 in
(1, app. G]; that function was zero all along the line f = Bct, allowing

the WDF to become impulsive there.

T e e T e e Wy o



TR 8317

We also want WDF Nu in (1) and (4) to have unit volume, for two
reasons. First of all, this will guarantee that the short-term spectral
estimate on the left-hand side of (1) will have a volume equal to the signal
energy, regardless of weighting u(t) employed. Secondly, without this
volume constraint, u(t) and wu would collapse to zero, giving a

meaningless spread value of I = 0 in (4). Thus we require that

1= [[ot ar Wt = [at Jun)? . (8)

Subject to this integral constraint, we want to minimize spread I in (4),
and find the particular weighting u(t) and corresponding optimum WODF wu.

Notice that we are imposing no constraint of positivity on wu.
DERIVATION OF SPREAD

Substitute (3) into {(4) to get spread

I = ”at af W (1) (a%t% + 4x20%F% 4+ Guctf) | (9)

where WOF wu is given in terms of u(t) according to (2). By using the

results in {1, (G-4) and (G-5)], we can express (3) solely in the time

domain as
- azjdt t? Jut)] 2 + b° Jdt Jur ] % + 2 fat + mfurct) weeel) -
- gdt (a?t Jut)] 2 + b2 fur ()] 2 + dct u(t) uw'R(t) - dct ux(t) u'()]. (10)
For reasons to become apparent shortly, define complex constant
B = b; Lo (1)
4
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then, by using (5), we find
b% [8]° - a° . (12)
Now consider the quantity
1(t) = bzlu‘(t) + Bt u(t))2 -

= b Jur ()] 2+ b2 (8] 22 fuct)] 2+ b2Bt u(t) wia(t) + n2Bx t ux(t) u'(t) -

- b Jurp)] 2+ Pt 2+ (fT + Go)t u(t) utx(t) +
+ (YO - dc)t ux(t) u'(t) . (13)
Comparison of (10) and (13) immediately reveals that
fdt T(t) = [ + {Q th t [u(t) u'*(t) + u*(t) u'(t)] . (14)
We now integrate by parts, letting
U=t u(t), dv = dt u'*(t) , (15)

to find that

gdt tou(t) u'*(t) = - S dt [u(t) + t u'(t)] ux(t) =

= - fatluen]? - fat ter wn) (16)

We presume that u(t) goes to zero at t = +, consistent with energy

constraint (8).

When (16) is employed in (14), there follows

Sdt Tt = 1 - T Jdt ()] 2 (17)
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Thus the desired expression for spread I is given by (17) and (13) as

1= 02 fatlurty « Bt u®)]? + V@ [dt ) ? . (18)

This general result holds for any weighting u(t); it is obviously positive

in all cases, since Q > 0.
OPTIMUM WEIGHTING

The last term in (18) cannot be altered; it is equal to Y@Q, as seen by
reference to constraint (8). Furthermore, the minimum value for the
remaining term in (18) is zero and is obtained for weighting u(t) which

satisfies the differential equation
u'(t) + Bt u(t) =0 for all t . (19)

The only solution to (19) is

ug(t) = A exp(- ]5 8t2)  for all t | (20)

where complex constant A is chosen for unit energy, and B is given by (11).
That is, uo(t) has Gaussian amplitude-modulation and linear frequency-

modulation. The phase of A is ambiguous.

The resuitant minimum value of spread I in (18) is obviously

I, =VY0= Va2b2 -t (21)

where we employed (5). It is always positive, as seen by reference to

requirements (6) and (7).
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OPTIMUM WDF

The WDF corresponding to optimum weighting (20) is obtained by

substitution in (2), and use of [1, (H-17) and (H-18)], as

aZtZ + 412b2f2 + 4“Ct%]

wo(t,f) =2 exp{} (22)

The area of the contour ellipse at the 1/e relative level 1s 1/2 in the t,f

plane, as expected.

Ohserve that the numerator of the exp in (22) is identically the
quadratic penalty function P(t,f) imposed in (3). That is, the contours of
optimum WDF (22) are identical to the contours of equal penalty of P(t,f) in
(3). This result is intuitively satisfying: the optimum WOF packs as much
volume inside a qiven penalty contour as possible, to the extent that the

resultant WDF values are equal all along that given penalty contour.

Observe also, that although positivity of the WDF wu was not imposed
as a constraint in the minimization of spread I in (4) or (9), the resultant
optimum WOF in (22) is, in fact, everywhere positive. Although the optimum
weighting (20) has an ambiguous phase, the optimum WDF has no ambiguity;

there is a unique optimum WDF, namely (22).
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ALTERNATIVE REWARD MEASURE

Instead of penalizing the spread of WOF wu about the origin in t,f
space, we could alternatively utilize a measure which rewards concentration

about t,f = 0,0. In particular, consider reward function

R(t,f) = exp[-a2t® - 4x2b2F2 _ 4mctf] (22a)

and reward value

<<
]

fj.dt df R(t,f) Nu(t,f) (22b)

for WDF wu. The origin value of R(t,f) is 1; in order for R(t,f) to decay
to zero as t and/or f tend to infinity, we must have condition (7) satisfied

again. Notice that the contours of equal reward are ellipses in the t,f

plane.

The maximization of reward value V, subject to volume constraint (8) on
W , is conducted in appendix A. It is shown there that the optimm
weighting is again (20), and that the optimum WDF is (22). The maximum

value of reward V is

_ 1

)
Ymax = THVC T RYA=aych (22¢)

More general results, for arbitrary reward functions R(t,f) in (22b), are

presented in appendix A.
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GENERALIZATION TO SMOOTHED WOF

A general class of distributions* has been presented in [2, (1.7) and

(1.8)]. 1In current notation, that class is given by [1, (F-1)] as

tf
O(t,f) = W (t.f) ® Vo(t,f) =

= Xf dv dT exp(i2wvt - i2«fT) );(v,tj qz(v,t) , (23)

where WDF wu is given by (2), and V2(t,f) is a general two-dimensional

smoothing function. The compiex ambigquity function of u(t) is

X, (v,T) = jdt exp(~i2mvt) u(t + 2) uk(t - 3) , (24)
while

q2(u.t) = Jgdt df exp(-i2nvt + 12«f7T) V2(t.f) (25)
is a double Fourier transform of the smoothing function V2. Observe that

if there is no smoothing, then

V,(t,F) = (1) (f)

qz(v.t) =1 for all v, T

D(t,f) wu(t,f) . (26)

*This section is based upon a suggestion by Leon Cohen, Hunter College, New
York, NY, that the optimum WDF results here actually apply to a wider class

of distributions.
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Now it is shown in appendix B that the following second moments oi
generalized smoothing distribution D can be expressed in terms of

derivatives of ?% and q at the origin:

§fat o 2 otn) = - =5 00,0 0,0,0) + 2%5(0.0) a3(0.0) +
w
+%,(0,0) 43°(0,0)1 ,
A tv t v
Mdt df 6 (66 = =5 0G"(0,0) 6,(0,0) +X}(0.0) 45(0,0) +
w
+%(0,0) 43(0,0) +X,(0,0) a37(0,0)] ,

Sgdt df £2 D(t,f) = ~ —]—5 TT(0,0) 0,(0,0) + 2X3(0,0) aX(0,0) +
44

+%,(0,0) a;7(0,0)] . (27)

Here, for example, superscript v denotes a partial derivative with respect

to v, which is then evaluated at the origin »,T = 0,0.

If follows imnediately that if origin value

q2(0.0) =1, (28)
and if the five origin derivatives
v . A _ LYV _ T _ .TT _
45(0,0) = 45(0,0) = 4°(0,0) = ay7(0,0) = q57(0,0) = 0, (29)

then (27) reduces to the moments that would have resulted from employing the
no-smoothing result (26) in (27). Thus, distributjons D(t,f) resulting from

(23), with properties (28) and (29) for qz, have the same second moments

10
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as the WODF Nu(t,f). Hence, the spread ID of distribution D(t,f) is
given by (see (9))
Iy = ({ at df oct.6) (a%t% + 4220262 & aqctf) =
- SS dt df W(t,F) (a%t? + an’d6? 4 awctf) = 1, (30)

which is exactly the spread I of WODF wu(t,f). That is, smoothed
distribution D(t,f) in (23) has the same spread as WODF wu(t.f), when
smoothing function Vz(t,f) (actually transform q2) satisfies the

properties in (28) and (29). Notice that these properties are considerably

less restrictive than requiring

qz(v,O) = q2(0,t) =1 for all v, T, (31)

which arises when one is interested in maintaining the marginais [2, (1.6)].

We must also observe from (23) that the volume under generatized
smoothing distribution D is equal to the product of the volume under wu
and the volume under V2. But the latter quantity is unity, by virtue of

(28). MWhat all this means is, that if we minimize spread I, in (30),

D
subject to a unit volume constraint on D, the end result is precisely (18)
and (20), and the optimum WOF wu is again given by (22). The

corresponding distritution D is obtained by substitution of (22) into (23)

and specification of the complete v, or q2 functions. The properties in

2
(28) and (29) are not sufficient to completely specify q, or D; all that

is specified by (28) and (29) are the second order moments of D in (27). It
should also be noted that all the conditions in (29) cannot be met by the

general tilted Gaussian a, function emplioyed in [1, (F-9) and sequel to

(F-12)1.
\
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SENSITIVITY TO MISMATCH

In [1, app. 3], it was shown that if two Gaussian mountains are
doubly-convolved in x,y space, the effective area A3 of the resultant is
greater than the sum of the individual areas, except when the two elliptical
contours have the same tilt and the same ratio of major-to-minor axis (shape
factor). Here, we wish to investigate, quantitatively, the increase in

effective area above the minimum value, when the tilt and shape factors are

not at their optimum values. This situation can arise when observation of

WDF NS of waveform s(t) is contaminated, in a particular region of
interest in the t,f plane, by interference effects, thereby making
estimation of the tilt and the shape factor of the elliptical contours

somewhat inaccurate.

The general situation is considered mathematically in appendix C.

Ellipse 1 has

area A]. tilt B]. shape factor F] ) (32)
while ellipse 2 has

area A2’ tilt 82, shape factor F2 . (33)
The ratio

is presented in (C-13) in terms of a number of auxiliary quantities.

12




TR 83117

The initial exampie we consiaer is where ellipse 1 has seven different

areas, namely
= _x =
A1 = .,5,1,2,3,4,5,6 B, = y F1 2 . (35)

The tilt is fixed at #/4 radians and the shape factor at 2. On the other

hand, eliipse 2 has

A, =2 B, = - I to F.o=2 . (36)

N
F-3
™
~nN

]

That is, the shape factor is perfect at F2 F. = 2, but the tilt is

1

swept over a w/2 range (greater discrepancies than »/2 lead to obvious
periodicities and symmetries centered about 82 = B] as well as about
82 = B] + «/2 and about 82 = B] + w). The situation under

investigation is depicted in figure 1, where ellipse 2 is dotted.

The effect of mismatch in tilt is presented gquantitatively in figure 2.
As expected, ratio (34) is 1 at 82 = B] = n/4, reqgardless of area A].
The most degradation (upper-most curve) is realized for A] =2, i.e., when
the areas of the two ellipses are equal. The maximum increase in area is

only 25 percent, when 82 is off by »/2 radians; however, if the shape

factor is significantly larger than 1, the sensitivity to the tilt would be

much greater, as figure 1 shows.

The final example utilizes the exact same parameter values as (35) for

ellipse 1, while ellipse 2 has

LS -
5 3 F, =2 to 6. (37)

13
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Now the tilt is perfect at 82 = B] = w/4, but the shape factor F2
varies above the best value of 2. The situation is depicted in figure 3,

where ellipse 2 is again dotted.

Ratio (34) is plotted in figure 4 versus the shape factor F2. Again,
the upper-most curve corresponds to the case where A] = A2 = 2. There
is no need to compute ratio (34) for F2 < F] = 2, because the values for
F2 = F]r are the same as those for F2 = F]/r. Additional cases of

interest can be investigated by use of the program listed in appendix C.

14
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Figure 1. Contour Ellipses for Mismatched Tilt
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Figure 3. Contour ElTlipses for Mismatched Shape Factor
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SUMMARY

The most compact WDF Nu that can be used for two-dimensional smoothing
of a measured WDF ws js a Gaussian function in two variables, when the
measure of spread is quadratic in the time and frequency variables t and f,
or the reward measure is exponential. Furthermore, this two-dimensional
convolution guarantees a non-negative modified distribution, since the
result is equivalent to a short-term spectral estimate. Extensions to a
particular class of generalized distriputions yields the same optimum WOF.
The correspording waveform has Gaussian ampliitude modulation and linear

frequency-modulation.

The additional smearing caused by mismatched smoothing functions to the
true parameters of a measured WOF has been investigated numerically for a
few examples, and found not to be overly sensitive to the exact values.
However, the multitude of parameters has prevented simplification of the
area spread factor; accordingly, a program allowing calculation of

particular cases is included to allow for further investigation.

The WDFs for the Hermite functions of order n are given in closed form,
in terms of a Laguerre polynomial of order n. This result is extended to
tross-WDFs in appendix A; in this manner, we can investigate the WDF of an
arbitrary waveform when expanded in a weighted sum of Hermite functions,

including linear frequency-modulation.

17
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APPENDIX A. MAXIMIZATION OF REWARD VALUE

We want to find that WDF, wu(t,f), which is maximally concentrated

about the origin in t,f space, where the measure of reward for concentration
is

R(t,f) = exp[—azt2 - 4«2b2f2 - 4wctf] , a,b,c real . (A-1)
Thus, the maximum reward occurs at the origin,

R(0,0) =1, (A-2)

and the contours of equal reward are ellipses in the t,f plane. In order

for R(t,f) to decay to zero as t and/or f tend to infinity, we must have

Q>0, (A-3)

where

Q=ab -c¢ . (A-4)
The reward value associated with WDF wu is the real quantity

V=[] at af rt.6) W (26, (A-5)
which we wish to maximize, where
_ s T X ~
W (t.f) = [ dT exp(-i2efT) u(t + L) wk(t - 3) (A-6)

in terms of weighting u(t). We must constrain the volume of wu, in order
that V in (A-5) not tend to infinity as u(t) is simply increased in level.

Thus, we have integral constraint

1= ﬁdt df W, (t,f) = jdt luct)] ¢ . (A-7)

18
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ALTERNATIVE FORM FOR V

If we substitute (A-6) in (A-5), there follows

ve ffataeritm e s Hune -5 (A-8)
where
r(t,t) = Idf exp(-i2«fT) R(t,f) . (A-9)
A more useful alternative form for (A-8) is
v - de dy K(x,y) u(x) u*(y) , (A-10)
where kernel
K(x,y) = r(%i . x~y) . (A-11)

EIGENFUNCTIONS OF X

In this and the following subsection, kernel K is Hermitian, but
otherwise arbitrary; it is not limited to form (A-11) with (A-9) and (A-1).

Suppose {k#} and {nnk are the eigenvalues and eigenfunctions of kernel

K; i.e.,
de K(x,y) nn(x) = kn an(y) for n=0,1,2, ..., (A-12)
where XO > x] > k2 ... , and
* = . A-1
de nn(x) am(x) 8 m (A-13)
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Then the kernel can be expanded according to

o0

— * —
K(x,y) = z A, en(x) e (y) . (A-14)
n=0
Also, there follows immediately
dex dy K(x,y) 0n(x) ﬂ:(y) = kn . (A-15)

EXPANSION OF u

Suppose we expand weighting u in a series of eigenfunctions of Hermitian
kernel K:

o0

u(x) = :§i 9, on(x) . where 9, = J‘dx u(x) a;(x) . (A-16)
n=0

Then general reward expression V in (A-10) becomes

(o)
vV = [dy u*(y) jdx K(x,y) Z 9, ﬂn(x) =
n=0

od 0
- S, fdy w(Y) Ay By(0) = D loa° n - (A-17)
n=0 n=0

where we used (A-12) and (A-16). At the same time, the energy of u in

(A-16) is

L]
E, - J.dx lu(x)] % = E lo,|° - (A-18)
n=0

20
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Now if the energy Eu of u is constrained at 1, as in (A-7), then the
best choice of coefficients {gnl to maximize V in (\-17) is, since

>

>
o] 1—)\

PRREE obviously

lgo\ =1 and g =0 for n>1. (A-19)

That is, the optimum weighting is

uo(x) = oo(x) exp(ie) , (A-20)

where constant ® is arbit'ary, while the maximum reward is

v =\ . (A-21)

That is, the zero-th order eigenvalue and eigenfunction of general Hermitian
kernel K in (A-12) are the solutions to the problem of interest here, namely
maximization of reward value V in (A-10) by choice of weighting u. For a
general kernel, a recursive numerical procedure could be employed on (A-12)

to determine xo and oo, if desired.

The formulation in these last two subsections is actually general enough
to cover the earlier penalty function considered in (3) et seq. The only
difference is that the eigenvalues {xn} now increase with n, and we must
select the eigenfunction corresponding to the minimum eigenvalue, in order

to realize the least penalty. This approach is the subject of appendix D.
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SPECIAL CASE OF EXPONENTIAL REWARD

We now specialize the general results of the previous two subsections to

the reward function (A-1). Substitution in (A-9) and use of (A-4) yields

ot + 12 - qctt

1 4

3

b

compare [1, (F-9) and (F-12)]. Then (A-11) immediately gives Hermitian

kerne!

2y7 b

P

p €xP |- 3 ; (A-22)

2., . .2
K(x,y) = L exp[} x O* + y D + 2xy(9-1i} , (A-23)

3

ab?

where

D=Q+ 1+ i2c . (A-24)

At this point, we refer to Mehler's expansion [3, (67)]} to obtain

(after some labor)

0
K(x,y) = ;EE L™ ﬂ;(x) 0n(y) ) (A-25)
n=0
where
] - n
A, = , (A-26)
n (+ W)M]
x2 + ic 1 1/2 ,1/4
8,(x) = A exp|- > % V-n:?Hen 277" xhb), (A-27)
and
1/4
2
a2 = %—b . (A-28)
22
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1 The function Hen(x) is the Hermite polynomial [4, 22.2.15]. It is easily
f verified that (A-27) satisfies orthonormality relation (A-13).
OPTIMUM WEIGHTING
*. . Since Q > 0 by (A-3), the eigenvalues in (A-26) satisfy
y
J: Xo > x] > x2 ... . Therefore, the maximum reward is
) Vm =)\0-_- ]lm= 1 vl (A-29)
ax T +yab -c¢
1F
1 and the corresponding weighting is
[ 2
t° YT + i

UG(t) = 8, (t) = A expET —92—’-9] (A-30)
i b
} from (A 27) and (A-28). This is identical to (20) combined with (11).
{ Therefore the optimum WDF is again (22) for reward measure (A-1), as well as
! penalty measure (3). The waveform in (A-30) has Gaussian amplitude

modulation and linear frequency-modulation.
HIGHER -ORDER HERMITE FUNCTIONS

For n > 0, the reward values{ié\in (A-26) are all less than optimum
value Ay We have succeeded in obtaining these expiicit values without
having to evaluate the WOFs of the corresponding Hermite waveforms in

b (A-27). We now rectify this situation. The WOF of on(t) in (A-27) is

given by integral

Ao
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Nn(t.f)'=‘gdt exp(-i2«fT) ﬂn(t + %) g;(t - %) =

- J’:—‘!E Sdt exp[—i?:ft -3 B(t + %:)2 -1 e*( - '5‘)2:]*
*Hen(‘(t'rgr)) Henéé—it)), (A-31)

where
. 172 1/4 1/4
B=.[Q-._i_7_£'f:=.2____q__' lA|2=Q——- (A-32)
b2 b Yo'b

Now a more general integral result already exists in closed form; from

(5, p. 292, (30)], we have, in a form more useful for present purposes,

jhx exp(- % x2 + ax) Hem(b + x) Hen(b - x) =

=\ 0"t (b - )" ™ U™ (62 - %) exprasz)  form<n,
(A-33)

where L;°)(x) is the generalized Laguerre polynomial [4, 22.2.12]. When

(A-33) is used on (A-32), there follows, for the WDF of waveform dn(t) in

(A-27), the compact result
W (t,f) = (-nH" 2 L,(2U) exp(-v) , (A-34)

where

2.2 2.2.2
at +4s b f + 4wcif - (A-35)

@

This result reduces to (22) for n = 0. Again, contours of equal values of

U =

the WOF are ellipses in the t,f plane.

24
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CROSS-WDFs

Suppose a general waveform u(t) is expanded in a set of orthonormal

Hermite functions with linear frequency-modulation (a positive real, B real)

LA ] o,
B,(t) = () exp[- } (a + iB)t°] e (V2o t)/VAT", (A-36)

according to

[ -]
u(t) = Z uy on(t) . (A-37)

Then the WDF of u(t) becomes

Nu(t,f) = Idt exp(-i2«fT) u(t + Er) u*(t - .21.-) -

od
= D u e (L), (A-38)
m,n=0
where cross-WDF
W (t.f) = [ dr exp(-i2efT) B (t + ) o*(t - 5) (A-39)
mpt et S P v m 2’ n 2! -

When (A-36) is substituted in (A-39),and (A-33) is utilized, the

cross-WDF can be expressed as

! - - 2 2
W (t.f) = 2(-1)" %T " Lén m)<lz| ) exp(},z[ /é) form<n,

(A-40)
where
2 .
7 =V’:[at + i(2«f + Bt)] ,
B1% = 2 e? + 8912 + ax’ + auptf] (A-41)
25
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These results generalize [6, pp. 456-7] and [7, p. 547].

consistent with unit energy of on(t) and their even or odd character. The
cross-WDF in (A-40) is a function only of the three variables m,n,z, where z
is the complex combination in (A-41). The parameters « and B in (A-36) are
perfectly general; when thev are specialized to match (A-27), and when we
set m = n, then (A-40) reduces to (A-34). Equations (A-38) and (A-40)
afford a direct calculation of the WDF of a general waveform u(t), once the

coefficients are determined by

u = jdt u(t) sx(t) . (A-43)

26
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APPENDIX B. MOMENTS OF DISTRIBUTION D

The generalized smoothing distribution D is given by (23) in terms of a

double Fourier transform of product
P(v,T) = X (v.T) 4,(v,T) . (8-1)
Therefore, the inverse relation is
P(v,T) = Jj.dt df exp(-i2wot + 12#fT) D(t,f) . (B-2)

1f we let superscript v denote a partial derivative with respect to v, there

immediately follows from (B-2),

P(0,0) = jjdt daf D(t,f)

P*(0,0) = -i2v [fat af t 0(t,f)
PT(0,0) = 12« [[ dat af £ 0(t,f)
P*"(0,0) = -4 {f at af 2 0(t,f)
PUE0.0) = a«’ [ dt df t £ D(t,F)
PT(0,0) = ~ax [[at af % o(t,f) . (8-3)

When these relations are written out explicitly in terms of 2; and

27
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q2, according to (B-1), we find that the moments of D are

Hdt df D(t,f) = X(0,0) ,(0,0)

SS dt df t D(t,f) = 5= [X[(0,0) ,(0,0) +X,(0,0) 1,(0,0)]

f{at ar £ oct.f) = 57 DE(0,0) 0,(0,0) + %,(0,0) d5(0,0)]

ffar ar ¢ octey - - 7 04, (0.0) 5,(0.0) + 2}(0,0) 43(0.0) +
w

+%,(0,0) ¢;°(0,0)]

[{atar ¢ £ oce.0) = =5 xyT(0.0) 4,(0,0) + X((0,0) a5(0,0) +
4n

; +X0(0,0) 43(0,0) +X,(0,0) a57(0,0)]

Hat ¢f 2 0(t,f) = - —]5 DY, 0,0) 4,(0,0) + 2(0,0) a3(0.0) +
4u

+7%,(0,0) 43%(0,0)] . (8-4)
L Since a is a double Fourier transform of V2, of exactly the same form
k| as (B-2), it follows immediately, by similarity to (B-3), that the required

derivatives of q, in (B-4) can be found from smoothing function V2 as

28
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‘ 0,(0,0) = Jfat af v,(t.6)
s
L 05(0,0) = -i2w ” dt df t V,(t,f)

a3(0,0) = 2 jj dt df £V (t,f)

a;°(0,0) = -ax*§§at af % v (t,¢)

a57(0,0) = 435& dt df t £ V,(t,f)
' 2 2
: ar0,0) = -4« det df £° v (t,f) . (B-5)

COMPLEX AMBIGUITY FUNCTION PROPERTIES

The required derivatives of )% in (B-4) can be determined from

i definition (24). We 1ist them here for completeness and future reference:

, X,(0,0) = Sdt u(t)] 4
X2(0,0) = -izn [at t Jut)]?

» . X,(0,0) = i {at mu(t) ur(t)

| X, (0,0) = 4 Sdt tzlu(t)] 2
00,0 = 20 fat t i (t) ur(n))

X0,0) = - fatjur(n)]? . (8-6)

-
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These quantities are all real, with the exception of the two single
derivatives, both of which are purely imaginary. These second-order

derivative values of 2; can be expressed solely in terms of u(t) and u'(tl).

Since we can express complex ambiquity function )% in terms of the WOF

wu according to
Y (0.0 = [[dt of exp(-i2evt + i20fT) W (2.1) (8-7)

it readily follows from (B-6) that

t

5§ at ot wyt.r) = fatjun)?
ot ar ¢ nger - fo chucn?
§fat ot £ e = I far mfurct) wrce
$fatar w6y = fat )

SJatar ¢ fuen = fat tmfurcn unt)

§f ot ar £ wct.6) = 4—:—5 fatfurct)] ? . (8-8)

30
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APPENDIX C. GENERAL TILTED ELLIPSE

It will be convenient to be able to specify the area, tilt, and shape
factor of an ellipse directly, instead of trying to solve for these

quantities from the general form

1 2 1
2 ax +5 by2 + ¥ab' pxy = 1 (c-1)

employed in [1, (J-2)]. Accordingiy, as done in [1, app. D], we empioy the

rotated coordinates depicted in figure C-1 below. The equation of the

X' 2 y,_l
(6

ellipse in x',y' space is

Figure C-1. Rotated Coordinate Axes
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But since the area of this ellipse is

A=wxi v, (C-3)
while its shape factor is
%o
F=—l' (C'_4)
Yo
it is a simple matter to find that
02 - 2 -
AF=a Xy A/F = « Yo (C-5)
leading to the desirable form
2
X' 2 _A ;
R A (C-6)

Furthermore, the coordinate axes in figure C-1 are related according to

x' xC + yS

C = cos{(B) , S = sin(B) . (C-7)

y' -xS + yC

Substitution in (C-6) yields

2 2
X x?-(f:— v Fs‘?) 3 yz(ﬁ— " FC2) ¢ xy SC (]F - r) - & (C-8)

which is of the form (C-1) under identifications

2 2
o 2xfC” 2 _2nfS” 2
a—A(F+FS>, b—A(F+FC),

p = T===x with = scG - F) X (C-9)
1 + v

Once area A, tilt B, and shape factor F are specified, (C-9) affords a ready

calculation of a,b,p; quantities C and S are given by (C-7). Since
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p = sin(@®) in [1, (J-6)], we have
sin(8) = =g L (C-10)

» cos(e) = q=====3:.
1 + v 1 + v

which are needed below.

In order to distinguish the two Gaussian mountains being doubly
convolved in [1, (J-2)], we label them with subscripts 1 and 2,

respectively, thereby obtaining

2 S2
_ 21 2 _ a1 2 s 3
a= g+ F1SD W F'C] v Sy = s1n(B]), C] = cos(B]),

¥

y
vo= s [ S E) L sin(e) ¢ ey, COS(8) = fmmm,  (C-11)
G 1
1 1+Y] 1+Y.l

and

A:
s2) g-27[2, ¢ S, = sin(B,) , C, = cos(B,)
2”2 )’ A F 272 » 22 27 > 2 e’

[aS]

1

A . Yo
Y, = SZCZ(%- - F2> , sin(e) = , cos(g) = 5T - (C-12)
2 '|+72 1+Y2

We are now in a position to evaluate the effective area A3 of the

resuitant convolution; namely from [1, (J-9)-(J-11)], we have

Ay Yo'
Ay v Ay \ab 'cos(@) + Ycd' cos(e)

> (C-13)
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where

D = ab cosz(e) + cd cosz(o) + ad + bc - 2Yabed sin(®) sin(8) . (C-14)

The minimum value of (C-13) is 1, attained when shape factors Freh

.- More generally, when we specify

and tilts B] =B

A].B1,F] for ellipse 1 ,

AZ'BZ'FZ for ellipse 2 , (C-15)

equations (C-11) and (C-12) allow for evaluation cof all the parameters
needed in (C-13) and (C-14). A sample program in BASIC is attached.
Subroutine £ computes a, b, sin{(8), cos(®) as given by (C-9) and (C-10) in

terms of given area A, shape factor F, and tilt B8 (=B).
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APPENDIX D. KERNEL APPROACH TO PENALTY FUNCTION

The general formulation in (A-11) through (A-21) will be applied in

this appendix to the penalty function (3):

PIL.f) = a°t? + 4n’blf% + Gmctf . (D-1)

Substitution in (A-9) (in place of reward R) yields

r(t,T)

jdf exp(-i2vfT) P(t,f) =

J‘df exp(-i2«fT) (a2t2 + 4«2b2f2 + 4qctf) =

aztzé(t) - b26“(t) + j2cts'(T) . (D-2)

Then kernel K follows from (A-11) as

K(x,y) = r(x—;—l . X —y> -

2

=L (e P s - y) - bR - )+ e (x b y) 8 (x - y) L (D-3)

|m

which is Hermitian.

The integral equation (A-12), that must be solved, can be simplified by
use of the facts that

-l— a2 f dx(x + y)2 §(x - y) ”n(") = azyzon(y) '

Y Y dx 8"(x - y) 8 (x) = -bzﬂa(y) ,

ic S dx (x + y) &'(x - y) nn(x) = —ic[?ynh(y) + nn(y)] ' (D-4)
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where the last two results are obtained by integration by parts. Then

(A-12) yields differential equation

2 . . . s 22 _ _
b nn(y) + 12¢cy nn(y) + (kn + ic -avy) on(y) =0 . (D-95)
If we try solution
, 1., 2\
B, ly) = A exp(— 2 8y ) (0-6)
in (0-5), we find it to be acceptable if we take

o - rle 7. (0-7)

b2
These results agree with (11) and (20), as expected. To find the general

solution of (D-5), we try solution form

8(y) = exp(~ 3 By') H(y) (0-8)

with B still given by (D-7). This form in (D-8) is no loss of generality

since H is still arbitrary. Use of (0-8) in (D-5) results in
2 " ' 2 i
b "H"(y) + 2y H'(y) (-b"B + ic) +

+ H(y) (-b%8 + %82 - jacBy? + n ¢ i - ady) = 0 . (0-9)

When the value for B in (D-7) is utilized, (D-9) simplifies to

b2 (y) - 2{@ y H'(y) + (n - YT ) H(y) = O . (D-10)

(As a partial check, if H(y) = A, then \ = YQ, as in (D-7).)

Now, in (D-9), let

H(y) = G(Fy) , H'(y) = F G'(Fy) , H'(y) = F2 G (Fy) (D-11)
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L
! where F is arbitrary for the moment, thereby obtaining
4L~
i b2F2 G*(Fy) - 2YTy F G'(Fy) + (x - V&) G(Fy) = O . (0-12)
Now let x = Fy to get
e (x) - L 4 grxy « 26 -0 . (0-13)
2,2 2.2
b“F heF
¥
f If we now let (without loss of generality)
) 1/2.1/4
=40, (D-14)
1
1
]* then (5-13) simplifies further to
k -
G"(x) - x G'(x) + ‘Evaxg‘ﬁ(x) =0 . (D-15)
} We now appeal to [4, 22.6.21] and observe that if
)
{ L§?6¥§‘= n = integer , (D-16)
' then a solution of (D-15) is
{
6(x) = He (x) , A, = YT (1 + 2n) . (D-17)
!
Also, (D-11) yields
R(y) = G(Fy) = Hen(Fy) , (D-18)
while (D-8) gives
{ 6,(y) = A exp(- J By°) He (Fy) AT, (D-19)
with
1 B = +_ic F = Z_].i.z_Ql{i |A|2 = Qﬂ (D-20)
b2 ’ b ' Vo' b
L
i 38
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where the unit energy normalization of ”n has been imposed. The

corresponding eigenvalue follows from (D-17) as

kn =VY0 (1 +2n) = Va b2 - C2 (1 + 2n) . (b-21)

The minimum obviously occurs for n = 0.
Result (D-19) agrees with (A-27). However, the kn given here by

(D-21) differs from that given by (A-26), because we are solving for the

minimum penaity here versus the maximum reward there.
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(N. Zimmerman, Code 5220)

DARPA, ARLINGTON, VA (A. Ellinthorpe)

DALHOUSIE UNIV., HALIFAX, NOVA SCOTIA, CANADA (Dr. B. Ruddick)

DEFENCE RESEARCH ESTAB. ATLANTIC, DARTMOUTH, NOVA SCOTIA
(Library)

DEFENCE RESEARCH ESTAB. PACIFIC, VICTORIA, CANADA
(Or. D. Thomson)

DEFENCE SCIENTIFIC ESTABLISHMENT, MINISTRY OF DEFENCE,
AUCKLAND, N Z. (Dr. L. Hall)

DEFENSE SYSTEMS, INC, MC LEAN, VA (Dr. G. Sebestyen)

DIA

DTIC

DTNSRDC

DREXEL UNIV, (Prof. S. Kesler)

E00 CORP, College Point, NY (M. Blanchard)
NICRAD 87-NUSC-029 of 23 July 1987
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EG&G, Manassas, VA (Dr. J. Hughen and D. Frohman)
GENERAL ELECTRIC CO. PITTSFIELD, MA (Mr. R. Race)
GENERAL ELECTRIC CO, SYRACUSE, NY (Mr. J. L. Rogers)
GENERAL ELECTRIC CO, (D. Winfield) NO0Q24-87-C-6087)
HAHN, WM, Apt. 701, 500 23rd St. NW, Wash, DC 20037
HARRIS SCIENTIFIC SERVICES, Dobbs Ferry, NY (B. Harris)
HUGHES AIRCRAFT, Fullerton, CA (S. Autrey)

HUGHES AIRCRAFT, Buena Park, CA (T. Posch)

IBM, Manassas, VA (G. Demuth)

INDIAN INSTITUTE OF SCIENCE, BANGALSORE, INDIA (N. Srinivasa)

JOHNS HOPKINS UNIV, LAUREL, MD (J. C. Stapleton)

LINCOM CORP., NORTHBORO, MA 01532 (Dr. T. Schonhoff)

MAGNAVOX GOV & IND ELEC €O, Ft. Wayne, IN (R. Kenefic)

MARINE BIOQLOGICAL LAB, Woods Hole, MA

MARINE PHYSICAL LABORATORY SCRIPPS

MARTIN MARIETTA BALTIMORE AEROSPACE, Baltimore, MD
(S. Lawrence Marple)

MASS. INSTITUTE OF TECHNOLOGY (Prof. A. Baggaroer)

MBS SYSTEMS, NORWALK, CT (A. Winder)

MIDDLETON, DAVID, 127 E. 91st ST, NY, NY

NADC (5041, M. Mele)

NAIR-03

NASC, NAIR-00,03

NATIONAL RADIO ASTRONOMY OBSERVATORY (F. Schwab)

NATO SACLANT ASW RESEARCH CENTRE, APO NY, NY 09019 (Library
R. E. Sullivan and G. Tacconi)

NAVAIR (03, PMA 264)

NAVAL INTELLIGENCE COMMAND

NAVAL INTELLIGENCE SUPPORT CTR

NRL UND SOUND REF DET, ORLANDO, FL

NAVAL OCEANOGRAPHIC OFFICE

NAVAL SEA SYSTEMS COMMAND-SEA-00, 63, 630, PMS-409, PMS-11

NAVAL SYSTEMS DIV., SIMRAD SUBSEA A/S, NORWAY (E. B. Lunde)

NCSC

NICHOLS RESEARCH CORP., Wakefield, MA (T. Marzetta)

NORDA (DOr. B. Adams)

NORDA (Code 345) N STL Station, MS 39529

NORTHEASTERN UNIV. (Prof. C. L. Nikias)

NORWEGIAN DEFENCE RESEARCH EST, NORWAY (Dr J. Glattetre)

NOSC, (C. Sturdevant; 73, J. Lockwood, F. Harris, 743,
R. Smith; 62, R. Thuleen)

NPRDC

NPS, MONTEREY, CA (C. W. Therrien, Code 62 Ti)

NRL, Washington, DC (Dr. J. Buccaro, Dr. E. Franchi,
Dr. P. Abraham, Code 5132, A. A. Gerlach, W. Gabriel
{Code 5370), and N. Yen (Code 5135)

NRL, Ariington, VA (N. L. Gerr, Code 1111)

NSWC

NSWC DET FT. LAUDERDALE

NSWC WHITE OAK LAB

NUSC DET FT. LAUDERDALE

R g )
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INIITAL DISTRIBUTION LIST

Addressee

NUSC DET TUDOR HILL

NUSC DET WEST PALM BEACH (Dr. R. Kennedy Code 3802)

NWC

ORI CO, INC, New London, CT (G. Assard)

PENN STATE UNIV., State College, PA (F. Symons)

POHLER, R., 1034 Evergreen St., San Diego, CA 92106

PROMETHEUS, INC, Sharon, MA (Dr. J. Byrnes)

PST MARINE SCIENCES, New London, Ct. (Dr. R. Mellen)

PRICE, Di. Robert, 80 Hill St., Lexington, Ma 02173

RAISBECK, Dr. Gordon, P.0. Box 4311, Portland, ME 04101

RAN RESEARCH LAB, DARLINGHURST, AUSTRALIA

RAYTHEON CO, Portsmouth, RI (J. Bartram, R. Connor)
and S. S. Reese) NICRAD 87-NUSC 013

RICHTER,W. 7615 Heritage Dr., Annandale, VA.

ROCKWELL INTERNATIONAL CORP, Anaheim, CA (L. Einstein
and Or. D. Elliott)

ROYAL MILITARY COLLEGE OF CANADA, (Prof. Y. Chan)

RUTGERS UNIV., Piscataway, NJ (Prof. S. Orfanidis)

RCA CORP, Moorestown, NJ (H. Upkowitz)

SAIC, Falls Church, VA (Dr. P. Mikhalevsky)

SAIC, New London, CT (Dr. F. Dinapoli)

SANDIA NATIONAL LABORATORY (J. Claasen)

SCRIPPS INSTITUTION OF OCEANOGRAPHY

SE-00-, -63, 63-D, PMS-409, -411

SONAR & SURVEILLANCE GROUP, DARLINGHURST, AUSTRALIA

SOUTHEASTERN MASS. UNIV (Prof. C. H. Chen)

SPERRY CORP, GREAT NECK, NY

SPWAR-05, PDW 124

STATE UNIV. OF NY AT STONY BROOK (Prof. M. Barkat)

TEL-AVIV UNIV, TEL-AVIV, ISRAEL (Prof. E. Winstein)

TRACOR, INC, Austin, TX (Dr. T Leih and J. Wilkinson)

TRW FEDERAL SYSTEMS GROUP (R. Prager)

UNDERSEA ELECTRONICS PROGRAMS DEPT, SYRACUSE, NY (J. Rogers)

UNIV. OF ALBERTA, EDMONTON, ALBERTA, CANADA (K. Yeung)
UNIV OF CA, San Diego, CA (Prof. C. Helstrom)

UNIV. OF CT, Storrs, CT. (Library and Prof. C. Knapp)
UNIV OF FLA, GAINESVILLE, FL (D. Childers)

UNIV OF MICHIGAN, Cooley Lab, Ann Arbor, MI (Prof T. Birdsall)

UNIV. OF MINN, Minneapolis, Mn (Prof. M. Kaveh)

UNIV. OF NEWCASTLE, NEWCASTLE, NSW, CANADA (Prof. A. Cantoni)

UNIV. OF RI, Kingston, Rl (Library, Prof. S. Kay,
Prof. L. Scharf, and Prof. D. Tufts)

UNIV. OF SOUTHERN CA., LA. (Dr. A. Polydoros PHE 414)

UNIV. OF STRATHCLYDE, ROYAL COLLEGE, Glasgow, Scotland
(Prof. T. Durrani)

UNIV. OF TECHNOLOGY, Loughborough, Leicestershire, England

(Prof. J. Griffiths)
UNIV. OF WASHINGTON, Seattle (Prof. D. Lytle)
URICK, ROBERT, Silver Springs, MD
VAN ASSELT, HENRIK, USEA S.P.A., LA SPEZIA, ITALY
WERBNER, A., 60 E1m St., Medford, MA 02155
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WESTINGHOUSE ELEC. CORP, WALTHAM, MA (D. Bennett)

WESTINGHOUSE ELEC. CORP, OCEANIC DIV, ANNAPOLIS, MO
(Or. H. L. Price and H. Newman N0Q024-87-C-6024)

WILSON ARTIC RESEARCH, INC.

WOODS HOLE OCEANOGRAPHIC INSTITUTION (Dr. R. Spindel
and Dr. E. Weinstein)

YALE UNIV. (Library, Prof. P. Schultheiss and Prof.
F. Tuteur)
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