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Abstract

A mobilec robot needs an intemnal representation of its environment in order to accomplish its mission.
Building such a representation involves transforming raw data from sensors into a meaningful geometric
representation. In this paper, we introduce techniques for building terrain representations from range data
for an outdoor mobile robot. We introduce three levels of representations that correspond to levels of
planning: obstacle maps, terrain patches, and high resolution elevation maps. Since terrain representations
from individual locations are not sufficient for many navigation tasks, we also introduce techniques for
combining multiple maps. Combining maps may be achieved either by using features or the raw clevation
data. Finally, we introduce algorithms for combining 3-D descriptions with descriptions from other
sensors, such as color cameras. We examine the need for this type of sensor fusion when some semantic
information has 10 be extracted from an observed scene and provide an example application of outdoor
scene analysis. Many of the techniques presented in this paper have been tested in the field on three
mobile robot systems developed at CMU.




1 Introduction

A mobile robot is a vehicle that navigates autonomousiy through an unknown or partially known environ-
ment. Research in the ficld of mobile robots has received considerable attention in the past decade due
to its wide range of potential applications, from surveillance to planetary exploration, and the research
opportunities it provides, including virtually the whole spectrum of robotics research from vehicle control
to symbolic planning (sce for example (18] for an analysis of the research issues in mobile robots). In
this paper we present our investigation of some the issues in one of the components of mobile robots:
perception. The role of perception in mobile robots is to transform data from sensors into representations
that can be used by the decision-making components of the system. The simplest example is the detection
of potentially dangerous regions in the environment (i.e. obstacles) that can be used by a path planner
whose role is to generate safe trajectorics for the vehicle. An example of a more complex situation is
a mission that requires the recognition of specific landmarks, in which case the perception components
must produce complex descriptions of the sensed environment and rclate them to stored models of the
landmarks.

Therc are many sensing strategics for perception for mobile robots, including single camera systems,
sonars, passive sterco, and lascr range finders. In this report, we focus on perception algorithms for
range sensors that provide 3-D data directly by active sensing. Using such sensors has the advantage
of eliminating the calibration problems and computational costs inherent in passive techniques such as
sterco. We describe the range sensor that we used in this work in Section 2. Even though we tested our
algorithm on one specific range sensor, we believe that the sensor characteristics of Section 2 are fairly
typical of a wide range of scnsors [4].

Researzh in pereepticn for mebils robots is not only sensor-dependent but it is also dependent on
the environment. A considerable part of the global research effort has concentrated on the problem
of perception for mobile robot navigation in indoor environments, and our work in natural outdoor
environments through the Autonomous Land Vehicle and Planetary Exploration projects is an important
development. This report describes some of the tcchniques we have developed in this area of rescarch.
The aim of our work is to produce models of the environment, which we call the terrain, for path planning
and object recognition.

The algorithms for building a terrain representation from a single sensor frame are discussed in
Scction 3 in which we introduce the concept of dividing the terrain representation algorithms into three
levels depending on the sophistication of the path planner that would use the representation, and on the
anticipated difficulty of the terrain. Since a mobile robot is by definition a dynamic system, it must process
not one, but many observations along the course of its trajectory. The 3-D vision algorithms must therefore
be able to reason about representations that are built from sensory data taken from different locations. We
investigate this type of algorithms in Section 4 in which we propose algorithms for matching and merging
multiple terrain representations. Finally, the 3-D vision algorithms that we propose are not meant to be
used in isoiation, they have to be cventually integraicd in a system that include other scnsors. A typical
example is the casc of road following in which color cameras can track the road, while a range sensor
can detect uncxpected obstacles. Another cxample is @ mission in which a scene must be interpreted
in order to identify specific objects, in which case all the available sensors must contribute to the final
scene analysis. We propose some algorithms for fusing 3-D representations with representations obtained
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from a color camera in Section 5. We also describe the application of this sensor fusion to a simple
natural scenc analysis program. Perception techniques for mobile robots have to be eventually validated
by using real robots in real cnvironments. We have implemented the 3-D vision techniques presented in
this report on threce mobile robots developed by the Ficld Robotics Center: the Terregator, the Navlab, and
the Ambler. The Terregator (Figure 1) is a six-wheeled vchicle designed for rugged terrain. It does not
have any onboard computing units except for the low-level control of the actuators. All the processing
was donc on Sun workstations through a radio connection. We used this machine in early experiments
with range data, most notably the sensor fusion experiments of Scction 5. The Navlab [36] (Figure 2) 1s a
converted Chevy van designed for navigation on roads or on mild terrains. The Navlab is a self-contained
robot in that all the computing equipment is on board. The results presented in Sections 3.3 and 3.4
come from the 3-D vision module that we integrated in the Navlab system [42]. The Ambler (2] is an
hexapod designed for the exploration of Mars (Figure 3). This vehicle is designed for navigation on very
rugged terrain including high slopes, rocks, and wide gullics. This entircly new design prompted us to
investigate alterative 3-D vision algorithms that are reported in Scction 3.5. Even though the hardware
for the Ambler docs not cxist at this time, we have cvaluated the algorithms through simulation and
carcful analysis of the planctary exploration missions.

Figure 1: The Terregator

2 Active range and reflectance sensing

The basic principle of active sensing techniques is to obscrve the reflection of a reference signal (sonar,
laser, radar..ctc.) produced by an object in the environment in order to compute the distance between the
sensor and that object. In addition to the distance, the sensor may report the intensity of the reflected

| 9]




Figure 2: The Navlab

Figure 3: The Ambler
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signal which is related to physical surface properties of the object. In accordance with tradition, we will
refer to this type of intensity data as "reflectance” data even though the quantity measured is not the actual
reflectance coefficient of the surface.

Active scnsors are attractive to mobile robots researchers for two main reasons: first, they provide
range data without the computation overhcad associated with conventional passive techniques such as
stereo vision, which is important in time critical applications such as obstacle detection. Second, it is
largely insensitive to outside illumination conditions, simplifying considcrably the image analysis problem.
This is especially important for images of outdoor scenes in which illumination cannot be controlled or
predicted. For example, the active reflectance images of outside scenes do not contain any shadows from
the sun. In addition, active range finding technology has developed to the extent that makes it realistic to
consider it as part of practical mobile robot implementations in the short term (4].

The range sensor we used is a time-of-flight laser range finder developed by the Environmental
Rescarch Institute of Michigan (ERIM). The basic principle of the sensor is to measure the difference of
phasc between a laser beam and its reflection from the scene {46]. A two-mirror scanning system allows
the beam to be directed anywhere within a 30° x 80° field of view. The data produced by the ERIM sensor
is a 64 x 256 range image, the range is coded on eight bits from zero to 64 feet, which corresponds to a
range resolution of three inches. All measurements are all relative since the sensor measures differences
of phase. That is, a range valuc is known modulo 64 feet. We have adjusted the sensor so that the range
value 0 corresponds to the mirrors for all the images presented in this report. In addition to range images,
the sensor also produces active reflectance images of the same format (64 x 256 x 8 bits), the reflectance
at each pixel encodes the energy of the reflected laser beam at cach point. Figure 5 shows a pair of range
and reflectance images of an outdoor scene. The next two Scctions describe the range and reflectance
data in more details.

2.1 From range pixels to points in space

The position of a point in a given coordinate system can be derived from the measured range and the
dircction of the becam at that point. We usually use the Cartesian coordinate system shown in Figure 4.
in which casc the coordinates of a point measured by the range sensor are given by the cquations’:

x = Dsin# (hH
v = Dcoswcost
z = Dsinocost

where o and ¢ arc the vertical and honzontal scanning angles of the beam direction. The two angles
arc derived from the row and column position in the range image, (7. ¢), by the equations:

]

0 By + ¢ x AH ()

O o= Oopg+rX Ao

INote that the reference coordinate system is not the same as in [20] for consistency reasons
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where 8y (respectively ¢g) is the starting horizontal (respectively vertical) scanning angle, and A (re-
spectively A¢) is the angular step between two consecutive columns (respectively rows). Figure 6 shows
an overhead view of the scene of Figure 5, the coordinates of the points are computed using Eq. (3).

Sensor

Measured range stored
in range image

Figure 4: Geometry of the range sensor

Figure 5: Range and reflectance images

2.2 Reflectance images

A reflectance image from the ERIM sensor is an image of the energy reflected by a laser beam. Unlike
conventional intensity images, this data provides us with information which is to a large cxtent independent
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Figure 6: Overhead view

of the environmental illumination. In particular, the reflectance images contain no shadows from outside
illumination. The measured energy does depend, however, on the shape of the surface and its distance to
the sensor. We correct the image so that the pixel values are functions only of the matenal reflectance.
The measured energy, Pr..ra, depends on the specific material reflectance, p, the range, D, and the angle
of incidence, ~:

Kpcos~
Prelwn = —{)‘D'_z—l (3)

Due to the wide range of P,.urn, the value actually reported in the reflectance image is co  pressed
by using a log transform. That is, the digitized value, Pyngg. is of the form [44]:

Pimage = Alog(pcosv) + Blog D (4)

where A and B are constants that depend only on the characteristics of the laser, the circuitry used for the
digitization, and the physical properties of the ambiant atmosphere. Since A and B cannot be comp ted
directly, we use a calibration procedure in which a homogeneous flat region is selected in a training image;:
we then use the pixels in this region to estimate A and B by least-squares fitting Eq. (4) to the actual
reflectance/range data, Given A and B, we correct subsequent images by:

Pnew—image = (Pimage — Blog D)/A (3)

The value Ppew—image depends only on the material reflectance and the angle of incidence. This is a
sufficient approximation for our purposes since for smooth surfaces such as smooth terrain, the cosy
factor does not vary widely. For efficiency purposes, the right-hand side of (5) is precomputed for all
possible combinations (Pnage. D) and stored in a lookup table. Figure 5 shows an example of an ERIM
image, and Figure 7 shows the resulting corrected image.
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Figure 7: Corrected reflectance image

2.3 Resolution and noise

As is the case with any sensor, the range sensor retumns values that are measured with a limited resolution
which are corrupted by measurement noise. In the case of the ERIM sensor, the main source of noise
is due to the fact that the laser beam is not a line in space but rather a cone whose opening is a 0.5°
solid angle (the instantaneous field of view). The value retummed at each pixel is actually the average of
the range of values over a 2-D area, the footprint, which is the intersection of the cone with the target
surface (Figure 8). Simple geometry shows that the area of the footprint is proportional to the square of
the range at its center. The size of the footprint also depends on the angle @ between the surface normal
and the beam as shown in Figure 8. The size of the footprint is roughly inversely proportional to cosf
if we assume that the footprint is small enough and that # is almost constant. Thercfore, a first order
approximation of the standard deviation of the range noise, o is given by:

D2

cosf (6)

The proportionality factor in this equation depends on the characteristics of the laser transmitter, the
outside illumination, and the reflectance p of the surface which is assumed constant across the footprint
in this first order approximation. We validated the model of Equation 6 by estimating the RMS error
of the range values on a sequence of images. Figure 9 shows the standard deviation with respect to the
measured range. The Figure shows that o follows roughly the D? behavior predicted by the first order
model. The footprint affects all pixels in the image.

There are other effects that produce distortions only at specific locations in the image. The main effect
is known as the "mixed point" problem and is illustrated in Figure 8 in which the laser footprint crosses
the edge between two objects that are far from each other. In that case, the retumed range value is some
combination of the range of the two objects but does not have any physical meaning. This problem makes
the accurate detection of occluding edges more difficult. Another effect is due to the reflectance properties
of the observed surface; if the surface is highly specular then no laser reflection can be observed. In that
casc the ERIM sensor returns a value of 255. This effect is most noticeable on man-made objects that
contain a lot of polished metallic surfaces. It should be mentioned, however, that the noise characteristics
of the ERIM sensor are fairly typical of the behavior of active range sensors (5].
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Figure 8: Sources of noise in range data
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3 Terrain representations

The main task of 3-D vision in a mobile robot system is to provide sufficient information to the path
planner so that the vehicle can be safely steered through its environment. In the case of outdoor navigation,
the task is to convert a range image into a representation of the terrain. We use the word "terrain” in
a very loose sense in that we mean both the ground surface and the objects that may appear in natural
environments (e.g. rocks or trees). In this Section we discuss the techniques that we have implemented
for the Navlab and Mars Rover systems. We first introduce the concept of the elevation map as a basis for
terrain representations and its relationship with different path planning techniques. The last four Sections
spell out the technical details of the terrain representation algorithms.

3.1 The elevation map as the data structure for terrain representation

Even though the format of the range data is an image, this may not be the most suitable structuring of the
data for extracting information. For example , a standard representation in 3-D vision for manipulation
is to view a range image as a set of data points measured on a surface of the equation z = f(x, y) where
the x— and y—axes are parallel to the axis of the image and z is the measured depth. This choice of axis
is natural since the image plane is usually parallel to the plane of the scene. In our case, however, the
"natural” reference plane is not the image plane but is the ground plane. In this context, "ground plane"
refers to a plane that is horizontal with respect to the vehicle or to the gravity vector. The representation
z = f(x,y) is then the usual concept of an elevation map. To transform the data points into an elevation
map is useful only if one has a way to access them. The most common approach is to discretize the (x.y)
plane into a grid. Each grid cell (x;,y;) is the trace of a vertical column in space, its field (Figure 10). All
the data that falls within a cell’s field is stored in that cell. The description shown in Figure 10 does not
necessarily reflect the actual implementation of an elevation map but is more of a framework in which we
develop the terrain representation algorithms. As we shall see later, the actual implementation depends
on the level of detail that needs to be included in the terrain description.

Although the elevation map is a natural concept for terrain representations, it exhibits a number of
problems due to the conversion of a regulariy sampled image to a different reference plane [25]. Although
we propose solutions to these problems in Section 3.5, it is important to keep them in mind while we
investigate other terrain representations. The first problem is the sampling problem illustrated in Figure 11.
Since we perform some kind of image warping, the distribution of data points in the elevation map is
not uniform, and as a result conventional image processing algorithms cannot be applied directly to the
map. There are two ways to get around the sampling problem: We can either use a base structure
that is not a regularly spaced grid, such as a Delaunay triangulation of the data points [33], or we can
interpolate between data points to build a dense elevation map. The former solution is not very practical
because of the complex algorithms required to access data points and their neighborhoods. We describe
an implementation of the latter approach in Section 3.5. A second problem with elevation maps is the
representation of the range shadows created by some objects (Figure 12). Since no information is available
within the shadowed regions of the map, we must represent them separately so that no interpolation takes
place across them and no "phantom" features are reported to the path planner. Finally, we have to convert
the noise on the original measurements into a measure of uncertainty on the z value at each grid point
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Figure 10: Structure of an elevation map

(x,y). This conversion is difficult due to the fact that the sensor’s uncertainty is most naturally represented
with respect to the direction of measurement (Figure 13) and therefore spreads across a whole region in
the elevation map.

Sensor

Regular sampling in image plane

Sparse sampling in map

Figure 11: The sampling problem

3.2 Terrain representations and path planners

The choice of a terrain representation depends on the path planner used for actually driving the vehicle.
For example, the family of planners derived from the Lozano-Perez’s A* approach [28] uses discrete
obstacles represented by 2-D polygons. By contrast, planners that compare a vehicle mode! with the local
terrain [9,38] use some intermediate representation of the raw elevation map. Furthermore, the choice of
a terrain representation and a path planner in turn depend on the environment in which the vehicle has to
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navigate. For example, representing only a small number of discrete upright objects may be appropriate
if it is known in advance that the terrain is mostly flat, (e.g. a road) with a few obstacles (e.g. trees)
while cress country navigation requires a more detailed description of the elevation map. Generating the
most detailed description and then extracting the relevant information is not an acceptable solution since
it would significantly degrade the performance of the system in simple environments. Therefore, we
need several levels of terrain representation corresponding to different resolutions at which the terrain is
described (Figure 14). At the low resolution level we describe only discrete obstacles without exnlicitly
describing the local shape of the terrain. At the medium level, we include a description of the terrain
through surface patches that correspond to significant ierrain features. At that level, the resolution is the
resolution of the operator used to detect these features. Finally, the description with the highest resolution
is a dense zlevation map whose resolution is limited only by the sensor. In order to keep the computations
involved under control, the resolution is typically related to the size of the vehicle’s parts that enter in
contact with the terrain. For example, the size of one foot is used to compute the terrain resolution in the
case of a legged vehicle.

High resolution:
Dense elevation map.

"
Z_\ Medium resolution:
Terrain features

Low resolution:
Obstacle map
Polygonal obstacles

Figure 14: Levels of terrain representation

3.3 Low resolution: Obstacle map

The lowest resolution terrain representation is an obstacle map which contains a small number of obstacles
represented by their trace on the ground plane. Several techniques have been proposed for obstacle
detection. The Martin-Marietta ALV [10,11,43] detects obstacles by computing the difference between

12




the observed range image and pre-computed images of ideal ground at several different slope angles.
Points that are far from the ideal ground planes are grouped into regions that are reported as obstacles
to a path planner. A very fast implementation of this technique is possible since it requires only image
differences and region grouping. It makes, however, very strong assumptions on the shape of the terrain.
It also takes into account only the positions of the potential obstacle point, and as a result a very high
slope ridge that is not deep enough would not be detected.

Another approach proposed by Hughes Al group [8] is to  :tect the obstacles by thresholding the
normalized range gradient, AD/D, and by thresholding the radial slepe, DA¢/AD. The first test detects
the discontinuities in range, while the second test detects the portion of the terrain with high slope. This
approach has the advantage of taking a vehicle model into account when deciding whether a point is part
of an obstacle. We used the terrain map paradigm to detect obstacles for the Navlab. Each cell of the
terrain contains the set of data points that fall within its field (Figure 10). We can then estimate surface
normal and curvatures at each elevation map cell by fitting a reference surface to the corresponding set
of data points. Cells that have a high curvature or a surface normal far from the vehicle’s idea of the
vertical direction are reported as part of the projection of an obstacle. Obstacle cells are then grouped
into regions corresponding to individual obstacles. The final product of the obstacle detection algorithm
is a set of 2-D polygonal approximations of the boundaries of the detected obstacles that is sent to an
A”-type path planner (Figure 15). In addition, we can roughly classify the obstacles into holes or bumps
according to the shape of the surfaces inside the polygons.

Figure 16 shows the result of applying the obstacle detection algorithm to a sequence of ERIM images.
The Figure shows the original range images (top), the range pixels projected in the elevation map (left),
and the resulting polygonal obstacle map (right). The large enclosing polygon in the obstacle map is the
limit of the visible portion of the world. The obstacle detection algorithm does not make assumptions on
the position of the ground plane in that it only assumes that the plane is roughly horizontal with respect to
the vehicle. Computing the slopes within each cell has a smoothing effect that may cause real obstacles
to be undetected. Therefore, the resolution of the elevation map must be chosen so that each cell is
significantly larger than the typical expected obstacles. In the case of Figure 16, the resolution is twenty
centimeters. The size of the detectable obstacle also varies with the distance from the vehicle due to the
sampling problem (Section 3.1).

One major drawback of our obstacle detection algorithm is that the computation of the slopes and
curvatures at each cell of the elevation map is an expensive op:ration. Furthermore, since low-resolution
obstacle maps are most useful for fast navigation through simple environments, it is important to have a fast
implementation of the obstacle detection algorithm. A natural optimization is to parallelize the algorithm
by dividing the elevation map into blocks that are processed simultaneously. We have implemented such a
parallel version of the algorithm on a ten-processor Warp computer {45,21]. The parallel implementation
reduced the cycle time to under two seconds, thus making it possible to use the obstacle detection
algorithm for fast navigation of the Navlab. In that particular implementation, the vehicle was moving
at a continuous speed of one meter per second, taking range images, detecting obstacles, and planning a
path every four meters.
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Figure 15: Building the obstacle map

3.4 Medium resolution: Polygonal terrain map

Obstacle detection is sufficient for navigation in flat terrain with discrete obstacles, such as following a
road bordered by trees. We need a more detailed description when the terrain is uneven as in the case
of cross-country navigation. For that purpose, an elevation map could be used directly [9] by a path
planner. This approach is costly because of the amount of data to be handled by the planner which does
not need such a high resolution description to do the job in many cases (although we will investigate
some applications il: which a high resolution representation is required in Section 3.5). An alternative is
to group smooth portions of the terrain into regions and edges that are the basic units manipulated by
the planner. This set of features provides a compact representation of the terrain thus allowing for more
efficient planning [38].

The features used are of two types: smooth regions, and sharp terrain discontinuities. The terrain
discontinuities are either discontinuities of the elevation of the terrain, as in the case of a hole, or
discontinuities of the surface normals, as in the case of the shoulder of a road [3]. We detect both types
of discontinuities by using an edge detector over the elevation map and the surface normals map. The
edges correspond to small regions on the terrain surface. Once we have detected the discontinuities, we
scgment the terrain into smooth regions. The segmentation uses a region growing algorithm that first
identifies the smoothest locations in the terrain based on the behavior of the surface nomals, and then
grows regions around those locations. The result of the processing is a covering of the terrain by regions
corresponding either to smooth portions or to edges.

The final representation depends on the planner that uses it. In our case, the terrain representation is
embedded in the Navlab system using thc path planner described in [2%]. The basic geometric object used
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Figure 16: Obstacle detection on a sequence of images
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by the system is the three-dimensional polygon. We therefore approximate the boundary of each region
by a polygon. The approximation is done in a way that ensures consistency between regions in that the
polygonal boundaries of neighboring regions share common edges and vertices. This guarantees that no
"gaps" exist in the resulting polygonal mesh. This is important from the point of view of the path planner
since such gaps would be interpreted as unknown portions of the terrain. Each region is approximated
by a planar surface that is used by the planner to determine the traversability of the regions. Since the
regions are not planar in reality, the standard deviation of the parameters of the plane is associated with
each region.

Figure 18 shows the polygonal boundaries of the regions extracted from the image of Figure 17. In
this implementation, the resolution of the elevation map is twenty centimeters. Since we need a dense
map in order to extract edges, we interpolated linearly between the sparse points of the elevation map.
Figure 17 shows the interpolated elevation map. This implementation of a medium resolution terrain
representation is integrated in the Navlab system and will be part of the standard core system for our
future mobile robot systems.

Figure 17: Range image and elevation map

3.5 High resolution: Elevation maps for rough terrain

The elevation map derived directly from the sensor is sparse and noisy, especially at greater distances
from the sensor. Many applications, however, need a dense and accurate high resolution map. Onc way
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Figure 18: Polygonal boundaries of terrain regions

to derive such a map is to interpolate between the data points using some mathematical approximation
of the surface between data points. The models that can be used include linear, quadratic, or bicubic
surfaces [33]. Another approach is to fit a surface globally under some smoothness assumptions. This
approach includes the family of regularization algorithms (6] in which a criterion of the form:

/”hdala - hinlerpolalionnz +A /f(hinlerpolalwn) (7

is minimized, where f is a regularization function that reflects the smoothness mode! (e.g. thin platc).
Two problems arise with both interpolation approaches: They make apriori assumptions on the local
shape of the terrain which may not be valid (e.g. in the case of very rough terrain), and they do not take
into account the image formation process since they are generic techniques independent of the origin of
the data. In addition, the interpolation approaches depend heavily on the resolution and position of the
reference grid. For example, they cannot compute an estimate of the elevation at an (x.y) position that is
not a grid point without resampling the grid. We propose an alternative, the locus algorithm [25}, that uscs
a model of the sensor and provides interpolation at arbitrary resolution without making any assumptions
on the terrain shape other than the continuity of the surface.

3.5.1 The locus algorithm for the optimal interpolation of terrain maps

The problem of finding the elevation z of a point (x, y) is trivially equivalent to computing the intersection
of the surface observed by the sensor and the vertical line passing through (x.y). The basic idea of the
locus algorithm is to convert the latter formulation into a problem in image space (Figurc 19). A verntical
line is a curve in image space, the {ocus, whose cquativii as a {unction of ¢ is:

2
Y
D = = 2 8
Do) = || =5—+x (8)
(9
0 = 01(O)=arctanxcoso
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where @, 6, and D are defined as in Section 2. Equation (9) was derived by inventing Equation (2), and
assuming x and y constant. Similarly, the range image can be viewed as a surface D = /(0.6) in 06,
D space. The problem is then to find the intersection, if it exists, between a curve parametrized by o
and a discrete surface. Since the surface is known only from a sample of data, the intersection cannot
be computed analytically. Instead, we have to search along the curve for the intersection point. The
search proceeds in two stages: We first locate the two scanlines of the range image, ¢; and ¢, between
which the intersection must be located, that is the two consecutive scanlines such that, Diff(oy) =
Di(61) — 1(61,01(¢1)) and Diff(¢2) = Di(¢1) — I(#2,1(¢2)) have opposite signs, where §;() is the image
column that is the closest to 8;(¢}. We then apply a binary search between &1 and ¢;. The search stops
when the difference between the two angles ¢, and ¢n.1, Where Diff(¢,) and Diff(¢n+1) have oppositc
signs, is lower than a threshold €. Since there are no pixels between ¢ and ¢, we have to perform a
local quadratic interpolation of the image in order to compute 8,(¢) and D;(o) for &y < © < ©;. The
control points for the interpolation are the four pixels that surround the intersection point (Figure 20). The
final result is a value ¢ that is converted to an elevation value by applying Equation (2) to ©.8;(0). Di(o).
The resolution of the elevation is controlled by the choice of the parameter ¢.

The locus algorithm enables us to evaluate the elevation at any point since we do not assume the
existence of a grid. Figure 21 shows the result of applying the locus algorithm on range images of uneven
terrain, in this case a construction site. The Figure shows the original range images and the map displayed
as an isoplot surface. The centers of the grid celis are ten centimeters apart in the (x.v) planc.

3.5.2 Generalizing the locus algorithm

We can generalize the locus algorithm from the case of a vertical line to the case of a general line in
space. This generalization allows us to build maps using any reference plane instcad of being restricted
to the (x, y) plane. This is important when, for example, the sensor’s (x. y) plane is not orthogonal 1o the
gravity vector. A line in space is defined by a point u = [u, 4y, 4], and a unit vector v = [v;.v,. v,]'.
Such a line is parametrized in A by the relation p = u+ Av if p is a point on the line. A gencral line is
still a curve in image space that can be parametrized in ¢ if we assume that the line is not parallel 10 the
(x.y) plane. The equation of the curve becomes:

Do) = \/(vx/\(a) + Uy)? + (WA(B) + 14y)2 + (VA (0) + u;)?
6i(¢) = arcsin &((’g * (10)
A©) uytano — u,
V; — vytan o

We can then compute the intersection between the curve and the image surface by using the same algorithm
as before except that we have to use Equation (10) instead of Equation (9).

The representation of the line by the pair (. v) is not optimal since it uses six paramcters while only
four parameters are needed to represent a line in space. For example, this can be troublesome if we want
to compute the Jacobian of the intersection point with respect 1o the paramecters of the line. A better
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Figure 19:
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Figure 20: Image interpolation around the intersection point
alternative [22] is to represent the line by its slopes in x and y and by its intersection with the plane z=0

(See [35] for a complete survey of 3-D line representations). The equation of the line then becomes:

xX=az+p an
y=bz+gq

We can still use Equation (10) to compute the locus because we can switch between the (a. b, p, q) and
(u. v) representations by using the Equations:

a p
v=| b |,u=1|gq (12)
1 0
a= _xﬁp“ _Kx_vz
U Uz
W Y
b uzeq zvz

In the subscquent Sections, we will denote by h(a, b, p. q) the function from R* to R? that maps a line in
space to the intersection point with the range image.




Figure 21: The locus algorithm on range images
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Figure 21: The locus algorithm on range images (Continued)
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Figure 21: The locus algorithm on range images (Continued)
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3.5.3 Evaluating the locus algorithm

We evaluate the locus algorithm by comparing its performance with the other "naive" interpolation algo-
rithms on a set of synthesized range images of simple scenes. The simplest scenes are planes at various
orientations. Furthermore, we add some range noise using the model of Section 2.3 in order to evaluate
the robustness of the approach in the presence of noise. The performances of the algorithms are evaluated
by using the mean square error:

_ N (i = h)?

E= = (13)
where A; is the true elevation value and h; is the estimated elevation. Figure 22 plots E for the locus
algorithm and the naive interpolation as a function of the slope of the observed plane and the noise level.
This result shows that the locus algorithm is more stable with respect to surface orientation and noise
level than the other algorithm. This is due to the fact that we perform the interpolation in image space
instead of first converting the data points into the elevation map.

X, XX : Locus method
0, 00 : Elevation GNC
method

X,0: S/N ratio 1000
XX, 00 : S/N ratio 100

>
10 20 30 40 tilt angle
Figure 22: Evaluation of the locus algorithm on synthesized images

3.5.4 Representing the uncertainty

We have presented in Section 2.3 a model of the sensor noise that is a Gaussian distribution along the
direction of measurement. We need to transform this model into a model of the noise, or uncertainty,
on the elevation values retumed by the locus algorithm. The difficulty here is that the uncertainty in a
given range value spreads to many points in the elevation map, no matter how the map is oriented with
respect to the image plane (Figure 13). We cannot therefore assume that the standard deviation of an
elevation is the same as the one of the corresponding pixel in the range image. Instead, we propose to
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use the nature of the locus algorithm itself to derive a meaningful value for the elevation uncertainty. To
facilitate the explanation, we consider only the case of the basic locus algorithm of Section 3.5.1 in which
we compute an elevation z from the intersection of the locus of a vertical line with a depth profile from a
range image. Figure 23 shows the principle of the uncertainty computation by considering a locus curve
that corresponds to a line in space and the depth profile from the range image in the neighborhood of the
intersection point, each point on the depth profile has an uncertainty whose density can be represented by
a Gaussian distribution as computed in Section 2.3. The problem is to define a distribution of uncertainty
along the line. The value of the uncertainty reflects how likely is the given point to be on the actual
surface given the measurements.

Let us consider an elevation 4 along the vertical line. This elevation corresponds to a measurement
direction ¢(h) and a measured range d’'(k). If d(h) is the distance between the origin and the elevation A,
we assign to A the confidence [39]:

1 O {0
Ih) = —m—————— 20(d (A)) 14
W= Tre@m” (o

where o(d'(h) is the variance of the measurement at the range d’(h). Equation 14 does not tell anything
about the shape of the uncertainty distribution /(h) along the A axis except that it is maximum at the
elevation h, at which d(h) = d’(h), that is the elevation returned by the locus algorithm. In order to
detcrmine the shape of I(k), we appiuximate I(h) around h, by replacing the surface by its tangent plane
at h,. If a is the slope of the plane, and H is the elevation of the intersection of the plane with the z axis,
we have:

H%(@% + h?)

(atana + h)?

dh) — d(m)* _ (A= ho)(@tana +h)?
20(d(h)* K2HY@* + h?)

o(d (h)) (15)

(16)

where a is the distance between the line and the origin in the x — y plane and X is defined in Section 2.3
by o(d) ~ Kd*. By assuming that h is close to A, that is h = h, + ¢ with ¢ < h, and by using the fact
that H = h, + atan o, we have the approximations:

odh) =~ K@ +Hh) an

dhr)—dm): (h= ko)
20@m)?  ~ 2KH2(a*+ h2)

(18)

In the neighborhood of h,, Equation 18 shows that (d(h) - d’(h))z/?,a(d’(h))" is quadratic 1n A — h,,
and that o(d'(h)) is constant. Therefore, I(h) can be approximated by a Gaussian distribution of variance:

of = K*H¥a* + h?) = K*H*d? (19)
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Figure 23: Computing the uncertainty from the locus algorithm

Equation 19 provides us with a first order model of the uncertainty of 4 derived by the locus algorithm.
In practice, the distance D(h) = (d(h) — d'(h))*/20(d'(h))? is computed for several values of 4 close to
ho, the variance o}, is computed by fitting the function (h — h,)*/207 to the values of D(h). This is a
first order model of the uncertainty in the sense that it takes into account the uncertainty on the sensor
measurements, bui it does not include the uncertainty due to the locus algorithm itself, in particular the
errors introduced by the interpolation.

3.5.5 Detecting the range shadows

As we pointed out in Secticn 3.1, the terrain may exhibit range shadows in the elevation map. It is
important to identify the shadow regions because the terrain may have any shape within the boundaries
of the shadows, whereas the surface would be smoothly interpolated if we applied the locus algorithm
directly in those areas. This may result in dangerous situations for the robot if a path crosscs one of the
range shadows. A simple idea would be to detect empty regions in the raw elevation map, which are the
projection of images in the map without any interpolation. This approach does not work because the size
of the shadow regions may be on the order of the average uistance between data points. This is especially
true for shadows that are at some distance from the sensor in which case the distribution of data points
is very sparse. It is possible to modify the standard locus algorithm so that it takes into account the
shadow areas. The basic idea is that a range shadow cormresponds to a strong occluding edge in the image
(Figure 12). An (x.y) location in the map is in a shadow arca if its locus intersccts the image at a pixel
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that lies on such an edge (Figure 24).
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Figure 24: Detecting range shadows

as computed in the previous Section.

3.5.6 An application: footfall selection for a legged vehicle

such as the surface of Mars.

28

We implement this algorithm by first detecting the edges in the range image by using a standard
technique, the GNC algorithm [6]. We chose this algorithm because it allows us to vary the sensitivity
of the edge detector across the image, and because it performs some smoothing of the image as a side
effect. When we apply the locus algorithm we can then record the fact that the locus of a given location
intersects the image at an edge pixel. Such map locations are grouped into regions that are the reported
range shadows. Figure 25 shows an overhead view of an elevation map computed by the locus algorithm,
the white points are the shadow points, the gray level of the other points is proportional to their uncertainty

The purpose of using the locus algorithm for building terrain is to provide high resolution elevation data.
As an example of an application in which such a resolution is needed, we briefly describe in this Section
the problem of perception for a legged vehicle [24]. One of the main responsibilities of perception for
a legged vehicle is to provide a terrain description that enables the system to determine whether a given
foot placement, or footfall, is safe. In addition, we consider the case of locomotion on very rugged terrain

A foot is modeled by a flat disk of diameter 30 cms. The basic criterion for footfall selection is to
select a footfall area with the maximum support area which is defined as the contact area between the foot
and the terrain as shown in Figure 26. Another constraint for footfall selection is that the amount of energy
necessary to penetrate the ground in order to achieve sufficient support area must be minimized. The
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Figure 25: Shadow regions in an elevation map

Contact area

Figure 26: Footfall support area
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energy is proportional to the depth of the foot in the ground. The support area is estimated by counting
the number of map points within the circumference o the disk that are above the plane of the foot. This
is where the resolution requirement originates because the computation of the support area makes sense
only if the resolution of the map is significantly smaller than the diameter of the foot. Given a minimum
allowed support area, Spmin, and the high resolution terrain map, we can find the optimal footfall position
within a given terrain area: First, we want to find possible flat areas by computing surface normals for
each footfall area in a specified footfall selection area. Footfalls with a high surface normal are eliminated.
The surface normal analysis, however, will not be sufficient for optimal footfall selection. Second, the
support area is computed for the remaining positions. The optimal footfall position is the one for which
the maximum elevation, h,p, that realizes the minimum support area S, is the maximum across the set
of possible footfall positions. Figure 27 shows a plot of the surface area with respect to the elevation
from which A, can be computed.

Support
Area 4
Amin _’_’/
®  Distance traveled along

D vertical direction

Figure 27: Support area versus elevation

3.5.7 Extracting local features from an elevation map

The high resolution map enables us to extract very local features, such as points of high surface curvature,
as opposed to the larger terrain patches of Section 3.4. The local features that we extract are based on
the magnitude of the two principal curvatures of the terrain surface. The curvatures are computed as
in {34] by first smoothing the map, and then computing the derivatives of the surface for solving the first
fundamental form. Figure 28 shows tae curvature images computed from an elevation map using the
locus algorithm. The resolution of the map is ten centimeters. Points of high curvature correspond to
edges of the terrain, such as the edges of a valley, or to sharp terrain features such as hills, or holes. In
any case, the high curvature points are viewpoint-independent features that can be used for matching. We
extract the high curvature points from both images of principal curvaturc. We group the extracted points
into regions, then classify each region as point feature, line, or region, according to its size, clongation,
and curvature distribution. Figure 28 shows the high curvature points extracted from an clevation map.

30

"

L




T T T

The two images correspond to the two principal curvatures. Figure 29 shows the three types of local
features detected on the map of Figure 28 superimposed in black over the original elevation map. The
Figure shows that while some features correspond merely to local extrema of the surface, some such as
the edges of the deep gully are characteristic features of the scene. This type of feature extraction plays
an important role in Section 4 for combining multiple maps computed by the locus algorithm.

Ly
“hae

W0,

Figure 28: The high curvature points of an elevaiion map

4 Combining multiple terrain maps

We have so far addressed the problem of building a representation of the environment from sensor data
collected at one fixed location. In the case of mobile robots, however, we have to deal with a stream of
images taken along the vehicle’s path. We could ignore this fact and process data from each viewpoint as
if it were an entirely new view of the world, thus forgetting whatever information we may have extracted
at past ixcations. It has been observed that this approach is not appropriate for mobile robot navigation,
and that there is a need for combining the representations computed from different vantage points into a
coherent map. Although this has been observed first in the context of indoor mobile robots [13,15], the
reasoning behind it holds true in our case. First of all, merging representations from successive viewpoints
will produce a map with more information and better resolution than any of the individual maps. For
example, a tall object observed by a range sensor creates an unknown area behind it, the range shadow,
where no useful information ' .n be extracted (Section 3.1). The shape and position of the range shadow
changes as we move to anou.er location; merging images from several locations will therefore reduce
the size of the shadow, thus providing a more complete description to the path planner (Figure 30).
Another reason why merging maps increases the resolution of the resulting representation concerns the
fact that the resolution of an elevation map is significantly better at close range. By merging maps, we
can increase the resolution of the parts of the elevation map that were originally measured at a distance
from the vehicle.

The second motivation for merging maps is that the position of the vehicle at any given time is
uncertain. Even when using expensive positioning systems, we have to assumc that the robot's idea of
its position in the world will degrade in the course of a long mission. One way to solve this problem
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Figure 29: Local features from a high resolution elevation map




h . is to compute the position with respect to features observed in the world instead of a fixed coordinate
system [37,30]. That requires the identification and fusion of common features between successive
observations in order to estimate the displacement of the vehicle (Figure 31). Finally, combining maps is
a mission requirement in the case of an exploration mission in which the robot is sent into an unknown
territory to compile a map of the observed terrain,

Reduced range shadow
from the combination of 1 and 2

F Range shadow from
position 1 Na

Position 1  Position 2

Range shadow from
position 2

Figure 30: Reducing the range shadow

Many new problems arise when combining maps: representation of uncertainty, data structures for
combined maps, predictions from one observation to the next etc. We shall focus on the terrain matching
problem, that is the problem of finding common features or common parts between terrain maps so that
we can compute the displacement of the vehicle between the two corresponding locations and then merge
the corresponding portions of the terrain maps. We always make the rcasonable assumption that a rough
estimate of the displacement is available sinc. an estimate can always be computed either from dead
reckoning or from past terrain matchings.

4.1 The terrain matching problem: iconic vs. feature-based

In the terrain matching problem, as in any problem in which correspondences between two sets of data
must be found, we can choose one of two approaches: feature-based or iconic matching. In feature-based
matching, we first have to extract two sets of features (F}) and (FJZ) from the two views to be matched, and
to find correspondences between features, (F ilr szl) that are globally consistent. We can then compute the
displacement between the two views from the parameters of the featurcs, and finally merge them into one
common map. Although this is the standard approach to object recognition problems [5], it has also been
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Figure 31: Matching maps for position estimation

widely used for map matching for mobile robots [13,23,30,7,1,41]. In contrast, iconic approaches work
directly on the two sets of data points, P! and P? by minimizing a cost function of the form F(T(P?), P!)
where T(P?) is the set of points from view 2 transformed by a displacement T. The cost is designed so
that its minimum corresponds to a "best" estimate of T in some sense. The minimization of F leads to an
iterative gradient-like algorithm. Alithough less popular, iconic techniques have been successfully applied
to incremental depth estimation [30,29] and map matching [40,12].

The proponents of each approach have valid arguments. The feature-based approach requires a search
in the space of possible matches which may lead to a conmibinatorial explosion of the matching program.
On the other hand, iconic approaches are entirely predictable in terms of computational requirements
but are usually quite expensive since the size of the points sets P* is typically on the order of several
thousands. As for the accuracy of the resulting displacement T, the accuracy of iconic techniques can be
better than the resolution of the sensors if we iterate the minimization of F long enough, while any feature
extraction algorithm loses some of the original sensor accuracy. Furthermore, feature matching could in
theory be used even if no a-priori knowledge of T, Ty, is available while iconic approaches require Ty to
be close to the actual displacement because of the iterative nature of the minimization of F.

Keeping these tenets in mind, we propose to combine both approaches into one terrain matching
algorithm. The basic idea is to use the feature matching to compute a first estimate T given a rough initial
value Ty, and then to use an iconic technique to compute an accurate estimate 7. This has the advantage
of retaining the level of accuracy of iconic techniques while keeping the computation time of the iconic
stage under control because the feature matching provides an estimate close enough to the true value. We
describe in detail the feature-based and iconic stages in the next three sections.
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4.2 Feature-based matching

Let F} and F? be two sets of features extracted from two images of an outdoor scene, /; and /. We
want to find a transformation T and a set of pairs Ci = (F},F2) such that FZ =~ T(F}), where T(F)
denotes the transformed by T of a feature F. The features can be any of those discussed in the previous
Sections: points or lines from the local feature extractor, obstacles represented by a ground polygon, or
terrain patches represented by their surface equation and their polygonal boundaries. We first investigate
the feature matching algorithm independently of any particular feature type so that we can then apply it
to any level of terrain representation.

For each feature F}, we can first compute the set of features F% that could correspond to F} given
an initial estimate To of the displacement. The F%'s should lie in a prediction region centered at To(F}).
The size of the prediction region depends on the confidence we have in Tp and in the feature extractors.
For example, the centers of the polygonal obstacles of Section 3.4 are not known accurately, while the
curvature points from Section 3.5.7. can be accurately located. The confidence on the displacement T is
represented by the maximum distance § between a point in image 1 and the transformed of its homologue
in image 2, ||Tp? — p!||, and by the maximum angle €, between a vector in image 2 and the transformed
of its homologue in image 1 by the rotation part of T. The prediction is then defined as the set of features
that are at a Cartesian distance lower than §, and at an angular distance lower than ¢ from To(F ,2). The
parameters used to determine if a feature belongs to a prediction region depend on the type of that feature.
For example, we use the direction of a line for the test on the angular distance, while the center of an
obstacle is used for the test on the Cartesian distance. Some features may be tested only for orientation,
such as lines, or only for position, such as point features. The features in each prediction region are
sorted according to some feature distance d(F},To(F‘-zj)) that reflects how well the features are matched.
The feature distance depends also on the type of the feature: for points we use the usual distance, for
lines we use the angles between the directions, and for polygonal patches (obstacles or terrain patches)
we use a linear combination of the distance between the centers, the difference between the areas, the
angle between the surface orientations, and the number of neighboring patches. The features in image 1
are also sorted according to an "importance” measure that reflects how important the features are for the
matching. Such importance measures include the length of the lines, the strength of the point features
(i.e. the curvature value) , and the size of the patches. The importance measure also includes the type of
the features because some features such as obstacles are more reliably detected than others, such as point
features.

Once we have built the prediction regions, we can search for matches between the two images. The
search proceeds by matching the features F! to the features F,Zj that are in their prediction region starting
at the most important feature. We have to control the search in order to avoid a combinatorial explosion
by taking advantage of the fact that each time a new match is added both the displacement and the future
matches are further constrained. The displacement is constrained by combining the current estimate T
with the displacement computed from a new match (F }Fg) Even though the displacement is described
by six components, the number of components of the displacement that can be computed from one single
match depends on the type of features involved: point matches provide only three components, line
matches provide four components (two rotations and two translations), and region matches provide three
components. We therefore combine the components of T with those components of the new match that
can be computed. A given match pruncs the search by constraining the future potential matches in two
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ways: if connectivity relations between features are available, as in the case of terrain patches, then a
match (F}, F%) constrains the possible matches for the neighbors of F}) in that they have to be adjacent to
F3. 2 In the case of points or patches, an additional constraint is induced by the relative placement of the
features in the scene: two matches, (F}, F%) and (F}, F};), are compatible only if the angle between the

vectors w! = FLFT and w? = Fi 7— is lower than =, provided the rotation part of T is no greater than
which is the case in realistic snuauons. This constraint means that the relative placement of the features
remains the same from image to image which is similar to the classical ordering constraint used in stereo
matching.

The result of the search is a set of possible matchings, each of which is a set of pairs § = (F }E,Fi)k
between the two sets of features. Since we evaluated T simply by combining components in the course
of the search, we have to evzluate T for each S in order to get an accurate estimate. T is estimated by

minimizing an error function of the form:

E= Zd( - T(F3) (20)

The distance d(.) used in Equation (20) depends on the type of the features involved: For point features,
it is the usual distance between two points; for lines it is the weighted sum of the angle between the two
lines and the distance between the distance vectors of the two lines; for regions it is the weighted sum of
the distance between the unit direction vectors and the distance between the two direction vectors. All the
components of T can be estimated in general by minimizing E. We have to carefully identify, however,
the cases in which insufficient features are present in the scene to fully constrain the transformation. The
matching S that realizes the minimum £ is reported as the final match between the two maps while the
corresponding displacement T is reported as the best estimate of the displacement between the two maps.
The error E(T) can then be used to represent the uncertainty in T.

This approach to feature based matching is quite general so that we can apply it to many different
types of features, provided that we can define the distance d(.) in Equation (20), the importance measure,
and the feature measure. The approach is also fairly efficient as long as § and ¢ do not become too large,
in which case the search space becomes itself large. We describe two implementations of the feature
matching algorithm in the next two Sections.

4.2.1 Example: Matching polygonal representations

We have implemented the feature-based matching algorithm on the polygonal descriptions of Section 3.4
and 3.3. The features are in this case:

e The polygons describing the terrain parametrized by their areas, the equation of the underlying
surface, and the center of the region

e The polygons describing the trace of the major obstacles detected (if any).

o The road edges found in the reflectance images if the road detection is reliable enough. The
reliability is measured by how much a pair of road edges deviates from the pair found in the
previous image.
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Figure 32: A sequence of range and reflectance images

The obstacle polygons have a higher weight in the search itself because their detection is more reliable
than the terrain segmentation, while the terrain regions and the road edges contribute more to the final
estimate of the displacement since their localization is better. Once a set of matches and a displacement T
are computed, the obstacles and terrain patches that are common between the current map and a new image
are combined into new polygons, the new features are added to the map while updating the connectivity
between features.

This application of the feature matching has been integrated with the rest of the Navlab system. In
the actual system, the estimates of the displacement Ty are taken from the central database that keeps
track of the vehicle’s position. The size of prediction region is fixed with é = one meter, and ¢ = 20°.
This implementation of the feature matching has performed successfully over the course of runs of several
hundred meters. The final product of the matching is a map that combines all the observations made
during the run, and a list of updated obstacle descriptions that are sent to a map module at regular intervals.
Since errors in determining position tend to accumulate during such long runs, we always keep the map
centered around the current vehicle position. As a result, the map representation is always accurate
close to the current vehicle position. As an example, Figure 34 shows the result of the matching on five
consecutive images separated by about one meter. The scene in this case is a road bordered by a few trees.
Figure 32 shows the original sequence of raw range and reflectance images, Figure 33 shows perspective
views of the corresponding individual maps, and Figure 34 is a rendition of the combined maps using the
displacement and matches computed from the feature matching algorithm. This last display is a view of
the map rotated by 45° about the x axis and shaded by the values from the reflectance image.

4.2.2 Example: Matching local features from high resolution maps

Matching local features from high resolution maps provides the displacement estimate for the iconic
matching of high resolution maps. The primitives used for the matching are the high curvature points and
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Figure 33: Individual maps

38




Figure 34: Perspective view of the combined map

lines described in Section 3.5.7. The initial matches are based on the similarity of the length of the lines
and the similarity of the curvature strength of the points. The search among candidate matches proceeds
as described in Section 4.2. Since we have dense elevation at our disposal in this case, we can evaluate
a candidate displacement over the entire map by summing up the squared differences between points in
one map and points in the transformed map. Figure 35 shows the result of the feature matching on a pair
of maps. The top image shows the superimposition of the contours and features of the two maps using
the estimated displacement (about one meter translation and 4° rotation), while the bottom image shows
the correspondences between the point and line features in the two maps. The lower map is transformed
by T with respect to the lower right map. Figure 36 shows the result of the feature matching in a case in
which the maps are separated by a very large displacement. The lower left display shows the area that
is common between the two maps after the displacement. Even though the resulting displacement is not
accurate enough to reliably merge the maps, it is close enough to the optimum to be used as the starting
point of a minimization algorithm.

4.3 Iconic matching from elevation maps

The general idea of the iconic matching algorithm is to find the displacement T between two elevation
maps from two different range images that minimizes an error function computed over the entire combined
elevation map. The error function E measures how well the first map and the transformed of the second
map by T do agree. The easiest formulation for E is the sum of the squared differences between the
elevation at a location in the first map and the elevation at the same location computed from the second
map using T. To be consistent with the earlier formulation of the locus algorithm, the elevation at any
point of the first map is actually the intersection of a line containing this point with the range image. We
need some additional notations to formally define E: R and ¢ denote the rotation and translation parts of
T respectively, fi(u, v) is the function that maps a line in space described by a point and a unit vector to
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Figure 35: Matching maps using local features

Figure 36: Matching maps using local features (large rotation component)
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a pomnt in by the generalized locus algorithm ot Section 3.5.Z applied to image i. We have thea:
E=Y"|litu,v) - gu,v, DI @1

where g(u,v,T) is the intersection of the transformed of the line (&, v) by T with image 2 expressed in the
coordinate system of image 1 (Figure 37). The summation in Equation (21) is taken over all the locations
(u4,v) in the first map where both fi(u,v) and g(u,v,T) are defined. The lines (i, v) in the first map are
parallel to the z-axis. In other words:

gu,v, ) =T Y (HW/,V)) = R, V) +7 (22)

where T-1 = (R, ¢) = (R-1,-R~11) is the inverse transformation of 7, and (&/,V') = (Ru+ t,Rv} is the
transformed of the line (4,v). This Equation demonstrates one of the reasons why the locus algorithm
is powerful: in order to compute f2(Ru + t,Rv) we can apply directly the locus algorithm, whereas we
would have to do some interpolation or resampling if we were using conventional grid-based techniques.
We can also at this point fully justify the formulation of the generalized locus algorithm in Section 3.5.2:
The transformed line (4, V) can be anywhere in space in the coordinate system of image 2, even though
the original line (u,v) is parallel to the z-axis, necessitating the generalized locus algorithm to compute

f2(u,, V’).

<4— Line (u,v)

— Terrain

? Transformed line

(u,v)

Intersection point
from locus algorithm

Figure 37: Principle of the iconic matching algorithm

We now have to find the displacement T for which £ is minimum. If v = [a, 3,7, &, ty, 8] is the
6-vector of parameters of T, where the first three components are the rotation angles and the last three
are the components of the translation vector, then E reaches a minimum when:

OE

v =0 23
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Assuming an iitial esumate 1o, such a minimum can be found by an iterauve gradient descent ot ]
the form:

vl=yis k (u‘) (24)

where o/ is the estimate of » at iteration i. From Equation (21), the derivative of E can be computed by:

OE

=2 > (fiw,v) - gu,v T)) (u v,T) (25)
From Equation (22), we get the derivative of g:

%8 =R Lot vy B+ & 26)

The derivativcs appeasing in the last two components in Equation (26) are the derivatives of the
transformation with respect to its parameters which can be computed analyticaily. The last step to
compute the derivative of g(u, v,T) is therefore to compute the derivative of f2(«’, V) with icspect to v.
We could write the derivative with respect to each component v; of v by applying the chain rule directly:

bi/23 afz Bu of; v
8_1/; ou 81/ + Wa_m
Equation (27) leads however to unstabilities in the gradient algorithm because, as we pointed out in
Section 3.5.2, the (u, v) representation is an ambiguous representation of lines in space. We need to use a
non ambiguous representation in order to correctly compute the derivative. According to equation (13), we
can use interchangeably the (u, v) representation and the unambiguous (a, b, p, q) representation. Therefore
by considering f; as a function of the transform by T, I' = (&, ¥/, P/, ¢), of a line [ = (a, b, p,q) in image
1, we can transform Equation (27) to:

s gy O O
;i N J;

W,v)= @7

= (28)

Since the derivative df2/d! depends only on the data in image 2, we cannot compute it analytically
and have to estimate it from the image data. We approximate the derivatives of 2 with respect to a, b, p,
and q by differences of the type:

% =f(a+ Aaabvpv Q) ‘f(a,b,P,Q)
da Aa

Approximations such as Equation (29) work well because the combination of the locus algorithm and the
GNC image smoothing produces smooth variations of the intersection points.

The last derivatives that we have to compute to complete the evaluation of JE/0Jv are the derivatives
of ¥ with respect to each motion parameter ;. We start by observing that if X = [x,y,z] is a point on
the line of parameter /, and X’ = [¥,y, 7] is the transformed of X by T that lies on a line of parameter
I, then we have the following relations from Equation (13):

(29

x=az+p,X =d7 +p (30)
y=bz+q,y =b7+¢
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By climinating X 224 X’ between Equation (30) and the rclation X' = RX + ¢, we have the relation between

land /:

R,V

d ===
R,.V’

R,V
H:ﬁ, qI=Ry.U+ty—bl(Rz-U+tz)

P=R.U+t, —dR,.U+1,) 3n

where Ry, Ry, R, are the row vectors of the rotation matrix R, A = {(a,b, 1), B = [p,q,0]'. We now have /'
as a function of / and T, making it easy to compute the derivatives with respect to v; from Equation (31).

In the actual implementation of the matching algorithm, the points at which the elevation is computed
in the first map are distributed on a square grid of ten centimeters resolution. The lihes (4, v) are therefore
vertical and pass through the centers of the grid cells. E is normalized by the number of points since
the since of the overlap region between the two maps is not known in advance. We first compute the
fi(u, v) for the entire grid for image 1, and then apply directly the gradient descent algorithm described
above. The iterations stop either when the variation of error AE is small enough, or when E itself is
suiall enough. Since the matching is computationally expensive, we compute E over an eight by eight
meter window ia the first image. The last test ensures that we do not keep iterating if the error is smaller
than what can be reasonably achicved given the characteristics of the sensor. Figure 38 shows the result
of combining three high resolution elevation maps. The displacements between maps are computed using
the iconic matching algorithm. The maps are actually combined by replacing the elevation fj{u, v) by the
combination:

oufi + o2fs
o1+ 07

(32)

where o1 and o7 are the uncertainty values computed as in Section 3.5.4. Equation (32) is derived by
considering the two elevation values as Gaussian distributions. The resulting mean error in elevation is
lower than ten centimeters. We computed the initial To by using the local feature matching of Section 4.2.2.
This estimate is sufficient to ensure the convergence to the true value. This is important because the
gradient descent algorithm converges towards a local minimum, and it is therefore important to show
that Tp is close to the minimum. Figure 39 plots the value of the v;’s with respect to the number of
iterations. These curves show that E converges in a smooth fashion. The coefficient k that controls the
rate of convergence is very conservative in this case in order to avoid oscillations about the minimum.

Several variations of the core iconic matching algorithm are possible. First of all, we assumed
implicitly that E is a smooth function of v; this not true in general because the summation in Equation (21)
is taken only over the regions in which both f; and g are defined, that is the intersection of the regions of
map 1 and 2 that is neither range shadows nor outside of the field of view. Such a summation implicitly
involves the use of a non-differentiable function that is 1 inside the acceptable region and 0 outside. This
does not affect the algorithm significantly because the changes in v from one iteration to the next are
small enough. A differcntiable formulation for £ would be of the form:

E =" pi(u,vua(Tw v)|lfi (4, v) — g(u, v, T)|2 (33)

where u(u,v) is a function that is at most 1 when the point is inside a region where fi(u,v) is defined
and vanishes as the point approaches a forbidden region, that is a range shadow or a region outside of
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Figure 38: Combining four maps by the iconic matching algorithm
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Figure 39: Convergence rate of the matching algorithm
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the field of view. The summation in Eq. 33 is taken over the entire map. In order to avoid a situation in
which the minimum is attained when the two maps do not overlap (E = 0), we must also nomalize E by
the number of points in the overlap region. For £ ic be still smooth, we should therefore normalize by:

3w, v)ua(u, v) (34)

In addition to E being smooth, we also assumed that matching the two maps entirely determines the
six parameters of T. This assumption may not be true in all cases. A trivial example is one in which we
match two images of a flat plane, where only the vertical translation can be computed from the matching.
The gradient algorithm does not converge in those degenerate cases because the minimum 7(r) may have
arbitrarily large vaiues within a surface in parameter space. A modification of the matching algorithm
that would ensure that the algorithm does converge to some infinite value changes Equation (21) to:

E=Y [1fiu,v) - gy, DIF + 3 Aw? 5

The effect of the weights JA; is to include the constraint that the v;’s do not increase to infinity in the
minimization algorithm.

S Combining range and intensity data

In the previous Section we have concentrated on the use of 3-D vision as it relates solely to the navigation
capabilities of mobile robots. Geometric accuracy was the deciding factor in the choice of representations
and algorithms while we gave very little attention to the extraction of semantic information. A mobile
robot needs more than just navigation capabilities, however, since it also must be able to extract semantic
descriptions from its sensors. For example, we will describe a landmark recognition algorithm in Section
5. In that case, the system is able not only to build a geometric representation of an object but also to
relate it to a stored model.

Extracting semantic information for landmark recognition or scene analysis may require much more
than just geometric data from a range sensor. For example, interpreting surface markings is the only way
to unambiguously recognize traffic signs. Conversely, the recognition of a complex man-made object of
uniform color is easiest when using geometric information. In this Section we address the problem of
combining 3-D data with data from other sensors. The most interesting problem is the combination of
3-D data with color images since these are the two most common sensors for outdoor robots. Since the
sensors have differcnt fields of view and positions, we first present an algorithm for transforming the
images into a common frame. As an example of the use of combined range/color images, we describe a
simple scene analysis program in Section 5.3.

5.1 The geometry of video cameras

The video camera is a standard color vidicon camera equipped with wide-angle lenses. The color images
are 480 rows by 512 columns, and each band is coded on eight bits. The wide-angle lens induces a
significant geometric distortion in that the relation between a point in space and its projection on the
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image plane does not obey the laws of the standard perspective transformation. We alleviate this problem
by first transforming the actual image into an "ideal” image: if (R,C) is the position in the real image,
then the position (r, ¢) in the ideal image is given by:

r=£R,C),c=f(R,C) (36)

where f, and f; are third order polynomials. This correction is cheap since the right-hand side of (36)

can be put in lookup tables. The actual computation of the polynomial is described in [31] The geometry
of the ideal image obeys the laws of the perspective projection in that if P = {x,y,z]’ is a point in space,
and (r, c) is its projection in the ideal image plane, then:

r=fxjz,c =1z G7

where f is the focal length. In the rest of the paper, row and column positions will always refer to the
positions in the ideal image, so that perspective geometry is always assumed.

Real image

Y Ideal image
Figure 40: Geometry of the video camera

3.2 The registration problem

Range sensor and video cameras have different fields of view, orientations, and positions. In order to
be able to merge data from both sensors, we first have to estimate their relative positions, known as the
calibration or registration problem (Figure 41). We approach the problem as a minimization problem in
which pairs of pixels are selected in the range and video images. The pairs are selected so that each pair
is the image of a single point in space as viewed from the two sensors. The problem is then to find the
best calibration parameters given these pairs of points and is further divided into two steps: we first use
a simple linear least-squares approach to find a rough initial estimate of the parameters, and then apply a
non-linear minimization algorithm to compute an optimal estimate of the parameters.
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Figure 41: Geometry of the calibration problem

5.2.1 The calibration problem as a minimization problem

Let P; be a point in space, with coordinates P{ with respect to the range sensor, and coordinates P¢ with
respect to the video camera, The relationship between the two coordinates is:

PS=RP*_T (38)

where R is a rotation matrix, and T is a translation vector. R is a non-lincar function of the orientation
angles of the camera: pan (a), tilt ($), and rotation (7). P¢ can be computed from a pixel location in the
range image. P{ is not completely known, it is related to the pixel position in the video image by the
perspective transformation:

Zri=fx (39

zici =fyi (40)
where f is the focal length. Substituting (38) into (39) and (40) we get:

RPiri = Tori = fRPE + T, = 0 (1)

R.Pici — T,ci — fRP; + T, =0 (42)

where Ry, Ry, and R, are the row vectors of the rotation matrix R, and T, =fTy, T, = fT.

We are now ready to reduce the calibration problem to a least-squares minimization problem. Given
n points P;, we want to find the transformation (R, T) that minimizes the lefi-hand sides of equations (41)
and (42). We first estimate T by a lincar least-squares algorithm, and then compute the optimal estimate
of all the parameters.

5.2.2 Initial estimation of camera position

Assuming that we have an estimate of the orientation R, we want to estimate the corresponding T. The
initial value of R can be obtained by physical measurements using inclinometers. Under these conditions,
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the criterion to be minimized is:
n

C =) [(Ai - T:Bi — fCi + T)* + (Di — T,Ei — fFi + T})?] (43)
i=1

where A; = R,Piri, Bi =ri, Ci = RP{, D; = R.Pici, E; = ¢;, and F;, = R,P{ are known and T, T, T,

y’
f are the unknowns.
Equation (43) can be put in matrix form:

C=||U-AVI? - |W - BV|? (44)
B; 0 -1 C;
where V = [T}, T, To.fI', U = [A1,.,A,), W = [Dy,..,D,), A = e ,and B =
B, 0 -1 C,
Ei -1 0 F;
... . The minimum for the criterion of Equation (44) is attained at the parameter vector:
E. -1 0 F,
V=(A'A +B'B)"1(A'U + B'W) (45)

5.2.3 Optimal estimation of the calibration parameters

Once we have computed the initial estimate of V, we have to compute a more accurate estimate of (R, T).
Since R is a function of (a, 3, 7), we can transform the criterion from equation (43) into the form:

C=3_|lli- H(S|? (46)
=1

where /; is the 2-vector representing the pixel position in the video image, /; = [ri, ¢;]’, and § is the full
vector of parameters, S = [T}, T}, T:.f, a, 3, 7). We cannot directly compute Cpin Since the functions H;
are non-linear; instead we linearize C by using the first order approximation of H; [27]:

C =Y |lli- H(So) - JiAS| (47)
=1
where J; is the Jacobian of H; with respect to S, So is the current estimate of the parameter vector, and

AS =S — So. The right-hand side of (47) is minimized when its derivative with respect to AS vanishes,
that is:

n
N JIAS+1AC =0 (48)
=1

where AC; = I; — Hi(Sp). Therefore, the best parameter vector for the linearized criterion is:
n
AS= -3 (JJ)™NAC (49)
i=1

Equation (49) is iterated until there is no change in §. At each iteration, the estimate Sp is updated
by: So — So + AS.
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5.2.4 Implementation and performance

The implementation of the calibration procedure follows the steps described above. Pairs of corresponding
points are selected in a sequence of video and range images. We typically use twenty pairs of points
carefully selected at interesting locations in the image (e.g. comers). An initial estimate of the camera
orientation is (0, 8,0), where 3 is physically measured using an inclinometer. The final estimate of S is
usually obtained after less than ten iterations. This calibration procedure has to be applied only once, as
long as the sensors are not displaced.

Once we have computed the calibration parameters, we can merge range and video images into a
colored-range image. Instead of having one single fusion program, we implemented this as a library of
fusion functions that can be divided in two categories:

1. Range — video: This set of functions takes a pixel or a set of pixels (%, c®) in the range image
and computes the location (7%, c“) in the video image. This is implemented by directly applying
Equations (41) and (42).

2. Video — range: This set of functions takes a pixel or a set of pixels (r*,c¢) in the video image
and computes the location (7*,c®) in the range image. The computed location can be used in
turn to compute the location of a intensity pixel in 3-D space by directly applying Equation (3).
The algorithm for this second set of functions is more involved because a pixel in the video image
corresponds to a line in space (Figure 40) so that Equations (41) and (42) cannot be applied directly.
More precisely, a pixel (r°, c®) corresponds, after transformation by (R, T), to a curve C in the range
image. C intersects the image at locations (. ¢¢), where the algorithm reports the location (7%, ¢®)
that is the minimum among all the range image pixels that lie on C of the distance between (7, ¢¢)
and the projection of (%, ¢?) in the video image (using the first set of functions). The algorithm is
summarized on Figure 42.

Figure 43 shows the colored-range image of a scene of stairs and sidewalks, the image is obtained by
mapping the intensity values from the color image onto the range image. Figure 44 shows a perspective
view of the colored-range image. In this example [16], we first compute the location of each range pixel
(r*,¢®) in the video image, and then assign the color value to the 64 x 256 colored-range image. The final
display is obtained by rotating the range pixels, the coordinates of which are computed using Equation (3).

5.3 Application to outdoor scene analysis

An example of the use of the fusion of range and video images is outdoor scene analysis [20,26] in
which we want to identify the main components of an outdoor scene, such as trees, roads, grass, etc. The
colored-range image concept makes the scene analysis problem easier by providing data pzrtinent to both
geometric information (e.g. the shape of the trees) and physical information (e.g. the color of the road).

5.3.1 Feature extraction from a colored-range image

The features that we extract from a colored-range image must be related to two types of information: the
shapes and the physical properties of the observed surfaces.
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Figure 42: Geometry of the "video — range" transformation

Figure 43: Colored-range image of stairs

Figure 44: Perspective view of registered range and color images
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The geometric features are used to describe the shape of the objects in the scene. We propose to use
two types of features: regions that correspond to smooth patches of surface, and edges that correspond
either to transitions between regions, or to transitions between objects (occluding edges). Furthermore,
we must be able to describe the features in a compact way. One common approach is to describe the
regions as quadric patches, and the edges as sets of tri-dimensional line segments. More sophisticated
descriptions are possible [5], such as bicubic patches or curvature descriptors. We use simpler descriptors
since the range data is relatively low resolution, and we do not have the type of accurate geometric model
that is suited for using higher order geometric descriptors. The descriptors attached to each geometric
feature are:

e The parameters describing the shape of the surface patches. That is the parameters of the quadric
surface that approximate each surface patch.

e The shape parameters of the surface patches such as center, area, and elongations.
e The 3-D polygonal description of the edges.
e The 3-D edge types: convex, concave, or occluding.

The surface patches are extracted by fitting a quadric of equation X*AX + B'X + C = 0 to the observed
surfaces, where X is the Cartesian coordinate vector computed from a pixel in the range image. The
fitting error,

EA,B,C)= Y [XIAX;+B'X;+C)? (50)
Xi€patch

is used to control the growing of regions over the observed surfaces. The parameters A, B, C are computed
by minimizing E(A, B, C) as in [14].

The features related to physical properties are regions of homogeneous color in the video image, that
is regions within which the color values vary smoothly. The choice of these features is motivated by the
fact that an homogeneous region is presumably part of a single scene component, although the converse
is not true as in the case of the shadows cast by an object on an homogeneous patch on the ground. The
color homogeneity criterion we use is the distance (X — m)X~!(X — m) where m is the average mean
value on the region, X' is the covariance matrix of the color distribution over the region, and X is the
color value of the current pixel in (red, green, blue) space. This is a standard approach to color image
segmentation and pattern recognition. The descriptive parameters that are retained for each region are:

o The color statistics (m, X).
e The polygonal representation of the region border.
e Shape parameters such as center or moments.

The range and color features may overlap or disagree. For example, the shadow cast by an object on
a flat patch of ground would divide one surface patch into two color regions. It is therefore necessary
to have a cross-referencing mechanism between the two groups of features. This mechanism provides
a two-way direct access to the geometric features that intersect color features. Extracting the relations
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between geometric and physical features is straightforward since all the features are registered in the
colored-range image.

An additional piece of knowledge that is important for scene interpretation is the spatial relationships
between features. For example, the fact that a vertical object is connected io a large flat plane through a
concave edge may add evidence to the hypothesis that this object is a tree. As in this example, we use
three types of relational data:

e The list of features connected to each geometric or color feature.

e The type of connection between two features (convex/concave/occluding) extracted from the range
data.

e The length and strength of the connection. This last item is added to avoid situations in which two
very close regions become accidentally connected along a small edge.

5.3.2 Scene interpretation from the colored-range image

Inierpreting a scenc reyuires the recognition of the main components of the scene such as trees or roads.
Since we are dealing with natural scenes, we cannot use the type of geometric matching that is used in
the context of industrial parts recognition [5]. For example, we cannot assume that a given object has
specific quadric parameters. Instead, we have to rely on "fuzzier" evidence such as the verticality of
some objects or the flatness of others. We therefore implemented the object models as sets of properties
that translate into constraints on the surfaces, edges, and regions found in the image. For example, the
description encodes four such properties:

e P1: The color of the trunk lies within a specific range => constraint on the statistics (m, X') of a
color region.

e P2: The shape of the trunk is roughly cyclindrical = constraint on the distribution of the principal
values of the matrix A of the quadric approximation.

e P3: The trunk is connected to a flat region by a concave edge == constraint on the neighbors of
the surface, and the type of the connecting edge.

o P4: The tree has two parallel vertical occluding edges = constraint on the 3-D edges description.

Other objects such as roads or grass areas have similar descriptions. The properties P, of the known
object models M; are evaluated on all the features Fy extracted from the colored-range image. The result
of the evaluation is a score Sj; for each pair (P;;, F,). We cannot rely on individual scores since some
may not be satisfied because of other objects, or because of segmentation problems. In the tree trunk
example, one of the lateral occluding edges may itself be occluded by some other object, in which case
the score for P4 would be low while the score for the other properties would still be high. In order to
circumvent this problem, we first sort the possible interpretations M; for a given feature Fy according to
all the scores (S;j)i. In doing this, we ensure that all the properties contributc to the final interpretation
and that no interpretations are discarded at this stage while identifying the most plausible interpretations.
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We have so far extracted plausible interpretations only for individual scene features F;. The final
stage in the scene interpretation is to find the interpretations (Mj,, F) that are globally consistent. For
example, property P3 for the tree implies a constraint on a neighboring region, namely that this has to be
a flat ground region. Formally, a set of consistency constraints C,», is associated with each pair of objects
(Mm, M,). The Cmn constraints are propagated through the individual interpretations (Mj,, F) by using
the connectivity information stored in the colored-range feature description. The propagation is simple
considering the small number of features remaining at this stage.

The final result is a consistent set of interpretations of the scene features, and a grouping of the
features into sets that correspond to the same object. The last result is a by-product of the consistency
check and the use of connectivity data. Figure 45 shows the color and range images of a scene which
contains a road, a couple of trees, and a garbage can. Figure 46 shows a display of the corresponding
colored-range image in which the white pixels are the points in the range image that have been mapped
into the video image. This set of points is actually sparse because of the difference in resolutions between
the two sensors, and some interpolation was performed to produce the dense regions of Figure 46,

Only a portion of the image is registered due to the difference in field of view between the two
sensors (60° for the camera versus 30° in the vertical direction for the range sensor). Figure 47 shows
a portion of the image in which the edge points from the range image are projected on the color image.
The edges are interpreted as the side edges of the tree and the connection between the ground and the
tree. Figure 48 shows the final scene interpretation. The white dots are the main edges found in the range
image. The power of the colored-range image approach is demonstrated by the way the road is extracted.
The road in this image is separated into many pieces by strong shadows. Even though the shadows do not
satisfy the color constraint on road region, they do perform well on the shape criterion (flatness), and on
the consistency criteria (both with the other road regions, and with the trees). The shadows are therefore
interpreted as road regions and merge with the other regions into one road region. This type of reasoning
is in general difficult to apply when only video data is used unless one uses stronger models of the objects
such as an explicit model of a shadowed road region. Using the colored-range image also makes the
consistency propagation a much easier task than in purely color-based scene interpretation programs [32].

6 Conclusion

We have described techniques for building and manipulating 3-D terrain representations from range images.
We have demonstrated these techniques on real images of outdoor scenes. Some of them (Sections 3.3, 3.4,
and 4.2) were integrated in a large mobile robot system that was successfully tested in the field. We expect
that the module that manipulates and creates these terrain representations will become part of the standard
core system of our outdoor mobile robots, just as a local path planner or a low-level vehicle controller
are standard modules of a mobile robot system independent of its application. This work will begin by
combining the polygonal terrain representation of Section 3.4 with the path planner of [38] in order to
generate the basic capabilities for an off-road vehicle,

Many issues still remain to be investigated. First of all, we must define a uniform way of representing
and combining the uncertainties in the terrain maps. Currently, the uncertainty models depend heavily on
the type of sensor used and on the level at which the terrain is represented. Furthermore, the displacements
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Figure 45: Color and range images of an outdoor scene
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Figure 47: Edge features from the colored-range image
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Figure 48: Final scene interpretation
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between terrain maps are known only up to a certain level of uncertainty. This level of uncertainty must
be evaluated and updated through the matching of maps, whether iconic or feature-based. Regarding
the combination of the 3-D representations with representations from other sensors, we need to define
an algorithm for sensor registration that is general enough for application to a variety of situations. The
algorithms presented in Section 5 are still very dependent on the sensors that we used, and on the intended
application. Registration schemes such as {17] would enable us to have a more uniform approach to the
problem. An added effect of using such a registration algorithm is that we could explicitly represent errors
caused by the combination of the sensors, which we did not do in Section 5. Another issue concerns
our presentation of the three levels of terrain representation, the matching algorithms, and the sensor
combination algorithms as separate problems. We should define a common perceptual architecture to
integrate these algorithms in a common representation that can be part of the core system of a mobile
robot. Finally, we have tackled the terrain representation problems mainly from a geometrical point of
view. Except in Section 5, we did not attempt to extract semantic interpretations from the representations.
A natural extension of this work is to use the 3-D terrain representations to identify known objects in the
scene. Another application along these lines is to use the terrain maps to identify objects of interest, such
as terrain regions for sampling tasks for a planetary explorer [24]. Although we have performed some
preliminary experiments in that respect [19,2], extracting semantic information from terrain representations
remains a major research area for outdoor mobile robots.
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