
AVF Control Number: AVF-V -169.0788

Ada COMPILER
00 VALIDATION SUMMARY REPORT:

Q Certificate Number: 880620W1.09070
CApollo Computer, Inc.

Domain/Ada, Version 2.0
Apollo DN4000

0)

Completion of On-Site Testing:
I 22 June 19&8

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson APB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081 D T IC

ELECTEf

SEP 2 6 88

H

DISTIBUTION STATEOUM A i

Approved fo8 p1c: rele";

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READLSTRCTONSM
BEFORE COMPLETEUNG FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Apollo 22 June 1988 to 22 June 1989
Computer, Inc., Domain/Ada, Version 2.0,
Apollo DN4000 (Host and Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK S
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 22June1988
United States Department of Defense 13. NUMBER UF PAGES
Washington, DC 20301-3081 54p.

14. MONITORING AGENCY NAME & ADDRESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
Wright-Patterson Air Force Base, iSa. A FICATIONDOWNGRADING
Dayt2 n, Ohio, U.S.A. N/A S

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

0
18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Domain/Ada, Version 2.0, Apollo Computer, Inc., Wright-Patterson Air Force Base, Apollo DN4000 under
DomairIX, Release SR9.7 (Host and Target), ACVC 1 . 9.

0

DO u". 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: Domain/Ada, Version 2.0

Certificate Number: 880620W1.09070

Host: Target:
Apollo DN4000 under Apollo DN4000 under
Domain/IX, Domain/IX,
Release SR9.7 Release SR9.7

Testing Completed 22 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validaticn Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A a Validation Organization

.0 Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joit Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES . 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED.2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS Accession For

NTIS CPA&I
DTIC TAR 0
Unvu,-r-o. iced [-

JusUX'1Cat Ion

Distribution/

Availability Codes Il .. Aval i s d/or

Dist Special

: iI

CHAPTER 1

INTRODUCTION

L- This Validation Summary Report -(VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
ascording to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

r

1-1

N0

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is silowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office anO administered by the Ada Validation Organization (AVO).

On-site testing was completed 22 June 1988 at Apollo Computer, Inc.

04"

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

J

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

4b, 3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

Guidelines.

1-3

INTRODUCTION

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context .of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
arid executed. There are no explicit program components in a Class A test
to check semantics. For eAple, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is

1-4
I)

" .. " ',, '" '' .. " '" . A' . .'v " -

INTRODUCTION

passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library-a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the

Scpmpiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
St-.nia-d ",-mits an i'n1ementation to reject programs containing some
features addressed by Class E tests during compilatiol. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

1-5

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

I "

1-6

,-

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: Domain/Ada, Version 2.0

ACVC Version: 1.9

Certificate Number: 880620W1.09070

Host Computer:

Machine: Apollo DN4000

Operating System: Domain/IX
Release SR9.7

Memory Size: 8 megabytes

Target Computer:

Machine: Apollo DN4000

Operating System: Domain/IX
Release SR9.7

Memory Size: 8 megabytes

2-1

-0

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. -(See tests

D4AOO2A, D4AO02B, D4AO04A, and D4AO04B.)

A Predefined types.

This implementation supports the additional predefined types
% SHORTINTEGER, TINYINTEGER, and SHORT FLOAT in the package

STANDARD. (See tests B86001C and B86001D.T

Based literals.

An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Apparently NUMERICERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal, operand in a fixed-point
comparison test is outside the range of the base type. (See test
C45252A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point membership test is outside the range of the base type.
(See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C'6012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAS.
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

2-3
iS

l V

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC-ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expressin appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing rubaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M...)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)
Length clauses with SMALL specifications are supported. (See

tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is supported for functions. (See tests LA3004A, LA3004B, EA3004C,
EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE2101H, EE2401D, and EE2401G.)

2-5

.• q MR NM rtK

CONFIGURATION INFORMATION

Modes INFILE and OUT FILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE2102E.)

Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..D (4 tests), CE211OB, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file can be associated with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIALIO, DIRECTIO, and TEXTIO. (See test
CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

. Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

2-6

Ir

CONFIGURATION INFORMATION

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3O11A.)

2-7

CHAPT 3

TEST INFORMATION

3.1 .TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this ccmpiler was

tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 226 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 26 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 109 1049 1630 17 18 46 2869

Inapplicable 1 2 223 0 0 0 226

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 1!6 3122

3-1

S

I

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

__ 2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 499 540 245 166 98 142 326 137 36 234 3 253 2869

Inapplicable 14 73 134 3 0 0 1 1 0 0 0 0 0 226

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904B C35AO3E C35A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614' A74106C
C87B04B C85018B CC1311B BC3105A ADIAOIA
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 226 tests were inapplicable for the
reasons indicated:

C35702B uses LONG FLOAT which is not supported by this
implementation.

A39005G uses a record representation clause which allocates only
four bits for a component that is declared as a boolean array with
four members. This implementation requires that the boolean array
type have a separate size clause specifying four bits.

3-2

TEST INFORMATION

The following 13 tests use LONGINTEGER, which is not supported by
this implementation:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55BO7A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by.this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

" C86001F redefines package SYST;M, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

" C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

. The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

3-3

TEST INFORMATION

The following 26 Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2AOO3A
B2AO03B B2AO03C B33301A B37201A B38003A
B38003B B38009A B38009B B41202A B44001A
B64oo1A B67001A B67001B B67001C B67001D
B91001H B91003B B95001A B97102A BC1303F
BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Domain/Ada compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Domain/Ada using ACVC Version 1.9 was conducted on-site by a
validation team from the AVF. The configuration consisted of six Apollo
DN4000 machines operating under Domain/IX, Release SR9.7.

A magnetic tape containing all tests except for the withdrawn tests and the
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Apollo DN400, and all executable tests were
run on the DN4000. Results were printed from the host computer.

The compiler was tested using command scripts provided by Apollo Computer,
Inc., and reviewed by the validation team. The compiler was tested using
all default option settings.

Tests were compiled, linked, and executed (as appropriate) using a single
host/target computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3-4

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Apollo Com~puter, Inc., and was completed on 22
June 1988.

3-5

0vNVZVITVV ~ vvav% 1

APPENDIX A

DECLARATION~ OF CONFORMANCE

Apollo Computer, Inc. has submitted the following
Declaration of Conformance concerning the Domain/Ada
compiler.

*A-1

%T-, 0737 .. Ql -Z - - 7- M -

DECLARATION OF CONFORMANCE

Compiler Implementor: Apollo Computer, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version 1.9

Base Configuration

Base Compiler Name: Domain/Ada Version 2.0

Host Architecture ISA: Apollo DN4000
OS & VER #: Domain/IX, Release SR9.7

Target Architecture ISA: Apollo DN4000

OS & VER #: Domain/IX, Release SR 9.7

Implementor's Declaration

I, the -undersigned, representing Apollo Computer, Inc., have implemented no deliberate
0 ,,extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed

in this declaration. I declare that Apollo Computer, Inc. is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible for maintaining said com-
piler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in the owner's corporate
name.

- -- . , /Date: _ _ -_ _ _

Apollo Computer, Inc.
Daryl R. Winters, Ada Project Engineer

Owner's Declaration

I, the undersigned, representing Apollo Computer, Inc., take full responsibility for imple-
mentation and maintenance of the Ada compiler(s) listed above, and agree to the public
disclosure of the final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

.... / /
7 Date:-

Apollo Computer, Inc.
Daryl R. Winters, Ada Project Engineer

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Domain/Ada, V2.0, are described in the following sections, which
discuss topics in Appendix F of the Ada Standard. Implementation-specific
pdIrtions of the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32758 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 9
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORTFLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type DURATION is delta 2.0 *' (-14) range -86400.0 .. 86400.0;

end STANDARD;

B-I"!

15.3 Pragmas and Their Effects

Each of this implementation's pragmas is briefly described here; additional
information on some of them is found under discussions of particular language
constructs.

pragma CONTROL - is recognized by the implementation, but has no effect

in the current release.

pragma ELABORATE is implemented as described in Appendix B of the RM.

pragma EXTERNAL-NAME allows the user to specify a link name for an Ada
variable or subprogram so that the object can be referenced from other
languages. For more information, see Chapter 11.

pragma IMPLICITCODE specifies that implicit code generated by the
compiler is allowed (ON) or disallowed (OFF) and is used only within the
declarative part of a machine code procedure. For more information, see
Chapter

10.

pragma INLINE is implemented as described in Appendix B of the RM with the
addition that recursive calls can be expanded with the pragma up to the
maximum depth of 8. Warnings are produced for too-deep nestings, or for
bodies that are not available for inline expansion.

I pragma INUNEONLY when used in the same way as pragma INLINE,
indicates to the compiler that the subprogram must always be inlined (very
important for some code procedures.). This pragma also suppresses the
generation of a callable version of the routine which saves code space.

pragma INTERFACE supports calls to Domain C, Domain Pascal, and

FORTRAN language functions with an optional linker name for the
subprogram. The Ada specificaLions can be either functions or procedures. All
parameters must have mode IN. For more information, see Chapter 11.

pragma INTERFACEOBJECT allows variables defined in another language to
be referenced directly in Ada, replacing all occurrences of variable name with

an external reference to link-name in the object file. For more information,
see Chapter 11.

pragma LIST is implemented as described in Appendix B of the RM.

B-2

4 . NO AM ,v, P-1 TV W W ym MR W 'Wavix . , , , r ,. ,

pragma MEMORY SIZE is recognized by the implementation, but has no
effect in the current release.I pragma NO IMAGE suppresses the generation of the image array used for the
IMAGE attribute of enumeration types. This eliminates the overhead required
to store the array in the executable image.

pragma OPTIMIZE is recognized by the implementation, but has no effect in
the current release. See the ada -O option for code optimization options.

pragma PACK will cause the compiler to minimize gaps between components
in the representation of composite types. For arrays, components will only be
packed to bit sizes corresponding to powers of 2 (if the field is smaller than
STORAGE UNIT bits). Objects larger than a single STORAGE UNIT are
packed to the nearest STORAGEUNIT.

A pragma PAGE is implemented as described in Appendix B of the RM. It is also

recognized by the source code formatting tool a.pr.

pragma PRIORITY is implemented as described in Appendix B of the RM.

pr'mgma SHARE CODE provides for the sharing of object code between
multiple instantiations of the same generic procedure or package body. A
'parent' instantiation is created and subsequent instantiations of the same
types can share the parent's object code, reducing program size and
compilation times. The name pragma SHARE B.DY may be used instead of
SHARE CODE with the same effect.

pragma SHARED is recognized by the implementation, but has no effect in the
current release.

pragma STOPAGEUNIT is recognized by the implementation, but has no
effect in the current release. The implementation does not allow SYSTEM to be
modified by means of pragmas. However, the same effect can be achieved by
recompiling package SYSTEM with altered values.

pragma SUPPRESS is supported in the single parameter form. The pragma
applies from the point of occurrence to the end of the innermost enclosing

block. DIVISION CHECK cannot be suppressed. The double parameter form
of the pragma with a name of an object, type, or subtype is recognized, but has
no effect in the current release.

4 B-3r ill

pragma SYSTEM _NAME is recognized by the implementation, but has no
effect in the current release. The implementation does not allow SYSTEM to
be modified by means of pragmas. However, the file system.a from the
STANDARD library can be copied to a local Domain/Ada library and
recompiled there with new values.

15.4 Implementation-Defined Attribute: X'REF

Domain/Ada provides one implementation-defined attribute, 'REF. There are
two forms of use for this attribute, X'REF and SYSTEM.ADDRESS'REF(N).
X'REF is used only in machine code procedures while
SYSTEM.ADDRESS'REF(N) can be used anywhere to convert an integer
expression to an address.

15.4.1 X'REF

The attribute generates a reference to the entity to which it is applied.

In X'REF, X must be either a constant, variable, procedure, function, or label.
The attribute returns a value of the type MACINE CODE.OPERAND and
may only be used to designate an operand within a code-statement.

The instruction generated by the code-statement in which the attribute occurs
may be preceded by additional instructions needed to facilitate the reference
(for example, loading a base register). If the declarative section of the
procedure contains pragma IMPLICIT CODE (OFF), a warning will be
generated if additional code is required.

References may also cause run-time checks to be generated. pragma
SUPPRESS may be used to eliminate these checks:

CODE 1'(JSR. PROC'REF);
CODE_2"(MOVE-L. X.ALL(Z'REF, DO);

For more information, see Chapter 10.

U, B-4

15.4.2 SYSTEM.ADDRESS'REF(N)

The effect of this attribute is similar to tht effect of an unchecked conversion
from integer to address. However, SYSTEM.ADDRESS'REF(N) should be
used instead in the following listed circumstances, and in these circumstances,
N must be static.

" Within any of the run time configuration packages.
Use of unchecked conversion within an address clause would require
the generation of elaboration code, but the configuration packages
are not elaborated.

" In any instance where N is greater than INTEGER'LAST.
Such values are required in address clauses which reference the
upper portion of memory. To use unchecked conversion in these
instances would require that the expression be given as a negative
integer.

" To place an object at an address, use the 'REF attribute.
The integer .value, in the example below, is converted to an address
for use in the address clause representation specification. The form
avoids UNCHECKED CONVERSION and- is also useful for 32-bit
unsigned addresses.

-place an object at an address
for object use at ADDRESS'REF (integer value)

-to use unsigned addresses
for VECTOR use at SYSTEM.ADDRESS'REF(16#8080OOdO#);
TOPOFMEMORY: SYSTEM.ADDRESS:- SYSTEM.ADDRESS"REF(16#FFFFFFFF#):

In SYSTEM.ADDRESS'REF(N). SYSTEM.ADDRESS must be the type
SYSTEM.ADDRESS. N must be an expression of type
UNIVERSALINTEGER. The attribute returns a value of type
SYSTEM.ADDRESS, which represents the address designated by N.

B-5

15.5 Restrictions on 'Main' Programs

Domain/Ada requires that a 'main' program must be a non-generic
subprogram that is either a procedure or a function returning an Ada
STANDARD.INTEGER (the predefined type). In addition, a 'main' program 3
cannot be an instantiation of a generic subprogram. 1

15.6 Generic Declarations

Domain/Ada does not require that a generic declaration and the corresponding
body be part of the same compilation, and they are not required to exist in the
same Domain/Ada library. An error is generated if a single compilation
contains two versions of the same unit.

15.7 Shared Object-Code for Generic Subprograms

The Domain/Ada compiler generates code for a generic instantiation that can
be shared by other instantiations of the same generic. This reduces the size of
the generated code and increasing compilation speed. There is an overhead
associated with the use of shared code instantiations because the generic actual
parameters must be accessed indirectly and in the case of a generic package
instantiation, declarations in the package are also accessed indirectly. Also,
greater optimization is possible for unshared instantiations because exact
actual parameters are known. It is the responsibility of the programmer to
decide whether space or time is most critical in a specific application.

To give the programmer control of when an instantiation generates unique
code or shares code with other similar instantiations, we provide pragma
SHARE CODE. This pragma can be applied to a generic declaration or to
individual instantiations.

It is not practical to share the code for instantiations of all generics. If the
generic has a formal private type parameter the generated code to
accommodate an instantiation with an arbitrary actual type would be extremely
inefficient.

B-6

- % .V V

The Domain/Ada compiler will share code by default if the generic formal type
parameters are restricted to integer, enumeration, or floating point. To
override the default, the pragma SHARECODE(name, FALSE) must be
used. If there are formal subprogram parameters, instantiations will not be
shared unless an explicit pragma SHARECODE(name, TRUE) is used.

Generics are shared by default, if a parent is visible, except in the following
cases:

e When generic formal types other than integer, enumeration,
SYSTEM.ADDRESS or floating point are used

. When pragma DZINE is applied to a generic subprogram or
instantiation or to a subprogram visible at the library level within a
generic package or instantiation

* When the representations of the actual type parameters are not the
same for each of the instantiations

I
* When the generic has a formal in out parameter and the subtype of

the corresponding actual is not the same as the subtype of the
formal parameter

The pragma SHARECODE is used to indicaie desire to share or not share an
instantiation. The pragma can reference either the generic unit or the
instantiated unit. When it references a generic unit, it sets sharing on or off for
all instantiations of that generic unless overridden by specific SHARECODE
pragmas for individual instantiations. When it references an instantiated unit,
sharing is on or off only for that unit. The default is to share all generics that
can be shared unless the unit uses pragma INLINE.

The pragma SHARE CODE is only allowed in the following places:
immediately within a declarative part, immediately within a package
specification, or after a library unit in a compilation, but before any
subsequent compilation unit. The form of this pragma is

pragma SHARECODE (genericname, boolean literal)

Note that a parent instantiation (the instantiation that creates the shareable
body) is independent of any individual instantiation, therefore reinstantiation
of a generic with different parameters has no effect on other compilations that
reference it. The unit that caused compilation of a parent instantiation need
not be referenced in any way by subsequent units that share the parent

instantiation.

B-7

Sharing generics causes a slight execution time penalty because all type
attributes must be indirectly referenced (as if an extra calling argument were
added). However, it substantially reduces compilation time in most
circumstances and reduces program size.

We've compiled a unit, SHARED 10, in the standard library that instantiates

all Ada generic I/O packages for the most commonly used base types. Thus,

any instantiation of an Ada 1/O generic package will share one of the parent

instantiation generic bodies unless

pragma SHARE-CODE (generic-name, FALSE);

is given.

15.8 Representation Specifications

Representation Clauses - Domain/Ada supports bit-level representation3
clauses.

pragma PACK - Objects and components are packed to the nearest power of

two bits. Domain/Ada does not define any additional representation pragmas.

Length Clauses - Domain/Ada supports all representation clauses.

Enumeration Representation Clauses - Enumeration representation clauses
are supported.

Record Representation Clauses - Representation specifications are based on
the target machine's word, byte, and bit order numbering so that Domain/Ada
is consistent with various machine architecture manuals. Bits within a
STORAGEUNIT are also numbered according to the target machine manuals.
It is not necessary for a user to understand the default layout for records and
other aggregates since fine control over the layout is obtained by the use of
record representation specifications. It is then possible to align record fields
correctly with structures and other aggregates from other languages by
specifying the location of each element explicitly. Note that bit fields are
numbered opposite the ordering for bits within a byte on M68000 family
processors. Bit fields use the numbering specified for the MC68020 bit
extraction instructions. The 'FIRST BIT and 'LAST BIT attributes can be used
to construct bit manipulation code that is applicable to differently
bit-numbered systems. Refer to the M68000 Family addressing and bit

numbering illustration in Figure 15-2.

B-8

M68000 Family Addressing and Bit Numbering*,

M 0S most sIgrdfttm bft VI I I I-I-I I Ls ost sniiant bi bits within

L a byte
S least sigiicaft bit
a address A

15 0

." S bits within

address A address A+1

address of the word

322423 162185

TIB bits within
,,_ _ _ _ _ _ _s_ _ a longword

addrest A address A+1 address A+2 address A+3

address of the longword

For bit field instructions, the bits are numbered
differently. This numbering is used for record
representation specifications

7/ 0 7 0 7 0 7

bit field bit numbers.--I o+ 213141 :I; %4 . . 1111111111-1-

address A address A+1 address A+2 address ...

It address of the bit field

Motorola,"2.3 Data Organization in Memory," MC68020 32-Bit Microprocessor
User's Manual, p. 2-2. Englewood Cliffs, NJ: Prentice-Hall. Inc., 1985.

Figure 15-2. M68000 Family Addressing and Bit Numbering

B-9

&I

The only restrictions on record representation specifications are the following:

if a component does not start and end on a storage unit boundary, it must be

possible to get the component into a register with one move instruction. On a

MC68000 machine, where longwords start on even bytes, it must fit into 4

bytes starting on a word boundary. For example, the following specification is

illegal:

for REC use record at mod 2;
FIELD at 1 range 2 .. 25;
- Extraction of FIELD must start at byte 0 on MC68000. Byte 1.
- bit 25 is 34 bits beyond the start of byte 0 (34 bits > 4

bytes, so cannot extract).
end record;

Also, a component that is itself a record must occupy a power of 2 bits.

Components that are of a discrete type or packed array can occupy an

arbitrary number of bits, subject to the above restrictions.

Note that in the example above a size specification could be given,

afor REC'size use 39;

but due to alignment, such a record would aiways take 5 bytes (that is, 40
bits).

Addrest Clauses - Address clauses are supported for objects and entries.

For more information, see Section 15.4.2.

Change of Representation - Change of representation is supported.

package SYSTEM - For the specification of package SYSTEM, Section

15.14.1. This specification is also available online in the file system.a in the

release standard library. The pragmas SYSTEM NAME, STORAGEUNIT,

and MEMORY SIZE are recognized by the implementation, but have no

effect. The implementation does not allow SYSTEM to be modified by means

of pragmas. However, the same effect can be achieved by recompiling the

SYSTEM package with altered values. Note that such a compilation will cause

other units in the STANDARD library to become out of date. Consequently,

such recompilations should be made in a library other than standard.

System-Dependent Named Numbers - For the specification of package

* SYSTEM, see Section 15.14.1. This specification is also available online in the

file system.a in the release standard library.

B

Representation Attributes - The 'ADDRESS attribute is supported for the
following entities:

• Variables

" Constants

" Procedures

" Functions

All other representation attributes are supported.

Representation Attributes of Real Types - These attributes are supported. 3
For more information, see Section 15.14.

Machine Code Insertions - Machine code insertions are supported. For more
information, see Chapter 10.

Interface to Other Languages - For detailed information, refer to Chapter
11.

Unchecked Programming - Both UNCHECKEDDEALLOCATION and
UNCHECKEDCONVERSION are provided.

Unchecked Storage Deallocations - Any object that was allocated may be
deallocated. No checks are currently performed on released objects.

Unchecked Type Conversions - The predefined generic function
UNCHECKEDCONVERSION cannot be instantiated with a target type that is
an unconstrained array type or an unconstrained record type with
discriminants.

15.9 Source File Structure/Restrictions

Character Set - Domain/Ada provides the full graphic character textual
representation for programs. The character set for source files and internal
character representations is ASCII.

Lexical Elements, Separators, and Delimiters - Domain/Ada uses normal
Domain/OS I/O text files as input. Each line is terminated by a newline
character (ASCU.LF).

B-If

- ', '. , ,, "." , , ' a . j "." .' ". "V", ". . € e . , - ' . - . -

Source File Limits -

* 499 characters per source line
e 1296 Ada units per source file
e 32767 lines per source file

Compiler/Tool Limits -

* 499 characters in identifiers and literals
* 4,000,000 STORAGE UNITS in a statically sized record type
* 10,240 STORAGE SIZE default for a task
* 100,000 STORAGEUNITS default collection size for access type
* no limit number of declared objects (except virtual space)
* 800 characters in a rooted name (full path of an object)
* 8 number of recursive inlines
* 8 number of nested inlines
* 400 number of nested constructs
* 2048 characters in ADAPATH (library search list)
* 2048 characters in a wIrH or INFO directive
* 16M memory use per compilation (other Domain/OS limits

may apply)
S'50 lexical errors before the front end exits

I 100 syntax errors before the front end exits
10 attempts to lock GVAS-table

* 10 attempts to lock ada.lb
* 20 attempts to lock gnrx.lib
* 64 debugger breakpoints
* 32 debugger array dimensions in a p command
* 9 debugger 'call parameters'
* 256 debugger 'run parameters'

15.10 Parameter Passing

Parameters are passed by pushing values (or addresses) on the stack. Extra
information is passed for records ('CONSTRAINED) and for arrays (dope
vector address).

Small results are returned by value in registers; large results are passed by
reference.

B-12

Z0

The compiler assumes the following calling conventions.

1. Caller pushes arguments on stack in reverse order from their
declaration

2. Caller calls callee

3. Callee builds display and allocates space for local variables
via LINK instruction

4. Callee pushes any registers it uses in the sets D2-D7, A2-A6, and
FP2-FP7

5. Callee executes

6. Callee pops registers pushed in step 4

7. Callee leaves result in DO, AO. or FPO if callee is a function

8. Callee deallocates local variables (via the UNLK instruction)

9. Callee returns to caller using the RTS instruction.

10. Caller copies back any out parameters or function value

11. Caller deallocates space used for arguments on the stack

Caution: Compilers for other languages may follow calling conventions other
than those expected by Domain/Ada. The Domain/Ada debugger should be
used to verify that the call interface is as expected.

Machine code insertions can be used to explicitly build a call interface when
compiler conventions are not compatible, or when interfacing to assembly
language.

For example, suppose an interface to a C function pass_flt is desired, where
the C compiler generated code such that the caller allocates space for the
return value:

float pass_flt(x);
int x;
..I

I B- 13

The following Ada code would provide a wrapper to call this function:

with MACHINE CODE;
function PASSFLT(X : INTEGER) return SHORT-FLOAT is
RETURN-VAL : SHORT-FLOAT;

procedure WRAPPER is
use MACHINE-CODE;

begin
CODE_ '(PEAL, RETURNVAL/REF);
CODE_2 (MOVE_L. X'REF, decr(sp)); - push x onto the stack
CODE_1' (JSR, EXT("pass_flt")); - call pass-flt via its

- link name

CODE_2'(ADDQL, IMMED(B),sp); - save result
end WRAPPER;

pragma INLINE(WRAPPER);
begin
WRAPPER;
return SHORTFLOAT" (RETURNVAL)

end PASSLT;

For more information, see Chapter 10.

15.11 Conversion and Deallocation

The predefined generic function UNCHECKED CONVERSION cannot be
instantiated with a target type that is an d array type or an
unconstrained record type with discriminants.

There are no restrictions on the types with which generic function
"?I UNCHECKEDDEAL.L.OCATION can be instantiated. No checks areI performed on released objects.

15.12 Process Stack Size

The compiler and other large dynamic compiled programs can occasionally
give problems due to the shell's stack limit. Altering the stack size and
recompiling or re-executing is sometimes necessary. A process inherits its
stack limit from the invoking process, usually the shell.

B-14

In Domain/OS, the upper limit of the stack is determined by the address space
layout; thus, Domain/OS processes can obtain a maximum of 256K of the
stack. To change the stack size from the C shell, execute the following Icommand (SR10 only):

limit stacksize number

Bourne shell implementations do not permit the stack size to be altered.

15.13 Interface Programming

pragma INrERFACE - This pragma supports calls to Domain C, Domain
Pascal, FORTRAN, and UNCHECKED with an optional link name for the
subprogram. The Ada specifications can be either functions or prccedures. All
parameters must have mode in.

For Domain C, the types of parameters and the result type for functions must

0 be scalar, access, or the predefined type ADDRESS in SYSTEM.ADDRESS.
Record and array objects can be passed by reference using the 'ADDRESS
attribute.

For Domain Pascal, the types of parameters and the result type for functions
must be scalar, access, or the predefined type ADDRESS in

SYSTEM.ADDRESS. Record and array objects can be passed by reference
using the 'ADDRESS attribute.

For FORTRAN, all parameters are passed by reference; the parameter types

must have type SYSTEM.ADDRESS. The result type for a FORTRAN function

must be a scalar type.

UNCHECKED may be used to interface to an unspecified language, such as
assembly language. The compiler will generate the call as if it were to an Ada
procedure, but will not expect a matching Ada procedure body.

The optional lir! name enables calling a function whose name is defined in
another language, allowing characters in the name that are not allowed in an
Ada identifier. Case sensitivity can then be preserved. Without the optional
link name, the Ada compiler converts all identifiers to lower case. The link
name overrides the default transformations that pragma INTERFACE
performs on the name to create the unresolved reference name in the object
module.

.

B-15

pragma INTERFACE OBJECT allows variables defined in another language to
be referenced directly in Ada. pragma INTERFACE OBJECT replaces all
occurrences of variable .name with an external reference to linker-name in the
object file using the format shown below:

pragma INTERFACE.OBJECT (variable name. "linker-name");

This pragma is allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the same package
specification. The object must be declared as a scalar or an access type. The
object cannot be any of the following:

. Loop variable

" Constant

" Initialized variable

" Array
14b

" Record

The linker-name must be constructed as expected by the linker. The example

below makes the C global variable errno available within an Ada program:

package PACKAGENAME is

ERRNO: integer;

pragma INTERFACE-OBJECT (ERRNO, "errno");

end PACKAGE-NAME;

pragma EXTERNAL-NAME allows the user to specify a linker-name for an
Ada variable or subprogram so that the Ada object can be referenced from
other languages using the syntax shown below:

pragma EXTERNALNAME (object or.subprogramname , "linker-name");

Objects must be variables defined in a package specification; subprograms can
be either library level or within a package specification.

For more information, see Chapter 11.

B-16

15.14 Predefined Packages and Generics
The following predefined Ada packages given by RM Appendix C(22) are

provided in the standard library:

e package STANDARD

* package CALENDAR

* package SYSTEM

9 generic procedure UNCHECKEDDEALLOCATION

e generic function UNCHECKEDCONVERSION

e generic package SEQUENTIAL_10

9 generic package DIRECTIO

* package TEXT_1O

* package IOEXCEPTIONS

* package LOWLEVELIC

* package MAC-TINE CODE

The impler,:ntation dependent portions of the packages define the following
types and objects:

- in package STANDARD

type BOOLEAN is <8-bit, byte>;
type TINY-INTEGER is <8-bit, byte integer>;
type SHORT_ INTEGER is <16-bit, word integer>;

type INTEGER is <32-bit, longword integer>;
type SHORT_FLOAT is <6-digit, 32-bit, float>;
type FLOAT is <9-digit, 64-bit, float>;
type DURATION is delta 2.0'(-14) range -86400.0 .. +86400.0>;

S- in package DIRECTIO

type COUNT is range 0 .. 2_147_483_647;

- in package TEXTIO

type COUNT is range 0 .. 2_147_483_647;
subtype FIELD is INTEGER range 0 .. INTEGER'last;

B-17

15.14.1 Specification of Package SYSTEM

*package SYSTEM is

type NAME is (apollo_4_3_unix);

SYSTEM-NAME : constant NAME :- apollo_4_3_unix;

STORAGEUNIT: constant : - 8;
MEMORYSIZE : constant :a 16_777_216;

- System-Dependent Named Numbers

MIN INT constant :- -2 147 483_648;
MAX-INT constant :- 2147483647;
MAX-DIGITS constant :a- 15;
MAX-MANTISSA constant :- 31;
FINEDELTA : constant :- 2.0s*(-31);
TICK constant :- 0.01;

- Other System-dependent Declarations

4subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer :- 64*1024;

type ADDRESS is private;

NOADDR : constant ADDRESS;

AO function PHYSICALADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDR LT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDR DIFF(A, B: ADDRESS) return INTEGER;
function INCR ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
fundtion DECRADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDRLT:
function ">-"(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<-"(A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-"(A. B: ADDRESS) return INTEGER renames ADDRDIFF;
function "+"(A: ADDRESS;

INCR: INTEGER) return ADDRESS renames INCRADDR;
function "-"(A: ADDRESS:

DECR: INTEGER) return ADDRESS renames DECRADDR;

pragma inline(ADDRGT);
pragma inline(ADDRLT);
pragma inline(ADDR GE);

* pragma inline(ADDRLE);
pragma inline(ADDRDIFF);
pragma inline(INCRADDR),
pragma inline(DECRADDR);
pragma inline(PHYSICALADDRESS);

private

type ADDRESS is new integer;

NOADDR : constant ADDRESS :- 0;

end SYSTEM;

B-18

15.14.2 Package CALENDAR

CALENDAR's clock function (in package CALENDAR.LOCAL TIME located
in the file calendar s.a) uses the Domain/OS service routines
GETTrIMEOFDAY and LOCALTIME for getting the current time.

15.14.3 Package SEQUENTIALIO

Sequential 1/O is currently implemented for variant records, but with the
restriction that the maximum size possible for the record will always be

written. This is also true of direct I/O. For unconstrained records and arrays,
the constant, SYSTEM. MAX REC SIZE, can be set prior to the elaboration
of the generic instantiation of SEQUENTIAL 10 or DIRECT 10. For example,
if unconstrained strings are written, SYSTEM.MAX REC SIZE effectively
restricts the maximum size of string that can be written. If the user knows the
maximum size of such strings, the SYSTEM.MAX RECSIZE may be set
prior to instantiating SEQUENTIAL_10 for the string type. This variable can
be reset after the instantiation with no effect.

15.15 Types, Ranges, and Attributes

Numeric Literals - Domain/Ada uses unlimited precision arithmetic for
computations with numeric literals.

Enumeration Types - Domain/Ada allows an unlimited number of literals
within an enumeration type.

Attributes of Discrete Types - Domain/Ada defines the image of a character
that is not a graphic character as the corresponding 2-character or 3-character
identifier from package ASCII of RM Annex C-4. The identifier is in
uppercase without enclosing apostrophes. For example, the image for a
carriage return is the 2-character sequence CR (ASCII.CR).

The type STRING - Except for memory size, Domain/Ada places no specific
limit on the length of the predefined type STRING. Any type derived from the
type STRING is similarly unlimited.

Integer Types - Domain/Ada provides three integer types in addition to
universalinteger: INTEGER, SHORT INTEGER, and TINY INTEGER.
Table 15-4 lists the ranges for these integer types.

B-19

Table 15-4. Domain/Ada Integer Types

Name of Attribute Value Attribute Value at Attribute Value at
Attribute ot INTEGER SHORT-INTEGER TINY-INTEGER

FIRST -2_147_483648 -32768 -128

LAST 2_147_483647 32767 127

Operation of Floating Point Types - Domain/Ada floating point types have
the attributes listed in Table 15-5.

Table 15-5. Domain/Ada Floating-Pornt Types

Name of Attribute Value Attribute Value
*Attribute at FLOAT ot SHORT-FLOAT

SIZE, 64 32

FIRST -1. 79769313486231E+308 -3. 40282E+38
LAKST *1.79762313486231E+308 3.40282E+38

DIGITS 15 6
MANTISSA 51 21

EPSILON S. 8817841970012SE-16 9. 53674316406250E-07

EMAX 204 84

SMALL 1.94469227433160E-62 2.58493941422821E-26
LARGE 2. 57110087081438E+61 1.293428038904620E+25ISAFE EMAX 1022 126
SAFE SMALL 1. 11253692925360E-308 5. 87747175411143E-39
SAFE-LARGE 4.49423283715578E+307 8.5075511654154E+37

MACHINE-RADIX 2 2
MACHINE MANTISSA 53 24
MACHINE EMAX 1024 128

*MACHINE DwtIN -1022 -126

14MACHINE ROUNDS TRUE TRUE
MACHINE-OVERFLOWS TRUE TRUE

Fixed Point Types - Domain/Ada provides fixed point types mapped to the
supported integer sizes.

B-20

Operations of Fixed Point Types - Domain/Ada fixed point type DURATION
has the attributes listed in Table 15-6.

Table 15-6. Attributes for the Fixed-Point Type DURATION

Name of Attribute Value
Attribute for DURATION

SIZE 32

FIRST -2147483.648

LAST 2147483.647

DELTA 1. O0000000000000E-03

MANTISSA 32

SMALL 9. 76562500000000E-04
LARGE 4. 19430399902343E_06

FORE 8
4 AFT 3

SAFE-SMALL 9. 76562500000000E-04
SAFE-LARGE 4. 19430399902343E+06

MACHINE-ROUNDS TRUE
MACHINEOVERFLOWS TRUE

15.16 Input/Output

The Ada 1/0 system is implemented using Domain/OS 1/0. Both formatted and
binary 1/0 are available. There are no restrictions on the types with which
DIRECT 10 and SEQUENTIAL 10 can be instantiated, except that the element
size must be less than a maximum given by the variable
SYSTEM.MAXRECSIZE. This variable can be set to any value prior to the
generic instantiation; thus, the user can use any element size. DIRECT_10 can
be instantiated with unconstrained types, but each element will be padded out
to the maximum possible for that type or to SYSTEM.MAX RECSIZE,
whichever is smaller. No checking - other than normal static Ada type
checking - is done to ensure that values from files are read into correctly
sized and typed objects.

B-21

WI V I

Domain/Ada file and terminal input-output are identical in most respects and
differ only in the frequency of buffer flushing. Output is buffered (buffer size
is 1024 bytes). The buffer is always flushed after each write request if the
destination is a terminal.

The procedure FILE SUPPORT.ALWAYSFLUSH (file.ptr) will cause
flushing of the buffer associated with file_ptr after all subsequent output

U requests. Refer to the source code for rdespprt_b.a in the standard library.

Instantiations of DIRECT1 use the value MAXRECSIZE as the record size
(expressed in STORAGEt UNITs) when the size of ELEMENTTYPE exceeds
that value. For example, for unconstrained arrays such as a string where
ELEMENTTYPE'SIZE is very large, MAX REC SIZE is used instead.
MAXREC SIZE is defined in SYSTEM and can be changed before
instantiating DIRECT_1O to provide an upper limit on the record size. The
maximum size supported is 1024 * 1024 * STORAGE UNIT bits. DIRECT10
will raise USE-ERROR if MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAXRECSIZE as the

record size (expressed in STORAGEUNITs) when the size of

ELEMENT-TYPE exceeds that value. For example, for unconstrained arrays
such . as STRING where ELE _ENTrYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX REC SIZE is defined in SYSTEM and
can be changed by a program before instantiating INTEGER.10 to provide an
upper limit on the record size. SEQUENTIALJO imposes no limit on
MAX REC SIZE.

15.17 Machine Code Insertions

The general definition of package MACHINECODE provides an assembly
language interface for the target machine including the necessary record types
needed in the code statement, an enumeration type containing all the opcode

mnemonics, a set of register definitions, and a set of addressing mode
functions. Also supplied (for use only in units that WITH MACIflNECODE)
are pragma IMPUCITCODE and the attribute X'REF.

Machine code statements take operands of type OPERAND, a private type that
forms the basis of all machine code address formats for the target.

B-22
Sa

The general syntax of a machine code statement is

CODEj" (opcode, operand (. operana])) ;

where n indicates the number of operands in the aggregate.

When there is a variable number of operands, they are listed within a
subaggregate using the syntax shown below:

CODEJ n (opcode, (operand [, operand]),.

In the example shown below, code .2 is a record 'format' whose first argument
is an enumeration value of type OPCODE followed by two operands of type
OPERAND:

CODE_2"(move_1, aref, b'ref);

For those opcodes requiring no operands, named notation must be used.

For more information, see the Ada RM 4.3(4):
4

CODE.0' (op -> opcode);

The opcode must be an enumeration literal (that is, it cannot be an object,
attribute, or a rename). An operand can only be an entity defined in
MACANE CODE or the X'REF attribute.

Arguments to any of the functions defined in MACHINE _CODE must be static
expressions, string literals, or the functions defined in MACHINECODE.

X'REF - The X'REF attribute denotes the effective address of the first of the
storage units allocated to the object. X'REF is not supported for a package,
task unit, or entry. For details, see Section 15.4.

pragma IMPLICITCODE - The IMPLICITCODE pragma specifies that
implicit code generated by the compiler is allowed (ON) or disallowed (OFF)
and is used only within the declarative part of a machine code procedure.
Implicit code includes preamble and postamble code (such as, code used to
move parameters from and to the stack). Use of pragma IMPLICIT CODE
does not eliminate code generated for run time checks, nor does it eliminate
call/return instructions (these can be eliminated by pragma SUPPRESS and
pragma IN.INZ , respectively). A warning is issued if OFF is used and any
implicit code needs to be generated. This pragma should be used with caution.

B-23

ro

As an example of machine code insertions, the procedure
SET ENABL.E..CACHE BIT is defined below. It sets F bit of the MC68020
CACR register:

- freeze the cache
procedure set-enable -cache-bit is
use machine-.code;

begin
code 2'(movec. cacr, do);
code-2' (or 1. +2#10#. do);
code_ 2(movec, do. cacr);

end;
pragma inline(set-enable-cache_bit);

procedure enable-cache is
before call, after-call: integer;

begin
before call :- 1;
set -enable-cache bit;
after-call :0 1;

end;

Note that the machine code procedure is inline. The Output of a.das excerpted
below shows a procedure that calls SET ENABLE CACHE Brr and the code

A, generated for the call:

17 before-call :- 1; -generate instruction before call
03a: move.l #01, (-Oc,a6)

8 code 2'(movec, cacr. dO);
042: uovec.l cacr, dO

9 code_2(or.1, +2#101, dO);
046: or.l #02, dO

10 code-2'(ovec, do, cacr);
04C: MOVec.l dO, cacr

19 after-call :1; -- generate instruction after call
050: move.l #01, (-01O,aa)

For more information, see Chapter 10.

*B-2

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
blow.

Name and Meaning Value

$BIGID1 (1..498 => 'A', 499 => '1')

Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (l..498 => 'A', 499 => '2')

Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..249 => 'A', 250 => '3', 251..499 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..249 => 'A', 250 :> '14', 251..499 => 'A')
Identifier the size of the
maximum input line length with

* varying middle character.

$BIGINTLIT (1..496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

~IC REL LIT(1-.493 => '0', 494*..499 ~>"69.OE1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum lii.e length.

$BIG STRING1 (I => '"', 2..200 => 'A', 201 => "')

A string literal which when
catenated with BIG STRING2
yields the image of BIG_IDi.

$BIGSTRING2 (I => i", 2..300 => 'A', 301..302 => "1""")

A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

BLANKS (1..479 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELDLAST 2_147483647
A universal integer

literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITH BADCHARS "/illegal/filename/2{1$%2102C.DAT"

An external file name that

either contains invalid
characters or is too long.

$FILENAME WITH WILD CARD CHAR "/illegal/filename/CE2102C*.DAT"
An external file name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GRFATTYTHANTnUFATIONBASE LAST 10 000_000.0
A universal real literal1 that is-
greater than DURATION'BASE'LAST.

$ILLEGAL_-EXTERNAL_-FILE_-NAME1 "/no/such/directory/ILLEGALEXTERNALFILENAMEl"
An external file name which
contains invalid characters.

$ILLEGAL_-EXTERNAL_-FILE_-NANE2 /no/such/directory/ILLEGALEXTERNALFILENAME2"
An external file name which
is too long.

$INTEGERFIRST -21 47483648
A uiniversal integer literal
whose value is INTEGER'FIRST.

$INTEGER_-LAST 214174836417
L universal integer literal
whose vali. is INTEGER'LAST.

$INTEGER_-LASTPLUS_1 21117483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100_000.0
A7 uni'versal real literal that
lies between DURATION'BASE'FIRST
and DURATIONtFIRST or any value
in the range of DURATION.

$LESS THAN DURATIONBASEFIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 15
Miaximum digits supported for

* floating-point types.

$MAXINLEN 1199
Maximum input line length
permitted by the implementation.

* $MAX_INT 214174836417
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 21417483648
A universal integer literal
whose value is SYSTEM~.MAXINT.1.

C- 3

TEST PARAMETERS

Name and Meaning Value

$MAX LEN INT BASED LITERAL (1..2 => "2:", 3..496 => '0', 497..a99 => "11:")
A univ-ersal- integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LEN REAL BASEDLITERAL (1..3 => "16:", 4..495 => '0', 496..499 => "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX_STRING LITERAL (1 => 1", 2.-498 => 'A', 499 => '"1)
A string literal of size
MAXINLEN, including the quote
characters.

4$MINNT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$N-"ME TINYINTEGER
A uaune of a predefined numeric
type other than FLOAT, INTEGER, p
SHORTFLOAT, SHORTINTEGER,
LONG FLOAT, or LONGINTEGER.

$NEGBASEDINT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

m

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; The Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINTERROR.

. C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

d. . C35904A: The elaboration of the fixed-point subtype on line

28 wrongly raises CONSTRAINTERROR, because its upper bound

exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the Test.

D-I

S

WITHDRAWN TESTS

• C35A03F and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

• C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborp*-d.

• C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

• C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type 2;3NS.

• C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

" C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

• C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

• C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87B04B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINTERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

" BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

" AD1A01A: The declaration of subtype SINT3 raises
CONSTRAINTERROR for implementations which select INT'SIZE to
be 16 or greater.

* CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USE ERROR; by Commentary AI-00048,
MODEERROR should be raised.

D-2

40*RIL rX

