
,I r

AVF Control Number: AVF-VSR-139.0688
87-11-1 1-GOU

Ada COMPILER
LC VALIDATION SUMMARY REPORT:

Certificate Number: 880221W1.09038

0 Gould, Inc.
APLEXGAda Compiler, Version 2.0

Gould PowerNode Model 9080

a)

'::Completion of On-Site Testing:
26 February 1988

0
Prepared By:

Ada Validation Facility
ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

DTIC
ELECT
SEP 26 1988.

(GAPLEX is a trademark of Gould, Inc. *

LfwhnTrIN STATEMiENT A,
Approhed for public rs" 0'
__ DIatihatuon UnUnited

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BREDM INSRTOSBE-FORE COMPLETrING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Gould, 26 Feb 1988 to 26 Feb 1989

Inc., APLEX Ada Compiler, Version 2.0 Gould
PowerNode Model 908D (Host and Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 26Februir 1988 0
United States Department of Defense 13. NUMBE U PAE5
Washington, DC 20301-3081 39p.

14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
Wright-PAtterson Air Force Base, 15a. RESJAFICATION/OWNGRADING
Daytgn, Ohio, U.S.A. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) 0

IN4Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

APLEX Ada Compiler, Version 2.0, Gould,inc., Wright-Patterson Air Force Base, Gould PowerNode Model
9080 under UTX/32, Version 2. 1, (Host and Target), ACVC 1 .9. S
DO 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGi (When Data Entered)

"N % -0

Ada Compiler Validation Summary Report:

Compiler Name: APLEX Ada Compiler, Version 2.0

Certificate Number: 880221W1.09038

Host: Target:
Gould PowerNode Model 9080 Gould PowerNode Model 9080
under UTX/32, Version 2.1 under UTX/32, Version 2.1

Testing Completed 26 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

0

Ada Validation Facility
Steven P. Wilson
AS1MSCEL
Wright-Patterson AFB OH 45433-6503

da Validation Organization

Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311 i

Ada W'nt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

, n u u II •/ I I I 1 -

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .. 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES * . 1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES 1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OFTESTRESULTSBY CLASS............ .3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.41 WITHDRAWN TESTS....... 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS • • 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS 4410

APPENDIX D WITHDRAWN TESTS

Accession For

NTISnTIC TAJ, []

U,'-aouned D
j, Just f I l -----------

I I l tribut.ion/

!Ava].i. ave/or
tp plc l al

er~a

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features

* *must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

I-I

0 - --

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 26 February 1988 at Ft. Lauderdale FL.

* *1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject coipiler has no nonconformities
to the Ada Standard other than" those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

-

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language,

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combi.nation of features to the Ada
Standard. In the context of this reprt, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

1-4I

INTRODUCTION

because it has an invalid test objective, fails to meot its

test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
'to produce a PASsED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or

semantic error in the test is detected. A Class B test is passed if every

illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

permitted in a compilation or the number of units in a library--a compiler

may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or

FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,

*3r FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

S0

66~

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
.,ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-

1-6

6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation syitem for this validation was tested under the
following configuration:

40, Compiler: APLEX Ada Compiler, Version 2.0

ACVC Version: 1.9

Certificate Number: 880221W1.09038

Host Computer:

Machine: Gould PowerNode Model 9080

Operating System: UTX/32, Version 2.1

Memory Size: 16 Megabytes

Target Computer:

Machine: Gould PowerNode Model 9080

Operating System: UTX/32, Version 2.1

Memory Size: 16 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

• Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64-bit integer calculations. (See tests
D4A002A, D4AO02B, D4AO04A, and D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B8600IC and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise

NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to S
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2
S°

2~2 ~ ~ C.~ *U.*~. %,,...... ~ * ~

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4A014A.)

I

2-3

qI

. .~.-.- ,Cw

CONFIGURATTON TNFORMATION

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTE 4.MAXINT components raises NUMERICERROR. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

4 A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discr!.minant constraint.
This implementation accepts such subtype indicatio-s. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is

2-4

0%

CONFIGURATION INFORMATION

compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
t .sts A39005E and C87B62C.)

Record representation clauses are not supported when a composite
type used as a component is not aligned so as to preserve the
alignment of its constituent parts. (See test A39005G.)

2-5

0

CONFIGURATION INFORMATION

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

" Pragmas.

The pragma INLINE is supported for non-library procedures and
functions. (See tests LA3004A, LA3004B, EA3004C, EA3OO4D,
CA3OO4E, and CA3OO4F.)

" Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10. (See
* tests CE2102D and CE21O2E.)

Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECTI0. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_10.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECT 10. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to the last
element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUTFILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

* More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..D
(4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107F..I (5
tests), CE2110B, and CE2111H.)

2-6

0

CONFIGURATION INFORMATION

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential and direct files are given names. Temporary
files given names are not deleted when they are closed. (See
tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA1012A and CA2009F.)

Generic package. declarations and bodies can be compiled in
separate compilations only if the body is compiled before any
instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

41

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 24 tests had been withdrawn because of test errors. The AVF
determined that 277 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 215
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 11 tests were required to successfully demonstrate the test objective.
(See sect;ion 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 107 1046 1593 17 13 45 2821

Inapplicable 3 5 263 0 5 1 277

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

_- _ _4 5 6 7 8 9 10 11 12 _ 3

Passed 189 491 530 244 166 98 141 327 132 36 232 .0 232 2821

Inapplicable 15 82 145 4 0 0 2. 0 5 0 2 0 22 277

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.14 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

1 B28003A E28005C C34004A C35502P A35902C
C35904A C35A03E C35A03R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C414602A C45614c A74106C C85018B C87B04B
CC1311B BC3105A AD1AO1A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 277 tests were inapplicable for the
reasons indicated:

" C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
repre3entation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this compiler.

" C35702A uses SHORT FLOAT which is not supported by this
implementation.

3-2

0%

TEST INFORMATION

" A39005G uses a record representation clause which specifies an
alignment that does not preserve the alignment of its constituent
components. Therefore, the record representation clause is
rejected.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D

" C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORTINTEGER, LONGINTEGER, FLOAT,
SHORT FLOAT, and LONGFLOAT. This compiler does not support any
such types.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C1455320, and C45532P use coarse 48-bit
* fixed-point base types which are not supported by this compiler.

" C45651A incorrectly assumes the choice of model numbers for a
fixed-point type for this implementation.

C52008B declares a record type with four discriminants of type
integer and having default values. The type may be used in the
declaration of unconstrained objects, but the size of these
objects exceeds the maximum object size of this implementation,
and NUMERIC ERROR is raised.

B86001D requires a predefined numeric type other than those

defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_1O.

" CA2009C, CA2009F, BC320C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-00408/07, this compiler
creates a dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes

* obsolete.

" CA3004F, EA3004D, and LA3004B use the INLINE pragma for library
functions, which is not supported by this compiler.

3-3

0
p - - p.

*TEST INFORMATION

• AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

. AE21O1H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

. CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,
CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are
inapplicable because multiple internal files cannot be associated
with the same external file, except for reading only. The proper
exception is raised when multiple access is attempted.

. The following 215 tests require a floating-poi,.t accuracy that
exceeds the maximum of 14 digits supported by this implementation:

C24113K..Y (15 tests) C35705K..Y (15 tests)
C35706K..Y (15 tests) C35707K..Y (15 tests)
C35708K..Y (15 tests) C35802K..Z (16 tests)

* C45241K..Y (15 tests) (45321K..Y (15 tests)
C45421K..Y (15 tests) C45521K..Z (16 tests)

C45524K..Z (16 tests) C45621K..Z (16 tests)
C45641K..Y (15 tests) C46012K..Z (16 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 11 Class B tests.

* The following Class B tests were split because syntax errors at one point
resulted in the comp!Ler not detecting other errors in the test:

B27005A B28001R B28001V B71001K BA1101C
BA3006A BA3006B BA3007B BA3008A BA3008B
BA3013A

3-4

0Q TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the APLEX Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the APLEX Ada Compiler using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Gould PowerNode Model 9080 operating under UTX/32, Version 2.1.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the

* magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Gould PowerNode Model 9080, and all
executable tests were linked and run on the Gould PowerNode 9080.

The compiler was tested using conmmand scripts provided by Gould and
reviewed by the validation team. The compiler was tested using all default
switch / option settings except for the following:

Option / Switch Effect

i enable optimizer and pragma in-line
1 produce a listing

Tests were compiled, linked, and executed (as appropriate) using a single
host-target computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3-5

0

* TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Ft. Lauderdale FL and was completed on 26
February 1988.

3-6

0-I I ITM F,, rA '7A-K u. L j FN, ~ u Q AW 7

APPENDIX A

DECLARATION OF CONFORMANCE

Gould, Inc. has submitted the following Declaration of
Conformance concerning the APLEX Ada Compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: APLEXTM Ada Compiler Version: 2.0
Host Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 9080
Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 9080

Derived Compiler Registration

Derived Compiler Name: APLEXTM Ada Compiler Version: 2.0
Host Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

4 Model 90XX
Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 90XX

Derived Compiler Registration

- Derived Compiler Name: APLEXTM Ada Compiler Version: 2.0
Hcst Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 60XX
Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 60XX

Derived Compiler Registration

Derived Compiler Name: APLEXTM Ada Compiler Version: 2.0
Host Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 90XX
Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

Model 60XX

TMAPLEX is a trademark of Gould Inc.

A-2

Implementor's Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler listed in this declaration. I declare that Gould Inc.
is the owner of record of the Ada language compiler listed above and,
as such, is responsible for maintaining said cormpiler in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler listed in this declaration shall be made only in the
owner' e name.

r 7-- A___ __"Date: ___________

TeleSoft, Inc.
Ray Parra, Director of Contracts/Legal

4

Owner's Declaration

I, the undersigned, representing Gould Inc., take full responsibility
for implementation and maintenance of the Ada compiler listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that
all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard ANSI/MIL-
STD-1815A. I have reviewed the Validation Summary Report for the
compiler and concur with the contents. I also affirm that the
PowerNode computer architectures listed herein (90XX and 60XX models)
are of equivalent architecture to the PowerNodr 9080 as described in
the attached documentation which was submitted with our 1.8
validations.

D1 ate: 3 IV__

Gould n.
Mary F. comber, Senir Manager, Major Corporate Agreements

A-3

"I

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the APLEX Ada Compiler, Version 2.0, are described in the following
sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included

* in this appendix.

package STANDARD is

type INTEGER is range -2_147483_648 .. 2_147483_647;
type LONG INTEGER is

range -9223_372036_854_775808 .. 9223372036854775807;

type FLOAT is digits 6 range -7.23698E+75 .. 7.2'-98E+75;
type LONG FLOAT is

digits 14 range -7.2370055773320E+75 • 7.2370055773320E+75;

type DURATION is delta 2#1.0#E-14 range -86_400.0 .. 861400.0;

end STANDARD;

B-1

Attachment A

APPENDIX F OF THE LANGUAGE REFERENCE MANUAL

1 Implementation Dependent Pragmas
2 Implementation Dependent Attributes
3 Specification of Package SYSTEM
4 Restrictions of representation clauses
5 Implementation dependent naming
6 Interpretation of expressions in address clauses
7 Restrictions on unchecked conversions
8 I/0 Package Characteristics

(1) Implementation Dependent Pragmas

The following pragmas are supported:

* COMMENT
* ELABORATE

* *• IMAGES
* INTERFACE
* INUNE
* LIST
* LINKNAME
* PACK
* PAGE
• PRIORITY
* SHARED
* SUPPRESS

The implementation-defined pragma COMMENT embeds the text of a string
literal within the object file of the compilation unit containing the pragma. The
syntax is:

pragma COMMENT ("text of the comment");

This pragma may appear at any location within the source code of an Ada
unit. There is no restriction on the number of comments that may be used.

B-2

The implementation defined pragma images controls where the code to
support the "images" attribute for an enumeration type is generated. The syntax
is:

pragma IMAGES (<enumname>, *DEFERRED" I *IMMEDIATE");

cenum_name> must be the name of a previously defined enumeration type.
This pragma must appear in the same package specification or declarative part as
the type definition. If the "Immediate" parameter is used, the code for the
"images" attribute is generated in the compilation unit where the type definition
appears. This is the default. If "Deferred" is specified, the code is generated in
any compilation unit which references the "images" attribute. Note that if no
references are made to the "images" attribute, no code is ever generated.

Pragma LINKNAME is used to associate a string with the name of a routine
in the object code. The syntax is:

pragma LINKNAME (<ada_name>, <string>);

The <adaname> must be the name of an Ada routine which previously
appeared in a pragma INTERFACE. The effect of this pragma is to use the <string>
as the name for the routine in the object code for the unit. Thus,

function HyperbolicSin (X: Float)
return Float;

pragma INTERFACE (Assembly, HyperbolicSin);
pragma LINKNAME (Hyperbolic_Sin, ":HSIN:");

would cause the compiler to use the string ":HSN:" in the object code
whenever referring to the Ada routine "HyperbolicSin".

When interfacing to C, Fortran, or Pascal, the compiler still forces the
name in the object code to correspond to the appropriate convention. Thus, for C,
the first character of the name has an underscore substituted, Fortran has an
underscore added in front of and behind the name, and Pascal has an underscore
added in front and two underscores added behind the given name.

The ON parameter of pragma SUPPRESS is not supported.

The default for pragma LIST is the opposite of the first pragma LIST
encountered in the source file.

Pragma Inline is not supported for library units.

(2) Implementation Dependent Attributes

There are no implementation-defined attributes.

B-3

2V

(3) The specification of package SYSTEM:

package SYSTEM is

type ADDRESS is private;
type NAME is (GouldjUTX, Gould_MPX);
SYSTEMNAME : constant NAME :- Gould_UTX;- for

Powernode/NPL
- or

SYSTEMNAME : constant NAME :, Gould_MPX;- for Concept

STORAGEUNIT : constant :. 8;
MEMORY_SIZE : constant := 2'24-1; -- for Concept/Powernode

- or
MEMORY_SIZE : constant := 2"30-1; -- for NPL

--System-Dependent Declarations

subtype BYTE is INTEGER range 0 .. 2"'8-1;
subtype INTEGER_16 is INTEGER range -2--15 .. 2"°15-1;
subtype INTEGER_32 is INTEGER; - range -2"'31 2*31-1;

--System-Dependent Named Numbers

MININT constant :- -(2"'63);
MAXINT : constant :- (2**63)-1;
MAX DIGITS: constant :- 14;
MAX_.MANTISSA: constant :_ 31;
FINEDELTA: constant :,, 1.0/2.0**(MAXMANTISSA);
TICK: constant :. 1.0/(2.0"*14);

--Other System Dependent Declarations

MAXOBJECT_SIZE : constant :. MEMORYSIZE;
MAX_RECORD_COUNT : constant :. MAXINT;
MAXTEXT 10_COUNT: constant :- MAXINT-2;
MAXTEXTIO_FIELD: constant := 1000;

subtype PRIORITY is INTEGER range 0 .. 255;

NULLADDRESS : constant ADDRESS;

private

type ADDRESS is new INTEGER_32;
NULLADDRESS constant ADDRESS =0;

end SYSTEM;

B-4

(4) The list of all restrictions on representation clauses.

The compiler supports the following representation clauses:
Length Clauses for types 'Size (LRM 13.2(a))

Length Clauses for collections 'StorageSize (LRM 13.2(b))

Length Clauses for tasks 'StorageSize (LRM 13.2(c))

Length clause for fixed point types (LRM 13.2(d)).

Enumeration representation clauses (LRM 13.3) are supported with the
restriction that they cannot be used to alter values of the predefined type
BOOLEAN.

Record representation clauses (LRM 13.4) are supported. The maximum
significant value for the expression following "at mod" is 8.

Only records whose components are all statically sized may be the
subject of a representation specification, i.e., those containing dynamically sized
components may not be the subjects.

A composite type used as a component of a representation specified record
must be aligned so as to preserve the alignment of its consituent components.

* "Address Clauses (LRM 13.5) are supported for objects.

The following representation clauses are not supported:

Address clauses for subprograms, packages, task units, and task entries.

(5) The conventions used for any implementation-generated name
denoting implementation-dependent components.

There are no system generated names for implementation-dependent
components.

(6) The interpretation of expressions that appear in address clauses.

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

(7) Any restriction on unchecked conversions.

Unchecked conversions are allowed between variables of types (or
subtypes) Ti and T2 provided that:

they have the same static size
* they are not unconstrained array types
* they are not private (unless they are subtypes of, or are derived

from the private type System.Address.)

B-5

(8) Any implementation-dependent characteristics of the input-output packages.

Instantiations of DIRECTJO and SEQUENTIAL_I are supported with the
following exceptions:

* unconstrained array types
* unconstrained types with discriminants without default values
• multiple internal files opened to the same external file may only

be opened for reading on UTX only
• multiple internal files may not be opened to the same external file

on MPX.

In package DIRECT_10:
type COUNT is range 0.. MAXINT;

In package TEXTJO:
type COUNT is range 0 .. MAXINT-2;

In package TEXT_1O:

subtype FIELD is INTEGER range 0 .. 1000;

* The line length limit for MPX is 253 characters..

B-6

III Da.

Attachment B

Parameters used in .TST tests (macro substitutions)

SMAXINLENGTH 200
$BIGIDi STRING(1 ..200) :-(1-.199 a> 'A', 200 =.>'l')
$BIG-ID2 STRING(1 ..200) :-(1..1 99 => 'A', 200 .>'2')
SBIG_103 STRING(l..200) :

(l..100)-> 'A'.100=>'3',102..200 w>'A')
$BIGJID4 STRING(1 .200) :=

(l..100 => 'A',101=>'4'.102..200 =i>*A')
SNEG:_BASEDINT 1 6#FFFFFFFE#
$810_INKULIT STRING(1..200):= 01.. 197=>0', I98.200=>'298")
$BIGREALLIT STRING(1..200):= (1.. 94w>0',l 95..200w>*69.0E1')
$EXTENDEDASCIICHARS a bcdefghijklmnopqrstuvwxyz !$%?0E\]A[..l

SNONASCIICHARTYPE (NON NULL)
J$8LANKS STRING(1..180) := (1..180 =>)
$MAXDIGITS 14
$NAME (No such numeric type,

used LONG-INTEGER)
$INTEGER-FIRST .(2'*31)

*$INTEGER-.AST (2--3l)-1
4,$MAXJINT (2--63)-l

$LESS HANDURATION -100_000.0
$GREATERTHANDURATION 100_000.0
$LESSJHANDURATION3BASEFIRST -10_000_000.0
$GREATERTHANDURATION_BASELAST 1 0_000_000.0
$COUNTLAST (2--63)-2
$FIELDLAST 1000
$FILE -NAME_-WITH_-BAD_-CHARS STRING(1..257) :-(l..257 => 'D');
$FILENAMEWITHWILDCARDCHAR STRING(1 ..257) :-(1 ..257 ->'C');

$ILLEGAL EXTERNAL FILE NAME1 STRING(1 ..257) :-(l..257 =>'B');

$ILLEGAL EXTERNALFILENAME2 STRING(1..257) :-(l..257 => 'A');

B- 7

-1- ,. - - i"IX %K 2

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

4k.

Name and Meaning Value

$BIG ID (..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (I..199 > -A', 200 > '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (..100 => 'A', 101 => '3',
Identifier the size of the 102..200 => 'A')
maximum input line length with
varying middle character.

$BIGID4 (..100 => 'A', 101 => '4',
Identifier the size of the 102..200 => 'A')
maximum input line length with
varying middle character.

$BIGINTLIT (1..197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIG.REALLIT (I..194 => '0', 195..200 => "69.OEl")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGI (1..100 => 'A')
A string literal which when
catenated with BIGSTRING2
yields the image of BIGIDI.

$BIG.STRING2 (1..99 => 'A', 100 => '1')
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIG IDI.

$BLANKS (1..180 > ' I)

A sequence of blanks twenty
characters less than the size

A of the maximum line length.

$COUNTLAST 9223372_036_854_775_805
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELD LAST 1000

A universal integer
literal whose value is
TEXT I0.FIELD'LAST.

$FILE NAME WITH BADCHARS (1..257 > 'D')
An external file name that
either contains invalid
characters or is too long.

$FILE NAME WITH WIID CARD CHAR (1. 257 => 'C')
An external file name that
either contains a wild card
character or is too long.

$GREATER THANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER THAN DURATION BASE LAST 10 000 000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILENAME1 (l..257 => 'B')
An external file name which
contains invalid characters.

$ILLEGALEXTERNAL FILE_NAME2 (1..257 => 'A')
An external file name which
is too long.

$INTEGERFIRST -2_147483_648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2_147483_647
A universal integer literal
whose value is INTEGER'LAST.

'$1NTEGER LASTPLUS_1 2_147_483_648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100 000.0
A7 universal real literal that
lies between DURATION'BASEt FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN DURATION BASE FIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIG ITS 14
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAX_INT 9.223_372_036_854_775_80 7
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAX INT PLUS_ 1 9223_372_036_854_775808
A universal integer literal
whose value is SYSTEM.MAX.INT+1.

C-3

] ~ - .- ~- -

*" TEST PARAMETERS

Name and Meaning Value

$MAX LEN INT BASED LITERAL (..2 => "2#", 3..197 => '0',
A universal- integer based 198..200 => "11#")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXIN LEN
long.

$MAX LEN REAL BASED LITERAL (1..3 => "16:", 4..196 => t0,
A universal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX INLEN long.

$MAXSTRING LITERAL (1 => '"' 2..199 => 'A', 200 => "")

A string literal of size
MAX IN LEN, including the quote
characters.

$MININT -922332.036_85.4_75_808
A universal integer literal

*whose value is SYSTEM.MININT.

$NAME (No such numeric type)
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
LONG_FLOAT, or LONG-INTEGER.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• B28003A: A basic declaration (line 36) incorrectly follows a
6later declaration.

. E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINTERROR.

. C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

• A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT ERROR, for that
value lies outside of the actual range of the type.

. C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONTSTRAINT ERROR, because its upper bound exceeds
that of the type.

• C35AO3E and C35AO3R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

. C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

D-1

0

4

WITHDRAWN TESTS0

" C37213J: The aggregate in line 451 incorrectly raises

CONSTRAINTERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

" C38102C: The fixed-point conversion on line 23 wrongly raises

CONSTRAINTERROR.

" C41402A: The attribute 'STORAGE SIZE is incorrectly applied to an
object of an access type.

" C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

" A74106C, C85018B, C87B04B, and CC1311B: A bound specified in a

fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but these

lines are correct Ada.

* AD1AO1A: The declaration of subtype SINT3 raises CONSTRAINT ERROR

for implementations which select INT'SIZE to be 16 or greater.

• CE2401H: The record aggregates in lines 105 and 117 contain the

wrong values.

D-2

..
Z

