I AN AR AR U RN RV VR -4, FRCLIN LS WU LW U U UG LT U T TG U R T Y Y O RO O A K oy ERLAS It L8

- N : ‘
hd o’

{

AVF Control Number: AVF-VSR-139.0688 y

87-11-11-GOU ‘

W

3

o

Ada COMPILER

LD VALIDATION SUMMARY REPORT: .

() Certificate Number: 880221W1.09038 v

0 ® Gould, Inc. \

APLEX - Ada Compiler, Version 2.0 1

o)) Gould PowerNode Model 9080)

(2] b

\ e [)
<L Completion of On-Site Testing: \

[26 February 1988 3

a |

<L »

) Prepared By: .';
J Ada Validation Facility .
‘; ASD/SCEL v
; Wright-Patterson AFB OH 4543326503)
j .‘
‘ 3
Prepared For: ¢

Ada Joint Program Office J

‘ United States Department of Defense [
Washington DC 20301-3081 \
4 .’
J
\ DTIC ,
; ELECTE v
SEP 2 6 1988]
.

1 ®APLEX is a trademark of Gould, Inc. >
\;

)

1 'm—mm—

Approved for public releass; 25 e g
' (Ve - %
’ Distribution Unlimtted ! © ~ \J 4 & (5‘

‘ s el .-" g 4 W AWM W ' S)
LA A’C’kﬁt‘lﬂ 0,- 5

R R T O TN P U T T O T I A I AR R T R R Y val, o

UNCLASSIFIED

4
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

N READ INSTRUCTIONS wm
REPORT DOCUMENTATION PAGE . EAD INSTRUCTIONS 7
1. REPORT NUMBER {2. GOVT ACCESSION NO. }3. RECIPIENT’S CATALOG NUMBER 'l:

4, TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED ‘l‘;

Ada Com 1ler Valldatlon Summary Re ort Gouéd, 26 Feb 1988 to 28 Feb 1989

Inc., X Ada Comgller, Version
PowerNode Model 9080 (Host and Targets 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) ‘:.

Wright Patterson Air Force Base, ¥,
Dayton, Ohio, U.S.A. .

v

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK A

AREA & WORK UNIT NUMBERS :f

Jd

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada nggt Proggam Office £ p 26 February 1688 o
Unite tates Department of Defense T —Twuwe o
Washington, DC 20301-3081 + NOTBER °§9":°“ Q
14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (ofthisreport) at:

UNCLASSIFIED A
Wright-Patterson Air Force Base, 15a. géﬁkeaﬁpICATION/DOWNGRADING fu

Daytgn, Ohio, U.S.A.

16. DISTRIBUTION STATEMENT (of this Report)

Approved for'public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

APLEX Ada Compiler, Version 2.0, Gould,Inc., Wright-Patterson Air Force Base, Gould PowerNode Model
9080 under UTX/32, Version 2.1, (Host and Target), ACVC 1.9,

DD "O% 1473 cpIf10N OF 1 NOV 65 IS OBSOLETE N
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

3 YN

e NP X - NN - ~ R L O
RO A AU NN, ‘q‘l‘»‘l’- WO t"-‘t‘; A HE R ERESY LM et v b " \'\'

) WS [\ -‘\'>\ |: ‘v
SO OB XY W TN Vol =\

Ada Compiler Validation Summary Report: <

Compiler Name: APLEX Ada Compiler, Version 2.0
Certificate Number: 880221W1.09038 N,
Host: Target: !

Gould PowerNode Model 9080 Gould PowerNode Model 9080
under UTX/32, Version 2.1 under UTX/32, Version 2.1

-
n..-. -

2l

Testing Completed 26 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

. o X N TN
Sl @ Lo s

e N B
Ada Validation Facility
Steven P. Wilson

-,

.—‘

Bt

ASD7SCEL J
Wright-Patterson AFB OH 45433-6503 ,
424 Ao —— ;
’ da Validation Organization 4
Dr. John F. Kramer 1
Institute for Defense Analyses "]
Alexandria VA 22311 ;
Ada %%int Program Office "
, Virginia L. Castor :
Director)
Department of Defense y

Washington DC 20301
"
'
i
§
®
;
’ L
m

2

L\
¢

2 P ™ AT A TR, ™ A A" L} L
! LS LN ~ ! y)
A% N Y N "' WA TN N

N, v
[e
) X

b T AT A " A A A AT AT T ® T AR a4 T < e a T A e A T
LA St T B OO Y L Top X i ""1“‘ ! .cu. B2 C .' N P

TABLE OF CONTENTS

= CHAPTER 1 INTRODUCTION

‘:tj,

fﬂ* 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . « . 1=2

*& 1.2 USE OF THIS VALIDATION SUMMARY REPORT . « & & « o 1-2

W 1.3 REFERENCES « & « ¢ « o o o o o o o s o s o o oo+ 1=3

'." 1.u DEFINITION OF TERMS e ® o ® ° ® 6 * e ¢ e e v s o0 1-“

" 1-5 ACVC TEST CLASSES . . . * . ;-l . [] . . L] . . [. 1-5

b

& CHAPTER 2 CONFIGURATION INFORMATION

D, .

o 2.1 CONFIGURATION TESTED o « ¢ o ¢ o o o o o s o s s o 2=1

2.2 IMPLEMENTATION CHARACTERISTICS ¢ « o ¢« o s « o o« o« 2=2

W

R

:,.‘;0 CHAPTER 3 TEST INFORMATION

o

::2 3.1 TEST RESULTS « & « o « o o o o o ¢ o o o s o o o o 3=1

® - 3.2 SUMMARY OF TEST RESULTS BY CLASS ¢ « ¢ ¢ ¢ ¢ & « & 3=1

;Q 3.3 SUMMARY OF TEST RESULTS BY CHAPTER « v « « « o« » . 3=2
".:'. 3.“ WITHDRAWN TESTS s & 8 ® ® e 8 & ¢ & s O ¢ s & & 9 3-2

?ﬁ 3.5 INAPPLICABLE TESTS ¢ ¢ « o « ¢ o o ¢ o ¢ o o o s o 3=2

e 3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4

S

br 3.7 ADDITIONAL TESTING INFORMATION « « « ¢« ¢ « o s » o+ 3=5

3-701 P!‘evalidation . .] L3 . [L3 - [. . . . 3-5

;.. - 3-7-2 Test Method e & & + & 8 e e & o 2 e & & 8 s s o 3"5

l:. 307-3 Test Site ® o 8 8 e o 6 & * & e ® s e © & * * . 3-6

l..

i*

B

,k APPENDIX A DECLARATION OF CONFORMANCE

5; APPENDIX B APPENDIX F OF THE Ada STANDARD

0 APPENDIX C TEST PARAMETERS

@

A

: APPENDIX D WITHDRAWN TESTS

N

% _—

b ! Accession For

L) NTIS CXA&I 4
'| DTIC TAK 0
! i Usannorwaced

..-,. rany EoIN [_!
- ’ Justificeatian . |
o, : _' — -_J
P

Y !

' Py,

[¥ [P —

® } Distribution/ o
m ; Afoi iabllity Coces
? } lAvail arc/or
3 '‘Dyat | Kpnnial

& v Al

| l

Y

; ‘ [" N - A - » » L] - - e T

="‘:l'v- ‘nﬂ‘!‘n n l—’. " M N Ty A% T N, M ol 0 5. . l.l!‘o. ...'.I' f) w LN AN -“n 'u .

LRI ST SR LT LOW M e e o W SN LR 1 95y 4% 58 455 Rop Min Moy din g oo digaig b nie B 0.0 Bk 98 2200 00 8 50 .5 @b 8 “Ba® 2.0 #2° 4a¥ B2® Dab €a° Wo- 0 TG

[R

CHAPTER 1

¢ INTRODUCTION

‘This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
Joust conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is

not in the Standard.

L4

Fr10 LA A

-~

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristies of
particular operating systems, hardware, or imrlementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

e e e e
. -

,‘
-

-

v‘ A"

The information in this report is derived from the test results produced
during vallidation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

2 AQ T O

AQ o X F 2

Dofler

. .’v.o.—cnu.

0
)
)

»

L)
A 1) WG f) t 1 Y . " - W N A 1Y) ; . rar e f s -
I SHR RN SRR O R O 2 AL D A 8t I OO OO K7 O T o, Myl e QO s, < vl

R0

q INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identifyy any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

a . To determine that the implementation-dependent behavior is allowed
B by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direcztion of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).

-

: On-site testing was completed 26 February 1988 at Ft. Lauderdale FL.
4
K
{J
¥ ®1.2 USE OF THIS VALIDATION SUMMARY REPORT
4
:‘ Consistent with the national laws of the originating country, the AVO may
N make full and free public disclosure of this report. In the United States,
: this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
. . ‘operating systems, and compiler versions identified in this report.
s
} The organizations represented on the signature page of this report do not
¢: represent or warrant that all statements set forth in this report are
',: accurate and complete, or that the subject compiler has no nonconformities
’ to the Ada Standard other than those presented. Copies of this report are
. available to the public from:
; Ada Information Clearinghouse
? Ada Joint Program Office
" OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
d Washington DC 20301-3081
- or from:
P
; Ada Validation Facility
» ASD/SCEL
: Wright-Patterson AFB OH 45433-6503
o
|‘
A4
?
L

1-2

Ry @ DXy

St Y 4y 3T 0 v j (AR W ™ , 3 . _
.‘.‘-‘.’J.‘;’!’l' TGO .l’.‘A..‘l.v'l'!‘li.-'l.n'l"')‘q 0‘&‘0“.‘1':‘l".‘l‘!'l.‘..t'!‘l'!‘ﬂ'-hi B l\‘l v l’:‘l‘.-.l”l.n.t's‘l‘!‘O B 2 1N ‘.lo Ry :".‘.‘s.l’ll ‘ U ‘ > '*F S

INTRODUCTION

PENTPS
20 cr

Questions regarding this report or the validation test results should be
g directed to the AVF listed above or to:

Ada Validation Organization
% ’ Institute for Defense Analyses
B 1801 North Beauregard Street
o Alexandria VA 22311

0
;: 1.3 REFERENCES
0
0
¥ 1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
K
i 2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
:ﬁ Program Office, 1 January 1987.
¥
I
:: 3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
° . Inc., December 1986.

I 4, Ada Compiler Validation Capability User's Guide, December 1986.

L, 1-3

7 @ o

i

i \ COROGOR0 T T T N L R Y O R T et L R & - N ATLULEL TR,
MNANS, 1 0 U S MR TR S Ve e N W ot o AL n ! ._.! ! W,)) ARRGN! ‘ .‘..-. DB LA A L X

- A .
i AN

INTRODUCTION

TR R R RTT A AT A)

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO
-

Compiler

Failed test
Host
Inapplicable
test

Passed test

Target

Test

Withdrawn
test

e ' W M) T T Y [} AN" 404)
S0 T 05 00 070,01, n.l)\' @’., ,Qk"““"‘. s »

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-18154, February 1983 and IS0 8652-1987.
The agency requesting validation.
The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a wuniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

An ACVC test that wuses features of the language that a
compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

An ACVC test for which a compiler generates the expected

result.
The computer for which a compiler generates code.

compiler's conformity regarding a
a combination of features to the Ada

A program that checks a
particular feature or

Standard. In the context of this rep-rt, the term is used to
designate a single test, which may comprise one or more
files.

An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect

1-4

j"’_..l \‘1 ," LR B BT 2 T R IR R P P T Sy
g 20 X o 2N Ch 2 My o

Vo oo >

2

B o T

@ Casex o,

. -

e 2.

Sl ol @ RS

s
e

.
T AT R T AT AT AT A R T AT L T T,
o M - ' .. o -'J‘ N \{P .‘ l r.-_“,"’,'\.‘! oy

e . . INTRODUCTION

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

s . 1.5 ACVC TEST CLASSES

N Conformity to the Ada Standard is measured using the ACVC. The ACVC
- contains both 1legal and illegal Ada programs structured into six test
' classes: A, B, C, D, E, and L. The first letter of a test name identifies
e the class to which it belongs. Class A, C, D, and E tests are executable,
b and special program units are used to report their results during
” execution. Class B tests are expected to produce compilation errors.

Y Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed 1f no errors are detected at compile time and the program executes
L J

to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
4 B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
- illegal construct that it contains is detected by the compiler.

3 Class C tests check that legal Ada programs can be correctly compiled and
) executed. Each Class C test 1s self-checking and produces a PASSED,
¥ FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a2 library--a compiler

1) may refuse to compile a Class D test and still be a conforming compiler.
’ Therefore, if a Class D test fails to compile because the capacity of the
D compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
t FAILED message during execution.

b

:- Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
d 9r FAILED message when it 1s compiled and executed. However, the Ada

Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
. E test is passed by a compiler if it is compiled successfully and executes
f to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

wr : P w L « . Ao
T tin i S et Mty b, ATV SO A AYS

FERERTLEY TR WU LW L Y KR YR R T O R T A R I o L R W NN N R N AR U R NI N T I e O R R T TR T D)
; H

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs involving
¥ multiple, separately compiled units are detected and not allowed to
’ execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-~-that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

)

f Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class ¢ tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is N
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

-

ugke

The text of the tests in the ACVC follow conventions that are intended to

Jensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of T2 characters, use small numeric values, and
place features that may not be supported by all implementations in separate '
tests. However, some tests contain values that require the test to be |
customized according to implementation-specific values--for example, an ‘
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.) o

h'f Yoo o v - -

> o o -

-

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that 1is J
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an 1illegal
language construct or an erroneous language construct is withdrawn from the }

PO A W N

ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

v oA GO @ A ARG

1-6

Ll
)
t

LY %

P W W

) N 3

"

4
OO () Q %))) y N A P L) Gl ey W) PN VY 0 ¥
Jo's X Q".! .0'0,0 .c!'. () .c‘ B X e O e NN N ot W *\ .Q'..QJ“\ 0..;0 [l M B W MO M Ny LN ‘t!‘.l.‘. .‘.lb. g .:' N -J‘.‘EL al?

X
L X 4

ABat BT 0% VA 92 hat 03 RAV_ gav Pav b

D ap e T cn e e

CHAPTER 2

CONFIGURATION INFORMATION

- -

-
-

2.1 CONFIGURATION TESTED

The candidate compilation sy:tem for this validation was tested under the
following configuration:

PP SN A

Compiler: APLEX Ada Compiler, Version 2.0

ACVC Version: 1.9

Certificate Number: 880221W1.09038

Host Computer:

\ b Machine: Gould PowerNode Model 9080

Operating System: UTX/32, Version 2.1

16 Megabytes

Memory Size:

Target Computer:

Machine: Gould PowerNode Model %080

Operating System: UTX/32, Version 2.1

16 Megabytes

Memory Size:

» » OU Y [y) > Y ~ 3 [y \) e L .
-‘l‘-'l‘-‘l'-‘l 'n 'n v 'n ‘.'“ » .o e l. l‘q S ,\" ")l -‘ * ps N‘ LA e ""Q .’.-'* " ‘.D\‘.Ol~ ". ‘.:“ ¢ ’l

» 8% ¥V % (N

oy

TRl VAR AR Aol Ol VB dad e Al ~ A akd P
N, EaRa R Vol Fup oyt Ny OG0 £ore 226, 8 50 £ AN SIS oty T M Wy] W, KL W M 0 At wy) Tt 0a% 210 0 i 3 ¢

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other c¢lasses also characterize an
implementation. The tests demonstrate the following characteristics:

« Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests DSSA03A..H (8
tests), D560018, D64OOSE..G (3 tests), and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation procecsses 64-bit integer calculations. (See tests
D4A002A, D4ADDO2B, DUAOOUA, and D4AOO4B.)

. Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See tests
B86001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX_ INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E24101A.)

. Expression evaluation.
Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to

a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (Sec test C35712B.)

2~2

Lk 2L Rt e e o«

" gYa At A,

" o

- .

e w - . a e ,‘
PR N ; £ a >
‘<4;-"1.'" -

id

[S g g
e~

s e .'It’

“x ‘e %, L

LE W

DRl 1

P P ol e Y e v R A P L T ey o - oo -
R L AT A e M I A M B T, T N T T T e TN A T ST T G S L
T L. VAT T P ..

R R A L O A L LU TN TR PN U T AT NI SORIAYBab B R B R o § oY fad Hb fak PR > 8a% Bas Eab s s " . gas

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation wuses all extra bits for extra range. (See test

C359034A.) X
>

s Sometimes NUMERIC ERROR is raised when an integer literal operand
. in a comparison or membership test is outside the range of the N
base type. (See test CU52324.) '

! No exception is raised when a literal operand in a fixed-point
comparison or membership test 1is outside the range of the base
type. (See test CU5252A.)

Apparently underflow is not gradual. (See tests CU5524A..Z.) :

. Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests CU6012A..Z.)

! The method used for rounding to 1longest integer is apparently

(] - round away from zero. (See tests CU6012A..Z.) »
s The method used for rounding to integer in static universal real ¢
expressions 1s apparently round away from zero. (See test A
CUAO1Z4A,) :
]
»
! s
t
) J
;]
1
3,
3
) h
\
q
)
;]
3,
D J
D A
4)
2-3
]
)
\)

»

L A T I e R A R PN N L PR IR Bl AT X R R b B Iy L N PR i R e s
- 0 k " ' \ " . B * * (] B I‘ y . Wy i) ,»l4u un.l'q"

U O K AT Y

A R

A AU U A U DA EATT AN R AU U O R R S R W R T L ooy P ‘o atdag xacat “ ey ata- o212 ata 234 2" 4B A*S als a%%

%
: CONFIGURATTON TNMFORMATION

« Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR. (See test
C36003A.) -

No exception is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a ‘'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
€52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC_ERROR when the array subtype is
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may :raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears

to ©be evaluated in its entirety before CONSTRAINT ERROR is raised

[when checking whether the expression's subtype is compatible with

L, the target's subtype. 1In assigning two-dimensional array types,

: the expression does not appear to be evaluated in its entirety

before CONSTRAINT ERROR is raised when checking whether the

expression's subtype is compatible with the target's subtype.
(See test C52013A.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indicatio-s. (See test
E381044A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is

2-4

A A A B AT A " A A" A nn et nm mm pe e A " i e e r AN n At v amaa . R e :
b hi‘ ... " -DO, “ " \ -. ... “‘ "‘* " M .’ X “ ‘."‘i N ..‘ \ i '.. N -"‘ ."N* 3 .. ‘J' R -\ "

N
..ctJ'!_nc.m,uun [Mo 4

i""" R R R R N U R WP R N R O AT RO oYy p duat@varay -2} Ry P Y At AN 3 e §¥2 $72 8 200" + 2% 0a% 68> ¥a” AR’ x g
s T da b

)

.l'

;li -

M

@ i CONFIGURATION INFORMATION
1A compatible with the target's subtype. (See test C52013A.)

. Aggregates.

‘Q In the evaluation of a multi-dimensional aggregate, index subtype
::« checks appear to be made as choices are evaluated. (See tests
N C43207A and CU43207B.)

In the evaluation of an aggregate containing subaggregates, not
3 all choices are evaluated before being checked for identical

bounds. (See test E43212B.)
" All choices are evaluated before CONSTRAINT ERROR is raised if a

- bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EU3211B.)

Representation clauses.

o‘l
ﬂ An implementation might legitimately place restrictions on
r - representation clauses used by some of the tests. If a
X representation clause is used by a test in a way that violates a
,5: restriction, then the implementation must reject it.
(X .
)
b' Enumeration representation clauses containing noncontiguous values
;Q for enumeration types other than character and boolean types are
e supported. (See tests C35502I..J, C35502M..N, and A39005F.)
¥ -
?: Enumeration representation clauses containing noncontiguous values
Qn for character types are supported. (See tests C(C35507I..Jd,
:«‘: C3550TM..N, and C55B16A.)
H
.t Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
. supported. (See tests C35508I..J and C35508M..N.)
‘ Al
& Length clauses with SIZE specifications for enumeration types are
o~ supported. (See test A39005B.)
Ih
?_ Length clauses with STORAGE_SIZE specifications for access types
SN are supported. (Sec tests A39005C and C87B62B.)
J‘l
' Length clauses with STORAGE_SIZE specifications for task types are
ﬁ: supported. (See tests A39005D and C87B62D.)
@ Length clauses with SMALL specifications are supported. (See
" t:sts A39005E and C87B62C.)
Record representation clauses are not supported when a composite
:} type used as a component is not aligned so as to preserve the
A alignment of its constituent parts. (See test A39005G.)
o
L
L

R A L LR TR i LT TP U RS WU W WU WL PU U T MU I U W W U U U N TU R M U T U R o ToyraTowe “aURaUR aVh 203 At Yaid aud-af

[] ‘ CONFIGURATION INFORMATION
. :

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

« Pragmas.

o The pragma INLINE is supported for non-library procedures and
! functions. (See tests LA3004A, LA3004B, EA3004C, EA3004D,
! CA3004E, and CA3004F.)

. Input/output.

The package SEQUENTIAL I0 cannot be instantiated with
{ unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

3 The package DIRECT IO cannot be instantiated with unconstrained
iy array types and record types with discriminants without defaults.
& (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL I0O. (See
* tests CE2102D and CE2102E.)

Modes IN_FILE, OUT _FILE, and INOUT_FILE are supported for
DIRECT I0. (See tests CE2102F, CE2102I, and CE2102J.)

. .
1....’--»-o--‘. o

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

-
]

Dynamic creation and deletion of files are supported for

& SEQUENTIAL_IO and DIRECT_I0. (See tests CE2106A and CE2106B.)

Iy

& Overwriting to a sequential file truncates the file to the 1last
. element written. (See test CE2208B.)

“

f An existing text file can be opened in OUT_FILE mode, can be
h created in OUT _FILE mode, and can be created in IN FILE mode.
4 (See test EE3102C.)

\

@ More than one internal file can be associated with each external
/ file for text I/0 for reading only. (See tests CE3111A..E (5
j tests), CE3114B, and CE3115A.)

[, More than one internal file can be associated with each external
" file for sequential I/0 for reading only. (See tests CE2107A..D
Py (4 tests), CE2110B, and CE2111D.)

W

4,

& More than one internal file can be associated with each external
2 file for direect I/0 for reading only. (See tests CE2107F..I (5
: tests), CE2110B, and CE2111H.)

@

¢ | 2-6

[}

L,

L

0 Ol 7
u.l‘o."o}':?‘ 1.8°0, P, VY

S PP A ZOIR PR TR TR I 7 2P a2, i . Y, . R - - “ay vak ‘, .
s . TICRS At g 83 8,000,990, 8°0 176 40,3 2. 870 4%3 §¥ NV o Ala a¥a‘a¥a~gb, v, et AR cav eal sal ey P -y D MW Oah 6y gl 2l

CONFIGURATION INFORMATION

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.

o (See test CE2107E.)

Temporary sequential and direct files are given names. Temporary
files given names are not deleted when they are closed. (See

L3

t

X tests CE2108A and CE2108C.)
1

&

i

. Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations only 1if the body is compiled before any
) instantiations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
o separate compilations only 1if the body is compiled before any
W instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

:Q Generic unit bodies and their subunits can be compiled in separate
Sy compilations. (See test CA3011A.)

-
GGt
)

-~

'@ oL

- ey e wow,
i @ -.n.-.l.'./‘;‘lv

“
- en

2ax O 22
N
]
~3

.

[RMANT] (" ™ X b9 .,- WL L UL UL VRET Ry T RIS LN N [o¥_ Tt L -~ BN
OO ST A ﬂ.‘n’.A AN |._. e, Wi SO A Ul R ,0"«]‘... . "...l“,l_ A . Waatity _|,'. Sastiatyy ,o.l!n.g,l‘ ety

CHAPTER 3

" TEST INFORMATION

3.1 TEST RESULTS

2 Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
: tested, 24 tests had been withdrawn because of test errors. The AVF
ﬁ determined that 277 tests were inapplicable to this implementation. All
'§ inapplicable tests were processed during validation testing except for 215
executable tests that use floating-point precision exceeding that supported

? “by the implementation. Modifications to the code, processing, or grading
:: for 11 tests were required to successfully demonstrate the test objective.
“ (See section 3.6.)

k)

X

$| . The AVF concludes that the testing results demonstrate acceptable
u conformity to the Ada Standard.

ig -

)

: 3.2 SUMMARY OF TEST RESULTS BY CLASS

3

N

) RESULT TEST CLASS TOTAL

3 A B € D _E L

0

)

$ Passed 107 1046 1593 17 13 45 2821

{

™ Inapplicable 3 5 263 0 5 1 277

- Withdrawn 3 2 18 0 1 0 24

Ny

o TOTAL 113 1053 1874 17 19 46 3122

A

K

n

s

i

L) L

.i
@

&!

3-1

4

0 R0 WS N] 0\ SN ALY AL O WL AT A A T A N W O
RO b O LR ORISR O OO GAOUDA DA S A o‘\ DA .v.\. BN AT N S R

)

R R R I A R T AR R T R I AR AT Yol wal ¥l Ve ¥ e ¥afad 220 0D B N Hal b oy . s Y

® TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

ol ' RESULT CHAPTER TOTAL
" 2 3 _4 5 6_7_8_9_10 _11 12 13 14

" Passed 189 491 530 2u4 166 98 141 327 132 36 232 3 23z 2821

Inapplicable 15 8 14 4 0 o0 2. 0 5 o0 2 0 22 277

b Withdrawn 213 2 0 0 1 2 0 0 0 2 1 1 2
B ‘Q

;$ TOTAL 206 586 677 2u8 166 99 145 327 137 36 236 4 255 3122
y.!

.“A

" 3.4 WITHDRAWN TESTS

H .‘ \

;? The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
;$ this validation:

f - B28003A E28005C c34004A €35502P A35902C

}Q C3590UA. C35A03E C35A03R C37213H C37213J

$ c37215C C37215E C37215G C37215H c38102C

o' ci1402a Ccl5614C ATH106C 850188 C87B0O4B

.ﬁ CC1311B BC3105A AD1AO1A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

e

%‘
n 3.5 INAPPLICABLE TESTS
o

Some tests do not apply to all compilers because they make use of features

o that a compiler is not required by the Ada Standard to support. Others may
s depend on the result of another test that 1is either inapplicable or
i withdrawn. The applicability of a test to an implementation is considered
{5 each time a validation is attempted. A test that is inapplicable for one
ﬁﬂ validation attempt i1s not necessarily inapplicable for a subsequent
® attempt. For this validation attempt, 277 tests were inapplicable for the
as reasons indicated:
13
¥
:. . €35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
M representation clauses for boolean types containing
Py representational values other than (FALSE => 0, TRUE => 1). These
x clauses are not supported by this compiler.

D)
w . C35702A uses SHORT_FLOAT which 1s not supported by this
4? implementation.
i'.
L

W
A -
"
L)
Ly

» LY .4 - TAANSAT T ¢ T oM ®p R @@ My Wy Ry MR B, Wy - LI TN AN N Y R -
I.O‘u’h -’i‘n”n‘—‘.’q’l‘c .sl & ‘0'0- A. ,l'("l’ (3)i,l .l"‘.t“l .-"‘w] Y \- () .". ﬁ“ Al t... \ N .. -’ h." _ i X L) . ﬁ \N 5“"-".\

- A e - "
N

-

S

@

SN &

o
X

TEST INFORMATION

A39005G uses a record representation clause which specifies an
alignment that does not preserve the alignment of its constituent
components. Therefore, the record representation clause is
rejected.

The following tests use SHORT_ INTEGER, which 1s not supported by
this compiler:

C45231B Ci5304B C45502B Ci5503B CU5504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D

Cl5231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C45531M, CUS531N, CUS5532M, and CU5532N use fine U48-bit fixed-point
base types which are not supported by this compiler.

Cu55310, C45531P, C455320, and CU5532P use coarse UB-bit
fixed-point base types which are not supported by this compiler.

Ci45651A incorrectly assumes the choice of model numbers for a
fixed-point type for this implementation.

C52008B declares a record type with four discriminants of type
integer and having default values. The type may be used in the
declaration of unconstrained objects, but the size of these
objects exceeds the maximum object size of this implementation,
and NUMERIC_ERROR is raised.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_ IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT IO.

CA2009C, CA2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. As allowed by AI-O00408/07, this compiler
creates a dependency on the missing body so that when the actual
body is compiled, the unit containing the instantiation becomes
obsolete.

CA300UF, EA3004D, and LA300O4B use the INLINE opragma for 1library
functions, which is not supported by this compiler.

‘44 ” - n"‘)" 3 'S Y —-.-‘ﬁ: -.. -~ . Y —~ . o~ - = . .
A e e s T Tt A R T G T AT e XKoL]

o ERE M A FLT T A 2 LE RN RN XN NN

S R AR E AN AN AN AN RN R TSR A LR SR TR TR R A o ooy

\J TEST INFORMATION

A

o

13 . AE2101C, EE2201D, and EE2201E use instantiations of package

5 SEQUENTIAL_IO with unconstrained array types and record types

i} having discriminants without defaults. These instantiations are
rejected by this compiler.

,\

N . AE2101H, EE2401D, and EE2401G use instantiations of package

ZQ DIRECT_IO with wunconstrained array types and record types having

) discriminants without defaults. These instantiations are rejected

e by this compiler.

ot . CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,

ﬂf CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are

ﬁ. inapplicable because multiple internal files cannot be associated

Q with the same external file, except for reading only. The proper

ﬁ exception is raised when multiple access is attempted.

- . The following 215 tests require a floating-poiat accuracy that

.h exceeds the maximum of 14 digits supported by this implementation:

EX)

(

W C24113K..Y (15 tests) C35705K..Y (15 tests)

B C35706K..Y (15 tests) C35707K..Y (15 tests)

. C35708K..Y (15 tests) C3580K..Z (16 tests)

" C45241K..Y (15 tests) c45321K..Y (15 tests)

] CU5421K..Y (15 tests) Cl5521K..Z (16 tests)

" CU552UK..2 (16 tests) C#5621K..Z (16 tests)

K CU5641K..Y (15 tests) CH6012K..Z (16 tests)

:,:‘

,ﬁl -

o 3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

" It is expected that some tests will require modifications of code,
» processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
" (otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting

> a Class B test into subtests so0 that all errors are detected; and
s confirming that messages produced by an executable test demonstrate
9 conforming behavior that wasn't anticipated by the test (such as raising
R one exception instead of another).
s
L Modifications were required for 11 Class B tests.
.'
sbyd
9 The following Class B tests were split because syntax errors at one point
K resulted in the comp?.er not detecting other errors in the test:
&
)
}: B27005A B28001R B28001V B71001K BA1101C
Ja BA3006A BA3006B BA3007B BA30C8A BA3008B
2 BA3013A
o
)
I 3-4
o

- » L] . .
{) ¢
Ag M) 0."‘0.“»%':. L.‘l,"". A LA R

1 RxYP Qe Q r e ~mr Ly
A A S SN AR S T i) «‘ﬁ’! A"n.l"! 4".'192'41‘.‘0’: LR O, * X o '-‘l»‘.!!..:,‘.l‘. ."o

-
L S

<%

-
-

-
-

S e,

)
o

-

.locc-.—- -

$
N
N

RN AN (] 0 i ’ ¥ B ’ h -
RO R T R N Y O s e e M KA N N NEDE N AL S

AL R S LI At S S TP R TR T h A SR LR W T LK TR TN U TN R AT Ry Ty a4 B8, AV A%

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the APLEX Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the APLEX Ada Compiler using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Gould PowerNode Model 9080 operating under UTX/32, Version 2.1.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the

‘magnetic tape. Tests requiring modifications during the prevalidation

testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were 1loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Gould PowerNode Model 9080, and all
executable tests were linked and run on the Gould PowerNode 9080.

The compiler was tested using command scripts provided by Gould and
reviewed by the validation team. The compiler was tested using all default
switch / option settings except for the following:

Option / Switch Effect
b enable optimizer and pragma in-line
1 produce a listing

Tests were compiled, linked, and executed (as appropriate) using a single
host-target computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The 1listings examined
on-site by the validation team were also archived.

3-5

A T T R BT NPT K R S
v .. L& ..O.Il. a, ..

ALERGREHGY

4 by 8t dTa 3T 47, 4T, gty aTa At alatal cag tog 4 20 KX RN U RU N W WUV W PO MO at bl a8 ¢o8 60f wub vali, uro B%e Ve 858 478 8 2. b bl a® Fat “$a¥ $at fat 8si da- g ol - ¥

TEST INFORMATION

3.7.3 Test Site

f Testing was conducted at Ft. Lauderdale FL and was completed on 26
February 1988.

LGN @ 5, S

.“ . (L? -.h.‘.(l_

3-6

a2 oZolalall-ty

4:'“‘.

MR R et . A
o
X

o LU

| SRR TSNS S

NN .)
Wy Wy N LY * ! htig) WM MK M N XY

A T S R R A AR

N

APPENDIX A

KA
R DECLARATION OF CONFORMANCE

Gould, Inc. has submitted the following Declaration of
K Conformance concerning the APLEX Ada Compiler.

! A-1

"o T

n-l

L4 Ty T W Wy P P, wg »
v,nn.ql‘. b ' ‘l 4“

SV AW L At Y

~;.\:_I'LA" n" -" t-' 't 7 ."s""-‘ﬂ; . .,;." -P"" .‘_" .‘ﬂ .‘"\". -~ -'-! .,"L d
LB g P o, 0V, Y. EaX o 2 4

<
.
-
-
-
>
-
s

T T N T R T M SR S A O O T TR O e s 4 g% pba “aVy aba*ak, vt T

. e
et
v

DECLARATION OF CONFORMANCE

" e

e

Compiler Implementor: TeleSoft, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

- - -t

Vo e e v
--

Base Configuration

! Base Compiler Name: APLEX'™ Ada Compiler Version: 2.0

1 Host Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1

; Model 9080

" Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1
Model 9080

Derived Compiler Registration

-

e Derived Compiler Name: APLEX™ ada Compiler Version: 2.0

B\ Host Architecture ISA: Gould PowerNode OS&VER $#: UTX/32 Version 2.1
e - Model 90XX

o Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1
2 Model 90XX

[>

v Derived Compiler Registration

Q - Derived Compiler Name: APLEX™ agda Compiler Version: 2.0

{ Hcst Architecture ISA: Gould PowerNode OS&VER $#: UTX/32 Version 2.1
: Model 60XX

B Target Architecture ISA: Gould PowerNocde OS&VER #: UTX/32 Version 2.1

Model 60XX

el

b Derived Compiler Registration

y Derived Compiler Name: APLEX'™ Ada Compiler Version: 2.0

™, Host Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1
® Model 90XX

b)) Target Architecture ISA: Gould PowerNode OS&VER #: UTX/32 Version 2.1
¥ Model 60XX

i

l

@

g

B ™ .

N APLEX is a trademark of Gould Inc.

)

o

A-2

.
L J

h
\ NI ") X v P R APt R e A N s OGN P P AN U S N S AN N A N N g
AN T v e T T A T i et R S T At R G - LAY

o et g, S L R R A TR VALK TOU X §9af'e 4'2 4", ENLR TN U OGO “ad Aa Bl n'9 4 A ghe “atd adatala At

Implementor's Declaration

P [al

I, the undersigned, representing TeleSoft, Inc., have implemented no

deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
. in the compiler listed in this declaration. I declare that Gould Inc.
{ is the owner of record of the Ada language compiler listed above and,
as such, is responsible for maintaining said corpiler in conformance

to ANSI/MIL-STD-1815A. All certificates and registrations for Ada '
language compiler listed in this declaration shall be made only in the
owner's cor

Date: 3,/8/69}

TeleSoft, Inc.
Ray Parra, Director of Contracts/Legal

N N

¢
ooy Jrey

: Owner's Declaration

) I, the undersigned, representing Gould Inc., take full responsibility v
for implementation and maintenance of the Ada compiler listed above, v
and agree to the public disclosure of the final Validation Summary ‘
Report. I further agre€ to continue to comply with the Ada trademark \
policy, as defined by the Ada Joint Program Office. I declare that)
all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard ANSI/MIL-
STD~1815A. I have reviewed the Validation Summary Report for the

Ay

4 compiler and concur with the contents. I also affirm that the \
) PowerNode computer architectures listed herein (90XX and 60XX models) N
. are of equivalent architecture to the PowerNode 9080 as described in)

the attached documentation which was submitted with our 1.8
; validations.

%@7_& /;]aro—w«(&\, Date: 3/‘///21/ '

Gould (nig, 1{
Mary F. comber, Seni Manager, Major Corporate Agreements)

AKX

A-3

L 'j&'f ALY TR ...-.‘..\r--.‘_\'w. \r q~u‘..< t’n' -".‘-(' (‘N(‘" \-‘\(_'.“ {..{..(.-_.‘- e
Rt oad oS end) A (L ol bl LR L RSO YR BT U WT IS SO,

APPENDIX B

h APPENDIX F OF THE Ada STANDARD
Jl'
() '
i::.
' The only allowed implementation dependencies correspond to implementation-
X dependent pragmas, to certain machine-dependent conventions as mentioned in
g' chapter 13 of the Ada Standard, and to certain allowed restrictions on
&: representation clauses. The implementation-dependent characteristics of
q the APLEX Ada Compiler, Version 2.0, are described in the following
s sections, which discuss topies in Appendix F of the Ada Standard.

Implementation~-specific portions of the package STANDARD are also included

%, ®in this appendix.

.

2

Ky package STANDARD is

iy
?. N type INTEGER is range -2_147 483 648 .. 2_147_483 6u7;
}, type LONG_INTEGER is
N range -9_223_372_036_854_775_808 .. 9_223 372_036_854_775_807;
K

type FLOAT is digits 6 range -7.23698E+75 .. T7.2°<98E+75;

- type LONG_FLOAT is

h:j digits 14 range -7.2370055773320E+75 .. T7.2370055773320E+75;
" type DURATION is delta 2#1.04E-14 range -86_400.0 .. 86_U00.0;
»
4
[~ end STANDARD;

-
o

o
9
-,
[)
kS
@
o B-1
o
—

v

:
R A € NS i o T e R A R e 7

L X ubnl

fadi it at)

Attachment A
APPENDIX F OF THE LANGUAGE REFERENCE MANUAL

Implementation Dependent Pragmas
implementation Dependent Attributes
Specification of Package SYSTEM

Restrictions of representation.clauses
Implementation dependent naming

Interpretation of expressions in address clauses
Restrictions on unchecked conversions

/O Package Characteristics

BN EWN =

(1) Implementation Dependent Pragmas
The following pragmas are supported:

COMMENT
ELABORATE
IMAGES
INTERFACE
INLINE
LIST
LINKNAME
PACK
PAGE
PRIORITY
SHARED
SUPPRESS

The implementation-defined pragma COMMENT embeds the text of a string
literal within the object file of the compilation unit containing the pragma. The
syntax is:

pragma COMMENT ("text of the comment");

This pragma may appear at any location within the source code of an Ada
unit. There is no restriction on the number of comments that may be used.

UV ML s re

oA 0 R

- -

e
- -

v -~
P]

£ { Ienrronenrvigiy

.
-

IZIANTA @

- e -
o

The implementation defined pragma images controls where the code to
support the "images” attribute for an enumeration type is generated. The syntax
is:

pragma IMAGES (<enum_name>, "DEFERRED" | "IMMEDIATE");

<enum_name> must be the name of a previously defined enumeration type.

This pragma must appear in the same package specification or declarative part as
the type definition. If the "Immediate” parameter is used, the code for the
“images" attribute is generated in the compilation unit where the type definition
appears. This is the default. If "Deferred” is specified, the code is generated in
any compilation unit which references the ™images” attribute. Note that if no
references are made to the ™images” attribute, no code is ever generated.

Pragma LINKNAME is used 1o associate a string with the name of a routine
in the object code. The syntax is:

pragma LINKNAME (<ada_name>, <string>);

The <ada_name> must be the name of an Ada routine which previously
appeared in a pragma INTERFACE. The effect of this pragma is to use the <string>
as the name for the routine in the object code for the unit. Thus,

function Hyperbolic_Sin (X: Float}

return Float;
pragma INTERFACE (Assembly, Hyperbolic_Sin);
pragma LINKNAME (Hyperbolic_Sin, ":HSIN:");

would cause the compiler 1o use the string ":HSIN:" in the object code
whenever referring to the Ada routine "Hyperbolic_Sin".

When interfacing to C, Fortran, or Pascal, the compiler still forces the
name in the object code to correspond to the appropriate convention. Thus, for C,
the first character of the name has an underscore substituted, Fortran has an

underscore added in front of and behind the name, and Pascai has an underscore
added in front and two underscores added behind the given name.

The ON parameter of pragma SUPPRESS is not supported.

The defauit for pragma LIST is the opposite of the first pragma LIST
encountered in the source file.
Pragma Inline is not supported for library units.

(2) Implementation Dependent Attributes

There are no implementation-defined attributes.

B-3

_ AL L .)) ‘
R Rt e T e TR P NN MO CRE KRN AR TOM RN WORM N W A MR RN i o WK

A AN

PN e RN

PUSTURITAIR A A

IR RN AR A AR AR AR RN

Ol SR 0 Al Vb 8 a8 B A R 6 g Rl 8 a0 80 0" a8 58 2”8 a't 'a%) 28 a'% %% a's’ald"a’s",

(3) The specification of package SYSTEM:

package SYSTEM is

Powernode/NPL

private

type ADDRESS is private;
type NAME is (Gould_UTX, Gould_MPX);
SYSTEM_NAME : constant NAME := Gould_UTX;- for

- or
SYSTEM_NAME : constant NAME := Gould_MPX;~ for Concept

STORAGE_UNIT : constant := 8;

MEMORY_SIZE : constant := 2*°24-1; -- for Concept/Powernode
- or

MEMORY_SIZE : constant := 2**30-1; -- for NPL

--System-Dependent Decfarations

subtype BYTE is INTEGER range 0 .. 2**8-1;
subtype INTEGER_16 is INTEGER range -2**15 .. 2**15-1;
subtype INTEGER_32 is INTEGER; -~ range -2**31 .. 2"31-1;

--System-Dependent Named Numbers

MIN_INT : constant := -{(2°*63);

MAX_INT : constant := (2°°63)-1;

MAX_DIGITS: constant := 14;

MAX_MANTISSA: constant := 31;

FINE_DELTA: constant := 1.0/2.0"*(MAX_MANTISSA);
TICK: constant := 1.0/(2.0""14);

--Other System Dependent Declarations
MAX_OBJECT_SIZE : constant := MEMORY_SIZE;
MAX_RECORD_COUNT : constant := MAX_INT;
MAX_TEXT_IO_COUNT: constant := MAX_INT-2;
MAX_TEXT_IO_FIELD: constant := 1000;
subtype PRIORITY is INTEGER range 0 .. 255;

NULL_ADDRESS : constant ADDRESS;

type ADDRESS is new INTEGER_32;
NULL_ADDRESS : constant ADDRESS := 0;

end SYSTEM;

B-4

>

W N A W ‘ W) 3 O R T T A O S I T
i?n‘l 1.'5,.0'?A’$J. Y, o q'. Wy ,.'._.‘Q.! ‘.A |'.l’.‘a 0! "...l ;’l‘." u"'a"‘o‘. PN T M .‘l'n ! !’a":"‘!‘l‘!“".v Al; !‘Q) .'3_“ “‘~‘ AL D !.. A ‘. I ‘l"h‘h .". R

AT
s'.a

e e, \ S =

- >

v - b 5

- - % X

- .-

. - . RN N T IN TEN %N U '2'gia dla’ eV AR Fasi€a Bea AR R 0 §°0 78,6 ot §8 §a¥ Bat S0t $ao bas Na= Nl atd 2 ta ati ' o¢h a6 o' n g~ WY RNAFNU AR U7 RN mn

,:f:v : (4) The list of all restrictions on representation clauses.

[} "

:E:j The compiler supports the following representation clauses:

Lo Length Clauses for types 'Size (LRM 13.2(a))

x Length Clauses for coilections 'Storage_Size (LRM 13.2(b))

o

.'x" Length Clauses for tasks 'Storage_Size (LRM 13.2(c))

e,

PN

B Length clause for fixed point types (LRM 13.2(d)).

o Enumeration representation clauses (LRM 13.3) are supported with the

aﬁ' restriction that they cannot be used to alter values of the predefined type

W BOOLEAN.

PR

:G:: Record representation clauses (LRM 13.4) are supported. The maximum

6 significant value for the expression following "at mod” is 8.

) Only records whose components are all statically sized may be the

::'. subject of a representation specification, i.e., those containing dynamicaily sized

c‘:’ components may not be the subjects.

::;o A composite type used as a component of a representation specified record

.;,: must be aligned so as to preserve the alignment of its consituent components.

1,

, > Address Clauses (LRM 13.5) are supported for objects.

1

A

p:::: ’ The following representation clauses are not supported:

e

!'ﬁ: Address clauses for subprograms, packages, task units, and task entries.

O

- (5) The conventions used for any implementation-generated name

§::0: - denoting implementation-dependent components.

st

:‘:: There are no system generated names for implementation-dependent

[components.

12]

i (6) The interpretation of expressions that appear in address clauses.

! A Expressions that appear in address specifications are interpreted as the
) first storage unit of the object.

. .

N (7) Any restriction on unchecked conversions.

i')

.: Unchecked conversions are allowed between variables of types (or

A subtypes) T1 and T2 provided that:

i, . they have the same static size

° . they are not unconstrained array types

o . they are not private (unless they are subtypes of, or are derived

;,':,' from the private type System.Address.)

.

y

@

:"o,

.:::.

":'.

' B-5

i

&

"y) . o . .
t".n"u"!t".t".l ,. .l"..".!.‘,'", “.-"&"’0“‘. 0 A’. ?‘ .Q",; t\u'!!;’o’.“!c' i‘s'igo'l g’t,p 0‘4‘!.5 I&o’l,q q ..'l,‘. .0‘44’0,.' _.4'3,.‘ .1'091'04'04 O!Q'I..'l,.'l, p’l!.‘

")
S Wit

~

d
K

3
3

(8) Any implementation-dependent characteristics of the input-output packages.

Instantiations of DIRECT_JO and SEQUENTIAL_JO are supported with the
following exceptions:

. unconstrained array types

. unconstrained types with discriminants without default values

. muitiple internal files opened to the same external file may only

be opened for reading on UTX only

£ ' . multiple internal files may not be opened to the same external file
;‘,: on MPX.

S ey - -

-
-

«
R

B In package DIRECT_IO:
type COUNT is range 0 .. MAX_INT;

By In package TEXT_lO:
K type COUNT is range 0 .. MAX_INT-2;

o In package TEXT_IO:
W subtype FIELD is INTEGER range 0 .. 1000;

0 A * The line length limit for MPX is 253 characters.

f 4

£ @ ToRIaE S

-

-
-

e

v B-6

EX ..

. . .
0 T I A T T B e B s YL

Attachment B

Parameters used in .TST tests (macro substitutions)

] SMAX_IN_LENGTH 200
W $BIG_ID1 STRING(1..200) := (1..199 => 'A’, 200 =>'1")
N $BIG-1D2 STRING(1..200) := (1..199 => 'A’, 200 =>'2')
w $8IG_ID3 STRING(1..200) :m=

N (1..100)=> 'A’,100=>'3',102..200 =>'A’)
- $BIG_ID4 STRING{1..200) :=

& . (1..100 => ‘A", 101=>'4',102..200 =>'A’)
e SNEG_BASED_INT 164FFFFFFFE#

i $BIG_INT_LIT STRING(1..200):= (1..197=>'0',198..200=>"298")
18 $BIG_REAL_LIT STRING(1..200):= (1..194=>'0",195..200=>"69.0E1")
' $EXTENDED_ASCII_CHARS *abcdefghijkimnopgrstuvwxyz!$%20[\]*'{(}~"
: $NON_ASCII_CHAR_TYPE (NON NULL)

o $BLANKS ' STRING(1..180) := (1..180 => ')

W\ $MAX_DIGITS 14

"‘: SNAME (No such numeric type,

W used LONG_INTEGER)

i $INTEGER_FIRST -(2°°31)

b $INTEGER_LAST (2°°31)-1

® * SMAX_INT (2°°63)-1

b $LESS_THAN_DURATION -100_000.0

i $GREATER_THAN_DURATION 100_000.0

3 $LESS_THAN_DURATION_BASE_FIRST -10_000_000.0

$GREATER_THAN_DURATION_BASE_LAST 10_000_000.0

s $SCOUNT_LAST (2°*63)-2

. $FIELD_LAST 1000

Y - $FILE_NAME_WITH_BAD_CHARS STRING(1..257) := (1..257 => 'D");

by $FILE_NAME_WITH_WILD_CARD_CHAR STRING(1..257) = (1..257 => 'C"):

i $ILLEGAL_EXTERNAL_FILE_NAMET1 STRING(1..257) := (1..257 => 'B');

‘ $ILLEGAL_EXTERNAL_FILE_NAME2 STRING(1..257) := (1..257 => 'A’);

N

Vd

dy

>

L

)

[

®

o8

I\,

L%

,-‘

-

|93

®

N

:

.0'.

DU

®

)

“A\

{

f:: B-7

o,

» !. !'. ..g.. A '.,"h‘ \‘?0« 'l."h‘

ATt T g N OB P T el Yo Mal V8 ol vak tad Va0 AV 80 a Ve R ARt A0 R R 'Yy A0 Al B8 B B B B B8 BV B Bl Bl bl B ¥ Ba¥ g o

APPENDIX C

X TEST PARAMETERS

Certain tests in the ACVC make use of implementation~dependent values, such

" as the maximum length of an input line and invalid file names. A test that
Q makes use of such values is identified by the extension .TST in 1its file
§ name. Actual values to be substituted are represented by names that begin
N\ with a dollar sign. A value must be substituted for each of these names
'§ before the test is run. The values used for this validation are given
i below.
@ e
N
i
Q Name and Meaning Value
)
§ $BIG_ID1 (1..199 => 'A', 200 => '1')
d Identifier the size of the
< maximum input line 1length with
:f - varying last character.
M)
& $BIG_ID2 (1..199 => +aAv', 200 => '2')
W Identifier the size of the
: maximum input line 1length with
. varying last character.
\
Y $BIG_ID3 (1..100 => 'A", 101 => '37,
o Identifier the size of the 102..200 => 'A')
? maximum input line 1length with
V varyirg middle character.
@
g $BIG_IDU (1..100 => 'a', 101 => '4r,
, Identifier the size of the 102..200 => 'A')
A maximum input line 1length with
: varying middle character.
@ $BIG_INT LIT {(1..197 => '0', 108..200 => "298")
N An integer 1literal of value 298
:. with enough 1leading zeroes so
) that it is the size of the
S maximum line length.
. »
e C-1
)
4

SO T M e T R MR ! . armAr
L $Y)])("r Ll KR |.r“.v W, .L"t.“'l. 0.0 0N f X ,0.‘

Ayt 180 T ‘ ' L - 4
I S e N o T T T T T e e e i p A)

Ta e
A A

-
-~

3

'l -y =
. X 3 - TR™ ™ x ™ - ” - g, y
BUCOOC OO 3 SR “ UGS,) \ _ oI, ‘J 20 NG

RN LS U RA R I P R A AN R A PRI o

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING!
A string 1literal which when
catenated with BIG_STRING2
yields the d{mage of BIG_ID1.

$BIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID?.

$BLANKS

A sequence of blanks twenty
characters 1less than the size

of the maximum line length.
$COUNT_LAST

A universal integer

literal whose value is

TEXT_I0.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FILE_NAME WITH_BAD_CHARS
An external file name that
either contains invalid
characters or is too 1long.

$FILE_NAME WITH WILD_ CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

(1..194 => '0', 195..200 => "69.0E1")

(1..100 => 'A')

(1..99 => 'A', 100 => "1")

(1..180 => r 1)

9_223_372_036_854_775_805

1000

(1..257 => 'D')

(1..257 => 'C")

100_000.0

AL AT S AR AL . m At "
L o X .".. o T PN “h X .c'i.oi‘.!.-‘lo't.:

Y LD

RS

MR L LI LI LA

-
[OOSR

'

LA LT URTT AU AR ad Vel G G udp b 098" i atd

Name and Meaning

P TR S TR T

NP (4 1) UK O ™ 3

TEST PARAMETERS

Value

$GREATER_THAN_DURATION_BASE LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE_NAME1
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL FILE NAME2
An external file name which
is too 1long.

$INTEGER_?IHST
A universal
whose value 1is

integer 1literal
INTEGER'FIRST.

$INTEGER_LAST
A universal
whose value is

integer 1literal
INTEGER'LAST.

“*$INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN _LEN
Maximum input line length

permitted by the implementation.

$MAX_INT
A universal
whose value is

integer 1literal
SYSTEM.MAX_INT.

$MAX_INT_PLUS_!

A universal integer 1literal
whose value is SYSTEM.MAX_INT+1.

Il

i M) - w " - . .
SO URN NI IC i i MM i R SO W M X R

10_000_000.0
(1..257 => 'B')
(1..257 => 'AY)
-2_147_483_648
2_147_483_647

2_147_483_648

-100_000.0

-10_000_000.0
14

200
9_223_372_036_854_775_807

9_223_372_036_854_775_808

e o ™ - - -
e SO A g S R T o e,

PSRN e

3
LN MK MO

-

P
AN

I
s
-

P g .
AR el
. - o e

o T

> o -
i

,,_A -
.
‘14-‘

LY

o J

3

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT BASED LITERAL
A universal integer based
literal whose value is 2#11#
with enough 1leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN_REAL BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX_IN_LEN, including the quote
characters.

$MIN_INT

A universal integer 1literal

* whose value is SYSTEM.MIN_INT.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT _INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED INT
A Dbased integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

N e

h SN

(1..2 => "2#7, 3,.197 => '0',
198,.200 => "114")

(1..3 => M6, 4..196 => '0°',
197..200 => "F.E:")

(1 => ' 2,.199 => 'A', 200 => tne)

-9_223_372_036_854_775_808

(No such numeric type)

16#FFFFFFFE#

- " » LR -
MIALATIR AR A M .l'q. 2% 0% p,ﬂ.,i'u‘.,n‘ % cit‘;l, YOS

AR I RN RN A

r
4

)
R/
3
R
0

?

APPENDIX D

L
" WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. DB28003A: A basic declaration (line 36) incorrectly follows a

later declaration.

v . E28005C: This test requires that "PRAGMA LIST (ON);" not appear
: in a 1listing that has been suspended by a previous "PRAGMA LIST
I (OFF)3"; The Ada Standard is not clear on this point, and the
h matter will be reviewed by the AJPO.

f - . C34004A: The expression in line 168 yields a value outside the

1Y range of the target type T, but there 1is no handler for

W CONSTRAINT_ERROR.

A

“ « C35502P: The equality operators in lines 62 and 69 should be

inequality operators.

.: . A35902C: The assignment in line 17 of the nominal upper bound of
: a fixed-point type to an object raises CONSTRAINT_ERROR, for that
. value lies outside of the actual range of the type.

@ . C35904A: The elaboration of the fixed-point subtype on 1line 28

f wrongly raises CONSTRAINT ERROR, because its upper bound exceeds
) that of the type.

L]

T,

N » C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
\ returns 0 when applied to a fixed-point type with a null range,

@ but the Ada Standard does not support this assumption.

f . C37213H: The subtype declaration of SCONS in 1line 100 is

: incorrectly expected to raise an exception when elaborated.

)

@

: D-1

n

)

[/

[

4, .
OO OO S OAOAAO OO0 WA OO o ~ Ry AR A W - - R
R e N R LA TR SN AN MMM R OO A I M R~ > N AN AN NN OREE SR

ay S S N M P U N MU M WL PU N, U U U WUU N MU YOO W IR R o ‘a0 ala " bR v th e fa L0 et e’ Bat 0ae Pat tat Rt BaV 420 §)v 0V Bab Gut Bat §

WITHDRAWN TESTS
. C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT_ERROR.
' . C37215C, C37215F, C37215G, and C37215H: Various discriminant

constraints are incorrectly expected to be incompatible with type
o] CONS.

‘" . C38102C: The fixed-point conversion on line 23 wrongly raises
X CONSTRAINT_ ERROR.

. « CB1402A: The attribute 'STORAGE_SIZE is incorrectly applied to an
F object of an access type.

N . CU5614C: The function call of IDENT_INT in 1line 15 uses an
& argument of the wrong type.

. A74106C, C85018B, C8TBO4B, and CC1311B: A bound specified in a
fixed-point subtype declaration 1lies outside of that calculated

lﬁ for the base type, raising CONSTRAINT_ERROR. Errors of this sort
Q‘ occur at 1lines 37 & 59, 142 & 143, 16 & U8, and 252 & 253 of the
0 four tests, respectively.
)
- - . BC3105A: Lines 159 through 168 expect error messages, but these
; lines are correct Ada.
N
% « AD1AOTA: The declaration of subtype SINT3 raises CONSTRAINT_ERROR
? for implementations which select INT'SIZE to be 16 or greater.
.l
. CE2401H: The record aggregates in lines 105 and 117 contain the
N - wrong values.
%
!
A
.
L
.
9
@
»
y
’
9
N
P
R D-2
.l
% :
|‘ ‘
‘f
Tt
.
k) N

s, -
A

K0 0 O’ WO), PPy B W R Y O W ‘ 20 Y %o, o J O WY WY,
RO A D Mo S S A o X A R T T S MU A O L K RN

