RN K LRSS VN EAN AN S R W 18,9 AR08 Gah Yal BP0 ~a-# y el ¥, ook sal o ok &

¥ ‘3 -~ ¥ O}
7 £y oot O
' g“ vt . :‘;}?.."?f

s N
0480
0:::\
AVF Control Number: NBS88VMAS530 2 ﬁ'
&
Lo
OO
o
v‘:'
t:q:lt
R
'o;s
A
}--\
. 5
Ada Compiler 2
VALIDATION SUMMARY REPORT: ®
Certificate Number: 88052051.09110 .'
q. MASSCOMP r ":
o MASSCOMP Ada, Version 1.1 ‘q"
. MASSCOMP MC6600 with M68030 CPU and ::;'
m M68882 floating point accelerator (FPA) N
@,
2 :
2
| el Completion of On-Site Testing: f 0:
< 20 May 1988 v.“-
{
(NN}
q Prepared By: ':::'
Software Standards Validation Group 'c::
Institute for Computer Sciences and Technology Y
National Bureau of Standards .9
Building 225, Room A266 -
Gaithersburg, Maryland 20899 -
GaN
v,
W,
N
Prepared For:)

Ada Joint Program Office 'o‘;:n
United States Department of Defense D I l< :‘n‘.
Washington, D.C. 20301-3081 1
ELECTE o

. SEP 2 6 1988

O "

) H X

.o . . J

8)
T DIBTRBUTION STATEMENT X | G g 26
Approved for public relecne; d
Digiribution Wnlimited ':ig
L0

e s o e s

v, v " T AT Ay Tl L -, o, . -
l.‘b -’I. S -l!‘l)i.‘t.ﬁ 8% ~~ .0 P ”N "* o, 'ﬁ' \ J%\» N) -‘\' ‘F \‘ ‘N((,‘{\'((.n.;tuﬁ

o e e e

KRR TR R LI L S KA RN R WA N - ¥ g @t N ZNRM o MAME MNUEN SN L I IS 2 Fac rgr bgt bt 8,0 Bae Baw P8 Gar Pav Be s T YTy 0

UNCLASSIFIED h

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) L

=

READ INSTRUCTIONS
. REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM :
1. REPORT NUMBER |2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER ‘
"
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED !
Ada Compiler Validation Summary Rego 20 May 1988 to 20 May 1989 d
MASSCOM MASSCOMP Ada, Version MASSCOMP
MC6600 with M68030 CPU and M68882 F oating 6. PERFORMING ORG. REPORT NUMBER)
point accelerator (FPA) (Host and Target) ‘.
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) '
National Bureau of Standards, ;
Gaithersburg, MD, US.A. .
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
National Bureau of Standards,
Gaithersburg, MD, US.A
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Gda nggté Erogram O£f1c<€ £ Def 20 May 1988 »
nite ates Department o efense TN q
Washington, DC 20301-3081 + NORBRR OZSP:GES
14. MONITORING AGENCY NAME & ADDRESS(ifdifferent from Controliing Office) 15. SECURITY CLASS (of this report) A
. UNCLASSIFIED v
National Bureau of Standards, 15a. RECLASSIFICATION/DOWNGRADING)
Gaithersburg, MD, U.S.A.
]
16. DISTRIBUTION STATEMENT (of ihis Report) y
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. '“different from Report) ;
UNCLASSIFIED '..
»
18. SUPPLEMENTARY NOTES h
t
X
19. KEYWORDS (Continue on reverse side if necessary and identify by block number) >
\J
Ada Programming language, Ada Compiler Validation Summary Report, Ada X
Compiler Validation Capability, ACVC, Validation Testing, Ada \
vValidation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-)
1815A, Ada Joint Program Office, AJPO)
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) :
\}
MASSCOMP Ada, Version 1.1, MASSCOMP, National Bureau of Standards, MASSCOMP MC6600 with :
M68030 CPU and M68882 floating point accelerator (FPA) (Host and Target), ACVC 1.9, :
]
]
4
DD FUR® 1473 c0IT10N OF 1 NOV 65 IS OBSOLETE !
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED L
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
(

s B%

SV vty 3 B P TP A ane .. o , » .
o e S e S M A S e e

b % A NS AN

T T R O T T N T O O R I o I, S g b g e g A h B 9 PR I SO R Ry T TP U IS ORP T ST TN

. W,
2

o

* ».l
3 “J
i

W

4
Ada Compiler Validation Summary Report: v$‘,
™
Compiler Name: MASSCOMP Ada, Version 1.1 : ‘:‘,

N

Certificate Number: 880520S1.09110 :;:

)

Y
Host: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under MASSCOMP ol

RTU, Version 4.0 -

larget: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under MASSCOMF 3}

RTU, Version 4.0 1

L,

W)
Testing Completed 20 May 1988 Using ACVC 1.9 o
&

This report has been reviewed and is approved. Ny

f. ‘\

s

)
@

<
..
0':

l...

Dr. David K. Jeife¥so)
Chief, Information Systems ::s
Engineering Division X
National Bureau of Standards ®

- Gaithersburg, MD 20899 ::

Kda Validation Organization

rr

Dr. John F. Kramer :::
Institute for Defense Analyses ':"
Alexandria, VA 22311 N
o

S

A D 1‘-
Ada Jo#nt Program 6ffice :.
Virginia L. Castor
Director _
Department of Defense "W
Washington DC 20301 by
(2%

h(

®

\‘

l.)

..

]

]

]

'.:'.u

" . ~ oy i) '\\'\ LS VAL SRV R
O R N R SENX M X .'b' DT O AL QUMD RN PR M CAR Y - AR ORISRl n e .n"'a

CHAPTER 1

il

CHAPTER 2

NN

CRAPTER

w

WWwwWwwWwwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

VB WwN

N =

\I\I\J\JO\MJ-\LA)N‘H

W N =

TABLE OF CONTENTS

INTRODUCTION

PURFOSE GF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT

RETERENCIS

DEFINITION OF TERMS
ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS .
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS

INAPPLICABLE TESTS .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS .

ADDITIONAL TESTING INFORMATION .
Prevalidation
Test Method
Test Site

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

L]
VEEELPLRDNNNNE

WWwWwWwwwwwwww
[}

TEST PARAMETERS

. Acoeasion Po

P‘IIS GRL&I
DIIC TAR

\
WITHDRAWN TESTS | Yrennoanced
b oJustification]

".__E/-—J

g
a

l
1
b
}
U
(

OBl
D f*tbutlon/]

A\nx‘wbility Foues s
. W _/ur
Jyecial

’ 1,V‘ﬂ.l
Dlst

“’(’\

|

v . . . - . - 2
BRI S OPUOWASIUNRIMT U UK PO AN U T TR X R PO R AN RN A W KV s X R WL TOAY U LS A IR O LU AR

- = "v.
y

u]

St

L

Bk

.l

"

CHAPTER 1 '#'4

(

INTRODUCTION 2]

)

PSRN ' .'

\,9 '’ J ::
This Validation Summary Report(‘-(‘VS‘R‘) describes the extent to which a :,"
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. By
This report explains all technical terms used within it and thoroughly ";
reports the results of testing this compiler using the Ada Compiler -
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features by
must conform to the requirements of the Ada Standard., The Ada Standard byt
must be implemented in its entirety, and nothing ca@ implemented that f
is not in the Standard. P, By
‘/Evtn though all validated Ada c'ompilers conform to the Ada Standard, it -

must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.-

v X
13

@ ZH 5

~
Lt

. . . . ot S —— iy s

This information in this report is derived froxix' the test results

)
produced during validation testing. The wvalidation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada o
compiler and evaluating the results.: The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that Ny
the compiler properly implements legal language constructs and that it Y
identifies and rejects illegal language constructs. The testing also :.
identifies behavior that is implementation dependent but permitted by "
the Ada Standard. Six classes of test are used. These tests are *
designed to perform checks at compile time, at link time, and during
execution. i
-

*d

L

" ~—— f; . 'y

Lo (— 0

\ o

-

_

»}

o

v

1-1

.-.-’"'.l A b ad A4 ey 6'a A%g 8 TR Y] ALY R Tohat Yat 4aY $at Pa deivn oot uf el NE VN A gty b R e D e o3 el s b ugh vad wal Nal 4 VO OY D > [3

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

. .
3 This VSR documents the results of the validation testing performed on an
N Ada compiler. Testing was carried out for the following purposes:

y To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

{ﬂ To attempt to identify any unsupported language constructs
:: required by the Ada Standard
o

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

% On-site testing was completed 20 May 1988 at Westford, Massachusetts.
¢
\
,.:'
’* 14 USE OF THIS VALIDATION SUMMARY REPORT
0
‘o Consistent with the national laws of the originating country, the AVO
B may make full and free public disclosure of this report. In the United
" States, this is provided in accordance with the "Freedom of Information

= Act" (5 U.S.C. #552). The results of this validation apply only to
"y the computers, operating systems, and compiler versions identified in
s - this report.

o The organizations represented on the signature page of this report do
g not represent or warrant that all statements set forth in this report
‘ are accurate and complete, or that the subject compiler has no
y nonconformities to the Ada Standard other than those presented. Copies

of this report are available to the public from:

) Ada Information Clearinghouse
K g

,{5 Ada Joint Program Office

‘ OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
o Washington DC 20301-2081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
Ny National Bureau of Standards

Building 225, Room A266

Gaithersburg, Maryland 20899

[
v
‘f Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:
o 1-2
o
.0
'
@

N
|..‘

X - N . - : - ey e .
O N) L By AL \' LIPS A [PRYLYAS 3 Lt . -y LT Iy
0K ‘!",‘J LX) x'!‘\. ud, na. PN ." o X3 ‘,5 X) ‘q..‘. N M Y AN] R ‘ 1, > ¥t '+ O."I. 1 / v (.- B .M (]

AR AN

LRSS BT LRSI RIS L AT A UG TR AR AR K T R RN A A A R G R R A RARS LAl R] B @ 4 P 0h VYR

Ada Validation Organization o
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

-

1.3 REFERENCES

o™y

g
1. Reference Manual for the Ada Programming language, .
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987. -3
2. Ada Compiler Validation Procedures and Guidelines. Ada Joint r
Program Office, 1 January 1987. ;
3. Ada Compiler Validation Capability Implementers’ Guide., !
December 1986. '
3
1
-
1.4 DEFINITION OF TERMS p
ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to i
the Ada programming language. X
- Y
Ada Commentary An Ada Commentary contains all information relevant to 3
the point addressed by a comment on the Ada Standard. 4
These comments are given a unique identification number by,
having the form AI-ddddd. ;
Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987. ii
-~
Applicant The agency requesting validation. t‘
AVF The Ada Validation Facility. The AVF is responsible for A
conducting compiler validations according te procedures !
contained in the Ada Compiler Validation Procedures and o
Guidelines.
AVO The Ada Validation Organization. The AVO has oversight ’
authority over all AVF practices for the purpose of
maintaining a uniform process for wvalidation of Ada !
compilers. The AVO provides administrative and %
technical support for Ada validations to ensure :
consistent practices. y
Compiler A processor for the Ada language. In the context of A
this report, a compiler is anvy language processor, ;_
{
1-3 q
W]
o
[]
‘

-
-

\ T T T T o e N P T Pyt L L R P T N T P TR IR (L VP IN PR T TR I Tty 1oy ‘
OO0 - racil e M e Ty A, ety WY 00! 0.0. PR BN R e R R R N"* e .,l‘lo‘loi..o‘t- U™

S 4 Rat P g e e Bt 0 898 858 898 472 498 A% 802 A2 89, AV P, Va0 PR Na 1B Gk wa® Kap 4 $ K LR b e 9,290 244 2 . @'D 5¥a a¥A‘aTE 2% 2¥8 o€ adat VN Gar 18, Fov

including cross-compilers, translators, and
: interpreters. ;

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.)

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

: test compiler is not required to support or may legitimately .
support in a way other than the one expected by the
test.
%
Language The Language Maintenance Panel (ILMP) is a committee y
Maintenance established by the Ada Board to recommend)
. interpretations and Panel possible changes to the :
, ANSI/MIL-STD for Ada.
k Passed test An ACVC test for which a compiler generates the expected
: result.
i)
Target The computer for which a compiler generates code.
)
: Test . An Ada program that checks a compiler’s conformity)
: regarding a particular feature or a combination of \
' features to the Ada Standard. In the context of this)
i report, the term is used to designate a single test, \
which may comprise one or more files.
: Withdrawn An ACVC test found to be incorrect and not used to check ¥
[test conformity to the Ada Standard. A test may be incorrect
) because it has an invalid test objective, fails to meet 4
its test objective, or contains illegal or erroneous use
" of the language. :
!
; ;
b {
K 1.5 ACVC TEST CLASSES '
Conformity to the Ada Standard is measured using the ACVC. The ACVC /
; contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name !
Y identifies the class to which it belongs. Class A, C, D, and E tests \
are executable, and special program units are used to report their ‘
P results during execution. Class B tests are expected to produce
v compilation errors. Class L tests are expected to produce compilation)
or link errors.
)
; Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A
_ test to check semantics. For example, a Class A test checks that
- reserved words of another language (other than those already reserved in ’
4 1-4 "
! U
1]
. 1
4)

LT 1 19) P MM ("N TR ™ -
'«

W et

E) L% I [TR - N5 1 < - A N " ~. n
1,8, A e AN N OO M e oy N M, € S M MO o W PN M X S WS P AN I M e !v, M X X DU 0 X .|'0.¢

;a~,"o p

I
47,

I R P T L N N T Y U U T O TR R TR NN R R RN R T T IR R P R O N T

the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains 1is detected by the
compiler. '

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifjers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
céhforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test 1is self-checking and produces a NOT APPLICABLE,
PASSED, or TAILED message when it I1g compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two 1library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE i{s used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
REPORT and CHECK_FILE is cherked by a set of executat’s tests. These
tests produce messages that are examined to verify that the units are

1-5

~ -

. . A s , e } o PN e A : -
ohfnﬂuﬂu.hﬁmm.ku,m-f*'an.ﬁ.#ﬂﬁ; N S C OO LSO AN Lt o N A D S 0 TR

T A

.-

MMM .

-4....-{4 @ 1"'.:‘-

Lo @ B

.M .
7, ZLEIETA @ AL

- .

-
..l

Y o VIS

RN

AN eGP vy €1 By UL N N VU UG A S T UIO O, B S N I OO I T Ty

operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, 1is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

-

) e,

'y ¢ LN - -y~ -ym RV L T AT Rt L R T R LS kL S T T L LIV S L,
RSO N O O D O O R D R L Mo M W A I M o o (L Mo M Al i P MR W e

LAl

NIRRT ARSI LI AN MY Y 0 WU NG U R W G RN T Y RY 1908 8°s 8’2 #%3 ¢ 52080, 49 %20, a8a 40 8RN & A ~4.8' ametona T aat gov n b oy

a

¢ CHAPTER 2

! CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

;
4
: The candidate compilation system for this validation was tested under
; the following configuration:
. ’
X Compiler: MASSCOMP Ada, Version 1.1
: ACVC Version: 1.9
D X
e Certificate Number: 88052051.09110

P \
S Host Computer:
Ey
2 Machine: MASSCOMP MC6600 with
i M68030 CPU and M68882 FPA

Operating System: MASSCOMP RTU :
% - Version 4.0
b
Memory Size: 8 MBytes

- Target Computer: ‘
]
0
o Machine: MASSCOMP MC6600 with
} M68030 CPU and M68882 FPA
e Operating System: MASSCOMP RTU
; Version 4.0
‘
: Memory Size: 8 MBytes
)
L]
e Communications Network: floppy disks '
»
&
] :
o !
A 2-1
)
L
C {

he Ly
WY

A R L e N T e R S

ot

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
» of a compiler iIn those areas of the Ada Standard that permit
! implementations to differ. Class D and E tests specifically check for
: such implementation differences. However, tests in other classes also
: characterize an implementation. The tests demonstrate the following
characteristics:

- Capacities.

K The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits)

: nested to 17 1levels. It correctly processes a compilation
containing 723 variables 1in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D6400SE..G (3 tests), and
D29002K.)

Universal integer calculations.

An .implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4AD002A, D4AOO2B, D4AO04A, and D4AOO4B.)

- Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY_INTEGER in the package ,
STANDARD. (See tests B86001BC and B86001D.)

- Based literals.

o

< An implementation is allowed to reject a based literal with a .
7 value exceeding SYSTEM.MAX INT during compilation, or it may
™ raise NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This

implementation raises NUMERIC_ERROR during execution. (See test

E24101A.)

- Expression evaluation.

Apparently all default initiaslization expressions or record
components are evaluated before any value is checked to belong
to a component’s subtype. (See test C32117A.)

b
[o - - - -y -
z..." il .‘ I~f $'.' % -'. R.“ l " [X e l. ' , v \ u ',-v‘. An- { A A

B N M A M

a7 A .‘- DRSS
Ralalalal

AR RN R R X R R R R R A R R R T T Yo ‘o 48090, 28 2" o A avh a®h - ETETTON) os

P o e en
X% @ Bt

Assignments for subtypes are performed with the same precision

; as the base type. (See test C35712B.)

. This implementation uses no extra bits for extra precision.
a This implementation uses all extra bits for extra range. (See
»? test C35903A.)

B

..'~

{: Sometimes NUMERIC_ERROR is raised when an integer 1literal
‘ operand in a comparison or membership test is outside the range
N of the base type. (See test C45232A.)

X Apparently NUMERIC_ERROR is raised when a literal operand in a
'8 fixed-point comparison or membership test is outside the range
; of the base type. (See test C45252A.)

. Apparently underflow is not gradual. (See tests C45524A..2.)

Y
? - Rounding.
) #
1y
.ﬁ -The method used for rounding to integer is apparently round to
® even. (See tests C46012A..Z.)
>
&
N The method used for rounding to longest integer is apparently
ﬁ round to even. (See tests C46012A..Z.)
h
1% The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO0l4A.)
iy,
" -
'
§ - Array types.
"
0 An implementation is allcwed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
B STANDARD.INTEGER'LAST and/or SYSTEM.MAX_ INT. For this
v implementation:
o
'5 Declaration of an array type or subtype declaration with more
g4 than SYSTEM.MAX INT components raises no exception. (See test
PY C36003A.)
i NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
i‘ with INTEGER'LAST + 2 components. (See test C36202A.)
L}
R NUMERIC ERROR is raised when 'LENGTH is applied to an array type
® with SYSTEM.MAX INT + 2 components. (See test C36202B.)
&
‘i
Qﬂ A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
N raises NUMERIC _ERRCOR when the array type is declared. (See test
L C52103X.)
'Oy
® A packed two-dimensional BOOLEAN array with more than
‘ 2-3
‘)
Al
!. |
®
B g NN e A N B AN AT S IS TSN I T D S, T e

INTEGER'LAST components raises NUMERIC ERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either
when declaved or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAIN._ERROR is
raised when checking whether the expression’'s subtype is
compatible with the target’s subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype indications
rejects such subtype indications during compilation. (See test
E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ERROR
is raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a

bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

- Representation clauses.

2-4

" ALY 2 M

QU™ A o X = B 3 ; AN A
a0, T A L B et T e R W st et e adiatad) RPN S S I B SR

e MR
BRI nls

AN RN REFRE RN G AN R A RE R R AR I L A ™ R RKEARE N TR AKX IR TR I R rorenmorese

An implementation might legitimately place restrictions on
representation clauses used by some of the tests, If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests €35502I..J, C35502M..N, and
A39005F.) -

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
-are supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87E.»2B.)

Length clauses with STORAGE_SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL IO can be instantiated with unconstrained
array types and record types with discriminants without

defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated with unconstrained

2-5

. \ » By Y ;) Y A "y i ¥ X ™
AGAEA TN R IO A, A TR TN O MY |':'c'.‘a' 0'!‘.'. Y A At SO0 A X,

. o
B e e

¥,

JO TSI @ i

'.‘.’-‘.?-ﬂ:-_

= g

v,
Bar 3 ——";

. - y
- g .

S @
o)

SR S W) ®

Y2 X1 @

g

DOTRN KN)

Goetalati o a'3 adm, 2R V" aTh RS avh a¥h afd aVA ath VA abi VR AU AN aRE LR NEY 0t p®ee Wat oot ph Bt Wut Gt Gad g2t gab gat 926 v

P IR e e me e e mie s e e N e - . f - .-

array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

There are no strings which are illegal external file names for
SEQUENTIAL_IO and DIRECT_IO. (See tests CE2102C and CE2102H.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT _FILE are supported for
DIRECT_I0. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for (SEQUENTIAL 10 and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL IO and DIRECT_IO0. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
.element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See
tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct 1/0 for both reading and writing. (See tests
CE2107F..1 (4 tests), CE2110B, and CE2111H.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_IO, DIRECT 10, and TEXT 10. (See test
CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.)

2-6

,.'u R Ja M Py

LK) .I.

RN D

-
-

1@ 52 2ol Lol g

oL oo . - e T""‘

@

X R o U DU P YN

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-7

{
- . r P ALIT LT AL LA 2% ") W LR8N P ; Ay Y \ - " -y
R e A A R TR T T o e e e L AT (A D0 M A MK 0o N l‘!‘»‘r‘!'s‘..t‘n‘l‘!‘ﬁo ol l‘!‘:‘.y‘o\.‘o'- RN OO ."‘J.'

»

LR R S AT W W WU o U WU WIS VIR U RU R R Y RAUN UAVEY) N LIy " a XY h X’ WY R 9, T IR

CHAPTER 3

e e

TEST INFORMATION

! 3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tests, 27 tests had been withdrawn because of test errors. The AVF
determined that 228 tests were inapplicable to this implementation. All >
inapplicable tests were processed during validation testing. s
Modifications to the code, processing, or grading for 26 tests were

y required to successfully demonstrate the test objective. (See section Y
‘ 3.6.) i
! - {
f The AVF concludes that the testing results demonstrate acceptable >
v céhformity to the Ada Standard.
i ¢
. %
L §
) 3.2 SUMMARY OF TEST RESULTS BY CLASS \
)
; RESULT TEST CLASS TOTAL
{ A B c D _E L '
Passed 109 1047 1630 17 18 46 2867
4 Inapplicable 1 4 223 0 O 0 228 v
Withdrawn 3 2 21 0 1 O 27 \
;
p TOTAL 113 1053 1874 17 19 46 3122 N
h
t
! !
| |
[»
N J
5 ‘
\
)]
)
4 ’
3-1 1

-~ -
AR A - =

]

i)
K . DOULD) TTACTET T LR »y R AN A W A ST AR AR AT AT T Ll TS AT A < TAY a5
SOACUACTRX RO XM K .‘.’ DU UG R R P T S M Mo = ,o .(I"‘a» Do 1 .c W N \ "" to AT KNP I ’0‘0.' W

R AT AT el aE adatovad el Fal T T A R N N L T N R RN U T U R IR UNER LN NO MU VY U VUL WU W VIOV OU I oy
a : ,

3
3.3 SUMMARY OF TEST RESULTS BY CHAPTER v
l:
Y
T
RESULT CHAPTER TOTAL X
2_3_&4_o5_6_7_8_9_10_11 12 13 14 _ >
Passed 190 499 540 245 166 98 142 326 137 36 232 3 253 12867 ;‘
f
Inapplicable 14 7313 3 o0 0 1 1 O O 2 O O 228 :
§
Withdrawn 2 14 3 o0 o0 1 2 o0 O O 2 1 2 27 '
TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 's
3
0
3.4 WITHDRAWN TESTS A
o>
The following 27 tests were withdrawn from ACVC Version 1.9 at the time 1:
of this validation: z
)
B28003A E28005C C34004A C35502P A35902C C35904A N
C35904B C35A03E C35A03R C37213H €37213J C37215C
C37215E C37215G C37215H €38102¢C C41402A C45332A :
- C45614C A74106C C85018B C87B04B CC1311B BC3105A W
AD1AO1A CE2401H CE3208a 5
‘l
See Appendix D for the reason that each of these tests was withdrawn. :
®
"
3.5 INAPPLICABLE TESTS e
Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support. ®
Others may depend on the result of another test that is either '
inapplicable or withdrawn. The applicability of a test to an N
implementation is considered each time a validation is attempted. A p
test that is inapplicable for one validation attempt is not necessarily N
inapplicable for a subsequent attempt. For this validation attempt, 228 \
test were inapplicable for the reasons indicated:
C35702B uses LONG_FLOAT which is not supported by this implementation. y
A)
A39005G uses a record representation clause which is not supported by ¥
this compiler. f:
[
3
o
3’2 "y
o
‘
®
5
]
T e Pt et e s T o T e R T R N N, S D U NN R

The following (13) tests use LONG_INTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F c45611C C45613C C45631C €45632C
B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler. .

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXT_IO.

C96003B requires the range of type DURATION tc bLe different from those
of its base type; in this implementation they are the same.

BCJ204C and BC3204D compile generic package specifications and bodies in
separate compilations. This compiler requires that generic package
specifications and bodies be in a single compilation.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasu . anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 26 Class B tests.

3-3

. A . N - A .
R O RIS e YOy S RN A OM NS R N MW M N NI MK NN O s M N A K K AR R RN R M

-l e

LI IQ [y

b -

.,--
! -

o, Fo

y The following Class B test files were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2A003A B2A003B
O B2A003C B33301A B37201A B38003A B38003B B38009A

? B38009B B41202A B44001A B6400lA B67001A B67001B
jd B67001C B67001D B91001H B91003B B95001A B97102A
) BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

'Q: 3.7.1 Prevalidation

W

»

?‘ Prior to validation, a set of test results for ACVC Version 1.9 produced
X

X by the MASSCOMP Ada was submitted to the AVF by the applicant for

review. Analysis of these results demonstrated that the compiler

u successfully passed all applicable tests, and the compiler exhibited the
iq expected behavior on all inapplicable tests.
R0

}

':1: :
! 3.2-2 Test Method

B

’a Testing of the MASSCOMP Ada using ACVC Version 1.9 was conducted on-site
y B g

q by a validation team from the AVF. The configuration consisted of a
" MASSCOMP MC6600 with M68030 CPU, M68882 FPA operating under MASSCOMP
o RTU, Version 4.0. The host and target computers were the same hardware.
,4 - A magnetic tape containing all tests except for withdrawn tests was
;3 taken on-site by the validation team for processing. Tests that make
:ﬁ use of implementation-specific values were customized before being
|a written to the magnetic tape. Tests requiring modifications during the
hX prevalidation testing were not included in their modified form on the

magnetic tape. The contents of the magnetic tape were loaded directly
Y onto the host computer.

:b After the test files were loaded to disk, the full set of tests was
~ compiled and linked on the MASSCOMP MC6600 with M68030 CPU, M68882 FPA,
o and all executable tests were linked and run. Results were printed from
@ the host/target computer.

)r

:: The compiler was tested using command scripts provided by MASSCOMP and
re reviewed by the validation team. The compiler was tested using all
") default option | switch settings except for the following:

L

@ Option | Switch Effect

iy

; -M Produce an executable program using the named
? unit or source root name as the main program.
N

A Tests were compiled, linked, and executed using a single host computer
d and a single target computer (host and target being the same). Test
R

o 3-4

|'|

".

'l

0‘.

¥

L

KD
‘l
()

’I

)

RO TR e e S A T A S MO

N T -~ - - P o o "-".Ffvv"',\k
LT AT N S e LA VMO S LA D SR A SRR BN A G N

output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF.

B Ko i JO I X N

3.7.3 Test Site iy

Testing was conducted at Westford, Massachusetts and was completed on 20
May 1988.

WG 1Ry i

L
- . LR TP a-'.. LI

@ T

& -

L e n JUREES]

-

1@

LR N

3-5

(]
o

g
n
i

S e X

ol

A T R e S

APPENDIX A -

CONFORMANCE STATEMENT

A-1

R T RIS

3

. N
O i v Y X

W

[
- -

@ GIGELLAALAQ

X mLmL e ma v
2 | PloT='o o & 9.9,

x

1

S ST « i

s

=

QP x

A <,

A AN T Y D D e
0.,). \)“"\’ A4 ,|. -‘f

AR R AR A AR N A NN WL N ol Sab’ Cal Wa0 el ¥aB B8 Uk .0 wad Oah Vah W2l €.§ €af w2y Vil 9 dah vub G2t On8 0 Vb 808 0r) 0 gl Sa e aakbat

APPENDIX A
@ CONFORMANCE STATEMENT

" MASSCOMP has submitted the following Declaration of Conformance statement con-
' cerning MASSCOMP Ada Version 1.1.

o @

- T

-
-

T VI T . ® P A AT IR WY LY. S TSPETFEYS r SN I SRR I SR S DL I T RN DI RRE e e
B T A It Y A S AT AL AT RN P 2 R T A TR A AFNIN PN PN AN

@ 52

R L SR]

P RR

%

[

PR @ KRR %

o g

-
Tt

=

D

- -
A @’

DECLARATION OF CONFORMANCE

Compiler Implementor: MASSCOMP

Ada Validation Facility:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

-»
Base Configuration
Bass Compiler Name: MASSCOMP Ada, Version 1.1
Host Architecture: MASSCOMP MC6600 with M6E8030 CPU,
M68882, running RTU 4.0
Target Architecture: MASSCOMP MC8600 with M68030 CPU,
M68882, running RTU 4.0
Derived Compiler Registration
Derived Compiler Name: MASSCOMP Ada, Version 1.1
Host Architecture: MASSCOMP MC5400/MC5450 with M68020 CPU,
M6gR81 =unning RTU 4.0
Target Architecture: MASSCOMP MC5400/MC5450 with M68020 CPU,
M68881, running RTU 4.0
Derived Compiler Name: MASSCOMNP Ada. Version 1.1
Host Architecture: MASSCOMP MC5520/MC5550 with M68020 CPU,

M68881, running RTU 4.0

Target Architecture:

Derived Compiler Name:

Host Architecture:

Target Architecture:

Derived Compiler Name:

Host Architecture:

Target Architecture:
L 2

Derived Compiler Name:

Host Architecture:

Target Architecture:

Derived Compiler Name:

Host Architecture:

Target Architecture:

Derived Compiler Name:

Host Architecture:

Target Architecture:

o - . .y A
"b.n‘l!\ 1,080 .n"!n‘l,b‘\u’.,.'.t .Q"A 0‘.0'&0".0 LI e A

~ TR L L R AT TR CRORIASE
!' .!l'.l."!\.n.". a i uX 4 LR -" - '. ' N

MASSCOMP MC5520/MC5550 with M68020 CPU,
M68881, running RTU 4.0
MASSCOMP Ada. Version 1.1

MASSCOMP MC5600 with M68020 CPU,
MG68881, running RTU 4.0

MASSCOMP MC5600 with M68020 CPU,
MN68881, running RTU 4.0
MASSCOMP Ada, Version 1.1

MASSCOMP MC5700 with M68020 CPU,
M68881, running RTU 4.0

MASSCOMP MC5700 with M68020 CPU,
M68881, running RTU 4.0
MASSCOMP Ada, Version 1.1

MASSCOMP MC6300 with M68030 CPU,
M68882, running RTU 4.0

MASSCOMP MC6300 with M68030 CPU,
M68882, running RTU 4.0
MASSCOMP Ada, Version 1.1

MASSCONMP MC6400 with M65030 CPU.
MBRR]]2 running RTIY 10

MASSCOMP MC6400 with M68030 CPU,
M68882, running RTU 4.0
MASSCOMP Ada. Version 1.1

MASSCOMP MC8700 with M68030 CPU,
M68882, running RTU 4.0

MASSCONP MC6700 with M68030 CPU,
N68882, running RTU 4.0

RS TS T s TS ST ’ -
l"’ (¢ .a (LARN g 1D.,C.t

Implementor's Declaration

We, the undersigned, representing MASSCOMP, have implemented no deli-
berate extensions to the Ada Language Standard ;\NSI/MILSTD-ISIS.—\ in the
compilers listed in this declaration. We declare that MASSCOND is the owner
of record of the Ada language compilers listed above and, as such. is responsible
for maintaining said compilers in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compilers listed in this declarta-
tion shall be made onlv in the owner’'s name.

MMQJ/Q Date: 4‘//7/?!

MASSCOMP
Clark D’Elia
Software Development Manager

J/

nd Mté/ Date: 5’//7/55{
MASSCOMP & e T
Bruce Lutz.

Software Engineer

Ow~er’s Declaration

\We. the uadersigned, represeating MASSCONP, take full respensipility for -

impiementaticn ard maintenance of the Ada compiler(s) listed atove. and azree

to the public disclosure of the final Validation Summary Report. \We further

agree to ¢ontinue to comply with the Ada trademark policy, as defined by the
do Jeing P"’“_.’_‘.!‘.l Office. We declare that all of the Ada language compilers

listed. and their hest/target perf~rmance are in compliance with the Ada

- Standard ANS[/MIL-STD-1815A.

AL s
«'//*J'&‘/ C‘-)/ - Date: %/‘FX

MASTCONP

Ciark D'Elia

Sotftware Development Manager

7 /
7//7,/60‘2 \l//% Date: [;//7/53

VASSCoONMP T 7’

Biruce Lutz

Software Engineer

R R vy A . S Mafiained n‘- N"' a'. Naaleie! e ey Y o t'!‘n o ‘0‘: o‘:, l‘:‘l‘:’"".'.j. X

LRI

APPENDIX B

e

APPENDIX F OF THE Ada STANDARD

- A
Fadiagy

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the MASSCOMP Ada, Version
1.1, are described in the following sections which discuss topics in
Appendix F of the Ada Standard. Implementation- specific portions of
the package STANDARD are also included in this appendix.

LY. QP ;‘.“‘--‘~‘\

oy

1 package STANDARD is
L J

)
Y
. '
type INTEGER is range -2147483648 .. 2147483647; !
type SHORT_INTEGER is range -32768 .. 32767; i

type TINY_ INTEGER 1is range -128..127;

- type FLOAT is digits 15 range

~1.79769313486231E+3082 .. 1.79769313486231E+3082; h!
type SHORT FLOAT is digits 6 range ;
~3.40282E+38 .. 3.40282E+38; <
type DURATION is delta 1.00000000000000E-03 range)
9.76562500000000E-04 .. 4.19430399902343E+06; N,
end STANDARD; ¢
A M
4 [
APPENDIX F OF THE Ada STANDARD X
)
Y
t
v
[)
B-1 :
’
)
[
5
R e G Tt T M B T A A A VR T R A AR RAT RSO IROW

LA RPN O U DN P N AN T AR YUK K I R AUV UIRL Y B . TR AR R A R IR R L R R R AR R R T 2 b2 84 &t

-

; ATTACHMENT I

. APPENDIX F. Implementation-Dependent Characteristics

a 1. Implementation-Dependent Pragmas

0 1.1. INLINE_ONLY Pragma

: The INLINE_ONLY pragma, when used in the same way as pragma OINLINE. indicates to the
: compiler that the subprogram must always be inlined. This pragma also suppresses the genera-

tion of a callable version of the routine which save code space.

Y

1.2. BUILT_IN Pragma

The BUILT_IN pragma is used in the implementation of some preacfined Ada packages, but
provides no user access. It is used only to implement code bodies for which no actual Ada body
can be provided, for example the MACHINE_CODE package.

-

"_’n. -

1.3® SHARE_CODE Pragma

. The SHARE_CODE pragma takes the name of a generic instantiation or a generic unit as the I

p first argument and one of the identifiers TRUE or FALSE as the second argument. This pragma

; is only allowed immediately at the place of a declarative item in a declarative part or package

- specification, or after a library unit in a compilation, but before any subsequent compilation
unit. ‘

¥ 7

) - When the first argument is a generic unit, the pragma applies to all instantiations of that gen-

N eric. When the first argument is the name of a generic instzntiati~n, the pragma applies oniy to

: the specified instantiation, or overloaded instantiations.

4, . -

’: If the second argument is TRUE the compiler will try to share code generated for a gexneric
instantiation with code generated for other instantiations of the same generic. When the second

v argument is FALSE, each instantiation will get a unique copy of the generated code. The

: evtent to which code is shared between instantiations depends on this prazma aand the xind of

) generic formal parameters deciared for the generic unic.

1

) - . . . ,

;' The name pragma SHARE_BODY is also recognized by the implermentation and has the same

| effect as SIHLTARE_CODE. It is included for compatability with eariier versiens of VADS.

4

. 1.4. NO_IMACE Pragma

K) The pragma suppresses the generation of the imaze array used fer the DNMAGE atinibute of

‘: enumeration types. This eliminates the overhead required to store the arrax in the executalin

¢ image.

L

1.5. EXTERNAL_NAME Pragma

3

3 -
The EXTERNAL_NAME pragma takes the name of a subprogram or variable detined in Ada

e and allows the user to specify a different external name that may be used to reference the entity

; from other languages. The pragma is allowed at the place of a Jdeclarative item in a packags
specification and must apply to an object declared earlier in the same packaye specification,

@

)

Al

L}

o

o

¢ 3

@

1]

JO

Ly Ly W LA LS R R R T €y Y PPy Y % L Ty
IOt St .n.u’i.ﬂ., i 0 '-& N ™ ""’\"' X ’ ... "'\‘('v ._ L

P o AT (O) 10
O lp T, T AN, o L D T

v 87 % W0,

TS AT LT YRS LN VAR R LT LI T LA TAS LT LR TR 62 2l 4o TaF 29 Vol v § wad Wb U f sk #.8 K AR R IR RS R X TR % . Vol ®, L M

.
i

5;6

s .

%

:¥\j

¢

‘s 1.8. INTERFACE_OBJECT Pragma

et N

The INTERFACE_OBJECT pragma takes the name of a variable defined in ancther language
. and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
:.: variable name with an external reference to the second, link_argument. The pragma is allowed
Q at the place of a declarative item in a package specification and must appiy to an object
':0. declared earlier in the same package specification. The object must be declared as a sczlar or -
‘t’, an access type. The object cannot be any ol the following:

i a loop variable,

" a constant,

a:. an initialized variable,

g;t‘ an array, or

’Q: a record.

W

1.7. IMPLICIT_CODE Pragma
Takes ope of the identifiers ON or OFF as the single argument. This pragma is only allowed

“
:: within a machine code procedure. It specifies that implicit code generated by the compiler be
;:, allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be gen-
:,: erated. The default is ON.
‘:,’ 2 . Implementation of Predefined Pragmas
“ 2., . CONTROLLED
:j This p.ra.gma is recognized by the impleme“r.xta.t,i_c;n but has no effect.
Ry .
b 2.2. ELABORATE
\) .. o . .
:i‘ This pragma is implemented as described in Appendix B of the Ada RM.
2
o 2 .3. INLINE .
: This pragma is implemented as described in Appendix B of the Ada RM.
.‘ - 3 -~
R 2 .4 . INTERFACE ‘
- This pragma supports calls to 'C’ and FORTRAN functions. The Ada subprograms can be
I either functions or procedures. The types of parameters and the result type for functions must
o be scalar, access or the predefined tvpe ADDRESS in SYSTEM. An optional third argumesnt
I\ overrides the default link name. All parameters must have mode IN. Record and array objec:s
): can be passed by reference using the ADDRESS attribute.
'-’
2.5. LIST
This pragma is implemented as described in Appendix B of the Ada RM.
[/
i 2.8. MEMORY_SIZE

ST

This pragma is recognized by the implementation. The implementation does not allow SYSTEL!
to be modified by means of pragmas; the SYSTEM package must be recompiied.

R

o

o 2.7. OPTIMIZE

e This pragma is recognized by the implementation but has no effect.
N p p

1344

P 2.8. PACK

7

® This pragma will cause the compiler to choose a non-aligned representation for composite types.
q It will not cause objects to be packed at the bit level.

s

1)

b

W

" » 4

[
»

5

-

N - -, . . TR e TR Y . T ags
'l‘c' .,Q".n "jr"i . - ,.0 "o & -.'& "“ ,. “ N\

LS R Ny S R LT TR LR T TN oL g Pt ”
LN PN R B AR AT A AT N AT D e T, 8 "'0'?*

2.9. PAGE
This pragma is implemented as described in Appendix B of the Ads RM.

R}

A‘
L J
=
i

X

s

L3

i

()

)

)

N 2.10. PRIORITY

:: This pragma is implemented as described in Appendix B of the Ada RM.

&

B 2.11. SHARED

¥ This pragma is recognized by the implementation but has no effect.

fu

W 2.12. STORAGE_UNIT

3 This pragma is recognized by the implementation. The implementation does not allow SYSTEM
:2 to be modified by means of pragmas; the SYSTEM package must be recompiled.

" 2.13 . SUPPRESS

' .

W This pragma is implemented as described. except that RANGE_CHECK and
::c DIVISION_CHECK cannot be suppressed.

& '

P 2 .14 . SYSTEM_NAME

Thia pragma is recognized by the implementation. The implementation does not allow SYSTEM
" to be modified by means of pragmas; the SYSTEM package must be recompiled.

':‘ P

:.i 3. Implementation-Dependent Attributes

' .

o 3.1. P'REF

(

K For a prefix that denotes an object, a program unit, a label, or an entry:

I

U Vs

‘:: - This attribute denotes the effective address of the first of the storage units allecated to P. For
|:, a subprogram. package, task unit, or label, it refers to the address of the machine code associ-
:o ated with the corresponding body or statement. For an entry for which an address clause has
1:. been given. it refers to the corresponding hardware interrupt. The attribute is of the type .
- - OPERAND defined in the package NMACHINE_CODE. The attribute is only allowed within a
¢ machine code procedure.
)

See section F.4.8 for more information on the use of this attribute.

)

::l (For a package, task unit, or entry, the 'REF attribute is not supported.)
..
W
»
W,
.

U

)
N
v:'
o.l

‘
Ve

e
L]
4
b
oy
' 5
@

)

Oy’ by ’, 3 n ?, - Nt » ~ L \ ~ .
RS OALR .'.l”'.‘.' ¢,) SO AU AN W n -'I‘A AR LR a0 Q‘ﬂ‘!*“l O XM MY ".AI‘. at AN a"\"’(’-.\l..«' a¥ .’. 'u" 1.'.?’ 1) |!.‘-".!’."

U iy s + “ NEEFUIR RICAIUAI\ R IR U \ AT AT L it ol ‘o Ria B! u e UNL Y RSy AEy GV d-y BT " XM » M WA TN Y *, (e & B B Rt ot Bk * go4

X
\
o
.!
. .!l
'K
. h!
4 . Specification Of Package SYSTEM b
L}
?ltk‘(l SYSTEM li
is
type NAE (s (mmascarp_unix };
SYSTEMUAE : constant NWE = mmescarp_usix: g
t
¢
STORWCE_UNIT : coamtant = B; '
MOVOT_SIE : coastaat = 18_7T7_219; ¢
W
- Systean-Cependent Nured Narbers ‘.,
LN
MNUINT : constapt := -2 _147_4383_048;
MO INT : constant = 2_147_483_647; a
MX_DICITS : constant = 1§; 3
MOCOVANTTISSA : copstant = J1; .»
FINE_TELTA : constaat = 2,0°°(-31};
eled : constant := 0.01; v
-+« Orher Systan-dependent Declarations :
]
subtype FRICRUTY is INOXER range O .. 09; t
' X _REILSIZE : integer = 84°1024; o
7
type ALIFESS is private; 4 ‘:
]
NLAIR : constaat ALFRESS; 'I
function PHYSICAL_NTFESS(]: INTHER) return ACCFESS; :
function ALTR_CT{A, B: AOIFRESS) retorn BOLEMNN; :
fuadtion ALLR_LTIA, B: ALTFESS) recurn BOCOLEAN; . ‘.
function IR _CE{A, B: AIFESS) return BOIODAN;
> function ALLRLE(A, B: ALTFESS) return BXILEAN: ‘_.
function AIR_DIFF(A, B: ALCRESS) returna [NTECER: {
fupetion INRAIR(A: ATRESS; INR: INTEKER) retura ALLFESS:
function CECRONTR(A: ACCRESS: [HR: INIEER) return ATRESS: ;4
d
function "3 (A, B: AIIFESS) return BOOLEAN renaars AOR.CN W
fupction "< (A, B: AIFESS) return BOOLEAN renames ALTRLTS '..
function === (A, B: ALIFESS) return BOOZAN renames AMIR .CE: (
- fupetion <= (A, B: ADRESS) return BIIEAN renares AIR.LE: ()
function "-" tA, B: SLIFESS) return [NIEZER repages ACCR_CIFF;
function "= (A: AIFESS: INR: INICER) return AIFESS renacer [NORONIF: L J
function .7 (A: ALDFESS; [ECR: INTEXER) retura ALIFESS resames [ECR_NTR: x
pragm ialise(PNSICAM ANTRESS); .:
pragma ioline{ALLR.CTY; ‘!
Pragma inline{ATR_LTY; Y
pragss inline(ACTR_(E); N - H
pragm inline{AIF_LI); : i
pragm inlinet NIR DIFF);
pragma iaiise(INORUACTR)
pragms inliseCER_AIR); 4
private
type ATFESS is new ioteger; :
1y
NLATR : constant ALLFESS := O :
end SWSTENE :
®
5. Restrictions On Representation Clauses :
4
- {
5.1 . Pragma PACK X
. . \ . Py t
Array components less than STORAGE_UNIT bits are packed o the next highest power of 2 ¢
bits. Objucts and larger components are packed to the nearest whoie STORAGE_UNIT. In the °
absence of pragma PACK, record components are padded so as to provide for efficient access ©
. . i . S .
the target hardware. Pragma PACK applied to a record eliminates the padding where possitie.
Pragma PACK has no other effect on the storage allocated for record components unless 2 A
record representation clause is specified. o
.l
5.2 . Record Representation Clauses Y
. . . , -6
For scalar types a represenation clause will pack to the number of bits required to represent the 0%
. . . tl
range of the subtype. A record representation applied to a composite typae will not cause the ::
A
.
i} .1
[)
)

el

o : Y _ . , - et , . . l
DOSOROCK IO A LS DN QOIS ROBCOOOLOO K OO N |:l WAL 0 :“.‘.0 ity Y Y IR A PRI M b = K R M KN

TR N NURY MR RY R R R R U RL N W U U RN NN U N N UL R U R, LU U U NI UNU YO WU WL W N U W WU OO

object to be packed to fit in the space required. An explicit representation clause must be given)
for the component type. An error will be issued if there is insufficient space allocared. ’

5 .3 . Address Clauses

Address clauses are supported for variables and constants,

R T R R

5 .4 . Interrupts

Interrupt entries are not supported.

V4
- 3 '
5 .5 . Representation Attributes]
{
The ADDRESS attribute is not supported for the following entities: N
Packages ,
Tasks
Labels H
Entries '
5 .8 . Machine Code Insertions \
Machine code insertions are supported. ¥
- [
The general definition of the package MACHINE_CODE provides an assembly language iater- :
face for the target machine. It provides the necessary record type(s) needed in the code state- ;
ment, an enumetation type of all the opcode mnemonics, a set of register definitions, and a set
of addressing mode functions. !
The general syntax of a machine code statement is as follows:
. . ¢
CODE_n'(opcode, operand {, operand}); '
where n indicates the number of operands in the aggregate. = :
A special case arises for a variable number of operands. The operarnds are listed within a 1]
subaggregate. The format is as follows: A
CODE_N'(opcode, (operand {, operand}));
For those opcodes that require no operands. named notation must be used {=f. RM 4.3{4)) 3
)
CODE_0{(op => oapcode); g
The opcode must be an enumeration literal (i.e. it cannot be an object, attritute, or a rename). Y
An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute. :
»
The arguments to any of the functions defined in MACHINE_CODE must be static expressions. i
string literals, or the functions defined in MACHINE_CODE. The 'REF attribute rmay not be
used as an argument in any of these functions.
Inline expansion of machine code procedures is supported.
»
\d
}
- 4y
)
\

g

A PAa/ L] [t § . L by A N h T .
AR IR MIOUN xi‘;!1"'1".'!'..q"‘l‘!‘l'!‘l!!.l“..l’!'t’!‘l'!‘l‘!.l'!‘l‘!‘... l‘-"'-‘l‘:‘u""c'!'l':‘!‘- o'!‘n‘.'t"t‘s AN "‘ ‘ 0' SN, l‘ i‘;‘l’!‘!\‘

S el o

NADAD A NN WL AW - g [y A RN A AR - e v PaT
',"FJ’SJ‘Q."H WY \“M'a«“a 4 (% X ‘s?l 4% l’n.t‘a!l.'n!l.l« 2. 4% 8% %%, AR, Vorte ARSI ,'r.a‘l\l‘-. AN

8 . Conventions for Implementation-generated Names

There are no implementation-generated names.

7 . Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8 . Restrictions on Unchecked Conversions

None.

8 . Restrictions on Unchecked Deallocations

None.

10 . Implementation Characteristics of I/O Packages

Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT_TYPE'SIZE 1is very large,
MAX_REC_SIZE is used instead. MAX RECORD_SIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECT_IO to provide an upper limit. on the record
size. In any case the maximum size supported is 1024 x 1024 x STORAGE_UNIT bits.
DIRECT_ IO will raise USE_ERROR 11t MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record size (expressed
in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very large,
MAX_REC_SIZE is used instead. MAX_RECORD_SIZE is defined in SYSTEM and can be
changed by a program before instantiating INTEGER_IO to provide an upper limit on the
record size. SEQUENTIAL_IO imposes no limit on MAX_REC_SIZE.

11 . Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply
that resources up to or even near these limits are available to every program.

11 .1 . Line Length

The implementation supports 2 maximum line length of 300 characters including thz end of line
character.

11 .2 . Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The max-
imum size of a statically sized record type is 4,000.000 x STORAGE_UNITS. A record type or
array type declaration that exceeds these limits will generate a warning message.

11 .3 . Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification, every task except the main
~rrogram s allocated a fixed size stack of 10,210 STORAGE_UNITS. This is the value returned
by T'STORAGE_SIZE for a task type T.

DAROA M

LRGN,

L,
1)

P o™ - —r—

I A A S-Sy i 3 em xR G B

-y

U
d

MK E
\" “a.t > t‘v.r

RO TS TR N Y R LU R R T R T TR e o QaV AR b §:8 b Gab guw Gt FrORTINTD

4]
33 11 .4 . Default Collection Size
3

In the absence of an explicit STORAGE_SIZE length attribute, the default collection size for an
access type is 100,000 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for
an access type T.

11 .5 . Limit on Declared Objects

Ny There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically
’ within a compilation unit. If this value is exceeded the compiler will terminate the compilation
K of the unit with a FATAL error message.

\I LI
Col 0% X

D)
) J . ; , \ ; ,
3 e v 4y "»‘.'-‘!'n‘..'."""i e O20 .B.l'l"’i‘) -.’lr‘ ’ ."».,la‘.v'n !’A‘-"‘Jl‘} KN '1 "!‘et‘ ‘.‘v‘.‘lh."\'ﬁ"‘o‘""b‘b

-.tno‘) ‘. < 0~ J.'*

ATTACHMENT I

Attributes of types in STANDARD

B
[
t
. Attributes of the pre-deflned type DURATION:
(a flxed-point type)
)
N flrst Is -2147483.048
. last Is 2147483.047
K) size ls 32
) delta Is 1.00000000000000E-03
¢ mantissa is 32
small is 0.70582500000000E-04
large 13 4.19430399002343E+06
:“ fore s 8 ’
) aftls 3
safe_small is 9.76562500000000E-04
A safe_largels 4.19430399902343E+08
' machine_rounds i{s TRUE
machine_overflows is TRUE
-
:' Attributes of type FLOAT:
¢
' size "84 '
4 first -1.70760313486231E+308
H last 1.79769313488231E+308
digits 15 3
A mantissa /81 .
‘4 - epsilon 8.88178410700125E-18 *
t emax 204
4 small 1.94460227433160E-62
"): large 2.5V110087081438E+81 . e
] safe_emax 1021 .
’ safe_small 2.22507285850720E-308
safe_Jarge 2.24711641857789E+307
; machine_radix 2
" machine_mantissa 53
' machine_emax 1024
machine_emin -1021
' machine_rounds TRUE
n machine_overflows TRUE
@
K} Attributes of type SHORT_FLOAT:
b
q' slze 32
‘. first -2.10282E+38
5 last 3.(0282E+38
digits 0
@ mantissn 21
j epsilon 0.336874316(006250E-07
emnx 81
) smnall 2.58403041122821E-20
: large 1.03128038004020E 425
v salfe_cmnx 125
¥, safe_smnll 1.17540435082228E-38
anfe_Inrge 4.2535275582T077E 437
ry mnchine_radlx 2
D machine_mantlssa 21
'’ mnachine_cmax 128

14

-

) - -~ | " , oA . > N AN
‘ ’7‘.‘ .A,'o'.'n...'\ -'t.._\‘. qr'.q'.‘hﬁ."’l,ﬂk,) Q'.’Q'. -’0,» .o“,o ' l.l.\.,."‘a l‘_ '._t.‘.k‘..lt‘ -’l'n‘ .‘.I ..l .v“ «‘C.. :'l’!‘ Ay’ ‘Ju"'".!'l A .’t AL Nk N "\ B ." " N "-“h"‘t“ A

POPIIPN L W TALIW LA LA L LA (A UMY LW LA W LT wal ¥ T T R T N YO WU IR U P - aab-Eab, N o mea @6 " T
AR 3 ’

ol machlne_emin -125
machine_rounds TRUE
machine_overflows TRUE

o Runges of predefined Integer types:
e TINY_INTEGER

N -128 .. 127

. SHORT_INTEGER

) -32708 .. 32707

INTEGER

s -21474830648 .. 2147483047

[y Default STORAGE_SIZE (collection size) for an access type:

100000
s Priority range is 0.. 90

‘l‘ Default Stqrage Slze for Tasks Is:

o o 10240

K If tasks need larger stack slzes, the *'STORAGE_SIZE attribute
may be used with the task type declaration.

Attributes and time-related numbers:
s

‘. - Duration’'small 9.78582500000000E-04 N
50' System.tick 1.00000000000000E-02

L
b | .

FeraE

15

"
R
“‘

8

[

¢
X ERIKN (] WM 1 0% Q Q Ree ;
ate M R OO NN O AN NN XN SR RN S B QORI NN KN RNININEANY

[P I P AR ISR NN TR R Y X MR N R NN RN R RN R AN KN N R AR RN R AN AN X T TR O™

s".
! APPENDIX C
’:? TEST PARAMETERS
9
o
i
. Certain tests in the ACVC make use of implementation-dependent values,
s such as the maximum length of an input line and invalid file names. A
:g test that makes use of such values is identified by the extension .TST
ﬁ: in its f{ile name. Actual values to be substituted are represented by
Q‘ names that begin with a dollar sign. A value must be substituted for
B each of these names before the test is run. The values used for this
A validation are given below.
e Name and Meaning Value
0
'.:i
- $BIG_IDI 498 A's before by 1
" + Identifier the size of the
2 maximum input line length with
varying last character.
&f) $BIG_ID2 498 A's before 2
v Identifier the size of the
" maximum input line length with
i - varying last character.
)
:: $BIG_ID3 24C A'e hefave 3 before 249 A’s
" Identifier the size of the
: maximum input line length with
o varying middle character.
" $BIG_1D4 249 A's before 4 before 249 A's
) Identifier the size of the
i maximum input line length with
;’ varying middle character.
>, $BIG_INT_LIT 497 zeros before 298
3 An integer 1literal of value 298
o™ with enough leading =zeroes so
4: that it 1is the size of the
° maximum line length.
K $BIG_REAL LIT 498 zeros before 69.0El
K> A universal real literal of
) value 690.0 with enough leading
’ zeroes to be the size of the
g maximum line length.
y
N , c-1

L]
Bong OGO U { " W AT - ; ' - ,
OO A A AN O N A U DA DGO AN P e o M MO S O DD S D TR R M S e KU A I NS

.
Ay
i
i $BIG_STRING1 "199 A's"
A A string 1literal which when
catenated with BIG_STRING2
KR yields the image of BIG_ID1.
!‘i‘.
»
Ry $BIG_STRING2 "259 A's 1"
gl A string 1literal which when
ﬁ catenated to the end of
’ BIG_STRING1 yields the image of
W BIG_ID1.
:‘ _
;$ $BLANKS 497 BLANKS
4: A sequence of blanks twenty
N characters 1less than the size
of the maximum line length.
N
RY $COUNT LAST 2147 _483_647
R A universal integer 1literal
h whose value is TEXT_ I0.COUNT'’LAST.
¥ .
® SFIELD LAST 2_147 483 647
] * A universal integer literal
: whose value is TEXT IO.FIELD'LAST.
R .
' $FILE_NAME_WITH BAD_CHARS "/illegal/file name/2(|$%$2102C.DAT"
" An external file name that
either contains invalid
0 . characters or is too long.
o
% $FILE_NAME_WITH WILD CARD CHAR "/illegal/file name/CE2102% . DAT"
5ﬂ An external file name that
b either contains a wild card
character or is too long.
N $GREATER_THAN_ DURATION 100_000.0
) A universal real 1literal that
) lies between DURATION'BASE'LAST
" and DURATION’'LAST or any value
° in the range of DURATION.
- $GREATER_THAN_DURATION BASE_LAST -100_000_000.0
i~ A rwmiversal real literal that is
. ¢ cater than DURATION'BASE’'LAST.
S
° $ILLEGAL_EXTERNAL_FILE_NAME1
"/no/such/directory/ILLEGAL_EXTERNAL FILE_NAME1l"
K
‘2 An external file name which
e contains invalid characters.
L)
“
A c-2
LY
ﬁ
¢
@

-

R
¥,
l. W - -

L ’ ; PP Y W 1% » L T %]

»-'* -".'n'f’n""v“?‘n"‘:‘!‘;'e \'?\".‘l"'l‘!’l’-'\k’l‘t '8 - 2 e, 0.l.a - v

TR S PU o ST 0y L PO o

$ILLEGAL EXTERNAL FILE_NAME2

"/no/such/directory/ILLEGAL_EXTERNAL FILE NAME1"

An external file name which
is too long.

$INTEGER_FIRST
A universal integer 1literal
whose +value 1is INTEGER'FIRST.

SINTEGER_LAST
A universal integer literal
whose wvalue 1is INTEGER'LAST.

$1INTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_ DURATION
A “universal real literal that
o 1lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE’'FIRST.

SMAX DIGITS
Maximum digits supported for
floating-point types.

$MAX IN LEN
Maximum input line length
permitted by the implementation.

S$MAX_INT
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX_INT PLUS 1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN_INT BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough leading zeroces in
the mantissa to be MAX IN LEN
long.

c-3

~2147483648

2147483647

2147483648

-100_000.0

-10_000_000.0

15

499

2_147_483_647

2 147_483 648

2: (then 495 zeros) 11

RNV N A YT

T e e, W v e W '-—v‘-'--?
o

B L D VB LN

Cetet

.......

I.l'.l'

W e e e e

¥

','; . "4.;.'

2

- Y S

IR

-
»

$MAX_LEN REAL BASED LITERAL

A universal real based literal
whose value 1s 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX STRING_LITERAL

A string literal of size
MAX IN_LEN, including the quote
characters.
SMIN INT
A universal integer literal
whose value is SYSTEM.MIN_ INT.
$NAME

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
2 LONG_FLOAT, or LONG_INTEGER.

SNEG_BASED_INT
A Dbased
highest

integer literal whose
order nonzero Dbit
falls in the sign bit
position of the representation
- for SYSTEM.MAX INT.

C-4

16: (then 494 zeros) F.E

"498 A’'s"

-2_147_483_648

TINY_ INTEGER

16#FFFFFFFD#

(o Bal Und Ba¥ Kol Nebu i e

S) o VR ar _All At -

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 27 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that ‘PRAGMA LIST (ON);’ not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT_ ERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT_ERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that 1is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC_ERROR or CONSTRAINT_ERROR for reasons not
anticipated by the test.

C35A03E, These tests assume that attribute ’‘MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in 1line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINT_ERROR.

D-1

.

L aarprp P [A

R A NN A TSI UL STV LY M vida S AU A% §30 $7R R Dok B.w B8 Gad Fab Far $a7 Nav AR allpc fa i ind g Gk a8 R Lt 8 a8 8.0 2.0 Halk' 8,8 628 5.0 0:8 Yab val ab st Bak “ab -ab ¢

C37215C, Various discriminant constraints are wrongly exprcted
E, G, H: to be incompatible with type CONS.

. C38102C: The fixed-point conversion on line 23 wrongly raises

;::. CONSTRAINT_ERROR.

(

W

;0: C41402A: 'STORAGE_SIZE is wrongly applied to an object of an access

Q:‘ type.

DU

o C45332A: The test expects that either an exp'ression in line 52 will

i.:: raise an exception or else MACHINE_OVERFLOWS is FALSE.

::;G However, an implementation may evaluate the expression

:;‘ correctly using a type with a wider range than the base type of

'."0 the operands, and MACHINE OVERFLOWS may still be TRUE.

DO

. C45614C: REPORT.IDENT_INT has an argument of the wrong type

':':‘ (LONG_INTEGER) .

"

0:: A74106C, A bound specified in a fixed-point subtype declaration

:’.:' C85018B, lies outside of that calculated for the base type, raising

R C87B04B, CONSTRAINT_ERROR. Errors of this sort occur re lines 37 & 59,

o CCd311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

KX respectively (and possibly elsewhere).

"' BC3105A: Lires 159..168 are wrongly expected to be illegal; they are

1 legal.

'l

e AD1AO1A: The declaration of subtype INT3 raises CONSTRAINT_ERROR for

"‘ - implementations that select INT'SIZE to be 16 or greater.

*.: CE2401H: The record aggregates in lines 105 & 117 contain the wrong

e values.

-l CE3208A: This test expects that an attempt to open the default output
'. file (after it was closed) with mode IN_FILE raises NAME_ERROR

f' or USE_ERROR; by Commentary AI-00048, MODE_ERROR should be

LA raised.

D “

%

°.

A

o

[}

l‘

o

'

5:

.

d

<

L,

! D-2

e

w }) { ; G GO AL RN ST ML 2 DY WO Ve 1%) ARG
O O R O XU NSO XSO0 OO M BTN Y RS BN R M 2 sl ndidi i ncionh

