
AVF Control Number: NBS88VMAS530_2

F

Ada Compiler
VALIDATION SUMMARY REPORT:

Certificate Number: 880520Sl.09110
MASSCOMP

MASSCOMP Ada, Version 1.1
MASSCOMP MC6600 with M68030 CPU and

CM68882 floating point accelerator (FPA)

Completion of On-Site Testing:
20 May 1988

Prepared By:
Software Standards Validation Group

Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266

Gaithersburg, Maryland 20899

N.

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081 ELECTE-

S SEP 2 61988 0

Approved for pub c rimq S

D ,ri~~u ,rrU t

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READINSTRUCTIONS~BEFORE COMLPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 20 May 1988 to 20 May 1989
MASSCOMP r MASSCOMP Ada, Version 1.? MASSCOMP
MC6.00 with M68030 CPU and M68882 floating 6. PERFORMING ORG. REPORT NUMBER
point accelerator (FPA) (Host and Target).

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards,
Gaithersburg, MD, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards,
Gaithersburg, MD, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 20May 1988
United-States Department of Defense 13. NUMBLR UF FAGES
Washington, DC 23301-3081 43 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
National Bureau of Standards, 15a. REj FICATIONDOWNGRADING
Gaitl~ersburg, MD, U.S.A. N/A

16. DISTRIBUTION STATEMENT (of his Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. -different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

MASSCOMP Ada, Version 1.1, MASSCOMP, National Bureau of Standards, MASSCOMP MC6600 with
M68030 CPU and M68882 floating point accelerator (FPA) (Host and Target), ACVC 1 . 9

DO u 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W'hen Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: MASSCOMP Ada, Version 1.1

Certificate Number: 880520S1.09110

Host: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under MASSCOMP
RTU, Version 4.0

Target: MASSCOMP MC6600 with M68030 CPU, M68882 FPA under PLASSCOMP
RTU, Version 4.0

Testing Completed 20 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

Xda Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Jolt Program Office
Virginia L. Castor
Director S
Department of Defense
Washington DC 20301

p.,

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 RE.EE:S 3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

Cf!APTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-3
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7.1 Prevalidation3-4
3.7.2 Test Method3-4
3.7.3 Test Site 3-5

APPENDIX A CONFORMANCE STATEMENT

* APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS Acoession ForZ_/__T

APPENDIX D WITHDRAWN TESTS Uvt atr'c.d t]

By-

Aveliblt'Y(oe

iDist pbclel

i ieL

CHAPTER 1

() INTRODUCTION

This Validation Summary Report'-_t describes the extent to which a
specific Ada compiler conforms. to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can b implemented that
is not in the Standard. -.

Evtn though all validated Ada compilers conform to the Ada Standard, it -
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed 0

during the process of testing this compiler are given in this report.-

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada

compiler and evaluating the results. ; The purpose of validating is to -
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

~- I,

1-1

P

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

On-site testing was completed 20 May 1988 at Westford, Massachusetts.

1A USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

1-2

Ad& Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

4-

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures S
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada 5
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

1-3

WI

including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (IMP) is a committee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their

4 results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A
test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in

1-4

4

the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
cdhforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, 'FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity -
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
REPORT and CHECK_FILE is che-ka by a set of executal'p tests. These
tests produce messages that are examined to verify that the units are

1-5

operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
wfthdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D..

1

4J

4d

1-6

4

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: MASSCOMP Ada, Version 1.1

ACVC Version: 1.9

Certificate Number: 880520S1.09110

Host Computer:

Machine: MASSCOMP MC6600 with
M68030 CPU and M68882 FPA

Operating System: MASSCOMP RTU

Version 4.0

Memory Size: 8 MBytes

Target Computer:

Machine: MASSCOMP MC6600 with

M68030 CPU and M68882 FPA

Operating System: MASSCOMP RTU
Version 4.0

Memory Size: 8 MBytes

Communications Network: floppy disks

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

- Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
test P55A03A..H (8 tests), D5600IB, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An .implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64 bit integer calculations. (See tests
D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

- Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORTFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001BC and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently all default initialization expressions or record
components are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

2-2

0 X

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERICERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AOI4A.)

- Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLFAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

* A packed two-dimensional BOOLEAN array with more than

2-3

INTEGER'LAST components raises NUMERICERROR when the array type
is declared, (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declazed or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAIN,_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype indications
rejects such subtype indications during compilation. (See test

E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

- Representation clauses.

2-4

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a'
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TRUE -> 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

4 Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B,2B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

0
Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL_10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE220ID, and EE2201E.)

The package DIRECTIO can be instantiated with unconstrained

2-5

i0

p - -p U U .

array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

There are no strings which are illegal external file names for
SEQUENTIALIO and DIRECTIO. (See tests CE2102C and CE2102H.)

Modes IN FILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D and CE2102E.)

Modes INFILE, OUT_FILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for (SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
-element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE31-2C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See
tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107F..I (4 tests), CE2110B, and CE2111H.)

An external file associated with more than one internal file can
be deleted for SEQUENTIALIO, DIRECTIO, and TEXTIO. (See test
CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE21O8A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.)

2-6

S

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

4 2

~2-7

lI

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tests, 27 tests had been withdrawn because of test errors. The AVF
determined that 228 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 26 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
cohformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 109 1047 1630 17 18 46 2867

Inapplicable 1 4 223 0 0 0 228

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3

4

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 7 8 9 10 1 U 13 14

Passed 190 499 540 245 166 98 142 326 137 36 232 3 253 2867

Inapplicable 14 73 134 3 0 0 1 1 0 0 2 0 0 228

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35AO3E C35AO3R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C A74106C C85018B C87B04B CC1311B BC3105A
ADlA01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.
S

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 228
test were inapplicable for the reasons indicated:

C35702B uses LONGFLOAT which is not supported by this implementation.

A39005G uses a record representation clause which is not supported by
this compiler.

3-2

'I.

JWt

The following (13) tests use LONGINTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55BO7A B55BO9C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.'.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be S
executed since the package REPORT is dependent on the package TEXT_IO.

C96005B requires the range of type DURATION to bre different from those
of its base type; in this implementation they are the same.

BC;204C and BC3204D compile generic package specifications and bodies in
separate compilations. This compiler requires that generic package
specifications and bodies be in a single compilation.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)

C45641L. .Y (14 tests) C46012L. .Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all S
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that aaL'L anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 26 Class B tests.

3-3

The following Class B test files were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2AO03A B2AO03B
B2AO03C B33301A B37201A B38003A B38003B B38009A
B38009B B41202A B44001A B64001A B67001A B67001B
B67001C B67001D B91OOH B91003B B95001A B97102A
BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the MASSCOMP Ada was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.1.2 Test Method

Testing of the MASSCOMP Ada using ACVC Version 1.9 was conducted on-site
by a validation team from the AVF. The configuration consisted of a
MASSCOMP MC6600 with M68030 CPU, M68882 FPA operating under MASSCOMP
RTU, Version 4.0. The host and target computers were the same hardware.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were not included in their modified form on the
magnetic tape. The contents of the magnetic tape were loaded directly
onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the MASSCOMP MC6600 with M68030 CPU, M68882 FPA,
and all executable tests were linked and run. Results were printed from
the host/target computer.

The compiler was tested using command scripts provided by MASSCOMP and
reviewed by the validation team. The compiler was tested using all
default option I switch settings except for the following:

Option I Switch Effect

-M Produce an executable program using the named
unit or source root name as the main program.

Tests were compiled, linked, and executed using a single host computer
and a single target computer (host and target being the same). Test

3-4

output, compilation listings, and job logs were captured on magnetic

tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Westford, Massachusetts and was completed on 20

May 1988.

I

3-5

APPENDIX A

CONFORMANCE STATEMENT

4

A-1

APPENDIX A

CONFORMANCE STATEMENT

MASOM has submitted the following Declaration of Conformance statement con-
cerningIMASSCON1P Ada Version 1.1.

4b

DECLARATION OF CONFORMANCE

Compiler Implementor: NL-kSSCOMIP

Ada Validation Facility:

Software Standards Validation Group
Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266

Gaithersburg, Maryland 20899

Base Configuration

Base Compiler Name: MALSSCONP Ada, Version 1.1

Hos Architecture: NL-SSCO.M: MC6600 with M68030 CPU.
M68882, running RTU 4.0

Target Architecture: NL-kSSCON[P MC6600 with M68030 CPU,
M68882, running RTU 4.0

Derived Compiler Registration

Derived Compiler Name: IMASSCOMP Ada, Version 1.1

Host Architecture: \L-kSSCOMP NC5400/MC5450 with .\68020 CPU,
.X 8! running RTU 4.0

Target Architecture: %L-kSSCONP MC5400/MC5450 with M68020 CPU.
M68881, running RTU 4.0

Derived Compiler Name: %L-ASSCOP Ada. Version 1.1

Host Architecture: NL-\SSCOIP N[C5520/MC5550 with M68020 CPU,
M68881, running RTU 4.0

0

Target Architecture: MASSCOMIP MC5520/N1C5550 with M68020 CPU,
N168881, running RTU 4.0

Derived Compiler Name: IMASSCO'MP Ada. Version 1.1

Host Architecture: MIASSCONIP IMC5600 with M68020 CPU,
M68881, running-RTU 4.0

Target Architecture: MA-SSCOM~vP MC5600 with M68020 CPU,
M68881, running RTU 4.0

Derived Compiler Name: MASSCOMv~P Ada, Version 1.1

Host Architecture: %'IASSCOMT/P MC5700 with M68020 CPU,
N168881, running RTU 4.0

Target Architecture:)vASSCO-Nvl MC5700 with M68020 CPU,
411- M68881, running RTU 4.0

Derived Compiler Name: NIASSCOM'P Ada, Version 1.1

Host Architecture: %MASSCOIP '\C6300 with M68030 CPU,
M68882, running RTU 4.0

Target Architecture: %LkSSCO.%1P.%,C6300 with 'M68030 CPU,
M68882, running RTU 4.0

Derived Compiler Name: %1ASSCO.'v1 Ada, Version 1.1

Host Architecture: MASSCOINI MC6400 with N168030 CPL7.
NlfAQQQC PTTh 1.0

Target Architecture: %LkSSCO\,f NIC64OO with M68030 CPU.
N168882, running RTU 4.0

Derived Compiler Name: NIASSCOMIP Ada. Version 1.1

Host Architecture: MASSCOMP IMC6700 with '.M68030 CPU,
M68882, running RTU 4.0

Target Architecture: %LILSSCO,\[N1C6700 with %168030 CPLU,
M\68882, running RTU 4.0

79IL

Irnplementor's Declaration

We, the undersigned, representing NLSSCONEfl, have implemented no rich-
berate extensions to the Akda Lang"uage Standard ANSI/NIIL-STD-i8i5A in the
compilers listed in this declaration. \Ve declare that N"LSSCOMP Is the owner-
of record of the Ada laniguage compilers listed above and, as such. is responsible
for maintaining said compilers in conformance to AINSI/.MIL-STD-l8i5A. All
certificates and registrations for Ada language compilers listed in this declar-ta-
tion shall be made only in the owner's name.

_ _ _ _ _ _ _ _ _ _ _ _ _ _D Da te: /______

M AS S C ON IS
Clark D'Elia
Software Development Manager

0 _ _41-_ _ __ _ __ _ Date:

Bruce Lutz.
Soft-ware Engineer

Ow,, er's Declaration

W',e. Lhe urioe-.siolned, representing N-\SSCO'flP, take full responSibility for
imp epmentation and maintenance of the Ada compiler(s) listed above, and azr-ee
to the Public dl--c-osure of the final Validatlon Summary Report. %%,e fur-,her
agree to c'nip!,e to comply with11 thc Ada trademnark policy, as de~ned b,,- the-

AaJitP~ocr'-amr OF-ce. W%,e declare that all o-f the Adia langui.ate CC)T _
listed, and ti-elr host/target perf-rmanice are in com-1pl'ance with the Ada
L an z!iac L, A\ SI/MUL-STD-i153A.

NI-A S :'C ON LP
Caurk D'ElL

* IBruice Lutz7
Software Eng;inee-r

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the MASSCOMP Ada, Version
1.1, are described in the following sections which discuss topics in
Appendix F of the Ada Standard. Implementation- specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY_INTEGER is range -128..127;

type FLOAT is digits 15 range
-1.79769313486231E+3082 .. 1.79769313486231E+3082;

type SHORTFLOAT is digits 6 range
-3.40282E+38 .. 3.40282E+38;

type DURATION is delta 1.OOOOOOOOOOOOOOE-03 range
9.76562500000000E-04 .. 4.19430399902343E+06;

end STANDARD;

APPENDIX F OF THE Ada STANDARD

B

B-Il

ATTACH-MENT I

A_PPEN-DlX F. Implementation-Dependent Characteristics

I. Implementation-Dependent Pragmas

1 .1. INLINEONLY Pragma

The NLLN'E_IONLY pragma, when used in the same way as pragma E'INLLNE. indicates to the
compiler that the subprogram must always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which save code space.

1 .2 . BUILT.J.N Pragrna

The BUILTJIN pragma is used in the implementation of some predefined Ada packages, but
provides no user access. It is used only to implement code bodies for which no actual Ada body
can be provided, for example the NLACHTNE_CODE package.

3. .3-t SHARE-CODE Pragma

The SHXARECODE pragma takes the name of a generic instantiation or a generic unit as the
first argument and one of the identifiers TRUE or FALSE as the second argument. This pragma
is only allowed immediately at the place of a declarative item in a declarative part or package
specification, or after a library unit in a compilation, but before any subsequent compilation
uni t.

When the first argument is a generic unit, the pragrna applies to all instantiations of that gen-

eric. 'When the first argument is the name of a generic instzntia.1-n, the pragma applies oniy to
the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic

instantiation with code generated for other instantiations of the same generic. When the second
argument is FALSE, each instantiation will get a unique copy of the generated code. The
e .ent to which code is shared between instantiations depends on this pra-ma and the kind of
generic formal parameters declared for the generic unit.

The name pragma SHAREBODY is also recognized by the imple:nentation and has the same
effect as SILARECODE. It is included for compatability with earlier ver-iun i of V'ADS.

1 .4 . NO_.LMAGE Pragrna

The pragma suppresses the generation of the image array used fcr the DLXCE attribute 01
enumeration types. This eliminates the overhead required to store the array i:m the exccuta';r
image.

* 1 .5 . EXTERNAL2NA-ME Pragna

The EXTERNALNA-.\IE pragma takes the name of a subprogram or variable deiined in Ada
and allows the user to specify a different external name that may be used to reference the entity'
from other languages. The pragma is allowed at the place of a declarative item in a packaz-
specification and must apply to an object declared earlier in the same pack:i-e specification.

IV

=3

1 .0. INTERFACE-OBJECT Pragma

The INTERFACE-OBJECT pragma takes the name of a variable defined in another language

and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable name with an external reference to the second, link...argurnent. The pragma is allowed
at the place of a declarative item in a package specification and must apply to an object

declared earlier in the same package specification. The object mutt be declared as a scalar or

an access type. The object cannot be any of the following:
a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1 .7. LMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed

within a machine code procedure. It specifies that implicit code generated by the compiler be

allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be gen-

erated. The default is ON.

2 . Implementation of Predefi.ned Pragna-s

2 .L. CONTROLLED

This p ragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2 .3. LNLENE

This pragma is implemented as described in Appendix B of the Ada RM.

2 .4. INTERFACE

This pragma supports calls to 'C' and FORTR.AN functions. The Ada subprograms can be
either functions or procedures. The types of parameters and the result type for functions mut

be scalar. access or the predefined type ADDRESS in SYSTEM. An optional third argument

overrides the default link name. All parameters must have mode N. Record and array objects
can be passed by reference using the ADDRESS attribute.

2 .5 . LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2 .8. MEMORYSIZE

This pragma is recognized by the imolementation. The implementation does not allow SYSTE.,
to be modified by means of pragmas: the SYSTEM package must be recompiied.

2.7. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2 .8. PACK

This pragma will cause the compiler to choose a non-aligned rfr,:entaion for composite type-

It will not cause objects to be packed at the bit level.

4

0¢

2 .9. PAGE

This pragma is implemented as described in Appendix B of the Ada R\l.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada PAL.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGE-UNIT

This pragma is recognized by the implementation. The implementation does not allow S'i'SCE.
to be modified by means of pragmas; the SYSTEM package must be recompiled.

2 .13. SUPPRESS

This pragma is implemented as described, except that R.NGECHECK and
DIVISIONCHECK cannot be suppressed.

2 .14. SYSTEM__iNAME

Thi pragma is recognized by the implementation. The implementation does not allow SYSTFM
to be modified by means of pragmas; the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3 .1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address or the first of the storage units alocated to F. For
a subprogram. package, task unit, or label, it refers to the address of the machine code associ-
ated with the corresponding body or statement. For an entry for which an address clause has
been given. it refers to the corresponding hardware interrupt. The attribute is of the type
OPERF--.ND defined in the package M.\ACHi.-ECoDE. The attribute is only al'owed wthin a
machine code procedure.

See section F.4.S for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

0

-W LI WIFvv VWVIL~x I,

4 . Specification Of Package SYSTEMI

package S79A0~

type N*.E is (ra.vcrp-. ;

SYSTD.UJNED.9- coe nn N.C rna.ee..u.z

Syvta Dependent 1'Nwd NiThers

-4- 1,.T : . ..- 1 :- 1;

~.p%..'~NfssAconstant ;-31;

TiOCConetnt 0.01;

-- Other Systcn dependent Declamations

subty-pe MJQ.I1Y is INUEfl0 range 0 go

YXJ3Z.lMI : iteger :- a4*10 24;

gyp. A;ss is pri-etr

cons t.aoAUE

function Aft5lCAL..,AMS(l: !!)return ACFES
fuurt ion A0:-7A 9: .3FE(return 8a~4

'unet ion 8~.7(. : AEFES) return WZN
funct ion NCUCEA. 9: /*CFES) return BDMEN;

41 fuxiction ACRJE4A. B: AEFS return MCEAN':
function KER..D(FF(A. 8: AMS) return 1.%7=;
function lNRe0C-A AMES; I1Clk IN1M) return AEES:
function CEjR.-CIA. AEE; = INXECE) retun UTSS

funet ion Y V(A. B: ArrES) return E3D3EA. reags hU. Z
tunet ion .c (A. 9, ,AM;5) return 80aAJ rene
function '>-'(A. B: AFS) return SOO-A renrns = M
function '<-".(A, B: KCFF -S) return B~..EAN renhmes MLE
fum ction 4A. B: r rt ur n IN r enane, 9ACR-2NFF
f = ct i on '-(A. *t ',5MS IXt.!1NI= return ICL , -sn~eTILLM
function -~(A-- %C~5~z; CE 1N-3 r et urn a r ca-c

prs& inaIi U e(jA13.'TjZ:

p r a pm i nine(aJ.c I

pr.4r- n e:.4CEF.Dl Fi:

P-9- i en.W~

pr Iflt

ty-p, AMM is new integer;

*LiJtconstant ADDIYsS :- 0;

5 . Restrictions On Representation Clauses

5 .1 . Pragmna PACK

A-\rray components less than STORAGE-ITNIT bits are packcd -Lo Ihe! next highEst nowfer of '2
bits. Obje!cts and largecr components are packed to the nearest Whoit STOPAG-EUN IT. In e
absence of pragma .A.CIK, record components are padded so as to provide f .or efficient acccss 1 5;
the target hardware. Pragma PACK- applied to a record eliminates the padlding, whe!re poss; hie&

Pra-ma PA-Ck has no other effect on the storage allocated for record components unless a
re cord representation clause is specified.

5 ,2 .Record Representation Clauses

For scalar types a represenaon clause will pack to the number of bits required to represent t , r:
range Or the subtype. A\ record representation applied to a compitIe typic will not causeL,-

object to be packed to fit in the space required. An explicit representation clause must be given
for the component type. An error will be issued if there is insufficient space allocated.

5 .3 . Address Clauses

Address clauses are supported for variables and constants,

5 .4 . Interrupts

Interrupt entries are not supported.

5 .5 . Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5 .5 . Machine Code Insertions

Machine cdde insertions are supported.

The general definition of the package NfACT'E--_CODE provides an a sembly language inter-
face for the target machine. It provides the necessary record type(s) needed in the code state-
ment, an enumetation type of all the opcode mnemonics, a set of reg-ster definitions, and a set
of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODE.n'(opcode, operand {, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a S
subaggregate. The format is as follows:

CODE__N'(opcode, (operand {, operand)));

For those opcod!s that require no operands, named notation must be used (cf. R.M 4.D(..)

CODE_0'(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in NL-kCHINECODE or the 'REF attribute.
I

The arguments to any of the functions defined in MACHINECODE must be static exprefsions.
string literals, or the functions defined in MAL5CHIN'ECODE. The 'REF aLtribute may not be
used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.
I

7

11 UMI,

0 . Conventions for Implementation-generated Names

There are no implementation-generated names. P

7 . Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8 . Restrictions on Unchecked Conversions

None.

9 . Restrictions on Unchecked Deallocations

None.

10 . Implementation Characteristics of I/O Packages

Ir..tantiations of DIRECT.IO use the value MLX..RECSIZE as the record size (expressed in
STORAGE-_UNITS) when the size of ELEMENTTYPE exceeds that value. For example for
unconstrained arrays such as string where ELENvENTTYPE'SIZE is very large,
NL,_RECSIZE is used instead. N.AX_RECORDSIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJO to provide an upper limit on the record
size. In any case the maximum size supported is 1024 x 1024 x STOPAGEUNIT bits.
DIRECTO will raise USE-ERROR ii MAX_.RECSIZE exceeds this absolute limit.

Instantiations of SEQUENTLALJO use the value MA2CREC.SIZE as the record size (expressed
in STORAGEDTINITS) when the size of ELEMENT._TYPE exceeds that value. For example for
unconstrained arrays such as string where ELE.IENT-TYPE'SIZE is very large,
NLAX__.REC_SIZE is used instead. M.AX_RECORDSIZE is defined in SYSTEM and can be
changed by a program before instantiating LNTEGERJO to provide an upper limit on the
record size. SEQUENTLA.LJO imposes no limit on M-X...RE.CSIZE.

11 . Implementation Limits b

The following limits are actually enforced by the implementation. It is not intended to imply
that resources up to or even near these limits are available to every program.

11 .1 . Line Length

The implementation supports a maximum line length of 500 characters inc!uding the end of line!
character.

11 .2 . Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STOR-\GE._,NITS. The max-
imum size of a statically sized record type is 4,000.000 x STOR-kGEUNITS. A record type or

rray type declaration that exceeds these limits will generate a warning message.

11 .3 . Default Stack Size for Tasks

In the absence of an explicit STOPAGESIZE length specification, every task except the main
?r' griyr ;s -dlocated a fixed size stack of 10.210 STORA'GEUNITS. This is the value returned
by T'STORAGE-SIZE for a task type T.

8 I

11 .4 .Default Collection Size

In the absence of an explicit STORAGE-SIZEZ length attribute, the default collection size for an
access type is 100,000 STORAGE..UNITS. This is the value returned by T'STOP%-GE -SIZE for

* an access type T.

11 .5 .Limit on Declared Objects

There is an absolute limit of 6,000.000 x STORAUGEJ.JNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler- will terminate the compilation

of the unit with a FATAL error message.

A

0N%;R SM

-xwlr% I - A M.IMPRJR" AXIY7K n

ATTACHMENT flu
Attributes of types in STAN',DA'RD

Attributes or the pre-defined type DURZATION:
(a fixed- point type)

first Is -2147-183.0-18
last Is 21.17483.047
size Is 32
delta Is 1.00000000000000E-03
mantissa Is 32
small Is 0.705825000000O0E-01
large Is 4.194303000023-13E+00
fore Is 8
aftls3 3
safe...small is 9.70562500000000E-04
safejarge Is 4.1g430399g02343E+00
machine-rounds Is TRUE
machine-.overflows Is TRUE

Attributes of type FLOAT:

size 84
first -1.7g769313486231E+308
last 1.79-,5g313480231E+308
digits 15
mantissa /51

-epsilon 8.881-.8419700125E-16
emax 204
small 1.04402274331O0E-62
large 2.S711008708143SE+61
safe..e-nax 1021
safe...mall 2.22507-'85850720E-308

safejlarge 2.24711541857789E+307
*machine~jadlx

machine-mantissa 53
A rachine-emax 1024

machine-emin -101
machinejrounds TRUE
machine-overflows TRUE

Attrihaztei or type SIIORZTJLOAT:

3ize 32
first -.. 10232E+38
last 3. 10282 E+l38
digit3 0

*mand:113 211
cp'Ilon 0.5071d310 020'-E-07
emax 8-1
smillf 2.58 1030 f) 2S~E-20
large 1.03 11230.800 020E+25

s~hf...efT~l~ 125

1.nil l17510 13 5 08M212 3 -3 8
!nre-hirge t. 255325 55 82'70-,7 C +37

maichine-mnntissft 21
machill- CrI 128

14

machinc..emin -12.5

machine-rjounds TRUE
machine-overflows TRUE

Ranges of predcflned Integer typesz

TINYJNTEGER,
-1:83. 1271
SIIORT-JNTECER,

INTEGER
-2147-1836-48 '.214748313-17

Default STOR-AGE-.SIZE (collection size) for an access type,

100000

Priority range is 0 .. 9

Default StQrage Size for Tasks Is:

4-* 10240

If tasks need larger stack sizes, the 'STORAGE-SIZE attribute

may be used with the task type declaration.

Attributes and time-related numbers:

Durstioo'small g.7,5552500O000O00E-04
System.tick 1.00000000000000E-02

15

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_IDI 498 A's before by 1
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 498 A's before 2
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 24 A' fz e 3 before 249 A's
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 249 A's before 4 before 249 A's
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINTLIT 497 zeros before 298
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIGREALLIT 498 zeros before 69.OEl
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

C-1

$BIGSTRINGi "199 A's"
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDl.

$BIG_STRING2 "259 A's I"
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDl.

$BLANKS 497 BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST 2_147_483_647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$FIELDLAST 2 147 483 647
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHARS "/illegal/file_name/2(1$%2102C.DAT"
An external file name that
either contains invalid
characters or is too long.

$FILENAME WITH WILD CARD CHAR "/illegal/file_name/CE2102*.DAT"
An external file name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THANDURATIONBASELAST -100_000_000.0
A ,kiiversal real literal that is
$ eater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILENAME1

"/no/such/directory/ILLEGALEXTERNALFILENAMEl"

An external file name which
contains invalid characters.

C-2

$ILLEGALEXTERNALFILENAME2

"/no/such/directory/ILLEGALEXTERNALFILENAMEIn

An external file name which
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLAST PLUS 1 2147483648 N.
A universal integer literal
whose value is INTEGER'LAST + 1. A.

$LESSTHANDURATION -100000.0
A universal real literal that S
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for ,

floating-point types.

$MAX IN LEN 499
Maximum input line length
permitted by the implementation.

$MAXINT 2_147_483_647
A universal integer literal •
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2_147_483_648 .

A universal integer literal
whose value is SYSTEM.MAXINT+l. p

$MAXLENINT BASEDLITERAL 2: (then 495 zeros) 11
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-3

....0

$MAXLENREALBASEDLITERAL 16: (then 494 zeros) F.E
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL "498"A's"
A string literal of size
MAX IN LEN, including the quote
characters.

$HININT -2147483648
A universal integer literal
whose value is SYSTEM.MIN_ INT.

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONG_FLOAT, or LONGINTEGER.

$NEGBASEDINT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

*for SYSTEM.MAXINT.

* C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 27 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARC.

C34004A: The expression in line 168 wrongly yields a value outside of
*the range of the target type T, raising CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT_ERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERICERROR or CONSTRAINTERROR for reasons not
anticipated by the test.

C35AO3E, These tests assume that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

* C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR.

* D-1

C37215C, Various discriminant constraints are wrongly exprcted
E, G, H: to be incompatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT-ERROR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINEOVERFLOWS may still be TRUE.

C45614C: REPORT.IDENTINT has an argument of the wrong type
(LONGINTEGER).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B1 CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
CC#I311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADIAOIA: The declaration of subtype INT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE240H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises NAMEERROR
or USEERROR; by Commentary AI-00048, MODEERROR should be
raised.

D-2

