
AVF Control Number :AVF-VSR-AFNOR-88-2

Ada* Compiler
00 VALIDATION SUMMARY REPORT:
LO Certificate Number: 880212A1.09028

ALSYS
AlsyCOMP_002, Version 3.21

. a) HP9000/350

Completion of On-Site Testing:
22 February 1988

Prepared by:
AFNOR

Tour Europe
Cedex 7

F-92080 Paris la Defense

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081

'PS

~DTIC
.. ELECTE

SAUG 3 11988 D

'% ' H

2TJTI ONl~lt STATMNA

Approved kw public re.1mw
DiorAbitiofon Uani'Jted

*Ada is a registred trademark of the United States Government (Ada
Joint Program Office).

0[4

.........

UNCLASSIFIED A
o SECJRI' .ASSI

-
A'ION Q , S Da&5 a- Evn-araE-te- ed_

1.RPCi NM REPORT DOCUMENIATION PAGE NO.:3 RECI N A -0

1. REu. T. N:E2. GUv. -" -i SIoN NO 3 RECIP ENI-3 CATALOG NUMBER

4. TIT E (and SuOtirte) 5 TYPE OF REPORT & PERIOD COVERED22 Feb 191,1 to 22 reb 1g9
Ada Compiler Validation Sur.mary Report:
ALSYS, A7svCOMP 002, Version 3.2 HP9000/350

' under HP/UX VerSion 6.01 (Host and Target). 6. PERFOPMI'.G ORC. REPORT NUMBER

. 7. AUT.iOR(s 23. CONTRA-T OR GRANT NUMBER(s)

" IAFNOR,
Paris, France

9. PERFORMING ORGAN:ZAT:ON AND ADR3CS I. PROGRAM -LEMENT. PROJECT. TASK

I AREA & WORK UNIT NUMBERS

* AFNOR,
Paris, France

!I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office 22 February 1988
United States Department of Defense 13. NUMBER Ut PAGt5
Washington, DC 20301-3081 40 p.

14. MONITORING AGENCY NAME & ADDRESSJfdifferent from ControllingOffice) 15. SECURITY CLASS (ofthisrepor-)

UNCIASSIFIED
AFNOR, 15a. D~rLASSj;CATION/DOWNGRADING

_ Paris, France N/A

16. DISTRIBUTION STATEMENT (ofthisReoor-t)

Approved for public release; distribution unlimited.

17. DI STRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPUEMENTARY NOTES

19. KE 4OPOS (Continue Dn reverse sid ercessar' and ident'fr by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20 . ABSTPA. T (Continue on reverse ide tf necessary andidentify by block number)

AlsvCOMP_ 002 Version 3 21, ALSYS. AFNOR, HP9000/350 under HP/UX Version 6.01 (Host and Target),
ACVC 1.9.

[0 DO uH 1473 :DITION OF I NOV 55 IS OBSOLETE
o1~ JAN 73 >N r-01 F 8i3G U.NCLASSIFIED

SEI 9 'Y F, C-1 TON OF TrI PAGE iher,,ata.

{.- m

.%

Ada* Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_002, Version 3.21

Certificate Number: 880212A1.09028

Host: Target:
HP 9000/350 under HP 9000/350 under
HP-UX HP-UX
Version 6.01 Version 6.01

Testing Completed 22 February, 1988 using ACVC 1.9

This report has been reviewed and is approved.

- AFNOR
Dr Jacqueline Sidi
Tour Europe
Cedex 7
F-92080 Paris la D6fense

Ada Validation Office
Dr.John F. Kramer
Institute for Defense Analyses
USA-Alexandria VA 22311

4%
* _ ...

Ada Joint Program Office
Virginia L. Castor

Director
""- Department of Defense
0 USA - Washington DC 20301

,9.

9. *Ada is a registred trademark of the United States Government (Ada
Joint Program Office).

3

9"

0V

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the AlsyCOMP 002,
Version 3.21, using Version 1.9 of the Ada* Compiler Validation
Capability (ACVC). The AlsyCOMP_002 is hosted on F HP 9000/350
operating under HP-UX, Version 6.01. Programs processed by this
compiler may be executed on a HP 9000/350 operating under HP-UX,
Version 6.01.

On-sit2 testing ended on 22 7c2ruary, 1988 at La Celle SaiAL Ciudl,
France, under the direction of the AFNOR (AVF), according to Ada
Validation Organization (AVO) policies and procedures. At the time
of testing, version 1.9 of the ACVC comprised 3122 tests of which 25
had been withdrawn. Of the remaining tests, 221 were determined to
be inapplicable to this implementation. Not all of the inapplicable

*tests were processed during testing; 201 executable tests that use
floating-point precision exceeding that supported by the
implementation were not processed. Results for processed Class A, C,
D, and E tests were examined for correct execution. Compilation
listings for Class B tests were analyzed for correct diagnosis of
syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 20
of the processed tests determined to be inapplicable. The remaining
2876 tests were passed. The results of validation are summarized in
the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

---Passed 190 500 550 248 166 98 140 327 134 36 234 3 250 2876

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* Inapplicable 14 73 125 0 0 0 3 0 3 0 0 0 3 221

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

*The AVF concludes that these results demonstrate acceptable
conformity to ANSI/MIL-STD-1815A Ada.

0

*Ada is a registred trademark of the United States Government (Ada
Joint Program Office).

4

C-S 5 ' ' S. . t.

TABLE OF CONTENTS

--. ,

CHAPTER 1 INTRODUCTION 6
'.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 7

1.2 USE OF THIS VALIDATION SUMMARY REPORT 7

1.3 REFERENCES 8

1.4 DEFINITION OF TERMS 8
1.5 ACVC TEST CLASSES 9

CHAPTER 2 CONFIGURATION INFORMATION 12

2.1 CONFIGURATION TESTED 12
2.2 IMPLEMENTATION CHARACTERISTICS 13

CHAPTER 3 TEST INFORMATION 18

3.1 TEST RESULTS.....................................18
3.2 SUMMARY OF TEST RESULTS BY CLASS................18

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 19
3.4 WITHDRAWN TESTS 19
3.5 INAPPLICABLE TESTS 19
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS.21
3.7 ADDITIONAL TESTING INFORMATION 22
3.7.1 Prevalidation 22
3.7.2 Test Method22
3.7.3 Test Site 23

APPENDIX A CONFORMANCE STATEMENT 24

copy

APPENDIX B APPENDIX F OF THE Ada STANDARD 28 CSPECT,

* APPENDIX C TEST PARAMETERS 35

p. APPENDIX D WITHDRAWN TESTS 39

{ * Accessio3 For

F TIS GFRA&1

Urnft ioujic -d r
JuI:lt If Iv , "' ".

lAw it and/or5F[. D l s t Sl~ac ial

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validati"n Summary Report IVSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-
STD-1815A. This report explains all technical terms used within it
and thoroughly reports the results of testing this compiler using
the Ada Compiler Validation Capability (ACVC). An Ada compiler must
be implemented according to the Ada Standard, and any

.implementation-dependent features must conform to the requirements
of the Ada Standard. The Ada Standard must be implemented in its
entirety, and nothing can be implemented that is not in the

Standard.
I

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation

S dependencies--for example, the maximum length of ideatifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies
observed during the process of testing this compiler are given in
this report.

The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating
is to ensure conformity of the compiler to the Ada Standard by
testing that the compiler properly implements legal language
constructs and that it identifies and rejects illegal language
constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform
checks at compile time, at link time, and during execution.

6

Z.Z. 1.

llf WW W- W W-7VinW
7

-ILJ
7

L K

IITRODUCTION

1.1 PUXOSE OF THIS VALIDATION SUMMARY REPORT

* This VSR documents the results of the validation testing performed
on an Ada compiler. Testing was carried out for the following
purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard ;

To determine that the implementation-dependent behavior is
allowed by the Ada Standard.

Testing of this compiler was conducted under the direction of the
AVF according to policies and procedures established by the Ada
Validation C:ganization (AVO). On-site testing was terminated on 22
February, 1988 at Alsys at La Celle Saint Cloud, France.

" 1.2 USE OF THIS VALIDATION SUMMARY REPORT
Consistent with the national laws of the originating country, the

AVO may make full and free public disclosure of this report. In the
- United States, this is provided in accordance with the "Freedom of

Information Act" (5 U.S.C. #552). The results of this validation
apply only to the computers, operating systems, and compiler
versions identified in this report.

The organizations represented on the signature page of this report
- - do not represent or warrant that all statements set forth in this

report are accurate and complete, or that the subject compiler has
no nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

- Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
USA-Washington DC 20301-3081

or from:

AFNOR
Tour Europe

cedex 7
F-92080 Paris la D~fense

S7

%

I',%w

INTRODUCTION

Questions regarding this report or the validation test resul's
should be directed to the AVF listed above or to:.9

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street

-' USA - Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-

STD-1815A, February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelin.s_ Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide
SofTech, Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of
Ada programs that tests the conformity of an Ada
compiler to the Ada programming language.

"

Ada Commentary An Ada Commentary contains all information relevant
to the point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983, and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting
compiler validations according to procedures

* contained in Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. In the context of
this report, the AVO is responsible for establishing
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

8

"6

- -- .- ;...

.•.

INTRODUCTION

Failed test An ACVC test for which the compiler generates a
Aresult that demonstrates nonconformity to the Ada

Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the
.' language that a compiler is not required to support

or may legitimately support in a way other than the
one expected by the test.

-. Language Maintenance Panel The Language Maintenance Panel (LMP)
is a committee established by the Ada Board to
recommend interpretations and possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the
, .expected result.

Target The computer for which a compiler generates code.

- Test An Ada program hat checks a compiler's conformity

* regarding a particular feature or combination of
je% features to the Ada Standard. In the context of this
, report, the term is used to designate a single test,

which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to
check conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal
or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, a d E tests

* are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link
errors.

Class A tests check that legal Ada programs can be successfully
* compiled and executed. However, no checks are performed during

execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at compile time and the program executes to

* produce a PASSED message.

9

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to verify
that every syntax or serantic error in the test is detected. A Class
B test is passed if every illegal construct that it contains is
detected by the compiler.

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation aiid execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of
units in a library--a compiler may refuse to compile a Class 1 test
and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded,
the test is classified as inapplicable. If a Class D test compiles
successfully, it is self-checking and produces a PASSED or FAILED

*" message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message,
or if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and not
allowed to execute. Class L tests are compiled separately and
execution is attempted. A Class L test passes if it is rejected at
link time--that is, an attempt to execute the main program must
generate an error message before any declarations in the main
program or any units referenced by the main program are elaborated.

* Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests
report PASSED, FAILED, or NOT APPLICABLE results. It also provides a
set of identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.

* The procedure CHECKFILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set or

executable tests. These tests produce messages that are examined to
* verify that the units are operating correctly. If these units are

not operating correctly, then the validation is not attemped.

01

10 %
"0"i

-4

INTRODUCTION

The text o' Lhe tests in the ACVC follow conventions that are
intended ensure that the tests are reasonably portable without
modifi-tion. For example, the tests make use of only the basic set
of 55 characters, contain lines with a maximum length of 72
characters, use small numeric values, and place features that may
not be supported by all implementations in separate tests. However,
some tests contain values that require the test to be customized
according to implementation-specific values --for example, an
illegal file name. A list of the values used for this validation are
listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the
pass criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to
an implementation is considered each time the implementation is
validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at
the time of validation are given in Appendix D.

LA1

?.

--

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested

under the following configuration:

Compiler: AlsyCOMP 002, Version 3.21

ACVC Version: 1.9

* Certificate Number: 880212A1.09028

Host Computer:

Machine: HP 900/350

Operating System: HP-UX
Version 6.01

Memory Size: 8 Mb

Target Computer:

Machine: HP 900/350

Operating System: HP-UX
Version 6.01

* Memory Size: 8 Mb

Communications Network: none

12

"-'."CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purpcses of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an implementation. The tests demonstrate
the following characteristics:

Capacities.

.y The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to
65 levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H (8 tests), D56001B,
D64005E..G (3 tests) and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This

implementation processes 64 bit integer calculations. (See
tests D4AO02A, D4AO02B, D4AO04A, and D4AOO4B).

Predefined types.

This implementation supports the additional predefined
~- -~types SHORT_INTEGER, LONG_INTEGER, and LONGFLOAT in the

'package STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with

a value exceeding SYSTEM.MAX INT during compilation, or it
may raise NUMERICERROR or CONSTRAINTERROR during

* execution. This implementation raises NUMERICERROR during
execution. (See test E24101A.)

Expression evaluation.

* Apparently no default initialization expressions for record
components are evaluated before any value is checked to
belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B).

o

"-'."13

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range.
(See test C35903A).

Apparently NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Apparently NUMERIC _ERROR is raised when a literal operand
in a fixed point comparison or membership test is outside
the range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests
C45524A..Z.)

Rounding

The method used for rounding to integer is apparently round
to even. (See tests C46012A..Z.)

The method used for rounding to longest integer is
apparently round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal
real expressions is apparently round to even. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises NUMERICERROR.
(See test C36003A).

* NUMERICERROR is raised when an array type with
INTEGERLAST + 2 components is declared. (See test
C36202A.)

NUMERICERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

Pragma pack is not supported. (See tests C52103X, C52104X
and C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an

14

0 " - ; . . " .- - ''"-'-" -' .' , / '-" "-" ' .,.- ' -3 ''

Kr' W.' "IL J, aflNW, f 1' a t - T -r vi LnVW vog

CONFIGURATION INFORMATION

implementation may accept the declaration. However, lengths
must match array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensional array types, the
expression does not appear to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's

-' subtype. (See test C52013A.)

.Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that
is used in an access type definition with a compatible

.4 discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the
expression appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the

- expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

-'. In the evaluation of a multi-dimensional aggregate, all
4'" choices appear to be evaluated before checking against the

index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

* All choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a nonnull range of a nonnull aggregate does
not belong to an index subtype. (See test E43211B.)

Representation clauses.
0

The Ada Standard does not require an implementation to
support representation clauses. If a representation clause
is not supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous
* values for enumeration types other than character and

15
0°-

-...................
o" %

CONFIGURATION INFORMATION

boolean types ae supported. (See tests C35502I..J,
C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous

values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types
containing representational values other than (FALSE =) 0,
TRUE => 1) are supported. (See tests C35508I. .J,
C35508M..N.)

Length clauses with SIZE specifications for enumeration

types are supported. (See test A39005B.)

Length clauses with STORAGESIZE specifications for access

types are supported. (See tests A39005C and C87B62B).

Length clauses with STORAGE SIZE specifications for task
A types are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported.

* (See tests A39005E and C87B62C.)

Record representation clauses with component clauses are
not supported. (See test A39005G.)

p ..

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

9' .. ~Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A,
EA3004C, EA3004D, CA3004E, and CA3004F.)

However the pragma INLINE is not supported for functions
when they are called inside a package specification (see

test EA3004D) or inside a task body (see test LA3004B).

Input/output.

The package SEQUENTIAL IO can be instantiated with
unconstrained array types and record types with

, discriminants without defaults. (See tests AE2101C,
EE2201D, and EE220IE.)

The package DIRECT_10 can be instantiated with
unconstrained array types and record types with

p-s discriminants without defaults. (See tests AE2101H, EE2401D
* and EE2401G.)

16

ju 'ar. e9 -9 %9

CONFIGURATION INFORMATION

Modes INFILE and OUT FILE are supported for SEQUENTIALIO.
(See tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and
* DIRECTIO. (See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL 10 and DIRECT_IO. (See tests CE2106A and
CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can
be created in OUTFILE mode, and can be created in INRILE
mode. (See test EE3102C.)

More than one internal file can be associated with each
external file for text I/O for both reading and writing.

* (See tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each
external file for sequential I/O for both reading and
writing. (See tests CE2107A..D (4 tests) and CE2111D.)

More than one internal file can be associated with each
external file for direct I/O for both reading and writing
(See tests CE2107E..I (5 tests) and CE2111H.)

An external file associated with more than one internal
file can be deleted for SEQUENTIAL_IO, DIRECTIO, and
TEXT_10. (See test CE211OB.)

Temporary sequential files are given names. Temporary
direct files are given names. Temporary files given names
are deleted when they are closed. (See tests CE2108A and
CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1O12A and CA2009F.)

0
7 Generic package declarations and bodies can be compiled in

separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
* separate compilations. (See test CA3O11A.)

1

TEST INFORMATION

CHAPTER 3

gTEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests
of which 25 had been withdrawn. Of the remaining tests, 221 were
determined to be inapplicable to this implementation. Not all of the
inapplicable tests were processed during testing; 201 executable
tests that use floating-point precision exceeding that supported by
the implementation were not processed. Modifications to the code,
processing, or grading for 31 tests were required to successfully

* demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

J.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 109 1049 1641 17 15 45 2876

Failed 0 0 0 0 0 0 0

* Inapplicable 1 2 214 0 3 1 221

Withdrawn 3 2 *19 0 1 0 25

TOTAL 113 1053 1874 17 19 46 3122

18

6iio . ,. . , ..'.... . , . t n ° - . . o . , , -- - -.

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 500 550 248 166 98 140 327 134 36 234 3 250 2876

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 125 0 0 0 3 0 3 0 0 0 3 :21

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A C35A03E
C35A03R C37213H C37313J C37215C C37215E C37215G C37215H
C38102C C41402A C45614C A74106C C85018B C87B04B CC1331B
BC3105A AD1A01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A

* test that is inapplicable for one validation attempt is not
necessarily inapplicalbe for a subsequent attempt. For this
validation attempt, 221 tests were inapplicable for the reasons
indicated:

- C35702A uses SHORT FLOAT which is not supported by this
* implementation.

- A39005G uses a record representation clause which is not
- supported by this compiler.

- C45231D and B86001D requires a macro substitution for any
*i predefined numeric type other than INTEGER, SHORT_INTEGER,

19

0

TEST INFORMATION

LONG_INTEGER, FLOAT, SHORTFLOAT and LONGFLOAT. This
compiler does not support any such type.

9. -C45531M, C45531N, C45532M, and C45532N use fine 48 bit
fixed point base types which are not supported by this
compiler.

- C455310, C45531P, C455320, and C45532P use coarse 48 bit
fixed point base types which are not supported by this
compiler.

- C86001F redefires package SYSTEM, but TEXT 10 is made
obsolete by this new definition in this implementation and
the test cannot be executed since the package REPORT is
dependent on the package TEXTIO.

C87B62B applies the attribute 'STORAGE SIZE to an access
type for which no STORAGESIZE length clause is given. In
this case, STORAGEERROR is raised; the AVO ruled that
this behavior is acceptable, since the interpretation of
what value the attribute should return where no length
clause is given is under review.

r
".BA2001E requires that duplicate names of subunits with a

common ancestor be detected and rejected at compile time.
This implementation detects the error at link time, and
the AVO ruled that this behavior is acceptable.

- EA3004D and LA3004B require that errors be detected if
pragma INLINE is supported for functions. But because this
pragma has no effect when a function is called inside of a
package specification or inside a task body, one of the
intended errors is not detected. The AVO ruled that this
is acceptable.

EE2401D and EE2401G are inapplicable because USEERROR is
.. raised when the CREATE of an instantiation of DIRECT_10

with unconstrained array type is called.

-- CE3202A requires the association of a name with the
* standard output file. This is not supported by the

implementation and USE ERROR is raised during execution.
This behavior is accepted by the AVO pending a ruling by
the language maintenance body.

- The following 201 tests require a floating-point accuracy
* that exceeds the maximum of 15 digits supported by this
4 implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

A C35708L..Y (14 tests) C35802L..Z (15 tests)
_ C45241L..Y (14 tests) C45321L..Y (14 tests)

C45421L..Y (14 tests) C45521L..Z (15 tests)

20

P X

d TEST INFORMATION

0

C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L. .Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made with the approval of
the AVO, and are made in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise)
applicable test.

Examples of such modifications include: adding a length clause to

alter the default size of a collection; splitting a Class B test
into sub-tests so that all errors are detected; ard confirming that
messages produced by an executable test demonstrate conforming
behavior that wasn't anticipated by the test (such as raising one
exception instead of another).

-" Modifications were required for 31 tests.

The following 22 Class B tests were split because errors at one
point resulted in the compiler not detecting other errors in the
test:

B24007A B24009A B25002A B26005A B27005A B32202A B32202B
B32202C B33001A B36307A B37004A B74401F B74401R B61012A
B62001B B91004A B95004A B95032A B95069A B95069B BA1101B2
BA1l01B4

The 2 tests AE21O1A and AE2101F required a change in the compiler
options (GENERIC=STUBS instead of GENERIC=INLINE) because of a
compiler limitation (message says : "Internal table overflows
compiler limitation").

For the following tests, modification of the pass/fail criteria was
needed. The AVO ruled that they are passed for the reason indicated:

* -C34007A,D,G,M,P and S (6 tests) include a check that the
.. STORAGESIZE attribute returns a value greater than 1 when

applied to an access type for which no STORAGESIZE length
clause has been provided; this implementation fails this
check. However, the Ada Standard does not support the
tests on this point, and the issue is under review. All

* other checks made by these tests were passed as expected.

-"C4AOI2B checks that 0.0 raised to a negative value raises
CONSTRAINTERROR. However NUMERICERROR is also an
acceptable exception to be raised. This implementation
raises NUMERICERROR.

21

0

=.. ,

-1

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

• .3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9
produced by AIsyCOMP 002, was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited
the expected behavior on all inapplicable tests.

%3.7.2 Test Method40

Testing of the AlsyCOMP 002 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration
consisted of a HP 9000/350 operating under HP-UX, Version 6.01.

The contents of the tape were not loaded directly onto the host
computer. They were loaded on a VAX machine and transferred via a
network to the HP 9000/350. This is the reason why prevalidation
tests were used for the validation. Those tests were loaded by Alsys
fiom a magnetic tape containing all tests provided by the AVF.

[0 Customization was done by Alsys. All the tests were checked at
prevalidation time.

Integrity of the validation tests was made by checking that no
modification of the tests occured after the time the prevalidation
results were transferred to a VAX for submission to the AVF on a
magnetic tape. This check was performed by verifying that the date
of creation (or last modification) of the test files was earlier
than the prevalidation date. After validation was performed, 50
tests were selected by the AVF and checked for integrity.

One single HP 9000/350 was used for on-site testirg. The full set of
tests was compiled, linked and (as appropriate) run on the HP
9000/350. Analysis was done by comparison with the prevalidation
results. Results were printed from the host computer.

The compiler was tested using command scripts provided by ALSYS and
reviewed by the validation team. The compiler was tested using all

* default switch / option settings except for the following:

'

22

% 0

r YIA

TEST INFORMATION

Option! Switch Effect

REDUCTION=PARTIAL Some High Level optimization performed

OBJECT=PEEPHOLE Low Level optimization are performed

CALLS=INLINED The pragma INLINE are taken into account

*GENERIC=STUBS Code of generic instantiation is placed in
separate units (for tests AE21O1A and AE2101F
only)

. *GENERIC=INLINE Code of generic instantiation is placed
inline in the same unit (for tests other than
AE2101A and AE21O1F).

* The option GENERIC=INLINE has been used for all tests, except for
AE2101A and AE2101F because of a compiler capacity limitation (see
3.6). All tests could have been compiled with the option
GENERIC=STUBS but GENERIC=INLINE was chosen as it increases the speed
of compilation.

Tests were compiled, linked, and executed (as approriate) using aIsingle host computer. Test outputs, compilation listings, and job

logs were captured on cartridge and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at La Celle Saint Cloud, France and
departed after testing was completed on 22 February, 1988.

.23

- % % % %

J4I'J

I1

'CONFORMANCE STATEMENT

APPENDIX A

CONFORMANCE STATEMENT

ALSYS has submitted the following conformance statement concerning
the AlsyCOMP_002.

S2

.1'%

CONFORMANCE STATEMENT

r0

DECLARATION OF CONFORMANCE

Compiler Implementor: ALSYS

Ada* Validation Facility:
AFNOR, Tour Europe, Cedex 7, F-92080 Paris la Defense

Ada Compiler Validation Capability (ACVC) Version: 1.9

%.

Base Configuration

Base Compiler Name: AlsyCOMP_002, Version: Version 3.21

J' Host Architecture ISA: HP 9000/350

OS&VER #: HP-UX, Version 6.01

Target Architecture ISA: HP 9000/350

OS&VER #: HP-UX, Version 6.01

a'%

40

*Ada is a registred trademark of the United States Government (Ada

Joint Program Office).
25

CONFORMANCE STATEMENT

Implementor's declaration

I, the undersigned, representing ALSYS, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler listed in this declaration. I declare that ALSYS is
the owner of record of the Ada language compiler(s) listed above and,
as such, is responsible for maintaining said compilers(s) in
conformance to ANSI-MIL-STD-1815A. All certificates and registrations
for Ada language compiler listed in this declaration shall be made
only in the owner's corporate name.

ALSYS ~Date:1f &ij1r,'. ALSYS

Etienne Morel, Managing Director

1%

*Ada is a registred trademark of the United States Government (Ada
Joint Program Office).

26

S

.

.' o n r g a Office. . . . - .--- ~-. .~
.26~*.*

CONFORMANCE STATEMENT

Owner's Declaration

I, the undersigned, representing ALSYS, take full responsability for
implementation and maintenance of the Ada* compiler listed above, arnd
agree to the public disclosure of the final Validation Summary

Report. I further agree to continue to comply with the Ada trademark

policy, as defined by the Ada Joint Program Office. I declare that

all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

_________ Date ?V

: ALSYS
Etienne Morel, Managing Director

0

*Ada is a registred trademark of the United States Government (Ada
Joint Program Office).

-.- 27

I.-:,--.....
..

APPENDIX F OF THE Ada STANDARD

APPENDIX B

, APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_002, Version
3.21, are described in the following sections which discuss topics in
Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-1815A).
Implementation-specific portions of the package STANDARD are also
included in this appendix.

0 package STANDARD is

type INTEGER is range -32768 32767;

type SHORT_INTEGER is range -128 .. 127;
type LONGINTEGER is range -2**31 .. 2**31-1;

type FLOAT is digits 6 range
-(2.0-2.0**(-23)) * 2.0**127 .. +(2.0-2.0**(-23)) * 2.0**127;

type LONG FLOAT is digits 15 range
-" (2.0-2.0**(-51)) * 2.0**1023 .. +(2.0-2.0**(-51)) * 2.0**1023;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;
* -- DURATION'SMALL = 2.0**(-14).

end STANDARD

S-

*Ada is a registred trademark of the United States Government (Ada

Joint Program Office).
28

[•
_"

APPENDIX F OF THE Ada STANDARD

F.1 IMPLEMENTATION-DEPENDENT PRAGMAS

Interfacing the language Ada with Other Languages

2k Programs .4ritten in Ada can interface with c'ternal subprograms written

in another language, by use of the INTERFACE pragma. The format of the
pragma is

pragma INTERFACE (lang'age -name , Ada__subprogra'm name)

where the language name can be any of ASSEMBLER, C, FORTRAN,
PASCAL

To allow the use of non Ada naming conventions, such as special character,
or case sensitivity, an implementation dependent pragma
INTERFACE NAME has been introduced:

* pragma INTERFACENAME (Adasubprogram_name. namestring)

. The pragma INTERFACE NAME may be used anywhere in an Ada
program where INTERFACE is allowed (see [13.9)). INTERFACENAME
must occur after the corresponding pragma INTERFACE and within the
same declarative part

Conditional Compilation

Conditional compilation uses four pragmas. Statements and declarations
which must only be compiled when a certain condition is satisfied are
bracketed by a pragma BEGIN __COMPILE and a pragma END _COMPILE.
These two pragmas take exactly one argument which is the name of the
corresponding condition. This nare can be any Ada identifier other than a
rcserved word.

.. , Whcn the statements or th, Aeciarations are to be compiled, the condition
must be satisfied. It is then said to be active; otherwise inactive.

The pragma NOW COMPILE activates a set of conditions. It takes a list of
arguments which is the list of the conditions to activate. Any other
condition is deactivated.

The pragma STOP COMPILE deactivates every active condition and takes
no argument.

Regardless of the set of active conditions, the Ada code placed between a
pragma BEGIN COMPILE and a pragma END COMPILE is always
analyzed at a syntactic level by the compiler.

J

6.%290i

APPENDIX F OF THE Ada STANDARD

Pragma Indent

This pragma is only used Aith the Alsys Reforma'ter; this tool offcrs the
functicnalities of a pretty-,nrintcr in an Ada environment.

N The pragma is placed in the source file and interpreted by te Reformatter

pragma INDENT(OFF):

The Re fo ..' :!r does not macdif',' the source lincs after the pragma.

pragma INDENT(ON);

The Reformatter resumes its action after the pragma.

Pragmas not implemented

The following pragmas are not implemented:
CONTROLLED

MEMORY SIZE
OPTIMIZE
PA C K
SHARED
STORAGEUNIT
SYSTEMNAME

F.2 IMPLEMENTATION-DEPENDENT ATTRIBUTES

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have
meaningful addresses. The following entities do not have meaningful
addresses and will therefore cause a compilation error if used as prefix to
ADDRESS:

(i) A constant that is implemented as an immediate value i.e., does
not have any space allocated for it.

(ii) A package specification that is not a library unit.
(iii) A package body that is not a library unit or a subunit.

There are four implementation-dependent attributes:

* T'RECORD_SIZE For a prefix T that denotes a record type. This
attribute refers to the record component introduced by the

compiler in a record to store the size of the record object.This
component exists for objects of a record type with defaulted

,V discriminants when the sizes of the record objects depend on the
values of the discriminants.

30

0 %

APPENDIX F OF THE Ada STANDARD

T'VARIANT INDEX For a prefix T that denotes a record type. This
attribute refers to the record component introduced by the
compiler in a record to assist in the efficient implcmentation of

discriminant checks.This component exists for objects of a

record typc with variant part.

C'ARRAY __DESCRIPTOR For a prefix C that denotes a rccord
component of array type whose component subtype definition
depends on discriminants.This attribute refers to the record

4 component introdiced by the compiler in a record to store
information on subtypes of components which depend on

discriminants.

C'RECORDDESCRIPTOR For a prefix C that denotes a record
component of record type whose component subtype definition
depends on discriminants. This attribute refers to the record
component introduced by the compiler in a record to store

,, information on subtypes of components which depend on
discriminants.

F.3 THE PACKAGE SYSTEM

package SYSTEM is

Standard Ada definitions

type NAME is (UNIX
SYSTEM NAME " constant NAfE := UNIX
STORAGE UNIT constant 8;
MEMORY SIZE • constant := 2*32

1 MIN INT • constant :=-(2"'31)
MAX INT " constant 24*31-1
MAX DIGITS constant 15
MAX MANTISSA constant 31
FINE DELTA " constant := 2.0>lOe-31
TICK • constant 1.0

0J

type ADDRESS is private
NULLADDRESS : constant ADDRESS;

subtype PRIORITY is INTEGER range 1..127

-- Address arithmetic

Sfunction TO_ LONG INTEGER (LEFT : ADDRESS)
' return LONG INTEGER ,
' function TOADDRESS (LEFT : LONG INTEGER)

return ADDRESS

31

-ww
-- % %

Le , * " " . .'. - "

APPENDIX F OF THE Ada STANDARD

+q

function "-" ',LEFT LONG INTEGER RIGHT ADDRESS)

return ADDRESS
function "." (LEFT : ADDRESS RIGHT " LONGINTEGER)

return ADDRESS ;

function "-" (LEFT ADDRESS • RIGHT ADDRESS)

return LONG INTEGER,
function "-" (LEFT ADDRESS ; RIGHT: LONGINTEGER)

return ADDRESS

function "mod" (LEFT ADDRESS ; RIGHT : POSITIVE)
return NATURAL"

function "<" (LEFT : ADDRESS RIGHT ADDRESS)
return BOOLEAN"

function "<=' (LEFT: ADDRESS RIGHT ADDRESS)

return BOOLEAN :.
functior ">" (LEFT : ADDRESS RIGHT: ADDRESS)

return BOOLEAN"
function ">=" (LEFT : ADDRESS RIGHT ADDRESS)

return BOOLEAN ;
function IS NULL (LEFT ADDRESS) return BOOLEAN

% function WORD ALIGNED (LEFT: ADDRESS) return BOOLEAN

function ROUND (LEFT : ADDRESS) return ADDRESS ;

-- Return the given address rounded to the next lower even

procedure COPY (FROM: ADDRESS ; TO " ADDRESS
. SIZE : NATURAL)

-- Copy SIZE storage units. The result is undefined if the two
areas overlap.

"' -- Direct memory access

generic

tpe ELEMENT TYPE is private
* function FETCH (FROM: ADDRESS) return ELEMENT TYPE

-- Return the bit pattern stored at address FROM, as a value of the

-- specified ELEMENT TYPE. This function is not implemented
-- for unconstrained array types.

generic
* type ELEMENT TYPE is private

procedure STORE (INTO : ADDRESS ; OBJECT : ELEMENT TYPE);

. -- Store the bit pattern representing the value of OBJECT, at
-- address INTO. This function is not implemented for

-- unconstrained array types.
private
-- private part of the compiler

end SYSTEM

33

0 '¢ e> " , ,?.: "'., ,.2'' . "o;,..,...,. , ', " .,. ,,,.-,. : .' "" " ', '.C3',,>.,xvk.,,,% , ,,

APPENDIX F OF THE Ada STANDARD

F.4 RESTRICTIONS ON REPRESENTATiON CLAUSES

T-e faci!',tics co\ crcid in [13] are pro,',ded, except for the following
. leatures;

,hre is no it con for any of the representation
,' Clauses.

* Address clauses are not implemented.
Change of rcpresentation for RECORD type is not implemented.
Machine code insertions are not implemented.
For the length clrause:

Size specification: T'SIZE is not implemented
for types declared in a generic unit.
Specification of storage for a task activation:
T'STORAGE SIZE is not implemented when T
is a task.
Specification of sniall for a fixed point type:
T'SNIALL is restricted to a power of 2, and the
absolute value of the exponent must be less than

31.
* The enumeration clause is not allowed if there is a range

constraint on the parent subtype.
* The record clause is not allowed for a derived record type.

F.5 IMPLEMENTATION-GENERATED NAMES

There are four implementation-generated names:

RECORDSIZE This is an implementation-specific record

component. The component is introduced by the compiler in a
a- record to store the size of the record object.

VARIANT INDEX This is an implementation-specific record
component. The component is introduced by the compiler in a
rec-ord to assist in the efficient implementation of discriminant
checks.

* ARRAYDESCRIPTOR and RECORDDESCRIPTOR Array and
record descriptors are internal components which are used by
the compiler to store information on subtypes of record
components which depend upon discriminants.

a-." Array descriptors are used for record components of array types,
whereas record descriptors are used for record components of

• record typcs.

K F.6 ADDRESS CLAUSES

,Address clauses (13.51 are not implemented in this version of Alsys Ada.

32

- " -" I. .- ,.".
*~~~~~~~~~

N.-** ~ a. ~ ~ ~ .a A-~Y.

0 -1-1 '-~--W MIX 'W _W WVu~'W~~V . ,F- E. * .. ~~-LW' ~ .~

APPENDIX F OF THE Ada STANDARD

S

F.7 UNCHECKED CONVERSIONS

Unconstrained array are not allowcd as target types.Unconstrained reccord
t\pcs without defaulted discriminants are not allowed as target types. If the
source and the target types arc each scalar or access,the sizes of the objects
of the source and target types must be equal. If a composite type is uscd
either as source type or as target type this restriction on the size does not
ap ply. If the source and the target typcs arc both of scalar or access types
or if they,' are each of composite typesthc effect of the function is to
return the operand. In othcr cases the effect of unchecked convcrsion can
be considered as a copy:

-- if an unchecked conversion is achieved of a scalar or access source
type to a composite target type, the result of the function is a
copy of the source operand: the result has the size of the source.

-- if an unchecked conversion is achieved of a composite source type to
a scalar or access target type, the result of the function is a copy
of the source operand: the result has the size of the target.

'.

F.8 INPUT-OUTPUT CHARACTERISTICS

The FORM parameter to both the CREATE and OPEN procedures in Ada
specifies the characteristics of the external file involved.

-he FORM parameter is a string, fc, d from a list of attributes, with
attributes separated by commas (,). The string is not case sensitive (so that,
for example, HERE and here are treated alike). The attributes specify: File
protection, File sharing, Record size, Record unit, Buffering, Appending,
Blocking, Terminal input

The general form of any attribute is a keyword followed by => and then
a qualifier. The qualifier may sometimes be omitted. The format for an
attribute specifier is thus either of

'-5 KEYWORD

KEYWORD => QUALIFIER(S)

3

'S.-

5/; 34

0

.TEST PARAMETERS

p.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid file
names. A test that makes use of such values is identified by the
extension .TST in its file name. Actual values to be substituted are
represented by names that begin with a dollar sign. A value must be
substituted for each of these names before the test is run. The
values used for this validation are given below.

Name and Meaning Value

$BIG IDI 'X234567890' & (24 * '1234567890')
-- Identifier the size of the & '12341'

maximum input line length
with varying last character.

$BIGID2 'X234567890' & (24 * '1234567890')
Identifier the size of the & '12342'

-maximum input line length
with varying last character.

$BIG_ID3 'X234567890' & (11 * '1234567890')
Identifier the size of the & '12345xx3xx12345'
maximum input line length & (12 * '1234567890')
with varying middle
character.

$BIG_ID4 'X234567890' & (11 * '1234567890')
Identifier the size of the & '12345xx4xx12345'
maximum input line length & (12 * '1234567890')
with varying middle
character.

$BIGINTLIT (252 * '0') & '298'
An integer literal of value
298 with enough leading
zeroes so that it is the
size of the maximum line
length.

35

-Z:

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the
size of the maximum line
length.

$PIGSTRINGI 'X234567890' & (11 * '1234567890')
A string literal which
when catenated with
BIG STRING2 yields the
image of BIGIDI.

SBIG_STRING2 (13 * '1234567890') &'12341'
A string literal which
when caLenated with the
end of BIGSTRING1 yields
the image of BIG IDl.

$BLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

- $COUNTLAST 2_147_483_647

A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELDLAST 255
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHAR -/
An external file name that
either contains invalid
characters or is too long.

$FILE NAMEWITHWILDCARDCHAR /*/*
An external file name that
either contains a wild
card character or is too

* long.

$GREATERTHANDURATION 100_000.0

'- A universal real literal
that lies between

DURATION'BASE'LAST and
* DURATION'LAST or any value

in the range of DURATION.

36
0R

TEST PARAMETERS

Name and Meaning Value

$GREA -THAN _DURAYIONbASELAST 100_000_006.0
A universal real literal

* that is greater than
DURATION' BASE'LAST.

$ILLEGALEXTERNALFILENAMEI /-/*/fl
An external file name which
contains invalid
characters.

$ILLEGALEXTERNALFILENAME2 /*/-/f2
An external file name
which is too long (or
illegal).

$INTEGERFIRST -32768

S. A universal integer
literal whose value is
INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer
literal whose value is
INTEGER'LAST.

$INTEGERLASTPLUS_1 32768
A universal integer

literal whose value is
-/ INTEGER'LAST + 1.

SLESS_THANDURATION -100_000.0
A universal real literal
that lies between
DURATION'BASE'FIRST and
DURATION'FIRST or any
value in the range of
DURATION.

$LESSTHANDURATIONBASEFIRST -100_000_000.0
A universal real literal
that is less than
DURATION'BASE'FIRST.

SMAXDIGITS 15

Maximum digits supported
for floating-point types.

SMAXINLEN 255
Maximum input line length

• permitted by ther implementation.

0

-MOO

TEST PARAMETERS

Name and Meaning Value

$MAXINT 2_147_483_647
A universal integer
literal whose value is
SYSTEM.MAXINT.

$MAXINTPLUS_1 2_147_483_648
A universal integer
literal whose value is

SYSTEM.MAXINT + 1.

SMAXLENINT BASEDLITERAL '2#' & (250 * '0') & '11#'
.A universal integer whose
,S value is 2#11# with enough

leading zeroes in the
mantissa to be MAXINLEN
long.

-. SMAX_LENREALBASEDLITERAL '16:' & (248 * '0') & 'F.E:'

A universal real based
literal whose value is

.- 16:F.E: with enough
leading zeroes in the
mantissa to be MAXINLEN
long.

SMAXSTRINGLITERAL (25 * '1234567890') & '123'
A string literal of size
MAX IN LEN, including the
quote characters.

$MIN_INT -2147_483_648
A universal integer
literal whose value is
SYSTEM.MININT.

$NAME NOSUCHTYPE
A name of a predefined

* numeric type other than
FLOAT, INTEGER, SHORT_FLOAT,
SHORTINTEGER, LONGFLOAT,
or LONGINTEGER.

$NEG_BASEDINT 16#FFFFFFFE#
0 A based integer literal

whose highest order
nonzero bit falls in the
sign bit position of the
representation for
SYSTEM.MAXINT.

38

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform
to the ADA Standard. The following 25 tests had been withdrawn at
the time of validation testing for the reasons indicated. A
reference of the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

* E28005C: This test requires that 'PRAGMA LIST (ON);' not appear
in a listing that has been suspended by a previous
"pragma LIST (OFF);"; the Ada Standard is not clear
on this point, and the matter will be reviewed by the
ALMP.

C34004A: The expression in line 168 wrongly yields a value
outside of the range of the target type T, raising
CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

C35902C: Line 17's assignment of the nominal upper bound of a
fixed- point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the
actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINT __ERROR, because its upper bound
exceeds that of the type.

C35A03E & R: These tests assume that attribute 'MANTISSA returns 0
when applied to a fixed-point type with a null range,
but the Ada Standard doesn't support this assumption.

C37213H: The subtype decl'-ation of SCONS in line 100 is wrongly
expected to rais; an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises
CONSTRAINTERROR.

39

%

WITHDRAWN TESTS

C37215C, E, G, H: Various discriminant constraints are wrongly
expected to be incompatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an

access type.

- C45614C: REPORT.INDENTINT has an argument of the wrong type

(LONG_INTEGER).

. A74106C, C85018B, C87BO4B, CCl311B: A bound specified in a
fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur re lines 37 & 59, 142 & 143,
16 & 48, and 252 & 253 of the four tests, respectively
(and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be incorrect;
they are correct.

[ADIA01A: The declaration of subtype INT3 raises CONSTRAINTERROR
. for implementations that select INT'SIZE to be 16 or

greater.

CE2401H: The record aggregates in lines 105 & 117 contain the
wrong values.

CE3208A: This test expects thar an attempt to open the default
output file (after it was closed) with mode INFILE
raises NAME ERROR or USEERROR; by Commentary AI-00048.
MODEERROR should be raised.

F 40

0.

