i "0’."'\\»'\'!:“‘:‘0'0:“lf"a“l'n“i'a‘l'-‘lh"b'l'lh"l.&'il-'l'.‘ A L A LAGIINT U A T RGN K m TN (R o B It $a%.9, S g0 “9.9'g.9
. A " _ . * o - - - . h - - N ®
» 0‘ J "'

ane FLE W | Y

NPS52-88-028 &$§$?$~

| NAVAL POSTGRADUATE SCHOOL

Monterey, California N

AD-A199 563

» DT‘C . R

DISTRIBUTED COMPUTER COMMUNICATIONS ’ A)
IN SUPPORT OF hghnhs
REAL-TIME VISUAL SIMULATIONS g:} 2

Theodore H. Barrow HﬂﬁvJ
John M. Yurchak $:§\r:

Michael J. Zyda E A4

September 1988
pte X Mo

Approved for public release; distribution is unlimited.
Prepared for:

Naval Postgraduate School
Monterey, CA 93943

88 10 18 158 >

L2 TR MY TN (™ 0 AP0 G 3 BN LN e AT R e BN SO O Y ¥ O
e R R R e e R e e R e S A M ST b A AN B M RN AT BRI N O R RN

RN N A MU R RN U NN M LY MU N S N N Y UMY RN PN Magte. I." Wl W W N M N4 X A N 0 ats U q““"l '.I"

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Ocean
Systems Center and the Naval Underwater Systems Center and funded by the Naval
Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Gt M TR R P e

MICHAEL J. ZYDA_
Associate Professor
of Computer Science

Reviewed by: Released by:

PRI/

ROBERT B. MCGHEE KNEALE T.
Chairman Dean of Information an
Department of Computer Science Policy Science

L a O .28 ¢ ' <
% 0 S S LA R

?

e e Ty -

- oo

D R i i Y G

-

Tt a R Kl @ LA R

T

)

RO », O Wy WY w0 W ¢ b S ? o
l-l:.....l Y8 ,:'\',:'l‘n l‘.t.‘_n.!.!' ‘ ‘l -"‘-‘!‘:‘l .’! L Ah » 'l.' ..*!'I'!'.‘,.l) \ A PR, \. . ‘ A) M ' LI e T 1 F“ \

J ot n et gfl gd]

UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAGE

< R A ada b €2%a1%atats¥a 00" 0a" v Lav fa" . 4, WM UWUW WL W P . ‘et

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution is uniimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS52-88-028

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(If applicable)

Naval Postgraduate School 59

7a. NAME OF MONITORING ORGANIZATION
1) Naval Ocean Systems Center
2) Naval Underwater Systems Center

6¢. ADDRESS (City, State, and Z2IP Code)
Monterey, CA 93943

7b ADORESS (City, State, and ZIP Code)
1) San Diego, CA 92152

2) Newport, RI 02841

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

Naval Postgraduate School

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
0&MN, Direct Funding

8c. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

-
-

11 TITLE (Include Security Classification)

7

DISTRIBUTED COMPUTER COMMUNICATIONS IN SUPI?KT OF REAL-TIME VISUAL SIMULATIONS (U)

12. PERSONAL AUTHOR(S
éARR&?I Theodoéé H., YURCHAK, John M., a?/d ZYDA, Michael J.

13a. ngﬁugglfggpom 13:; TIME %?VERED 58/09 14. DATE QF RgZORT (Year, Month, Day) |15 PAGElggUNT
oM 10 ’ p
16. SUPPLEMENTARY NOTATION /
17 COSAT! CODES 18 SUBWERMS (Continue on reverse if necessary and identify by block number)
FIELD y | GROUP SUB-GROUP distributed systems, visual simulation, workstations;
: Theaco . rars &

19. ABSTRACT‘C'minue on reverse if necessary and identify by block number)

Complex visual simulations can strain the capability of a single workstation. A mix of different
workstations is often more economical than the use of a large processor for such simulations.
Methods of communicating between such workstations are needed that allow the developer to

spend effort on the simulation and not on communications.

Simple protocols are developed to

support both broadcast and direct-connect communications between workstations using TCP/IP
on an Ethernet network. Comparisons are made between broadcast and direct connect protocols. __/

20 DISTRIBUTION / AVAILABILITY Gt Awn3.RACT
& uncLassIFIEDUNLIMITED 3 SAME AS RPT

[bTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code)
(408)646—;305

22¢ OFFICE SYMBOL

LYYA

DD FORM 1473, s8a mar

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

o U.S. Government Printing Office: 1986—606-243

UNCLASSIFIED

-{I.D)P -

- -(“,‘

T T W VL A M T K R R T T RO R N A LSS VUGTRARAN 104 "¢ N at e bt v di e)i eda b 88300 Val mab ol oty ate: vp 80 0n 8 2 458 2.~

« S Distributed Computer Communications

, in Support of
P Real-Time Visual Simulations

i

W

::" Theodore H. Barrow, John M. Yurchak and Michael J. Zyda *

™ Naval Postgraduate School

. Code 52, Dept. of Computer Science,

K Monterey, California 93943-5100

b

!.-‘|'

o0 ABSTRACT

%_
[Complex visual simulations can strain the capability of a single
e workstation. A mix of different workstations is often more economical
N than the use of a large processor for such simulations. Methods of
K7 communicating between such workstations are needed that allow the

developer to spend effort on the simulation and not on communications.

3;:; Simple protocols are developed to support both broadcast and direct-
"y connect communications between workstations using TCP/IP on an
:o:: Ethernet network. Comparisons are made between broadcast and
;}' direct connect protocols.
- _Aacession For
N, NTIS GRARI

- DTIC TAB
‘:: Unannounced 0
N Justifiocation __
o
@ By

:i" | Distributioen/
::" Availability Codes
j:; L ‘Avail and/or
;‘. . Dist Special
@
F
¥ -

t". - A__/
",‘o" * Contact author.
Al

o : ** This work was supported by the Naval Ocean Systems Center, San Diego, the

Naval Underwater Systems Center, Newport and the Naval Postgraduate School's

Direct Funding Program.

I

N

0000 ' M) R,
DO O W M ORI DU S e

PR OO IR F IR BN 1Y 3 19
LA MR Y e L T (e M R

S e LG S it

(PP RPN T,
I 2 Y

Y

e e wa o

o o R

. # e~

’.l' |0 5.'1 o

'\\"n

« o e ea o, o) R T T T R o TWITY = O
TABLE OF CONTENTS

I, INTRODUCTIONcccccticriimrueciemreccsnecsessstarssessssesssessssasasossssnnsersesssessnessssessasesseos 1

A, PROBLEMccoiitiiniiiictnsinesnecsnensstsrssanessassssesssstassssssessesassosassstsesssans 1

L. APProach ... e s 1

2. Design Criteriacviiriiinniiiniininnninieniniissiason. 2

B. BACKGROUNDccoiueeitierressernirarenstsssssssssasseossnsssssossssssssessussssresssssaessassneas 3

1. Visual Simulation ...t 3

a. Vision and Information Presentationccccuceercernccrinenenann. 3

b, DEfINItIONccccoveirirrerreenininensneinnrscsestssesessenseneesessssessaesaes 4

€. Examples ...t s 4

2. Computer System ArchitecCturecovevurvivvucsuvrivvesussimrucsrissisenns 5

3. ComMUNICALIONcccovviierinrririristienrisesnssesesesaesestestonsssesnessseseonees 6

C. ORGANIZATION ...coouviirrcereeeresertnesessssssostssseesosessesssssssassesossassassassesssssssssens 7

II. EXISTING SYSTEMccccirvuirireeniesinernrensresssessreesssosssesssesssnasssssstenssasssssensessassnens 8

A. INTRODUCTIONcccveiiiiiveercrsreneissrnnesessssnesessivassesasensesssssntessesassnssssnnsessssnns 8

B. HARDWAREcoviititiiiirentitiinsssnes e sstssesssstsssssnssssansssssssssssssarasssns 8

Lo NEIWOTK oottt strnesn s e ssnsen et snesn et essassssnesans 8

2. WOIKSEAHONScceccenneriireninriiernncrenisnsiistssessssessosesssoneensensosessssessensases 10

a. Silicon Graphics, INC. IRISc.coccetriniiinnincnininennneenssseseesens 10

Do ISTAT ittt st se s ae e s e s st saae e senesesraesaeneans 10

C. SUN-3/S0 oottt ses e e st e ae e sr e e et 11

d. Symbolics 36XXccovevueiiiniiiiitiricinren st sensene 11

e. Texas Instruments EXplOrerccccovvviieiviniivnniinnnnnnenennenns 12

3. Digital Equipment Corporation VAX 11/785cccovvvevinrervnricrcnnnn. 12

4. ISIV MINICOMPULETScocvvrvirrieriiriniineseessennseeseoresseesssensesesssesssssessaes 13

€. SOFTWAREcoototririenrreseesesessnessessesessesssesstssssssssssssessasssssesessssssssasssone 14

1. UNIX MaChINEScccoemmienrreinriniinsintensennesneiaseeessssaniecsessessessessensens 14

B A3BSD .. ettt snebn 14

D, SYSteM V ..ottt sa s 14

2. LispMachines ... 14

8. GENEIA ..ottt e e s 14

b, EBXPIOTEI ..ottt et 14

D, SUMMARY ..ottt ettt saae st et saas e sr e b ssesaassnane 15

III. PROTOCOLSccooviiiitieennistenieneisincaseesanaeesessaestessnssesonsessassessesssasessassesssesessanaes 16

A. INTRODUCTION .ouoiiiiiiriicienineeiesinsessesesseesrasssasssessessssessseesresssesssesssses snes 16

B. DIRECT CONNECTIONc.coocuinimriiniiciiinientirisieneeteneseserstnsessssnsssseesessessans 16

1. High-Level Protocolcccoiiininiiinnciiinctennrernenseesnnennes 16

e Wiq_ E¥n

"‘J"’" A .
A,ll, s WOy > 195 0%

iv

"\\{[v e e % NG e T) - %
< W00, AN A AU 0 v,

>R

S
O X) (ORI e

L
W,

.

-

~

(e

L L@ L

“ Jrrole

L
M X X e N

2. Supporting Protocolscocueviiniiriiiiinininiiiiiiniiensnenens 18

‘ 7 €. BROADCAST ..ocormmmmeneurmesssensansesessssesssssesnmascestassssssssssessesesssssssssmnsssesses 19
i L. HIigh-Level PROtOCOL ocevreeremrreerscnsrsesessssssssessssessssssssesessesce 19
K 2. Supporting PrOtOCOLScccecvvererrerseesinsecsiesseessesesenssesnnssnssesssensas 19
:i:: - D, SUMMARY ...oviiinicinnnininnissie st sssssesassssssssssesasssssnsssstsssnsses 20
i IV. IMPLEMENTATIONSoooooveeresvesesessesesesesssesssssssessssssssessssaseassessesessensssasseesesesonas 21
u A. INTRODUCTIONosmeevuresnmsesessssssssssssmsssssssssssssonsssssssscssmsmsossssssnsassssssnss 21
‘o B. SYSTEM V UNIXcccccmmnimnninrinininnisnsnesssssessses e 21
;: 1. Silicon Graphics, InC. IRIS 2400cccoerrerrrreercrerremrcnannrnre oooe 21
= B, SOCKELS ..vovieirieirreirerieeer et et s s sa s srstes et saesenes s seanesanns 2i
’ b, SEMAPNOIEScocvrviereererrieereirire e seerersaseereesseesesessasa s ssessassens 23
oy C. Shared MEmMOIYc.cooriirmnrieiiiiinretnscci et sane e sones 24
o Qe BUFFETING wrovooerseeereeseeeseseersssssesssseeeseseres e sseessesressssceese 30
‘:: (1) Direct CONNECLc.c.eeeieverrreeeeniciercreereriessorsecssnesnessessssasens 30
’:: (2) BroadCastccccoiveiiieierrrireerrreeciesnisesssretsssenenvesesanssnne 32
2. Silicon Graphics, Inc. IRIS 3120cococvivmininiinniinniineniciniines 33
" 3. Silicon Graphics, Inc. IRIS 4Dc.cccovvinvinniniiniiinininnneeencinnenns 33
“ €. A3BSD UNIX .ooourmueneerenmemenmsnssisnssessismssnsesssssesssssssssnsssssssssisssnsmnassssssses 34
A D. LISP MACHINEScooooneesevesssnesessessessssssssmsesssmsssssssssssssssssenssssssssessssn 35
w 1. Texas Instruments Explorer Icccccccovvininniinnnninnineenecieienens 35
T 2, SymboliCs 30XX ...ccvcviiiiriiiiinieiiiennieiisrei e ssae s enas 37
K E. SUMMARY ..ovooeeeeeeeeereeeesseeserosessseseessssseesesssesesmsosssessseessssassssenssessenees 39
» V. USEBY APPLICATIONS ettt ettt s a et b e b tebe R e e st st etereratenes 40
R A, INTRODUCTION ..eoereeeeeeteeeses st veeestsssesecassessssssesssssssssassssossesenensasesssssons 40
' B. DIRECT CONNECTcocvvrieurneeerernssmnisinssssesssasssscssssnsssssssssssssssmsssssessmsnases 40
! 1. UNIX-Based MaChifesc...ccmmmmimereisismmissnnnsessssssssssssnssnsneees 40
; 2. AppLICAtIon SEMUPcccovvvivvmeieirecrerrenrrrereeeceesneeeneneearsre e asenes 41
e, b. Coding PractiCescccoemumerrimresismmiernsisesssssssesessasesssnses 43
- (1) CONNECHIONcovvvevvieeeieeeieieinieeievereriecasersstrernssarsssresssenss 43
,. (2) Program USEc....oueeerecreirenuninssesennssssssesssssesessssassssens 45
:: X (3) DISCOMNECHIONovveerierererrererirrecrnresreensereessenessessessennones 49
' 2. Lisp Machinesccocoocvviiviiicininiiiiiini e 49
K A, CONNECHON ..ottt ersesrsr et teestenss st esessseetans. 49
.' b, Program USEcccoomirmmririmrirrireineesesssssssssesssissssssesssssnsesens 52
4 C. DiSCONNECHION ...oovvvvriieiiiiiien e ecreer e e sesrrees s saareressearseeenns 52
: C. BROADCAST ..ot esess st sss s s s sssas s ess st s ssessnsssssnsaes 52

1. Similarities With Direct Connect Protocol Usec.ccccevcicinriinnnn, 52
" 2. Differences With Direct Connect Protocol Usec.ccoevveervevevuennne 54
o a. Application SEtuP ..o 54
J
M v
)
"
.l
K

4
0":0?'.0!‘.0!‘.0'.0. O.f‘.l!‘u'!‘."."- ."" Wit l‘f‘l‘t‘ld’l‘!‘i’-‘l‘ N A o’:“: .c‘. "R, "" ‘ " ‘ . '- . : ':"h"".

- -

b. Coding Practicesccevuvnreremiiriiinninsnnrnnissesninsisnsssssnnesssnenes 55 A
D. SUMMARY ..oooiivierintineseestsisinisistsssssestersssessssssessssissesssressasstssassesesssssosens 55 -
VI. PERFORMANCEccvvurmemenunuesinnssrisisiesssssmsmssssesisssessssoscstssstestsnssssssmsissossasssasanens 57 ;
A, INTRODUCTION ..vuveiverinivintes consesaessesisssessanssssessessessassasssssssssesssstsssasssssens 57 :;
B. DATA COLLECTIONcoociciininiinitiinmeeissionsssseeisastosseisssssssssssssssessssnssns 57 1.
C. DISCUSSIONcccovtvnnmrinnennns B N 59 !
D. SUMMARYovoormmeeresssssnnesessesssssonessssssssessessssesssassesssssmmesssesesssossessessios 60 ’
VII. CONCLUSIONS AND RECOMMENDATIONScormmeruressnnessrssseessssssnsssassseseesss 62 o
A. LIMITATIONS ..ccormovererseosserssrsssssssssessssssssssssssssesssssosssesessssees 62 &
B. FUTURE RESEARCH AREAScocoueimivimmiriennnistssisiesssessssesisesssssnns 63 &
C. SUMMARY AND CONCLUSIONccccovvuerirmeeriniicsnsssssssssssssssssessssssssnsssssess 63 s
APPENDIX A - IRIS MODULE DESCRIPTIONSccccouiieriieresssnsseseisessssessnesens 64 -
Lo 00 SINGIE.C ... 64]
a. Calling Protocolsccoviivumriinricmniniininnincntninnsene s snsnes 64)
i. number received ... 64 3
il. read _cRAracter ...ttt 64 \
iii. read_characterseiviiniiininniiiinneieieese 64 N
iV, read _floar ...ttt 64 "
V. 7eAd_INIEGET ..ottt 64 ‘~
Vi, 1eceived_typeooeieoiiniinii e 65 '
Vil. WIite_CRATACIELoovevinririnrinenentnisisnncnisnnnsse s s 65 _
viii. write_characters Nt a e esa s e en s besanes 65 ..h
iX. write_float ... 65 ¥
K. WEIle _IRIEGETcuoouevirienneirierniiinrissireiesesinns e seesssbssssnnsasassees 65 X
b. Code and DesCriptioncccocvvueviiimiiinviiniiininnciensinsssneasssnns 66)
2. MPALNLC ..o b s 81 ~
a. Calling Protocolscc.cvvviiirinminncncniininnii e snssonens 81 %
i AeleteMACHINEPALhcooccoovcccrevnssimsrensssisssesssimssss s 81 3
. MACRINEPALRcooceveeieitceeeceeieie ettt 81 o4
iil. dynamicmachinepathcoeeeeverevninieesernsscsnsessnesees 81 i
iv. dynamicmachinepathscuoviniinecinnniiiniininnnnne, 82 "
b, Code ANd DESCHPHON .vvevvererreseeereereseseeeessessssssesssessssseenesseeses 82 é’;
3. MEV.LC e et 94 ;::
a. Calling ProtocColscccoeiiiinieniiiicinicenisicscnene e 94 ¥

b. Code and DeSCLIPtionc.cccvveiviiriinieniennrerreeeererie e 94
A, TECRIVE.C ..ot e 103 »
8. CAlliNg PIOOCOLS -.vvvrrorvevevverecrsesrenssssssssseesssssssssse s essssss o 103 2
b. Code and DeSCriptionccccocivivriiniriiiine et 103]
5. SeMAPROTE.C ..o s 107 '.
. 3
vi 3
.
|&
®
: J
R e R R Y e 2 o o e LT ot S LA S St Qe

- -

e MRS AN ENEN \J o m'g.9%. 8 ¢ a8 8%} ‘|"‘4"“(‘ WIN L WUV w3 W -(-.--.v't'. LT TN M X ™) 'Y o, A 0y

bt
3
*
X 2. Calling PIOtOCOLS ...cccuemeeeircrrerenieincrectiine et inrses s seses s secssseeasens 107
. b. Code and DesCIIpPtionccccvviiviiniimiinninninciineninnis e cseenenne 107
;" 6. SEIMALC ..ottt e e s ar et st e sare e s aesebeseneneaenes 109
A 8. CalliNg PIOtOCOLSrvererresersersssesesessnersessesssesssssssssssssssessossessssassens 109
::: : b. Code and DESCIIPLONouvevcrerererrerisenssencseecassesrssssesescsescassesns 109
K T, SHAFEALR ... s et sa et e sesr e e s ee 113
a a. Calling Protocolsc.ccoveiiivnnmincnninnminnniieciii et 113
o b, Code and DESCHPHON -.....cvvevvrrsrarnsssressssssersssssesesssssssresseserassssene 114
it 8. SHATESER.Ccocvirerererireeicneircnsircrereatsessessanenes seseres saetessesetaessssessnasssincses 116
‘}" a. Calling ProtoColsc.ocoeimmiiiininiiiininnrererensesnnne s snnenens 116
b. Code and DesCriptionccccvvveeiniinininniiniiinin e 116
N 9. SUPPOTLC ..ottt s e e 121
% a. Calling Protocolsccccovevmeiriimmniniiinncniincsinsies s 121
3 i 7eceiver Has dataeoreonneinsionenecossensssssinssesesssesnenas 121
i, Sender iS-freeiiiienniiieninr e 121
@ b. Code and DeSCIPHIONcccvveniniirerrrirneneniereessseseseessnenssesesecsesens 122
> APPENDIX B - TI EXPLORER MODULE DESCRIPTIONSccccrccccmrerermmorerinine 133
‘:E 1. CALING PLOOCOLS -rrceereerseeeseeseers s seeesseesessessese s seees s 133
b T 1 ¢ X OSSOSO USRS TOO RO PR 133
' o TR Y 7 12 5 | X O EUUPRPRNt 133
i €. BEI-ITES vttt e e e 133
R, Ao PUL-IPIS ettt s s 133
i.‘ €. SEOP-IFIS weoveeeeerieereeeeeess et es e et sa st st bbb a s ane b st 133
,:. £, FOUSE-ITES ..ovnineniiictiiiiiic e 133
2. Code and DeSCIIPONccooiiieiiiiiin it 134
‘ APPENDIX C - SYMBOLICS MODULE DESCRIPTIONSccccovvinnemrirnrenisneineinnes 137
,:., 1. Calling PrOtOCOLS «..cvucvererceirerernieiectessetssesesssaseesssssssaessssessssssssssassssanes 137
B, SELECI-ROSEcvvviiniiiririiirictire i eas 137
[R | 17 o 2 1 OO TP 137
C. EI-FES wovvvoieeeeeeeeseeieeste et en et st en sttt st be et na s b naes 137
; Ao PUE-ITES oot s 137
€. SIOP-ITES ovveniiiniiiieiiiiiirccsrne sttt e sa s bbb 137
S £, FOUSE-IFIS ..oooiviiiiiiiitiiiccrir s e 137
° 2. Code and Description ... e crerersnsestsaresnesenessessessseseesinenesnses 138
APPENDIX D - TEST AND UTILITY PROGRAMS ... 141
o Lo PTORC oot e 141
[a. Calling Protocolscc.oocoevimiiiiiniiiiniini e 141
N b. Code and DeSCIiPHONceeevevivererreisnriennrsteresesesssssessersseseens 141
® 2. BPTOG2uC wccniiis i e e st seebesreaesaaes et 145
he
: vii
'. 1
X

- PN

.

AELR AN X

Yo i U fa Aal el Sad Ba b bR D Pl sal Vap kah Wah " “at ‘alh ol il Vol d ¥, a9, b ¥, Nl Sz T2t tal a0 Vol Gl 050 &

a. Calling Protocolsccccocveeiirenimnmnenneinniieiiniiens e sssense e oo cnnes 145

b. Code and DESCIIptioncccorvverrinrinnmrnvecrinrinrinrinincnie st 145

3o PLORC s e s s b e b an 149

a. Calling Protocolsccccconinmnininmniinennnnnnicessesssssssenes 149

b. Code and DeSCriptioncccoivivinnniiniiinnnienineneseeaeseensenas 149

B, PIOBL.C ..ottt e st s a s e s s e e e 153

2. Calling Protocolscccoeveerveiieniiineniesessisnnnnsissnisessstensessessessassssenes 153

b. Code and DeSCIiptioncccccveniiiininiinnnnniiirees e 153

5. FMSRATE.C ...ttt e s 157

a. Calling Protocolscccocevmrrmiiininiinieiinincniiiinieenesercssneiaseans 157

b. Code and DeSCriptioncccccvvviiiiniiiiiincnnininccincreeseeeeressae s 157

6. teStShare.C ... 160

a. Calling ProtocColsccceevirvrireneeninnecsicnienincereessessressrae s scassvnensennes 160

b. Code and DeScriptionccocevivviiiiiinicii e 160

LIST OF REFERENCESccccoviiiiiieneniiintcriintstinese s st svn e s ssesaecessesenns 163
INITIAL DISTRIBUTION LIST ..ottt e s 165

viii

8,

£ % s

OOULOG] 2000 i o D% ™ R VR T T T O R G T N - S TP
A S N R M TN N < DDA '. W o Mg T T .r_.-_. e e S Ve - \

~~~~~~~~~~



KX LIST OF TABLES
0

w Table 2.1  IRIS WORKSTATION CONFIGURATIONS .......cooomermeeemmeenressssssssssee 10
. Table 2.2 ISI Al WORKSTATION CONFIGURATIONS .....ccvccccrmmmsrrrresssssreses 11
¥ Table 2.3  SUN WORKSTATION CONFIGURATIONS .......cccossoccerererrersessecreenene 11
. Table 24 SYMBOLICS WORKSTATION CONFIGURATIONS .......oooovreveee.. 12
e Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS ........cvoreerererenes. 12
o Table 2.6 VAX CONFIGURATIONS .......tiiiriiieiinieeeeissiesecssiararsesinsiessassssessonnes 13
) Table 2.7  ISIV DATABASE MACHINE CONFIGURATION .....coovvrooreeerrren 13
o Table 3.1  DATA TYPES SUPPORTED .......ocoovoeeeerrrrreeeesssssssessosesemessessessssesseeseo 16
. Table 4.1  SOCKET SUPPORT FUNCTIONS ........ooemmurvvenseeessoeseenosseesenssseseenns 23
h Table 42  SEMAPHORE SUPPORT FUNCTIONS -.......oooveeoreeseeseermrsessseseressne 24
R Table 4.3  SHARED MEMORY MESSAGES ...........ccoummnsroreessisssevermssssssssssnssns 25
10 Table 44 SHARED MEMORY SUPPORT FUNCTIONS .......cccoovvvvuerrunrmnncnerenins 26
® Table 4.5  INTERNET ADDRESSING CLASSES .......coooiovirinnenisisisesssenensc. 35
" Table 5.1  SERVER ERROR RESPONSES .........oovoomeesrscomenssesssermsssssessessessne 42
) Table 5.2 CLIENT ERROR RESPONSES .......cooscreresnresssmsersssnsesssnssssssssssse 44
,:S Table 5.3  PATH CONNECTION .......ccocouimitireiirerenneererseeresssessnrsssosssosenssessnsssons 45
e Table 5.4 COMMUNICATION FUNCTIONS .........ccivumrerirernrenenneennesescnesesecsens 47
. Table 5.5 MACHINEPATH PARAMETERS ........ovvvceommminere coomesererermsesssesseeensons 56
: Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS ................. 58
] Table 6.2  APPLICATION NETWORK USE STATISTICS ....ovocomeeevereenreerereeerene 58
b
‘-
b
g
W)
@

o
o
;v
o
P

4

1
2

-
N ix
)
"
(J

.

v
R A o RN AT AT R N L L A R A g T Y RV VAN




LIST OF FIGURES

Figure 2.1  Network Configuration ..........c.ccvucvueniininiiniciinnencsienessesressessessesseraes
Figure 3.1  Message FOrmat ............c.coccviiiiniiinininnininenieneee e ssenreeseesaesrnens 17

Figure 4.1  Shared Memory Segment Data Assignment .............cccceeveviienirnrnneens 25 !
Figure 4.2  UNIX Memory AlloCation ..........c.occovveriieveninenenerseniinesreneecreennsenenes 27 ?
Figure 4.3  IRIS 2400 Default Shared Memory Attachment ...............c.ccoeevvenees 28 :
| Figure 44  Three-Machine INterconnection ....................coooveeoveeserseeonsrconsneees 31
. Figure 4.5  IRIS 4D Default Shared Memory Attachment .............oo..oooc.vvunenen.. 34 b
; Figure 4.6  Encapsulation of IRIS ADAIESSES ....oorrrvocoeeeeerersossseeeeesserssssssnenes 36 h
Figure 4.7  Lisp Port ACQUISItION ..........ccovviveimeciiieeniese e esrcecrenre e evens 36
[ Figure 4.8  Opening a Lisp Client Connection ..........cc.cccooveereiivereneenieerrenneneninnens 37
R Figure 4.9 Sending a Message ............cccoovvevvvmucnicsvvcvenvnvecviiesviessiensrnsssssnsanes 37 ;
N Figure 4.10 Genera 6 and 7 defmethod ...................coueeeveeeeevvirererssseseiesssesisenens 38 h
Figure 4.11 Generic HOSt AAAIESSING ......c.covvuevrrvreiveereniereesnsveesesseessssesesssnenss 38 h
' Figure 5.1  Sample Application make File ................ccccoovviivrvnienn e, 41 '
Figure 5.2 Normmal Server ReSponse .........c.cccocveviiviieiiiiiceniccrieectee e esnens 42 ‘
Figure 5.3 Nommal Client RESPONSe ..........ccccoocveviiiivniiciecce s, 43 R
Figure 5.4  Creation of Machine Structure ..............ccocueevevverecvevennrneivnenenvensennns 44 :
Figure 5.5 Server Creation ........ccc. ceviveeieuiiieeevereenseie e seseeesesesssnsssessseseenes 45 X
Figure 5.6 Command Line Direction for Connection ..............cccovveveverreeenr e, 46
Figure 5.7  Synchronous Write / Asynchronous Read .............ccccovevvvvrnvrieirrennnen, 48 i
Figure 5.8  Reciprocal Synchionous Read / Asynchronous Write ....................... 50 >
Figure 5.9  Connection Termination ..........c.ccceceiieenivieneerenesienneesisesses e sneenes 51 ;
Figure 5.10 Loading Lisp FIaVOr ........ccccocviniiiniiinciecccnrecr s 51 ’
j Figure 5.11 Lisp Connection MesSage ...........ccccvvevviniieiiincenienieniserenessensessenns 51
! Figure 5.12  Setting Port NUMbErs With defVar ...............ccoovovvvovveorreseererssnssssseeees 51 .
Figure 5.13  Specifying Server in Lisp .........c.ccoeviiiviininiinicnincin e 51 v
Figure 5.14 Specifying Server by Name in Lisp ........cccocvcenininininccinsice s, 52 :
{ Figure 5.15 Application Communication in LiSP ..........c.cccoevvvvnvirinecrniveiennennn, 53 ®
! Figure 5.16 Termination of Communications in Lisp ........ccccccocvvnvninicininnenne. 54 :
Figure 5.17 Normal Receiver RESPONSe .........ccooveereieeriinienicieninn e s 54

Figure 5.18 Nommal Broadcaster RESPonse .............ccccoevriiinirenciioneiienninennenens

......... . . W\
» N . -~ » . -_.. - LIS - . ". ----- - X - ... e . AP » ) :- e, W - _- - - -)w.. ~ W



R T R R I T N R R R TR TR ™) » e ule” o2 807, 84" B2

I. INTRODUCTION

4 The Graphics and Video Laboratory of the Department of Computer Science at the
2 . Naval Postgraduate School permits the researcher to create three-dimensional visual
; simulations from digital terrain data [Ref. 1]. Specialized graphics hardware allows the
display of such simulations in near-real time. The goal of a good part of the work in the

lab is the creation of a movie-like view of movement over and on terrain, with

. increasingly complex movement animation models. Such projects have strained the
i
;'. equipment’s capabilitics. One method of increasing available computing power is to
10
::' hamess multiple heterogeneous machines together in some distributed computing
)
@

organization. It requires communication between the various machines, as well as

carefully matching each machine’s capabilities to its assigned tasks.

" A. PROBLEM

;:' Rapid tumover of inexperienced students at the Naval Posigraduate School makes
)

]

the creation of complex simulations difficult to manage. The learning curve becomes
! steeper as the lab’s capabilities increase. One of the areas of difficulty has been inter-
o computer communications. So much time has been spent on designing, coding, and
& debugging communication software, little has been left for the original research. We set

out to provide an easy-to-use, yet powerful, set of tools to aid in the development of

2@ T

multi-computer projects.

. 1. Approach

- A communication protocol can be optimized for large data transfers, or small
d

Y data transfers, or both. Efforts to optimize for both are both complex and difficult
" [Refs. 2,3]. File transfer protocols such as FTP in the Defense Advanced Research
) »

d Project Agency (DARPA) Internet domain and uucp in the UNIX domain can be used for
o
)
3
g !

)

o,
@

~

e e e o o F Y Wy NN A A T S TR T ae -'u‘."\"\"x.».. SR "{."'! ':..':f{"-':.';.'f':.'_:';;‘fa ‘:.:C::-_":::L}.




[\
"\

¢

PRI TP LESRT Y

......

large data transfers. Their overhead' is high. This overhead cannot be tolerated in a

real-time problem?. Our visual simulation efforts rely on small data transfers to
communicate among machines. These small messages are typically commands and
changing status indicators. Transferring the entire “world view” is only a reasonable task
during initialization or reset. Hence, we designed our protocols for small messages.
2. Design Criteria

The design criteria for developed protocols were simplicity, ease of use,
portability, and efficiency. Rapid tumover of inexperienced students at the Naval
Postgraduate School makes simplicity of paramount importance. Inevitably, changes
will be required and only a simple protocol is easily modified to take advantage of new
capabilities. Much the same argument, and generally good software design practice,
make ease of use only slightly less important. Almost all operating system-level aspects
are hidden from the application. The number of other machines to be connected to, a use
of dynamic memory allocation, and the names of the other machines are the only
concemns for the application setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision.

Portability dictated our use of TCP/IP, an integral part of the Defense Data
Network (DDN). Efficient use of processor power was considered more important than
efficient use of the network resources. The network is shared by the entire Computer

Science Department, but is not heavily loaded.

! The cost of creating a file and then spawning a process to send it is high. On the receiving end, there is the cost
of creating the file and then reading it. Even a zero-cost file transfer protocol will require all this overhead.

? Large data transfers, in real-time systems, will not he possible until 100 MByte/Sec networks are commonly
available.

O
B, W o O OO Y W, o H Ty € Ay Oy C &, v o~ oo - .
"l,.‘_lt .’1‘.'1 20 0 A KN n.'r‘.wl. -&".“ » 'JF\ A .‘. \ .‘ . ‘. N ". At ".‘ \ - y - e ' X SR

[ 0 o

g




RV VE VRV R N o W LW LPW LA/ LR el LW ol DA RO WY & PR AN L gL St icavh gRataketote  Jigh e ve Baty bt (K

B. BACKGROUND
1. Visual Simulation
a. Vision and Information Presentation X
The eye has the largest bandwidth of any human sensory organ. Proper
use of this capability is a challenge to all scientists. Static graphs are used in most

disciplines to show the relationships between a limited number of variables. These two-

dimensional representations convey information more readily to human beings than

would a table of the underlying numbers. [Ref. 4: pp. 8-12]

Time, a common independent variable, is often one dimension on a graph.
The other dimension is a single dependent variable. To portray additional variables in
one presentation is a frequently occurring requirement. Various techniques such as
multiple colored lines, multiple icons, and perspective drawing are used. With each )
technique, only a few additional variables are added before the graph becomes

incomprehensible.

Pictures, particulasly those in color, have a dense information content.
Unless blind, we live in a world of pictures. Human beings can recognize many
differences between two similar pictures. One presentation portrays many different

variables. When a series of pictures are presented, the time variable is easily correlated

to the actual time of presentation. When a series of pictures is presented rapidly, the '
experience approaches reality, partly explaining the success of moving pictures and »
television. .

Animation creates visual images with an explicit time dimension, in
addition to two or three spatial dimensions. Using actual time to portray the

experimental time variable allows at least one more dependent variable on the display.

e

Imagzs can be as simple as a changug graph, or as complex as a feature-length cartoon.



LT EUNURURU R U NU FURURU FLU U RUSNURU TV IRU R W W R YU WU U P A T N O P WO e £ b 1" ¥n" 0h gty

However, animation creates its effect with the playback of prerecorded scenes [Ref. 5].
It is not suitable for providing immediate feedback to a researcher.
b. Definition
Visual simulation is the creation, by computer, of a realistic, easily-
modified, moving image from the mathematical model of a phenomenon. Realism
implies high-resolution, color graphics. Movement implies adequate floating point
calculation capacity to recalculate the model and its graphical representation between

display refresh cycles. Easy modification implies a well-designed computer application.

Visual simulation allows a researcher to experiment easily with his
subject. Ideally, we display a realistic approximation of part of the world. The
experimenter then manipulates some part of this visual simulation and receives
immediate visual feedback. The rapidly refreshed display is one key to visual realism.
Such a display allows the direct manipulation of the visual simulation, making it easy
and intuitive to use [Ref. 6]. Ease of use allows the researcher to concentrate on the
research question, not the display methodology or the computer interface.

c. Examples

Recent visual simulation projects of the Graphics and Video Laboratory
include speed control of autonomous vehicles [Ref. 7], control of autonomous walking
machines [Ref. 8], rule-based control of autonomous underwater vehicles [Ref. 9],
interactiv: moving platforms [Ref. 10} and combat vehicle control [Ref. 11}. Each of
these projects exceeded the capacity of a single workstation. The speed control and
interactive moving platform projects, written entirely in C, used two Silicon Graphics,
Inc. IRIS workstations, allowing multiple simultaneous views. The other projects all
required a rule-based artificial intelligence component, best programmed in Lisp for ease
of modification. Running the Lisp subsystem on the IRIS workstation gave an

unacceptably low refresh rate and correspondingly poor realism [Ref. 12]. Placing the

4

U Y A - R UK A A P n R n = X ~ 3 o n s an o A ARt .. e Rt ma g s - ‘
DO OGO S AIRGOON0 S W "-"'. 51 l... 'F Ny R RS S oo

K IO T K /o

@ LTS

@
%
o

WY W)
NN,



Lisp subsystem on another machine improved the refresh rate of the IRIS workstation
used for the graphics display.
2. Computer System Architecture

Computer systems can have a distributed or a non-distributed architecture.
Distributed architectures have only one characteristic in common, more than one
processor used to accomplish the task. Beyond this, many different approaches have
been tried [Ref. 13]. Identical processors give a homogeneous architecture. Different
processors give a heterogeneous architecture. Either distributed architecture may
incorporate shared memory or it may not. The separate processors can be closely or
loosely coupled. Communication between processors can be via shared memory,
common bus, or some form of communications network. Communication via some
combination of the above, such as a file server on a local area network, is also
common [Ref. 3]. In the Computer Science Department at the Naval Postgraduate
School, a heterogeneous mix of stand-alone workstations, file server supported

workstation clusters, and minicomputers communicates via Ethemet.

Programming distributed architectures has inspired creativity. The
fundamental problems with distributed programming are the communications between
processes and the temporal interaction of the processes. Communicating sequential
processes [Ref. 14], distributed processes [Ref. 15}, and remote procedure calls
[Refs. 2, 16] have all been proposed as primitives to hide message passing from the
programmer. Remote procedure calls [Refs.2,3] and communicating sequential
processes [Ref. 17] have been implemented. However, even today, none of these is
generally available as a standard mechanism across varied architectures. We have

created simpler (but less general) communication routines for use among heterogeneous,

distributed, standalone computers.




ar >

- - e e -

FOA ORI O ety 0 . " , . N ,
%A .'I’_'Q‘..Q..’;‘.'. !.“‘"‘. -"‘.Q"."“h"‘.‘.‘h“‘ .‘.‘. 050'0.9 _.'.’. ......"..‘."?.' ... ".!.'.“'.?. |!. T YU !‘|.!...‘...!.|‘E” QAN .. o ‘ ) ‘h .‘ “‘ '\ * ) \" a4,

RN BN NNW I N LT W) WNUNUAUNUNY \ VWU R U U NGWARMR AR AN A A I NRAECRIRY

Complex projects can require the resources of more than one computer.
Graphics portions are best handled by the specialized hardware of a graphics workstation,
such as a Silicon Graphics, Inc. IRIS. Artificial intelligence portions are best handled by
a Lisp machine, such as a Symbolics’ or a Texas Instruments Explorer’". Database

requests can be made to a machine with appropriate database software. A general

purpose computer, such as the Digital Equipment Corporation VAX"**, car_ be used for
additional processing power, file storage, or other administrative support. Providing easy
access across such a mix of heterogeneous computers is a large task [Ref. 3]. The simple
mechanism described in this work gives communication access between cooperating
processes running on diverse hardware. It leaves temporal design to the application
developer, while providing the tools for synchronous and asynchronous interaction.
3. Communication

Communications between computers cooperating on a task can be one-to-one,

many-to-one, or one-to-many. It can be synchronous or asynchronous. Any, or all, of

these can be required for one visual simulation.

One-to-one, or direct connect, communications puts the lowest load on the
network when there are few messages to be sent. A single virtual channel between the
two processes is required. Each communication between any two processes comprises
one message. All messages are known to be intended for the receiving process. These
messages can be sent synchronously or asynchronously. Direct connect communication

requires one action by the sender and one by the receiver. With more processors,

* Symbolics is a trademark of Symbolics, Incorporated.
** Explorer is a trademark of Texas Instruments Incorporated.

“* VAX is a registered trademak of Digital Equipment Corporation

n
5

[ M

Y UTIAITY

A B Scar—a



RIS N LR R R R R U AN T IR U KA RN AR XAV KN R R O a-Uad vad Tub TR “0al bk A0t 0 Al Ba0 R0 S0 M NS 0 8 01H 00 2 5 000 0 0" |

i e .
PO

@
‘ potential virtual channels grow in number geometrically. For a fully connected network,
" ’ the virtual channels required can exceed capacity. The potential messages required also
§ grow geometrically in number.
,T: One-to-many, or broadcast, communications puts the lowest load on the
_ sending process. A message is sent to all other processes that are connected to it. It
'i: requires one action by the sender, and two actions by each receiver (the reception and a
.- . decision on whether the message is intended for that receiver). It also places one to n
2 messages on the network (depending on how the network and the broadcast protocols are
if: designed). It is primarily used in an asynchronous mode, although synchronous protocols
o could be designed.
‘ Many-to-one communications puts the highest load on the receiving process. It
j::' requires two actions by the receiver on every message that is sent by any connected
:: process. It is also a primarily asynchronous method. The receiver portion of a process
:& sees many-to-one whenever broadcast protocols are the only ones used in a visual
i simulation.

C. ORGANIZATION
." The previous sections of this chapter provide background on visual simulation,
i distributed architectures, and communication paradigms. Chapter II describes the
. hardware and software environment in the Computer Science Department at the Naval
{ Postgraduate School. The protocols developed are discussed in Chapter III. Chapter IV
‘ describes the implementation of the protocols. Chapter V covers the use of these
P protocols. The performance of the protocols is detailed in Chapter VI. Chapter VII
i.::‘ concludes with a discussion of limitations, future extensions and research topics, and
E: summarizes the research conducted. Listings of the program source code for each of the
’ hardware systems are included as Appendices.
;
" 7
0
R
o

L)
)

" LI SR ) - n - R - M h M R em
""E‘l.n‘l.u W', Q‘. A I'q 'q. * A% = ® v o ..9 { o . 0 .\.. ¥ \1’;\'.\"‘.’\‘! \J.'v-“. J t

-------- LM% 2t AT, G . T



-

-

II. EXISTING SYSTEM

e o

C oaa

A. INTRODUCTION

-

The distributed architecture available in the Naval Postgraduate School Computer

",

e el

Science Department Graphics and Video Laboratory is Ethernet-connected workstations

and minicomputers. The workstations include IRIS 2400, 3120, and 4D graphics,

Symbolics 36xx" and TI Explorer Lisp, ISI Al and Sun-3s"*. The minicomputers include

! VAX 11/785 and an ISIV minicomputer complex providing database services. All

computers, except the Symbolics and TI, use some version of UNIX""* as the primary

operating system.

B. HARDWARE

o 1. Network

Ethemet connects all the computers in our lab. There is a backbone network

and subnetworks for certain groups of computers. Currently there are two subnetworks,

one for the ISIV minicomputers and one for the ISI Al workstations. Subnetworks are

5 planned for the IRIS workstations, the Sun Workstations’***, and the Symbolics and TI

workstations. Figure 2.1 illustrates the network configuration.

* Symbolics 3600, Symbolics 3640, Symbolics 3650, and Symbolics 3675 are trademarks of Symbolics, Inc.

** Sun-3 is a trademark of Sun Microsystems, Inc.

*** UNIX is & trademark of AT&T Bell Labomtories

*** Sun Workstation is a registered trademark of Sun Microsystems, Inc.

A
)
v

o

U
)
*
#
)

NN AR I MU RS IO IO IR o o o 8, j N Ui )
R R o S R A A IO \'_‘.‘tl.._I‘Q’l‘.!h..tlﬁti‘gtl.g!l.thl‘y'l.g’ SO ST M et 2 ] R DO A TR WIRDEE



» unixl viesl
irisl iris2 iris3 iris4
expl exp2 exp3 exp4

I GHAGS, |
1 T
{ syml sym2 sym3 sym4
_sunsl sunslO m;ﬁﬁbiQ\
( Sun File Server/Diskless Workstations
™~ ~ suns?2 suns20 suns21 ol
\~i‘ S T N— L
ail .. ai?7 ai8
isivl . isiv7? isiv8

CS Subnet

CS Backbone Ethernet

work

Figure 2.1 Network Configuration




All computers support TCP/IP protocols. The Symbolics Lisp machines also
use the CHAOS protocol to provide file server services from sym! to the other Symbolics
machines. This logical local area network (LAN) uses the Ethernet backbone for its
messages. The Sun file servers also support their diskless nodes over the backbone
Ethemet.

2.  Workstations
a.  Silicon Graphics, Inc. IRIS
Table 2.1 shows the IRIS workstation configurations. All are connected
directly to the backbone Ethernet. The proprietary Geometry Engines in each of these
workstations allows three dimensional color graphics displays to be generated and
updated in real-time. The primary use of these machines is for color graphics.

b. ISIAI

Table 2.2 shows the ISI Al workstation configurations. Only ai8 is
connected directly to the backbone Ethemet. The other workstations are connected to it
in a subnetwork. These workstations are used primarily for artificial intelligence
projects. The ai8 machine provides, as well as a gateway to the backbone Ethemet, file
server support for the other workstations. Their high resolution black on white monitors,

although bitmapped, have rudimentary graphics capabilities.

Table 2.1 IRIS WORKSTATION CONFIGURATIONS

Model Memory Disk Bit Floating Screen
Nickname . Point .
No. (MBytes) | Capacity | Planes Accelerator Resolution
irisl 4D/70G 8 380MB 56 N/A 1280x1024
iris2 2400 Turbo 6 144MB 32 Y 1024x768
iris3 3120 4 144MB 32 N 1024x768
iris4 4D/10G 8 380MB 56 N/A 1280x1024
10
B A A A R T T o A e S A L A0 £ RN R

e SM M

™ -
e SR,

2@ AT S A5 A

”_ s~

o o

€ £
2. A X

:.’-A.. ; ‘:



uuuu

Table 2.2 ISI A1 WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Screen

No. (MBytes) | Capacity | Planes | Resolution
ail VWS 4 101MB 2 1280x1024
ai2 VEWS 4 101MB 2 1280x1024
ai3 V8WS 4 101MB 2 1280x1024
ai4 VWS 4 101MB 2 1280x1024
ai§ VWS 4 101MB 2 1280x1024
ai6 VEWS 4 101IMB 2 1280x1024
ai7 V8WS 4 101MB 2 1280x1024
ai8 V16WS 4 403MB 2 1280x1024

c. Sun-3/50

Table 2.3 shows the Sun Workstation configurations. A!! are connected

directly to the backbone Ethernet. The black-on-white monitors of the Sun diskless

workstations are primarily used for administrative tasks at this time.

d. Symbolics 36xx

Table 2.4 shows the Symbolics workstation configurations. All are

connected directly to the backbone Ethernet. The Symblics workstations are used for a

aa TTewTeTeTwreTT v A "XV N WW Y va

1 A 'RA w L P
“:"A,.A'O.- . ‘F A.o Y ,-.

Table 2.3 SUN WORKSTATION CONFIGURATIONS

Nickname Model Memory Disk Bit Screen

No. (MBytes) | Capacity | Planes | Resolution
sunsl 3/180S 12 490MB 2 1280x1024
sunl0 3/50 4 N/A 2 1280x1024
sunli 3/50 4 N/A 2 1280x1024
sunl2 3/110 4 N/A 2 1280x1024
sunl3 3/110 4 N/A 2 1280x1024
sunl4 3/60 4 N/A 2 1280x1024
sunl5 3/60 4 N/A 2 1280x1024
sunl6 3/60LC 4 N/A 10 1280x1024
sunl7 3/50 4 N/A 2 1280x1024
sunl8 3/50 4 N/A 2 1280x1024
sunl9 3/50 4 N/A 2 1280x1024
suns2 3/180S 12 490MB 2 1280x1024
sun20 3/60LC 4 N/A 10 1280x1024
sun2l 3/60LC 4 N/A 10 1280x1024

11
Yol 3 < P e P AT -'-y.:-' e e v ' TN

L

Ll a2

LAY S A T 4 AL AP B A &
3% Uy AN N N ) .
.09 9%, ¥ RS DAY

[ Sach - -



i Table 24 SYMBOLICS WORKSTATION CONFIGURATIONS

o Nickname | Medel [ Memory | Disk Bit | cotor | _ SCreen
W icknam No. (MBytes) | Capacity | Planes Resolution
G syml | 3675 5 IGB | 24 Y | 1280x1024
e sym2 3640 1 180MB 1 N | 1280x1024
:&;3: sym3 3640 1 180MB 8 Y 1024x1024
Mo symd 3650 5 | siamB 1 N | 1280x1024
)
:':::: variety of research projects involving artificial intelligence. The symI machine provides
vl
‘::':; file server support for the other Symbolics machines using the Chaos protocol and its one
ol
) GigaByte (unformatted) storage capacity. The color-capable systems are used to display
(N
s‘ static information with color providing an easier human interface.
;'I'
’::: e. Texas Instruments Explorer
XN
.‘ Table 2.5 shows the Explorer workstation configurations. All are
TN
;" , connected directly to the backbone Ethemet. The TI Explorers are also used for artificial
\' ‘
:: Y intelligence projects. They have the least graphical capabilities of any of the
LAY
'g' workstations.
'é:;' 3. Digital Equipment Corporation VAX 11/785
:’:,
::::' Table 2.6 shows the two DEC® VAX 11/785 computer configurations. Both are
e connected directly to the backbone Ethemet. Only the unix! machine was inciuded in
,,_ this project. The vms! machine may not be available in the future, so the effort to
"
R
|: W Table 2.5 EXPLORER WORKSTATION CONFIGURATIONS
@ . Model || Memory Disk Bit Screen
) Nickname No. (MBytes) | Capacity | Planes | Resolution
L expl I 4 280MB 1 1024x808
s exp2 I 8 420MB 1 1024x808
o exp3 I 8 420MB 1 1024x808
o expd I 2 140MB 1 1024x808
e
"::
)g * DEC is a registered trademark of Digital Equipment Corporation




U SR I W S WA W W WU RPN WR TWR TR (WX AR AR T LS N ] R 4Gl Gt B8 O b A aat e et o TN TP
h ) . N

e - - - dm
LA @ RS

i
'l'

':. Table 2.6 VAX CONFIGURATIONS

. . Model Memory Disk Operating
:: Nickname No. (MBytes) | Capaci System
“ unix 1 11/785 24 1395MB UNIX

; vmsl 11/785 8 1442MB VMS

ey

develop appropriate code was deemed unnecessary. The unix! machine is nps-cs.arpa
on MILNET and is the sole extemal access point to other machines connected locally via

Ethemet. It supports the various dial-up lines, as well as other administrative functions.

", K Ly
s ey g I

4. ISIV minicomputers

ab The computers in Table 2.7 make up the ISIV minicomputer complex. Only
W isiv8 is connected to the backbone Ethemet. The other machines are connected to isiv8
@ in an Ethernet subnetwork. The ISIV minicomputers provide a high performance, multi-
backend distributed database. Any of the high-resolution black on white monitors can be
e used with any of the hosts on the subnetwork. The character displays can also be used on

any of the subnetwork hosts. The graphics capabilities of these machines are limited.

o

ke Table 2.7 ISIV DATABASE MACHINE CONFIGURATION

‘ " Model Memory Disk Bit Screen

4

Nickname No. (MBytes) | Capacity | Planes | Resolution
o isivl V248 4 602MB N/A 80x24char
;5 isiv2 V24WS 4 500MB 2 1280x1024
M isiv3 V24WS 4 602MB 2 1280x1024
At

¢ isiv4 V24WS 4 500MB 2 1280x1024
> isivs V248 4 602MB N/A 80x24char
o isivé V24S 4 602MB N/A 80x24char
~ isiv7 V24WS 4 602MB 2 1280x1024
: : isiv8 V24WS 4 459MB 2 1280x1024
ks isiv9 V248 4 602MB N/A 80x24char
§

@

4

', 13

X

I'it.\\\j-\\

Fo P s GG -

h "II ‘!‘l}‘f'\¢lJ




SRR TR LR RPN I TR ITEU WU PUWL WU WU PO VU U VU U U WU U WU N o R M T T T R B i STy FQ uvh Vi ath oty

KN C. SOFTWARE

1. UNIX Machines

! Two versions of UNIX are commonly used. The machines purporting to use

System V°, also incorporate characteristics of 4.2BSD and 4.3BSD. The relevant

incorporation is the Berkeley socket mechanism.

:3'. a. 4.3BSD
n
:': A "pure" 4.3BSD system (4.3 BSD UNIX #11) exists only on unixI. The

ISIV minicomputers use 4.2 BSD UNIX Release 3.07, with a multi-backend database

) system installed [Refs. 18-20]. The ISI Al workstations use IS68K 4.3 BSD UNIX: 4.0D
l.‘

0 #2.

",

° b. SystemV

,s. The IRIS 4D systems use UNIX System V-based version 4D1-2.2. The
)

3 IRIS 2400 and 3120 systems use UNIX System V-based version GL2-W3.6. Both have
\

extensive 4.3BSD extensions. The Sun-3 uses an almost Sysiem V version of 4.2BSD

:‘.7.: UNIX. The currently installed release is 3.4.
g 2. Lisp Machines
- a. Genera

] The Symbolics Lisp Machines first used Genera 6.0 software. All
0

) machines are now on Genera 7.1.

0.;

b. Explorer

.1, P
i The TI Explorer lisp machine first used Explorer version 1.0.2 software.
K~y
‘ All machines are now on version 3.4 except expl, which is still on version 3.2.
™

9

;;

N -

&

* UNIX System V is a trademark of AT&T Bell Laboratories

\ 14

&

¢

N

Ld

L4 L

o

,\.f \l ~r "\1 5",'\'.l.' .*

LA™ PR AR P v w_w " - . == P L P T R ) - - N
LR RN AN R A T T T AT AT T - " X L
‘.- LI e d L 4 PN P 'y’ ,.,- N N ,. W !.n ™




R R O O I T T oy R RN oY YO T N o P VWY U NIRRT

W D. SUMMARY
. . The configuration described above is constantly changing. Additional machines are
] acquired. Older machines receive hardware upgrades. The network is reconfigured.

* ' Software releases are updated (especially 4.2BSD UNIX to 4.3BSD UNIX). The

fundamental needs for distributed computation in this heterogeneous environment

remain.

L

-

B

15

.
v
»
»
»

. SN T e T R YR B RN TR AT P PP '.l-"" - LT LY TS LY L VR SN ey Yo" 3
() " vl SSagiCa ..'\.\'. at Ol ""' Iy i " "' ,, 0."0. " " ' > L l'u\,a‘ W



R e o e e

I. PROTOCOLS ‘

A. INTRODUCTION

Our visual simulation efforts rely on small data transfers to communicate among
machines. These small messages are typically commands and changing status indicators.
Hence, we optimized our protocols for small messages. Overhead to optimally encode
and decode packets was deemed inappropriate. The design criteria for developed

protocols were simplicity, ease of use, portability, and efficiency. :

R AT R

B. DIRECT CONNECTION
The client/server paradigm is used for direct connection. The client requests b

services from the server, so establishing communications is asymmetrical. Once \

- o - -

cor. .nunications are established, however, the protocol used is completely symmetrical.

[Ref. 21:p. 17]

e g 1

1. High-Level Protocol .

The variety of data types supported is limited (see Table 3.1). Each message
contains exactly one instance of one type of data. All integer or float data is converted to J

an ASCII character string before it is sent. It is converted back to the proper type after .

-.

Table 3.1 DATA TYPES SUPPORTED

o

Length . 3

Type (Bytes) Elements | Code | Available :
single B Y

character 1 array C Y p
; J
. single 1 Y N
integer 4 array ] N -
float 4 single R Y -
array S N .

)
16 3

(

N

-

"""\J\\'&“N .Y

NS Nt L LN A L 0GR - A AT N AT T T T AT AT e e NN - \
Wy LGN : e l ". “ %% X B X ) "“} .. \J:"“- o B N .'. “ > v. 3 ‘\‘ N

L)



reception. While the conversion is unnecessary when communicating between similar
architectures, it greatly simplifies the task of communicating between fundamentally
different architectures. Knowledge of the other machine’s architecture is not required.

The inherent portability of this solution outweighs the processing cost.

A message is created with three fields. The type field is a one-character field.
It contains the appropriate code from Table 3.1. The length field is a four-character field.
It contains an ASCH string from 0001 to 9999. This string gives the length of the data
field. The data field is a variable length field containing the ASCII representation of the
data element. Figure 3.1 illustrates these fields.

While C programmers are continuously concemed with data types, Lisp
programmers are not. The Lisp routines support arrays of characters, single integers, and
single floating point numbers. Each of these is an object. Objects, not types (as implied

in Table 3.1), are received and sent by lisp applications. The underlying protocol is the

same, the application interface is different.

Position
243l415 6!7!...ln

Length Data

0D < |~

Figure 3.1 Message Format

? Chapter 5 discusses applications’ use.

17

Y I Ny ‘-_-r;.r_-'_:.' .' ".r,,‘_"-'

N “ (> /)

W




() .
! 2. Supporting Protocols
.".
)
Full-duplex stream sockets are used to provide sequenced, reliable connection
X
)
“ between machines. The sockets are created in the DARPA Internet* domain. The
IX
$ ‘ . T .
»:: Intemnet pseudo-protocol is used [Ref. 22]. No out-of-band capability was included. We
K
L‘. . . 3 - * . 3
could not envision a use for it, since our protocol is inherently asynchronous. If a strictly
2
e synchronous protocol was used, out-of-band transmission might be necessary to interrupt
s
ey for an urgent message. In an asynchronous protocol, however, encoding the next
>
message gives the same effect. Processing overhead for encoding is no greater than for
N
;' continuous monitoring for an out-of-band message. With only a small volume of data
::: transfers expected, no urgent message waits very long.
R
® Two ports, each with its own stream socket, are used for each channel between
::‘! machines. Although full-duplex, the stream sockets are used in a simplex mode. The
L
, separate sockets are used because two processes cannot be bound to the same socket at
)
L
the same time. Two separate UNIX processes then monitor the independent send and
" : , - ,
;' receive sockets. Blocking sockets are used, avoiding precessing overhead for busy-
:c waiting. While non-blocking sockets are available in 4.3BSD [Ref. 21: p. 25], they were
h not explicitly available in 4.2BSD [Ref. 22]. Operating systems might include 4.2BSD
. sockets rather than 4.3BSD versions and so the blocking socket mechanism was deemed
>
¥
‘;‘ more portable. Both TCP/IP and the C routines provide buffering.
A
@ On the T1 Explorer, sockets were also blockings. Direct access was made to
"
‘¥ . . . . .
b’ the TCP methods provided. Lisp streams are used for the Symbolics lisp routines. The
L)
k)
v
!
e * This is the underlying mechanism of the Defense Data Network (DDN) and was chosen for its wide availability
: and applicability to Depariment of Defense problems.
T,
¢ % Version 1.0 of the Explorer TCPAIP software uses blocking sockets. Version 2.0 uses non-blocking sockets.
'_ There has been no update of this system’s T1 Explorer lisp routines to version 2.0.
d
- 18
" L]
]
,"
[
D
9
By » -y L Y I Y | [ L] - LI ') - . e P o
K R e s o AN DAL o D2 o N e DI ] R T O T oty Rl G




lisp strearn mechanism isolates the code from the issues revolving around blocking

versus non-blocking sockets.

C. BROADCAST

A broadcast message is sent to all machines on a local Ethemet. Those machines

that are waiting for some broadcast message will probably® receive it. If a machine on a
subnetwork is to get a broadcast message, an application must run on the gateway
machine that will rebroadcast on the subnetwork any messages received on the backbone
Ethemnet. Machines not expecting a broadcast message must nevertheless process it and
reject it as inappropriate. The extra load on all machines connected to the Ethemet

restricts broadcasting to infrequent occurences until most of the machines used in

7

simulations’ are on a private subnetwork.

1. High-Level Protocol

We expect users of the broadcast protocol to mix its use with the use of direct
connections. The same data types and messages are supported (see Table 3.1).

2.  Supporting Protocols

Full-duplex datagram sockets are used to provide connectionless broadcast
capability. The sockets are created in the DARPA Internet domain. As with our use of
stream sockets for the direct connection protocol, we use these full-duplex datagram
sockets in a simplex mode. We use a sending socket for one-way sending of a broadcast
message to all other machines on a single network or subnetwork. We use a receiving

socket for one-way receiving from a specific broadcasting machine on the network or

¢ Unlike the direct connect protocol, the broadcast protocol does NOT guarantee reception. Trying to provide
such a guarantee requires a feedback machanism so that the sender knows that the machines expected to receive the
broadcast did so. This is difficult without resorting to a direct connection or flooding the network with messages.

7 The RIS machines and the Lisp machines are the ones principally used for visual simulation.

19

»

"o ! g I
A M X UG 9

Moo N N

W SRS ‘ A RN A \‘ .l' o ‘u e 'u ‘.‘.ﬂ!\' ) l!‘.\. ot .\ Ny I. Y



s

P g

OG0 3 O N OO M N R N TN ] (TR I & A R .
“"ﬂ!‘n"‘i‘!’l".‘l‘!‘l‘. 9. AN .!'l.. . AN -v ~ '. 'f ‘. f W N '- .0 W40, * Y ) h.‘\u M - N "v a. 4%, .h ‘l- ,l.', O

RV R AN R O T I N O O A T T O T AN O T Rt B pt eul taloaboal Sebavat o5 Ak vl o U AT NI PT UV

subnetwork. Direct connection, with its use of guaranteed reliable stream sockets, is

used for any other communication, including return messages. [Ref. 21: pp. 32-34]

As in the direct connection protocol, independent UNIX processes are bound to

the sockets. Since broadcasting is a one-way activity, a sender or receiver only spawns

one® UNIX process.

D. SUMMARY

By building our high-level protocols on top of DARPA TCP/IP standards, we provide
the highest degree of portability possible today. By using full-duplex stream sockets and
datagram sockets in a simplex mode, we do not make full utilization of a socket’s
capabilities. However, this concem is outweighed by the increased simplicity and
resultant maintainability of the code. The use of ASCII character strings for the messages

is simple and makes interconnection with diverse architectures straightforward.

* If broadcasting were used exclusively for complete connectivity, each of n machines would spawn » processes.
If direct connection was used exclusively for complete connectivity, each of n machines would spawn 2n-2 processes.

20

LM M




AIIIIC]@ X

-

e
"
t

IV. IMPLEMENTATIONS

A. INTRODUCTION

The first connection was between the IRIS 2400-Turbo and TI Explorer. Then the
Symbolics Lisp machines were included. These routines have had extensive use
[Refs. 8,9,11). The IRIS functions were updated for the IRIS 4D, coincidentally
providing Mex support on the older IRIS machines. Broadcast capability was added for

UNIX-based machines. A port to 4.3BSD UNIX (application calls unchanged) was begun.

B. SYSTEM V UNIX

All our System V UNIX-based systems include the socket mechanism first
introduced by 4.2BSD. Sockets are a key aspect of all implementations. We expect they
will become part of System V or its successors [Ref. 23). The System V-unique
semaphore and shared memory interprocess communication (IPC) capabilities are also
used.

1. Silicon Graphics, Inc. IRIS 2400

a. Sockets
The socket was introduced in 4.2BSD as the preferred metaphor for IPC. It
was easy and efficient to implement and the select mechanism could be used to
implement remote procedure calls, if desired [Ref. 23]. System V had no comparable

mechanism until version 3 was released with streams. The BSD sockets were included

by many vendors, Silicon Graphics, Inc. included®. While the use of sockets could be

? The System V version available on the IRIS machines, at the start of the project, was version 2 and so streams
were not considered.

21




O OO O

Y
\A

W U U U LU URURS ® b AN A Vab b va s ag waB ¢ R I T T T OO T O T

replaced with streams, device drivers would have to be written. The advantage of
streams is the ability to filter them between streamhead and the actual device driver.
These filters, however, reside in the kemel’s address space and have the kemel’s
permissions [Ref. 24]. In our environment, the potential performance increase is not as

important as the requirement for simplicity.
The system call for socket creation is socket. The system calls supporting

socket configuration are setsockopt, bind, connect, and accept'® [Ref. 22]. To simplify
their use, these are all repackaged into four high level routines: connect_server and
connect_client for direct connection, start broadcast and broadcast receive for
broadcast. These routines are encapsulated in netV.c. netV.c can be separately linked
with any application that needs to make a server/client connection using stream sockets
or a broadcasting connection using datagram sockets. Table 4.1 describes the four

routines.

Using the socket number!!, a process can transmit data through the socket.
In our systemn, sockets for inter-computer communication are created and used by the
send and receive processes exclusively. The file netV.c is not linked with the application

at all.

1% The accept system call iz only relevant to stream sockets. The setsockopt, bind, and connect system calls are
used with both stream sockets and datagram sockets,

'""In the direct connect protocol, the server process reads from and writes to a remote socket number. The client
process reads from and writes to its local socket number. The reason for this is that a server could be connected to dif-
ferent clients (although not in our implementatinn) at different times. The client, meanwhile, is only going to connect
to the one server. In the Intemet domain, all necessary routing information, for either server or client, is contained in a
sockaddr_in structure and is accessed (transparently) via the socket number

In the broadcast protocol, hath the broadcaster and receiver(s) use their local socket number because they are
using connectionless datagram sockets. The routing information is also contained in a sockaddr_in structure,

22

A P A A A O « . - o - o Ao
LA RS A AN '-‘\‘!'t'. M '2'""!‘- OO MR M X NN ‘.»‘l‘ W n\ l o S Cd X

U U U™

WL T AT % Y AR M R e T
NI N l_ A TG SRR

AN




P R

Y aTet Y & 1 aVE ) gt AT aCh a8 atd B a8 2% ath nb2 208 a¥h 2¥B avh "

Table 4.1

SOCKET SUPPORT FUNCTIONS

Function

Description

Use

connect_server

Creates socket. Binds that
socket to remote client ad-
dress and port. Waits to ac-
cept the remote client con-
nection. Retums the socket
number for the remote client.

int connect_server( remote_client_name, port_number )

char remote_client_name(];

int port_number;

remote_socket = connect_server( remote_client_name,
port_number )

connect_client

Creates socket. Binds that
socket to remote server ad-
dress and port. Connects
with remote server. Retums
the local socket number.

int connect_client( remote_server_name, port_number )

char remote_serve:_namef];

int port_number,

local_socket = connect_client( remote_server_name,
port_number )

start_broadcasi

Creates socket. Seis it to
broadcast mode, Binds it to
local address and specified
focal port. Retums the local
socket number.

int start_broadcast( port_number )
int port_number;
local_socket = start_broadcast( port_number )

broadcast_receive

Creates socket. Binds it to
local address and specified
port. Adds broadcaster ad-
dress and port. Retums the
local socket number.

int broadcast_receive( broadcaster_name, broadcaster_port )

char broadcaster_name({};

int broadcaster_port;

local_socket = broadcast_receive( broadcaster_name,
broadcaster_pont )

b. Semaphores

The semaphore mechanism was chosen as the least expensive, in both

space and time, for communication between processes. Signals could have been used,
but implementation would have been more complex and less reliable. Signal-based
communication functions would alse have been more difficult for the application
programmer to use [Ref. 25:p. 10]. There are two semaphore ids maintained for each

12/ One is used to communicate with the send process; one is used to

connection
communicate with the receive process. The two semaphores are both used to signal their

process when it is safe to proceed. A send process is pennitted to proceed only after the

'? Two semaphore ids are required for direct connect protocol connections since both a send and a receive pro-
cess are spawned. Two semaphore ids are still created for broadcast protocol connections, even though only one pro-
cess is spawned.

23

BoA L

. ' -‘ .‘ \-.;_ : -;' -‘* .. \-.-4-.:.- - "-’:_-‘:Jl.;‘p -.. -'q’\,p'{- * '!. " h‘?_ g ‘-“\".’.‘J‘ ff ~‘

e

ey

LA =

'

Y o '

L]



- NPT W a W

- YW A

w

R o
vatt et

application has requested a write action!? on the channel. A receive process is permitted

to proceed only after the application has read all data from the shared memory buffer.
Neither the send nor the receive process is executing more than absolutely necessary,

assuring maximum availability of the local processor to the application.

The system calls supporting semaphores are semget, semop, and semctl.
To simplify their use, they are repackaged into three high level routines: semtran, P, and
V [Ref. 25:pp. 188-190]. These routines (and a support routine semcall) are
encapsulated in semaphore.c. It can be separately linked with any application that needs
semaphores. Table 4.2 describes the three routines.

c.  Shared Memory

A cost barrier to IPC in UNIX is the cost of copying data from one process
to the kemel and then from the kemiel to another process. Using a shared memory
segment, as a buffer, minimizes this overhead. To further reduce overhead from system
calls, only a single segment is created. An application accesses the entire segment, while
a send or receive process accesses only its preassigned section. Figure 4.1 displays the

layout. The message area of each section is used for several purposes. It is formatted as

Table 4.2 SEMAPHORE SUPPORT FUNCTIONS

Function Description Use

Creates a semaphore associ- int semtran( key )
semtran ated with a key. Retums a int key;

semaphore id. sid = semtran( key );
) void P( sid )
P Acquire semaphore int sid;
id V( si
A% Release semaphore Ymd. (sid)
int sid;

'3 The data must also be valid in the shared memory buffer. All this is transparent to the application, which only
issues a write command.

) 3 A)

e o L T T o A T NN A AL R T R P N A AT NN

S NN

. T



Receive Section

Message

Data

0|l1}2

[3]1]

| n

Send Section

Message

012

[3]1]

| n

Shared Memory Segment

Receive

Send

Protocol

0

n n
+ || +
3 4

where n = LARGESTREAD from shared.h

Figure 4.1 Shared Memory Segment Data Assignment

a long (4-byte) integer. Table 4.3 describes the meaning of three-state values placed in

this area.

Table 4.3 SHARED MEMORY MESSAGES

Meaning
to
send

Meaning
to
receive

Meaning
to
Application

positive in shared memory,

Data of length given is

ready to be sent.

Application has not
finished reading data
from shared memory.

send: Data in shared memory
has not yet been sent to other
machine.

receive: Valid data of length
given is in shared memory,
ready to be read.

Nothing ready to be
sent.

Application has read
data  from  shared
memory. Message
from other machine can
be read, up to LAR-
GESTREAD bytes.

send: Previous message has
been sent. Ready to send
next message.

receive: No valid data in
shared memory.

negative Signal to terminate.

Signal to terminate.

N/A

" LA N 1 SOV
0 e T T R AT AT RN S R B MR T SRR M




& &
7

o~

.

At )

.
»,

™
M

e |
)

B o e s o P A —")-\""-l‘),‘-'-'"-" P R Sl

108wty 2% AtV aVE x") 28 2'R atk A'3"a'D 4'4 ath 'S atd a't' U WU WU U W, WU WU R It $a® 0% 4, \F.)

.....

The system calls supporting shared memory are shmget, shmat, shmdt, and
shmctl [Ref. 25: pp. 192-198]. To simplify their use, they are repackaged into four high
level routines: sharedsegment, dynamicsharedsegment, detachsharedsegment, and
deletesharedsegment. These routines (and a support routine attach_within_datasegment)
are encapsulated in shareseg.c. It can be separately linked with any application that

needs shared memory. Table 4.4 describes the four routines.

The implementation of shared memory on the IRIS 2400 and IRIS 3120
was a surprise. A basic UNIX memory allocation scheme is shown in Figure 4.2. Each
process has its own text, data, and stack sections. Neither the relative locations of these
sections nor the direction of growth for stack and data sections is specified for UNIX.
The shared memory segments are logically part of the data section [Ref. 26:p. 151].

Table 4.4 SHARED MEMORY SUPPORT FUNCTIONS

Function Description Use

Creates (if not already in ex- char *sharedsegment( key, nbytes, shmid )

istence) a sha;ued memory long key;

segment associated with a \
., ong nbytes;

key. Attaches application to e

that shared memory segment, | int *shmid;

Retums a shared memory segment = sharedsegment( key, nbytes, shmid )

segment address and id.

Does not permit subsequent

dynamic memory allocation.

sharedsegment

char *dynamicsharedsegment( nummachines,
key, nbytes, shmid, freespace )

int nummachines;

Creates (if not already in ex-
istence) a shared memory
segment associated with a
key. Attaches application to long key;
dynamicsharedsegment that shared memory segment. long nbytes;
Retums a shared memory | int *ehmid;
segment address and id. Per-
mits  subsequent  dynamic
memory allocation.

int freespace;
segment = dynamicsharedregment( num-
machines, key, nbytes, shmid, freespace )

Detach shared memory seg- void detachsharedsegment( segment )

detachsharedsegment ment from spplication char *ocgment;
void deletesharedsegment( scgment, shmid )
deletesharedsegment Delete shared memory seg- | .+ sgegment;

ment

int shmid;

26

v-.‘\.’ﬁ‘.'.’\.ﬂn - i-.. -¢‘.w -“.‘
». V% TN T TR e, W0 BV W 0%

N SR A

4

- - oo ZHES

N
2

Lttt

d

B %S

10 s el @ roc

- k4
S )

v



b
S

Sl

Stack

growth
!l

Pt

growth

Data

Code

Figure 4.2 UNIX Memory Allocation

Actual implementation is left to the team porting UNIX to the machine. The Silicon
Graphics, Inc. implementation attaches a shared memory segment to the first available
valid'* address within the data section. However, the beginning of shared memory

delimits the size of all other sections [Ref. 26: pp. 367-370]. Figure 4.3 illustrates this

14 Shared memory scgments must begin on a page boundary. This allows easy table-driven access by multiple
processes. On the IRIS 2400 and 3120 machines, the Motorola 68000 architecture is used. The pages are 8KBytes.

27




Unallocated
Maximum
Unallocated Data Unavailable
Available Section
Address Memory
Memory
Data Section Data Section
Code Section Code Section
Before After

Figure 4.3 RIS 2400 Default Shared Memory Attachment

relationship. While no dynamic memory calls'> are made, the default arrangement works
fine. But when dynamic memory allocation—linked lists and makeobj() calls are

examples—is needed, the technique fails.

To allow dynamic memory allocation, the shared memory segment must
be attached at an address beyond the greatest ever required for regular data. Dynamic
allocation can then occur without reaching the shared memory segment. Attaching at an
unknown address -oth within the data section and sufficiently beyond existing data to
permit dynamic data section growth, can be done at least two ways. First, the data

section can be expanded until it is as large as possible, then the shared memory segment

' Dynamic memory allocation is made with system call brk or altemate sbrk. Library functions malloc, realloc,
and calloc use brk and so also do dynamic memory allocation.

-
-I‘

AOh ACHCATRER 1 R R R LI - “n=AR
e, At Y e s S & LA



PAN

)

‘}

X, Y
ey @

~
> )'}'.'4'

)
1Y

(P N
.

i A

«“® s

LA
.

> :"_1.

.y

L4

4

o

-

W

¢ Ty o

e

L%

Ny

!

LIRS I - 7
O R
. A

can be attached at a valid location just inside this maximum value. While minimizing
application programmer effort, this technique requires many system calls to grow the
data section. It also has the fatal flaw of limiting the stack section, if the stack section
and data section grow into the same unallocated memory. Second, the application can be

required to prespecify the maximum amount of dynamic memory allocation it might use.

The solution adopted is adding a freespace parameter to the
sharedsegment function; and renaming it the dynamicsharedsegment function. The
sharedsegment function was retained for backward compatibility. The freespace
parameter gives the caller the ability to specify the maximum additional memory
required for the application. A request for this additional space is made before the shared
memory segment is attached. After acquiring (and freeing) the additional space, the next
available address is determined and the shared memory segment is attached to the next
valid address. We have now established the shared memory segment beyond the

specified growth of the application’s data.

When multiple machines are connected together, there must be a separate
shared memory buffer for each channel. There is no way to connect a second shared
memory segment. The solution adopted is adding a nummachines parameter to the
dynamicsharedsegment function. The nummachines parameter requires the application
developer to specify, in advance, the maximum number of channels that can be created in
the application. The first dynamicsharedsegment call establishes a shared memory
segment big enough for nummachines maximum requested channels. Subsequent
dynamicsharedsegment calls return the same shared memory id as the first; but return a
different address within the segment. Since the application does not directly access these

functions, there were no problems caused by this parameter list change.

29

> - .-
LN

o

s e e . .
PR RS L N Ry <

oty

T I UL U N R AL S L TR NG S
'\\.'{‘- '-‘r"" -J‘. " "~ " .




The shared memory functions are isolated from the application by the

machinepath, dynamicmachinepath, dynamicmachinepaths, and deletemachinepath

functions!5. For the direct connect protocol, each machinepath, dynamicmachinepath, or
dynamicmachinepaths call spawns both a send and a receive process. For the broadcast
protocol, these calls spawn only a send process (for the broadcaster) or a receive process
(for the receiver). In all cases, the spawned processes issue a sharedsegment call to
attach to the shared segment earlier created by the spawning function. A command line
parameter is passed providing the offset into the shared memory segment that the
spawned process is to use. Figure 4.4 illustrates a system with three machines and two
channels.
d. Buffering

(1) Direct Connect. When a receive process is quiescent, waiting for
the application to read from the shared memory buffer, anything sent to it is buffered by
TCP/IF. The buffering provides the reliable delivery promised by a stream socket. The
next read command will deliver up to LARGESTREAD bytes into the receive data area of

the shared memory buffer. Since the messages are variable length, there cannot be a
guarantee that only one message was read!”. Multiple messages might be in the shared
memory buffer. A partial message might be in the last bytes.

The shared memory buffer management is handled by the various

read functions!8 provided. Each read, requested by the application, is satisfied from the

'6 See Chapter 5, Sections A.1.b(1) and A.1.(3) for more information on these functions.

'7 The idea to pad all messages to some arbitrary size was considered and rejected. Whatever size was chosen
would aiways be too small for some character array. If the maximum Ethernet packet size was chosen, an unnecessary
network dependence would be introduced. The coat of application buffer management is considered acceptable, espe-
cially since it is incurred only on reads.

1® See Chapter §, Sect.on A.1.b(2) for more information on these functions

30

¥V ) o )% 197 ¥ v 5 ¥ o ¥ e S ot e e R e T N N e T e W P S S N e
D A e d i S e o e e S e L e e

"
w!

PRGN AT AN

A



N T Y AN e ¥ 5 dla dla" 4% e $7a % .‘l‘r § % gat N . gat v i et

shared mesory buffer |
e |
unallocated o TTTT T H Lo
g j.....-.ee:*..m?....... I
memory i E ------------ i receive port '|“-‘|:
] . TrmmmemmmmmmmmmmmToeeT ']
| Y
unallocated unallocated : ,E
K (
B, Data meaory memory f 'i !
[y I (] .
X Data Data | :
.
& Application send receive |
______________________ J
. — - .
: shared memory buffer | i
H . I U | )
unsllocated (oot TT T send port ":" E
; ! .
X memory E {—"-“"“-"""""“ .... receive port 4-}. E '
......... | ‘
: ' ' b ‘
: unallocated unallocated | :: |:
D) Data memory memory [ i 'E
(T
y o
: Data Data : o
A W
) 11 : ' E i
; Application send receive b
i
b
g
: shared memory buffer ‘,--_-_--__---—-1: send port i_'__|: i:
) R i
: [ shared memory buffer E - { receive port ‘ ,}_ 1 :s \
g ) ! ;oTTTTTTmTT e : 4 )
; unallocated :. --------------------- l: [cToo s ‘:““ send port f'__'l
U e 1 H = { ) .
memory ; i ‘ i ;1. receive port l—“-| .
q | { ¢ § T
i i ] |
unallocated unallocated unallocated unallocated : ;
S Data aemory memory memory memory | .
’ ]
A Data Data Data Data I )
< |
. . . | -
Appllcatlon send receive SeDd receaive l
- ey = = ————— ._—m-g-—L‘--z-m._ — L _ N
)
' @D Fthernet ) )
: Figure 44 Three-Machine Interconnection )
‘ Y
: )
- t
)
D 31 ,
v Yy
l. 1
\ N
4 )
N 1

T RN P Py
The NS oor

| 2774 e
o .ln.

RIS,

o, o
ERAN

CAL O
. ' v"

’f.. o fa "

2% AN 9§ o

WAT

Cp Y Ay

' Wi V) A\ & AR T, G g W W O C Wy & ¢, v v
o A R A Y S S AR VAT

B e "



SV

@ s
=

P I D I S i)

shared memory buffer. Remaining valid data is shifted into the low order positions of the

data area. The count of valid bytes, held in the message area, is decremented. The

‘
:§ shared memory buffer now appears as it would have, if it had only received the
":E remaining data and not the first message at all. As long as only entire messages are
" received (one or more at a time), this works well. When the TCP/IP buffer has more data
::?: than the data area can take at one time, however, the receive process deposits
'
‘? LARGESTREAD bytes in the shared memory data area. It is highly unlikely that this will
be on a message boundary.
: A socket read overwrites all data in the data area. A partial data
::.' reception must be stored and concatenated with bytes from the next socket read to get a
complete message. The protocol area was introduced to retain the protocol
:. information'? required to decipher the variable length messages. The count of already
’%g. received bytes of a message is held here between socket reads. A message’s protocol
. information is stored here, too. Protocol information is built up until complete (covering
E: the possibility that the break is in the protocol information itself). It is then maintained
; until the entire message is received and read by the application. The buffering works
| with data areas as small as four byteszo.
: (2) Broadcast. The datagram socket used by the broadcast protocol
k 3 preserves message boundaries. Bach recvfrom call to a socket returns only one message.
This message must be no longer than LARGESTREAD bytes. The shared memory buffer
E management routines are not needed.
¥
V4]

19 See Chapter 3, Section B.1 for a description of the protocol

e )

® | ARGESTREAD must be specified in multiples of four bytes. The smallest possible data area is therefore
four bytes.

X @ L

32

WY .
G

e Tw TR

. f‘. f.{ \'u-"-r""n";" lﬁ\'}‘.‘*\\ N"q.“J \‘ .
Bl B X D Ll DA AL MARE W R X o R

Pt p @ g ey ¥ wgv
R A e

ST
L2300 % X ,..., K Y \"'\"

AT PR AT A M N TR Y R AR Cw ~ Y A
ALY R LY hy Fot "‘“&i. R .‘!Q‘,



o

i‘n'..

I I B L R N W N RS T T U N U UV WA T I T T M T I N N I RN O T T S T I IO Y

TCP/IP keeps unread messages on a queue. This queue may not be in
sending sequence. If the queue buffer becomes full, subsequent messages are lost
[Ref. 21: p. 8-8]. The sending buffer can easily be filled if many messages are broadcast
in a short period of time. Each broadcast message must be processed by every host on
the Ethemet. Only then can the next be sent. No access for manipulation of the TCP/IP
sending buffer is provided because its size is normally specified during system generation
and is not easily manipulated by an application program.

2. Silicon Graphics, Inc. IRIS 3120

There are no required changes to the IRIS 2400-Turbo code. The Makefile
must be changed to remove the -Zf compile flag, since there is no floating point

accelerator board in this machine.

3. Silicon Graphics, Inc. IRIS 4D

The IRIS 4D required programming changes only to the shared memory
module, shareseg.c. The path name for user directories is also different. Changes were

necessary to the Makefile because the /usr/include directory structure changed.

The IRIS 4D is based on the MIPS RISC architecture. The UNIX
implementation was done differently than that for the Motorola 68020. Shared memory
segments are not attached to addresses within the data section, as illustrated in Figure
4.5. They are attached at a much higher address, yet accessing them does not result in a
segmentation violation. This is a more robust technique that obviates any manipulation
of attachment addresses. Multiple shared memory segments are easily attached, using
default system calls. The sharedsegment call suffices, even when dynamic memory
allocation is needed. To maintain backward compatibility for application code,
dynamicsharedsegment calls sharedsegment, ignoring the freespace parameter, when
compiled on an IRIS 4D, and calls attach_within_datasegment when compiled on an

older IRIS machine.

33

[, v ) o . . R R T T - -t A"
! ] n,, ! ' 0 L g o) / r %) v , S . L SR )
4 2 . "' oo N ,l » .!".J !t'..'.‘ » l‘.oh‘:’l‘. !:‘. ) .‘I Y !.l o !.l " !.s b \ Py % ‘-"' “- v W “".‘l‘. '.\ﬂ ! < :

L A Y Fide Ut Nl Ut o om N o Mo Pt

My M~y _a -

P pr——ar

- -

XA o

)
\]



Unallocated Maximum Unallocated
Data
Available Section Available
Address
Memory Memory
Data Section Data Section
Code Section Code Section
Before After

Figure 4.5 IRIS 4D Default Shared Memory Attachment

C. 4.3BSDUNIX

The netV.c file functions properly on a 4.3BSD machine that is connected to only
one network. The start_broadcast function does not properly handle multiple networks.
The other functions work correctly, even when the machine is connected to multiple

networks.

All other functions depend upon semaphores and shared memory for

communication between the spawned processes and the main application. Stream

sockets?! could be used to provide the IPC between these processes under 4.3BSD. The

3 Unidirectional stream sockets are equivalent to pipes.

34

-
(4

LR Y o S T T o ST I A
N o YR R N S H R R



0 three channels?? used will have to be multiplexed into one, but the implementation is

otherwise straightforward.

K D. LISP MACHINES
t The communication code is a flavor to be mixed with the application [Ref. 11]. The

Explorer software is syntactically equivalent to Genera 6 on the Symbolics. With a

b0

',: simple change in the sequence of method and flavor names, the Genera 7 code runs on
M)

" the TI Explorer. The older flavor, originally developed for the Explorer, is also presented
-'2 to illustrate working directly with TCP/IP instead of using a stream.

)

',E: 1. Texas Instruments Explorer I

1
This older flavor works with Release 1.0 of the Explorer TCP/IP software. It
. will not work with Release 2.0 as the implementation was changed from blocking to
)

)

:: non-blocking [Ref. 27].

H)

¢

o+ Messages to the flavors in the ip package are made together with messages to
;;': the tcp flavors. Network-independent addressing is not used. Table 4.5 describes the
) addressing schemes possible [Ref. 28: pp. 4-2—4-3]. Class C addressing is used by the
W
" Computer Science Department. Figure 4.6 shows the simple encapsulation of the
w addresses for irisl, iris2, and iris3. Extension to include other machines is easy.
l
198 Table 4.5 INTERNET ADDRESSING CLASSES

oy
® No. No.
::' Class Networks Hosts
" A 128 | 16,777,216

~ B 16,384 65,536

C 2,097,152 256

:' 2 These are the semaphore, the message areas of the shared memory buffer, and the data areas of the shared
': memory buffer. The first is unidirectional from application to spawned process. The second is bidirectional and three
k) state (see Table 4.3).
@
L}
i 35
"
o,
v
@

N

.;l

0 AL A, A 2 W LY SRS
e, ".-".o".o".o X e nly NSt AR AL AN A TR RO RN M .o'l.o NN NN AR G oi.c l.o ; font b S J" 5,




L avé atH L gty avE et QURT AR (VN uIdL VA ati piR aVA RTa avi atl A PR URT R ava  taabh 0t p a8 VS aVh at0 ebd ath a0 P AtE M A E A E a%0 2" atB ate a¥A at 78 0L ol8’ald"

(defvar *irisl-address* 3221866502)
! (defvar *iris2-address* 3221866504)
(defvar *iris3-address* 322186650S5)

(defvar *dest-address* nil) ; the tcp-ip or internet address
i i look in network configuration

(defun iris (x)

'~

ﬁ (cond ((equal x 1) (setq *dest-address* *irisl-address*))

d ((equal x 3) (setq *dest-address® *iris3-address*))

{ (t (setq *dest-address® *iris2-address*)) ) )

"

K Figure 4.6 Encapsulation of JRIS Addresses

K}

?

\

:: A port is acquired by using the :get-port method of the tcp-handler flavor.
)

0 Here, shown in Figure 4.7, we use the global instance, "'tcp-handler"'23 to create specific
@

_ instances of the Transmission Control Block (TCB) for each of the two ports. Only the
t

o client side of the server/client paradigm has been implemented. The client is created by
e, using the :active mode argument to the :open method of the tcp-port flavor. Both the
o sending and receiving ports are full duplex, but are only used in a simplex mode. Figure
1

J . .

:o' 4.8 shows the creation of the sending port [Ref. 28: pp. 4-12—4-18].

L)

)

0 The three fields in a message are sent and received separately. Each field is
:; then treated as a separate object. Figure 4.9 illustrates sending a message. For all fields,
b

:: the urgent argument is specified as nil. The push argument is specified as nil until the
b

®

x (defvar *tcp-handlerl* (send ip: :¥tcp-handler* :get-port))

ﬁ (defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))

x

i . . s

< Figure 4.7 Lisp Port Acquisition

@

- B The double : allows the tcp-handler to be found, since it was not created “exportable” in the Ip package.

n

3

;? 36

K

‘l

'I

A

- -
.- -

Attt e R L AR R G AR R S T R P N A AT R A AT

=3



J-P
*h
Ky
]
'i
e
¥
At
(send talking-port :open A
:active ; tcp will begin the procedure to establish ¢
; connection (default vs :passive) l.;
talking-port-number ; port number of destination host _!!-
destination ; machine name or address if blank and :g
; in :passive mode local machine waits for "
; connection
30 ) ; set max seconds before read request times out e
W
. . . . . ~
Figure 4.8 Opening a Lisp Client Connection )
.r‘_‘r
4
"
(progn |'::
(send talking-port :send ::0;
typebuffer \]
1 !
nil
nil ) 24,
(if (= (length lengthbuffer) 4) R
(send talking-port :send a;:
lengthbuffer !
4 el
. t
nil X
nil )
(progn o
{loopfor *loopvariable® (length lengthbuffer) 4 2‘
(send talking-port :send "0" 1 nil nil) ) ¢
(send talking-port :send lengthbuffer (length lengthbuffer) nil nil) ) ) f&
(send talking-port :send %)
buffer _\ ,
buffer-length '
t
nil ) ) "
:..
Figure 4.9 Sending a Message ~
it
LJ
data buffer is sent, when it is specified as t. The entire message is thus sent as a unit to ;'
N
. .
the other machine. -
AIv
"
2.  Symbolics 36xx N
Genera 7 syntactic conventions are followed. The principle difference with ‘
~)
Genera 6 conventions is in the defmethod function. In Genera 6 (and the TI Explorer), N
L
the method name follows the flavor name. In Genera 7, the method name precedes the -
o
37 )
:\
y
W,
L
XA
U
i
W

. . N LU . - . . " f 3
KO -'l'.'l':'t'.'s':'i‘- QSO AT e t‘v’l‘l‘!‘l’ '!'ﬂf‘.'. .o.t, 'n | > W‘ A u"'c'?‘n'. ‘!’o‘!‘o’o a‘. ! o My A .l!‘.l. .’.l.; o'o‘e'o'. u'!‘u't'-'!‘:*



flavor name. Figure 4.10 shows the difference. It also shows the other main difference

with the earlier code, that streams are used. The use of streams improves portability and

eliminates the need for the :reuse-iris method®*. It may be slightly slower, but any

difference has been unnoticeable.

Another change was to remove the dependence on hard-coded addresses. The
method :init-destination-host was added to the conversation-with-iris flavor (see
Figure 4.11). By using the net:parse-host function, the application need only know the
name of another machine. As network tables are updated, no change to the application

code is necessary unless a different machine is desired.

(defmethod (conversation-with-iris :stop-iris)

Q)
(progn (send talking-port :close)
(send listening-port :close) ) )

Genera 6

(defmethod (:stop-iris conversation-with-iris)

O
(progn (send talking-stream :close)
(send listening-stream :close) ) )

Genera 7
Figure 4.10 Genera 6 and 7 defmethod

(defmethod (:init-destination-host conversation-with-iris)
(name-of -host)
(setf destination-host-object (net:parse-host name-of-host)) )

Figure 4.11 Generic Host Addressing

% The :reuse-irts method is retained for backward compatibility.

38




E. SUMMARY

For UNIX-based machines, generic routines are developed for semaphore use,
shared memory use, and socket use. The socket routines use both stream sockets and
datagram socke:: in a simplex mode to provide directly connected client/servers and
unconnected broadcasting communications. IRIS 2400, 3120, and 4D systems are fully

supported. 4.3BSD systems are supported with mid-ievel suckcet calls only.

For Lisp machines, stream-based functions are available for direct connection as

clients only. These functions are available directly if using Genera 7 syntax and with

minor modification 1t using Jenera 6 syntax.




AU NN O SR PO TN " o8 P 0ad 2aF gat _Nad gad @ I WPIY PR IR T W all

.3 !
A
.
]
'
{]
-8
]
V. USE BY APPLICATIONS i
.t
A. INTRODUCTION 3
The application using either direct connect or broadcast protocol is not concerned A
with system-level implementation details. Almost all aspects of shared memory, ‘
semaphore, and socket use are hidden. The number of other machines to be connected '
to, the use of dynamic memory allocation, and the names of the other machines are all
that concern the application in setting up a connection. The synchionization, or lack f
'
Jereof, in communication between machines is a design decision, not a protocol .:
decision. :
¢
B. DIRECT CONNECT d
A UNIX-based machine can be either a server, waiting for a chieat to call and b
establish a connection, or the client. A Lisp machine is always a client. 3
)
1. UNIX-Based Machines A
Y
. . . . I ‘(
The functions provided for UNIX-based machines are all written in C. They
must be linked into the application program using them. Figure 5.1 is an example make by,
file for creation of an application program on an IRIS system.
R
There are two independent processes, send and receive, that are spawned to
create the sockets and monitor them. They are made separately with the makefile® )
. . . . A l
contained in their subdirectory. N,
o
Y
I
e R »
r 3
™ See Appendix A ‘:
[
3
40 O




- - e e

CFLAGS = -Zg -Ilm -g -p
SHARE = /work/barrow/sharel/
MAIN = carsimu.c

OBJS = First group of .o files

;‘: OBJS1 = Second group of .o files
)
;: OBJS2 = Third group of .o files
¥
': OBJS3 = $(SHARB)io_single.o \

$(SHARE)mpath.o \
N $ (SHARE) semaphore.o \
9: $(SHARE)shareseg.o \
:g $ (SHARE) support.o
;: OBJS4 = Fifth group of .o files
i
carsimu: $(MAIN) $(OBJS) $(OBJS1) $(OBJS2) $(OBJS3) $(OBJS4)
¥ cc -o carsimu $(MAIN) $(OBJS) $(OBJS1) $(0BJS2) $(OBJS3) $(OBJS4) $(CFLAGS) -lbsd
S $(MAIN): const.h vars.h
)
! $(OBJS): const.h vars.h
» $(UBJS1): consi.h objects.h
¢ $(OBJS2): const.h
b $(SHARE)mpath.o: $(SHARE)shared.h
W cc -c -0 $(SHARE)mpath.o $(SHARE)mpath.c $(CFLAGS)
[
A $(SHARE) support.o: $(SHARE)shared.h

cc -c¢ -0 $(SHARE)support.o $(SHARE)support.c $(CFLAGS)
[ $ (SHARE) semaphore.o:
Q cc -c -o $(SHARE)semaphore.o $(SHARE)semaphore.c $(CFLAGS)
{
: $(SHARE)io_single.o: $(SHARE)shared.h
cc -c -0 $(SHARE)io_single.o $(SHARE)io_single.c $(CFLAGS)

$(SHARE)shareseg.o:
.; cc -c¢ -0 $(SHARE)shareseg.o $(SHARE)shareseg.c $(CFLAGS)
. Figure 5.1 Sample Application make File
v
o
o a. Application Setup
Y The server process must be started first. The application can set up the
D
: communications paths as part of initialization, or it can do so only in response to a
X
A 4
1
®
¢
¢
.0 N
LN A N L R R P T Yo S LR g KR T R e A ) RS,

) R A A s T P
( y .- x-g—- ) .l,'




specific operator command. In either case, there will be two messages retumed to the
terminal for each direct connection setup. Figure 5.2 illustrates a normal, single
connection, response. Since the receive and send processes that provide the messages
are independent, the two lines shown may be jumbled. A variety of errors can occur at

this point. Table 5.1 gives the most common error messages, their cause, and solution.

Server waiting to connect to name
Server waiting to connect to name

Figuic 5.2 Nommal Server Response

Table 5.1

SERVER ERROR RESPONSES

Message

Cause

Solution

Server couldn’t open a local socket:

Socket in use due to previ-
ous run not temminating
with deletemachinepath

Run ps. Use kill to ter-
minate any receive or send
processes still unning

Server couldn't bind address to local socket:

Socket in use due to previ-
ous run not terminating
with deletemachinepath

Run ps. Use kill to ter-
minate any receive or send
processes still running

shmget: Permission denied

The shared memory seg-
ment already exists, but is
owned by another uid

Change key in
machinepath call, recom-
pile, and rerun

shmget: Invalid argument

The shared memory seg-
ment already exists, but is
too small because the value
of LARGESTREAD has
been increased

Run rmshare and rerun ap-
plication

shmat: Permission denied

Someone else’s send or re-
ceive process is being
spawned

Outdated software is being
used.

Check that proper path is
used in shared.h, for
spplication’s include of
shared.h, and in
application’s Makefile.
Correct and recompile.

Ensure that all modules are
the most current. If some
are not, get updated
modules and recompile—
especially send and re-

ceive,

R A S S A

Sl

42

by LAt "\-Qi L L N e SO AL S

- .
o >

hd

b % s,

CR AN

Sy

2

v

. 7

X

)
",a

A
-

LR 0 30 T I

5] @ 7Ll

IT{I"



REELEAN R YO N AR NN K KX R Bat 06 1V a0 §0% Qa¥ ot Ra® Bal 27 02" ol Ba¥ B0 v §oU §ut 1% §.0 §o6 Ga¥ Q¥ a0 §ou §u¥ (a8 620 0a¥ (0* 800 gt 26 gav Y §2" 02" 02" 03", da".
® WY S . - W W W

The client process must not attempt connection until after the server is
properly running (the messages in Figure 5.2 have been received). The application can
set up the communications paths as part of initialization, or it can do so only in response
to a specific operator command. When client communications setup is part of the
initialization, care must be taken to wait for a ready server before starting the client. In

cither case, there will be two messages retumed to the terminal for each direct

connection setvp. Figure 5.3 illustrates a normal, single connection, response. Since the
receive and send processes that provide the messages are independent, the two lines
shown may be jumbled. A variety of errors can occur at this point. Table 5.2 gives the
most common =rror messages, their cause, and solution.
b. Coding Practices

(1) Connection. Making a connection requires two acts. The first is to
set aside space for the data required. Figure 5.4 shows this code when local declaration
is used. The Machine structure can also be declared globally. The second is to request
the connection with a machinepath, dynamicmachinepath, or dynamicmachinepaths
call. Table 5.3 compares the three types of call, while Figure 5.5 gives a server example
for dynamicmachinepath. A description of the parameters used is in Appendix A,

Section 2.a.

For flexibility, there is often a requirement for command line

specification of the machine to be connected to. Por ease of use, there is often a

Connection established with name
Connection established with name

Figure 5.3 Nommal Client Response

43

..". .-11- N LIPS

W
AT S T TR LV

-t
v

PN YIRS

o, o

W Pyt
DA Vi By

& e

W x v a_a



": » N + LRI AR 1 J 1, U \ v 4 N \! \1 ., (} Y - .‘-u.. < ..». Yy
i.ﬁ
J..
i
'
i'a
@
S
A
o
W
oy
y‘. Table 5.2 CLIENT ERROR RESPONSES
[ X
Message Cause Solution
)
:% Client couldn’t open a local socket: Socket in use due to previ- Run ps. Use kill to ter-
0:: ous run not feminating minate any receive or send
3 . s . .
K with deletemachinepath processes still running
:q Client couldn’t connect to the remote server socket: The server has not success- Terminate client, restart
o fully started server, restart client when
server started
R
K The port numbers used by | Correct, recompile, and
\ client do not correspond to rerun
::: those of server
X shmget: Permission denied The shared memory seg- Change key in
B ment already exists, but is machinepath call, recom-
owned by another uid pile, and rerun
] shmget: Invalid argument The shared memory seg- Run rmshare and rerun ap-
.! ment already exists, but is plication
K too small because the value
5 of LARGESTREAD has
I, been increased
@ shmat: Permission denied Someone else’s send or re- Check that proper path is
x;. ceive process is being used in shared.h, for
:!| spawned application’s include of
3. shared h, and in
application’s Makefile.
:' Correct and recompile.
* Outdated software is being | Ensure that all modules are
used. the most current. If some
o are not, get updated
e modules and recompile—
: especially send and re-
) ceive.
\9 #include "/work/barrcv/share3/shared.h"”
»'
N .
main(argc,argv)
. /“‘“‘.“““.“*.“‘#*“t“‘..##t‘l‘“#tt‘tt‘!.“#“‘!“‘ttt“
»
] LOCAL DECLARATIONS
‘U‘#..“‘t“0"#‘#“.t‘t“““‘.“t“‘tt‘lt‘t“t‘l“tt‘t.t"““/
¥ Machine cardriver; /* structure for conmmunications system */
o . . .
. Figure 5.4 Creation of Machine Structure
L
N
1
. ]
&
y) 44
"
"
o
@ '
4
[}
‘ - c . P yoe e, - B
.& a0 . ,\-,/».,,'_,.,-Af-‘.,J,'\-,:-'-;.__-. —.-,:,_-,.:,,_:;,:.-_".-;f.:.-.:;.-.'«_;.»_:.:_;.-_;f,'.'&f\r_ Caln 0 Y ) r L VLA L R UL P P



PRTCIRCIE gy

% fer Gad

e dad fgv

R AR A LA AR AR RN S 08 0 B b Rl ’ “ata'dte‘die-Ala R tn A el b,

Table 5.3 PATH CONNECTION

Function Purpose
Creates a link between two machines
machinepath No subsequent dynamic memory allocation al-
lowed

Creates a link between two machines

dynamicmachincpath Subsequent dynamic memory allocation allowed
Creates a link between two machines
dynamicmachinepaths Subsequent dynamic memory allocation allowed

Multiple calls provide multiple links to one or
more other machines

main(argc,argv)

/‘t"t"t.0“‘t'tt“#‘““t‘Ot‘O"t‘."tttt#““‘ﬁ“t"“t““

SYSTEM INITIALIZATIONS

t#“tﬁ‘tttt##‘t‘Qtt#t""*&tt#‘tt‘t‘.#.t“‘#0““##!““““‘/

/* Open up the net path to other machine (iris3 default) */
dynamicmachinepath(2,other_machine 4,5, "server” &cardriver,2000000);

Figure 5.5 Server Creation

requirement for a default specification. Figure 5.6 illustrates one way to accomplish this
for a client. This example does not require that the network alias be defined to the
system as it uses the complete address. The user, however, only enters the alias.

(2) Program Use. The simplest high-level communication paradigm is
reading from and writing to the other machine. It closely parallels handling files and

terminals in C. It was chosen for these reasons.

Twelve high-level functions are available. Four provide status
information, four write to other_machine, and four read from other_machine. Table 5.4
describes these functions. The parameters used by these calls are described in Appendix

A, Sections 1.a and 9.a.

45

LAt A A e A A AT AT T Tt A "
A A NS AT TR AT R VY

AR R FE X b i N



T Y LR TR oWy oY [T yays 2 Vo iptaid a¥f et Mi o ¥R ol et -e? ? 9’ a¥ ¥ abR-a¥h avv aid atn g¥s o0H ath af

‘fN:%f$f5fﬁm o

- g g 5 o avh a¥h oFf gth ot Q TNy

main(argc,argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

/‘#‘ttt‘#tOt"O#O‘t“t.‘tt.t."..‘0“‘.“““0#‘.‘.#“‘.0““‘

DATA DECLARATION

t...t"#O‘.‘O#*#t"Qtt‘0#‘.&“0"“"“""“‘“‘.“"..t“.t/

char other_machine[50]; /* name of other machine */

/t##t#“t#‘t.‘tt““#"tt.#tttt““ﬁ..““#“‘t“‘“t“t“.‘t‘

SYSTEM INITIALIZATIONS

#“‘t‘tt‘t‘tt‘t.“‘.t“‘“###‘t‘ttt‘t‘0“““..0“‘00“#“#“/

/* pull out the string from the argument list */

if(arge > 2)

{
printf("NAV: incorrect argument count! use nav <alias>\n");
exit(l);

/* pull out the name of the other string, if it exists */
if( arge == 2 )
{
strcpy( other_machine, "npscs-" );
strcat( other_machine, argv{l] );
)
clse
strcpy( other_machine, "npscs-iris2" );

/* Open up the net path to other machine (iris2 default) */

dynamicmachinepath(2,other_machine,5,4,"client” &car,2000000);

Figure 56 Command Line Direction for Connection

There is a variety of ways to use these functions. Figure 5.7

illustrates a typical scenario. This code is from the display station of a two-workstation

driver simulation. The display station provides its status (that of the “world”) on each

pass through its graphical display loop. The control station must read that status on each

pass, to update the vehicle position on its track diagram. On each pass, the display

station checks to see if any commands have been received. This is an asynchronous

communication, as the display station continues with or without a control station

46

.'fxz\'f‘-;:h'-;.-".-',’J'~".-I“'1’.‘$-f‘-f~:f‘f~ﬂ' o . f.'!(' L2 'l\f\ *‘-\J\\
! . A ol 4 SLat all o P g B i M LR o Mo o N b X ) [ W M Y M

3

._w-,;-._\.-\.\;\. ;.;.:.x,; ..\'_ .1_;.(- -~
; A A S N T

o~y

)

- - o

IC I SR =]

K2R PR oty i s 1’7.

.-

C e € 9 x

d
e e x @



command. The asynchronous reads are guarded by a receiver_has_data call that detects
arrival of a message. Other receiver_has_data calls are used to “busy wait” for the next
message. In practice, it has not been necessary to include any but the first “busy wait”
receiver_has_data call. TCP/IP buffers messages when they are not immediately read.
It then blocks them into the largest grouping possible and delivers them when the next
read occurs. The LARGESTREAD defined constant in shared.h determines this
maximum grouping. The first message is read by receive. The socket is then ignored
until the application reads the data. During this time, the other messages have all been
sent and buffered by TCP/IP. There is a slight delay between the time the first message is
read and the block containing all the rest is read. Thus the necessity for the first “busy
wait” receiver_has_data call. The other “busy wait” receiver_has_data calls are simply

for robustness.

The “busy wait” sender_is _free call determines if something has
happened to the other machine or Ethernet. The fizst write will always succeed, as it goes

to a buffer. If there is a communications problem, TCP/IP will not accept it and the

Table 5.4 COMMUNICATION FUNCTIONS

Function Action
sender_is_free Retums TRUE if a message can be sent.
receiver_has_data Retums TRUE if a new message has been received.
received_type Retums a chamcter indicating the type of the message. CHARACTER_TYPE,

INTEGER_TYPE, and FLOAT_TYPE are pnedeﬁned. CHARACTER_ARRAY_TYPE,
INTEGER_ARRAY_TYPE, and FLOAT_ARRAY_TYPE are predefined.

number_received Retums an integer indicating how many elements in message.
write_character
write_integer
write_float
write_characters
read_character
read_integer
read_float
read_characters

Send a single value of the type to other machine.

Move single value of named type from buffer to application program storage.

47




AT IT PR U UR YL AU LA UGV USRI LU SO RS RRE Pa b a® Vol Nl Mal Wah R v B 6,0 g AN NN

P

main(argc,argv)

o -

. -
PN

/““t“..t#‘“".“"t".O‘t“tttt.t“.“‘#t“““‘t"tt““‘

MAIN SIMULATION LoOP

ttt“tt“t‘“‘.“‘t‘.““...t“‘tt“tt't“‘.‘.t‘.“‘t.t..“#‘/

-

)

¥ while(vehicle.conmand.condition != DONE)

)

\ R R T R L A A L R R LI LT R e T L
Get conmmands (if any) from navigator. Commands are all sent

K or none are sent so no information is needed as to which value
is w*+ich,

,‘ .t“t‘t‘.".“‘#‘."ttt"ttlttt"ltl“‘.“““‘t“‘#“‘.““‘./

i' if( receiver_has_data( &cardriver ) )

N {

q read_integer(&cardriver, &vehicle.conmand.condition);

. while( freceiver_has_data( &cardriver ) ) /*printf("1")*/;

K read_integer(&cardriver, &vehicle.conmand.brakepedal);

A while( lreceiver_has_data( &cardriver ) ) /*printf("2")*/;

N read_integer(&cardriver, &remote_mousex);

B while( lreceiver_has_data( &cardriver ) ) /*printf("3")*/;
1 read_float(&cardriver, &cmdapeed);

A
| R L R L L R LR R L]
Report afl status information to navigator every cycle.
. t.t‘l.“i‘..“‘#""‘."““t‘t‘t.t“t“ll“““““““‘.“t‘.t/
write_float(&cardriver, &vehicle.state_vector[1]);
' while( !sender_is_free(&cardriver) ) printf("b");
‘ write_float(&cardriver, &vehicle.state_vector[2]);
write_float(&cardriver, &vehicle.state_vector(3]);
write_float (&cardriver, &vehicle.situation.distance_traveled);
write_integer(&cardriver, &vehicle.command.condition);
q write_integer(&cardriver, &vehicle.command.brakepedal);
L write_integer(&cardriver, &vehicle.situation.lightcolor); >
)
;
A } /* while loop */
q
»
V
)
¢ ] /* main */
p Figure 5.7 Synchronous Write / Asynchronous Read
4
48
]

R T A R ey R A T T S Lt A L T SR



RN R RIT R TR R R RIS IO IR AR R R X7 RS RN RN ROV RO R R RO RO R O O O T e o 3 ool W Sl 2B

o g

i

sender _is_free call will return FALSE. This often occurs when there is a delay by the

: ) client in connecting to the server (the display station here). If there is a good connection,
A . ,

N TCP/IP will accept and buffer all input. No other “busy wait” calls are needed. The other
[\ .

:‘ side of the communication is shown in Figure 5.8.

4 (3) Disconnection. Termination, with a deletemachinepath call for

1 each path opened, is mandatory. If not performed, the sockets (and shared memory

" segment on System V UNIX machines) will not be retumed to the system. Problems?®
41: may then occur on the next run. Figure 5.9 is an example termination when multiple
E paths have been opened [Ref. 11].

: 2. Lisp Machines

’ All necessary functions are contained in a single file. This file must be loaded
' before use. Figure 5.10 is an example. A Lisp machine is always a client and is started
; second. Figure 5.11 illustrates the message returned with a successful connection.
v Unsuccessful connections “hang” and return nothing.

‘ a. Connection

! The address of the server and the ports it is using must be specified.
. Figure 5.12 shows the ports specified as part of the loaded file. When using the older T1
: Explorer functions, the addresses are specified in the same way (see Figure 4.5) and then
'3 the machine desired is requested by number®’ (shown in Figure 5.13). When using the
! stream-based functions, the addresses are not specified by the user at all. The network
';, tables are accessed, by host name, through the select-host function provided (shown in
" Figure 5.14). Once the instance of conversation-with-iris flavor has been completed
J  See Tables 5.1 and 5.2

-

. 71 A throwback to connection only with different IRIS machines.

o "
'::

" 49

L '

) . W W W W o ™ PR P . PR PR I " etk "A " a"N" -
A l"l‘o‘l‘-l‘t‘l el " - v '( A'f o "ﬁ'- " " -""'"" > Vo L o ok " -"‘“\x""ﬂ." '.' ‘ n 8 y ‘.‘ ',. \ F';'r!\'m



PN N x

main(argc,argv)

while(condition = DONB)

/““‘O‘O.‘#“‘t"t.‘tt“‘itttt“.t““‘t‘t.‘##‘.‘.“tt““#“l

Receive all status information from car every cycle.
LR T T T R e A AT T DL S LR L R L AL A LY

while( lreceiver_has_data( &car ) ) ;
read_float(&car, &cy);

while( !receiver_has_data( &car ) ) ;
read_float (&car, &cx);

while( !receiver_has_data( &car ) ) ;
read_float(&car, &velocity);

while( !receiver_has_data( &car ) ) ;
read_float (&car, &rdistance);

while( !receiver_has_data( &car ) ) ;
read_integer(&car, &condition):
white( ireceiver_has_data( &car ) ) ;
read_integer(&car, &brakeposition);
while( !receiver_has_data( &car ) ) ;
read_integer(&car, &lightcolor);

/“#.....#‘##t.tttll#.t'.#t.t#ttttt#ﬁ*.ttO“*'t‘t.t“‘t‘tt‘#“t

Send commands (if any) to car. Commands are all sent
or none are sent 8o no information is needed as to which value
is which.

“".“‘l'.lt“t#.#"““‘*#!..t‘tit‘t“ittttttt‘ttt't‘.t“tt‘tt#/

[
n]

-
-

§ - -
-

if(anything_has_changed)

{
anything_has_changed = FALSE;
write_integer(&car, &condition);

»

'( while( lsender_is_free( &car ) ) printf("a”) ;
L8 write_integer(&car, &brakeposition);

f: while( !sender_is_free( &car ) ) printf("b") ;
5 write_integer(&car, &mousex);

® while( !sender_is_free( &car ) ) printf("c") ;
A write_float(&car, &cmdvelocity);

} /* if(anything_has_changed) */

X

‘ .

¢ } /* while */

PY .

Y .

5 .

1 } /* main */

o Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write
@

/

Pl

' 50

7

o

»
@

- »
W - SAAAIAN

b A s L B W) O Y O WU T AT S A
LW O Y LY ‘( N ,'~0.'._‘o O .p.o 1% by

-

"

N g
\ ‘p N, .y " .r W%,



e v s a R i a” Kt a At Wat e Bt 008 fa¥ Bab gt Gat gatiiu g%y "2 849 ¢¢a 8% va AV §%a 4Va At VAR aB el o) vat val wah Aa® Al Sat wad ket ¢ub 0"

4 deletemachinepath(&TI);

'y deletemachinepath(&SYM3);
" deletemachinepath(&SYMI1);
& ) dclctemachinepath(&SYM4);

it exit(};
' ]
(» Figure 5.9 Connection Termination

K} ;3 this is the conmunication package
X (load "irisflavor”)
¥

Figure 5.10 Loading Lisp Flavor

"A conversation with the iris machine has been established”

Figure 5.11 Lisp Connection Message

-

0

L)

4

K

. (defvar *irisl-portl* 1027) ; this is the send port

(defvar *1risl-port2* 1026) ; this is the receive port

%

4 Figure 5.12  Setting Port Numbers with defvar

o

? 3
o
D
)

i+ get the network going

(iris 1)

(setq *battle* (make-instance 'conversation-with-iris))

(if (y-or-n-p "start networking 7") (send *battle* :start-iris))

s Rl

Figure 5.13  Specifying Server in Lisp

]

@

[}

0

)

M) 51

¥

K

"

@

1)

[}

v

T T R T T T Ly T D T T L T T LU LY R TEOTS S Ly s AN AN R R S S SN
'. W "('" "- X J‘-‘!' e L T A " e U LN LA -‘u.v‘. e '.‘b"!‘l‘-l‘.l‘-l. ..‘. s Py




D e o o~

—

By

\*’\

n 1% 8% 74 Wp

R TR LA T T U U R L ATV AR R I R LA LU UW TARATUR OO R X Sl valt

(select-host iris2)

Figure 5.14 Specifying Server by Name in Lisp

with port numbers and host addresses, the connection is established with the method
:start-iris, see Figure 5.13.
b. Program Use
The method :get-iris returns with the object sent by one message. The
method (:put-iris object) sends the object as one message. Figure 5.15 illustrates both.
Note how methods are added to flavor conversation-with-iris to simplify the
application interface even further. [Ref. 11]
c. Disconnection
Disconnection is accomplished with the method :stop-iris, shown in

Figure 5.16.

C. BROADCAST

Only UNIX-based machines support our broadcast protocol at this time. It is a
unidirectional protocol, but nothing prevents the establishment of two unidirectional
channels in opposite directions. Using two broadcast channels to emulate a direct
connect channel, however, loads all other machines on the network by requiring every
other machine to process each message. It is also less reliable. Broadcasting is good for
sending status information to many other machines, as long as those machines can
tolerate missing reports.

i. Similarities With Direct Connect Protocol Use

Using the broadcast protocol is similar to using the direct connect protocol.

The same functions are used in the same way. Each connection must set aside space as

52

- 30 N SR

19

1

B S e o A VY i et R/ i M1 N K A W A P i X s T
W AV, X X 8. e, A X o X B i Tiie Code S Miie M RN U Ny Ry My o N Xoa Mo P

WY AT,



O Ry

i+ definitions:

HHH object: "n" name : character "1" .. "S§"

HHH x x coordinate: real

HES y y coordinate: real

Vi z 2z coordinate: real

HH apd speed: real speed of vehicle -10.00 to 25.00
HHH dir direction: real compass dir in degrees from GN
AN in lisp ("n" (x y z spd dir))

135 get an object in graphics environment (defined as above)

(defmethod (conversation-with-iris :object)
()
(makeob)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris)
(send self :get-iris) ) )

iy, vision returns a list of objects in the tank’s field of vision (100m radius)
iy this is effectively an association list

(defmethod (conversation-with-iris :vision)
(tank)
(let ((field nil)
(n-objects 0) )
(progn (send self :put-iris "V")
(send seif :put-iris tank)
(if (equal "V" (send self :get-iris))
(progn (setq n-objects (send self :get-iris))
(dotimes
(x n-objects field)
(setq field (cons (send self :object) fieid)) ) )
(progn
(print "iris did not respond to the vision conmand sent from ")
(princ "tank ")
(princ tank) ) ) ) ) )

Figure 5.15 Application Communication in Lisp

in Figure 5.4. The same criteria for using a specific machinepath call apply (see Table
5.3). The same communications functions are available as in Table 5.4. Each

connection must be terminated as in Figure 5.9.

53

AT A e
St AR IO

.y e P
¥ OIS
Ku X

[ L)

" '\ .l;_\

Nt e T e o S T '.','.:_\:,\','\" ._:_.\- v
™ n



2 o

- -

Rt

[ e

- -
" f

R a@otads¥al AR ARE A Vol Yal el €af u Vel o und 2@ a0 Ll ' L0 .0 BB D 25 A AN A Y 4 058" 292’ a2 ek a4’ o Byte e,

(if (y-or-n-p "stop iris connection 7") (scnd *battle* :stop-iris))

Figure 5.16 Termination of Communications in Lisp

2. Differences With Direct Connect Protocol Use

a. Application Setup

The broadcast protocol is not directly modeled as a server/client
relationship. The broadcaster broadcasts to whomever is prepared to receive. The
receiver must be ready and so must be started first. Since the broadcaster is more similar
to the server in a server/client model, this connection order seems exactly backward. No
erxti will rosult if the broadcaster starts first, messages will simply not be received. The
receiver message is shown in Figure 5.17. The broadcaster message is shown in Figure
5.18. When a direct connect channel is also required between the same two machines,
achieving proper startup order is easy. Establish the direct connect channel first, then the
soon-to-be broadcasting process sends a message telling the recciver to start up. Once

started, the receiver process sends a message permitting the broadcaster to start.

ready to receive from broadcaster_name

Figure 5.17 Normal Receiver Response

Waiting to broadcast

Figure 5.18 Normal Broadcaster Response

54

T DR 0 S 3 N > R g - NN NS

AT S LN




b. Coding Practices
The parameters to the machinepath family of functions are used
differently for the broadcast protocol. All are required to be present, but some are
ignored (see Table 5.5). Since a broadcast channel is unidirectional, the receive_type
application calls are meaningless to the broadcaster (the receiver_has_data call always
returns false). The send type application calls are meaningless to the receiver (the

sender_is free call always retums false).

D. SUMMARY

Using the same functions, an application can either broadcast or directly connect to
another machine. The same steps of setup, connection, use, and termination are common
to both protocols. Care must be taken in the timing of the two (or more) machines setup.

After that, an application merely reads or writes data.

\.-.r.ra_\'_-:a.r‘r".f.r.r.-‘\*.r.rre‘-“ ‘.r.-.--'-r
)

’\_."s".:"'~. oy LA

If-l'-"-" ..‘.\‘.\{'

o \-t'. 0y R



. T p e ar B MR R AN TR T L A R N AN RN T AN AN R A R A R AR AN AR A RA TR WA T W WAV WU WU Y W Uy U

' Table 5.5 MACHINEPATH PARAMETERS
: Function
Parameter 5 ; 5 ; :
machinepath J dynamicmachinepath dynamicmachinepaths

Number of channels that could
be created by application. This
includes both DIRECT CON-
NECT and BROADCAST chan-
nels.

- e

nummachines N/A

: Arbitrary integer. Should be different than another
) segmentnum user’s application.

[ Only first call’s value used.
DIRECT CONNECT and BROADCAST (receiver
only): Name of machine to connect to.

; mname BROADCAST (broadcaster only): Required but ig-
v nored
h DIRECT CONNECT: Number (0-3076) of pont to be

used to send to other machine.

sendportnum BRCADCAST (broadcaster only): Number (0-3076)
of port to be used for broadcast.
BROADCAST (receiver only): Required but ignored
) DIRECT CONNEZT: Number (0-3076) of port to be
used to receive from other machine.
. . BROADCAST (broadcaster only): Reguired but ig-
: receiveportnum | nored
| BR()ADCASI‘ (receiver only): Number (0-3076) of
port to be used for broadcast.
"server’: Create DIRECT CONNECT channel
_____ as a server.
K "client”: Create DIRECT CONNECT channel
X server . Asaddiont S
: "broadcast’:  Creaie BROADCAST channel as a
' ___ breadcaster.
\ "receive' Create BROADCAST channel as a
‘ receive
instructure Address of Machine structure created to hold channel
information. o
’ 1 Amount of ‘,[ ace to be used for
q freespace N/A dvnaraicon=mory allocation.
o _,; ) A " Only first o 1I| s value used.
§
4
{0

Wy Wy P, O, - C T I R A A N I N R I P NI I T B UL I I L B S I y o LR
" ‘N ,_.. l,,'. S ' . -'.-- B ,-_x',\_. .-_-\‘-. Q¥ '. SAS AN ",1-"" NN . ._.f‘. » ..'- -.,\'_";s_\.



A,

P} .-‘1

-

- - t -
Pul® .l’.’ P g

-
o-

a3 s s s 3 &

.

~ W e .t . .
.‘!l.q ..I o.l RS a0, \""' ]

V1. PERFORMANCE

A. INTRODUCTION

We look at the size of packets from our protocols. We also look at the effect of real
applications on the network. We try to do this for both direct connect and broadcast
protocols. However, no application making good use of broadcast protocols exists.
Hence, we used a direct connect test applicaticn and replaced the channel with two

broadcast channels.

B. DATA COLLECTION

The LANalyzer” EX 5500 network analyzer was used to gather Ethernet statistics.

Version 2.0 of the software was used. The LANalyzer 5500 is a COMPAQ PORTABLE

11"* with a coprocessor board installed. The coprocessor board has an Intel 80286 CPU,
an Intel 82586 LAN coprocessor, and two MBytes of memory. It performs packet
collection, packet filtering, and network statistics calculation. The COMPAQ PORTABLE

II processor handles user software control, screen updating and disk 1/O. [Ref. 29]

Samples were taken while direct connect applications were running on iris2 and

iris3. To compare direct connect protocol with the broadcast protocol, test programs

were used®. Table 6.1 summarizes the information collected. These programs send a
character string, an integer, and a floating point number in a rotating sequence. The
messages are either sent to the machine specified on the command line or are broadcast

to all machines on the local network but only received from the machine specified.

"L ANalyzer is a registered trademark of Excelan, Inc.
** COMPAQ PORTABLE Il is a tradmark of the COMPAQ Computer Corporation.

™ See programs prog.c, progl.c, gprog.c, and gprogl ¢ in Appendix D.

W 1% 1% 9% $5 FRE e T T S S S L A RSSO B
O .-.‘.l'.u.. }“'-".’}.'( 2l -(f ’ e

\')l' -
by LSOO A Y

T X RS I
SN




FEP S X7 O L

-
=

«TaTxm

@ RN T @ AN

2
<.
>

‘-

LRI W M

e w gTw %o

J'-'{-

S~

Il-\-‘-

-

va'ats 00 02 a2 af2”

PO TOVORTS

Table 6.1 DIRECT CONNECT VERSUS BROADCAST STATISTICS
Direct Connect Broadcast

Run Number Ave Max Number Ave Max
of Packet | Test of Packet Test
Number Size Load Size Load
Packets (bytes) (%) Packets (bytes) (%)

1 1031 91 .10 9498 69 1.0

2 1047 111 .05 9860 69 1.0

3 465 96 <.05 4000 68 1.0

4 698 95 .05 2556 68 1.0

5 334 103 10 1262 68 1.0

The visual simulation application measured was a modified version of the driving

simulator [Ref. 7). Table 6.2 summarizes the information collected. This data was

taken during the day29. The application’s communication code is shown in Figure 5.7

and Figure 5.8. One trip around the track took approximately five minutes. Seven
messages are sent every cycle to report status. Four messages are sent in the opposite
direction, as required, to control the car. One circuit was driven, on autopilot, for each
test run. There were about 500 cycles per test. Approximately 3600 messages were
generated per test. The number of packets sent was less than half of this. The apparent
First,

discrepancy exists for two reasons. each packet seni also generates an

Table 6.2 APPLICATION NETWORK USE STATISTICS

Run Number | Average Peak Peak | Average
of Packet Network Test Network
Number Packets Size Load Load Load
(bytes) (%) (%) (%)
i 3747 89 | 13 10 5
2 3297 e . A5 1.0
3 4152 | 89 15 1 <05 S
4 2848 _X_QWV_%__ 17 15 9
5 22830 | 89 | 17 10 | 3

¥ At night, with less competition for network 1+ rves, the results weie sipular,

S8
e P Y TSR TS A i e L T S P A A NN,
\J\ _. \ \" < .,_J _.r .,;_.r SN \.r\.r,\ N ‘.r.,‘- o f\- W \\- NN CAA AN

LY T ANA A e A Y YWY

NS




S0 R SR AR O U oh Aol Sl o h Vol 8 Pet vt V0

o acknowledgement packet in return. By acknowledging each packet, the stream socket
W . guarantee of delivery and proper sequence is met. Second, after the first packet
L
::: ; (containing the first message) is received, the remaining three or six messages are
)

immediately sent. The receiving process has often not yet handled the first one. The

. remaining messages are combined into one and all are read as one block. This reduces

-

~. the interchange to a typical total of four packets per cycle, two with data and two for
3: acknowledgement. Similarly, four packets are usually generated whenever the navigator
o process issues a command sequence to the car.

ES;:. An evaluation of a five-workstation application [Ref. 11] was also made. This
:‘0: application used three Symbolics (syml, sym3, and sym4), expl, and iris2 to perform its
Av tasks. Statistics were similar to the other application, but the Symbolics irisﬂavor.lisp3°
.ﬂ exhibited some problem behavior. It sent three packets for every message. The first
‘::j‘ packet contained the fype field only. The second packet contained both the type field
P and the length field. The third contained the entire message. If a second message
immediately followed the first, three more packets were sent, each adding one field to the
: previous packet. Only one acknowledgement was received, as all packets in a group had
- the same identification number.

: C. DISCUSSION

.':j Attempting to use broadcast protocol with the simple iest programs failed. One
:-‘_ problem encountered was overflow of the sending buffer within the TCP/IP layers. The
::’ rapidity of attemptad transmission was the cause. Higher network loading exacerbated
::' the problem. When the test application was slowed down with printf calls (and the
::\—, output redirected into a file) the buffer could keep up with sending requests. Using
i) el

E\% 0 See Appendix C

.v

Al

._

r
x e

L)

(N o T Py O P T T R SIS 30 T e W SV |
) LT, -
B m Al ,,f‘ ¢~n ~-.cn.|00|t.po

A, *:. ¢ '-‘_\ *\..\ .F:'."
RN .y, .

TR W W

Y e W ] “l’ﬁ"‘u‘-‘r’\‘\
s .‘-.. Pt " O ‘ AN

9



PR

Pl Py
SRR L

broadcast protocol within a graphics dispiay loop should pose no problems unless

- -
- .

L

numerous data elements are transmitted at one time,

s
-

o
PRt i)

Without acknowledgement packets, broadcasting put fewer packets on the network

than did the direct connect protocol. When overall load was haevy, some were lost. This

> -
-

poses a serious problem for visual simulation applications. Without an elaborate

;: application-level protocol, the receiving process will never know what was intended to
%

P be sent. Since only one data object is transmitted at a time, labeling the data objects is
: difficult. All that is available is to altemately send different types and, after checking
E the type received, make a determination of the likely intent of the sending process. If a
:‘ block of data, containing different types, could be sent as a single message, the decoding
problem would become one of simply sequence checking. Missing status packets can be
E safely ignored in many situations. At most, a simple averaging algorithm can smooth
g any discontinuities caused by a missing packet. Timestamping, with a virtual timestamp,
' of each packet would eliminate the averaging requirement.

: The Symbolics stream version is much less efficient, in terms of network
: utilization, than is the Explorer’s. It still functions correctly, with no noticeable delay.
K

) As the amount of data to transmit increases, the Symbolics flavor will eventually have
4 noticeable performance degradation.

2

: The interconection of five machines loads the network only slightly more than does
.; that of two. The limitation will be from the process swap overhead, not the network.

- D. SUMMARY

5 The direct connect protocol sends fewer packets than messages. Half of the packets
sen: are acknowledgements. These acknowledgements provide the reliability of the
;;' ; direct connect protocol. The broadcast protocol sends one packet for each message.
e These packets tend to be smaller than those for the direct connect protocol. Until a
(] ¥

60

.
LI Tl Rl T

|}
i

LPARA PR P R 0K U S I S TR Ar Vag B Y, YA [PRE T RS I R I R L RN LV R LR I T i “ AT R AT AV LY r 4



AN RN A )

Lo L A A
AN

.3

‘.8

¥ RB® .}

-y T W .
‘.i_'P.eL“_a".p".-:Yi e

mechanism exists to bundle several messages into one broadcast packet, the broadcast

protocol is of small value.

61

. ..’.... C AR

TR WY

»



‘e A

SH P Gl UG UGB ap Lah N WD A WP @ VD ¥.h aP Vah vah 620,28 ¥, R L val Oan Ung 10g ah 9g9 vay v g ual Vag eay el b

VII. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are two primary limitations. First, the Lisp and C functions differ at the user
level. This was done to allow each to be used readily by programmers “thinking” in their
respective language. We have found this to be confusing to students who are
inexperienced in both languages. Second, there is no simple means to transmit a block of
data or an entire file. Each data element, unless it is part of an array of characters, must
be sent separately. This was done to “hit a middle ground” between a complex
facility—printf function—and low-level system calls. As long as only the direct connect
protocol existed, this was only an annoyance. As discussed in Chapter 6, this is a

critically limiting factor for the broadcast protocol.

The port to BSD UNIX systems without shared memory and semaphores was not
completed. The socket handling aspects are portable, but the shared memory aspects are
interwoven throughout the system. The difficult part of the porting will be designing the
message-passing protocol for the pipe between the application and the send and receive

processes, as discussed in Chapter 4. Other specific limitations include:

e no broadcast capability for Lisp machines

e no server capability for Lisp machines

e limited communication error handling-—no signals are sent from the send or
receive processes to the application process if they encounter preblems

e limited read/write error handling—a read or write of the wrong type will he
attempted and usually produce garbage

e no out-of-band capability
e Symbolics iris-flavor lisp creates three packets per message

62

"y . IS
M{\ h&:‘f ‘\\ h‘-\

a0l ¢

'r-\‘\. "

_A\As'.h h&‘\; - .

At ~age



YA A N o

v Y

Yo ta BUak B0 B 43 dat fad Fan ARt (v e ata e et el avs atk a7 8 R 0ty B R0 G 0 Wl a0 0.0 Tl a0 0 F TaF val e ‘a0 Nal val vub ca7 vab ol Sat av tad -abo gl ab, ab. AV st

B. FUTURE RESEARCH AREAS

Implementation of the missing structure data type is one key area in which more
work could be done. The most straight-forward solution to this would be to add
messages to the send section of the shared memory array without signalling the send
process to send it until the entire block was ready. Such a solution eliminates any need to
change the receiving functions at the cost of either an additional sending function or an
additional parameter to the existing send functions. The additional send function would
be a push function and the existing send functions would be modified to never signal the
send process to send. That would be left to the new push function. Adding a parameter
to each send function would allow any send function to push. While in some respects
simpler, changes to any application sending a block of data would have to carefully

monitor which send function actually is pushing.

Creation of a Lisp flavor that mimics the UNIX functions would prove useful to C
programmers who find a need for Lisp modules in their visual simulation. Adding server
and broadcast capabilities would increase the applicability of the protocols to future
visual simulation projects. Functions to break complex Lisp objects into simple ones and
then combine these into a single message are necessary for the broadcast protocol. The

Symbolics version should be corrected to send a packet only at message boundaries.

C. SUMMARY AND CONCLUSION

The routines described herein have already proved useful to researchers at the Naval
Postgraduate School. With Ethemet loading never exceeding one percent, these routines
are efficient enough to use without concem. With the additions mentioned above, the

goal of an easy-to-use yet powerful system will be reached.

63

T P e Ay CoCn2 Va0 o ¥, Wy W ¥ X DN I N N T T N T N o e W A
.l..-.. o’ ~~ A? .a~va 8 IJ~ X .\ N." __’ o2 X " "' " “-‘\"'J‘\-'\f f\"’

Py ]

x

XA

A, .

P o 2 i g% |
- - .. ¥

¢ ]

* 31 v
»



-

)

(‘}l‘ff

el

-

& @

M Frrreri

{JJ-

APPENDIX A - IRIS MODULE DESCRIPTIONS

1. io_single.c

a. Calling Protocols

This module contains functions that are intended for the application’s use and
functions that are used exclusively by them. The parameters for extemally accessible
functions are described below.

i.  number received

number_received( instructure )
Machine *instructure; /[/* includes
char *instructure.segment a pointer to the shared segment
*/
ii. read character
read_character(instructure,character_out)
Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment */
char *character_out; /* pointer to output character */
ili. read characters
read_characters(instructure,outarray,arraysize)

Machine *instructure; /* includes

char *instructure. segnent a pointer to the shared segment */
char outarrayl}. /* output character buffer */
int arraysize; /* the number of characters to be returned */

iv. read float

read _float(instructure,float_out)

Machine *instructure; /* inclndes
char *instructure.segment a pointer to the shared segment */
float *float_out: /* pointer to output float */

v. read integer

read_integer(instructure,integer _out)

Machine *instructure: [/* ipcludes
char *ipstructure. scgment a pointer to the shared segment */
int *integer out: /* pointer to output integer */
04

R R N AT TS AT g
y N M o N o .

ey

e



1! M ‘lu

(3

i,

A\

g

) r.. : ~ r'..f \l\- ~ P L ~J‘ -f\ -I\-PNJ'_ d‘.v’ l’.\f.‘ ,-‘ . \q‘. -('\ \I l‘\f\i‘"

wa'd ek ety o¥R 2t T N\ WL AT L U LU LMY LW L WU WU LWL POV VO X . gav, Xy 0 » OKTY XTUATY

io_single.c

vi. received_type
char received_type( instructure )

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
*/

vii, write_character

write_character(instructure,character_in)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */
char *character_in; /* pointer to input character */

viii. write_characters
write_characters(instructure,inarray,arraysize)

Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int ingtructure.receivesem the semaphore to the receiver.
char *inarray; /* input character buffer */
long arraysize; /* the number of characters input */

ix. write_float
write_float(instructure,float_in})

Machipe *instructure; /[/* includes
char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore (o the sender */
float *float_in; /* pointer to input float */

X. write_integer
write_integer(instructure,integer_in)
Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment

int instructure.sendsem the semaphore to the sender */
int *integer_in; /* pointer to input integer */

65

{ .

*/

$2° Jan S K]



1
N
Ki
b
,

- n

8-

-
-

- .
M T X T @ 2T,

ol Yo

A

..-f\r. v, T f‘f‘-'-f

io_single.c

b. Code and Description

(2R EERER SRS SRR ERER R SRR SR ES R RS RS R R R RS RRR RSS2 R R R 2 RS RS

TITLE : Inter-Computer Communication Package
MDULE : jo_single.c
VERSION: 3.0
DATE : 1S December 1987
AUTHOR : Theodore H. Barrow
(S22 SRR RS ERS SRR RS R RSS2 R R R R R R R 2t R R R R R R SR RRR R R A R R Rl
HISTORY :
VERSTON: 1.0
DATE : 27 May 1987
AUTHOR : Theodore H. Barrow

DESC. : Originally part of <support.c. Containg the documented read
and wrile cails for use by the application prozremmer.

VERSION: 2.0
DATE : 21 Ociober 1937
AUTHOR : Theodore H. Barrow

DESC. : Modified read routines to use a global array to manage the
possibility af a partial message receipt.

VERSION: 3.0
DATE : 15 December 1987
AUTHOR : Theodonre H. Barrow

DESC. : Maditied iead routines to use part of a buffer set instead of

the global array to manage the reception of a partial message.
R T Ty

EIEE I IR L R R B B BRI BT R K S R IR R IR I T N IR R K N R R K B R BE EE R I R R N K N

!
-
*
*
-
»
*
*
*
*
*
b4
*
-
£
*
*
*
*
*
»
*
*
.
»
*
*
Y
»
*
»
*
™
»
*
-
*
>
*
-
>
*
-
*
-

*

RECORD OF (HANGES *

»

*Version* Date * Author - * Affected *Regd*
* * Change Descripiion * Modules *Vers*
R R R N R N s I s s T I T T I T T TR OTTOTT Ty oy e
* * L] - L L] *
» » » * *

tttt‘t“#.t#tt'ﬁttt“ttt’ttt‘ltt"it*tittttt‘**‘lttttttt*ttvi‘t&*t‘ttt“tt#t*t*‘/

6H6

f\r’.t N
b




io_single.c

#include "shared.h"
#include "gl.h"

/* The following routine copies a character into the shared segment.
It YUt. the type CHARACTER TYPE in the first byte and the
ength 0001 into the next four bytes.
It then puts the total size at the top of the shared segment,
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/
write_character(instructure,character_in)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */
char *character_in; /* pointer to input character */

{
int msgsize = 5 + (HARACTER_SIZE; /* size of message */

char *senderstart = instructure->segment + SENDEPOFFSET;
/* the + 9 is to skip over the first 4 bytes for the size

of the shared memory data and the 5 bytes of header information %/
char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* insert the type code */
*(senderstart + 4) = CHARACTER_TYPE;

/* insert the {ength IN BYTES of the input data */
sprintf((senderstart + 5), "%C4d", CTER_SIZE) ;

/* move the data bytes */
memcpy{(datastart, character_in, CHARACTER_SIZE);

/* copy out the size of the data from the shared segment top */
*gentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

*/
V(iinstructure->sendsem);
] /* write_character */
67
2SN N A LT L P A L AT v T S T LS R T P RPN
B WY Kl ."o., ..\\ Y |.o‘ X K e MM j B e M X L } ¥ '&-" » ..,. 2 - O IRIRYYY



o e - -

! .f‘ '*-}- '-';H'-:'l'.:"‘ﬂ’.'_"-’:_"-"‘-'--".'J'.:vf.:-r.'-“ _-'."-_-

U S U N WU UL VU WL FU VUNURU YU RUN L WUV Y aNawaORT U pt a U 0 aWa" a0aY 0 Lia 04" 0a inc et 0 500 ket 28) a2 WU |

io_single.c

/* The following routine converts an integer to a string and copies it
into the shared segment.

It puts the type I ER_TYPE in the first byte and the atring length
(in bytes) as an integer (in string format) into the next four bytes.
then puts the total size at the top of the shared segment.

It then sends a wakeup to the sender program.

It uses an input structure since called by main program

*/
write_integer(instruciure,integer_in)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment
int instructure.sendsem the semaphore to the sender */
int *integer_in; /* pointer to input integer */
{
char integer_string[20]; /* string for integer conversion */
int ltength; /* length of integer string */
int msgsize; /* size of message */

char *senderstart = instructure->segment + SENDEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the aize
of the shared memory data and the 5 bytes of header information */
char *datastart = senderstart + 9;

tong *sentlength = (long *)instructure->segment + WSENDEROFISET,;

/* convert integer to slrinﬁ */
sprintf( integer_string,"%d", *integer_in );

/* find length of integer string and thus message */
length = strlen( integer_string );
msgeize = 5 + length;

/* insert the type code */
*(senderstart + 4) = INTEGER_TYPE;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + S), "%04d", length),;

/* move the data bytes */
memcpy(datastart, integer_string, length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgesize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.
*/

V(instructure->gendsem);

) /* write_i1nteger %/

68

- L N I R VL U R R e A I ' P N
. ‘ .\“' ~ “ ,\-\ '\ g __-'I\Jl ./‘,\(_ -_J‘ v"‘ ‘\,."b'.'-." ,»J' el .. - Cal %4 -ﬂ.q

A% ¥

- I’l‘.i.l.~‘

A



L N LM Y VR PR A UM G N e W 07 34 RN T >Ba’ NN RRARI TR O M ol Aa® puh @ab yav b ook Nav gas vote ot oY T ) gl - P -

o
A"
"‘

l.‘
@

g

"
L)

"
:‘ . .
i io_single.c
1)

¢ . . .
4y /* The following routine converts a float to a string and copies it
be into the shared segment.

. It puts the type FLOAT_TYPE in the first byte and the length
) (in bytes) as an integer (in string format) into the next four bytes.
¢ then puts the total size at the top of the shared segment.

e It then sends a wakeup to the sender program.
{& It uses an input structure since called by main program
20
i:' ‘/

write_float(instructure, float_in)

st
; Machine *instructure; /* includes
)
g' char *instructure.secgment a pointer to the shared segment
:r int instructure.sendsem the semaphore to the sender */
[ M8

float *float_in; /* pointer to input float */

R
ad
k char float_string{30}; /* string for float conversion */
[
?, int length; /* tength of float string %/

)

\)
i int msgsize,; /* size of message */
,~ char *senderstart = instructure->segme i + SENDEROFFSET;
[
4 /* the + 9 is to skip over the first 4 bytes for the size
" of the shared memory data and the 5 bytes of header information */
& char *datastart = senderstart + 9;
1
ﬂe long *sentlength = (long *)instructure->segment + WSENDEROFFSET,;

/* convert float to string */

‘3 sprintf( float_string, "%f", *float_in );
kr) /* find length of float string and thus message */

o tength = strien( float_string );

- msgsize = 5 + length;

-

/* insert the type code */

! *(senderstart + 4) = FLOQAT_TYPE;
o /* insert the length IN BYTES of the input data */
':. sprintf((senderstart + 5), "%04d", length);
;:- /* move the data bytes */
,?: memcpy(datastart, float_string, length);
g /* copy out the size of the data from the shared segment top */
0 *sentlength = magsize;
P
€ /* at this point, we send a wakeup to the sender program,

X4 indicating that he can reuse the shared segment.

L] ‘/
;' Viinstructure->sendsemj;
@ } /* write_float */
b
[L"

~
.-

5
®

K
i~
-
" 69
(%
)
'
@

.

o'l i o

-

S IV T Fe L Y S S O R o TR R o T I R S et e e T ] " ~
R g e G 1 P T e e o

!

S

Wy B 0% 0% 0% 1V iy 0%



R R I L R W T TR R R A AR AT T Tt R AW W UNVUNURT OO el 909 9 W W W X MO0 W YUY S AT R L W]
.
Y
)
4
¥
)
) . .
‘ io_single.c
i
; /* This routine returns the type of data received. */
) char received_type( instructure )
K Machine *instructure; /* includes
i
o char *instructure.segment a pointer to the shared segment
' */
% { .
: return( *(instructure->segment + RECEIVEROFFSET + 4) );
- )
*
)
1
g‘
K
A
K !
)
)
L
[
1]
§
/
1
D

d

h g
fi }
B
. )

a L.t
-

- e

| ]

»

3 4
\ 3
¢ )
4 3

AN . - - L ARTETRT) A ST U L T o . . L . " A -

DA N A . W R X A K N '.".-i e S Ca ly e I 'i'—\.'(".." '!' “" ' v -‘-."\. \." "-‘-‘f l\, Sy



io_single.c

/* This routine returns the number of data items received. */
number_received( instructure )
Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */
int temp_int;
char *protocolhold = instructure->segment + PROTOOOLHOLDOFFSET;
long *partreceived = (long *)protocolhold;

loug *receivediength = (long *)instructure->segment + WRECEIVEROFFSET;
instructure->segment + RECEIVEROFESET;

char *receciverstart
/* check if only part of protocol information received */

if( *receivedlength < 5)

{
/* move Jata received (asg well as lcngth field) to holdirg area */
memcpy( protocolhold, receiverstart, *receivedliength + 4 );

/* get next message(s) */
free_receiver(instructure->segment);
V(instructure->receivesem);

while( receiver_is_free(instructure->segment) ) /* wait */ ;

/* copy rest of grotoeol data into holding areca */
memcpy( (protocolhold + *partreceived + 4), (receiverstart + 4),
(5 - *partreceived) };

else

{

/* copy protocol data into holding area */
memcpy( protocolhold, receiverstart, 9);

/* initialize *partreceived so it can be used later */
*partreceived = 0;

]

/* determine the !ength of the received integer string and thus message */
sscanf({ protocolhotd + 5, "®d”, &temp_int };

switch( *(protocolhold + 4) )

caze CHARACTER_TYPE:
return( 1 );
break;

case INTEGER_TYPE:
return( 1 );
break;

case FLOAT_TYPE:
return( § );
break:

case (HARACTER_ARRAY_TYPE:
veturn( temp_int /CHARACTER_SIZE );
break;

case INTEGER_ARRAY_TYPE:
return( temp_int/INTEGER_SIZE ).
break:

case FLOAT_ARRAY _TYPE:
return( temp_int /FLOAT_SIZE );

J

} /* number received */

71

- L~

TSR

MR A'.\,_h“_.n




PRAACL IR S B G AR ok N A i Ak Al Sed -k Sl il e i

io_single.c

/* The following routine returns a character from the shared segment.
It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_character(instructure,character_out)

Machine *instructure; /* includes -
char *instructure.segment a pointer to the shared segment */

char *character_out; /* pointer to output character %/

{
/* temporary storage for move of received data or for protocol information
when partial receipt */

char temp|LARGESTREAD] ;

char *protocolho!d = instructurc->segment + PROTOCOLHOLDOFFSET;
/* first four bytes of holding area as integer */

long *partreceived = (long *)protocolhold;

int msgsize = 5 + CHARACTER_SIZE; /* size of message */
char *receiverstart = instructurc->scgment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory duta and the 5 bytes of lheader information */
char *datastar! = receivergtart + 9;

long *receivediength = (long *)instructure->segment + WRECEIVIROFFSET;

/* check if first part of protocel information ie «aissing */
if( *partreceived == 0 )
{
/* check if only part of protocol information received */
if( *receivedlength <= §)
{
/* move data reccived (as well as .ength field) to holding area */
memcpy( protocolhold, receiverstart, %receivedlength + 4 ).

/* get next message({s) */
frec~rcccivcr(inslruclure-\segmcnl);

Viinstructure >recceivesem):

while( receiver_is_free(instructure->segment) ) /% wait */ ;

}

/* reset msgsize and datastart to correspond to pertial receipt */
msgsize -= *partre.cived,;
datastart -= *partrecsived;

/* move the bytes */
memcpy(character_out, datastart, CHARACITER_SI7E) .,

/* make buffer ready for next read */
reset _huffer( receivedlength, mugsrice. instruc tre, datastart,

(HARACTER_SIZE, partreceived, receiverstart ):

i /* read character */

72

' ' -‘.4"’ ) ('J")'f.ﬂ'.\f.—‘."'- L -’u - I Pt T - ~ LIPS Y | P . -'_\ - -
N A T o e I A SR R Sl N s L VT O R



'a's ati a®a’,i2”, 3 " - R ", "
LA MM W WA NN W W WA WA N WL WU W W e U ¥’ $29” 0uh* B0 Rt ~ *A%S RV rag b td v s 0 5 00 i o CRYTRYCRY) 4 . y - g T

a0 Y.

* 3 e, . . Ba ot v
K/

!

®

v

L »

2 .

io_single.c

)

g! /* The following routine converts a string in the shared segment

) into the returned integer.

. . frees the receiver side oi the oshared segment if it is aupi;.

L It then sends a wakeup to the receiver program.

n.l' It uses an input structure since called by main program.

W */

o

:c: : read_integer(instructurec,integer_out)

W)

,".‘ Machine *instructure; /* includes

\. char *instructure.scgment a pointer to the shared segment */
:: int *integer_ount; /* pointer to output integer */

{

;$ char integer_string[LARGESTREAD]; /* string storage for received data */
*‘ char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET

N~ " /* first four bytes of holding area as integer */

el long *partreceived = (long *)proiocolhold;

e

Oy, int length; /* langth of integer string read */
T

v long segmentlength; /* length of data of partial massage */
o int msgsize; /* size of message */
¥
wf char *receiverstart = instruciure->segment + RECEIVEROFFSET;

i v
Koy /* the + 9 is to skip over the firgt 4 bytes for the size
o of the shared memory data and the 5 bytes of header information */
§ : char *datastart = receiverstart + 9;
7 long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;
::"- /* determine proper protacol info and reset variables if necessary */
o get_protocal( protocolhold, partreceived, receivedlength, receiverstart,
AN instructure, &length, &msgsize, &datastart );
0
:-: /* check if only part of data has been received */

A

) if( *receivedlength < msgsize )

-:':~ get_data( &segmcntlength. receivedlength, partreceived,

g integer_string, &datastart, &magsize,

-.{_ recciverstart, instructure, &length);

"

::.. /* convert t¢ string */

o integer_string(segmentlength + msgsize) = '\0’;
® else

e {

-:' /* move the integer string bytes */
[ .~ memcpy(integer_string, datastart, length);

o
:I. /* convert to string */
. integer_string(length] = '\O";
s ]
o
,:. /* convert the received string to an integer */
o) sscanf( integer _string, "®d". integer_ovt };
.:' /* make buffer ready for nex: tead ¢/
_"/.' reset_buffer( receivedliength, magsize, instructure, datastart, length,
,‘.' partreceived, receiverstart },
@ } /* tead integer */

H.‘

S

5 73

LA A

P
[N RN

>

T AN T AT . . e P « . -
AT AN FAN A e B X ROy .a.'_- LR R e

. o )




,. -t 1o P B - ", , . v ‘A N RN X My NUNUH “ath g ‘l'i"'#‘!~|~l' "'Q-"t‘.hn'\‘n".;.'il" ._,,, " UM ~‘ (%4
)

¥

S

M

5

@

X

Wy . .

[ io_single.c

? /* The following routine converts a string in the shared segment

) into the user supplied float.

o It frees the receiver side of the siared segment i{ cupry.

It then sends a wakeup to the receiver program.

- 1t uses an input structure since called by main program.

o */

;5:1

%: read_float(instructure,float_out)

¥

g‘ Machine *instructure; /* includes

o/

’ char *instructure.segment a pointer to the shared scgment */
3‘ float *float_out; /* pointer to output float */

s char float_string[LARGESTREAD]; /* string storage for received data */
- char *protocolhold = instructure->gsegment + PROTOOOLHOLDOFFSET;

1
‘ /* first four bytes of holding arca as integer */

long *partreceived = (long *)protocolhold;

¥

;$ int length; /* length of float string read */

s

.: fong segmentiength; /* length of data of partial massage */
;5 int msgsize; /* size of message */

g char *receiverstart = instructure->segment + RECEIVEROFFSET;

'5 /* the + 9 is to s%ip over the first 4 bytes for the size

L of the shared memory data and the 5 bytes of header information */
$' char *datastart = receiverstart + 9;

v, .

> long *receivedlength = (long *)instructure->ssgment + WRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get_protocol( protocolhold, partreceived, receivedlength, receiverstart,
instructure, &length, &msgsize, &datastart );

.L-\, ,_,

/* check if only part of data has been received */

v if( *receivedlength < msgsize )
" (
get_data( &segmentlength, receivedlength, partreceived,

N float_string, &datastart, &msgsize,
: receiverstart, instructure, &length);
-
W /* convert to string */
W fioai_string[segmentlength + msgsize] = "\O°;
e j

‘: else

® { ,

" /* move the float string bytes */

A memcpy(float_string, datastart, length):
:- /* convert to string */
. float_string[leng(h? = '\0Q";

. ]

“

° /* convert the received string to an float */
- sscanf( tloat string, "%t", float _out );

N /* make buffer ready for next read */

- reset _buffer( re ecivedlength, msgsize, instructure, datastart, length,
-, partreceived, receiveratatt );

" }  /* recad_float ¢/

@

: 74

"




e
l‘l.'

A\

A

@ )
A R R x

o

Celutal{ R
S @ S

Y
LI B R

fhrir{ N

[l

A KT K AT WA WU SENTNRR AR TS \.iu'«tjd|v‘:uv|v|'a'-...a'e|hh'l o puv bt BaToge” Bav e " Bat gar Bac dat fa’ jar Sae

io_single.c

/* The following routine copies characters from an array
into the shared segment.
It puts the tyge CTER_ARRAY_TYPE in the first byte and the
array length (in bytes) as an integer into the next four bytes.
It then puts the total size at the top of the shared segment.
It then send» a wakeup to the sender program,
It uses an input structure since called by main program
*/
write_characters(instructure,inarray, arraysize)
Machine *instructure; /* includes
char *instructure.segment a pointer to the shared segment
int instructure.receivesem the semaphore to the receiver. */
char *inarray; /* input character buffer */

long arraysize; /* the number of characters input */

int datasize = arraysize * CHARACTER_SIZE; /* size of data field */

int msgsize = 5 + datasize; /* size of message */

char *senderstart = instructure->segment + SENDEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */
char *datastart = senderstart + 9;

long *sentlength = (long *)instructure->segment + WSENDEROFFSET;

/* insert the type code */
*(senderstart + 4) = CHARACTER_ARRAY_TYPE;

/* insert the length IN BYTES of the input data */
sprintf((senderstart + 5), "%04d", (int)datasize);

/* move the data bytes */
memcpy((datastart), inarray, daiasize);

/* copy out the size of the data from the shared segment top */
*sentlengt™ = 5 + datasize;

/* at this point, we send a wakeuK to the sender program,
indicating that he can reuse the shared segment.
*/

V(instructure->sendsem);

] /* write_characters */

75

[ I I . .
AN AT AT e

l'-

o ":..*' Y A " ~I "l‘ v Y"n"‘f '\d’\f\ s&'\-’" v.;f-'.;-’ 3
: g 0., e, L X o N N o i g X o NN L » »

«_ o -
PNy




RN a

- o

i

io_single.c
/* The following routine copies bytes from the shared segment
into the user suppiied array.
It frees the receiver side of the shared segment if it is empty.

It then sends a wakeup 1o the receiver program.
It uses an input structure since called by main program.

*/
read_characters(instructure,outarray,arraysize)

Machine *instructure; /* includes

char *instructurs.segment a pointer to the shared segment */

char outarray[]: /* output character buffer */
int arraysize; /* the number of characters to be returned */
{

char *protocolhold = instructure->segment + PROTOCOLHOLDOFFSET;

/* first four bytes of holding arca as integer */

long *partreceived = (long *)protocolhold;

int length; /* length of character string read */

long segmentlength; /* length of data of partial massage */

o9 st vad saq

int datasize = nrraysize * CHARACTER_SIZE; /* size of requested data field */

int requestsize; /* size of message */
int msgsize = 5 + datasize; /* size of requested message */
char *receiverstart = insiructure->segment + RECEIVEROFFSET;
/* the + 9 is to skip over the first 4 bytes for the size

of the shared memory data and the 5 bytes of header information ¥/
char *datastart = receiverstart + 9;
long *receivedlength = (long *)instructure->segment + WRECEIVEROFFSET;
/* determine proper protocol info and reset variables if necessary */
get_protacol( protocolhold, Yar(rcccivcd. receivedlength, receiverstart,

instructure, &length, &msgsize, &datastart };

/* check if all of data (or more) was requested */
if( length <= arraysize )

/* check if only part of data has heen received */
if( *receivedlength < msgrize )

{
get data( &segmen'length, receivedlength, partreceived,
oufarray, &datastart,K &msgsize,
receiverstart, instructure, &datasize );
!
else

|
/* move the character hytey *f
memcpy(outartay, datastart, lengthy;

/* make buffer ready for next recad */

reset_buffert receivedlength, msgaize, instructurce, datastart, datasize,

partreceived, receiveritart ).

76

\’4,'4,‘ Wt N Y T AFAFAN AN LT LR L R i Ny e Caa Ta O My W ¥ A4 a At T, Ap v,
)’ * .--v ,‘ { ' ,‘ L ' ..'.. .' -l ¥ .“A. nq‘#~ [} '{% N ..' "y -\ ‘ -.

s

PRy 'y

W, PP v
o gt e, w

.
\f\f\r



3
p io_single.c

else

) (
. /* move the bytes */
W memcpy(outarray, datastart, datasize);

/* make buffer ready for next read */

a } /* read_characters */

el ) Y v

= o
.

D N S I

v, @

S0 IO

RN

.® SN

il
v"'i‘

77

A%

%Y

o~ 0

o T Y P T TR TS e D T T N TR S G ST "
AN A A A N A A A Ay v O IR AT

OV Sl WO L VR
\).'\- ‘\'\-..f\-
N A et A

WA

o

A LTy

reset_buffer( receivediength, muglize, instructure, datastart, datasize,
" - partreceived, receiverstart );

Nty e N L L W )
‘u"|’=:t|"'|":'};3'u"'"'\ o




e e -

..n.f s

\ "

e a? i ai) At ) At bt aVa et Rt R dE a Ve A a2 n ath 2 a3 AR a A" aVh 2t b i u VA 2D b 20 VA ath a%8 000 P8 a0 e % 2 v A% fut gat.

/‘

*/

io_single.c

These are various support routines used by several of the preceding
functions.

reset_buffer(receivedlength, msgsize instructure, datastart, datasize,

partreceived, receiverstart)

long *receivedlength; /* first four bytes of receive part of shared seg */

int

msgsize; /* size of message read */

Machine *instructure; /* includes

char *datastart;

int

long *partreceived;

char *instructure.segment a pointer to the shared secgmen:

int instructure.receivesem the semaphore to the receiver. */

/* address data starts in receive part of shared seg */
datasize; /* length of data part of message */

/* length of message received in previous block */

char *receiverstart; /* address receive part of shared seg starts */
char templLARGESTREAD). /* temporary storage foi muve of received data ¥/

:~;$r ~r ro hr r*f& f\r\f\ ‘F

/* free the receiver segment if this is onty message received */
if(*receivedlength == msgsize)
{

free_receiver(instructure->segment);

/* at this point, we should send a wakeup to the receiver program,
indicating that he can reuse the shared segment.

*/
Viinstructure->receivesen);
I -~
else /* shift data forward in shared memory scgment */
(
*receivediength = msgsize;
memepy(temp, (datastart + datasize), (LARGESTREAD - msgaize));
memcpy((receiverstart + 4), temp, (LARGESTREAD msgsize)),
}
/* reset *partreceived for next read “/
*partreceived = 0,

/* regset huffer */

78

A -

PR A R e S A KA
. L) » L

‘-

\!.

L \.r_ y ol

PRSI, Y

>

d®

e



R R R R R R T T R R O O R R N R . T T T A O D O R O T T Sa R G . 4 dde fVadin

Y
§
\-’2
@
i
!:.
X I
& io_single.c
[l -
£,
iﬂ get_protocol( protocolhold, partreceived, receivediength, receiverstart,
. instructure, length, msgsize, datastart )
e : char *protocolhold; /* protocol holding area */
[X)
q: long *partreceived; /* length of message received in previous block */
;s: - long *receivedlength; /* first four bytes of receive part of shsred seg */
N
ﬁ: char *receiverstart; /* address reccive part of shared seg starts */
u‘ Machine *instructure; /* includes
D)
fﬁ char *instructure.segment a pointer to the shared segment
’{ int instructure.receivesem the semaphore to the receiver. */
o int *length; /* tength of data field in message */
». int *msgsize; /* length of message */
W char **datastart; /* address data starts in receive part of shared seg */

) /* check if first part of protocol information is missing */

(] s : \

44 if( *partreccived == T )

o /* check if only part of protocol information received */

~ if( *receivedlength <= §5)

' {

B /* move data received (as well as length field) to holding area */
4 memcpy( protocolhold, receiverstart, %receivedlength + 4 );

: : /* get next message(s) */
free_receiver(instructure->segment);
V(instructure->receivesem);

g; while( receiver_is_free(instructure->segment) ) /* wait */ ;
i
: /* copy rest of protocol data into holding area */
j memcpy( (protocolhoid + *partreceived + 4), (receiverstart + 4),
(S - *partreceived) );
L }
else
{
€O /* copy protocol data into holding arca */
.?: memcpy( protocolhold, receiverstart, 9);
L
5 /* initialize *partreceived so it can be usecd later */
- *partreceived = 0;
)
™ }
@
> /* determine the length of the received data string and thus message */
o sscanf( protocolhold + 5, "®d", len;th )
N *msgsize = 5 + *length - *partreceived;
= /* reset datastart to compensate for possible partial receipt */
N *datastart -= *partreceived;
‘ } /% get_protocol */
’ -
v,
"
0
N
@
..
3 79
P

- AP IPD TR IEAT S B - = [T PN ¥ o ™ N R AT LT 5 TR PR S Y
X g ey ! A BTN Ay Nl O e B X LY o

e A




222

o

,,,.- I

£

)
.l Y,

Oy ""‘f':"’ [ .".*;“: : . "J " o ,;". Il

w

-
Y

“
M
m

io_single.c

get_data( scgmentiength, receivedlength, partreceived, string_array,
datastart, msgsize, receiverstart, instructure, datasize )

long *segmentlength; /* length of partial data */

long *receivediength; /* first four bytes of receivc part of shared seg */

fong *partreceived; /* length of message received in previous block */

char string array[]; /* storage for incoming characters */

char **datastart; /* address data starts in reccive part of shared seg */
int *msgsize: /* length of message */

char *receiverstart; /* address receive part of shared seg starts */

Machine *instructure; /* includes

char *instructure.segment a pcinter to the shased segment
int instructure.receivesem the semaphore to the receiver. */
int *datasize; /* length of data field in message */

{

/* determine length of data that has been received */
*segmentlength = *receivedlength - 5 + *partreceived;

/* copy the fiist segment of data to holding array */
memcpy( string_array, *datastart, *segmentlength );

/* reset msgsize and datastart to correspond to partial receipt */
*msgsize -= *segmentlength + 5 - *partreceived:
*datastart = receiverstart + 4;

/* get next message(s) */
free_receiveriinstructure->segment ),
Viinstructure->receivesem);

while( receiver_is_free(instructure->gsegment) ) /* wait */ .

/* cycle through as many messages as it takes */
while( *receivedlength < *mspsize )
{
/* copy the next segment of dats to holding array */
memepyt &«etring arcayf*®eegmentlengthy, *datastart, *receivedlength );

/* reset msgsize and segnentleogth to correspond to partial receipt */

"mngi']e o treccejvediengtly;

*seymentlength -= *recervedicugih:

/* get next message(s) */

free receiver(instructnie seegment )

Viinatructure sreccivesem):

while( receiver_ias_free(instructure »segment) ) /* wait */

/* copy the laat segment of data to bolding arvay */f

memcepy( &string atrayl*segmentlengtn!l  *datastart, *asgerze )
[* reset datasize to properly reflect Jasr segment <ize */
*datasize = *megiize;

-

} /* get data

K0

N R s A R S I R L S N S R N A A N S N S TN
{x VB0, v At N < J‘wl > 2 ) V..'F ;‘ a 0, Py ‘.'.‘ \""- )

B




P

PN A

Pl S bl i ™

Y X XD

T
-

-

e rar "

1@

&

2. mpath.c

a. Calling Protocols
All functions in this module are meant to be accessible by the application.
These functions set up and tear down the communications path between two machines.

i.  deletemachinepath

deletemachinepath(instructure)

Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructurec.receivesem -- the returned receive semaphore.

We base it on the receive portnumber.

*/
ii. machinepath
machinepath(segmentnum,mname,sendportnum,receiveportnum,server,instructure)

long segmentnum; /* the key to use for the created shared segment */

char mname[]; /* machinename character string */
long sendportnum,receiveportnum; /* send and receive port numbers */
char server(]); /* this character atring is either "client” or "server"”

It indicates whether the sender/receiver should open
up as cither a client or server. The first guy open
must be the server.

*/
Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructurc.sendsem -- the returned send semaphore.
We base it on the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
*/

iii. dynamicmachinepath

dynun:qn-chnnepnth(se?nentnum ,mname ,sendportnum,receiveportnum,server,
instructure,freespace)

long segmentnum; /* the key to use for the created shared segment */

char mname{]; /* machinename character string */
long sendportnum,receiveportaum; /* send and receive port numbers */
char server(}; /* this character string is either "client" or "server"

It indicates whether the sender/receiver should open
up as either a client or server. The firat guy open
must be the server.

*/
Machine *instructure; /* structure to hold segment and semaphore info:
char *instructure.segment -- returned ptr to the shared segment.
int instructure,shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base it cn the send portnumber.
int instructure.receivesem -- the returned receive semaphore.
We base it on the receive portnumber.
*/
int freespace; /* amount of freespace desired for dynamic memory allocation

after this routine has been cajled. */

81

. T N I ST A INE I CUR (P SRD DN S S P ._.:. - - - N
f\r e ey .' S .r .r_ o _..' .-‘_J-\. .._ r. R .(* X4 -\-r_ D-FE: ‘B} : I”&.ﬁ'ﬁr 7

Td

léuhm'QCui



UL ERTER ANEICR IR 10 R RO R ST UV UM W AU UKW W NN XN SIS S et B BB Oiep bl ¥ a8 iV et IS 8> et SO GRE 0 gt atany gl o0k ath V) o'h 0"
D

()

1@ ~a

A
O3
‘.
A
)
mpath.c -
bt
iv. dynamicmachinepaths W
dyrnmicmachinepaths(numnachines,segmentnum.nmnme.sendportnum.recciveportnum.
server,instructure, frecspace) - AN
int nummachines; /* the maximum number of other machines to be attached */ 5
long segmentnum; /* the key to use for the created shared segment */ ey
char mname{]; /* machinename character string */ . W,
long sendportnum, receiveportnum; /* send and receive port numbers */ 3
char server[]; /* this character string is either "client” or "server". X
It indicates whether the sender/receiver should open
up as e¢ither a client or server. The first guy open :
must be the server. -~
.y -
Machine *instructure; /* structure to hold segment and semaphore info: :
char *instructure.segment -- returned ptr to the shared segment. xS,
int instructure.shmid -- returned system generated shared mem id e
int iustructure.sendsem -- the returned send semaphore. o
We base it on the send portnumber.
int instructuire.receivesem -- the returned receive semaphore. T
We base it on the receive portnumber. -
. O
int freespace; /* amount of freespace desired for dynamic memory allocation .
after this routine has been called. */ )
L
b.  Code and Description E
/#"‘ttt't#tl'.#i0“#t#‘**‘t““t.“""‘“#“ﬁ“““‘#‘““.‘t.t“t‘t‘t‘t‘t‘#“ _
- . Pl
* TITLE : Inter-Computer Conmunication Package * e,
* . -
‘ﬁ
* MIDULE : mpath.c . -
» * -1
* VERSION: 5.0 . ‘-
- " 1 ‘
* DATE : 31 May 1988 * @
- » S
* AUTHOR : Theodore H. Barrow . o
» . "
(X 2E SRR SRR R AR AR RS R AR R R AR R R R R R Rt R R R R i s a0 RS RS SRR R R R R 22 _':
* * o~
R
*  HISTORY * T
. . e
* VERSION: 1.0 . °®
* Pe - =
* DATE : 6 February 1987 . o
* * -~
. AUTHOR : Michael J. Zyda * B
* . v
* DESC. : Contains routines machinepath and deletemachinepath for * :_
* link cieation/removal at a high level of abstraction. * s
* .
. VERSION: 2.0 . I
. . N
. DATE  : 27 May 1987 * -
* . .
* AUTHOR : Theodore H. Barrow . .’_‘-'
. . .
* DESC. : Converted to use a structure for ease of use. . .
. . .
. VERSION: 3.0 . "
- * '_-_'
. DATE : 21 Ociober 1987 . ey
L] . Ay
hd AUTHOR : Theodore H Barrow . o
. * S
* DESC. : Added function dynamicmachinepath to allow dynamic memory . a
82 o
(A
g
v
o

)

- L PPL VL T e O M W W W W WAV WD e MY W W e WA W Y R M b U WA R M W WA W e Wy W T e T N e "N MM " m s "
"I.l.l“‘.l.il.ll,l.' A% 1% Y%, o. "y "0". f ‘(‘F -\n N < ".‘ " '{ -, ".‘hw { "'( < I(. ‘- Y .. ',

-
»
3
S

-

f

Ll

K oo A X, .



t
P
b mpath.c
)
c: . allocation after conmmunications link established. .
t . be
* VERSION: 4.0 .
& . .
K> . DATE : 15 December 1987 .
X . .
¢,
) * AUTHOR : Theodore H. Barrow *
¥ . .
1 * DESC. : Added function dynamicmachinepaths to allow use with multiple *
pu . links. Modified all creation routines to place sequence *
’ * numbers at end of command line for send and receive processes.*
» L]
R . VERSION: 5.0 .
L] *
)
‘o, . DATE : 31 May 1988 *
’.’ . *
;t' . AUTHOR : Theodore H. Barrow .
() » *
EX
. DESC. : Added broadcast and receive capability - one proccss spawned *
N I L T T e e L T P e P T P T P Y T Y
M . .
[)
‘ * RECORD OF CHANGES .
D . .
::. *Version* Date * Author . * Affected *Regd®*
* » Change Description * Modules *Vers®
N IS 2 T T TR R R R PR SRS R PR A R R AR RN N R R R R R R R 2 R 22 2 A R TR TR s LAl REl)]
L3 . . . » . . .
. * * L] » ®
P L T T LY T A R LYY
)
.
1
3
"
A
D>
.
.
B ™
®
X w
~
~
S
N
-
o
¢
{'
®
k' s
o] 83
‘o]
",
L e
D
o
-

ate

b
LD R R I U I A T T TR e R A VN SIS IR Y B} g
‘». ' £ e Y e P e Ll A S .r RSN iy R A M A AT

B XD " R e B




RN R AR AN RN N N RN RNy B 8 at et et Bt L et gal G20 et o.‘-a v ot Bat Ba¥ Gt _taV, (T 't.u‘.;. U IO PLR T . fat a M

%
d
mpath.c ‘
!
#include "shared.h"” /* my special defines */ g
#include <gl.h> 5
1
deletemachinepath(instructure)
Machine *instructure; /* structure to hold segment and semaphore info: )
char *instructure.ssgment -- returned ptr to the shared segment. ;
3
int instructure.shmid -- returned system generated shared mem id i
int instructure.sendsem -- the returned send semaphore, )
We base it on the send portnumber. .
int instructurc.receivesem -- the returned receive semaphore. 5
We base it on the receive portnumber. 2
./ «
{ ..
/* kill the receiver process... */ p
kill_receiver(instructure->segment,instructure->receivesem);
t
/* kill the sender process... */ 3
kill_sender(instructure->segment, instructure->sendsem);
/* detach and delete the shared segment... */ :

deletesharedsegment(instructure->segment,instructure->shmid); ]




LR MR UV LR S LN LR IR U TR TRV AN A Qs TR ."'_mmnrm'w
b
[
W

mpath.c

/*
For direct connection, both send and receive processes are spawned.
_ For broadcast, ecither send or receive process Is spawned.
The machinepath routine performs the following:

Y
L
(_’.’.’J
o
+
o
2!
4

) creates a shared segment.

) creates a send and/or rececive semaphore based on the send and receive
port numbers.

) free_sender(segment) and/or free_receiver(segment)

) spawns off the send and/or receive processes.

system("send lharedlesﬂ machinename port# server/client/broadcast O&");

s{:tem("receive sharedseg# machinename port# server/client/receive 0&");

the send and receive semaphores, the pointer to the shared segment,

and the id of the shared segment are placed in & structure of type

Machine that is declared in the calling program.

*/

machinepata(segmentnum,mname, sendportnum,receiveportnum,server,instructure)

long segmentnum; /* the key to use for the created shared segment */

char mname(]; /* machinename character string */
long sendportnum, receiveportnum; /* send and receive port numbers */
char server[! /* this character string is either "client”, "server"”,
"broadcast”, or "receive”. If direct connection wanted,
it indicates whether the sender/receive:r should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indiceates
whether to open up as broadcaster or receiver.
*/
Machine *ianstructure; /* structure to hold segment and semaphore info:
char *instructurc.segment -- returned ptr to the shared segment.
int instructure.shmid -- returned system generated shared mem id
int instructure.sendsem -- the returned send semaphore.
We base ii on the send portnumber.
int instructure.reccivesem -- the returned receive semaphore.
*/
{ . ,
char *sharedsegment(); /* shared segment creation function */
int semtran(); /* semaphore creating routine. */

char temp[200), temp2[200]; /* temp character arrays */

/* create the shared scgment */ A
instructure->segment = sharedsegment(cegmentnum MAXSHAREDSIZE &instructure->shmid); ;,3
/* create the send semaphore. (unused if receiving broadcast messages) */ ::g
instructure->sendsem = semtran(sendportnum); t;

» A
/* create the receive semaphore (unused if broadcasting messages) */ ﬁi
instruciure->receivesem = semtran(receiveportnum); 'i
/* free the sender and receiver parts of the shared segment */ %ﬂ
init_shared_buffer(instructure->segment); Eﬂ

Ny
/* spawn off the sender process */ xg
if( strcmp( server, "receive" ) != 0 ) [{J
‘ -.

O 3 S N



PRSI LS WA I WADRLT S IR L UL WY WU WL YU WL NU VL L WU U WO WU U W W WO L S U N WU WU W WU MU WOV WU U OIS R B T O L™
M L . T

L

)

) mpath.c

t

’: /* add the start of the line, i.e. the program to run */

h strcpy(temp, SENDLOCATION) ;

: strcat(temp," ");

. /* add the number of the sharedse in text */ .

i sprintf(temp2,"%d", 1n|tructure->|gr“|:1d)

! strcat(temp, temp2),

¢ strcat(temp,” ");

/* add on the machine name */ .
strcat(temp,mname);
strcat(temp,” ");

:: /* add the port number ¥/

) sprintf(temp2,"%d",sendportnum);

W strcat(temp, !em 2);

;l‘ sticat(temp,"” ");

R

¥ /* indicate whether a server, a client, or a broadcaster */
strcat(temp,server);
strcat(temp,” 0");

I\

o /* spawn off into the background */

;t' strcat(temp,"&");

Ry

.: /* spawn off the sender */

X if( system(temp) == -1 )

penor("SEl\S system call failed");

. else

- {

e, /* kill sender (which really doesn’t exist anywaé) so that the

) sender_is_free() call will always return FALSE.

) A similar thing does not have to be done for receiver_has_data()

| in a broadcasting path since it will always return FALSE anyway */

b kill_sender( instructure->segment, instructure->sendsem );

)

,‘

D

> /* spawn off the receiver process */

D

|'.' if( stremp( server, "broadcast" ) 1= 0 )

B /* add the start of the line, i.e. the program to run %/
strcpy(1emp, RECEIVELOCATION) ;

A\ strcat(temp," ");

3 /* add the number of the sharedsegment in text */

A sprintf(tempZ,"%d",inltruc!ure->sl§$id);

J strcat(temp, temp2);

L strcat(temp," ");

‘ /* add on the machine name */

< strcat(temp,mname);

. strcat(temp,” ");

(- /* add the port number */

o eprintf(temp2,"%d" ,receiveportnum);

‘ strcat(temp, temp2),

*" strcat(temp,” "};

o /* indicate whether a server, a client, or a broadcast receiver */
strcat(temp,server);

u strcat(temp,” 0");

D

: /* spawn off into the background */

S strcat(temp,"&");

L ] t

< 86

X

Y

"

@ '

TS i e e e N S L SO,

,‘f\-f‘ d'\. ~




D A ® §

TR

C R o
- v*"u‘”&'

£

-
Pl '-‘3.

a7 't et et a8t i e als a2 00" 00 1" Bad fah Rab R geh at

mpath.c

/* spawn off the receiver ./

if( system(temp) wm -1
peitor( RH£1VB lynem call failed");

“alavale,

“alyt

RaSat Sal Sab




i‘;".‘: For direct connection, both send and receive processes are spawned.
e For broadcast, either send or rececive proceas is spawned.
The dynamicmachinepath routine performs the following:

) -
1.4
';:l' (1) creates a shared segment and attaches it to the main program virtual
:n‘l: apace after an allocation of free memory space.
.i." (2) creates a send and/or receive semaphore based on the send and receive
,*Q: port numbers.
;"i‘ (3) free_sender(segment) and/or free_receiver(segment) -
e (4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/client/broadcast 0&");

*;ﬂ sxstem("receive sharedseg# machinename port# server/client/receive 0&");
":‘ (5) the send and receive semaphores, the pointer ta the shared segment,
.;_A and the id of the shared segment are placed in a structure of type
KX Machine that is declared in the calling program.
We */
LW
&Y dynamicmachinepath(segmentnum mname,sendportnum,receiveportnum,server,

i’ tus! ~ucture,freespace)
(l""'
h
AT
sl:, fong segmentnum; /* the key tc¢ use for the created shared segment */
Q"
;‘,',l char mname{}; /* machinename character string */
4
i long sendportnum, receiveportnum; /* send and receive port numbers */
b char server(]}; /* this character string is either "client", "server",
A "broadcast”, or "receive". If direct connection wanted,
!‘ it indicates whether the sender/receiver should open
to up as either a client or server. The first guy open
‘ must be the server. If broadcast wanted, it indicates
¥ whether to open up as broadcaster or receiver.
..h 0/
e Machine *instructure; /* structure to hald segment and semaphore info:
:.'3 char *instructure.segment -- returned ptr to the shared segment.
,:-i int iastructure.shmid -- returned system generated shared mem id
b "
e, int instructure.sendsem -- the returned send semaphore.
e We base it on the send portnumber.
‘o0 int instructure.receivesem -- the returned receive semaphore.
(. We base it on the receive portnumber.
LN »
N /

q:'-': int freespace; /* amount of freespace desired for dynamic memory allocation
A after this ioutine has been called. ¥/

-r (
L J char *dynamicsharedsegment(); /* shared segment creation function */
A
o int semtran(); /* semaphore creating routine. */

¥l
3} char temp[200]), temp2[207], /* temp character arrays %/
b »
-:.
s /* create the shared segment */
@ instructure->segment = dynamicsharedsegment(1,segmentnum MAXSHAREDSIZE,
\5 &instructure->shmid, freespace);
\.’ /* create the send semaphore. (unused if receiving broadcast messages) */
'b instructure->sendsem = semtran(sendportnum);
§

o
"J\ /* create the reccive semaphore (unused if broadcasting messages) */

' instructure->receivesem = semtran(rec~!veportnum);
®
Ao

-,
b 88

»
' ) ]
KA
.
p)
i

RONG ‘ T : R " —van
B D X R R e T DT R R T R o M 2 R o e S VA A 7




K
r"
t
g mpath.c
K]
: /* free the sender and receiver parts of the shared segment */
init_shared_buffer(instructure->segment);
:. ) /* spawn off the sender process */
\
:I f( satromp( server, "receive" ) I= 0 )
'
:’ - /* add the start of the line, i.e. the program to run */
¢ strcpy(temp, SENDLOCATION) ;
RE strcat(temp," ");
< /* add the number of the sharedsegment in text */
sprintf(temp2,"%d” ,instructure->shmid);
g strcat(temp, temp2);
,\:l strcat(temp," "l)’;
¢
“a /* add on the machine name */
i strcat(temp,mname);
‘ strcat(temp,” ");
:0. /* add the port number */
! sprintf(temp2,"%d",sendportnum);
\‘ strcat(temp, temp2);
:. strcat(temp,” ");
/* indicate whether a server, a client, or a broadcaster */
® strcat(temp,server);
" strcat(temp,” O&");
! /* spawn off the sender into the background */
‘:. if( system(tem == -1 )
Y perror("S system call failed");
8, '
:' else
/* kill sender (which really doesn’t exist nnywaé) so that the
o~ sender_is_free() call will always return FALSE.
‘ A similar thing does not have to be done for receiver_has_data()
' in a broadcasting path since it will always return FALSE anyway */

kill_sender( instructure->segment, instructure->sendsem );
}
/* spawn off the receiver process */
if( stremp( server, "broadcast” ) I= 0 )

/* add the start of the line, i.e. the program to run */

strcpy(temp,RECEIVELOCATION) ;
strcat(temp,” “);

Y

ALY,

7
() /* add the number of the chnredaeﬂ::en( in text */
Y, sprintf(temp2,"®d" ,instructure->shmid);

P, strcat(temp, temp2);

strcat(temp,” ");

a /* add on the machine name */

A strcat(temp,mname);

3 strcat(temp,” ");

/* add the port number */

sprintf(temp2,"%d" ,receiveportnum);

[} strcat(temp, temp2);

. strcat(temp,” ");

: /* indicate whether a server, a client, or a broadcast receiver */
~l sircat(temp,server);

® strcat(temp," OX");

¥

) ]

. 89

U

o

e,

B\

N O I T At g W M ® B P A B ™ ™ ¥ ¥ om 7 R N2t W 1 O e Ca Ca Ca O I A TR R R IS AR Y 8 V5 T € ¥ o ¥
NV OIS Ly " AN AT K i TRV AT ity ._ e g g

3. . Pl S OS o Lrg AN X y s



a § wy ol Mal ¥ 9 8. 4" - X} TN Y YOCTINTERTY afe” 0a’ 6y, s

mpath.c

/* spawn off the receivcr into the background */

if( system( ) == -1
perror(” Rﬂl\’ﬂ lynem call failed");

- “ae—

- T e g e Va0

W K T




T I S B U T U I R I I R T M T N T U N W T T o W o R R T T R R R W X T YL O O T T

),
¥
‘)7'
’ mpath.c
1
K /*
* For direct connection, both send and receive processes are spawned.
For broadcast, ecither send or receive process is spawned.
K The dynamicmachinepaths routine performs the following:
'
*' (1) creates a shared sogment large enough for multiple attachments
s and attaches it to the main program virtual space after an allocation
R - of free memory space.
f (2) creates a send and/or receive semaphorec bascd on the send and receive
y port numbers.
(3) free_sender(segment) and/or free_receiver(segment)
3y (4) spawns off the send and/or receive processes.
i system("send sharedseg# machinename port# server/client/broadcast 0&");
: uznem(”receiva sharedscg# machinename port# server/client/receive 0&");
‘b (5) the send and receive semaphores, the pointer to the shared segment,
K and the id of the shared segment are placed in a structure of type
:i / Machine that is declared in the calling program.
! .
- dynamicmachinepaths(nummachines, s:gmentnum,mname,sendportnum, receiveporstnum,
by server,instructure,freeapace)
[ int nunmachines; /* the maximum number of other machines to be attached */
D
:: long segmentnum; /* the key to use for the created shared segment */
char mname[}; /* machinename character string */
B long sendportnum, receiveportnum,; /* send and receive port numbers ¢/
&
4 char server{]; /* this character string is either "client”, "server",
:' "broadcast”, or "receive". If direct connection wanted,
U it indicates whether the sender/receiver should open
) up as either a client or server. The first guy open
i must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.
¥ ./
R)
d Machine *instructure; /* structure to hold segment and semaphore info:
¥
4 char *instructure,.segment -- returned ptr to the shared segment.
: int instructure.shmid -- returned system generated shared mem id
N int instructure.sendsem -- the returned send semaphore.
é We base it on the send portnumber.
i
:l int instructure.receivesem -- the returned receive semaphore.
) We base it on the receive portnumber.
: */
(] int freespace; /* amount of freespace desired for dynamic memory ailocation
A after this routine has been called. */
N {
- char *dynamicsharedsegment(); /* shared segment creation function */
‘: int semtran(); /* semaphore creating routine. */
: char 1emp{200], temp2(200}]; /* temp character arrays */
@
W static Boolean firsttime = TRUE; /* flag to detect multiple requests */
.l
o static int sequencenum = 0; /* sequence number for receive/send */
o
: static int totmachines; /* max attachments permitted */
)
_ /* check for first time called and establish max possible attachments */
® if( firsttime )
B Y
B
w
: 91
&
\
R
®
‘.
)
j NNy N AT A Tt M e e W G W R, g ", ‘- * i e ) 0 IR P G At ] -
E N 0 O T g B O W O N N N T o o T e g R AN B S S AR LR s A G




SR L LI LT ST O NN TN L O PV UL UW DS U DR DX TN IR 070 '8 070 8 0 0 2.8 0 050 8 2400 b Bab 06§04 AN g 9 005 G0t dov XTI TY

¢
K
" mpath.c
N
;: totmachines = nummachines;
firsttime = FALSE;
% else
'.:l ++sequencenum;
:r /* check for violation of maximum attachments */
';; if{ sequencenum >= totmachines ) -
-3 perror('l'm ath: Too many attachments attempted");
exit( - ;
: /* create the shared segment */
[~ instructure->segment = dynsmicsharedsegment(nummachines,segmentnum,
& MAXSHAREDS .
55 &instructure->shmid, freespace);
/* create the send semaphore. (unused if receiving broadcast messages) */
D instructure->sendsem = semtran(sendportnum);
:. /* create the receive semaphore (unused if broadcasting messages) */
‘: instructure->receivesem = semtran(receiveportnum);
h
G:‘ /* free the sender and receiver parts of the shared segment */
N init_shared_buffer(instructure->segment);
/* spawn off the sender process */
“
‘o: if( stremp( server, “"receive" ) 1= 0 )
!
t. /* add the start of the line, i.e. the program to run */
R strcpy( temp, SENDLOCATION) ;
y strcat(temp,” ");
' /* add the number of the sharedsegment in text */
,: sprintf(temp2,"%d”,instructure->shmid);
! strcat(temp, temp2);
D) strcat(temp,” ");
N
KD /* add on the machine name */
M strcat(temp,mname);
strcat(temp,” “);
) /* add the port number */
) sprintf(temp2,"%d",sendportnum);
strcat(temp, temp2);
strcat(temp,” ");
4’ /* indicate whether a server, a client, or a broadcaster */
strcat(temp,server);
strcat(temp,” ");
; /* add the machine sequence number */
i sprintf(temp2,"%d",sequencenum);
:. strcat(temp,temp2);
< /* spawn off into the background */
streat(temp,"&");
@
¥, /* spawn off the sender */
! if( system(temp) == -] )
; perror(" system call faiied");
! else
] /* kill sender (which really doesn’t exist anyway) so that the
o
92
D
9 )

¥

1]
A0 ] (YN EN L LT e - o : : g - -

AT ' L L W, ! 'a 7w X WMy W, Qg T T O AN BN TR~ a” o A" T a Tt AP, e, Y e -
.'i. 2 e P VY b".."n 7 S Mot A Mg .'.""" o n“t" a‘l"'\- h .' .‘ .‘ - .. - ”- '. '\‘.‘\:'J.\'-.- ; .'" v ~ ' '~'.'."".‘:’:" ")'




-
-

- -

. S,

-
)

mpath.c

sender_is_free() call will always return FALSE.

A similar thing does not have to be done for receiver_has_data()

in a broadcasting path since it will always retura FALSE anyway */
kill_sender( instructure->segment, instructure->sendsem );

/* spawn off the receiver process */

if( stremp( server, "broadcast™ ) (= 0 )

/* add the start of the line, i.c. the program to run */
strcpy(temp, RECEIVELOCATION) ;
strcat(temp,” ");

/* add the number of the sharedsegment in text */
sprintf(templ."%d".instructure->lﬁxid);
strcat(temp,temp2);

strcat(temp,” ");

/* add on the machine name */
strcat(temp,mname);
strcat(temp,” ");

/* add the port number */
sprintf(temp2,"®d"” ,receiveportnum);
strcat(temp, temp2);

strcat(temp,” ");

/* indicate whether a server, a client, or a broadcast receiver */
strcat(temp,server);
strcat(temp,” ");

/* add the machine sequence number */
sprintf(temp2,"%d", sequencenum);
strcat(temp, temp2);

/* spawn off into the background */
strcat(temp,"&");

/* spawn off the receiver */
if( system(temp) == -1 )
perror(” IVE system call failed");




EAAA "g"t.“ 1'l' A

@

3. netV.c

a. Calling Protocols
This module contains the low-level socket-managing calls. No functions in
this module are intended for application programs. This module is only linked into the
send and receive processes.

b. Code and Description

/.t“.“‘."‘t‘.".‘.“lt‘..‘t#‘.“‘t‘#.‘.“.tt‘.t“‘.t““t‘tt.".“..“.““

TITLE : Inter-Computer Communication Package
MIULE : netV.c
VERSION: 5.0
DATE : 31 May 1988
AUTHOR : Theodore H. Barrow
Y YT RI PR E IS RIS A3 32 22 LIS RIS R 2 TSRS R SRR R A RS R AR R S R 2
HISTORY:
VFRSION: 1.0
DATE : 19 November 1986
AUTHOR : Michael J. Zyda

DBESC. : Contains routines connect_server and connect_client to allow
two machines with Unix System V to conmunicate via sockets.

VERSION: 2.0

DATE : 29 April 1987

AUTHOR : Michael J. Zyda

DESC. : Converted to work with 4.2BSD sockets.

VERSION: 3.0

DATE : 27 May 1987

AUTHOR. : Theodore H. Barrow

*
-
.
L]
*
»
-
*
L]
L]
-
L]
L
L]
*
*
L]
*
L ]
*
]
»
*
»
*
.
*
*
[
L]
*
*
*
[ ]
*
*
*
L]
*
.
*
 J
]
L]
L]
]
]
*
*
L ]
.

FEFSFOFAFA Y Y Y EEREREEE T E I S I I S A B 3 B N IR N S EE B ONE SR SK BE R SR BE SR N R 2R AR R R R A 4

DESC. : Bliminated excess variables, some unused and some unnecessary.
VERSION: 4.0
DATE : 21 August 1987
AUTHOR : Theodore H. Barrow
DESC. : Improved reliability of socket connection and disconnection.
VERSION: 5.0
DATE : 31 May 1988
94

W ['d " o 7 -
"l Yoh'a \‘.n » 'u » . st H ‘ \A\ \'J. \\.’\’ J\ < f' ‘1 '! f\- '-'f"-. \.".(" '\."' , '.'Nf\' -




! netV.c

7‘ . *
- * AUTHOR : Theodore H. Barrow .
. .
‘n . DESC. : Added start_broadcast() and broadcast_receive() to provide .
iy by datagram sockets for broadcast use. These sockets use the .
5 . default Internet broadcast addressing. .
o PARSPRNSRSN RS EARPRIPRR RS RN RSN RS S S E S SN PRI RS AP SIS IC RS SIS EOEPPE RS ERER LSS
& - . *
X . RECORD OF CHANGES *
[y ) » -
*Version* Date * Author ¥ * Affected  *Reqd*
o * * Chnnge Description * Modules  *Vers*
1’ LR XL RIS R R R R RS R R AR 2 A 22X R R R R R R R 2 R 2R 2222 R R2 RS R FERE SRS 1
Ay * 4.1 * 4Jan88 * T. H. Barrow . * send.c *4.0 *
& » * Changed include library pathnames for IRIS 4D.* receive.c *4.0 ¢
R ARCARE RO ER RS R R PR AR P E PR R RO R R R RN R SRR GRS RROR R ER N E RSP E SRS S LR R RIS EUE SR AN RS
) . . * . . . .
I - * . » .
D T Y T Yy,
™
I
)
)
l'|:
«;a
2
@
NS
1,V
o
3
)
ha
4
4!
W
'»
L
)
)
1.‘:‘

el

[P

1}“ . <,
. "

AP ALY N0 WY

-ff 'I,;f_ 'f.;q" * I’ -n%, :',f 'ty Wy ¥ " ( . Ly f\ €, LAY h Nr\‘v .'\r\.'.‘(_-q-\.r‘f_-.'r r.‘r‘_r ‘.rk‘r.-v.\.:_';\.-.&
! v R B » ) ad o o i el A -

oA k A B -l~..“-‘ gt Xal ()



)

;

!

;: netV.c

K/

i /*

) This segment, when linked into a program on a computer with a UNIX 4.2 BSD

operating system, will allow the program to communicate with programs

o executing on other computer systems over an Internet network.

“ *

. #define TRUE 1|

[}

" /* include files for UNIX 4.2 BSD. These are all called from the bsd

4 subdirectory in /usr/include. The file _H"s/typel.h also exists and is

’- included when bad/lyl/tygea.h is used. is was done for ease of change
. if and when Silicon Qraphics changes the include library structure. */

S #include <sys/types.h>

& #include <sys/socket.h>

: #include <bsd/netinet/in.h>

X #include <bsd/netdb.h>
2 PR T T L T Y

The connect_server(remote_client_name, port_number) function performs

! the actions required to connect a server system to a remote client system
.P ‘“..“’Ot‘..‘O“"‘“.“““#““‘0‘..‘.t‘.ttt.".‘.“‘.“./
I

- int connect_server(remote_client_name, port_number)

. char remote_client_name[]; /* name of the remote client system */

: int port_number; /* port number to the remote client system */

T {
- char *ptr_client_name; /* pointer to the remote client system's name */
X int local_server_socket; /* local socket number */

int socket(); /* function that opens a socket */

D, int accept(); /* function that accepts a connection from
X a remote client socket */

‘ int remote_client_socket = -1; /* socket number of remote client aystem */
&

: /* protocol and address data structure for socket */

static struct sockaddr_in address = { AF_INET };

-1

- long remote_client_address; /* address of the remote client system */
‘ short remote_client_port; /* port number of the remote client system */
X int address_size; /* size of address of remote client system */
9

. /* create socket structure from input parameters */
8~ /* get a pointer to the remote client system’s name */

: ptr_client_name = remote_client_name;
': /* convert the remote client system name to its address.
; Note that gethostbyname() requires a pointer to a pointer */
remote_client_address = (long)gethostbyname(&ptr_client_name);

)
: /* set the remote client Yort number above the system reserved ports

[\ by adding the remote client port number to the number of reserved ports ¢/

remote_client_port = IPPORT_RESERVE) 4+ port_number;

/* remote client system address family (Internet in this case) */
address.sin_family = AF_INET ;

o] @
-

96

P J

-
..

<

4.';.'\.-..“-."\..\# w‘—‘f\f$¢\ \"Yﬂ‘\\- \.')\

> B



4 netV.c

/* place the remote client port number into the address data structure
in network byte order */
address.sin_port = htons(remote_client_port);

' /* place the remote client system's address in the address data structure */
: address.sin_addr.s_addsr = remote_client_address;
: - /* find number of bytes in the remote client address */
' address_size = sizeof(remote_client_address);
s
' /* attempt to open a local socket */
5 focal_server_socket = socket(AF _INET,SOCK_STREAM, 0):
y
‘ if(local_server_socket < 0)
4 perror("Server couldn't open a local socket:");
0 else
i {
L if(bind(local_server_socket, (caddr_t)&address, sizeof(address)) < 0)
perror("Sersver couldn't bind address to local socket:");
! /* set the maximum number of remote client systems to be connected to */
1 listen(local_server_socket,SOMAXOCONN) ;
#
r printf("Server waiting to connect to %s\n",remote_client_name);
A /* attempt to accept a connection */
e remote_client_socket = accept(local_server_socket, &address,
&address_size);
L’ if(remote_client_socket < 0)
A {
q: /* an error occurred in the server attempting to
\ accept a connection from remote client system */
L percor("Server couldn't accept connection from remote client system:");
. shutdown(local_server_socket, 2);
close(local_server_socket);
M }
- /* else the server accepted a connection from the remote client system */
.
}
!
/* return the socket number of the remote client system */
return(remote_client_socket);
. ] /* « nnect_server */
L
X
.
L]
.
1w
1
!
L/
[ 1
, 1
: 97
\
)
]
[ ] )

-

[ 4 -
‘ﬁ

LI P A I T I Y T S SR I WMy W wy ¢ - - . . . . r R s PR M AT e M mT e s .. =
N EC TN I T O W W mmy R A ST G L T R e «
P IO A .-* N \‘\ "' e ' > '\- * > AL '\- N RS Y N LA T '.'."\'.\ '."‘-. R TR Ot \"\.\.-.




o e

T T R R T U A T O T U T T T T WA N I TR T Iy Iy i orme €0t 02 Bb 08 0:6 €27

netV.c

/0‘..‘#"#“““t'.i“.“““.‘.tO..‘".'U““t““‘...t‘.‘.

The connect_client(remote_server_name, port_number) function performs
al] the actions required to connect a client system to a remote server
system

.".‘.‘0“‘t.ttt““‘#."‘.‘0‘.“t“‘.t‘t“.“““““‘.“‘/

int connect_client(remote_server_name, port_number)

char remote_server_name|[}]; /* name of the remote server system */
int port_number; /* port number to the remote server system */
{

int local_client_socket; /* local socket number */

int socket(); /* function that opens a socket */

/* function that connects local socket to remote server socket */
int connect();

int remote_server_socket; /* socket number on remote server system */

/* the protocol and address data structure specified for the socket */
static struct sockaddr_in address = { AF_INE% };

struct hostent *remote_server_address; /* address of remote server system */

short remote_server_port; /* port number of remote system */

/* create socket structure from input parameters */

/* convert the remote server system name to its address.
Note that gethostbyname() requires a pointer only in this case */
remote_server_address = gethostbyname(remote_server_name);

/* clear out the address structure */
bzero((char *)&address, sizeof(address));

/* copy the remote server address structure into the address structure */
bcopy(remote_server_address->h_addr,

(char *)&address.sin_addr,

remote_server_address->h_length);

/* set remote server port number above the system reserved ports by adding
the user's remote server port number to the number of reserved ports */
remote_server_port = IPPORT_RESERVED + port_pumber;

/* remote server system address family(Internet in this case) */
address.sin_family = AF_INET;

/* place the remote server port number into the address structure
in network byte order */
address.sin_port = htons(remote_server_port);

[* attempt to obtain a local socket */
local _client_socket = socket(AF_INET, SOCK_STREAM, 0);

if(local_client_socket < 0)
perror("Client couldn’t open a local socket:");
else

{

/* place Internet address family type in address structure */
address.sin_family = AF_INET;

98

- .- v Wy oy Oy Oy Calp oy €, Ty ¥ ¥ o n « M
T A 0 T Y N T e T T e o

TR

gt —




)
XA,
I )

.
) /
i ret

/* c

..
» at

P

Palnls
Ay

YL ELE IO TS

A

gulh

<

2
%3

- . - - " .
e N
“olliF 3= ol AL

A4

)

) A - "~y .
WL Y M X

netV.c

/* attempt to connect local client socket to remote server socket */
remote_server_socket = connect{local_client_socket, {(caddr_t)&address,
sizeof (address));

if(remote_server_socket < 0)

/* error occurred in attempting to connect to remote server socket */
perror("Client couldn’t connect to the remote serser socket:");

shutdown(local_client_socket, 2);
close(local_client_socket);

/* set local_client_socket so that negative value is
always returned when an error occurs
*/
local_client_socket = remote_server_socket:
)
else
/* successfully connected to the remote server system */
printf("Connection established with %s.\n",remote_server_name);

return the socket number of the focal client system */
urn(local_client_socket);

onnect_client */

99

e LA
.

\ 0 ORI A MW O L 3G AW
- Bt | v, A

" s - R ™'l -~ -
. (o MO N oY ¥ T N 1 N G R Y K L T M e B WG



I W IPU WL WL WU T VU T WU WU W WU M U W L S 2 S e S N W, U T S R T e e o) > 825 nad

netV.c

/‘.‘O#O#Ot"..“tt‘t‘.00..“.“““.‘#““““‘t‘t.‘t..“““

R R SN I,

The start_broadcast(port_number) function performs
the actions required to initiate a datagram broadcast socket.

“...tt“...‘."‘0‘.‘...O‘.“..‘t“.t““..t“..““l““‘.‘/

int start_broadcast(port_number)

int port_number; /* port number for the remote receiver system */
{
int broadcast_socket; /* local socket number */
i int socket(); /* function that opens s socket */
: int setsockopt(); /* function that sets a socket to allow broadcast */
! int on = TRUE; /* to set broadcast toggle on for socket */

/* protocol and address data structure for socket */
static struct sockaddr_in address = | AF_INET };

short broadcast_port; /* port number broadcast heard from */

-~

/* create local socket structure from input paramcters */

4
/* set the broadcast port number above the system reserved ports
§ by adding the broadcast port number to the number of reserved ports ¢/
| broadcast_port = IPPORT_RESERVED + port_number;
/* system address family (Internet in this case) */
address.sin_family = AF_INET ;
/* placc the port number into the address data structure
¥ in network byte order */
address.sin_port = htons(broadcast_port);
; /* place the local address in the address data structure
’ in network byte order */
N address.sin_addr.s_addr = htonl( INADDR_ANY);

/* attempt to open a local socket */
brosdcast _socket = socket (AP_INET,SOCKX_DGRAM, 0);

k if(broadcast_socket < 0)
) perror("Broadcaster couldn’t open a local socket:");
§ else

{
/* set the broadcast_socket for broadcasting */
4 if(setsockopt( broadcast_socket, SOL_SOCKET, SO_BROADCAST,
; &on, sizeof(on) ) < 0)
I perror("Broadcaster couldn't set socket to broadcast:");

else if(bind( broadcast_socket, (struct sockaddr *)&address,
sizeof (address) ) < 0)
perror("Broadcaster couldn't bind to local socket:");

d else

\ printf("Waiting to broadcast\n");
/* return the socket number */
return(broadcast_socket);

| } /* start_broadcast */

100

Uit e W T o B 0 T e S N R G T R T L A (R SR GRS A




‘:; netV.c

/“..0.0‘0.0“.‘.‘.#“‘..‘.t"t.“..“‘t“....‘..t‘.t“.‘.“

The broadcast_receive(broadcaster_name,port_number) function performs

) . all the actione required to set up a broadcast receiving socket
3,

)

1 L L L L R T L LA R R A A I L

‘3,

}.' .

at int broadcast_receive(broadcaster_name,port_number)

char broadcaster_name[]; /* name of the broadcaster system */

f’ int port_number; /* port number for the broadcaster */
v

)

' {

j; int local_socket; /* local socket number */

K

N int socket(); /* function that opens a socket */

int broadcaster_socket; /* socket number on broadcaster system */

(]

‘b /* the protocol and address data utruclure ecif:ed for the socket */
:4 static struct sockaddr_in address = INEE

)

{ﬂ struct hostent *broadcaster_address; /* address of broadcaster system */
R

' short broadcaster_port; /* port number of remote system */
'.I

{. /* create socket structure from input parameters */

)

b

5: /* convert the broadcaster system name to its address,

O Note that 5elhoutbynune() requires a pointer only in this case */
broadcaster_address = gethostbyname(broadcaster_name);

3 /* clear out the address structure */

ke bzero((char *)&address, sizeof(address));

f‘ /* copy the broadcaster address structure into the address structure */
; bcopy(broadcaster_address->h_addr,

n! (char *)&address.sin_addr,

e broadcaster_address->h_length);

; /* set broadcaster port number above the szntem rescrved ports by addin
p the user’s broadcaster Ksét number to the number of reserved ports *
‘ broadcaster_port = IPPORT_ ERVED + port_number;

"

” /* broadcaster system lddtell family(Internet in this case) */
’ address .sin_family = AF_I

® /* place the broadcaster port number into the address structure
s in network byte order */

‘3 address.sin_port = htons(broadcaster_port);

|'l

|'§

(N /* attempt to obtain a2 local socket */

, local_socket = socket(AF_INET, SOCK_DGRAM, 0);

if(local_socket < 0)

I A
. Q
; ‘ perror("Receiver couldn’t open a local socket:");
A else
& {
& /* attempt to connect local socket to broadcaster socket */

D broadcaster_socket = connect(local_socket, (struct sockaddr *)&address,
sizeof(address));

% 101

o) o BV 2% 2% ] ~

o ST T T R T L0 R I R St P o ™ w7 MY " ) ; OO
AN LN AR P X 0!% ARUCOCCH MR e X MNFOL IO KN L M OO u"'n'. R "'s‘,‘al. n'?“'. ot OOt




AT LT LRI K B L T ) ~o.8%n £ 0. 8% 4%2 W'y $% ¥#'a" 027200 ata g ¥ NaY tal Vg N T L T O o RS IR fal ¥ e Batala Ain®

Ny netV.c

5 if(broadcaster_socket < 0)

/* error occurred in attempting to insert broadcaster information */
perror("Receiver couldn’t find broadcaster:");

N shutdown(local_socket, 2);
4 close(local_socket);

K} /* set local_socket so that negative value is -
& always returned when an error occurs
*/

local_socket = broadcaster_socket;
x )
() clse

/* successfully listening to the broadcaster system */
printf("ready to receive from %s.\n" ,broadcaster_name);

) ]

/* return the socket number of the local system */
return(local_socket);

)} /* broadcast_receive */

] 102

¥ 7 w” .

T T LA AN A AN L T I P
B I N M NN M AP X AR NI ARG S I MR M N T M R T i MR ¥ v e v ConiRedidndadnn



ity l‘l‘

4. receive.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description
L T T T T T T T P TR T TP
TITLE : Inter-Computer Communication Package
MIDULE : receive.c
VERSION: 3.0
DATE : 31 May 1988
AUTHOR : Theodore H. Barrow

IR S E R AR SRR R RS SRR R LIRR R R RR RS2 R 2R R R 22 22222 2 R R R Rl il it}

HISTORY:
VERSION: 1.0
DATE : 6 February 1987

AUTHOR : Michael J. Zyda

DESC. : Background process to receive messages over link.
VERSION: 2.0
DATE : 15 December 1987

AUTHOR : Theodore H. Barrow

DESC. : Added capability to get sequence number from command line
and use it to get offset into shared memory segment.

VERSION: 3.0

DATE : 31 May 1988

AUTHOR : Theodore H. Barrow

IR BE R BE A BE CNE CNE K R R BN NE B BE NE B K R N K B BE BE L BE K SE BE K BE B K IR AR 2R N 2 J

!
L]
*
*
»
*
L ]
»
*
»
.
L
*
L]
*
*»
*
"
»
»
»
*
*
*
»
[ ]
L]
L
]
]
»
»
.
*
L]
®
»
»
»
*
.
*
*

DESC. : Added broadcast receive cagabxllt

I I T N e T R T P T T Y PR T Y
.

RECORD OF CHANGES .

*

*Version* Date * Author hd ¢ Affected *Reqd*
. . Change Description *  Modules *Vers®*
ottttt‘ttttttttttt tttttt.tt.‘.‘tttt#tttttttQt‘tt“O‘tttttttot.tt“tttttttttt
* ] * * * *
. . . . .

‘“‘t0#“‘ttt"t‘tt".““t0t#.'0“#tt.‘0““‘.#“““‘.“““““.“0‘.‘.“.0/

103

- g R A - ._, - - - o
8 O,»“l‘ (N ..4..'- 04% '\"h HEhH .. i .l.h oh h"" .'. M | "' { ". AR .'{N' \"(\ “*-" \\N 'V"\

U 4
A R Nk

o

o

- x= =

T ALK

“wox AI.I.I.

D@ £

syl @ Cooegiacs

e @ XK

j,,,.:fu; o A



* .54, T R W,

v
@
"‘
E: »
receive.c
K #include "shared.h”
: #include "gl.h"
main(argc,argv) .
’\ int argc; /* argument count */
5 char *argvi]; /* pointers to the passed in arguments */
{
t
’ /* we need to declare character variables for everything passed in */
f,
D)
W char shmidstr[10]; /* shared segment string holding the integer key®*/
b
S int shmid; /* integer pulled out of the string */
:A char *segment; /* character pointer to the shared segment */
int receivesem; /* receive semaphore */
'} char *sharedsegment();/* create shared segment function */
; char mname[100]; /* machine name ¢/
[
3 char portstr[10]; /* port number string */
e long portaum; /* port number pulled from the string */
& char server[10]; /* server string */
: char seqnostr{10]; /* sequence # string holding integer sequence # */
: long sequencenum = 0; /* integer pulled out of the string (default 0) */
) int socket; /* the opened socket descriptor */
‘{ int connect_server();
H int connect_client();
a int broadcast_receive();
N int receiver_is_free();
: int receiver_should_die();
o int semtran(); /* semaphore creation routine, */
‘; /* pull out the strings from the argument list */
if(arge < §5)
~
\ printf("RECEIVE: incorrect argument count!\n");
" exit(1l);
v
)
3 /* pull out the shared memory string */
; strcpy(shmidstr,argv[1]);
; sscanf(shmidotr, "%d" & hmid);

/* pull out the machinename string */
strcpy(mname ,argv(2]);

"/* pull out the port number string */

strcpy(portstr,argvi3]);
sscanf(portstr,"%d" ,&portnum);

104

)
1
1
¢
8
»
‘.
4
L)




L IPT O T Y A S T LR IR R A AR A R AN AN L N LY VN R U LY T ey 0 4% AVad's 498 }* 5 Byr Bat Sat Babolas Eatala"ulins atn 268 2T a0 0°8 -4 & TR

)
sd
@
[id
W,
K
= receive.c
\]
"
:! /* create the receive semaphore */
N receivesem = semtran(portnum);
14 ‘ /* pull out the client/server string */
v; strcpy(server,argvi4]);
: /* pull out the sequence number astring */
s - if( argec > 4 )
.‘:. l
0 strcpy(seqnostr,argv(5]);
’ sscanf(seqnostr,"%d" ,&sequencenum);
X l
z: /* attach to the shared memory segment */
N if((int)(segment = (char *)shmat(shmid, 0, 0666)) < 0)
N {
4 perror ("RECEIVE: shmat”);
] exit(0);
;'.0 /* create the shared segment address to use */
t,: segment += sequencenum
'
}
it /* open the socket connection to the named machine */
:l if(stremp(server,“server”) == 0)
s /* we should open as the server */
socket = connect_server(mname ,portnum);
,' else if(strcmp(server,"receive”) == 0)
: /* we should open as the broadcast receiver*/
} socket = broadcast_receive(mname ,portnum);
il }
pa: else
{
KN /* we should open as a client */
N socket = connect_cflient(mname,portnum);
N )
i':
» /* check to make sure socket was opened, exit if not */
I if(socket < 0)
¥ {
printf("RECEIVE: socket connection NOT made!\n");
B exit(l);
» )
{
&)
N /* the infinite laop... */
h
if(strcmp(server,"receive”) == 0)
Y while( )
- {
A /* should the receiver die??7 */
4 if(receiver_should_die(segment, receivesem))
"N {
4 /* exit after detaching shared segment and cleaning up socket */
detachsharedsegment (scgment);
o shutdown(socket, 0);
® close(socket)
' exit(0);
K }

/* if the receiver part of the segment is free, read onto it */
if(receiver_is_free(segment))

o

/* check socket and read into segment if proper message */
if(broadcast_into_segment(socket,segment ,mname,portnum) > 0)

105

[N e

AN ™) M CASLAR LT o) NIt AT LTS 0P BS S e t"f LN
v ‘ q»- . \ \' " N J\t (L T4 ., s .IO, .Q- 3 .\. S \

[} - N . - .
' \ &
OO KOOt .0'. AL S e




R R T T T R R R T O R R R PO MO R PO o O RO

receive.c

/* at this point, sleep until we receive a signal from the

graphics program that the receiver segment jis free, i.c.

the data has been read out */ .
P(receivesem);

)
ll /* end while true for broadcasting*/ )
clse

while (TRUE)

{

/* should the receiver die??? */
if(receiver_should_die(segment, receivesem))

(
/* exit after detaching shared segment and cleaning up socket */
detachsharedsegment (segment);
shutdown(socket, 0);
close(socket);
exit(0);
}

/* if the receiver part of the segment is free, read onto it */
if(receiver_is_free(segment))

/* read socket into segment ¥/
read_socket_into_segment(socket,segment);

/* at this point, sleep until we receive a signal from the
graphics Krogrun that the receiver secgment is free, i.ec.
the data has been read out */

P(receivesem);

) /* end while true for direct connections#*/

106

Yad

.‘ ! LI Ve q)" o‘.vf-.-’.-"~ -’4~ -n - -I' -~ - -, AT T AR At DI Y PRI UL S TP R PR P S RS PN
RN NI T MO A SA N L T o .-. O Aty "‘-‘-“ VRV SRR T 'q"."#" . .'0

ne. Wy



IR

- e

-
0o

¢y

.5

e R T et W S O ot T WO L S W T L S S S R MR T L T L TS TO T T S PO PO T TOR Pt T T

5. semaphore.c

a. Calling Protocols
This module repackages the low-level semaphore calls into a P and a V
semaphore operation. No functions in this module are intended for application programs.

b. Code and Description

[ E 2T R RIS SRS RS R E RS R 2R S22 R 2222 R R R RS2SR R A2 R R R AR SRR R RSS2 2 2 )

TITLE : Inter-Computer Communication Package
MIULE : send.c

VERSION: 1.0

DATE : 11 Pebruary 1987

AUTHOR : Michael J. Zyda

(RS R 22 A2 R 22222 22 R 22 22 2222 R R 222 SR R R RS 2SR AR R R R 2 2 )2 ]

HISTORY :
VERSION: 1.0
DATE : 11 Pebruary 1987

AUTHOR : Michael J. Zyda

L B BE BN K 2N 3R BE BE B NE R BE BE BE BN R B B BE B 3R A )

:
*
*
*
*
»
*
*
*
»
*
*
*
*
-
L ]
*
]
*
*
]
L]
L ]
*
*
*
*

DESC. : Implements P and V semaphore operations for Unix system V.
Based on an example from Advanced Unix Pro rlmning.

T T L e T T L T T Ty
.

RECORD OF CHANGES .

.

*Version* Date * Author . ¢ Affected *Reqd*
. . Change Description *  Modules *Vers?*
PP EESSERSERE N RS ES AN AN SEPV RS EF RSN ARUISRAR N R RPN ECRE RS F NP RSN USSR G S RO REER AR
. . * . . . .
* . * . .

“‘t““.....t*..‘....“‘.‘t‘“.‘.".t“..“.‘tt“t“‘.‘...“.‘..““‘t‘.‘.‘t/

107

LS AT TRSUIE PLIE IR -\: \- L LU PN Y ) q~-\:. - ﬁ‘:‘ LS R O PN, 4 W W o W W [ |
N e T D AT ey L D R o M, T L WS Wit

AW L. . . v A o 4., - ey

(L on

-,

L

L Aoy

- -



semaphore.c
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semtran(key) /* translate semaphore key to ID */
int key;

int sid;

if ((sid = semget((key_t)key,1,0666]1 IPC_CREAT)) == -1)
{

perror("semget”);

return(sid);

static void semcall(sid,op) /* call semop */
int sid;
int op;
{

struct sembuf sb;

sb.sem_num = 0;

sb.sem_op = op;

sb.sem_flg = 0;

if(semop(sid, &sb,1) ==

{

perror("semop”);

void P(sid) /* acquire semaphore */
int sid;

semcall(sid, -1);

void V(sid) /* release semaphore */
int sid;

semcalf(sid, 1);

AXS N PR Gy A TR L 0 Vo Tah W) A Ep N h
.0..'. !.l.l. Bl BT .‘ l. A ,Js..s A ~ N . £ ) N 0'0. » »



K) 6. send.c

i a. Calling Protocols
o
" This program monitors a socket, like a daemon. It is spawned transparently to

= the user and receives its initialization data through the command line.

::: b. Code and Description

:‘: P L T R T S T A L D L I T DA T T L TR S L LT
v . .
W
|"¢ * TITLE : Inter-Computer Communication Package .
' . .
¥
' * MDULE : send.c .
* *
3 * VERSION: 3.0 b
A . .
3 * DATE : 31 May 1988 .
a" A .
';‘:‘l * AUTHOR : Theodore H. Barrow *
. »
H
,‘: I L T I T T Ty T T P R T T P
» *
o
NS ¢ HISTORY i
x » »
1 * VERSION: 1.0 *
e : ’
:.. * DATE : 6 February 1987 »
4, * .
- . AUTHDR : Michael J. Zyda .
. .
R . DESC. : Background process to send messages over link. *
) . *
\)
o . VERSION: 2.0 .
.’ e *
W . DATE : 15 December 1987 .
h
iy * *
K * AUTHOR : Theodore H. Barrow *
. .
- bd DESC. : Added capability to get sequence number from conmmand line *
*ae e and use 1t to get offset into shared memory segment. .
. *
~
A . VERSION: 3.0 *
Y ] *
: . DATE  : 31 May 1988 *
) . -
" . AUTHOR : Theodore H. Barrow .
@ . .
>, . DESC. : Added broadcast cagabilily *
" (I RS R RS E RN R ER RIS NSV RR SRR R RS LR AR R RS SA R R R R RIS AS R Z AR R R E 2}
L. - *
e . REOORD OF CHANGES .
L . .
oo
e *Version®* Date * Author v * Affected *Reqd*
' . * Change Description * Modules *Vers*
. I R I TS A RS YR R R R R R RS RS R RN R RSS2 R AR AR R AR R RNl 0 2]
* * * L] ] ] *
I L4 . * . .
3 “.“.“‘..‘.“‘“‘..‘.“‘t‘tﬁ“#t““Ot‘#l““.““.““.“‘.‘.“‘..“.““‘/
¢
’\
'S
".
®
: A
N
\ 109
o
"
W
'
»
@
°*
L)
Q. e JUE PR P Y W W T W | . . . - - -
h » 'v R W W Y ‘ TS T -~ LAY L AR AR N A - WA R -~ o
l‘! ‘Q s . WIS N 0‘:.0_ [N, LN AAN AN L n, 9% 05 RER !!\ DAY AT A A o™ M .0 .oa', ~




N W T N U Y WU U L U N W N N U N WL P U R R R AT N N RN R W ™ 1a%ate o tata0at 4yt gav 1500 as aat gt fav fa* gat &

Q@
L]
L)
l"‘
[ send.c
)
: #include "shared.h”
X #include "gl.h"
. main(argc,argv)
)
‘: int arge; /* argument count */
:. char *argvi]; /* pointera to the passed in arguments */
3
" {
/* we need to declare character variables for everything passed in */
K char shmidstr[10]; /* shared segment string holding the integer shmid */
',0. int shmid; /* integer pulled out of the string */
,9‘ char *segment; /* character pointer to the shared segment */
i
b int sendsem; /* send semaphore */
" char *sharedsegment();/* create shared segment function */
:: char mname[100]; /* machine name */
i
i char portstr[10]); /* port number astring */
! long portnum; /* port number pulled from the string */
4
P char server([10}; /* server string */
t
: char seqnostr[10]; /* sequence # string holding integer secquence # */
‘, long sequencenum = 0; /* integer pulled out of the string (default 0) */
'
int socket; /* the opened socket descriptor */
’ int connect_server();
)
: int connect_client();
: int start_broadcast();
int sender_has_data();
. int sender_should_die();
int semtran(); /* semaphore creation routine. */
/* pull out the strings from the argument Jist */
if(arge < §5)
{
¢ printf("SEND: incorrect argument counti{\n");
\ exit(l);
3 /* pull out the shared memory string */
r. strcpy(shmidstr,argv(1]);
s sscanf(shmidstr,"%d” ,&shmid);
4 /* pull out the machinename string */ \
R strcpy(mname argv[2]);
t
1 /* pull out the port number siring */ -
? strcpy(portstr,argv[3]); )
4 sscanf(portstr,"%d"” &portnum); J
/* create the send semaphore */
)
! 110 :
| \
, b
4 )
K ,

B A R N A RN B o

e T A ST AT A Al . P e LA R A VO RS S CN
M M | a . i X . N ) (e M » o i




O A R R A N TR R T T o R R T S N R PR S P oy P AV 2 0 a0 U B 128 0.8 Vad V.8 Val t2d. AL Rl AV . o ANe AVR Ala” Abe AFn AL § e A"

A 4 A ™
3
]
§
D
)
. send.c
)
q sendsem = semtran(portnum);
. /* pull out the client/server string */
' strecpy(server,argvi4]);
s /* pull out the sequence number string */
) if( arge > 4 )
) ) {
K strcpy(seqnostr,argv(5]);
3 sscanf(seqnostr,"%d" ,&sequencenum) ;
}
/* attach to the shared memory segment */
K if((int)(segment = (char *)shmat(shmid, 0, 0666)) < 0)
. |
2 perror("SEND:shmat");
x exit(0);
)
f /* create the shared scgment ./
k segment += sequencenum * MAXSHAREDSIZE;
" /* open the socket connection to the named machine */
X if(strcmp(server,”server”) == 0)
‘N /* we should open as the server */
P socket = connect_server(mname,portnum);
- }
by else if( strcmp( server, "breoadcast” == 0 )
) {
, /* we should open as a broadcaster */
" socket = start_broadcast( portnum );
' }
: else
{
/* we should open as a client */
D socket = connect_client(mname,portnum);
. }
1
'
3 /* check to make sure socket was opened, exit if not */
3 if(socket < 0)
) {
printf("SEND: socket connection NOT made!\n");
{ exit(l);
) )
‘o
X /* the infinite loop... */
; if( strcmp( server, "broadcast” ) == 0 )}
@ while(TRUE)
\ {
o /® should the sender die???7 */
s if(sender_should_die(segment sendsem))
b {
”: /* exit after detaching segment and cleaning up socket */
», detachsharedsegment (segment);
] shutdown(socket, 1);
(] close(socket);
exit(0);
) ]
I
) /* if there is data in the shared memory segment, ... */
) if(sender_has_data(segment))
{
- /* write the data in the shared segment onto the socket ¢/
® send_socket_from_segment(socket, ,portnum,segment);
, 111
‘I
4
h
@
A
;
4

o p v, PSS P NN AN Lo P P, A : - P S P L U . R
LA A L L KR A G A e o O A A R 0 e T o SRt s G 0 TR T N G A o A



v
‘».-.l'l

55

o Y B a
PN .'.’).‘.'.'-'1'4.",

e Tk ® %- J‘

)

-

®
<
W,

N
::b‘.’ '0 'n

N N N e o 2 M A NN N s

send.c

/* at this point, sleep until we receive a signal from the graphics
rogram. The signal will indicate that the graphics program
ﬁll put more data into the shared segment.
*/

P(sendsem);

} /* end while true for broadcasting*/
else

while(TRUE)

/* should the sender die??? */
if(sender_should_die(segment sendsem))
{
/* exit after detaching scgment and cleaning up socket */
detachsharedsegment (segment);
shutdown(socket, 1);
close(socket);
exit(0);
)

/* if there is data in the shared memory segment, ... */
if(sender_has_data(segment))
{

/* write the data in the shared segment onto the socket */
write_socket_from segment(socket,segment);

J

/* at this point, sleep until we receive a signal from the graphics
rogram. The signal will indicate that the graphics program
as put more data into the shared segment.

*

P(sendsem);

} /* end while true for direct connection*/

112

AN N )




RN AN KRN R AU

7. shared.h

a. Calling Protocols
This module has all the predefined constants and type definitions. It must be

included in the application.

i »
e

e ..,“

e
el gt el WL

a0

9
LA

-
.'

R e

. 0L ™ W ™ - m L S P . - ma e - " Tt " P PR L]
WA I A S - 2 Y% J"' " Ak v'-ﬁ,.-"-(' J‘ ~ e "'I -"- -~ ‘.’ e ". " .. .";' "-f\(\"'\-‘ 3" S o Y] oW AN



L TN N R TR R U R A R R RN T OY Y 0 0 R L P BT BV Bab e h B B R P o vy e Py e

shared.h

K b. Code and Description
‘ P T L L T L L T L R R L A L T LI LT
. L ]
: * TITLE : Inter-Computer Communication Package .
3 * .
; * MDULE : shared.h .
* L
y * VERSION: 4.0 .
] .
* DATE : 15 December 1987 bd
* *
{ * AUTHOR : Theodore H. Barrow .
A * *
L) YT R XTI ARSI RSN R SRR ASRAS R R AR R RIS R RN TRRTRARRR L R R ARtdll)
) . .
* HISTORY: .
. *
. VERSION: 1.0 .
. .
3 . DATE : 6 February 1987 .
D * .
: * AUTHOR : Michael J. Zyda *
» *
* DESC. : Contains all defines and special constants for shared .
’ * memory socket system. .
) . .
4 . VERSION: 2.0 *
. *
* DATE : 27 May 1987 .
L] *
he AUTHOR : Theodore H. Barrow * ‘
L] *
* DESC. : Added a typedef of structure for use by various routines. * ‘
* Added message types for high level read/write protocol. *
* »
. * VERSION: 3.0 . X
. * 4
. DATE : 21 October 1987 * \
» . :
) . AUTHOR : Theodore H. Barrow .
H *
! DESC. : Changed dependencies of buffer calculation constantes so that *
only one need change. Added additional message types. *
* L ]
* VERSION: 4.0 . ]
* . )
b4 DATE : 15 December 1987 hd .
» [ ]
. AUTHOR : Theodore H. Barrow .
3 » *
‘ . DESC. : Added fiecld to buffer set so that each link would have its .
{ * own area to handle partial receipt of messages. * L
I Z RIS R R R R R RS S RS R RN SR R R 2R R R R LR R R R R RS2 R R R 2 R R 2 A )
. *®
. RECORD OF CHANGES . A
» L]
*Version* Date * Author * * Affected  *Reqd*
. b Change Description *  Modules *Vers* !
L XY Y R R R R N R I R R R R PR R R AR R R R RS SRRE RS R R SRR RS R R X2 2R )
¢ * 4.1 * 4Jan88 * T. H. Barrow . . . * »
. . Changed Eathnnme to include fusr for IRISI . . . i
LR AL RSS2 R E S]] ‘W“‘..“.‘t‘t“i“t‘tt.““““‘.““‘...‘O‘O“t“."t‘/ i
N »
114 ‘
A
\]
! )
]

Wl )

, ; AN y o™, 3
e e A S MO % N .l!.,nl..a"u.-,‘.




RN ENAT NN SN KW AN KM R WNLY T UN UN UYL U AR B2l VAt Pag 20 2P L Wl 0.4 0 e L 2 R N o T N A O OO S TS 20yt O

¥
.P
o
%
1]
¢ shared.h
" .
the following 3 defines are the changeable parameters

:s LARGESTREAD MUST be divisible by 4
) *
:: R #define SENDLOCATION "/uar/work/barrow/share3/send” /* the name of the progum
X to run for the sender */
?
i #define RECEIVELOCATION "/usr/work/barrow/share3/receive” /* the name of progrum
. to run for the recciver */
[
{‘ #define LARGESTREAD 252 /* the largest read (i.e. buffcs size) */
A
W
:a /* The following defines are constants or are derived from LARGESTREAD */
D
& #define SENDEROFFSET (LARGESTREAD + 4) /* the sender data starts here */
(%, #define WSENDEROFFSET (SENDEROFFSET / 4) /* long word offset for sender data */
A\
3 #define RECEIVEROFFSET 0 /* the receiver data starts at byte 0 */
Sl #define WREBCE1VEROFFSET 0 /* the receiver data starts at long word 0 */
v #define PROTOCOLHOLDOFFSET (SENDEROFFSET * ) /* holding area starts after
L ] sender area */
o #define MAXSHAREDSIZE (PROTOCOLHOLDOFFSET + 12) /* the number of bytes in the
;; shared segment */
10
N #define CHARACTER_TYPE 'B* /* code for characters */
0 #define INTEGER TYPEB *I" /* code for integers */
#. #define FLOAT_TYPE 'R* /* code for floats */
1% #define CHARACTER_ARRAY TYPE 'C' /* code for character arrays */

#define INTEGER_ARRAY TYPE 'J' /* code for integer arrays */
4y #define FLLOAT_ARRAY TYPE 'S’ /* code for float arrays */
N
4.4
°0: #define CHARACTER SIZE 1 /* character size in bytes */
:5 #define INTEGER_SIZE sizeof (1) /* integer size in bytes */
¢ #define FLOAT SIZE sizeof(1.0) /* float size in bytes */
IX y
? /* the following is the structure type definition needed for each machine

you want to conmunicate to..
*/

typedef struct {
char *segment; /* ptr to shared memory segment */

{ int ahmid; /* system generated shared mem. id */
[
® int sendsem; /* semaphore used to wakeup the sender
oy process.
L » ./
)
Wy int receivesem; /* semaphore used to wakeup the
1 receiver process...
*/

1 } Machine ;
®

"

L)
]

b4

W
P
@
Ko
D

115

LA

%
LS

A e AT AT A A R I O O T T 0L T L SN sy e Y AN LWL L ~; SN A AT A AL A
’ ..c.., . P 4% 0% ¥ “*" WA " 3 RN AW .-‘~ b, '{J‘ 0‘--‘ QY \" ‘i\ .l"! "J‘

-l‘u Y



C e Spd 5eF ca gl w s Welk Nal i Vot wo B Wad ok b W §" », KT RMY Gl 010 9, gl Vb S B Al T ~ ‘870, 8°0, R sk "Val’ XWX
AN s L d b 1 e B L4 AKX °t,

ot
"
4
8. shareseg.c
W a. Calling Protocols -
"t
B
f) . . . . .
g This module contains the low-level shared-memory calls. No functions in this
B -
‘o module are intended for application programs.
W b. Code and Description
; : AL L T Y T P T T
K * *
’ﬁg * TITLE : Inter-Computer Communication Package .
s . :
2 * MDULE : shareseg.c .
. *
* VERSION: 3.1 *
1'\ . .
W * DATE : 24 February 1988 .
[) * *
:': * AUTHOR : Theodore H. Barrow .
BN . [ ]
‘:'. (A EEEER S SRR ER R RS R 222 R LR AR A A2 R R R R RSS2SR R RS R 3
AIN * .
@ * HISTORY .
!" * *
by . VERSION: 1.0 »
) * .
.e:. * DATE : 6 Pebruary 1987 *
vy * .
.:: - AUTHOR : Michael J. Zyda *
£ . *
* DESC. : Contains routines to manage shared memory scgment. Creation *
‘2. A attachment, detachment and deletion are all covered. *
. .
)
'1 * VERSION: 2.0 .
;‘\ * -
R4 . DATE : 21 October 1987 .
B 0 . .
L . AUTHOR : Theodore H. Barrow *
* .
‘s bd DESC. : Added function dynamicsharedsegment to allow dynamic memory by
: » allocation after conmunications link established. .
* *®
K . VERSION: 3.0 .
¥, . «
::' * DATE : 15 December 1987 .
"y . .
® * AUTHOR : Theodore H. Barrow .
* *
|"’ * DESC. : Modified function dynamicsharedsegment for use with multiple *
"y . links. Pirst call does shared segment creation. Subsequent *
H . calls return address for the next buffer set, *
“ LA A AR A R A A R AR R A R R R R R 2 R R 2R R R R R R RS NN R RN R R RN R RS IR R R YY)
) » .
) . RECORD OF CHANGES .
*
*Version* Date * Author * * Affected *Reqd*
| d . Change Description *  Modules *Vers*
» LA AR A2 R AR AR R A R N Al 2 2 2 22 R R A R R R A Rl R R R R R R R R P R R RS Y S S SRSE Y
* 3.1 * 24Feb88* T. H. Barrow * * none * .
D, b *  Added comgllibility for IRIS 4D, * . *
L LI E LR 2RSSR R 22 2 Y] ..‘t’t."t‘l’“‘t“.""l*."‘.“"t““.“t“.‘...“‘.tt“/
)
@
8 \d
X 116
o
0.:
o
Y
.
'

1 LY Py AT AT A TR AT SN P R R N P N P N T TV

i o ™ N . L} AT WY,



&

'l

o shareseg.c
N

#include <sys/sysmacros.h>
#include <stdio.h>
. #include <sys/types.h>

';0 #include <sys/ipc.h>

3 #include <sys/shm. h>

! #include <gi.h>

& /* The following defines will have to be modified for different machines
¢

but one of the underlying shared memory attachment mechanismes should

ot work for any system V implementation. %/
#define IRIS4D 1
KN #define IRIS3000 2
st #ifdef FLAT
& #define MACHINE IRIS4D
K #else
i #define MACHINE IRIS3000
\ #endif
K/
char *sharedsegment(key,nbytes,shmid)
"
H long key; /* the key to use for the segment */
.f 8 key y
]
b long nbytes; /* the number of bytes in the segment */
4,
0 int *shmid; /* returned shared memory id name ¥/
Pl
{
: char *buf; /* temp char pointer */
)‘.
lq struct shmid_ds junkbuf; /* 1 don't care what's in this buffer */
‘s
?ﬂ /* allocate a shared memory segment */
e if( (*shmid = shmget( key. nbyfes, 0666 | IPC_CREAT )) < 0 )
[} {
! perror("shmget");
- exit(0);
'.:: )
::0 /* attach to the shared memory segment */
J\ if((int)(buf = (char *)shmat(*shmid, 0, 0666)) < 0)
A, {
t; perror("shmat");
. /* Since there was an attachment error, delete the segment */
if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 )
?' perror( "shmctl" );
f' exit(0);
[X) \
I:‘!
A; /* return the pointer to the shared segment */
3 return{buf);
@
.}: )
5
[
o
Y
-
[\
P
i\
‘
?‘
.
@
§
-
ﬂz 117
&
s
K]
N
@
)
g
§ TRy ¥ LR Y L N N Y L L I LI TR I R S I - w o« - -
':‘-".-.0 ‘F \“ o &..‘. » =, " .‘ N"“J'\ - .. STl N -"r "lv‘.r-! n",f-‘ -‘F‘K\" ot NI .". 5 A":-'?' m S '_'\;\' . .v:,\' AN "-:.‘-‘
i M ¥ YL L) g N N o e, R s g . P AN NP P, o X . ‘-.




: shareseg.c
N char *attach _within_datasegment( key, size, shmid, freespace )
) long key; /* the key to use for the segment */
j long size; /* the number of bytes in the segment */
K int *shmid; /* returned shared memory id name */
N
X int freespace; /* amount freespace desired for dynamic allocation */ )
" {
char *enddata, *buf; /* temporary address pointers */
3
2 struct shmid_ds junkbuf; /* I don't care what’'s in this buffer */
& char *sbrk(), *malloc();
y
Y /* allocate a shared memory segment */
“ if( (*shmid = shmget(key, size, 0666 | IPC_CREAT)) < 0 )
{
perror("shmget");
? exit(0);
)
o '
b /* Ensure at least as much unallocated space as freecspace indicates.
o Normmally the top of the data region is incremented more than the
i minimum required to meet the ma?loc() request. Using malloc()
9 and free() ensures that this mechanism is available for subsequent
| dynamic memory allocations. Direct use of sbrk() system call
X causes the malloc() mechanism to fail on subsequent allocation
h/ requests. freespace is cast to unsigned to meet malloc() spec. */
? free( malloc( (unsigned)freespace ));
b
! /* find the top of data region */
¥ enddata = sbrk(0);
. {/* tound up to the next page boundary for attachment of shared
. memorz segment ./
) buf = (char *)((int)enddata - ((int)enddata % SHMLBA) + SHMLBA);
: /* reset top of data region to be above shared segment */
i if( brk( buf + size ) < 0 )
j {
perror("brk");
;' /* Since there was an error, delete the segment */
Y if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 )
) perror( "shmctl” );
ﬁ exit(-1);
p !
/* attach to the shared memory segment at the calculated address */
@ if( (int)shmat(*shmid, buf, 0666) < 0 )
» {
P perror(“shmat");
:‘ /* Since there was an attachment error, delete the segment */
. if( shmctl( shmid, IPC_RMID, &junkbuf ) == -1 )
¥. perror( "shmctl" );
exit(0);
o )

"l e

return{ buf );

} /* attach _within_datasegment() */

] 5
h
K 118
3
2
4
‘¢
]
]
q )
e
-

P % 1 Joe AT N2t P ISR AL TN S L LN R Sl S L TR T N .. LN . TP Ly w Lte
AL GG R ettt NN TN L Y MR NNT o Qo e AN N L v 1 R e e



o shareseg.c
et
f:: char *dynamicsharedsegment(nunmachines, key, nbytes, shmid, freespace)
. int nunmachines; /* maximum number of machines to be initiated */
"Q
’:w long key; /* the key to use for the segment */
i
f:' fong nbytes: /* the number of bytes in the segment */
(N B
I int *shmid: /* returned shared memory id name */
int freespace; /* amount freespace desired for dynamic allocation */
.o'; (
b
:g" static Boolean firsttime = TRUE; /* allows for multiple calls ¢/
X
":" static char *startshared; /* start of shared memory space */
i
v, static int *holdshmid; /* holds shmid for subscquent calls */
Nt if( firsttime )
, {
o switch( MACHINE )
e {
e case IRIS4D:
f_;:.\ startshared = sharedsegment( key, nummachines*nbytes, shmid );
() break;
case IRIS3000:
startshared = (char *)attach_within_datasegment( key,
nunmmachines*nbytes, shmid, freespace );
oy break:
;'0 default:
‘ perror( “"shareseg: Unknown machine" );
“.
WY } /* switch( MACHINE ) */
R holdshmid = shmid;
Wy firsttime = FALSE;
! )
W clse
0.:: ‘
ot /* start next buffer immediately above last. Return the same shmid
b for all buffers. Assumes all buffers are same size (true if all
from same shared.h definition. */
o startshared += nbytes;
:l. *shmid = *holdshmid;
N |
::, /* return pointer to the proper buffer in the shared segment */
!‘s‘ return{ startshared );
ol )
s
[~
&
N
L
Y
.n
D
"3)
‘
"=
@
'y
»
4:| 119
!
W
0
L
L
o
n" ‘." '.’~.! -»[r‘ .". _,,— -';-\;q:(-;{'-"’{ __,\--J_‘: -~"-‘.-!." "Jl_’.!’: 'f w*‘.“ ""f"‘-" “’-.'.-‘P“..v‘ v ~--_\"‘-

L



WS

i P o o i P L

shareseg.c

detachsharedsegment(segment)

char *segment; /* segment to detach from */

int returnvalue;

if( (int)segment % SHMLBA = 0 )
return( 1 );
else

(
if( returnvalue = shmdt(segment) < 0 )

perror("shmdt");
return( returnvalue };

deletesharedsegment (segment ,shmid)
char *segment; /* character pointer to the shared scgment */

int shmid; /* shared memory id... */

int returnvalue;
struct shmid_ds junkbuf; /* 1 don’t care what's in this buffer */

/* detach from the shared segment and set returnvalue */
if( returnvalue = detachsharedsegment(segment) == 0 )

/* remove the shared segment from the system and reset returnvalue */
if( returavalue = shmcti(shmid, IPC_RMID, &junkbuf) < 0 )
perror(“shmectl”);

return(returnvalue);

120

o,

‘P

R

!

{ e L SO OURASA NS
2 B e S S T

!

e e N N A e A A A T
. ! g o o8 PN Y

g Mg Ay = —ar—ar-a=—a—

W o aw o W

(N

Attt o @) San

4 U _T_B_» & >

2 @ 55 oo

-
.-_

Tl At e e \-'-h.‘-\" \‘q .
3 al Lo el A



9. support.c

a. Calling Protocols
BX . This module contains functions that are intended for the application’s use and
s functions that are used exclusively by other routines. The parameters for externally
¥ accessible functions are described below.

) . receiver_has_data

%& int receiver_has_data(instructure)

Machine *instructure; /* includes
Nlx char *instructure.segment a pointer to the shared segment */

" ii. sender_is-free
int sender_is_free(instructure)

o Machine *instructure; /* includes
2 char *instructure.segment a pointer to the shared segment */

A XD

[ 3

,,-.
g -.

121

LR N

) 2l " AR - " - AN i R . 3 . . . . emenr a-
AR RSN R IR T ] 0 X A ¢ NI ! , .;c.- c (A X "'f ﬁ'. .




support.c

b. Code and Description

I R L Y s s R R R R R SR RS R R R AR R R RS RS R R R R 2R RS2 R )
TITLE : Inter-Computer Conmunication Package
MDULE : support.c
VERSION: 4.0
DATE : 31 May 1988
AUTHOR : Theodore H. Barrow

[ 30 BE K BE EE BE K BE B R

XTSI IR PR YRS R RS R SRR R SRR SR R RS RS R R RS R R 2R R R R R YR R R 2R R R R ]l

HISTORY:
VERSION: 1.0
DATE : 6 February 1987
AUTHOR : Michael J. Zyda

Contains support routines for shared memory communications
system.

2.0
27 May 1987
Theodore H. Barrow

Converted functions called by the application program to use
a structure for ease of use.

3.0
21 October 1987
Theodore H. Barrow

Removed functions for reading from and writing to the shared
memory segment by the application program.

4.0
DATE : 31 May 1988
AUTHOR : Theodore H. Barrow

DESC. : Added functions broadcast_into_segment and

send_socket_from_segment for broadcasting over dntaErnm socket
(A X E Y R AR RS N R R R R R R R T R N A A S R R R R R R R R RS R R R PR R R 22222 SRR RN}

B REREBRRR DR RERE R R ERRRERERERREEERER.

*

RECORD OF (HANGES *
]
*Version* Date * Author * * Affected *Reqd*

. . Change Description * Modules *Vers*
I E R R AN R E SRR REER RS SRS SRR R R R AR RS AR SRR R R R R 2R R R R R dRRRRR2E 2}

* * * * * . *
* » * * .
“'.t“.Otttt..t‘0.#"t‘l0"‘“ltt“"t‘tti‘.tttll#.t“t“‘.‘l"l’“.““"tt‘tt.ttt/

!
L ]
*
L]
.
L ]
*
*
"
»
»
-
*
*
*
»
*®
*
*
*
*
*
-
»
-
»
*
-
»
*
*
L J
*
*
*
.
»
*
-
*
*®
.
*
*
»
*
*
.
.
L]
*
-
L J
-







P IRT RNT TR 2,0 Baf Coh Sad tad ~aN.-al -ade 4%a A% 0 £'2,0" o Bt fad fat RTINS o <ata a2 8 2 0 20 2 0.8 0.0 018 #:8 2B vab ol “ab vabaade " N
J CRERS R .

J
support.c .
/* the following routine tests the first 4 bytes of the receiver i
segment to sec if they are non-zero. d
it uses an input structure since called by main program
*
/ . ]
int receiver_has_data(instructure) X
r
Machine *instructure; /* includes 7 h
char *instructure.segment a pointer to the shared segment */ )
{
\J
if(*((long *)instructure->segment + WRECEIVEROFFSET) > 0)
return{TRUE) ; y
)
else 4
return(FALSE);
! b
‘
3
/* the following routine tests the first 4 bytes of the sender
scgment to sece if they are non-zero.
t/ :
int sender_has_data(segment) -
char *segment; /* pointer to the shared segment */
g
{ :
if(*((long *)scgment + WSENDEROFFSET) > 0) v
{ .
return(TRUE); E
| 3
else -~
( 2
return(FALSE); -3
! ®
2
»
.
P
-
o
]
()
\
L/
4
[
124 o
*\
’J
Ly
4

A A} AP AT AR P P B P oA B T L AP St
T S P T AT Y R e S S N Sty P, T 2 L AL AP gt TS



MR NN L RN IR N N a X UL U W N W W Y U U W OO R R R KN T w e Ry 0 850 60 8" R0 W W v W WL LY “aloab "l

; s 3
2,
.
q
.
K] support.c
i
3
kN /* the following routine tests the first 4 bytes of the receiver
‘ segment to see if they are less than zero.
. */
0
1! int receiver_should_die(segment)
U
:'. char *segment; /* pointer to the shared segment ¢/
[}
1 {
‘s
) if(*((long *)segment + WRECEIVEROFFSET) < 0)
®
b return(TRUE);
o )
» else
[
_ return(FALSE);
- )
)
’. /* the following routine teasts the first 4 bytes of the sender
4 segment to see if they are less than zero.
3 */
b int sender_should_die(scgment)
: char *segment; /* pointer to the shared segment */
: {
b if(*((long *)segment + WSENDEROFFSET) < 0)
return(TRUE) ;
[ )
§ else
return(FALSE) ;
)
)
L]
S
9
)
¢
W
d
v
9
o
h
)

125

I N R R S U A AT e AT mTAe
N6 T e e T A S A RS A R A A R e TR \-\.\_\.\-._.ﬁ-\-".._‘.

A b, )

'b

o
e



s m - v~ Y.

-

ar > -

PR R

o

s

W A@E A LTI @

AN

x)

-
4

-.'ﬂ. -

-
-

PREMARY 5 TN

TR LTy sad B ok b Uab Wad a8 b Wb Va) 0,9 8,0 629 0u) 000 b W Ry

support.c

/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.

*/
int receiver_is_free(segment)
char *segment; /* pointer to the shared segment */

{
if(*((long *)segment + WRECEIVEROFFSET) == 0)
{

return(TRUE);

}
else
{
return(FALSE);
}

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.
it uses an input structure since called by main program

*/
int sender_is_free(instructure)

Machine *instructure; /* includes

char *instructure.segment a pointer to the shared segment */
{
if(*((long *)instructure->segment + WSENDEROFFSET) == 0)
! return(TRUE) ;
llse
return(FALSE);
‘ !

126

1} ‘Bl Iy | " N - - LR R N T .
'I‘,'ld .!‘l’n Q‘!‘l ALANS I‘E ld'l‘!‘.’» i * AN A% ? s ¥ et J. ut‘d"if:' "‘ :'f ‘h J‘ W "\.. " "':--.'.

PR I I R R IR YO YR T Y
i.\'f\v J'-"_- « _i‘»n"\(~



DEEAECAL YO AL BUAE WO I A AN VO YUN WL MU WA M NN ERRA N TR N SR Kol S8 od vl Vol Yah cat wal Ca¥ a0 vav vat gl YAl v Rl abatary AV, gl S U

4
v
L
3
'
' support.c
F
! /* the following routine reads on the input socket intn the receiver segment.®/
. read_socket_into_segment(socket,segment)
: int socket; /* a socket descriptor */
¥
; char *segment; /* a ptr to the shared scgment */
3
X (
long nbytes; /* the number of bytes read in */
it
' char temp[LARGESTREAD];
; /* read the data into a temporary array to avoid seEnent protection
violation since the socket does not share with the shared memory
¢ segment .
*/
nbytes = read(socket, temp, LARGESTREAD);
if(nbytes <= 0)
¥
/* the following rouiine calls are conmented out for the following
i reason:
i nbytes <= 0 mecans that the socket has been broken.
»
; This routine is called by the receiver process so the only
. intelligent thing to do is to terminate the receiver process,
h i.e. call exit...
perror("read");
U / printf("READ_SOCKET_INTO_SEQMENT: number of bytes read = %d\n",nbytes);
»
shutdown( socket, 2 );
close( socket );
; exit(1l);
)
0 /* copy the data into the shared segment */
memcpy((segment + RECEIVEROFFSET + 4),temp,nbytes);
/* set the number of bytes in the shared segment */
: *((long *)segment + “RECEIVEROFFSET) = nbytes;
\
) )
)
’
:
4
Al
K
K
L
)
'
4
)
]
k.
¢
L)
! 127
[}
¢

>
d
0ty e W D W™ % AP TAT A IR O, ", T, 0 ; WA s O A
Lot e T AN O A AT N S Al RV N BN NN N N R

Lt
.00, ."‘/ -. O.l-_“\ P WO X L) aX A, Ko N W M) AL N A, X K

KPR,




L

N

support.c

/* the followinﬁ routine writes the data from the sender side

of the shared segment to the socket */

write_socket_from_segment(socket,segment)

int socket: /* socket descriptor */

char *segment; /* pointer to the shared segment */

R At N .- . e av vy e, . _
f.f fkfa’s’, Qf&f f a-:{"‘:&’-f PRSI f:”ﬁ’-* & }m.' . ,.,‘~f f¢‘a' Wy 5

long nbytes; /* the number of bytes to write */
char temp[LARGESTREAD];

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment .

*/

memcpy(temp,((char *)segment + SENDEROFFSET + 4),

*((long *)segment + WSENDEROFFSET));

/* write the data to the socket */
nbytes = write(socket temp, *((long *)segment + WSENDEROFFSET));

if(nbytes <= 0 || nbytes != *((long *)segment + WSENDEROFFSET))
{ /s
This error indicates the socket is broken. Just exit the

sender process,

perror("write");

print f ("WRITE_SOCKET_FROM_SEGMENT: number of bytes written = %d\n",nbytes);
g;intf("Number of bytes in shared segment = %d\n",*((long *)segment + WSENDEROFFSET));

shutdown( socket, 2 );
close( socket );
exit(1);

}

/* free the sender segment */
free_sender(segment);

128

Y 3 Da Tl By

»

AT SRR TS Mo . )
" '0 ‘O ,‘ ‘.“ ‘J. W\

-

- -

A - -

{ N T e gl S

- Y s

.
v '



PR T T o N T N LU N ST TN I W T R I R R N T O R I T e S (at Ra 0¥ tad fab fa¢ 92" 4as Bat 0 B2V ob .},

e 4 s
-

@
N
%
D)
% support.c
‘ /* The following routine receives on the input datagram socket.
-* If the message matches the mname -:d portpom it 19 copied into the
. receiver area of the shared memory segment.
R ) 0 is returned if the message does not match mname and portnum,
! the number of bytes read is returned if it does match. */
[}
.’: int broadcast_into_segment(socket,segment maname,portnum)
] int socket; /* a socket descriptor */
char *segment; /* s ptr to the shared segment */
::: char mname[]; /* machine name of broadcaster */
[})
Z:' long portnum; /* port number of broadcaster */
)
()
Kl '
fong nbytes; /* the pumber of bytes read in */
o char temp[LARGESTREAD];
b
;a int flags = 0; /* flags = 0 indicates none set */
L]
:: struct sockaddr_in who; /* Internet structure for message sender address */
,‘
b int wholen; /* length of received address struct who */
W struct hostent *broadcaster; /* pointer to structure with info oa
4 broadcaster */
% static long broadcast_address; /* address of broadcaster */
)
?: static short broadcast_port; /* port of broadcaster */
v static Boolean firsttime = TRUE;
N
;b /* read the data into a temporary array to avoid segment protection
W violation since the socket does not share with the shared memory
n segment. This also allows checking for match with desired broadcaster.
™ */
nbytes = recvfrom( socket, temp, LARGESTREAD, flags,
(struct sockaddr *)&who, &wholen );
J if(nbytes <= 0)
L {
9' perror("recvirom:");
j else
j {
ol if( firsttime )
;: /* determine desired broadcaster address and port */
} broadcast_port = htons((short)portnum);

broadcaster = (struct hostent *)gethostbyname( mname );

bcopy( broadcaster->h_addr, (char *)&broadcast_address,
broadcaster->h_length );

if( (broadcast_address == who.sin_addr.s_addr) &%
(broadcast_port == who.sin_port) )
{

"] @ PR X @ S

-
-
-

129

AN

*

- L ol - -' L - - o ‘™ ol " (Mg W o i =" - - * - - Ll - - - - * ’.h' - e
e A e AN T VR T D e T T a0 o N A DL P i S i



O™ ™

support.c

/* copy the data into the shared se nt */
memcpy((segment + RECEIVEROFFSET + 4),temp,nbytes); y

/* set the number of bytes in the shared segment */
*((long *)secgment + {VERCTFSET) = nbytes;

else

(]
]
) (]
[
{ '

nbytes = 0; (]

/* Set nbytes to O so return of function indicates no match */ ‘
)

l &

return( nbytes );

R W= P

A . -"_" - .

2t aty Ty

130

t
£

% ¢ o

-~ -

” - AW - Wy O, g Wy O ) T Y K e g, AL e RN
aeda ".. IO .k‘!'w‘!h"'\‘. A PR ot 2, a,u. NN At S .,v»,' ,_-,_l’; 0 -,-_-,__\ 5_ - _\,_.‘

L




IR GRTEAT VAP T U VBTV R A TR Y K R M L R AR A LA LY T N UMY Y L U N WU WU WU U Wi A S g0 0y KRR LS UN N OV

—pe

9
DY
0‘}
“
e support.c
d‘.
+,
e /* the following routine sends the data from the sender side

of the shared segment to the socket for broadcast */
f;,:
Z:Sl send_socket_from_segment(socket ,portnum,segment)
S
,:;‘ - int socket; /* socket descriptor */
«?l‘;
A long portnum; /* port number of broadcaster */
e char *segment; /* pointer to the shared segment */
o
R ‘
:::0 long nbytes; /* the number of bytes to write */
"
h) char temp[LARGESTREAD];
. short broadcaster_port;
()
::" static Boolean firsttime = TRURE;
'::’ static struct sockaddr_in network = { AF_INET }; /* structure for broadcast
‘;l" address */
O
()
if( firsttime )

{
" broadcaster_port = IPPORT_RESERVED + portnum;
|’:' /* Set up broadcasting address structure */
W network.sin_family = AF_INET:
A network.sin_addr.s_addr = htonl( INADDR_BROADCAST) ;
“I network.sin_port = htons(broadcaster_port);
:,;: firsttime = PALSE;
. }
R /* copy the data into a temporary array to avoid ueﬁment protection
o violation since the socket does not share with the shared memory
r:: segment .
' */
' memepy( temp, ((char *)segment + SENDEROFFSET + 4),
‘-: *((long *)segment + WSENDEROFFSET));
ol Y

/* broadcast the data through the socket */
N nbytes = sendto( socket, temp, *((long *)secgment + WSENDEROFFSET), O,
=/ (struct sockaddr *)&network, sizeof(network) );

Pf’;"?f i

:f(nbyteu <= 0 || nbytes != *((long *)segment + WSENDEROFFSET) )
/*

This error indicates the socket is broken. Just exit the

@ sender process.

e v/

Lo

\ perror("write");

v printf( "WRITE_SOCKET_FROM_SEGMENT: number of bytes written = %d\n",nbytes);
printf("Number of bytes in shared segment = %d\n",*((long *)segment + WSENDEROFFSET));
shutdown( socket, 2 );

) close( socket );

.' exit(l);

o '

‘: /* free the sender segment */

:': free_sender(segment);

[ }

&

@

‘F‘

2
:: 131
,o

QLTRSS K TAN 4 A% 8" 2 N NI B RN AT XS
; O SR

LU e M o X 2 D00, 08,0 "0y "’ ..-l."t 0,0 0,98 9,9 4,99,4, 570, JOur a M My o W ML )



support.c

/* the following routine deletes the secnder by writing
a negative byte count into the shared scgment
and then waking up the sender.

*/
kill_sender(segment,sendsem)
char *segment; /* ptr to the segment */

int sendsem; /* semaphore to the sender */

/* write a negative number into the byte count field. */
*((long *)segment + WSENDEROFFSET) = -1;

/* at this point, we should send a wakeup to the sender program.
the sender will read the bad byte count and exit.
™

V(sendsem);

/* the following routine deletes the receiver by writing
a negative byte count into the shared segment
and then waking up the receiver.

*/

kill_receiver(scgment,receivesem)

char *segment; /* ptr to the segment */
int receivesem; /* semaphore to the receiver */
{

/* we do not wait until the receiver segment is free here
as the process that calls this routine should already
have read the last piece of data.

*/

/* write a negative number into the byte count field. */

*((long *)segment + WRECEIVEROFFSET) = -1;

/* at this point, we should send a wakeup to the receiver program.
the receiver will read the bad byte count and exit.

*/

V(receivesem);




o )
P R )

S ]

P S el

PR
- - -

q_;. ‘—‘"."v}-q.' . ‘
] e S ST P

T

F ok @ LR
Lol LW Rl T

&7

-f\

WU MY TN TR E AN KU R X X LE R RS O Bl Dot Gl F 0 a0 0¥ Qo ¥ Gol far e 4 v fav god aav bar Pavodat ga’ sa’

APPENDIX B - TI EXPLORER MODULE DESCRIPTIONS

All functions, methods, and flavor are contained in file irisflavor.lisp.

1. Calling Protocols
The module contains functions, methods, and a flavor that are intended for the
application’s use. It also contains a macro and functions that are used internally. The
parameters for externally accessible functions and methods are described below.
a. iris
(defun iris (x) ;where x is number of iris machine desired
b. start-iris

(defmethod (conversation-with-iris :start-iris)

c. get-iris
(defmethod (conversation-with-iris :get-iris)
O
d.  put-iris
(defmethod (conversation-with-iris :put-iris)
(object)

(let* ((buffer (cond
((equal (tFpe~of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) 'fixnum) (convert-number-to-string object))
((equal (type-of object) 'float) (convert-number-to-string object))
((equnl (type-of object) 'string) object)
(t "error”) ))

e.  Stop-iris

(defmethod (conversation-with-iris :stop-iris)

O
f. reuse-iris

(defmethod (conversation-with-iris :reuse-iris)
()

133




Explorer irisflavor.lisp

2. Code and Description

(defmacro loopfor (var init test expl &optional exp2 exp3 expd oxp$)
¥ ‘(prog ()
3 p(ce!q .var ,init)
N tag
,expl
' ,exp2
,exp3
,exp4
,exp$s
(setq ,var (1+ ,var))
(if (= ,var ,test) (return t) (go tagj) ) )

(defun convert-number-to-string (n)
(princ-to-string n) )

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j O (+ j 1))
(n O (+ (* n radix) (digit-char-p (char str j) radix))) )
((= j (length str)) n) ) )

(defun find-Period-index (str)
(catch ‘exit
(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw ‘exit x) ) ) ) )

'a R

(defun get-leftside-of-real (str &optional (radix 10))
(do  ((j O (1+ j))
(n 0 (+ (* n radix) (digit-char-p (char str j) radix))) )
((or (null (digit-char-p (char str j) radix)) (= j (length str))) n) ) )

i (defun get-rightside-of-real (str &optional (radix 10))

' (do ((index (1+ (find-period-index str)) (14 index))

(factor 0.10 (* factor 0.10))

(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))) )
((= index (length str)) n) ) )

(defun convert-string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)) )

(defvar *tcp-handlerl* (send ip::*tcp-handier* :get-port))

- (defvar *tcp-handler2* (send ip::*tcp-handler* :get-port))
: (defvar *irisl-portl* 1027) ; this is the send port
; (defvar *irisl-port2* 1026) ; this is the receive port "

(defvar *irisl-address®* 3221866502)
(defvar *iris2-address* 3221866504)
(defvar *iris3-address® 3221866505)

ail) ; the tcp-ip or internet address

(defvar *dest-address®
look in network configuration

(defun iris (x)
(cond ((equal x 1) (setq *dest-address* *irisl-address*)) !
((equal x 3) (setq *dest-address* *iris3-address*))
q (t (setq *dest-address* *iris2-address®)) ) )

(defflavor conversation-with-iris ({(talking-port-number *irisl-porti®)
(listening-port-number ®*irisl-port2*)
(talking-port *tcp-handlerl*)
(listening-port *tcp-handler2®)

(destination *dest-address®*) )

AN

, 0 v~ s 3 K * ) LA AN » - ¥ %) 2l Sl LA = bR VAR Joe ;
D R N AR NS B e b 3 R R N N L CT RN R MR = sy R ek im0 1 6 0

ARN A~ a .

4



TR AT ATAICAN AN RN JIT AN S XX A NN RN " 000" 9, 2, ] Y TWY é.at, 2" BA - ) m YR W NUNLY R W X

i
¢
.
Explorer irisflavor lisp
"'
:gettable-instance-variables
. - :settable-instance-variables
% :initable-instance-variables )
L}
3 (defmethod (conversation-with-iris :start-iris)
. O
g (progn
N (send talking-port :open
ractive ; tcp will begin the procedure to establish
. ; connection (default vs :passive)
N talking-port-number i port number of destination host
| deastination ;s machine name or address if blank and
A ; in :passive mode local machine waits for
4 ; connection
30 ) ; set max seconds before read request times out
> (send listening-port :open
& tactive ;ipassive
listening-port-number
B destination
| 30 )
{ '"A conversation with the iris machine has been established” ) )
5 (defmethod (conversation-with-iris :reuse-iris)
) O
; (setq *tcp-handlerl®* (send ip::*tcp-handler* :get-port)
@ *tcp-handler2* (send ip::*tcp-handler* :get-port)
N talking-port *tcp-handlerl®
" listening-port *tcp-handler2* ) )
(defmethod (conversation-with-iris :get-iris)
QO
: (let* ((typebuffer ")
W (lengthbuffer " ")
{(buffer "oty
. (buffer-length 1) )
" (progn ,
) (send listening-port :receive
K typebuffer
K buffer-length
30
2, wait )
(send liatening-port :receive
lengthbuffer
} 4
) 30
4 wait )
(setq buffer-length (convert-string-to-integer lengthbuffer))
¢ (setq buffer (muEe-s(ring buffer-length :inilinl-efqnenl (character 32)))
o (send listening-port :receive
buffer
o buffer-length
! 30
'Y twait )
K (cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)
Y (t ail) ) ) )}
(defmethod (conversatjon-with-iris :put-iris)
K (object)
\ , (let* ((buffer (cond
/ ((equal (t{pe-of object) 'bignum) (convert-number-to-string object))
) ((equal (type-of object) 'fixnum) (convert-number-to-atring object))
N ((equal (type-of object) 'float) (convert-number-to-string object))
¢ ((equal (type-of object) 'string) object)
(t "error") ))
@ (buffer-length (leagth buffer))
rx
¥
LS
. 135
d
[}
@
]

)

B T R S e A DA B AR ARGt

IR M - »



RN RN NIRRT 1SN 1 v WU PRI VUV U YU TLU MUY “adh-aif mih pid vg' ot ol B ail adh e p o T RN Mok tak YR A - Sub 0.0 - vy \

e
i)
®
oy
-‘?‘,
N Explorer irisflavor lisp
o

Y (typebuffer (cond ((equal (tyge-of obgect) 'bignum) "I")
j@‘ ((equal (type-of object) °’ ixnum) "1I")

((equal (type-of object) "float) "R")

)t ((eqnnl (type-of object) 'string) "C") .
X (t "C") ))
}, (lengthbuffer (convert-number-to-string buffer-length))
W (*loopvariable* 0) )
20 (progn
it (send talking-port :send
' typebuffer
. 1
w: nil
,‘. nil )
o (if (= (length lengthbuffer) 4)
ay (send talking-port :send
N lengthbuffor
BX 4

& nil
’ nil )

(progn

‘QQ (loopfor *loopvarjable* (length lengthbuffer) 4
X (send talking-port :send "0" 1 nil nil) )
AN (send talking-port :send lengthbuffer (length lengthbuffer) nil nil) ) )
A (send talking-port :send
{ﬂ buffer
%ﬂ buffer-length

- t
@ nil ) ) ) )
"
§$ (defmethod (conversation-with-iris :stop-iris)

D O
:{ (progn (send talking-port :close) (send listening-port :close)) )
4:
i
LN
3,
K .
M)

U
o

LY

~I

)
LY
"~

)

5@ X

P

\.
)

= w,
LAY A

.

.
]
f

136

¢

>
-
-

-

~ A A AL A LA L\ " . . X e - U LN e
."-'3‘50" 9, 0!‘:0, OISOttt '.\ 'é' 4 o 0;‘.1 LA, A'f‘-!!‘ﬁt‘o‘- l' W :'.‘a'- |'f Y, o!’o'. H ||'£‘|'.‘-’c‘ (LN a'!‘-'!‘.l!!a!‘.' S darty



’.‘
L)
°
5
i

S R

=

-

PERT 1O R

b

e
o 3

-

i ‘--.
X

%

XRS5 @

-

@

%
»
R~

w . n - et WP AT W T A - AR - ST e * L
“‘.‘*“!"'!‘.'-’..".:" Wi R hIh “‘“ o \l ' .\ \'j 5 ‘(.\ » \ \ 5" -.',\ Sl RAPIE u’,v"‘-, ,',an **,}-‘ ." -f " I'-J'l:f‘;

APPENDIX C - SYMBOLICS MODULE DESCRIPTIONS

All functions, methods, and flavor are contained in file irisflavor.lisp.

1. Calling Protocols

The module contains functions, methods, and a flavor that are intended for the
application’s use. It also contains a macro and functions that are used internally. The
parameters for externally accessible functions and methods are described below.

a. gselect-host
(defun select-host (host-name)
b. start-iris

(defmethod (:start-iris conversation-with-iris)

O
c. get-iris
(defmethod (:get-iris conversation-with-iris)
O
d. put-iris
(defmethod (:put-iris conversation-with-iris)
(object)

(let* ((buffer (cond
((equal (pe-of object) 'bngnmn) (convert-number-to-string object))
((equal (type-o object) 'fixnum) (convert-number-to- utring object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
(e$ual (type-of object) 'string) object)
error”") ))

c. SIOQ-"‘ is

(defmethod (:stop-iris conversation-with-iris)
)

f.  reuse-iris

(defmethod (:reuse-ifris conversation-with-iris)
O

137

L0, x L w"




ﬂ
Symbolics irisflavor lisp ‘
2.  Code and Description
ii; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-
i handy macro to have in the send message farthur down :
(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 exp$§) v
‘(prog () .
(setq ,var ,inmit) (
tag :
,expl
,exp2 N
,exp3 ‘
,expéd ¢
,exps y
(setq ,var (l+ ,var)) “
(if (= ,var ,test) (return t) (go tag)) ) ) h
(defun convert-number-to-string (n)
(princ-to-string n) ) v
(defun convert-string-to-integer (str &optional (radix 10)) '
(do ((j O (+ j 1)) 3
(n 0 (+ (* n radix) (digit-char-p (char str j) radix))) ) N
((=j (length str)) n) ) ) N
»
(defun find-period-index (str) 4
(catch "exit
(dotimes (x (leangth str) nil)
(if (equal (char str x) (char "." 0))
(throw 'exit x) ) ) ) ) b

(defun get-leftside-of-real (str &optional (radix 10))
(do ((j O (l+ j)) J
(n 0 (+ (* n radix) (digit-char-p (char str j) radix)})) )

((or (null (digit-char-p (char str §) radix)) (= j (length str))) n) ) ) v

(]

(defun get-rightside-of-real (str &optional (radix 10)) \
(do ((index (l+ (find-period-index str)) (l+ index)) .
(factor 0.10 (* factor 0.10)) \

(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))) ) ,

((= index (length str)) n) ) ) ]
(J

(defun convert-string-to-real (str &optional (radix 10)) N

(+ (float {(get-leftside-of-real str radix)) (get-rightside-of-real str radix)) )

‘..
(defvar *iris-portl* 1027) ; this is the send port A
(defvar *iris-port2* 1026) ; this is the receive port o
(defvar *local-talk-port* 13500) ; this is the local send port Dy
(defvar *local-listen-port* 1501) ; this is the local receive port °®
1

(defflavor conversation-with-iris ((talking-port-number *iris-portl®*) N
(listening-port-number *iris-port2*) ~

(local-talk-port-number *local-talk-port*) A
(local-listen-port-number *local-listen-port*) )
(talking-stream) .

(listening-stream) '
(destination-host-object) ) :

() (

:initable-instance-variables ) i

(defmethod (:init-destination-host conversation-with-iris) {
(name-of -host) .f
(setf destination-host-object (net:parse-host name-of-host)) ) N
®
3
138 .
Tat

%

F

)

N

- L e - “u

. WATL B A T T P TR R T e T TR T T e T AT A AT T TN AT et ERU IR T A TR Tt ettt
b T At s L e T e i o g o o S N bt T N



aSa o Ba" 0> Satafaca et Ba JBa- ia 08g~ ¥R 16 6

Symbolics irisflavor.lisp

(defmethod (:start-iris conversation-with-iris)

(
. (setf talking-stream
(tcp:open-tcp-stream destination-host-object
tnlking-fort-nunber
local-talk-port-number ) )
(setf listening-stream
(tcp:open-tcp-stream destination-host-object
listening-port-number
ltocal-listen-port-number ) )
"A conversation with the iris machine has been established” )

(defmethod (:reuse-iris conversation-with-iris)
()
)

(defun read-string (stream num-chars)
(let ((out-string ""))
(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))) )
out-string ) )

(defmethod (:get-iris conversation-with-iris)

)
(let* ((typebuffer "y

(lengthbuffer " ")
(buffer )
(buffer-length 1) )
(progn

(setf typebuffer
(read-string listening-stream 1) )
(setf lengthbuffer
(read-string listening-stream 4) )
(setf buffer-length
(convert-string-to-integer lengthbuffer) )
(setf buffer
(read-string listening-stream buffer-length) )

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))
((equal typebuffer "R") (convert-string-to-real buffer))
((equal typebuffer "C") buffer)

(¢t nil) ) ) ) )

(defvar *step-var* 0)

(defun my-write-string(string stream)
(let* ((num-chars (length string)))
(dotimes (i num-chars)
(write-char (aref string i) stream) ) ) )

(defmethod (:put-iris conversation-with-iris)
(object)
(let* ((buffer (cond
{{equal (type-of object) 'bignum) (convert-number-to-string object))
((equal (type-of object) ’fixnum) (convert-number-to-string object))
((equal (type-of object) 'single-float) (convert-number-to-string object))
((aqual (type-of object) "string) object)
(t "error”) ))

(buffer-length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) 'single-float) "R")
((equal (type-of object) 'string) "C")
(t "C") )

(lengthbuffer (convert-number-to-string buffer-length)) )

139

S
R‘ -
R
.
\
A
¥,
.
l.‘
.l
A
; .
p)
)
'l
s
:
My .. » '
4’
X
|
o o
y
€
3
;‘f
&4
p)
°p
% »
X
P
A
()
Fd
"’
)
N
p)
LY
I
l“ a
J
l'.
T
AL
N
7
'I
A
"
L
¥
AL

LSS AN
Ny Pl

el

M)

i

.
..,:..lx ~' .

v

.

VEELPL LT



- . 1 " AT, WUNY P MR KN 8 Bav o fav jav s iin? oS- a¥eatin av8 o'h 8'6.078.0 0.4"¢.4" 20" AR W 0 .h Vol daf Waf vat vaf vat cae Sml ak. b giarh
K
X)
s s -« 9
N Symbolics irisflavor.lisp
o
0
" (progn
(my-write-string typebuffer talking-stream)
[ (send talking-stream :force-output)
D (if (= (length lon%thbuffer) 4)
e (write string lengthbuffer talking-stream)
ro
i e 7oopfor ¢step-var®* (length lengthbuffer) 4
! (write-string "0" tealking-stream) )
K
’ write-string lengthbuffer talking-stream) ) )
. (send talilng stream %orce-output)
; (my-writz -string buffer talking-stream)
i (send talking-stream :force-output) ) ) )

(defmethod (:stop-iris conversation-with-iris)
B )
X (progn (send talking-stream :close)

(send listening-stream :close) ) )

- -

(defun select-host (host-name)
(send talk :init-destination-host host-name) )

.”.4 2l

5] @

TR Gy

»

Nl 22

L)

® T A

-

140

L

; o AT e - - . -

’



LA AR A N AN N AR AR AN KNP AN AN O X & KRB Y WV LN U RN U WU WL LW o B Atatat, et ral, vat tat ol Oap:

APPENDIX D - TEST AND UTILITY PROGRAMS ]

1. gprog.c '
a. Calling Protocols
This is a test program for the direct connect protocol. By command line
argument, another machine to receive direct connect messages from can be specified.
The default is to receive messages from iris2. It must be run in conjunction with
; gprog2.c to function properly, as the port assignments are hardcoded. Since it is the !

server program, it must be started before gprog.c.

P

b. Code and Description !

, /* this is file gprog.c -

It is a sample top level program for the asynchronous reading ?
and writing of sockets via shared memory and two other processes.
This program spawns off the required processes.

h
This program uses structure type Machine declared in file shared.h.

; This is the SERVER side program and runs firsti!!l.

)

4 7

\
#include "shared.h" J

! #include "gl.h" t

g #include "device.h”
main(argc,argv) ;

. int argc; /* ar§ument count */ .

' char *argv(]: /* pointers to the passed in argunents */

) ( )
q Machine remotemachine; /* structure for remote machine */ ;
; char other_machine[50]; /* name of other machine ¥/

b
char mybuffer{ LARGESTREAD]; /* received data */

; char outgoing [ LARGESTREAD] ; /* outgoing message’s buffer */
¢ int mybuffer ! [LARGESTREAD/INTEGER_SIZE]; /* received integer data */ >
f int outgoingl[LARGESTREAD/INTEGER_SIZE]: /* outgoing integer mesnage's buffer */

float mybuffer2[LARGESTREAD/FLOAT_SIZE]; /* reccived float data */
float outgoing?2[LARGESTREAD/FLOAT_SIZE]; /* outgoing float message buffer */
Pl long noutgoing; /* size of the outgoing message */ ;
N 141 :
¢ )
4
. \
\}

{‘(-"».‘.'h\ i

T f\ oy "-.-
B L2

i*‘f:¢"f“:r:f‘ N AN AMLN ‘:; Ny ;‘."\f‘$\¢‘¢““'“} \:.\*\'\ AN LAY 1\‘\\\151\:$
- - R . Bt b N " o N N Y,

D L0 L0 LA A



CAARLAAA

o~

2l
a v

S
- - —‘.'I

X QP . p ‘, g

T v s 10 5

o

A ® e

P S

DI AU NURU MU RUNU VUNURU NI R U YD R YL PO WY O e s e N U RN

gprog.c
char temp[10]; /* temp array used to make outgoing message */
long count = O; /* message counter */
char received_type();
char type_received;
int elements_received;
long i; /* temp loop varjiable */
lfong j = O; /* variable to control message sending */

/* pull out the string from the argument list */
if(argec > 2)
{

printf("GPROG: incorrect argument count! use gprog <alias>\n");
exit(1l);

)
/* pull out the name of the other string, if it exists */
if( arge == 2 )

(
strcpy( other_machine, "npscs-" );
strcat( other_machine, argvil] );
)
else

strcpy( other_machine, "npscs-irisl"” ):

/* create a path to a particular machine (irisl default) */
/* the first argument is the key for the shared memory segment.
the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument js the receiving port number for the socket to use.
the fifth argument indicates whether the processes should
act as a server or a client,
the sixth argument is the returned pointer to the structure
remotemachine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.
the seventh argument is the amount of frecespace desired for dynamic
memory allocation during execution of the program.
*/

dynamicmachinepath(l,other_machine, 1,2 "server" ,&remotemachine, 2000000);
/* the loop for polling the shared segment */

while(TRUE)

{

/* make an oulgoins message */
strcpy{outgoing, "GPROG ORIGINATED MESSAGE: ),

count = count - 1|;
outgoingl[0) = count;
noutgoing = strlen(outgoing);
outgoing2{0] = count;

/* is there data in the shared segment? */
if(receiver_has_data(&remotemachine))

{

type_received = received_type(&remotemachine);

142

S péa’ oW atl a08°a0a"

"y X "r&v mi\i'~f~f~f~ V-N'-'\-'.‘.'-\'-\"\'-\"h{\'
K X 0 Ny W, W, N M 8 M (e 208 AN AP

~

A




50 an $e0 T Al ek e A a s gla ACa 4T % 8 4.8 N R 8 i gt B U Y BV vy e ath VR AN AVE B 47D 20 278 2 0.0 0.0 b 0.8 Ya@ a0 Va0 Y8 Al ad eal Vad ¥ 5,202 At 4 A a 804 &°

2

4

8

@

"

2

h

i gprog.c

3

“: printf("The message received by GPROG is of type %c \n",

type_received);

;:‘ switch (type_received)

N {

';l case (HARACTER_ARRAY_TYPE:

W _ clements_received = number_received(&remotemachine);
it

::' printf("The message received by GPROG is %d eiements longi\n",
- elements_received);

:'; read_characters(&remotemachine, mybuffer, elements_received);
b, break;

P,

3 case INTEGER_TYPE:

=, read_integer(&remotemachine ,mybufferl);

“ break;

[\

case FLOAT TYPE:

r read_float (&remotemachine mybuffer2);

L break;

: /* at this point in the program, Yroceu the received data...*/
v:l printf ("GPR has received the following data:\n");

i

ki switch (type_received)

L J

¥ case CHARACTER_ARRAY_TYPE:

i\ for(i=0; i < elements_received; it+=1)

; printf("%c” mybuffer[i]);
1 break;
¥y

case INTEGER_TYPE:

) rintf("%d" ,mybuffer1[0]);

:.J reak;
3:0: case FLOAT_TYPE:
W rintf("%f" ,mybuffer2{0]);
W reak;
o )

printf("\n");
)
‘).‘
- /* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.

S If the sender is free, I will send one of three messages */
A if(sender_is_free(&remotemachine))
N
.’ if((j % 3) == 0)

i' write_characters(&remotemachine,outgoing,nontgoing);

»

)

; J* wait until message sent before attempting to send another */
,(l, while( !sender_is_free(&remotemachine) ) /* do nothing */ ;
& if((j % 3) == 1)
S write_integer(&remotemachine,outgoingl);

@ /* wait until message sent before attempting to send another */
K while( !sender_is_free(&remotemachine) ) /* do nothing */ ;
'
» if((j % 3) == 2)
write_float(&remotemachine ,outgoing?);
3
[+ ++j,
SR l
L else
o 143
‘l
)
N
®

s | | S 35 N Yy
AUASRIS A

O g L Lo T it £ S N L LA S s o A e A e



IO O LW L LT U L U LS LA LN LS L WAL AT TR Aol ag-wat ¥adhat RS AT DB 0 V0.0 s e AT AN e N P e ‘o 08 aba aha” Y o 170

o

gprog.c

/* assume socket conmection broken */
printf("Sender wasn't freel Temminating...\n");
break;

£y

P

) /* endif while TRUE */

/* get rid of the zath to the other machine...*/
deletemachinepath(&remotemachine);

sy Ny N

-

e

- i

'@ T

o

144

e

b

) AN ™ T NS N L T AT A W e T S S AL W LA LW N N L !
R R R e D, R o et e SN e o i N SR R L NN N R R



™
X
|
Yyt
1]
i
»
2. gprog.c u
i . 1)
a. Calling Protocols )
Ry ¢
\
. This i3 a test program for the direct connect protocol. By command line :g
N
. . . . )
argument, another machine to receive direct connect messages from can be specified. 4
The default is to receive messages from ijrisl. It must be run in conjunction with "'2
gprog.c to function properly, as the port assignments are hardcoded. Since it is the -'
client program, it be started after gprog.c is ready for it. !
b. Code and Description A
/* this is file gprog2.c )
It is a sample top level graﬁhics program for the asynchronous reading Y,
and writing of sockets via shared memory and two other processes. ]
This program spawns off the required processes. ’
L
This program uses structure type Machine declared in file shared.h. .‘
This is the CLIENT side program and runs second!!!. !
»/ q
#include "shared.h"
#define TRUE 1 sy
0
W
main(argc,argv) N
\J
int argc; /* argument count */ =
char *argv(]; /* pointers to the passed in arguments */ »
[ -
Machine remotemachine; /* structure for remote machine */ :_
char other_machine[50]; /* name of other machine */ f
char mybuffer [ LARGESTREAD] ; /* received data */ ;
char outgoing{LARGESTREAD]; /* outgoing message's buffer */ '.
int mybuffer][LARGESTREAD/INTEGER _SIZE]; /* received integer data */ S.
int outgoing!l[LARGESTREAD/INTEGER_SIZE}; /* outgoing integer message's buffer */ ;
float mybuffer2[LARGESTREAD/FLOAT_SIZE]; /* received float data */ &
float outgoing2 [LARGESTREAD/FLOAT_SIZE]; /* outgoing float message buffer */ t
long noutgoing; /* size of the outgoing message */ =
char temp[10]; /* temp array used to make outgoing message */ ?‘
long count = 0; /* message counter */ R
char received_type(); -
®
.
145 4
W
Wil
.‘
[ ]

~j,~' Sy ‘ -\. -~ -~ -.' N}u}»_;-» NN A A h- "'~-\." o "'\' ™ ‘ﬁ-"-."‘w.

i NN ININ T\ L L L R
N o . M - » -

»

.
£ ) "



IR PR JTRN L KRN BTt R A AT VA Do At AV CRUL R gl pla G ip hin £%0 §'0 3%> K% $v0 8 4 9Y8 070 00, 850 0 S b 0006 0.0 0,600,609 0.0 0.8 828 . f4- B4 g $a® 4

o Tew e e

‘ gprog.c
A
4 char type_received;
: int elements_received;
3 long 1i; /* temp loop variable */
z fong j = 0; /* variable to control message sending */
s /* pull out the string from the argument list */
if(argec > 2)
N printf("GPROG2: incorrect argument count! wuse gprog2 <alias>\n");
. exit(l);
k)
R /* pull out the name of the other string, if it exists */
‘ if( arge == 2 )
A |
I strcpy( other_machine, "npscs-" );
strcat( other_machine, argv[l] );
. )
. else
X strcpy( other_machine, "npscs-iris2" );
¥
i
i
P /* create a path to a particular machine (iris2 default) */
J /* the first argument is the key for the shared memory segment.

the second argument is the name of the machine to connect to.
4 the third argument is the sending port number for the socket to use.
¢ the fourth argument is the receiving port number for the socket to use.
§ the fifth argument indicates whether the processes should
: act as a server or a client.
1 the sixth argument is the returned pointer to the structure
2 remotemachine.
1) it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem td.
. y
! machinepath(1,other_machine,2,1,"client"” &remotemachine);

/* the display loop and loop for polling the shared segment */
R while(TRUE)

/* make an outgoing message */
strcpy(outgoing, "GPROG2 ORIGINATED MESSAGE: ");

b count = count + 1; :
J outgoingl[0) = count;
L)
' noutgoing = strlen(outgoing);
q outgoing2[0) = count;
\
/* is there data in the shared segment? */
D if(receiver_has_data(&remotemachine))
{
type_received = received_type(&remotemachine);
¢ printf("The message received by GPROG2 is of type %c \n",
X type_received);
¥
switch (type_received) ;
\ {
case CHARACTER_ARRAY_TYPE: :
elements_received = number_received(&remotemachine); ]
B d
4
i \J
: 146 )
'
\
d
\ )

" T 3" 0% N SV Ne P o W, : e ANy €, G Ty Mo @y & O R w K xR v LN I A R R T .
it $. 98, (] 'q. & A"‘l‘f‘! .'O.!'t.!.ihn O \ ¥ . ~ " ." y ‘ a. \ 'J'\-‘\' N "'."’A' T \' " N

L) X oz




gprog2.c

printf("The message received by GPROG2 is %d clements long!\n",
elements_received);

read_characters(&remotemachine ,mybuffer,
elements_received);
break;

case INTEGER_TYPE:
read_integer(&remotemachine ,mybufferl);
break;

case FLOAT TYPR:
read_float(&remotemachine mybuffer2);
break;

/* at this point in the program, process the received data...*/
print f ("GP 2 has received the following data:\n");

switch (type_received)

case CHARACTER_ARRAY_TYPE:
for(i=0; i < elements_received; i+=1)

printf("%c" ,mybuffer[i]);
break;

case INTEGER TYPE:
printf("%d" ,mybuffer1{0]});
break:

case FLOAT_TYPE

print£("%f" mybuffer2([0]);
break;

printf("\n");

/* at this point, we would look at our system and sec if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */
if(sender_is_free(&remotemachine))

{
if((j %3) ==0)
write cheract:-3/%r~—~temachine,outgcing noutgoing);

/* wait until message sent before attempting to send another */
while( lsender_is_free(&remotemachine) ) /* do nothing */ printf("2");

if((j %3) ==1)
write_integer(&remotemachine,outgoingl);

/* wait until message sent before attempting to send another */
while( !sender_is_free(&remotemachine) ) /* do nothing */ printf("3")

if((j % 3) == 2)

write_float(&remotemachine ,outgoing2);

i
]

else

{
/* assume socket connection broken */
printf("Sender wasn't free! Terminating...\n");
break;
}




gprog.c
/* at this point, you can do the rest of the display loop */
§ /* endif while TRUE */

/* get rid of the path to the other machine...*/
deletemachinepath(&remotemachine);

148

B L Lt

L N . O P Aot P P Al A TR T e T kT A A A N mat e Mt o eyt
hfth..‘."!.g e ."‘ r ""!'..!" .“ -(~ > ’\. u \_-_’ *..fv . u'.\. ‘-*N“&". f\ .‘- \.’J' > !f\-\- 0 -r' ) J‘ J‘ f .



- o
> — .
A

WYF,

p o -
RPN

L41@

-
‘)J\J-'.

1.-’“

-

........

3. progc
a. Calling Protocols
This is a test program for the broadcast protocol. By command line argument,
another machine to receive broadcast messages from can be specified. The default is to
receive messages from iris2. It must be run in conjunction with prog2.c to function
properly, as the port assignments are hardcoded.
b. Code and Description

/* this is file prog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared.h.
*/
#include "shared.h”

#define TRUE 1

main(argc,argv)

int argc; [* argument count */

char *argvl]; /* pointers to the passed in arguments */

l .
Machine remotemachinel; /* first structure for remote machine */
Machine remotemachinel; /* second structure for remote machine */
char other_machine[50]; /* name of other machine */
char mybuf fer [ LARGESTREAD]; /* received data */
char outgoing[LARGESTREAD]; /* outgoing message’s buffer */

int mybufferl[LARGESTREAD/INTEGER SIZE]; /* received integer data */

int outgoingl[LARGESTREAD/INTEGER SIZE}; /* outgoing integer message’'s buffer ¢/
float mybuffer2 [ LARGESTREAD/FLOAT SIZE]; /* received float data */

float outgoing2 [LARGESTREAD/FLOAT_SIZE]; /* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */
char temp[10]; /* temp array used to make outgoing message */
long count = 0; /* message counter */

char received_type();

char type_received;

149




prog.c

int elements_received;

long i; /* temp loop variable */

long j = 0; /* variabl: to control message sending */

list */

/* pull out the string from the argument

if(arge > 2)
{

printf("PROG:
exit(l);

incorrect argument count! use prog <alias>\n");

)

/* pull out the name of the other string, if it exists %/

if( arge == 2 )

{ :

strcpy( other_machine, argv[l] );

- e~

else
strcpy( other_machine, "npscs-iris2" );

/* create a pair of paths to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created.

) the second argument is the key for the shared memory segment.

v the third argument is the name of the machine to connect to.

: the fourth argument is the sending port number for the socket to use.
4 the fifth argument is the receiving port number for the socket to use.
K the sixth argument indicates whether the processes should
#

K

K

1

i

act as a receiver or a broadcaster.

the seventh argument is the returned pointer to the structure
remotemachinel or remotemachine?2. \
it includes the pointer to the shared memory segment, 1
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

*/

dynamicmachinepaths(2,1,0ther_machine,2,1,"receive” &remotemachinel);

sleep(5); /* to let both sides set up receiving channels first */

dynamicmachinepaths(2,1,0ther_machine,4,3,"broadcast”" ,&remotemachine2);

/* the loop for pofling the shared cegment limited to avoid send buffer

; overflow */

3 while(TRUE) ‘
! {

) /* make an outgoing message */

strcpy(outgoing, "PROG ORIGINATED MESSAGE: ");

Y count = count + 1;

outgoingl[0] = count;

noutgoing = strlen(outgoing);

outgoing2{0] = count;

/* is there data in the shared segment? */
. if(receiver_has_data(&remotemachinel]))
: {

type_received = received_type(&remotemachinel);

printf("The message received by PROG is of type %c ‘n",
type_received);

switch (type_received)

WAL AR R "R AT
AP0

\ b AR S Vo -
N o Y R SO R X B B S



shgi et et St tad gl e Waliten cnd il Vel Vol Nap 0efite} €10 LB A tak b b Unt Gal Gl A a0 0 0a0 2 Uk Db G SRRV Y etk a ¢ T8  av8 0k atd 4% TeTToY POYITRTS

prog.c
' (
case CHARACTER_ARRAY_TYPE:

elementa_received = number_received(&remotemachinel);

‘: printf("The message received by PROG is %d elements long!\n",
;q elements_received);
3 read_characters(&remotemachinel mybuffer,
K, elements_received);
* break;
v case INTEGER_TYPE:
R read_integer(&remotemachinel ,mybufferl);
o break;
)
;g case FLOAT TYPR:
& read_float(&remotemachinel ,mybuffer2);
break;
- /* at this point in the program, process the received data...*/
: printf("PROG has received the following data:\n");
: switch (type_received)
"
v case CHARACTER_ARRAY_TYPB:
Y for(i=0; i < elements_received; i+=1)
printf("%c" ,mybuffer{i]);
break;
X case INTEGER TYPE:
‘ printf("%d" ,mybufferi{0]);
. break;
. casec FLOAT_ TYPE:
y: printf("%f" ,mybuffer2{0]);
) break;
4
¥ . " "
’ printf("\n");
l

/* at this point, we would look at our system and see if we needed
to send data. Instead, [ will check if the sender is free.
If the sender is free, I will send one of three messages */
if(aender_is_free(&remotemachine2))

{
if((j % 3) == 0)
write_characters(&remotemachine? ,outgoing,noutgoing);

N, X 8,

e

/* wait until message sent before sttempting to send another */

while( Isender_is_free(&remotemachine2) ) /* do nothing printf("2")*/ ;
: if((j %3) ==1)

'S write_integer(&remotemachine2,outgoingl);

\r, /* wait until message sent before attempting to send another */

W while( !sender_is_free(&remotemachine2) ) /* do nothing printf("3")*/ ;
[}

@ if((j % 3) ==2)

- write_float(&remotemachine2 outgoing2);

1

X /* wait until message sent before conlinuing ./

,: while( !sender_is_free(&remotemachine2) ) /* do nothing printf("4")*/ ;
\ ++j,

. )

d else

‘

; 151

Y

)

@ |
W

LA PR PRI PR L ATt TR AT T T R - ~ S A S - 2 e aad
AR RGN LA Y Ao T e T e G Y o e VT A A AT R

R )
o . ELAMSL LM D L ks & '




; prog.c

J' ‘
B /* assume socket connection broken */
printf("Sender wasn’'t freel\n");
) break;
\ )
t
1 /* at this point, you can do the rest of the display loop */
L . i
' ) /* endif while TRUE */

/* get rid of the path to the other machine...*/
v deletemachinepath(&remotemachinel);
deletemachinepath(&remotemachine2);

- o A

152

i

O A NS RS T Y M R s 0P R L e TR e e a7 PR g W ; ]
. ,)n b LA e s AT P %) Y
", WSS ‘. AN ".F L " X 4 e, J' % \L'. N Io..a %y o Ry v !.‘:‘a'



I LAIYATERITASY NARKA AN 400 809, 2°4.2%6 a2 2 'A’, '-Q'C\i"-'- v N R WK XX 2 gie g -~ . AR A YAt vl ad Yy YR oAl dia Vg 4%, “dak -

“
o)

it

@

A,

i

i)

D)

a4

Ve

i)

)

h 4. proglc

;_' A a. Calling Protocols

N

4 . This is a test program for the broadcast protocol. By command line argument,
) . . . .

1 another machine to receive broadcast messages from can be specified. The default is to
%’ ] receive messages from irisl. It must be run in conjunction with prog.c to function
f‘ .\‘

::: properly, as the port assignments are hardcoded.

b

A% b. Code and Description

. /* this is file prog2.c

o
D) ‘: It is a sample top level program for the asynchronous reading

¥ and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

X LD

This program uses structure type Machine declared in file shared.h.

*/

haare

#include "shared.h"
#define TRUE 1

ay

s

main(argc,argv)

) int argc; /* argument count */
,‘J char *argv[]: /* pointers to the passed in arguments */
~ |
/ Machine remotemachinel; /* first structure for remote machine */
l,
T Machine remotemachine2; /* second structure for remote machine */
._: char other_machine[50]; /* name of other machine */
Y
\.f char mybuffer [ LARGESTREAD] ; /* received data */
: _\: char outgoing[LARGESTREAD] ; /* outgoing message’'s buffer */
[+ int mybufferl[LARGESTREAD/INTEGER _SIZE]* /* received integer data */
@
. int outgoingl [LARGESTREAD/INTEGER SIZE]; /* outgoing integer message’s buffer */
-:‘5 float mybuf fer2 | LARGESTREAD/FLOAT_SIZE];: /* received float data */
'-: float outgoing2|[LARGESTREAD/FLOAT SIZE); /* outgoing float message buffer */
X long noutgoing; /* size of the oulgoing message */
'~ char temp[10}; /* temp array used to make outgoing message */
,.p: long count = 0; /* message courter */
iC:
'\:&‘ char received_type();
v char type_received;
®
I"l
'l
)
"l 153
..l
o
-
@
™
o
Sy e ~ : N R U S P e e
! '?" ,,‘n‘ M,('l,r ..‘. ] ." ~ \". L TN .‘ '. _.'h_,._\ ‘, -~. J. . ‘,,\ "~",-\'."~",'(. e .,-:J‘ NN ( o




AR bl . N N N . s R avA”, i
e Ml by h 4 bt L9 VR LS o B tal 6 h Ll 8, ! "

()
il

prog2.c

int elements_reccived;

/* temp loop variable */

long i;

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */

if(arge > 2)
{

printf("PROG2:
exit(l);

incorrect argument count! wuse gprog2 <alias>\n");

)

/* pull out the name of the other string, if it exists */
if( arge == 2 )
(

strcpy( other_machine, argv([l] );

else
strcpy( other_machine, "npscs-iris2” );

create a path to a particular machine (iris2 default) */
- /* the first argument 18 the maximum number of channels to be created.

s the second argument is the key for the shared memory segment.

» the third argument is the name of the machine to connect to.

L the fourth argument is the sending port number for the socket to use.

e the fifth argument is the receiving port number for the socket to use.
g the sixth argument indicates whether the processes should
- act as a server or a client.
b the seventh argument is the returned pointer to the structure
- remotemachinel or remotemachinel.
3 it inciudes the pointer to the shared memory segment,
C the system generated shared memory id, the sendsem id,
$ and the returned receivesem id.
L]

dynamicmachinepaths(2,1,other_machine, 3,4, “receive” &remotemachine2};

set up */

sleep(3); /* to let both ends of the process get

dynamicmachinepaths(2,1,0other_machine,1,2,"broadcast" &remotemachinel);

/* the display loop and loop for polling the shared segment */
while(TRUE)

[ {

5 /* make an outgoing mecssage */

N strepy(outgoing, "PROG2Z ORIGINATED MESSAGE: ") ;
: count = count + I;

outgoingl{0}) = count;

noutgoing = strlen(outgoing);

outgoing2[0] = count;

/* is there data in the shared segment? */
if(receiver_has_data(&remotemachine2))

{

type_rece.ved = received_type(&remotemachine2);

printf("The message received by PROG2 is of type %c \n", f
type_received),

AT L

switch (type_received)

(T R T R T LA - -
ARG LTL M



,\‘t"'“'“ ATTN YOI PO YON PLATRON ROCFOM LN IR O Eat R gV aal §o¥ @ab @o¥ $a® Gab $27 02" Fa¢ Bab G Ba $aW fat Ba% $a% $a® P 2% 42" s ¥a? 12t batobet b Clat Sat gav bat s Bat Sa¥ et Gae

t

Yy

?

@

o

o«

"

)

k) prog2.c

&

X case CHARACTER_ARRAY_TYPE:

- elements_received = number_received(&remotemachine2);

:o' . printf("The message received by PROG2 is %d clements Jong!\n",

#: elements_received);

1)

*g B read_chara:ters(&remotemachine2 mybuffer,

) clemerts_received);

‘o break;

i.a

’ case INTEGER TYPE:

,: read_integer(&remotemachine2 mybufferl);

1<) break;

"

?' case FLOAT _TYPE:

Ky read_float(&remotemachine2 mybuffer2);

™ break;

4 } _ .
/* at this point in the program, process the received data...*%/

$ printf("PROG2 has received the following data:\n");

! switch (type_received)

3 {

b case CHARACTER_ARRAY_TYPE:

5 for(i=0; i < elements_rececived; i+=1)

Y ' printf("%c” ,mybufferfij);

.

{ break;

.

case INTEGER_TYPE:
printf("%d" ,mybuffer1[0]);
break;

case FLOAT_TYPE:
printf("%f" mybuffer2(0]);

i Sl

-?‘ break;

by l

‘,: printf("\n");

N }

» /* at this point, we would look at our system and sce if we neecded

to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

. if(sender_is_free(&remotemachinel))
). {
> Pif((j % 3) == 0)
" write_characters(&remotemachinel ,outgoing,noutgoing);
)
" /* wait until message sent before nllcmpling to send another */
° while( l!sender_is_free(&remotemachinel) ) /* do nothing printf("2")*%/ ;
o if(() % 3) == 1)
o write_integer(&remotemachinel,outgoingl),
]
W /* wait until message sent before attempting to send another */
j} while( Isender_is_free(&remotemachinel) ) /* do nothing printf("3")*/ ;
+ if((j % 3) == 2)
[ ] write_float(&remotemachinel ,outgoing2);
A%: /* wait until message sent before continuing */
:, while( !sender_is_free(&remotemachinel) ) /* do nothing printf("4")*/ ;
" ++j
" }
- else
(] {
N
.
-
y 155
.
‘,l
]
[
i
v
o

LI N |

SAREESY
¥ n "

---._-.!-.-‘--v---‘---.--'-q.(.{
'\_.‘\-,, - v..Wf y p'\- f"f“-’\ .._ _-,‘ _’n_{\ RN TS ._.’\




4
, prog2.c
?)
: /* assume socket connection broken */
printf("Sender wasn’t free! Terminating...\n");
break;
J

[

) /* endif while TRUE */

/* get rid of the path to the other machine...*/

deletemachinepath(&remotemachine2);
, deletemachinepath(&remotemachinel);
3
{
#
i
H
[}
&
U
f
)
)
¥
\
D
§
J
q
i
¥
[]
!
i
)
[]

156

S N PR T T P Pt R A P T I 2 2 s N
"\ OAMURCOLR \. 'i\.\' l. NS AN o “('(“-",- "'{ Y ‘- *f*f ( " l, "'\'v,\"-..‘l ‘Y".-,

CURURLY VA UWLIaL itahras ] TN U N Y PNV RN bab Ja¥ Fat Sav et dnrasa- ofeat il

D AT
- # waee

e

A

%A
A

o
N l~_ :‘! ;



e

T

A XX

- - s

e By

s ool Y

o .
XA

- -

(aCad Jalh

[ S

R AN

IR N AN R R R I AR X AXNF AN AW ¥ oy s Y v

5. rmshare.c

a. Calling Protocols

This is a stand-alone utility. It will remove all shared memory segments owned
by the user. By command line argument, selective segments can be removed.

b. Code and Description

I X2 ST RIS SRR RS R NSRS AR XS RIR R R XD RS R R R AR LY}

TITLE : Inter-Computer Communication Package
MIWULE : mmshare.c

VERSION: 1.0

DATE : 25 February 1988

AUTHOR : Theodore H. Barrow

P R R R RN R R RN R RS R AR SN RS R R AR R AR A SIS R RS R A SRR RS2 R R R R R 2 ]

DATE : 25 February 1988
AUTHOR : Theodore H. Barrow

DESC. : Removes shared memory segments identified on conmand jine.

LR K BE SR BE SR B IR IR EE AR B BE B BE B NE BE 2R IR B AR 2

!
"
*
»
»
»
*
*
*
»
*
»
*
.
.
.
-
L]
*
[ ]
*
-
»
3 Er E Y R R R R R R R R R R R SRR RS E R R S R AR R R R RN E RSS2 2R R R R R Y]
*
*
'
-
]
*
*
-

*

RECORD OF CHANGES .

.

Version* Date * Author * * Affected *Reqd*
. Change Description *  Modules *Vers*
I I T T T T T P YT P PR T
» » * * . .

. . . .

#t"t‘."‘t.ttt‘!ttt*‘t.*..‘#ttt‘t‘t‘0"ttt“"t“‘t‘0“t.‘.““““t.‘."ttt/

157

# - » ‘.‘ 1 R U] LI 1% J -aMm L L " 2 L LA R v aw LA ) i B |
A%, ,., ”, W " < -‘ 'f’" L . e v DON" '- , -f' N .. o Ohe 2%

B . ! Rl



LR R R
e o

PR RN

\

g g 8 W W W W W
A TN AT,

rmshare

#include <errno.h>
#include <sys/sysmacros.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm. h>
#include <gl.h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2

#ifdef FLAT

#define MACHINE IRIS4D
#else

#define MACHINE IRIS3000
#endif

extern int errno;

main( argc, argv )
int argc; /* argument count */
char *argv(}: /* pointers to the passed in arguments */

{
1;
1000;

int first
int last
key_t i;
int shmid;
key_t key:
static struct shmid_ds buffer;

noh

/* set the number of shared memory keys to remove */
if(arge > 1)
1
) for( i=first; i<argc; i++ )
{
key = atoi( argv[i] );
if( (shmid = shmget( key, 0, 0)) == -1 )
{
if( errno = BNOENT )
{

else

write_error( shmid, key, errno );

if( shmctl{ shmid, IPC_RKMID, &buffer ) == -1 )
{
write_error{ shmid, key, errno );
}
else
write_done( shmid, key );
} /* if( (shmid = shmget( i, 0, 0 )) == -1 ) */
)} /* for */
}
else
{
for( i=first; i<last; i++ )
{
if( (shmid = shmget( t, 0, 0)) == -1 )
{
if( errno = ENOENT )
[

}

write_error( shmid, i, errno );

158

LA A LI AL R ] - -
e Tt " \f\..

P

S S A T N A W
B £h » £ sl Ll o e « i ' !

Y
N

LI ] " "
WA T

Ty

A W o
PO P e o



[:.‘
8
)
@
W
it
5‘
s rmshare
K
l‘ ,
e cise
(] (
,; if( shmcti( shmid, IPC_RMID, &buffer ) == -1 )
D
l’: write_error( shmid, i, errno );
U
: b clse
s write_done( shmid, i );
' } /* if( (shmid = shmget( i, 0, 0 )) == -1 ) ¢/
}/* for */
% ]
3
; printf( "\nCompleted.\n" );
A
2 ) /* main() */
[
- write_error( shmid, key, error )
3 int shmid;
b key_t key;
int error;
¢
s
\d printf( "\nShared Memory ID %d (key %d) caused error %d.",
e shmid, key, error );
"'. } /% write_error() */
»
! write_done( shmid, key )
int shmid;
: key_t key;
[ ' . " " .
‘: printf( "\nShareé Memory ID %d (key %d) removed.", shmid, key );
~‘ } /* write_done() */
e
0
ﬂ
)
)
h
o
o
-
N
\.
>
)
@
D
q
L J
» 159
o |
@
D

SN B L Y N P LW . RS YT AR R L Y R R Rt v, SV BT RE LI LTy g - - AN -t VT Y ;
"nl..l .-0.‘1 \ Il " & t.‘! ‘.I‘Q.l .'(‘P ')' :.l‘ o ,l. " l..l‘.‘ ' , . {;' \ "-"r ..‘..l v|.:‘




WA R OO R W A T LA W T T VU R

PR

7'
i
&
3
)
4 6. testshare.c
“ a. Calling Protocols ’
Lr
.,
% This is a stand-alone utility. It will priiit current parameters for all active
.: .
i shared memory segments. By command line argument, selective segments can be
Y printed.
)
(
¢ ..
' b. Code and Description
[}
) /“#ﬁt‘t*#‘#tt‘**t“t“““*‘“‘t‘“‘#“‘““t‘.##.“#“‘t..tt"#“*#“““"'
: * *
* * TITLE : later-Computer Conmunication Package *
* *
P * MDULE : testshare.c .
i . *
L}
X * VERSION: 1.0 .
_' * *
;' * DATE : 25 February 1988 *
- *
?
o * AUTHOR : Theodore H. Barrow .
» *
’ P PR Y P Y R R R R R R N R s PN R R E S R AR R AR R R R R RSN RS E ]
* *
n
N * HISTORY *
‘ » *
X * VERSION: 1.0 *
k) * L]
B) * DATE : 25 February 1988 *
* *
a * AUTHOR : Theodore H. Barrow *
! » ]
5 * DESC. : Determines which shmid values are used and what their *
; . parameters are. *
J * .
B L2 R EE R EE SR R R R R R R R R R R R R R RS R RS RS 2R RS R SR AR RS R R RS A2 RS R R RN 2 0 )]
) * .
* RECORD OF CHANGES *
* *
\ *Version* Date * Author * * Affected  *Reqd*
b * * Change Description . Modules *Vers*
3 X ES R R R R R E R R R R R E R R R R R RS R SRR SRR R R RN SRR R AR R 2R 202 R 22 R R R R 2R )
* - * * . " -
b - * » " *
: ‘t#“#*ﬁ“#‘t"‘*#‘t‘#ttttt‘#ﬁ"*ﬁ“tt#ttt.t!‘#."‘t“"“.““t‘.*"““"t‘/
4
=
‘:
- [
4
U
()
q )
1, \
‘. !
. 160 ¥
g E
4 )
D)
)
g > ORI e ' ) A SRRy S e L SRRy WL W )
N Q' DA x A DN e W M M v.v. SN e ." .c. MAAAN RN




G NAR LG TS D b b G b ad s bt AR eab eak cul vab ¥y SR Va0 Gad ) B Gl €f el WaR Yah & CURUVRRRT O RO XX 2 aat” - ol RN X

1
‘
hi
K
:
N testshare.c
't
Yy #include <errno.h>
B #include <sys/sysmacros.h>
. #include <stdio.h>
W #include <sys/types.h>
e #include <sys/ipc.h>
o #include <sys/shm.h>
%. #include <gl.h>
X .
‘: /* The followinﬁ defines will have to be modified for different machines
L but one of the underlying shared memory attachment mechanisms should
: work for any system V implementation. */
7 #define IRIS4D 1
: #define IRIS3000 2
#ifdef FLAT
‘s #define MACHINE IRIS4D
#else
] #define MACHINE IRI1IS3000
#endif
Y extern int errno;
j:: main( )
i) v .
N int first = {;
N int last = 1000;
R int i;
® int shmid;
: for( t=first; i<last; i++ )
™)
;ﬁ if( (shmid = shmget( i, 0, 0)) == -1 )
{
o~ if( errno != ENOENT )
(
write_error( shmid, i, errno );
!
4 ]
! else
: (
., if( write_struct( shmid ) == -1 )
" write_error( shmid, i, errno );
b | /* if( (shmid = shmget( i, 0, 0 )) == -1 ) */
} /* for */
P printf( "\nCompleted.\n" );
)-
[ ) /* main() */
"
$ write_error( shmid, key, error )
g int shmid;
® key_t key;
: int error;
» {
> printf( "\nShared Memory ID %d (key %d) caused ersor %d.",
-: shmid, key, error );
\_ ) /* write_error() */
(]
n
'* atruct shmid_ds *get_struct( shmid )
- int shmid;
o {
L static struct shmid_ds buffer;
PY if( shmctl( shmid, IPC_STAT, &buffer ) == -1 )
-
[N 161
\
h
i
{ J
K)
a
b
)

“ % ha¥ J . - I y o Al LJ - - - - - - - 3 - -
T T N O Lt N N T e L T N L e L Ny Wy e gt TG R L R

-0, 0% Wy W% 8



€ es e LB 7 4a” GaT kg ata o de ats avh g8 AV ot 2R 8- 0.2 0 2 E 0 00 Sk 60 a8 S ad Vad ral ual adoaual Vel aVa 1B al. "Rta 8igRY, Ok POM XN P08 W Sal Bt Gg¥ $oF Bab ¢ taft B0 f U

: ﬂ:

@

X

w

)

N testshare.c

o

ys, t

W return( (struct shmid_ds *)-1 );
}

. else

iy return( &buffer );

Uf

:b' } /* get_struct() */

l:‘

!b: write_struct( shmid )

; int shmid;

LN {

2 struct shmid_ds *buf;

;ﬁ if( (int)(buf = get_struct( shmid )) == -1 )

L~ return( (int)buf );

L

v printf( "\nShared Memory ID %d has the following structuse:", shmid );
printf( "\n shm_perm has the following structure:” );

™ printf( "\n cuid is %d.", buf->shm_perm.cuid );

W printf( "\n cgid is %d.", buf->shm_perm.cgid );
printf( "\n uid is %d.", buf->shm_perm.uid );

h‘ printf( “"\n gid is %d.", buf->shm_perm.gid );

f‘ printf( "\n mode is %o0.", buf->shm_perm.mode );

Nx printf( "\n seq is %d.", buf->shm_perm.seq );

", printf( "\n key is %d.", buf->ghm_perm.key );

[ ] printf( "\n shm_segsz is %d or %x.", buf->shm_segsz, buf->shm_scgsz );

W printf( "\n shm_reg is a structure incompletely defined in region.h!" );

o printf( "\n shm_lpid is %d.", buf->shm_lpid );

| printf( "\n shm_cpid is %d.", buf->shm_cpid );

W printf( "\n shm_nattch is %d.", buf->shm_nattch );

printf( "\n shm_cnattch is %d.", buf->shm_cnattch );
4 printf( “"\n shm_atime is %d.", buf->shm_atime );
1 printf( "\n shm_dtime is %d.", buf->shm_dtime );
printf( "\n shm_ctime is %d.", buf->shm_segsz );

¢ return( 0 );

] /* write_struct() */

,‘ ‘ .-
< P
AP, ..L‘. S SN

n

Ay e

. -

162

P I

i B »

-mt [Ty O A > » O AT ST LR P ox ( % g™
nPe e 0 Y Wy AT DN AT S i O e M S S K e



A LIST OF REFERENCES

BN

A

R

:::', _ 1. Zyda, Michael J., and others, ‘‘Flight Simulators for Under $100,000,”’ /EEE

::" Computer Graphics & Applications, v. 8, no. 1, pp. 19-27, January 1988 .

o 2. Birrell, Andrew D. and Nelson, Bruce Jay, ‘‘Implementing Remote Procedure

» Calls,”” ACM Transactions on Computer Systems, v. 2, no. 1, pp. 39-59, February

'g’! 1984 .

A

o 3. Cheriton, David R., *‘The V Distributed System,’’ Communications of the ACM,

o

O v. 31, no. 3, pp. 314-333, March 1988 .

. 4. Heam, Donald and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,

. Englewood Cliffs, New Jersey, 1986 .

tg.. 5. Magnenat-Thalmann, Nadia and Thalmann, Daniel, Computer Animation: Theory

i}@. and Practice, Computer Science Workbench, ed. by Tosiyasu L. Kunii, Springer-

:’.:" Verlag, New York, 1985 .

6. Shneiderman, Ben, Designing the User Interface: Strategies for Effective Human-

i Computer Interaction, pp. 179-223, Addison-Wesley Publishing Company, Menlo

R Park, Califomia, 1987 .

7‘,»1 7. Dolezal, Michael J., A Simulation Study of a Speed Control System for Autonomous

o On-Road Operation of Automotive Vehicles, M.S. Thesis, Naval Postgraduate

B School, Monterey, California, June 1987 .

;;: 8. Goodpasture, Richard Paul, A Computer Simulation Study of an Expert System for

.:a: Walking Machine Motion Planning, M.S. Thesis, Naval Postgraduate School,

W Monterey, Califomia, December 1987 .

:ﬁ" 9. MacPherson, David L., A Computer Simulation Study of Rule-Based Control of an
i Autonomous Underwater Vehicle, M.S. Thesis, Naval Postgraduate School,
. Monterey, California, June 1988 .

Q. 3 10. Oliver, Michael R. and Stahl, David J., Interactive, Networked, Moving Platform

s Simularors, M.S. Thesis, Naval Postgraduate School, Monterey, California,

N December 1987 .

." 11. McConkle, Corinne and Nelson, Andrew H., A Prototype Simulation System for

-_f‘ Combat Vehicle Coordination and Motion Visualization, M.S. Thesis, Naval

i Postgraduate School, Monterey, California, June 1988 .

-_;: 12. Nelson, Andrew H., McGhee, Robert B., and Zyda, Michael J., Investigation into
-:; the Use of Kyoto Common Lisp For Real-Time Computer Animation, to be

° published, Naval Postgraduate School, Monterey, California .

.: 13. Newell, D. P. Siewiorek, C. G. Bell, and A., Computer Structures: Principles and

b Y Examples, pp. 306-485, McGraw-Hill Book Company, San Francisco, 1982 .

ey 14. Hoare, C.AR., ‘‘Communicating Sequential Processes,”’ Communications of the
4 ACM, v. 21, no. 8, pp. 666-677, August 1978 .

®

&

W 163

u

3

3

" $ MR L el L L L R IR P LY L R - -

R T T G T T T U N D VTN IO




oo 2% e
-
Al

.
;
.—;;
:i 15.
)
j:‘t 16.
t::'
w
o,
A 17.
W
[0 18.
Fed
8‘ :
4
P l 9
b
'Q‘
"'
;’\
'.:
:
® 20.
]
i
"
n 21
e '
o
wh 22.
’ L]
'
e
v 23.
v
‘ 24.
o
n. ||
o 25.
Ve 26.
;
@ 27.
@ 28.
~
ad
:. 29.
L)
>
@
5,
N

0

0“"'.‘:" B -'J‘“\q‘i“'n'f-‘-f:'v‘""(\ﬁ‘f—‘d‘h' . ."f O AR LR »

o ek vl va@,tad v ads adaad tal YAl Y20 Pl rad Vel ¢, " Y Y B %ab 2l e O hEal AR Fad i A oy - VD ol e el b R
? " ] la %2l Pl Ged Mud el 6

Hansen, Per Brinch, ‘‘Disributed Processes: A Concurrent Programming
Concept,”’ Communications of the ACM, v. 21, no. 11, pp. 934-941, November
1978 .

Lin, Kwei-Jay and Gannon, John D., ‘‘Atomic Remote Procedure Call,”’ IEEE
Transactions on Software Engineering, v. 11, no. 10, pp. 1126-1135, October
1985 .

Pountain, Dick, A Tutorial Introduction to Occam Programming, INMOS Limited,
March 12, 1986 .

OSU-CISRC-TR-82-1, The Implementation of a Multi-Backend Database System
(MDBS): Part I - Software Engineering Strategies and Efforts Towards a
Prototype MDBS, by Kerr, D. S., and others , The Ohio State University,
Columbus, Ohio, January 1982 .

NPS-52-82-008, The Implementation of a Multi-Backend Database System
(MDBS).: Part Il - The First Prototype MDBS and the Software Engineering
Experience, by He, X., and others , Naval Postgraduate School, Monterey,
California, July 1982 .

NPS-52-83-003, The Implementation of a Multi-Backend Database System
(MDBS): Part Il - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management, by Boyne, Richard D., and
others , Naval Postgraduate School, Monterey, California, March 1983 .

Leffler, Samuel J., and others, ‘‘An Advanced 4.3BSD Interprocess
Communication Tutorial,”” in UNIX Programmer’'s Supplementary Documents
Volume 1, PS1:8, Usenix Association, 1986 .

Leffler, Samuel J., Fabry, Robert S., and Joy, William N., ‘A 4.2BSD Interprocess

Communication Primer,”’ in Unix Programmer’'s Manual, Draft of August 23,
1986 .

Tuthill, Bill, “‘IPC Facilities in 4.2BSD,’’ Unix Review, v. 3, no. 4, pp. 82-87,
April 1985 .

AT&T, UNIX System V, Streams Programmer Guide, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1987 .

Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1985 .

Bach, Maurice J., The Design of the Unix Operating System, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986 .

Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001 Revision A,
pp- C-1-C-7, Austin, Texas, June 1987 .

Texas Instruments Inc., Explorer TCP/IP User's Guide, 2537150-0001, Austin,
Texas, March 1986 .

LANalyzer EX 500 Series Network Analyzer, Reference Manual, Publication No.
4200068-00 (Rev. B), Excelan, Inc., December 21, 1987 .

164

I e D e N

.y, nla X

ey




L SO I I N TN L 0 U T TPU U M A L T U W R M R L WU W W U W R R T R o PR TR TR T oK T O T TR T TR T ™AL

®
1
W
v::
L)
3% Distribution List for Dr. Michael J. Zyda
‘
Q:: Defense Technical Information Center,
" : Cameron Station,
o Alexandria, VA 22314 2 copies
" Library, Code 0142
. Naval Postgraduate School,
0 Monterey, CA 93943 2 copies
o
!‘
' Center for Naval Analyses,
n 4401 Ford Avenue
% Alexandria, VA 22302-0268 1 copy
)
N
'.:: Director of Research Administration,
X Code 012,
.; Naval Postgraduate School,
;: Monterey, CA 93943 1 copy
)
) Dr. Michael J. Zyda
1 Naval Postgraduate School,
Code 52, Dept. of Computer Science
b Monterey, California 93943-5100 200 copies
N Mr. Bill West,
K HQ, USACDEC,
’ Attention: ATEC-D,
W Fort Ord, California 93941 1 copy
) John Maynard,
: Naval Ocean Systems Center,
- Code 402,
> San Diego, California 92152 1 copy
‘\.
: Duane Gomez,
}' Naval Ocean Systems Center,
. Code 433,
® San Diego, California 92152 1 copy
N
;ﬁ James R. Louder,
) Naval Underwater Systems Center,
.- : Combat Control Systems Department,
° Building 1171/1,
Newport, Rhode Island (02841 1 copy
o
Wy
o
.'
k"o

L/
R e T TR o - - “ Wy Wy Wy aT - f..- {.,... f‘ R IR IS L e -.~.- -
ol 5”-" ot MY .u'l- L3 n.u,- 0..1'0- ""»\ A \ - "\ Ny ""\".F" AT {""‘J‘ﬂ.\ s




