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TABLE OF SYMBOLS

A projected area of particle
a parameter of Gates-Gaudin-Schumann size distribution

b empirical parameter in modified gamma size distribution
b width of Rosin-Rammler size distribution
C mass concentration of aerosol

Cabs absorption cross section
Cet extinction cross section
Csca scattering cross section
F fraction of particles in non-Mie size regime
F(x) particle size distribution

I attenuated intensity of radiation
10 incident intensity of incoming radiation
k imaginary part of index of refraction

L distance through aerosol

L length size parameter of finite fibre or cylinder
1 length of finite fibre or cylinder
M mass of particle
m index of refraction

mrrel relative index of refraction
M1 core index of refra-tion

2 coat index of refraction
M i  either core or coat index of refraction
n real part of index of refraction
n p, imeter in Rosin-Rammler particle size distribution

p phase function

Qas, absorption efficiency

Qb.,: backscatter efficiency

Qert extinction efficiency

Qsca scattering efficiency
r particle radius

s most probable size parameter

T transmission
Rlidar ratio
X particle size parameter

XM median size parameter
.re relative particle size parameter
Xrms rout-mean-square particle size parameter

ZI core particle size parameter

X coat uarticle size parameter
Zi eithtr -ore or coat particle size parameter

-' mass exinction coefficient

a cipirical narameter in modified gamma size distribution
y empirical parameter ta mudifie! gamnma size distribution

9 scattering angle
A wavelength of radiation in surrounding medium
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rei relative wavelength of radiation in medium
AVQaCO wavelength of radiation in vacuum

parameter used in gamma particle size distribution
aspect ratio

ogeometric deviation of log-normal size distribution
0b orientation angle

Q7 solid angle
W0 single scattering albedo
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AN INTERACTIVE PROGRAM FOR ESTIMATING EXTINCTION
AND SCATTERING PROPERTIES OF MOST PARTICULATE CLOUDS

1. INTRODUCTION

The interaction between electromagnetic radiation and suspended particulates is of
great importance to many phenomena of scientific and military interest. These include at-
mospheric visibility, the propagation of laser beams through clouds and smokes, obscurants,
laser or solar reflectance problems (eg. lidar, IR proximity fuzes and thermal imaging) and

multiple scattering. Also many common sights, such as blue sky, white clouds, glorys and
rainbows, can be explained by this interaction.

To date there is no general computer program available to calculate a wide variety
of situations, despite the fact that there has been, for a number of years, a significant
requirement. Part of the reason is that each particle shape poses problems unique to itself

and thus a solution, for one shape only requires a conxiderable investment of time. Also
there is often only one specific end-use in mind.

To estimate, in general, how a particular wavelength of radiation will interact with

a cloud of particles, the following are usually required: the shape of the particles, the
optical constants of the material comprising the particles (i.e. the refractive index or
dielectric constant), the particle size distribution throughout the cloud, the concentration
and, for non-spherical shapes, the orientation distribution. Also the polarization state
of the incident radiation may be required. Once this information is known or estimated
and a suitable computer code is available, then the extinction and scattering properties of
individual particles or a cloud of particles can be calculated.

This report is a description of a program to help meet most scattering problems for a va-
riety of shapes and particle size distributions. Section 2 outlines the general considerations
of the program followed by individual sections on the various particle shapes. These are:

Section 3 Spheres and Coated Spheres; Section 4 Infinite Cylinders (including homogenous,
coated and randomly oriented cases); Section 5 Finite Cylinders (oriented and random);
and Section 6 Irregular Shapes (all random orientation). Additionally, Section 7 covers
polydispersions, so that size distribution effects can be considered. Three appendices have
also been included: Appendix A to illustrate some actual interactive cases, Appendix B
to detail significant errors that were uncovered in the various texts and papers used and
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Appendix C a listing of the FORTRAN 77 files and how to modify the program.

It is not intended that this report detail the physics that underlies the program since
ample references will be given to readily obtainable material It is recommended that the
reader, wishing to familiarize himself with the concepts, application etc. of this program,
read part or all of Le following excellent texts: Van de Hulst (1957), Kerker (1969) and/or
Bohren and Huffman (1983). Ruck et al (1970) and Bowman et a! ,1987) can be used as
supplementary texts.

2. GENERAL CONSIDERATI"N

i. Accuracy

Emphasis has been placed on the accuracy and generality of the codes. Extensive
comparisons with this code and available experimental data as well as with independent
calculations have been made with a high degree of success. For example, all the relevant
diagrams in the texts mentioned at the end of the Introduction have been reproduced
without error. Furthermore all the papers containing tables or diagrams of the scattering
quantities of interest, in journals such as Applied Optics, have been verified. All the
codes have been checked in the small (Rayleigh) and large (geometric optics) particle size
limits where particularly simple theoretical expressions are well known. In particular the
backscatter coefficient, one of the most sensitive indicators of the accuracy of a scattering
code, must equal, in the limit of large particle size and absorption, the Fresnel reflection
coefficient -independent of shape. All codes have passed these tests. There are however
still other sets of parameters for which no experimental results or independent calculations
exist and for which simple theoretical formula do not exist. The only possible check in this
case is that the program has internal agreement. This means reducing one particular shape
calculation, by suitable choice of parameters, to another shape that exists in the code. For
example, coated sphere to sphere, or coated infinite cylinder to infinite cylinder or finite
cylinder to infinite cylinder. Excellent agreement, within theoretical limitations, is always
found.

ii Approximate Timing

In this sub-section the approximate computing time that is required for the various
codes for different particle sizes is given. The times are shown in Table I and are for runs
on the VAX 8700. Two cases, with and without the phase function, are displayed. The
efficiencies, mass extinction coefficient and the lidar ratio (all defined in section iii below)
are always computed. It is not claimed that the program and the various subroutines are
the most efficient. However most execution times that have been encountered are deemed
to be reasonable. Long execution times, occurring for very demanding situations, such
as polydispersions of large randomly oriented non-spherical particles, can be performed in
batch mode.
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TABLE 1

Approximate CPU times, in seconds, for running the different randomly oriented
monodispered particle shapes on the MRL 8700.

No phase function required

Coated
Coated Infinite Infinite Finite

Size Sphere Sphere Cylinder Cylinder Cylinder

1 0.1 0.1 2.9 4.2 0.1
10 0.1 0.1 5.7 8.5 0.15
20 0.1 0.1 8.2 11.7 0.16
40 0.13 0.11 12.6 18.2 0.18
75 0.15 0.13 20.3 29.8 0.27

100 0.16 0.15 25.4 37.4 0.31
200 0.19 0.17 46.1 66.8 0.55
500 0.36 0.26 106.0 185.9 1.21
750 0.49 0.36 159.7 235.6 1.72
1000 0.62 0.45 - - 2.20

Phase Function at 10' intervals

Coated
Coated Infinite Infinite Finite

Size Sphere Sphere Cylinder Cylinder Cylinder

1 0.13 0.13 6.0 7.1 1.71
10 0.13 0.13 12.0 14.2 9.0
20 0.13 0.13 17.5 20.7 25.2
40 0.16 0.14 27.3 33.2 -

75 0.20 0.16 44.4 53.5 -

100 0.24 0.20 54.3 66.7 -

200 0.38 0.32 101 124
500 0.81 0.64 231 300 -

750 1.14 0.88 347 437 -

1000 1.43 1.12 - -
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In the table, two cases are considered. Firstly, where no phase function is required,
and, secondly, where the phase function is required at intervals of 100. For non-spherical
particles random orientation is used. In all cases the particles are monodispersed. From
this table it is possible to estimate the amount of computer time a given case will take and
thus if it is reasonable.

The program also runs on the MRL VAX 780. The computation times in this case are
about 3-5 times longer than those listed in Table 1.

iii Using the Program

The main program IPHASE and its subroutines have been created on the MRL VAX
8700 in standard FORTRAN 77. Very little, if any, sophisticated programming was required
so that the entire program should be readily transportable. Before using the program, unit
number 7 should be properly set. This will determine where the numerical output will go.
This can be done on a VAX by ASSIGN MYFILE FOR007 to have the data go to MYFILE
or by ASSIGN SYSSOUTPUT FOR007 to have the data go to the terminal screen. All
other information will appear on the terminal screen. In order to run the program, RUN
IPHASE, must be entered on a suitable terminal. From then on the program will prompt
the user for the required information such as particle shape, refractive index, particle size
parameter etc. All information, except where noted, should be nondimensional. The
individual sections describing each particle shape detail exactly what information will be
required. On output the program will give the phase function over the angles requested.
the extinction, scattering and absorption efficiencies, the mass extinction coefficient and, if
the backscattered part of the phase function was asked for, the lidar ratio.

The following gives a very brief description of the above items.

The phase function, p(6), gives the relative probability of the incident light to be
scattered at an angle 0 from the incident direction. It is normalized to 1 over the solid
angle, i.e.

f p(G)d = 1, (1)

It governs the way in which the light will propagate through the cloud and is essential,
fe'r example, in the study of cloud reflectance and multiple scattering.

The extinction, scattering and absorption efficiencies, Qet, Qsca, and Qab, respectively,
indicate how well the particle or distribution of particles cause extinction, scattering and
absorption of the incident light. They are defined as the appropriate cross section per unit
projected area. Thus if Cet is the extinction cross section, and A the projected area, then

Ce t
= e - (2)
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Note that for a sphere A - rr2 = A2 z2/4r where r is the particle radius, z = 2,rr/A is

the size parameter, and A is the wavelength. The other efficiencies are similarly defined.

The larger the value of the extinction efficiency the better the particle is at attenuating the
beam in the incident direction.

The mass extinction coefficient, a, is closely related to the extinction efficiency and

cross section by

A Qe.t Ce.t (3)
M M

where M is the mass of the particle. This indicates how effectively, per unit mass, a
particle or system of particles attenuates a beam of light. This number is of central interest
to the obscuration sciences and determines the transmisson through a given cloud or smoke.

Thus, if I,, is the incident intensity of the incoming radiation, C is the concentration of
aerosol and I is the intensity of the radiation after travelling a distance L through the cloud
then the transmission is defined by

T I eCL (4)

The lidar ratio, proportional to the ratio of backscatter to extinction, allows for the
calculation of the extinction from the backscatter (as in lidar) or the backsatter from the

extinction. It is defined by

= Qbck = p(1800) Q- (5)

4- Qert Qe~t

where Qkck is the backscatter efficiency. Thus estimates of the particle concentration
can be obtained if the lidar ratio, backscatter and mass extinction coefficient are known.

The complex refractive index, m = n - ki, is the refractive index of the material relative
to the surrounding medium. Here n is the real part (scattering) and k is the imaginary

part (absorption) of the refractive index. Therefore the refractive index to be input into
the program is the refractive index of the bulk material divided by the refractive index of
the medium. Usually the medium is air which has m = 1 - Oi to a good approximation

and thus, for this case, there is no difference between the two material refractive indices.

Care must also be taken with the size parameter. As the definition of x involves A and A
changes as the refractive index changes z must be changed accordingly. So x,,j = nx and
Arel = Avwco/n where Avaeo is the wavelength in a vacuum. For example, if the problem is
the scattering of bubbles in water then mTl = (1 - Oi)/(1.33 - Oi) = 0.75 - Oi where m,,,
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is the relative index of refraction of the bubble to water (with bulk index 1.33-0i). Also
x,, = 1.33z and A,,e = A ... o/1.33.

Some of the above quantities are sensitive to the polarization state of the incident ra-
diation. The incident radiation can have several different states of polarization. These are
linear, circular, elliptical and random. Since both circular and elliptical can be readily com-
puted from the linear polarization states, only linear and random states need be considered.
Linear polarization is typical of laser radiation while random polhrization is commonly the
form of white natural lighting. Radiation from a laser can be linearly polarized parallel or
perpendicular to the scattering plane, which is the plane containing the incident radiation
and the scattered radiation. So, in order to give a complete description of scattering, the
program will prompt the user, when necessary, for the desired polarization state, the choices
being polarization states parallel, pe:pendicular or random with respect to the scattering
plane. These choices are presented to the user for two cases: 1. when the particle shape is
spherical and some part of the phase function is required and 2. randomly oriented infinite
cylinders. All other cases, such is oriented infinite cylinders or finite cylinders, assume
random polarizations in order to simplify what would otherwise be a more complicated
situation. Again, excellent discussions of polarization can be found in any of the scattering
texts mentioned in the introduction.

iv Limitations

Any computer program has some form of limitations. This scattering code is no ex-
ception. Although a good deal of effort has been spent to restrict the limitations of each
sub-program there are many that remain. The limitations are found to be caused by one
of three reasons: memory, numerical and theoretical.

Table 2 summarizes for all the codes the various limitations found in each of the different
particle shapes. The limitations are imposed on the size, in terms of x, refractive index.
m and a function of both m and x. In addition there is some limitation on the choices of
coating sizes in the case of coated particles. The limitations listed in Table 2 give a basic

idea of the expected range of validity. However, combinations of some of the extreme values
of these parameters may also cause problems.

The memory limitations are imposed by the fixed array sizes that are required by
FORTRAN 77 or by the finite size of memory that is allocated to a user's workspace. As
the array sizes actually used are large, only in extreme cases should this type of limitation
be of concern. Memory limitations is the reason for the limit in size that is listed in Table 2
for all shapes except the finite cylinder and irregular particles. For the latter shapes other

limitations appear well before the memory limitations. An example of a memory limitation
is using a size parameter x of 3000 in the sphere routine.

The numerical limitations are much more of a problem and generally result from the
finite precision of the word structure in FORTRAN 77. Numerical problems caused by
overflow or underflow are obvious and will be indicated by the computer itself. Usually
these occur when intermediate values of Bessel functions or Hankel functions are very
large. An example of this kind of limitation would be a calculation involving spheres with

6



TABLE 2

Limitations to the various particle shapes as expressed in terms of the size parameter
x, the refractive index m, and both m and x € is the orientation angle and the subscripts
1,2, i refer to the core,coating or either respectively.

Shape Size m and x m

Sphere 6 x 10- 5 < x < 2300 Imrx < 7000 in > 0;
Im,-1 > 10"~

Coated 5 x 10
- 7 < X2 <- 1050 Im(m1lX),Im(m2Xl), Im - 1i > 10

-
5

Sphere Im(m2x 2 ): 30;
10 - 1 < 1 If Re(mi) < 1,-- 2

then X2 < 2 0 0 Re(m,)

Infinite 3 x 10- 5 < x sin (k - sin k) < 6000 10 - 1 - rn
Cylinder < 950 or < 6 , 10'

Xlm(m2- sin) > 200

Coated 1.7 x 10 - 6 < x sin 0 lm(M2X2).30; 3 x 10-' <- m
Infinite < 950; If Re(m) < 1, < 6 x l0,

Cylinder 10 -  , < ! < I X < 6 6 0 Re(m) 15

Oriented 10- 12 < Lsin0 <_ 1037

Finite x > 10 - and None 0 < I! < 1019
Cylinder x and L < .4; or M - 11 > 10- 1

.75 < L < 20,
x < .5 and L > 5; or

L > 5, x < 10 and
L - 1.5

Random .75 < L < 20
Finite 10 - 7 < x < .5; None As Oriented

Cylinder Q's only: L > 20 Finite Cylinder
and L > 5

Irregular .1 < x-50 ImIx < 1500 As sphere

7



x = 10-
7 which causes overflow. More serious still are numerical instabilities which 'ay

give reasonable-looking results but are nevertheless incorrect. The program is designed
to anticipate most of the common numerical instabilities where they were impossible to
eliminate entirely. In cases of extreme or unusual input parameters extra care with the
results is suggested. An example of this situation is in the case of the coated sphere with
core and coat refractive indices m, = M 2 = .5 - Oi and x = 20.

Theoretical limitations occur, except in trivial circumstances, with the particle shapes
that do not have exact solutions. The reason for a given limitation can be traced to the
approximations required to bring about a solution. Thus, for example, the variational
solution for finite cylinders assumes that the cylinder is much longer than the width. If the
length to diameter ratio is significantly less than 10, erroneous results will most likely result.
See section 5 for further details. Another example is the code for irregular particles which
assumes that the semi-empirical parameters employed are always valid. It is highly unlikely
that these parameters are universal implying a varying degree of error in the results.

3. SPHERES AND COATED SPHERES

i Homogeneous Spheres

The general solution to scattering from spheres was first derived in 1890 by Lorentz

and by Mie (1908) and now forms the classic method of sclving scattering problems from
particles. In outline, the wave equation is derived from Maxwell's equations assuming
spherical spatial coordinates. By separation of variables and imposing boundary conditions
on the electromagetic fields, the phase function and related scattering properties of the
sphere can be obtained. This solution is in terms of 'Mie coefficients' which are in turn
represented by half-integer order Bessel functions of the first and second kind and their
derivatives. Thus the solution to the homogeneous sphere is reduced to the calculation
of the half-integer order Bessel functions. The full details are in any of the three texts
mentioned in the introduction.

The Bessel functions have been calculated according to the known recipes and caveats
(see Abramowitz and Stegun 1964 or Bohren and Huffman 1983). Thus backward re-
currence is used when forward recurrence is unstable making the Bessel functions quite
reliable.

The sphere code, MIEPHASE, is written in double precision since this case is used
extensively and there are many interesting resonances that require the added accuracy.
The input requirements are only the refractive index and particle size distribution and, if
the phase function is requested, the polarization state of the incident radiation.

Applications for the sphere code are numerous. A few examples are naturally occuring
water clouds, fogs, liquid pollution aerosols, bubbles in water, phosphorus or oil smokes

and colloidal suspensions.
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ii Coated Sphere

The coated sphere solution was first derived by Aden and Kerker (1951). The method
of solution is very similar to that of the homogeneous sphere, albeit more complicated.
Again half-integer order Bessel functions and their derivatives are used.

The program employed, COAT, is substantially copied from the listing in the Appendix
of Bohren and Huffman (1983). Modifications have been made to make the code more re-
liable and to produce the phase function. The stated limitations on mr and listed in
Table 2 remain however. It seems impossible to obtain some of the required Bessel func-
tions for large, absorbing spheres because of the exceedingly large numbers involved in the
intermediate calculation.

The code is in single precision and thus runs 10 - 20% faster than the double precision
homogenous code. The input requirements are the refractive .. dex of the core and coating,
the size of the core relative to the coating and the particle size distribution. In the case of
polydispersions the user has the choice of keeping the core size constant or the ratio of core

size to coating size constant. Also, as with the homogeneous case, the polarization state of
the incoming radiation is required if any part of the phase function is desired.

Some applications of the coated sphere are bubbles in the air, foam, water coated hail
and oil coated metallic particles.

4. INFINITE CYLINDERS AND COATED INFINITE CYLINDERS

i Homogeneous Infinite Cylinders

The solution for infinite cylinders of arbitrary orientation and refractive index was first
obtained in Wait (1955). Note that here infinite can mean, to a good approximation, that
the length of the cylinder is much greater than the wavelength considered. It is found that
a cylinder can be considered 'infinite' if L > 200, where L is the length size parameter of
the cylinder i.e. L = 2irl/A where 1 is the length of the cylinder. The procedure is the
same as for spheres except cylindrical coordinates are used. The resulting solution is in
terms of the integer order Bessel functions of the first and second kind. The prescription for
the calculation of the phase function and the other ouput quantities follows that of Kerker
(1969).

The single precision code, CYLINDERPHASE, requires as input the refractive index,
the size parameter or size distribution of the radius and the orientation. The polarization
state of the incident radiation is required for random orientations only. Unpolarized radi-
ation is assumed for fixed orientations. Unlike spheres, all other shapes in general scatter
quite differently if the orientation is changed. The orientation of an infinite cylinder is
usually described by the angle the incident radiation makes with the cylinder axis. Thus
perpendicular incidence means that the orientation is at 900, the other angles being simi-

9



larly defined. It is to be noted that if the phase function for an oriented infinite cylinder is

required then the output will be the phase function around the cone of scattering. This is

because the infinite cylinder does not scatter in any other direction. This will be indicated
by the program for this case. Details of the scattering geometry are best described in

Kerker (1969) p 2 6 3 -4 .

Normally, an orientation angle of 00 for an infinite cylinder would give no extinction
or scattering. Since this case does not provide any useful information, entering a value of

0 for orientation angle in the program will produce instead results for random orientation.

Random orientation is the case which will be the most frequently encounteied. However,
there are important conditions when clouds of cylinders may he oriented or partially ori-

ented which commonly occurs with falling ice crystals. The case of randomly oriented
infinite cylinders is interesting since the first published case of a successful calculation, free

of singularities, was as late as 1985 (Haracz et al 1985). Previous solutions must attempt to
remove singularites that occur in the computation (Mckay and Timusk 1984 and Stephens

1980) or may predict no backscatter (Liou 1972). The difficulty, surprising at first, oc-
curs because the scattered radiation occurs along the surface of a cone which is infinitely
thin. Thus just numerically integrating over all possible orientations will not work since
this must be a finite integration. However by a suitable coordinate transformation and

properly weighting the integration a satisfactory algorithm can be written.

It should be noted that the computation times for randomly oriented infinite cylinders
are considerably longer for a particular radius than those for the sphere of similar size. This
occurs since all the possible orientations must be considered involving two independent

angles.

The infinite cylinder scattering program can be applied to long fibres (as in insulation
material, asbesos fibres, chaff at small wavelengths), spider webs and even some viruses.
T1 e main use to date is the scattering of micro- and radiowaves from long antennas and

other objects.

ii Coated Infinite Cylinders

The most general case for coated infinite cylinders would require that both the refractive

index of the core and coat and also the orientation be arbitrary. No solution to this problem
has yet been derived. The most general case that has been solved is for arbitrary orientation
and arbitrary coating but a perfectly conducting core. As this is usually well approximated
by a coated metal th'F is still useful.

The coated conducting infinite cylinder for oblique orientation was first obtained by
Tang (1957). The solution used here was given by Thomas in 1963 and can be found in

Ruck (1970). The representation is in , -ms of surface impedances and surface admittances
but still requires the integer Bessel fu: -tions as does the homogeneous case. Thus, as in

the case of spheres, the coated particle calculation is similiar but more complicated than
the homogeneous case.

This single precision code, COATCYL, requires the refractive index of the coat, the

10



relative size of the core to coat and the orientation of the particles. Polarization consid-
erations are as for the homogeneous case above. Again a choice is available for holding
the core radius constant or the ratio of core to coat radii constant as was done for the
coated sphere. Similar to the homogeneous case an orientation of 00 means random orien-
tation. This routine can be used for calculating scattering parameters of infinite cylinders
with infinite refractive index (i.e. perfect conductors). This is done by setting the coating
refractive index to 1 - Oi and the ratio of the core to coat radius to .9999999.

This algorithm has been applied to incoming meteors and re-entry problems as well as
scattering of microwave and radar radiation.

5. FINITE CYLINDERS

Scattering by finite cylinders has been studied intensively since World 'Aar II and with
the invention of radar for the purpose of scattering from antennas. No exact solution has yet
been obtained since a finite cylinder has ends and thus edges. Edges always cause serious
problems in the theory of scattering. The best solutions that exist assume that the length
of the cylinder is much larger than the radius (and thus the edge effects can be ignored).
Thus, the antenna approximation implies that the radiation induced current in the wire is
confined to the centre of the wire. Usually L/x1>O. Also implied is that this current is zero
at the ends of the wire. The variational approach is used in this code. The code follows
that found in Pederson et al (1984,1985). Other approximations exist (e.g. the direct
method Bowman et al 1987) but they are only for perfectly conducting materials. These
are the only references that give a procedure for calculating the scattering information of
obliquely oriented finite fibres of arbitrary refractive index (although the central equations
were written by Van Vleck et al 1947 and Tai 1951). Random orientations are also included
(Waterman et al 1984). Unlike the previous exact solutions the starting point is to match
the surface currents (produced by the incident radiation and induced current in the wire)
upon the finite cylinder or wire. This is simply a statement of the conservation of energy.
The variational method is then employed, as is standard in many problems in physics,
to obtain the solution. All of the above references should be consulted if more detail of
the algorithm is required. The variational technique for solving differential equations is
detailed, for example, in Bowman (1987).

The solution, although complicated, requires the evaluation of sines and cosines and
the sine and cosine integrals all of which are relatively straightforward. The main compli-
cation is the evaluation of the surface impedance for finite conductivities. This is further
complicated if the radius of the cylinder is sufficiently small so that electron scattering from
the sides of the cylinder must be considered. In the latter case, the program, if so r'equired,
will ask for the appropriate information as needed in order to make the corrections to the
bulk refractive index. For details of the physics of this adjustment see Kittel (1968).

The oriented code, FIBER, has, in addition to the variational method, various approx-
imations to extend its range of validity. The randomly oriented code, RANDOMF, uses

11



only the variational method as mentioned above. In order to detail this better first define
the length size parameter as L = 2w1/A and the radius size parameter as z = 2wrr/A where
I is the length and r is the radius of the finite cylinder or fibre. Also let 4 L/ be
the aspect ratio. Then for the variational code to be considered accurate 0.75 < L < 20,
x < 0.5 and 4 > 5. If L < .4 and z < .4 the Rayleigh, or small particle approximation is
employed. If neither of these two conditions is satisfied but L > 5, z < 10 and t > 1.5
then a long cylinder approximation due to Van de Hulst (1957) is used. Finally, if the case
is still different then there are no suitable approximations and the calculation is aborted.
These various approximations have not been included into the code for random orientation
because at the boundaries of the above conditions the calculation for one approximation
will differ from the other thus creating nonphysical jumps in the calculated quantities as
the boundaries were crossed. Additionally these would be averaged out in randomization
giving an answer with unknown errors. The approximations have been provided to allow
the user to explore finite cylinder scattering beyond the limits of the variational approxi-
mation and to delineate the potential errors in the random code. As shown in Table 2 the
limitation of L < 20 can be lifted if the phase function is not required. Thus the accuracy
of the efficiencies seem to extend well beyond the range of the approximation. See Pederson
et al (1984) for more details.

This single precision code requires as input the refractive index, the radius size param-
eter, length size parameter and the orientation angle. The incident polarization state is
always assumed to be random i.e. unpolarized. As for infinite cylinders, 00 implies random
orientation. Additionally, if the radius of the particle is very small (i.e. < .6,im) then
further information is required in order to calculate the effect of this small size, as alluded
to above, on the refractive index. The additional information is: the bulk conductivity,
specific gravity, molecular weight and the number of conduction electrons per molecule. All
units of the previous quantities must be expressed in SI units. The calculation will not be
able to make the required adjustment in the refractive index if the fibre radius is too small
(about 100-200 A).

Since the scattering from a finite cylinder varies over the two angular directions, the
phase function is given, for oriented fibres, only in the scattering plane (the plane containing
the incident radiation and the cylinder axis). A slight modification of the code would allow
for the scattering in other planes. For random orientations the meaning of the phase
function is the same as for spheres and randomly oriented infinite cylinders.

This code is important for studies concerning chaff to block radar or microwaves and
'mini-chaff' or coatings for blocking millimetre waves.

6. IRREGULAR SHAPES

As no exact code exists for the general irregular particle shapes different approaches
are required. A great variety of techniques have been used with varying degrees of success
and to write individual codes for each would be very time consuming and of questionable
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value. However there is a semi-empirical approach that can be used for randomly oriented
irregular shapes for z = 0 to ; 50. This is the approach given by Pollack and Cuzzi (1979).

This algorithm assumes that for particles with size parameters <  5 the Mie theory
for spheres can be used. The exact size depends on the chosen shape. This has been
verified to be a reasonable approximation for many different shapes. For the larger particles
the contribution to the scattering is broken down into three parts: diffraction, external
reflection and transmission.

The diffraction component is calculated by use of physical optics. Assuming convex
particles this contribution is proportional to a first order Bessel function.

The external reflection is calculated by consideration of geometrical optics. Thus the
reflection is easily computed in terms of the Fresnel reflection coefficients.

The transmission is simply modelled by an exponential that is properly normaized.
It is considered that a more exact treatment would be too difficult if not impossible to
achieve.

This semi-empirical approach has been compared to many experimental data with
satisfactory results. It is noted however that extra caution is required if the particle type is
highly absorbing and elongated. For these cases the finite cylinder model may be preferred.

The 'shape' is defined by 3 numbers that define the ratio of surface area to the surface
area of an equal volume sphere, the degree of sphericity, and the degree of surface roughness.
For the degree of sphericity, 1 would be used for particles that are sphere-like and 5 should
be used for particles that are flake-like. Numbers in between can be used to specify the
varing degrees of sphericity. Likewise the roughness is define by a number between 1 and
10. Very rough particles are indicated by I and smooth particles are represented by 10.

The code is written in single precision and requires the refractive index and the size
distribution (which cannot be monodispered). Unpolarized incident radiation is assumed.
The output gives the phase function and the various contributions to it. The phase function
for the small spheres is given, with the phase functions for the diffraction, reflection and
transmission components. Also given is a similar breakdown of the efficiencies, the fraction
F of the particles in the larger, non-Mie, size regime and the root-mean-square particle size

This code can be used to indicate how irregular particles will change the extinction
and phase function from that of regular particles and where the major contributions come
from. It has been used for explaining why and by how much particle irregularity will affect
resonances that are observed in regular shapes.
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7. POLYDISPERSIONS

In most real situations, the particles constituting the cloud will be polydispersed or
occur ,n different sizes. These size distributions can be in many different forms and can
affect significantly the scattering behaviour of a cloud. For this situation, the calculation of
the scattering properties must be performed over all the sizes occurring in the cloud with
the desired size distribution used as the weighting function. The program will ask for the
desired integration step and integration limits. Small enough integration steps should be
used in order that proper convergence is obtained. As is typical for numerical integration,
several values of the integration step size may be needed to indicate if convergence to the
correct values has occured. The integration limits over the particle size parameter can vary
anywhere between 0 and 500. If, from the construction of the size distribution, there are
one or more narrow peaks, care is needed to ensure that the integration step size is small
enough to include the peak properly. To easily verify this the user can, if desired, display
the size distribution in tabular form.

Five different particle size distributions, other than monodispered, have been included
in the program. In addition to this, the user can compose a multi-modal distribution made
up of any number of the different distributions offered. This option allows for studying the
effects, often encountered, of different populations of particles in the cloud.

The five polydispersions that can be chosen are described as follows:

* The Gates-Gaudin-Schumann size distribution, usually used for fine aerosols naturally
occuring in the atmosphere, is defined simply as

F(x) ox - ' (6)

where a, the only parameter, is typically about 2 or 3. Note that this distribution
becomes infinite as z - 0. Thus there must be some non-zero cutoff applied to the
distribution.

* The log-normal distribution is used frequently in modelling aerosols, especially natural
water clouds and other liquid particulate clouds. It is defined by

~~~~I -C"z I ,)

F(x) cc - e 2,7 (7)
a'x

where a is the geometric deviation of the distribution and z, is the median size. Thus
Z, gives the average size of the particles and o the width of the distribution. Typical
values for a are between .1 and 2.
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* A third choice of size distribution is the gamma distribution. Like the log-normal
distribution it is often used in natural water clouds and fogs. The choice of this or the log-
normal distribution depends on goodness of fit to an experimental distribution or perhaps
some advantageous mathematical property. The gamma distribution is defined as

1 p.+1 ____

F( rp + 1)-----5  T-J e-puzl (8)

where s is the most probable size and the half-width of the distribution can be charac-
terized by - . Typical values for p range from 2 - 10.

* A distribution that has been used in many calculations, and a standard set of aerosol
models is based on it, is the modified gamma distribution. It is defined as

F(z) cc z' e-b'. (9)

Here b, a, y are empirical parameters. Deirmendjian (1969) has defined many models
by using the modified gamma distribution such as haze, rain and several cloud types. These
are now widely used for the intercomparision of theoretical results.

A final distribution available in this program is the Rosin-Rammler distribution. It is
one not often encountered in aerosols because it is intended for use as a model size distribu-
tion of powders (such as coal) and cases where the particles where formed by crushing and
sieving. It is very useful in describing many solid particulate distributions. It is defined as

F(x) o, x-I e-b' "  (10)

where b is a measure of width of the distribution and n depends on the substance.

As previously mentioned some situations call for distributions with two or more peaks.
These cannot be easily modelled by a single analytic function. Instead they are modelled
by a sum of simpler functions. This scattering program allows for the sum of any number
of the above distributions. As each is entered to form the multi-modal distribution the
program will prompt the user to indicate the relative importance that each distribution
has so that a weighted sum can be formed.

It is to be noted that in the above distributions, (6)-(10), there is no need to indicate
the particle number or concentration and hence all multiplicative constants have been
dropped. Therefore these distributions themselves are not normalized. This is because
the calculations are all performed, where possible, non-dimensionally. Thus, after the
calculation is executed, the particle concentration can be considered and changed without
recalculation.
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8. CONCLUSIONS

An interactive program has been written to meet most radiative propagation needs
in particulate suspensions. The program can calculate the phase function, the extinction,
scattering and absorption efficiences, the mass extinction coefficient and lidar ratio for
the following particle shapes: homogeneous spheres, coated spheres, homogeneous infinite
cylinders, coated infinite cylinders, finite cylinders and some irregular shapes. For all
shapes, except the irregular shapes, the user has the choice between mono-dispersed or
polydispersed particles. The irregular shapes must be polydispersed. The particle size
distribution can be chosen from any of the five most commonly used distributions with the
option of forming multi-modal distributions. A choice of oriented or random orientation is
given for the non-spherical regular particles. Also, when appropriate, a choice of incident
polarization states is allowed.

Timing information is supplied to allow for the estimate of the computation time for a
given problem which is of use for demanding situations.

A comprehensive table listing the main limitations of the codes due to memory, nu-
merical approximations or theory is discussed. The important theoretical limitations are
further described in individual sections for each particle shape were appropriate.

Appendices are also given that give examples of the use of this program, briefly list the
significant errors found in the literature and the modules used in creating the code.
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APPENDIX A

Some Representative Examples

In this appendix some examples will be given to illustrate how the program can be used
to solve various scattering and related problems. In all the examples data the user must
input is contained between the square brackets i.e. 11.33,0) means that 1.33, 0 is entered.
Each line of input is to be terminated by hitting return on the terminal.

Example 1

The first example is simply to calculate the phase function at 10' intervals along with
the efficiencies etc. of 5pm water particles. Unpolarized light at 0.55pm is assumed.

$ [ASS SYStOUTPUT FOROO7]
$[RUN IPHASE]
WHICH PARTICLE TYPE:

1) SPHERE EXACT
2) COATED SPHERE EXACT
3) INFINITE CYLINDER EXACT

4) FINITE CYLINDER IST ORDER VARIATIONAL

5) COATED INFINITE CYLINDER EXACT

6) CUEE SEMI-EMPIRICAL

7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL
9) CONVEX-CONCAVE SEMI-EMPIRICAL
10) OTHER IRREGULAR SEMI-EMPIRICAL

[I]
INDEX OF REFRACTION m & k ?

[1.33,0
WHICH PARTICLE SIZE DISTRIBUTION (MODE#- 1):

1) MONODISPERSED X
2) GATES-GAUDIN-SCHUMANN X**(-A)

3) LOG-NORMAL 1/(SG*X)*EXP(-(LOG(X)-LOG(XM))*-2/(2*SG**2))
4) GAMIMA U**(U+I)/(U+I) !*(R**U/S**(U+1))*EXP(-U*R/S)

5) MODIFIED GAMMA R**A*EXP(-B*R**G)
6) ROSIN-RAMMLER X**(N-1)*EXP(-B*X**N)

7) MULTI-MODAL

[1]
DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=0) ?

[1
ENTER LOWESTHIGHEST AND INCREMENT OF ANGLES IN PHASE FUNCTION
[0,180,10)
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WHICH POLARIZATION STATE ? 1) PARALLEL
2) PERPENDICULAR

OR 3) RANDOM
WITH RESPECT TO SCATTERING PLANE.

[3)

ENTER PARTICLE SIZE OR LENGTH PARAMETER
[57.12)

Note that before the program is run, unit 7 is defined so that the output will go to the
terminal screen. Once defined this command need only be used again if the output is to

be sent somewhere else.

Now the program is executed. The first reponse of the program is to list the choices
of particle shape and then waits for the response. In this case the sphere Mie routine
is chosen. Next the program asks for the index of refraction which for water at 0.55/im
which is 1.33 - Oi. The possibilities of the size distribution are next listed. Since, in this
example, only one size of particle is involved the mondispersed distribution is chosen. The
program now asks the user if any part of the phase function is required. The value 0 for
yes is entered in this case. Now the user must define which parts of the phase function are
required. As the phase function is usualiy defined between 0 - 1800 we have entered here
0, 180, 10 This indicates that the phase function will be calculated from 0' to 180' every
100 as demanded by the example. Next the polarization state of the incident light must
be input. The random state was chosen as the incident light is assumed to be unpolarized
The final question is the size parameter of the particles. Since the size parameter x = 27rr A
we calculate from the numbers in the example that x = 57.12. The program then sends all
the output to the terminal screen. The output for this example was the following:

0.00 141.46

10.00 0.64879

20.00 0.39525

30.00 0.18270
40.00 0.51272E-01
50.00 0.23661E-01

60.00 0.12857E-01
70.00 0.93164E-02

80.00 0.47997E-02

90.00 0.22146E-02
100.00 0.37373E-02

110.00 0.22730E-02

120.00 0.25434E-02

130.00 0.11105E-01
140.00 0.40741E-01

150.00 0.10356E-01
160.00 0.58200E-02
170.00 0.26965E-01

180.00 0.71797E-01
QEXT- 2.1532931 QSCA- 2.1532931 QABS= O.OOOOOOOOE+00
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MASS EXTINCTION COEF.= 0.17764626 /LAMBDA/DENSITY
LIDAR RATIO= 0.71796536E-01

The phase function is listed first. Each angle requested has the relative scattering
prnbability beside it. After the phase function is Qert,Qca and Qab.. Since this particle
is large with respect to the wavelength and there was no absorption (the 0 in the index
of refraction) Qeit = Qca 2 and Qab. = 0. Since the phase function was calculated at
1800, the lidar ratio was automatically calculated. Lastly, the mass extinction coefficient is
presented. This quantity, unlike the others, has dimensions. Thus to get the mass extinctiun
the number given must be divided by the density and the wavelength. For this case the
density of water is 1 g/cm3 = li 8 g/m 3 = 103 kg/m 3 and the wavelength was 0.55gimv
5.5 - 10-1m. Thus the mass extinction coefficient a = 0.5517764/.55 = 1.003 m2 g
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Exampie 2

In the next example, an atmospheric cloud containing 1% carbon and 99% aerosol by
volume, produced by burning, is known to be monodispersed with Lm particles. Assume
t!aat it is also known that at a critical distance from the cloud, a single scattering albedo
greater than 85% will defeat a fuze operating at 1.06pm on an imaginary seeker. Which of
the following two possibilities will defeat the fuze: when the carbon is uniformly mixed with
the aerosol or when the carbon is contained as a nucleus in the aerosol particle? Assume
that the refractive index of the carbon-water mixture is 1.55 - .007i, of carbon is 1.7 - .7i
and of the aerosol is 1.55 - O.

Since the single scattering albedo w = QcaiQe~t the phase function is not required.
However both the sphere and coated sphere models must be used. First the homogeneous
spheze:

WHICH PARTICLE TYPE:

1) SPHERE EXACT

2) COATED SPHERE EXACT

3) INFINITE CYLINDER EXACT
4) FINITE CYLINDER IST ORDER VARIATIONAL
5) COATED INFINITE CYLINDER EXACT
6) CUBE SEMI-EMPIRICAL
7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL
9) CONVEX-CONCAVE SEMI-EMPIRICAL

10) OTHER IRREGULAR SEMI-EMPIRICAL

[I]
INDEX OF REFRACTION m & k

(1.7, .007]
WHICH PARTICLE SIZE DISTRIBUTION (MODE#= 1):

1) MONODISPERSED X

2) GATES-GAUDIN-SCHUMANN X**(-A)
3) LOG-NORMAL 1/(SG*X)*EXP(-(LOG(X)-LOG(XM))**2/(2*SG**2))

4) GAMMA U*-(U+1)/(U+I)!*(R**U/S**(U+i))*EXP(-U*R/S)
5) MODIFIED GAMMA R**A*EXP(-B*R**G)

6) ROSIN-RAMMLER X**(N-1)*EXP(-B*X**N)

7) MULTI-MODAL

Ill
DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=O) 7

Ill
ENTER PARTICLE SIZE OR LENGTH PARAMETER

[5.928]

QEXT= 2.1251681 QSCA= 1.8074585 QABS= 0.31770957
MASS EXTINCTION COEF.= 1.6893756 /LAMBDA/DENSITY
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then the coated sphere

WHICH PARTICLE TYPE:

1) SPHERE EXACT
2) COATED SPHERE EXACT

3) INFINITE CYLINDER EXACT

4) FINITE CYLINDER 1ST ORDER VARIATIONAL
5) COATED INFINITE CYLINDER EXACT

6) CUBE SEMI-EMPIRICAL
7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL

9) CONVEX-CONCAVE SEMI-EMPIRICAL
10) OTHER IRREGULAR SEMI-EMPIRICAL

[2J
INDEX OF REFRACTION FOR COATING ml & ki ?

[1.55,0]
INDEX OF REFRACTION FOR CORE m2 & k2 '

[1.7, .7]
(CORE RADIUS)/(COATING RADIUS)= ? (0=CORE RADIUS IS CONSTANT)

[.215]
WHICH PARTICLE SIZE DISTRIBUTION (MODE#= 1):

1) MONODISPERSED X

2) GATES-GAUDIN-SCHUMANN X**(-A)

3) LOG-NORMAL 1I/(SG*X)*EXP(-(LOG(X)-LOG(XM))**2/(2*SG**2))

4) GAMMA U**(U+I)/(U+1)!*(R**U/S**(U+1))*EXP(-U*R/S)
5) MODIFIED GAMMA R**A*EXP(-B*R**G)
6) ROSIN-RANMLER X**(N-1)*EXP(-B*X**N)

7) MULTI-MODAL

[I]
DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=0) ?

[1]

ENTER SIZE PARAMETER FOR COATING

[5.928]

QEXT= 2.5299568 QSCA= 2.3888416 QABS= 0.14111519
MASS EXTINCTION COEF.= 2.0111575 /LAMBDA/DENSITY

Thus we have w = .85 for the carbon-water case and w = .94 for the carbon nucleated
case. Clearly it is the carbon nucleated case which will defeat the seeker while the carbon-
water mixture is just on the threshold.
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Example 3

If a 1 km wide cloud is produced with carbon fibres chopped to block a 94 GHz (3-mm)
signal (i.e. length=1.5mm) and has a concentration of .1 mg/m 3 , will the signal be blocked
and can a naked eye observer see through it? Assume that the fibres have a radius of 1/Lm
and index of refraction of 1.7 - .7i in the visible and are perfectly conducting at 94 GHz

For 94 GHz signal, the finite fibre model must be used with L = 7 : 3.14159 and
radius size parameter x = .0021. Since the fibres are perfectly conducting the index of
refraction must be very large, so we will take m = 109 - 109 i. For the visible case we will
take A = .5pm and therefore L = 1.88 x 104 and x = 12.57. Since L > 200 the infinite

cylinder case can be used. The calculation then proceeds as follows:

WHICH PARTICLE TYPE:

1) SPHERE EXACT
2) COATED SPHERE EXACT

3) INFINITE CYLINDER EXACT

4) FINITE CYLINDER 1ST ORDER VARIATIONAL
5) COATED INFINITE CYLINDER EXACT

6) CUBE SEMI-EMPIRICAL

7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL

9) CONVEX-CONCAVE SEMI-EMPIRICAL
10) OTHER IRREGULAR SEMI-EMPIRICAL

[4)
INDEX OF REFRACTION m & k ?

[1.E9,1.E9)
RADIUS SIZE PARAMETER ?

[.0021]
WHICH PARTICLE SIZE DISTRIBUTION (MODE#= 1):

1) MONODISPERSED X
2) GATES-GAUDIN-SCHUMANN X**(-A)
3) LOG-NORMAL 1/(SG*X)*EXP(-(LOG(X)-LOG(XM))**2/(2*SG**2))

4) GAMMA U**(U+I)/(U+I) !*(R**U/S**(U+I))*EXP(-U-R/S;
6) MODIFIED GAMMA R**A*EXP(-B*R**G)
6) ROSIN-RAMMLER X**(N-1)*EXP(-B*X**N)
7) MULTI-MODAL

[I]
DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=O) ?

[I]
ENTER PARTICLE SIZE OR LENGTH PARAMETER

[3.14159]
ORIENTATION ANGLE (O=RANDOM) '

[0]
IS CYLINDER RADIUS '<.6 MICRONS ? (O=YES)

[l]
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QEXT= 664.68506 QSCA= 664.68488 QABS= O.18310547E-03

MASS EXTINCTION COEF.= 995031.19 /LAMBDA/DENSITY

$RUN IPHASE

WHICH PARTICLE TYPE:

1) SPHERE EXACT

2) COATED SPHERE EXACT

3) INFINITE CYLINDER EXACT
4) FINITE CYLINDER 1ST ORDER VARIATIONAL

5) COATED INFINITE CYLINDER EXACT

6) CUBE SEII-EhPIRICAL

7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL
9) CONVEX-CONCAVE SEMI-EMPIRICAL

10) OTHE-1 !RREGULAR SEMI-EMPIRICAL

[3]
INDEX OF REFRACTION m & k ?

[1.7, .7]
WHICH PARTICLE SIZE DISTRIBUTION (MODE#- 1):

1) MONODISPERSED X

2) GATES-GAUDIN-SCHUMANN X**(-A)

3) LOG-NORMAL 1/(SG*X)*EXP(-(LOG(X)-LOG(XM))*.2/(2*SG**2))

4) GAMMA U**(U+1)/(U+1) !*(R**U/S**(U+1))*EXP(-U*R/S)
5) MODIFIED GAMMA R**A*EXP(-B*R**G)
6) ROSIN-RAMMLER X**(N-i)*EXP(-B*X**N)

7) MULTI-MODAL
(1]
DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=O) ?

[1]
ENTER PARTICLE SIZE OR LENGTH PARAMETER

[12.57

ORIENTATION ANGLE (O=RANDOM) ?

[0
WHICH POLARIZATION STATE ? 1) PARALLEL

2) PERPENDICULAR

OR 3) RANDOM

WITH RESPECT TO SCATTERING PLANE.

[3]

QEXT= 1.4169117 QSCA= 0.82028383 QABS= 0.59662789

MASS EXTINCTION COEF.= 0.35412568 /LAMBDA/DENSITY

The important output, in both cases, is the mass extinction coefficient. With the
density of carbon being typically about 2 g/cm3 we get a = 165.8 at 94 GHz and a = .354
for the human observer. From equation (4) we can now calculate T9 4 GH < 10' and
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T,i. .96. Thus the signal is blocked but the human easily sees through the cloud.
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4,

Example 4

As a last example we want to show that large water drops will produce first and second
order rainbows, scatter sunlight predominantly forward and produce a glory (which one
sees while in an aircraft around the shadow of the airplane). Assume that the raindrops
are distributed according to

F(z) = xs e-.042.

This distribution is the modified gamma function (9) with a = 6, b = .042 and 7 = 1.

The peak of the distribution is at about z = 213 or about 18.6pum and the effective particle
size is about 28,um. All particle sizes from x = 0 to x = 500 will be considered. With
A .55,um the calculation is thus:

WHICH PARTICLE TYPE:

1) SPHERE EXACT
2) COATED SPHERE EXACT

3) INFINITE CYLINDER EXACT
4) FINITE CYLINDER 1ST ORDER VARIATIONAL

5) COATED INFINITE CYLINDER EXACT

6) CUBE SEMI-EMPIRICAL
7) OCTAHEDRA SEMI-EMPIRICAL

8) FLAKE SEMI-EMPIRICAL
9) CONVEX-CONCAVE SEMI-EMPIRICAL
10) OTHER IRREGULAR SEMI-EMPIRICAL

[I]
INDEX OF REFRACTION m & k ?

[1.33,0]
WHTCH PARTICLE SIZE DISTRIBUTION (MODE#= 1):

1) MONODISPERSED X
2) GATES-GAUDIN-SCHUMANN X**(-A)

3) LOG-NORMAL i/(SG*X)*EXP(-(LOG(X)-LOG(XM))*2/(2*SG**2))

4) GAMMA U**(U+I)/(U+1) !*(R**U!S**(U+I))*EXP(-U*R/S)
5) MODIFIED GAMMA R**A*EXP(-B*R**G)
6) ROSIN-RAMMLER X**(N-i)*EXP(-B*X**N)

7) MULTI-MODAL

[]
INPUT STEP SIZE IN INTEGRATION OVER SIZE DISTRIBUTION

[I]
LOWER AND UPPER LIMITS OF PSD (BETWEEN 0 AND 499.90)

[0,00]
INPUT A,B.G

[6,. 042,1]

DO YOU WANT ANY PART OF THE PHASE FUNCTION (YES=O) ?
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[0

ENTER LOWESTHIGHEST AND INCREMENT OF ANGLES IN PHASE FUNCTION

[0,180.1)

WHICH POLARIZATION STATE ? 1) PARALLEL
2) PERPENDICULAR

OR 3) RANDOM

WITH RESPECT TO SCATTERING PLANE.

[3)

DO YOU WANT TO SEE PSD ? (O=YES)

[Il

Note that an integration step size of 1 was used. This is probably adequate for this

example but for distributions that do not cover such a wide range of sizes much smaller step

sizes are recommended. A diagram of the phase function is given (not directly obtainable

from this program!) since 181 different angles were asked for giving too large a listing of

numbers to print here. From the diagram it is seen that most of the light will be scattered

in the forward direction or near 0'. The first and second order rainbow are the peaks at

about 137' and 129' respectively. The enhancement near and at 180' gives the glory.
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APPENDIX B

Errors Found in References

In this appendix the errors found in the texts and literature used in developing the codes
for the scattering program are indicated. They do not need to he known for successfully
running the code. They are presented here for completeness and, if necessary to aid in any
future modification of the code. As the notation used here is the same as in the respective
references most of the explanations here should be read with consultation with the original
references. This should cause little problems since all references are readily available from
the MRL library.

Sphere

No errors found in Kerker (1969) for the Mie routine or Abramowitz and Stegun (1964)
for the Bessel functions.

Coated Sphere

No errors found in Bohren and Huffman (1983) in the text. However, the code found
in Appendix B was found to have serious numerical instabilities when the real part of the
refractive index was less than 1. Furthermore, special cases could be found where ANCAP
and BNCAP became infinite. A simple ajustment of the branching condition, found in this
part of the program, cured these problems.

Infinite Cylinder

Kerker (1969) was used for the writing of this code. Two errors were found. First,
equation (6.1.33) should be divided by A. The second error is found only in some printings.
This occurs in the sum in equations (6.1.30) and (6.1.31) which should contain sin(nO) and
not cos(nO). Again the prescription to obtain the integer order Bessel functions, from
Abramowitz and Stegun (1964), were found to be error free.

Coated Infinite Cylinder

The reference used for this code was Ruck (1970). There are three equations in error
that can be corrected, by the inclusion in the appropriate places, by one term. Thus if E
represents the error term then equations (4.2-66) to (4.2-68) should read

CTM = -'nV - Eq2J,,(x.)H(1)

pNV - E[qHng' )(xo)j2
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and

2 Esoqn

I'- PN,. E[q,,H, )(zo)12

where
E = z.

Finite Cylinder

The series of papers Pederson et al (1984,1985) and Waterman (1984) were used as
well as Tai (1951). In the papers of Pederson et al, the formulation for the complete

solution is given. It remains, however, to perform several analytic integrations. Two
of these integrations are difficult but the solution of these integrals can be found in Tai
(1951). Unfortunately, they both are missing a term. The term to be added to the inte-

gral -yc is cos 2 x Cos 
2qx L4x. And a similar term should be added to the integral -y, being

sin2x sin2 qx L4x. These corrections can be found in Bowman et al (1987).

The calculation of the sine and cosine integrals followed the simple schemes in
AhrTuMowifz and Stegun (1964) again without error.

Irregular Particles

No significant errors were found in Pollack and Cuzzi (1979) from where this code is

derived.
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APPENDIX C

Programs and Subroutines Used

Here are listed all the programs and subroutines that are used in making the execution
file [PHASE.

{ IPHASE Interactive plus Irregular Shapes
r MIE Mie component of Irregular shapes

{" SPHEREPHASE Polydispersions
S MIEPHASE Double precison Mie routine

Coated Sphere {COATPHASE Polydispersions
ICOAT Mie routine

CYLPHASE Polydispersions
oo-Cylinder CYLINDERPHASE Mie routine

RANDOMC Random Orientation

COATCYLPHASE Polydispersions
Coated oo-Cylinder COATCYL Mie routine

RANDOMCC Random Orientation

FIBERPHASE Polydispersions
FIBER Variational routine

Finite Cylinder RANDOMF Random Orientation
SETUP Adjust index and impedance
SC Sine and Cosine Integral

The above routines have been collected into a library called SCAT so that it is simple
to change just one code and obtain IPHASE. For example if the code FIBER was modified
then to create the up-dated version of [PHASE the following must be typed:

$FORTRAN FIBER
$LIB SCAT FIBER

$LINK IPHASE,SCAT/LIB
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