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A NEW CIASS OF CROSS SECTIONS FOR USE IN ATOMIC SCATTERING
CALCULATICNS

INTRODUCTION

In the process of calculating the range, energy deposition and damage
characteristics of heavy ions in bulk materials, ane needs same representation
of the imteractions between the impinging ions and the target constituents.
Because the target atams are displaced and themselves traverse the target, one
needs the interactions between the various constituents. There is available a
wide range of such potentials, fram the universal ones of the Thomas-Fermi
type to ones specifically tailored to reproduce the crystalline properties of
particular species.

These interactions are used in three general types of radiation damage
calculations. The most exacting are the molecular dynamics codes,l/2 which
similate a small portion of a crystal in the camputer. The response of the
crystal to an initial displacement, caused by an incident neutron or heavy
ion, is followed by similtaneously solving the equations of motion of all of
the atams in the sample crystal. More flexible, if less thorough, are such
similation codes as those of Robinson and Torrens3 and Beeler and Besco.? In
these the crystalline structure of the material is present in same fashion,
but the moving ions are followed cne at a time. The molecular dynamics codes
require potentials that reproduce the major properties of the crystal. The
secord type of simulation code is samewhat less stringent, in part because the
potentials are not allowed to act for impact parameters greater than 50-80% of
the nearest neighbor distance.

Finally, there are the transport theory calculations,>:6:7:8,9,10 ynich
assume an amorphous material——no crystal structure is present. These
calculations do not use the potentials directly, but use the associated
differential cross sections. For the most part, they make use of the of the
Lindhard, Nielsen and Scharff (INS)5 universal cross section based on the
Thamas-Fermi interaction. There are a number of problems associated with this

Manuscript approved June 29, 1988.
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interaction. It is knownll be too strong for large separations. While its
universal character makes it convenient to use, it does not accurately reflect
the properties of more realistic potentials, especially at large separations.
Fhencmenological potentials are usually made to vanish for sufficiently large
distances (2nd or 3rd nearest neighbor distances), whereas the Thamas-Fermi
potential is of infinite range. The correspanding Thomas-Fermi cross section
blows up for small energy transfers and the total cross section is infinite,
unless a cutoff in energy transfer is imposed.

Our goal in this work is to create new differential cross sections (more
specifically, families of them) that both more accurately reflect the
properties of realistic potentials and are as easy to use as is the INS cross
section.. In the next two sections we describe the Thamas-Fermi potential and
its relation to various phenamenological interactions and ocutline the method
that INS use to obtain their cross section. We then present a new class of
cross sections that reproduce the INS form for large energy transfers
(corresparding to small separations of the interacting ions), but which have
flexible characteristics for small energy transfers.

Within the spirit of the approximations used by INS, there is a method,
outlined in Appendix B, that allows the potential corresponding to a given
differential cross section to be easily calculated. We present a series of
figures of the potentials that are generated from our new families of cross
sections. By camparing a given phencmenological potential with the families
thus generated, one can autamatically abtain a differential cross section
closely corresponding to that phenamenological potential. Finally, we give a
mmber of examples and discuss the possible use of these new cross sections.

INTERATOMIC POTENTIALS

Befare considering atamic scattering cross sections, let us look at some
of the interatamic potentials on which the cross sections are based. Suppose
we have an atom with atomic mmber Z; and atomic mass A; interacting with
ancther atam with atomic number Z, and mass A,. Firsovl? represented the
interaction between two such atams, separated by a distance r, as a screened
Caulomb potential of the form

2
. Z. 2. e
Vp(r) = 22—~ ¢ (r/a) (1
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The quantity Cp(r) is the Thomas-Fermi screening factor, which is available in
tabular form.13 The screening radius a is given by

211/3 2
_21__] [__n_ ] -1/3 _ -1/3
a= [ Z 0.88534 a_ Z (2
128 4 ,r2 n e2 o
Zp=( "31.1/2 + z21/2 )2
3
3/2

23, 23
2= (%77 +2,77)

where in expression (3) we present both the Firsov version for 2 and that due
to INS. This Firsov or Thamas-Fermi (as it is more cammonly called) potential
is universal, in that it can represent the interactions between any pair of
atams, given only their atamic mumbers and the separation between them.
Because of its simplicity, this potential is widely used in atamic scattering
problems.

While the Thamas-Fermi potential is on reascnably secure theoretical
ground when the interatamic separations are small, it is inadequate for large
separations. The Thomas-Fermi screening factor Cp(x) falls off as x> for
large x. On both experimental and theoretical grounds an exponential
falloff is more realistic. For this reason, another universal potential, the
Moliere,14/15 is also widely used. The Moliére potential also has the
form (1), and its screening factor reproduces the Thamas~Fermi screening
factor cut to reduced separations of x=6. After that, it falls off
exponentially. The Firsov, INS, or same other suitable screening radius may
be used with the Moliére potential.

The best interaction to use, of course, is one that is tailored,
phenamenologically, to the two interacting atams in the solid. There are many
ways of abtaining such potentials, but a cammonly used one is same version of
the following (for the mcment, we assume Z1=Z,): For small separations, the
Thamas-Fermi interaction is used. For large separations a form is used whose
parameters are adjusted to reproduce some of the properties of a crystal made
up of these atams. Finally, these two portions are joined smoothly in the
intermediate region. In Fig. 1 we show such an interaction, due to Erginsoy,
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\ Fe—Fe
\ ERGINSOY,
103 \ et. al. ]
\ = — THOMAS-FERMI
\ -——-MOLIERE

INTERATOMIC POTENTIAL
[V(r) (eV), PSEUDOLOGARITHMIC SCALE]

| l L l l
0.5 1.0 1.5 2.0 2.5 3.0

INTERATOMIC SEPARATION [r (A)]

Fig. 1 — Iron-iron interatomic potentials. Shown are the Thomas-
Fermi and the Moliére using the Firsov screenlrg lerngth (0.0996 A)
the Moliére with the Torrens-Robinson screening length (0.0781 a),
and the phenomenological potential of Erginsoy, et al.
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Vineyard and Englert,? for alpha (bcc) iron. We note that this potential
passes through zerv at a separation samewhat less than the nearest neighbor
distance (2.48 A). This behavior is typical; it is the attractive portion of
the potential in the nearest neighbor region that binds the crystal. More
sophisticated potentials will oscillate about zero out to 2nd and 3rd nearest
neighbor distances; the magnitude of these oscillations is of the order of

1 ev.

For camparison, we also show the Thamas-Fermi and Moliére potentials for
iron, using the Firsov value (0.0966 A) of the screening radius. We see that
the agreement is not bad for small separations, as we would expect, but
becanes increasingly worse as the separation increases, especially for the
Thamas-Fermi interaction. This again is typical; the Thomas-Fermi is too
large for large separations. Finally, we show the Moliére potential with the
Torrens and Robinsonl® value (0.0781 A) of the screening length. Here the
agreement is quite good for large separations. Of course varying the
screening length may distort the agreement at small separations.

For the purposes of transport theory calculations, the details of the
potential in the region near and past the point at which it first passes
through zero are of no consequence. No significant amount of energy is
transferred to lattice atams when the impact parameter lies in or beyond this
region. Further, the differential cross section for an infinite range
potential blows up as the energy transfer vanishes, which imposes an
unecessary camplication on integral equation calculations. Rather than using
a cross section based on the infinite range, Thamas-Fermi potential, these
calculations would be both simpler and more realistic if we started with a
finite range potential.

REVIEW OF THE INS METHOD

In camputer simulation calculations one uses the relevant potential
directly to represent the interaction between atams. In integral equation
calculations, one used the differential cross section derived from that
potential. Suppose that one particle with energy E and impact parameter p is
moving toward another (stationary) particle. The center of mass energy is

Er =2 E/ (A + A)). (4
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The scattering angle is given byl’

2
L 2. Z, e -1/2
6-1-2pJ gf_ [rz[l--lr—ZE—C(r/a)]-pz] (5

where rypin is the largest root of the radical in the integrand. The energy
transferred in the collision is

T = Ty sin? 6/2 (6

Tp =7 E=[4 A) Ay (A;+A3)72] E, (7

where Tp is the maximum kinematically allowed energy transfer. Corresponding
to this maximm energy transfer is the minimm energy that can be carried away
by the incident particle, which is given by

Epin = E/B = E (A1-A3)2/(A+A9)2 . (8

Much of the work of Lindhard and his coworkers is couched in terms of the
dimensionless variables

€=E/EL=E [2] 2 2 (A)+3y) / (aAy) 172 (9
t =e2 T/Tp = €2 sin? §/2 . (10
In terms of these definitions the differential cross section is given by
do=27mpdp; (11
INS use the notation

do=-(ra2/2) t 32 gtk at , (12

so that
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£(t%) = (-4/a2) t3/2 p(t) dp(t)/at . (13

For lack of any standard name, we will call f(¢) the kernel of the cross
section.

Out of a desire to create a simple, universal cross section, INS make two
approximations1® to abtain £(t%¥) for the Thomas-Fermi potential: they replace
Eq. (5) by the mamertum approximationl® to the scattering angle, so that

p (% -
e=-E—r Jp&[rz—pz]l/z g‘;V(r) (14

and they use the expression
t=1/4 € &2 (15

to replace 8 by t, instead of the exact expression (10). By cambining these
approximations we find that we can write

p |® - -
2. — J/ a [ - @a?]™? L [xtew ] (16
p/a

Eq. (16) provides a functional relationship between the impact parameter and
the reduced energy transfer that can be used to solve Egs. (11-12) for f£(t3).
The advantage of the INS approximations is that the kernel of the differential
cross section depends only on one variable; Eq. (16) is a relationship between
t and p/a, not t, p/a ard e.

Given these considerations, the total (macroscopic) cross section can be
written

€
N o(E) = Nra’ J a ¢% £(9) (17
0
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T €
N S(E) = Mra> ej' J.o & £(0) (19

for the stopping power for elastic collisions and

2
T €
N W(E) = NraZ [TEL] L & ¢° £(e) (20

for the square fluctuation in energy loss.

The INS method we just cutlined could be used for other potentials, as
well as the Thamas-Fermi. We will use a subscript L to refer specifically to
the INS results for the Thamas-Fermi interaction. The quantities fr, Sp, and
Wy, are provided by INS in tabular form. A convenient fit to fy, in the form

fa(@)=k ¢1/3 (1 + (2x)2/3 ¢8/9 173/2 | k=1.309 (21

has been created by Winterbon, Sigmmnd and Sanders (wSS).® With this form,
relatively convenient expressions can be found20,21 for gy, Sy and Wy’ in some
cases they are easier to use than the tabular forms of INS.

NEW CROSS SECTIONS

In our discussions of interatamic potentials, we implied that it would be
useful to have a potential that: (a) vanishes at a separation near the nearest
neighbor distance, which distance depends on the particular material; (b),
reproduces the Thamas-Fermi potential for small separations; (c), has for its
correspanding differential cross section a simple, easy-to—evaluate form; (d),
has simple forms for the related quantities No(E), NS(E) and NW(E); and (e),
is flexible encugh to roughly match any of the phenamenologically determined
interatamic potentials.
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We could, of course, simply create a flexible potential form that
possessed properties (a), (b) and (e), but there is no guarantee that it would

L

possess properties (c) and (d). When using integral ecuation methods for '
calculating range and damage characteristics of heavy ions, it is the cross )
section, and not the potential, that is used. So instead of choosing a e
flexible potential form, we will choose a flexible cross section form that )
possesses properties (c) and (d). Property (b) is satisfied by requiring that s
axxr new cross sections look like the INS cross section for large values of t. z
Because we can calculate what the potential is that correspords to a given \
cross section, we can build sufficient flexibility imto our new cross sections \
in order to satisfy (e). Finally, because we want the total cross sections to -~
be finite, we will require that the kernel f(¢) of our cross section fall off .
at least as fast as ¢%, §>1, as ¢ goes to 0; the corresponding potentials will =)
be of finite rarge. B!
We express out new differential cross sections in the form Y
)
i
do=-7a¢2gg) &, (22 3
where g(¢) has the form Z_'
gn'm(¢) ) P<gp* ":
g(e) = (23 i
Gu(®) , poo* .
R
We will choose a form for g,(¢) that reproduces the Thamas-Fermi cross '
section, within the approximations of the Lindhard method. For gn n(¢) we E
will use a mmber of adjustable forms. At this point, the transition value ¢* :‘
is another free pa.ameter. We take B
3
gu(®) = (be/2)/(cte(drp)), b=0.0074, c=0.0376, &=0.83. (24 ;*
: 3
In Fig. 2 we show a camparison of this g,(¢) with the INS fy (¢):; the values of ¥
f1,(¢) are taken from the more camplete tables of Manning,22 rather than from %
: INS. We see that the agreement is quite good for ¢>0.006. In Fig. 3 we show :
Y the percentage error in g,(¢) and the Winterbon, Sigmund and Sanders (WSS) fit N
j (Eq. (21)) to the INS f(¢). On the whole, g,(¢) fits f1(¢) as well as does b
fw(¢) over the range ¢>0.006. Differences of 4-6% are of no consequence .
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because interatomic potentials are not that well known. In addition, the INS ]
approximations, with respect to the exact results, introduce errors of more ot
than 4-6%. =
Far gn p(¢) we use the form ‘.
¢
Gn,m(®) = On,m(@i¢*) = A V4 [ B+ gVE TN, (25 2
The values of A and B are fixed by the requirement that the values ard N
derivatives of gn y and gy, are equal at ¢=p*. Specifically, we have 2?:
"
B = ¢4 g (¢#) [(my/ae*) gu(@*) - g'(¢*) 171, (26 L
)
A= @r /4 (B + gaB/4 )N g (g%) (27 4
¢
L2
2
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where g' is the derivative of g,;. We are left with n, m and ¢* as
parameters. We will label our families of cross sections with the notation
(n,m), and will label the family members by (n,m,¢*). Only a few pairs of
(n,m) values, with ¢* adjustable, are necessary in order to give our cross
section sufficient flexibility. In particular, we will make use of

(n,m) = (3,2), (2,3) and (4,4).

Tz

20
’ s
St B2

ST e K

[ I l T o
PERCENTAGE ERROR IN _
guln) B
- - -— PERCENTAGE ERROR IN o

f.(n boy
2_\ wih _ §

e

PERCENTAGE ERROR IN KERNELS
7
N
19 G e

1 |
1072 102 107" 1 10 100
REDUCED ENERGY TRANSFER [n]

YN AN
S

L

Fig. 3 — Percentage errors in the kernels of WSS and the present
work, relative to the Thamas-Fermi results of INS.

oy L
P,

11

e B

Y g T Ny g e e N L NN N e



ASNEEEOELLATALLT AELELL LA PR OEA WY E) G LT A A Ly gt

In Fig. 4 we plot, for 10~3<¢<1071, a variety of the kermels £(¢),
including fr(¢), fiy(¢), the kernel corresponding to the Moliére potential,?3

and a representative sample of the kernels from the present work.

(INS warn

that their cross section is inaccurate for ¢<10~3-10"2, but their warning is
seldom heeded.) We note that the differential cross section includes the

factor ¢~2, so that the Lindhard and Moliére total cross sections blow up as ¢

goes to zero; whereas our new total cross sections remain finite.

The total

cross sections and related quantities associated with the new differential
cross sections are easy to evaluate; the expressions are given in Appendix A.
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FITTING PROCEDURE AND EXAMPLES

In Appendix B we outline a procedure for cbtaining the potential or
screening function corresparding to a given differential cross section, within
the spirit of the INS approximations. By using this procedure, we plot, in
Figs. 5~7, the screening functions associated with cur three families of cross
sections. For a given (n,m) pair (see Eq. (25)), we show a family of
screening factors with each member labeled by the value of ¢*.

Given a phenamenological potential, our procedure for cbtaining a
differential cross section is as follows: Plot the screening factor for the
phencmenological potential, using the Firsov choice of screening radius,

1 -1
0 AN T T I T EE— I I =
7 nd -—
= N\ —— THOMAS-FERMI =
5 N -==1(3,2,n" ]
F

SCREENING FUNCTION Ixlr/a)l
=]
N

5
3+

2

N
AN
\ \
103 ] | NI 1N N N N
a 6 8 10 12 14 16 18 20 2 24

INTERATOMIC SEPARATION {r/al

Fig. 5 — The screening functions corresponding to the (3,2) family
of cross sections.
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unless some specific screening radius is associated with the potential.

Campare this plot with Figs. 5-7 to dbtain the family member that best matches
the given screening factor, recalling in the process that the fit need not be

NN A g a1 YA P o T

good beyond distances at which the potential is too weak (1-10 eV) to affect

radiation damage and range calculations. Having obtained a fit to the

screening factor with parameters (n,m, ¢*), Eq. (23-27) autamatically yield

the corresponding cross section.
As an example, we consider the Genthon potential for copper.24 This

potential is of Thamas-Fermi form out to 0.51 A, with the Lindhard screening

radius, and of Born-Mayer (exponential) form beyond that.

Genthon set the

-1
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103 1 ] ! K W TV [N I\ b RN
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INTERATOMIC SEPARATION (r/a]
Fig. 6 — The screening functions corresponding to the (2,3) family
of cross sections.
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expanential decay constant so that the potential reproduced the bulk modulus

for copper.24/25 In Fig. 8 we compare the Genthon screening factor with

] several members of the (2,3) family; we choose (2,3, .02) to represent the
For the purpose of abtaining a Cu-Qu cross section for radiation damage

calculations, we are done. But in order to examine the relations between the

10" T I T T I T T T -
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S ——— THOMAS-FERMI B
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Fig. 7 — The screening functions corresponding to the (4,4) family
of cross sections.
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various potentials and their cross sections, we plot, in Fig. 9, the Genthon
Qu-Qu potential, the potential associated with our (2,3, .02) cross section,

two forms of the Moliére potential, and the Thomas-Fermi potential. The

Moliére interaction in pictured both with the INS screening radius (0.1078 A)

that Genthon used, and with the Torrens and Robinson Value (0.0738 A).16

(Torrens and Robinson chose the value of the screening radius for which the

Moliére potential has the same magnitude at the nearest neighbor distance as

=——— GENTHON
— — THOMAS-FERMI
-=-==1(2,3n

SCREENING FUNCTION (x(r/al}i

]

20
INTERATOMIC SEPARATION [r/al

Fig. 8 — Camparison of the Genthon Cu-Cu screening function with
the screening functions corresponding to several members of the
(2,3) family.
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! Fig. 9 — Camparison of the Genthon Cu-Cu potential with the Thomas- ;

¥ Fermi, the (2,3, .02), and the Moliére potentials. The Moliere 3

{ potential is shown using both the INS screening length (0.1078 A) .
and the Torrens and Robinson screening length (0.0738 A). '
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In Fig. 10 we show the stopping power NS(E) (see Egs. (A2, AS, Al3, Al5)) 3
4 for copper in copper based on each of the potentials shown in the previcus .r
figure. The values for the Genthon potential were cbtained by the same ’
procedure?3/19 as used by Mueller to cbtain the Moliére results. We see that 2
the properties of the cross sections reflect the properties of the ,
interactions. For higher energies, all of the cross sections give the same )
results with the exception of the Moliére with the Torrens and Robinson N
screening radius, which is considerably lower. For lower energies the :
Torrens-Robinson-Moliére and Genthon results agree, because both potentials :'
.
3
]
N
4
l:'o
X
T T 1 T ’
Cu—Cu O
— 300 — !
ot 1 \
> )
‘d)' 3
- 100 |- ~
EJ' )
2 / '
« o
g % ///‘ﬁ S ——— wss :
o) 7 ” —— —— MOLIERE '
4 ,\Q}/ /s _——— (2,3, .02 2
2 10 - S +  GENTHON — 3
& o ¥
o J/ / 7
2] 3 7 / — )
/ .
/ &
Dy .
1 / 1 ] ] L Y
10 102 10° 10 10° 108 &
ENERGY [E (eV)] L
LS
Fig. 10 — Comparison of the calculated stopping powers for copper R
in copper. Shown are the results based on the Genthon Cu—Cu (‘;
potential, the WSS and (2,3, .02) cross sections, and the Moliere Kht
potential using both the INS screening length (0.1078 A) the Torrens N

and Robinson screening length (0.0738 A). '
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were fit to (low energy) crystalline properties of copper. The Thomas-Fermi o
results are much too large at low energies. Our cross section, the
(2,3, .02), gives an adequate approximation to the Genthon over the whole '
rarnge of energies. The results of using the Moliére cross section with the Y
Genthon (INS) screening length are only fair. e

As further examples, in Fig. 11 we present the screening factors, and our
fits, for a mumber of interatamic potentials: the uranium~uranium potential of
Genthan;24 the helium-tantalum potential of Wilson and Johnson;26 and the
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10°3

Fig. 11 — The screening functions for a variety of interatomic
ratentials (C-C, He-Ta, U-U), along with fits to them. Also shown
are the Thamas-Fermi and Moliére screening functions.
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carbon—-carbon potential of Genthon. Also pictured are the Thamas-Fermi and >
Moliére screening factors. While our fits can be samewhat rough, they ‘:
represent their respective phencmenological potentials considerably better :'
than does the Thamas-Fermi screening factor. Consequently, our cross sections \
are an improvement over the INS or WSS (Thamas-Fermi) cross sections. :
In Figs. 12 and 13 we show the stopping power for C-C and U-U, N
respectively. For carbon, as we might expect fram Fig. 11, the Moliére cross o
section overestimates the stopping power nearly as much as does the Thomas- +3
e 3
) Fermi, but because the characteristic energy (Z2e2/a) is low for carbon, even >3
‘ the Thamas-Fermi cross section is reasonably accurate. For uranium, both ocur \‘
) cross section and the Moliére give good results. The Thamas~-Fermi gives much ;-
too high a stopping power, and does so over a considerable energy range. e
Y
A
.‘
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‘
4
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Fig. 12 — Camparison of stopping powers for carbon in carbon based ;
an the Genthon, Moliére, Thamas-Fermi, and (4,4, .06) cross '.‘
sections.
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As a final example, we note that the phenamenological interatomic
potentials are sametimes of pure Borm-Mayer form V(r) = V' exp (=8'r), with
the parameters adjusted so that the potential reproduces same crystalline
properties of the material.2’ In these cases the potential is clearly not
intended for use at high energies; Torrens suggests a restriction to the range
for which V(r)<kV'. The results of using our procedure with a Born-Mayer
potential is that we autamatically extend its useful range for
radiation damage calculations. As an example, in Fig. 14 we show the
Gibson #2 potential for copper.l Also shown is the potential corresponding to
ouar (2,3, .015) cross section. Our procedure has not only yielded a cross
section corresparding to the given potential, but a cross section that has a
wider applicability than the original potential could justify.

3
10 ,

—~+ GENTHON

—
(=]
[N

10

[ 1 |
10 102 103 10° 10° 108
ENERGY [E (eV)]

Fig. 13 — Camparison of stopping powers for uranium in uranium
based on the Genthon, Moliére, Thamas-Fermi, and (3,2, .014) cross
sections.
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Fig. 14 —_Cmparison of the potential based on the (2,3, .015)
cross section to the copper—copper potential of Gibson, et al.
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One question remains. What cross section do we use when we have no )
phenamenological potential to guide us? In the light of the wide use of the '

‘s
"~

&
" Moliére potential for radiation damage problems, and the fact that the Moliere
" fares reasonably well in most of the camparisons we have made in this paper,
|}
I we suggest our (finite range) version of the Moliére cross section with the )
[}
; Firsov screening radius as a universal cross section. Following the
¥
K} procedure discussed earlier, we cioose the (3,2, .019) cross section to
p represent the Moliére cross section. In Fig. 15 we campare the reduced
_ stopping power (NS(E)/(N 7 a2 Er)) for the Moliére amd (3,2, .019) cross
: sections. They are in good agreement for all but the lowest values of
X (reduced) energy transfer. No universal cross section is going to be more
than adequate, in general, but in every case we have examined in detail, the ;
"j (3,2, .019) cross section would be an improvement over the Thomas-Fermi (INS) h,
Q. form. ]
U
Y
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X Fig. 15 — Camparison of the reduced stopping power for the Moliere
cross section with that of the (3,2, .019).
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DISCUSSION

We had as our goal in this paper to create a class of cross sections for
atamic scattering that were both phenamenoclogically based and easy to use. We
have campared our cross sections to others in two ways; by camparing the
correspanding potentials or screening factors, and by camparing the stopping
powers derived fram each cross section. We have not compared total cross
sections because they are infinite for the Thamas-Fermi and Moliére forms.
Also, we have not campared the square fluctuations in energy loss (Eq. (A4))
because tl.is quantity depends on the higher energy portion of the kernels of
the cross seccions, and at higher energies the kernels all agree.

We can now ask what differences might result from the use of these new
cross sections, relative to using those based strictly on the Thamas-Fermi
potential. We have no definite answer, but we can learn samething of this
matter by examining the curves fcr stoppi. ¥ power that we showed earlier. In
particular, consider Fig. 10 for copr=ar. The ralculated range of a copper ion
with en initial energy of more than a few keV will be the same whether it is
estimated using our new crouss sections or the Thamas-Fermi, because the
stopping powers for the two cases are the same. Similarly, the (initial)
energy deposition curve (energy lost versus depth) for the impinging ion will
be the same for both cross sections.

Differences may arise, however, when the motion of the primary knock-on
atams (PKAs) is considered. A typical PKA will have an energy of a few keV,
and secondary knock-on atams will typically have energies of a w hundred
electron volts. We see fram Fig. 10 that at these energies the Thomas-Fermi
stopping power is considerably higher than is the phenamenclogically based
value. Consequently, the knock-on atams will have longer ranges than the
Thamas~Fermi results would indicate, which may affect the final energy
deposition and displacement damage results.

Another difference arises in calculations of energy partitioning. An
impinging ion's energy in given up to two mechanisms: transfers of energy to
electrons in the bulk material, called inelastic or electronic losses; and
transfers of energy to the lattice ions, called elastic losses or damage
energy. Same of the elastic losses produce displacements. If the elastic
scattering cross section is lowered, then a higher proportion of the initial
energy goes into inelastic losses and fewer displacements are produced. 2829
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APPENDIX A: TOTAL CROSS SECTIONS AND RETATED QUANTITIES
From Egs. (9, 17-20) we can write

N o(E) = Mra’ I(e) (a1
2 -1

N S(E) = Nra™ r EL € ~ J(€) (A2

N o(E) = Mra® [1 B e 1 K(e) (a3

to represent the total cross section, stopping power, and square fluctuation
in energy loss, where

I(e) = | & ¢ 2 £(g) (A4
Jo
e

ey = | W f@ (a5
De 2

e = | W o fe) . (a6

For the function I(€¢) we can write

[ I(e), e<g
I(e) = (A7

*
(), €>¢ ,

and similarly for J(€¢) and K(e). Recall that f(¢) is of the form (23~25) and
that the parameters A and B are given by Egs. (26-27).

For our three families of cross sections and for e<¢*, we have the
following expressions:

-1 61/2

(nm) = (3,2) , y=8B ' (A8

I(e) =AB2 (2yw?) (1) 72, (A9



= a B2 [12 In(1+y) + (1+y) 2 (y*-ay -18y2-12y)]
= (aB%/15) [ 840 1n(1ty) +

(1+y) 2 (5y®-8y’+14y®-28y°+70y*-280y°-1260y%-840y) ] ;

= (2,3 ,y=pY3 W4

[

2 2
= v 1,0 L 13y ]
BY3 “3aydy) 1B gy W3 2-y

4.7 2
o aapd/3 [ =28y=21y7+3 7 .. (1Y) 7 .. -1y
s [ 3 t g n 2 t3pwEn 2—y]’
12 (1+y°) 1-y+y

=3 a8* [ 60 Inawy?)

+ (1) L -0y -30y°® +10y° -5¢12 43915y ]

(4,4) , Y=¢€/B,
173AB L¢3 ey 3

=328 [ a7 zy +30y? +22y° +3yh) - 12 In(ey) ]
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For e>¢ , for all of the families, we have

I (€) = I_(¢%) +(4c>) ™" [(c-2bd) (2 ny - P (¥)) - 4bc/y

I (€) = I (¢ + % [ (400 By(y) + Py (¥) ]

- (e ~2(@®-2¢) Py(y) ]

=€
*

’

’

y=€
]
y=o

K (€) = K _(¢*) + 3 [y +(4b-2a)y +(@-c-20d) P (v)

where

P, (¥)

yme
+(2b(@®-20) <d(@®-30) B, ],
H

= In[cty(dty) ]

ot §
P,(y) =B, In[(ar2y-R))/(a+2y+B)] .
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1/2

R A

W oy M o«
".‘.. \‘ll

W

28

3'.... o \'. - \'u ~ ."‘-.".l.\-

-
-
v,

(A20

(A21

(A22

(A23

(A24

(A25

. --\. " _‘.l\v .0 ,‘\‘ W R A N
4 3 (alal L

L

SR T B

X Y - ‘{r

FHTETY,

ARt

Ay

2 S

v e te "X
ol

&.;) '.,-‘;1 - )'-

AT Sy

oy

55

P



APPENDIX B: INVERSION METHOD
Given the approximations that allowed us to take Eq. (5) into Eq. (16),
one can easilyl® cbtain the potential corresponding to a given cross section

2
2, 2, e @ -
) = =— 2 J o) [ -1772 . (B2

. g
r

Just as Eq. (14) is the first in a series of approximations to the scattering
argle, Eq. (Bl) is the first term in what is known as the impact expansion
method of expressing the potential in terms of the reduced scattering
angle.30,31,32

Let us suppose that we have a potential V(r) that vanishes for r>R, and
let us write the impact parameter and R in reduced the notation

q=p/a, Q=R/a. (B2

Then Egs. (16) and (Bl), with the use of the approximation (15), can be
written

Q - -

¢(q)=-§qJ & (- L1772 Sx e (83
q
Q -

c) = ¥ f dqe@ [ -2 . (84
X

BN TN gy

AN A

Within the framework of this inversion method, the relationship between
the reduced impact parameter and the reduced energy transfer is

[ ]
¢ = Lds s? gs) . ¢ =(TE/(TED] . (BS



-
PO e

The cutoff radius is related to the differential cross section by

[- -}
Q= Ld» ¢2 g . (B6
A change of variable from q to ¢ converts Eq. (B4) to the form
? -
c) = L"dr» (¢ -2 el (87

where ¢ and q are related by Eq. (BS) and ¢y is that value of ¢ that satisfies

a
X = J @ ¢2 g - (88

Px

As a practical matter, we chocse a set of values of ¢, and then use Egs. (BS)
and (B7) to determine the corresponding values of the argument x and the
screening factor C(x). In effect, we form a table of C(x) versus x.

As a example of the use of this procedure, we use Eq. (B7) to find the
potential corresponding to fy, the WSS form of the INS kernel. In Fig. 16 we
show the actual Thamas-Fermill screening factor and that cbtained by the above
procedure using fy(¢). The difference at large separations reflects the fact
that fiy(¢) falls off more slowly as ¢ goes to 0 than would the equivalent
Thamas-Fermi kernel; one can see this be comparing the WSS and INS kermels in
Fig. 4.
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section with inversion process described in Appendix B. )
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