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A NEW CLASS OF MS SECfCS FCR USE IN ATMIC SCA RING

In the process of calculating the range, energy deposition and damage

chazacteristics of heavy ions in bulk materials, one needs some representation

of the interactions between the impinging ions arid the target constituents.

Because the target atoms are displaced and themselves traverse the target, one

needs the interactions between the various constituents. There is available a

wide range of such potentials, from the universal ones of the Thcmas-Fermi

type to ones specifically tailored to reproduce the crystalline properties of

particular seis
These interactions are used in three general types of radiation damage

calculaticn. The most exactir are the molecular dynamics codes, 1 , 2 which

simulate a small portion of a crystal in the cucpiter. The response of the
crystal to an initial displacement, caused by an incident neutron or heavy :

ion, is followed by simultaneously solving the equations of motion of all of

the atoms in the sample crystal. More flexible, if less thorough, are such

simulation codes as those of Robinson and Torens 3 and Beeler and Besco.4 In

these the crystalline structure of the material is present in some fashion,

but the moving ions are followed one at a time. The molecular dynamics codes

require potentials that reproduce the major properties of the crystal. The

second type of simulation code is somewhat less stringent, in part because the

potentials are not allowed to act for impact parameters greater than 50-80% of

the nearest neighbor distance.
Finally, there are the transport theory calculations,5,6,7,8,9,1 0 which

assume an amorphous material-no crystal structure is present. These

calculations do not use the potentials directly, but use the associated 4/

differential cross sections. For the most part, they make use of the of the

Lihard, Nielsen and Scharff (INS) 5 universal cross section based on the

Thcmas-Fermi interaction. There are a number of problems associated with this

MamsriF approved June 29, 1988. 3.
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interacticn. It is knwnI I be too strong for large separations. While its

universal chracter makes it onvenient to use, it does not accurately reflect

the properties of more realistic potentials, especially at large separations.

Ftoruinological potentials are usually made to vanish for sufficiently large
distances (2nd or 3rd nearest neighbor distances), whereas the Thanas-Fermi
potential is of infinite range. The corresponding Thomas-Fermi cross section

blows up for sall energy transfers and the total cross section is infinite,

unless a cutoff in energy transfer is imposed.

Our goal in this work is to create new differential cross sections (more

specifically, families of them) that both more accurately reflect the
properties of realistic potentials and are as easy to use as is the INS cross
section. In the next two sections we describe the Thzas-Fermi potential and

its relation to various ptIen mlogical interactiuns and outline the method

that M use to obtain their cross section. We then present a new class of

cross sections that reproduce the INS form for large energy transfers

(crr z to sMall separatios of the interacting ions), but which have 0

flexible cac istics for smIall energy transfers.
Within the spirit of the ap--oximaticns used by INS, there is a method,

outlined in Appendix B, that allows the potential correspondirq to a given

differential cross section to be easily calculated. We present a series of
figures of the potentials that are generated from cur new families of cross

sections. By comparing a given rhenxmnological potential with the families

thus generated, one can automatically obtain a differential cross section

closely ctrzrsiding to that penomenological potential. Finally, we give a

number of examples and discuss the possible use of these new cross sections. -

I A C PO-TA'AES

Before considering atumic scattering cross sections, let us look at some

of the nerticpotentials on which the cross sections are based. suppose
we have an atom with atumic number Z1 and atcmic mass A1 interactir with

anmther atom with atmic number Z2 and mass A2 . Firsov 12 represented the

interaction between two such atoms, separated by a distance r, as a screened

Couicb potential of the form

z Z e2 z2
VF(r)= r 0(r/a)

2 ,' -',
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The quantity CT(r) is the Tmans-Fermi screening factor, which is available in
tabular form. 13 The screening radius a is given by

r 2 1/ 3 r- 2 1/31a3Z-1/3
a - [ r2me Z' =0.88534 aZ(2

Zz= (Z 1  2 + Z21 /2 2

(3

,. ( z12/3 + z2 / 3 )3/2

where in expression (3) we present both the Firsov version for Z and that due

to IS. This Firsov or Thcmas-Fermi (as it is more commonly called) potential

is universal, in that it can represent the interactions between any pair of

atom, given only their atomic numbers and the separation between them.
Because of its simplicity, this potential is widely used in atomic scattering

probles.
Mile the Thcms-Fermi potential is on reasonably secure theoretical

grord when the interatomic separations are small, it is inadequate for large

separation. The Thomas-Fermi screening factor Cr(x) falls off as x- 3 for

Large x. On both experimental and theoretical grounds an exponential

falloff is more realistic. For this reason, another universal potential, the
Molibre, 14 , 15 is also widely used. The M0liere potential also has the

form (1), and its screening factor reproduces the Thomas-Fermi screening

factor oat to reduc separations of x6. After that, it falls off

exponentially. T Firsov, UNS, or some other suitable screening radius may

be used with the Molitre potential.

The best interaction to use, of course, is one that is tailored,

Iie nologically, to the two interacting atom in the solid. There are many

ways of obtaining such potentials, but a commnly used one is sane version of

the following (for the moment, we asswme ZI=Z2 ): For small separations, the

ThcMas-FerMi interaction is used. For large separations a form is used whose

parameters are adjusted to reproduce some of the properties of a crystal made

up of these atcms. Finally, these two portions are joined smoothly in the

intermediate region. In Fig. 1 we show such an interaction, due to Erginsoy,

3
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Vineyard and Englert, 2 for alpha (bc) iron. We note that this potential

passes through zero at a separation somewhat less than the nearest neighbor

distance (2.48 i). This behavior is typical; it is the attractive portion of

the potential in the nearest neighbor region that binds the crystal. More

sohisticated potentials will oscillate about zero out to 2nd and 3rd nearest

neighbor distances; the magnitude of these oscillations is of the order of

1 eV.

For compariscn, we also show the Thomas-Fermi and oliere potentials for

iron, using the Firsov value (0.0966 A) of the screening radius. We see that

the agreemnt is not bad for small separations, as we wud expect, but

becaws increasingly ~worse as the separation increases, especially for the

Thcmas-Fexmi interaction. This again is typical; the Thanas-Fermi is too
large for large separations. Finally, we show the Moliere potential with the
Twrens and Robinson1 6 value (0.0781 A) of the screening length. Here the

agreanet is quite good for large separations. Of course varyinq the

screenirq length may distort the agreement at small separations.

For the purposes of transport theory calculations, the details of the

potential in the region near and past the point at which it first passes

through zero are of no 3PIsequnce. No significant amnt of energy is to
transferred to lattice atoms when the impact parameter lies in or beyond this

region. Further, the differential cross section for an infinite range
potential blows up as the energy transfer vanishes, which imposes an

wrfmxessary cceplication on integral equation calculations. Rather than using

a cross section based on the infinite range, Thauas-Fermi potential, these

calculaticn would be both simpler and more realistic if we started with a

finite range potential.

REVIEW OF TI INS MTHO'lD
In computer simulation calculations one uses the relevant potential

directly to represent the interaction between atoms. In integral equation

calculations, one used the differential cross section derived from that

potential. Suppose that one particle with energy E and impact parameter p is
moving toward another (stationary) particle. The center of mass energy is

Er= A2 E/ (A1 + A2 ) (4

5



I.

Te scattering angle is given by17

2 1 C C (r/a)] p2  (5
r Er

wi.re rmin is the largest root of the radical in the integrand. The energy -S

transferre in the collision is

T Tm sin2 9/2 (6

Tm = T E = £4 A1 A2 (A+A 2 ) - 2 ]  E , (7

wre Tm is the maximum ] tically allowed energy transfer. Corresponding

to this maxim energy transfer is the minimnum energy that can be carried away 0

by the incident particle, whicd is given by

min = E/ _ E (AI-A2 ) 2 /(AI+A 2 ) 2 
. (8

Muxh of the work of Lindhard and his corkers is couched in terms of the .-.

dimesicnless variables 
N,

6E /EL =E CZ, Z2 e2 (A1 +A2 ) /(a A2 ) -l(9

= 2 T/Tn = 62 sin2 9/2 (10

In terms of these definitions the differential cross section is given by

da=2 pdp ; ( "

IS use the notation

do = -(7r a2 /2) t - 3 / 2 f(t) dt , (12
(12.

so that

6
S.<
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f(th) = (-4/a2) t3/2 p(t) dp(t)/dt . (13

For lack of any standard name, we will call f(O) the kernel of the cross

section.

Out of a desire to create a sinple, universal cross section, INS make two

aproximtions18 to obtain f(th) for the Thc as-Fermi potential: they replace

Eq. (5) by the momentum approximaticn 19 to the scattering angle, so that

Er dr [r2-p2Y"2 I V(r) (14

and they use the expression

t = /4 2 e2  (15

to replace e by t, instead of the exact expression (10). By combining these

afr rxinations we find that we can write

t1 =- 2a Jp/a dx [x 2 - (p/a) 2 ]1/2 d [ k-1Cx 1 (16

Eq. (16) provides a functional relationship between the impact parameter and

the reduced energy transfer that can be used to solve Eqs. (11-12) for f(t ).

The advantage of the IM approximations is that the kernel of the differential

cross section depends only on one variable; Eq. (16) is a relationship between

t and p/a, not t, p/a and e.

Given these considerations, the total (macroscopic) cross section can be

written

N a(E)= Nra2 do -2 f() (17

7
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where N is the number density of lattice atms and

*-th (18

Following INS, we cn write

N S(E) - a2 'r { f(o) (19
10

for the stcpping power for elastic collisicas and

2I

6p
N W(E) Nr do 0 f(.0) (20-?

for the square fluctuation in energy loss.

7he INS method w just outlined could be used for other potentials, as

wel as the Tamas-Fermi. We will use a subscript L to refer specifically to

the INS results for the Thamas-Fermi interaction. The quantities fL, SL and 4-

%
WL are proided by INS in tabular form. A oonvenient fit to fL, in the form

fw(0)- k (#/3 [1 + (2k)2/3 08/9 ]-3/2 , k=-l.309 (21

has been created by Winterbon, Signund and Sanders (WSS).8 With this form, 1

relatively cnvenient expressions can be found2 0 , 2 1 for aWl SWq andi WW; in some

cases they are easier to use than the tabular forms of INS.

NEW CROS S-I CNS 0

In our discussions of interatamic potentials, we inplied that it would be

useful to have a potential that: (a) vanishes at a separation near the nearest

neighbor distance, which distance depends on the particular material; (b),

reprodcxes the Thamas-Fermi potential for small separations; (c), has for its
COrrespordIx differential cress section a simple, easy-to-evaluate form; (d),

has simple forns for the related quantities Na(E), NS(E) and NW(E); and (e),_%

is flexible enough to roughly match any of the phenc lnologically determined

interatomic potentials.

8%
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We could, of course, sinply create a flexible potential form that

possessed properties (a), (b) and (e), but there is no guarantee that it would

possess prcperties (c) and (d). When using integral equation methods for

calclatng range and damage characteristics of heavy ions, it is the cross

section, and not the potential, that is used. So instead of choosing a

flexible potential form, we will choose a flexible cross section form that

possesses properties (c) andl (d). Property (b) is satisfied by requiring that
our new cross sections look like the INS cross section for large values of t.

Because we can calculate what the potential is that corresponds to a given

cross section, we can build sufficient flexibility into our new cross sections

in order to satisfy (e). Finally, because we want the total cross sections to

be finite, we will recuire that the kernel f(O) of our cross section fall off

at least as fast as 06, 6>1, as 0 goes to 0; the corresponding potentials will

be of finite range.

We express out new differential cross sections in the form

T a2 07 g (0) do 2

where g( ) has the form

9( 9 n, m(0), 0*(2
u (2) ,(2I %('), *

We will choose a form for gu (0) that reproduces the Thomas-Fermi cross

section, within the approximations of the Lirdhard method. For gn,m ((p) we

will use a rumber of adjustable forms. At this point, the transition value *

is another free pa.,.ameter. We take

gu(=) - (b+0/2)/(c+O(dI)), b0.0074, 0.0376, d=0.83. (24

In Fig. 2 we show a cauparison of this gu(0) with the OS fL(O); the values of
fL(O) are taken from the more couplete tables of Manning,22 rather than from

INS. We see that the agreement is quite good for p>0.006. In Fig. 3 we show

the percentage error in gu(0) and the Winterbon, Sigqund and Sanders (WSS) fit

(Eq. (21)) to the INS f(O). On the whole, gu(0) fits fL(O) as well as does

fw(0) over the range 0>0.006. Differences of 4-6% are of no consequence

9



because interatanic potentials are not that well known. In addition, the LNS

aProamdmatiors, with respect to the exact results, introduce errors of more
than 4-6%.

For., ,m(o) we use the form

=,m(O) - %,m(0;0*) = A O/4 [ B + A/4 ]-n (25

The values of A and B are fixed by the requirement that the values and

derivatives of gn,m and gu are equal at 0=0*. Specifically, we have

B = O*/4 g,(*) [(ro/40*) gu(0*) - g'(0*)]- , (26

A = 0*-/ 4 ( B + *W 4 )n gu (*) , (27

0.5 1

- LNS
+ WSS .-*

0.4 - 0 PRESENT WORK

-j

z

z

00

0.1 -

0.0
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REDUCED ENERGY TRANSFER [r= t -I.

Fig. 2 - he kernel of the differential cross sections of LNS,
WS, and the present work.
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where g' is the derivative of gu- We are left with n, m and * as

parameters. We will label our families of cross sections with the notation

(n,m), and will label the family merbers by (n,mo*). Only a few pairs of

(n,m) values, with 0* adjustable, are neessary in order to give our cross

sectin sufficient flexibility. In particular, we will make use of

(n,m) - (3,2), (2,3) and (4,4).

4_ -PERCENTAGE ERROR IN
4~~ u[ g(?7)

(n., .. PERCENTAGE ERROR IN
vZ 2 -- , , ,  \ \ I I ' -'\ fw(P7) -

u~i s

z 2-

-6- - - PECNTG ERRR"

\ /

z 0

C

W /t

Z / IIJ
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10.3  102 10 1 1 10 100 "
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Fig. 3 - Percentage errors in the kernels of WSS and the present "
work, relative to the Thaiias-Fermi results of LNS. I
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In Fig. 4 we plot, for i0-5<0<I0- 1, a variety of the kernels f( ),

inldn fL(0), fW(0), the kernel co==rspcnAin to the Molire potential, 23

and a representative sample of the kernels frum the present work. (INS warn

that their cross section is inaccurate for 0<10- 3 -10 - 2 , but their warnig is

seldom heeded.) We note that the differential cross section includes the

fatr 02, so that the Lindhard and Molisre total cross sections blow up as p
goes to zero; whereas our now total cross sections rem n finite. The total

cross sections and related quantities associated with the new differential -*

cro s sections are easy to evaluate; the expressions are given in Appendix A.

LNS -f L(17)--
WSS - fw(n)""
MOLIERE -fi(rj)

PRESENT WORK - -

10-1

LLN

.01 0/LLL
z 100,

LU 1-_ k/ /1 1-

/(SO

-I

10.5  10-4 10-3 10-2 10 1

REDUCED ENERGY TRANSFER [I~

Fig. 4 --A variety of crs section kernels, platted for low values
of t j.
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FTI=fl3 ~R~aE AND EUMZPIES
In Appendix B we outline a procedure for obtaining the potential or

sceng furc±iaci orrIBEA GoXUM to a given differential cross section, within

the spirit of the IMS aproxinations. By using this proceure, we plot, in

Figs. 5-7, the screening functions associated with cur three families of cross
sesticn. For a given (n,m) pair (see Eq. (25)), we show~ a family of
screenin3g factors with each ~e labeled by the value of 0*.

Given a ~rilgclpotential, 0= procedure for obtaining a
differential aross section is as follows: Plot the screening factor for the

enourxlogical potential, using the Firsov chice of screening radius,

10.1

7'
4 THOMAS-FERMI

5 - (3,2, r*

3 -a

z
0N

Z 10-2

S7-z
5 5

(n 3

2- N

4 6 8 10 12 14 16 18 20 22 24
INTERATOMIC zjEPARATION Ir/al

Fig. 5 - The screening functions corresponding to the (3,2) family
of cross sections.
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A,.j

unless sme specific screening radius is associated with the potential.

ompare this plot with Figs. 5-7 to obtain the family member that best matches

the given screening factor, recalling in the process that the fit need not be 1
good beyond distances at which the potential is too weak (1-10 eV) to affect

radiation damage and range calculations. Having obtained a fit to the

screening factor with parameters (n,m, 0*), Eq. (23-27) autmatically yield

the U!rn;i'ik Coss section.

As an example, we cciser the GenthKn potential for copper.24 This

potential is of Thcoas-Fermi form out to 0.51 A, with the Lirdhard screening-

radius, arxi of Born-Mayer (expmential) form beyond that. Genthon set the

I

10I _

7 -

5 -
-- THOMAS-FERMI

_ 3

2 \

z
0

z 10.2

oD 7
z
Z 5

\U \ \
U

wk
2 \01 oL3 4

V vo

10-3 1 \ I A I k \ I
4 6 8 10 12 14 16 18 20 22 24

INTERATOMIC SEPARATION fr/al

Fig. 6 - he screening functions corresponding to the (2,3) family '"

of cross sections.
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WWA rwnx WTW I. 6

expnntal decay constant so that the potential reproduced the bulk mo~dulus

for copW.24,25 In Fig. 8 we conpare the Genthon screening~ factor with

severalL meners of the (2,3) family; we choose (2,3, .02) to represent the

cUorrespxningz Genthon cross section.

Pbr the purpose of obtaunr a Oi-Oi cross section for radiat-ion damage

calculaticxa, we are done. But in order to examine the relations between the

101

THOMAS-FERMI

2

0

U-

2
2

cc' \ \

2 -0

4 6 8 10 12 14 16 18 20 22 24
INTERATOMIC SEPARATION [r/a]

Fig. 7 - The screening funictions; corresponding to the (4,4) family
of cross sections.
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varius potentials and their cross sections, we plot, in Fig. 9, the Genthon
02-Qa potential, the potential associated with our (2,3, .02) cross section,

tw forms of the Molibre potential, and the ThUmas-Fermi potential. The
Molibre interacticn, in pictured both with the INS screening radius (0.1078 A)

that Genthcn used, and with the Torrens and Robinson Value (0.0738 A) .16

(T Ters and Robi m chose the value of the screening radius for which the
Mcolibre potential has the same magnitude at the nearest neighbor distance as
does a Born-Mayer potential whose parameters were determined from elastic

cttant data).

10 1

Cu-Cu

-- % - 'GENTHON

- - THOMAS-FERMI
_

Z 10-2
U. \ \ \

10.- \ \
4\ \

u \ \ \

S\ \\
\ \ \ -

4 8 12 16 20 24,-

INTERATOMIC SEPARATION [r/al

Fig. 8 - Campariscn of the Genthon Cu-Qa screening function with
the screening functions corresponding to several menbers of the
(2,3) family.
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GENTHON
-- \--(2, 3, .02)

--- THOMAS-FERMI

-- -MOLIERE
---

<0

0- 102  "

00 1 I--

200

> \0 0

0 0.4 0.8 1.2 1.6 2.0 2.4

INTERATOMIC SEPARATION [r (A)]

Fig. 9 - Ccnparison of the Genthon Cu-Cu potential with the Thnas-
Fermi, the (2,3, .02), and the oliere potentials. The Moliere
potential is shown using both the INS sc=eeng lenoth (0.1078 A)
and the Tbrrens and Robinson screening length (0.0738 A).
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In Fig. 10 we show the stopping power NS(E) (see Eqs. (A2, A5, A13, A15))

for oper in opper based on each of the potentials shown in the previous
figure. The values for the Genthon potential were obtained by the same
prvinr2 3 ,19 ~as used by Bueller to obtain the Moliere results. We see that
the properties of the cross sections reflect the properties of the

interactions. For higher energies, all of the cross sections give the same

results with the exceticn of the Moliere with the Torrens and Robinson
screenir radius, widi is comiderably lower. For lower energies the

Ttrrens-Rbinscn-Mli~re and Genthan results agree, because both potentials

Cu-Cu

300 -

-:100 N-

z

LU30
o -- MOLIERE
0. 0; ," (2,3, .02)

z10 -]- GENTHON

0,

o

1 4
10 102 103  104  105  106 ".

ENERGY [E (eV)]

Fig. 10 - cparison of the calculated stoing powers for copper
in copper. Shown are the results based on the Genthon Cu-Cu
potential, the WSS and (2,3, .02) cross sections, and the Moliere
potential using both the INS screenirq length (0.1078 A) the Torrens
and Robinson screening length (0.0738 A).
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were fit to (low enrgy) crystalline properties of coper. The Thanas-Ferni

results are muh too large at low energies. Our cross section, the
(2,3, .02), gives an adequate ar-roiaticn to the Genthcn over the whole
arme of energies. The results of using the Moli&re cross section with the

Geth= (INS) screeing length are only fair.
As ftrther exa ples, in Fig. 11 we present the screening factors, and our

fits, for a rumer of intexatamic potentials: the uranium-uranium potential of
Genthc; 2 4 the helium-tantalum potential of Wilso and Jc ;2 6 and the

10"1

(U ~ 100

0"'

LL

zS

z %

LU

.00

4 6 8 10 12 14 16 18 20 22 245

INTERATOMIC SEPARATION [r/al %

Fig. 11 - The screening functions for a variety of interatomic
Tritentials (C-C, He-Ta, U-U), along with fits to them. Also shown
are the Thcoas-Fermi and Moliere screening functions. S
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%

carb-carbon potential of Genthon. Also pictured are the Thamas-Fermi and
Molibre screening factors. Rtile our fits can be somewhat rouh, they

resent their respective phenomenological potentials considerably better

than does the Thomas-Fermi screening factor. Consquently, our cross sections
N"

are an emit over the IM or WSS (Th mas-Fermi) cross sections. %.

In Figs. 12 and 13 we show the stoping power for C-C and U-U,

respectively. For carbon, as we might expect from Fig. 11, the Molire cross

section overestimates the stopping power nearly as much as does the Thanas- -.

Fermi, but because the daracteristic energy (Z2 e2/a) is low for carbon, even

the Thcmas-Femi cross section is reasonably accurate. For uranium, both our

cross section and the Moliere give good results. The Thanas-Fermi gives much

too high a stopping power, and does so over a considerable energy range.

C-C

0<-30

.

(0

z
I- 3

+

1 4I

10 102 103  10

ENERGY [E (eV)I

Fig. 12 - Carpariscn of stopping powers for carbon in carbon based I
on the Genthon, Moliere, Thaoas-Fermi, and (4,4, .06) cross

sections.
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As a final example, we note that the penomnological interatomic

potentials are sometimes of pure Born-Mayer form V(r) = V' exp (-3'r), with

the paramters adjusted so that the potential reproduces some crystalline

properties of the material.27  In these cases the potential is clearly not
intended for use at high energies; Torrens suggests a restriction to the range

for widh V(r)<hV'. 7he results of using our procedure with a Born-Mayer

potential is that we autumatically extend its useful range for
radiation damage calculations. As an example, in Fig. 14 we show the

Gibson #2 potential for copper. 1  Also shown is the potential corresponding to

cur (2,3, .015) cross section. our procedure has not only yielded a cross
section lung to the given potential, but a cross section that has a
wider applicability than the original potential could justify.

102

ENERG [E (eVTH

z

oI

12

" 10 "02106'

ENERGY [E (eV)I

Fig. 1.3 Comaparison of stopping powers for uranium in uranium I
based on the Genthon, Mlidre, Thaias-Fenni, and (3,2, .014) cross

sections.
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Cu-Cu

105

- GIBSON, et. al.

) -- (2, 3, .015)

~10

z \-
-10

3

0

102
I-

10 •

1 
.

0.4 0.8 1.2 1.6 2.0 2.4

INTERATOMIC SEPARATION [r (A)]

Fig. 14 - Ccmparison of the potential based on the (2,3, .015)
cross section to the copper-copper potential of Gibson, et al. I
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One question remains. What cross section do we use when we have no

ph imenological potential to guide us? In the light of the wide use of the

Moliere potential for radiation damage problems, and the fact that the Moliere

fares reasonably well in most of the c i s we have made in this paper,

we suggest a" (finite range) version of the Moliere cross section with the

Firsov screening radius as a universal cross section. Folloing the

procedure discussd earlier, we choose the (3,2, .019) cross section to

reresent the Moliere cross section. In Fig. 15 we ccapare the reduced

stopping power (NS(E)/(N w a2 EL)) for the Moliere and (3,2, .019) cross

sections. They are in good agrent for all but the lowest values of

(reduced) energy transfer. No universal cross section is going to be more

than adequate, in general, but in every case we have examined in detail, the

(3,2, .019) cross section woild be an improvement over the Thanas-Fermti (INS)

form.

- I I i

C4

V--- MOLIERE
z

-- -- -- (3, 2, .019)

0

S0~

z
a- 10-2_

U

Uj

i0 
10-312 

(
10.5  10-4  10-3 10.2  10-1

REDUCED ENERGY TRANSFER I7 -t 'I

Fig. 15 - Cparison of the reduced stopping power for the Mliere
cross section with that of the (3,2, .019).
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DISSIQON

We had as our goal in this paper to create a class of cross sections for

atomic scattering that were both phenomenologically based and easy to use. We
have caipared our cross sections to others in two ways; by comparing the

rpotentials or screenir factors, and by ccoparing the stopping
poMrs derived from each crass section. We have not cuipared total cross
sections because they are infinite for the Th mas-Fermi and Moliere forms.
Also, w have not compared the square fluctuations in energy loss (Eq. (A4))

Vbecause t!ds quantity depends on the higher energy portion of the kernels of
the cross sec-icns, and at higher energies the kernels all agree.

We can now ask what differences might result from the use of these new
cross secticn, relative to using those based strictly on the Thomas-Fermi I

potential. We have no definite answer, but we can learn samething of this
matter by examining the curves fcr stoi - power that we showed earlier. In
particular, consider Fig. 10 for aar. The :liculated range of a copper ion
with mn inital energy of more than a few keV will be the same whether it is
estimated using our new cross sections or the Mhmas-Fermi, because the
stcoping powers for the two cases are the same. Similarly, the (initial)
energy depoition curve (energy lost versus depth) for the impinging ion will
be the sam for both cross sections.

Differences may arise, however, when the motion of the primary knock-on
atoms (PKAs) is considered. A typical PKA will have an energy of a few kev,
and secodary knock-on atoums will typically have energies of a w hundred

electron volts. We see from Fig. 10 that at these energies the Thamas-Fermi I

stopping power is considerably higher than is the phenoenologically based
value. Ccnsuently, the knock-on atoms will have longer ranges than the
Thomas-Fermi results would irdicate, which may affect the final energy
deposition and displacement damage results. I

Another difference arises in calculations of energy partitioning. An

impinging ion's energy in given up to two mechanisms: transfers of energy to
electrons in the bulk material, called inelastic or electronic losses; and
transfers of energy to the lattice ions, called elastic losses or damage
energy. Same of the elastic losses produce displacements. If the elastic

scattering cross section is lowered, then a higher proportion of the initial

energy goes into inelastic losses and fewer displacements are produced. 28,29
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APPENIXl A: T= CROS SECMICZS AND RMIATEfl QN1'IIS

rnx Eqs. (9, 17-20) we can write

N a (E) = Na 2 I (e) (Al

N S(E) - Nra2  EL J 1 J(e) (A2

N a(E) - Nxa [r EL C]1 K(e) (A3

to rprent the total cross section, stopping power, and square fluctuation

in energy loss, where

I(e) do {' f(0) (A4jo I'I
J(0) = do f(0) (A5

I(C) = J do0,2  f(,) . (A6

For the function I(e) we can write

I<(6), < ,
)I> (e), e> ,(A7

and similarly for J(e) and K(e). Recall that f(0) is of the form (23-25) and

that the parameters A and B are given by Eqs. (26-27).

For our three families of cross sections and for 6<0*, we have the

following expressions:

-11/2(n,m) = (3,2) , y = B7 6 , (A8

-2 2 -2 'I<(e) = A B (2y+y 2 ) (1+y) (A9
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J<(C) = A B2 [12 ¢ (1+y) + (1+y)-2 (Y 4-4y3-. Y2 -12y)] (AlO

K< () - (AB6/J5) [ 840 ln(1+y) +

(1+y)-2 (y -8Y 7+14Y -28Y +70Y 4-280y 3-126 -840y) ; (All

(n,m) = (2,3) , y = B71/3 el/4 (AI2

(,E -& v - 1 1 (+V_2+ tan~-/3 V (AD

I<()) 1 -y+Y2

J<(e) - 4AB4 / 3 [ -28y-2ly4+3y7 + 22 1n l + -I tan-i '/3 V (A14

12(1+y3) 1 _Yy2 3/3 2-y

K< (,) 1 AE4 [ 60 in(l+y3 )

+ (l+y3)-l (-6y -30y6 +1Oy9 -5y2 +3y 15 (A15

(n,m) = (4,4) , y= /B, (A16

I<(C) = 1/3 A B71 y3 (1+y) , (A17

( M- = IAB [ (,+y)-3 (12y +30y2 +22y 3 +3y 4) -12 in(+y) (A18

K() 2 (y 4 _Y3)(l+y)-3 + 5 B2 3<(C)
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For c0 , for all of the families, we have

I>c -1(0*) +(4c 2 )- [ (C.-2bd)(2 lny - P,(y)) -4bc/y

2 c
- (dc -n (d -2c!) P2 (Y) I (A20

J = JT"(O*) + [(4b-d) P()+Py)] *,(A21

K>(c Kc (0*) + ~ y2 +(4b-2d)y +(dJ c-2bd) P, (y)
4I

2 2 (2+(2b(d -2c) -d(d -3c)) P2 (y) Y= , A2

mhere

P1 (y) - ln~c~y(d-y)) (A23

P2 (Y) = P0
1  ln[d+2y-P0 )/(d+-2y+P&,] ,(A24

P. (d 4- 1 (A25

0 '~ -- I *28
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AP DI B: INVERSIOI N!IM

Given the approximtions that allowed us to take Eq. (5) into Eq. (16),

one can easily18 obtain the potential orreo to a given cross section

z I  IIaccording to the prescription

z z 2 e 4r d ()CP 2  r 2 ]-1 / 2
I

V(r) a(P) - 2 - 2  (BIr

Just as Eq. (14) is the first in a series of apry'xuations to the scattering

angle, Eq. (Bi) is the first term in what is knn as the impact expansion
method of expressing the potential in terms of the reduced scattering

angle.30 ,
31,32

let us suppose that we have a potential V(r) that vanishes for r>R, and
let us write the impact paramter and R in reduced the notation

q=p/a, Q=R/ a. (B2

Men Eqs. (16) and (Bl), with the use of the approximation (15), can be

written

2(2)-1/2 d Z

C X Ndq O(q) [q2  X2]-1/2 (B4

Within the framework of this inversion method, the relationship between

the reduced impact parameter and the reduced energy transfer is

q= f'ds s-2 g(s) , E [/(r )] (B5

29



The cutoff radius is related to the differential coss section by

Q2 = g( -do 0- g (0) .(B6Jo1
A hange of variable fran q to 0 converts Eq. (B4) to the form

C(x) - , x 2-1/q2 _ (-) (B7

where 0 and q are related by Eq. (B5) and Ox is that value of 0 that satisfies

2072 g() .(B8

As a practical matter, we dcose a set of values of (A and then use Eqs. (B8)
and (B7) to determine the corresponding values of the axm nt x and the
screning factor C(x). In effect, we form a table of C(x) versus x.

As a example of the use of this procedure, we use Eq. (B7) to find the
potential lirresgrd!r to fw, the WSS form of the iNS kernel. In Fig. 16 we
show the actual Th as-Fermi13 screenin factor and that obtained by the above
procedure using fw(O)- The difference at large separations reflects the fact
that fW(0) falls off more slowly as 0 goes to 0 than would the equivalent
Mhmais-Fermi kernel; one can see this be ccaparing the WSS and LNS kernels in
Fig. 4.

30
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Fig. 16 -- Comparison of the actual Thamas-Fermi screenin function
with the screening function obtained by operating on the WSS cross
section with inversion proes described in Appendix B.
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