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THREE-DIMENSIONAL STRESSES IN A HALF SPACE
CAUSED BY PENNY-SHAPED INCLUSIONS

INTRODUCTION

Elastic fields caused by inclusions in infinite media have been extensivley investigated by several
authors [1-51 after Eshelby's work [6-81. Other research efforts have addressed the half-space prob-
lem with an inclusion located near the free surface [9-12]. In these studies, the following methods
were used: Galerkin vector [9], Papkovich-Neuber displacement potential [10], image stress caused

_, by two cuboidal inclusions with uniform eigenstrains [111, and Green's function in the half space
112]. Mura has recently reviewed these research efforts [13].

When the elastic moduli of an ellipsoidal subdomain of a material differs from those of the
remainder (matrix), the subdomain is called an ellipsoidal inhomogeneity. Cracks, voids, and precipi-
tates are examples of these inhomogeneities. A material containing inhomogeneities is assumed to be
free from any stress field unless an external stress field uq is applied. On the other hand, a material
containing inclusions is subjected to an internal stress caused by the eigenstrain J even if it is free
from any external loads. The definition of eigenstrains has been given by Mura [13] and is the same
as the stress-free-transformation strain described by Eshelby [6].

The solutions for ellipsoidal inhomogeneities can be reduced to the penny-shaped or elliptical
crack case by setting the elastic constants X and / for the inhomogeneities equal to zero. The solution
of the three-dimensional problems for these cracks has received considerable attention 114-19]. The
stress field of a penny-shaped crack in the half space can be solved by obtaining the relevant system
of integral equations for the problem formulated by Erdogan and Gupta [20] for the stress analysis of
multilayered composites with a flaw.

In the present study, Eshelby's method for ellipsoidal inclusions [6-81 and Hankel's transforma-
tion method, used to obtain the elastic solutions of a circular dislocation loop in an unbounded media
[211 and in the half space [22], are used for the analysis of the elastic solution of axisymmetric inclu-
sions and axisymmetric-ellipsoidal inhomogeneities in the half space. The method provides a novel
way for obtaining the image stresses of an ellipsoidal inclusion in the half space. It is used to find a
more general solution of an ellipsoidal inclusion with anisotropic eigenstrain. Existing solutions are
shown to be special cases of the present result. This method can also be used to obtain the stress

< field of a penny-shaped crack in the half space.

* BASIC APPROACH

In this report, wc consider an axisymmetric ellipsoidal inclusion 01 in a half space (Fig. 1). In
general, the inclusion 91 is given by

C, 2 ! 2i
+  -1. (1)

, I "2 "j
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* YU AND SANDAY

FREE SPACE

To X1

qr

a i a____ Fig. I - Ellipsoidal inclusion with principal half axis

a I-- a 2 , a 3 in a half space

MATRIX

Symmetry with respect to the x 3-axis is then defined by aI = a 2, and the anisotropic eigenstrain
of the inclusion

eTo n 5j(e + bbi3) ij = 1, 2, 3, (2)

where 61 is Kronecker delta. (Note that the usual summation convention does not apply to any of the
* expressions in this report.) Equation (2) states that only normal eigenstrains appear, and

T T e ande = e + b.

For the inclusion f01 defined by Eq. (1) with the uniform eigenstrain described by Eq. (2) with
a 3 - 0, the stress field in the unbounded medium outside (21 is obtained by using Eshelby's method

* 16-81. The result is given by

,4j =4r(1 - ) 3'ji3 - ( - 2P) (63 + 5j3 - 1) O,i - 2pijO,331
,.

* #(i + v)e (3)
2r(l - v) "

* 2
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where the numerical suffixes, i, j = 1, 2, 3, following a comma denote differentiation with respect
to the Cartesian coordinates x1, x2, x 3, eg. ,,ij -

24/x1aaxj, and ,p is the Newtonian potential
function that is given by

, =waja3  -- ds, (4)

where

x2 +x +2 2U[al +s a[ +s

A = (a 2 + s)(a +s) 112 ,

and X is the largest root of U = 0 outside of 01 and X0 = 0 inside of 01. For inclusions with uni-
form dilatation eigenstrain only (b = 0), Eq. (3) is valid for any a 3 value. The detailed expression
of 4 for both the oblate spheroid (a I > a 3) and the prolate spheroid (a I < a 3) are given by Yu [231.
Equation (3) can be transformed into cylindrical coordinates (r, 0, z) as follows:

orrr = 4(1 ) 'zz + + I-2v ,r + r ,

+j(l +v)e 4Oir

+ 27r(1 -v) LI +r,

____ =b 2, 1 - 2v _ t(l + ,)e ,,ra°° 41r(l - v) r r 27r(1 -) r

4w-l = z) _ _ pL(l + ,)e

'." -z =) [0 ,z - 21r( - v) , , (5)

,: 1 _u](l + v)e
rz 4w(l - P) 2 7'(l - v) 0,rz,

ao. = = 0.

Equations (5) are obtained with the aid of the following relationships:

A, V 2 0 = 0,

S2X 14, 2 = X2,1,

* and

0 = (x , + x 24, 2), (6)

r
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0 YU AND SANDAY

where the letter suffixes following a comma denote differentiation with respect to the cylindrical coor-
dinates r, 0, and z, e.g. 0,,z = a2 1r/araz.

For a circular-edge dislocation loop with the z-axis as the axis of symmetry in an unbounded
medium (Fig. 2), the stress field is found by Kroupa [21] by using Hankel transformations. For
z > 0, Kroupa's solution can be rewritten as

Orr = (b a [(1&-)' + z(16' )'zzz + Ir2 (10-1), + ( )

Ab' 1 - 21
- 2(- a [2v(-),z r (0-1),r -(10

2(1 - v) Lr

°z - 2(1 - v) a [(I l)z z(01 0 'Z] (7)

a A~~~b' a[z1
'.,,

rz 2(1 - v)

Cro= O z ,

where

,n 0 tnJr (rt/a) JI(t)e-h/adt

Imn = -a Yt, -l),z ,

= -arm-l(r-m+l In-

aI -l),r (m = 0, 1,2...; n = -1,0, 1,2...),

and Jm is the Bessel functin of the mth order, a is the radius of the circular dislocation loop, and b'
is the Burger's vector. Equation (7) is obtained by the method of Hankel transformation as used for
cylindrically symmetric problems of the theory of elasticity in Sneddon's book [24] and subjected to

% the following boundary conditions:

• Uz (r,0) = -b' for0 _5 r < a,

= 0 forr > a, (8)

Uz(r,0) =0 for 0 5r < 00.

For the penny-shaped inclusion without shear and dilatation eigenstrains (penny-shaped prismatic
inclusion), which is the axisymmetric inclusion when a 3 approaches zero, the equivalent eigenstrains

* 4
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b'/2
fr0 --------] I1t

b /2

.9 z

Fig. 2 - Circular edge dislocation loop in infinite solid

* are e = e22= 0, e3 3 0. If we reduce Eq. (5) for a penny-shaped prismatic inclusion, that is,
a 3 - 0 and e = 0, it is interesting to note the similarity between Eqs. (5) and (7). By putting

= (a3 - 0), (9)

where k = 2rb 'a lb, and a I  a, the elastic solutions of both the penny-shaped prismatic inclusion
(Eq. 5) and the circular-edge dislocation loop (Eq. 7) are identical. This suggests that the method
used to investigate the elastic solution of a circular-edge dislocation loop in the half space [221 can be

-, applied to solve the elastic field caused by an axisymmetrical inclusion in the half space. This
approach is resonable since the solution of the axisymmetrical inclusion can be obtained by the
integration of the results of a penny-shaped prismatic inclusion and the fact that if the inclusion has
the same elastic moduli as the matrix, the stress field is the same as that of a small dislocation loop
when both the dislocation loop and the inclusion are infinitesimally small [8]. For example, a small

* inclusion of volume V and an eigenstrain e3 3 in the x 3 direction has the same stress field as that of a
prismatic interstitial dislocation loop of area A and Burgers vector b I provided that VeT 3 = Ab1 .

Consider the half space x 3 = z > 0 (Fig. 1), an axisymmetric inclusion with the center at the
point (0, 0, c) in such a way that its axis of symmetry (z-axis) is perpendicular to the plane of the
free surface z = 0. In order that the plane z = 0 be a free surface, no force must act on it, thus the
stress components at z = 0 must satisfy the boundary conditions

* (Grz)z= o = 0, (10)

,"(a z =0 0,

and the equilibrium condition

3
E, oij,j 0 O.(1

j=i

0 5



YU AND SANDAY

' Similar to the work of Bastecka [22], the stress ai outside the axisymmetric ellipsoidal inclusion
centered at the point (0, 0, c) but in the half space z > 0 is

,i) = a!. + a + o', (12)

which will satisfy the required boundary conditions (Eq. 10) and O-e equilibrium condition (Eq. 11).
This converges to zero for xI and x2 approaching ± o and x 3 approaching 00. In Eq. (12), the term
Ua!, is the stress caused by the axisymmetric inclusion Q, (and outside of it) centered at the point
(0, 0, c); oil' is the stress caused by the image inclusion 02 centered at the point (0, 0, -c) (Fig. 3)
with eigenstrain

(J = -(ei)) = - 6 ij(e + b6i 3). (13)

/ \
/\
! \/

I (0,0,-C) I

.Q2

0 Xv,\ I I

X2

I (0,OC)

1Q

X3, Z

Fig. 3 - Semi-infinite solid containing an ellipsoidal inclusion t21
and its image f12
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Equation 13 shows that oj is an additional stress that satisfies the boundary condition

(o')-=0 = -(aI + a)z=0 = 0; (14a)

-. (Gr)= 0 = -(ar + og)z= 0 . (14b)

The solutions fo: the stresses a!. and all are obtained by translating the origin of coordinates in
Eq. (3) and Eq. (5) to points (0, 0, c), and (0, 0, --(c) respectively. The Newtonian potential func-

tion 01 and 01 for the solutions of a, and u!! respectively are given by

00 U!

01 7ra 1 a 3 ' ds

1. l ra2a3S U 2 ds1

where

[x + x2 + (x3 C)2
al U+ S 3 + S

'i! aX2 +s X 2

1 2 1X )
U2 =1 x +x + (x 3 + c) 2

al +S a3 +s

A = (a I + s)(a3 + s) 2 ,

and where

X. is the largest root of U l = 0 for exterior points of 1,

X = 0 for interior points of 12l , and

X2  is the largest root of U2 = 0.

, SOLUTION FOR a'j

* Substituting Eqs. (5) and (15) into Eq. (14) gives

(O-" ' = 0; (16a)

"(a0)z =0 cb 2(1 + )e (16b)
2r( P)4" •z 

- 0

4 7



* YU AND SANDAY

where for z = 0, *,. = k,,!. and t,4 = -,,. Now, in the limit when a 3 approaches zero, that
is, for the penny-shaped inclusion (aI = a2 = a), we can substitute Eq. (9) into Eq. (16b) to obtain

()z =0 =- k t 2 J( (t)e -C lad t

a23(l - v) a3  J0  
P i

.(1 + v)e k "lac

-r(1 - P) a2 
0

where p = Ia.

For the axisymmetric problem, by the appropriate expression of the elastic displacements as the
derivatives of certair function (r ,z) in cylindrical coordinates, the equilibrium and Beltrami equa-
tions are replaced by a single equation [24]

V 4 O(r,z) = 0, (17)

whose general solution is carried out by the method of integral transformations. The function ' is
replaced by its Hankel transform of zeroth oider,

G(,Z) = 1o r;(rz)J°(Pr) dr, (18)

and it can be shown that G( ,z) is generally given by the expression

G( ,z) = (A + Bz)e - rz + (C + Dz)e r z
, (19)

where A, B, C and D) are unknown functions of ', which are determined from the boundary condi-
tions. The stress components are expressed by means of the function G( ,z).

In the present case, we consider the solution to converge to zero for z approaching Co. Thus
we set C = D = 0. To determine A and B from the first boundary condition (Eq. 16a), we obtain
the following relationship

A B (20)
A- +N 1 ''

where X = 21v/(l - 2v) is Lame's constant. From the second boundary condition (Eq. 16b), as
modified ii Eq. (16c), we have

(u)z.=0 =f(r)

So F(J ) (/r) d , (21)

where

P.' F(') = -2(X + 'U) 2B( ), (22)

8

10 , r r rirIN
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and

' "f(r) = 21- g ) a3 Io t 2 Jl(tdJftec(adt... /bc k 00- ,,

2ir(1 - v) a3  O jJ-,\

L"14 (1 + P)e k -al
7r( - v) a2 0 Jp(pt)Ji(t)e-c/adt . (23)

By letting t = a , Eqs. (21) and (23) give

F( ) - I [cb + 2(1 + v)eIJI(a)ec . (24)
2ir(l - v)

By substiting Eqs. (24), (22), and (20) into Eq. (19), the function G( ,z) is found that can then be

substituted in the expressions for the stress oi' [24, §51]. After substituting the relationship again,

-. k(Io )u - k t-'J0(pt)Jj()e-'(z+c)/adt (25)

. these stresses oi' are as follows.

at"bC 20,1 + z0 4, + 2(1 - v) +
.". rr 2ir(/ - v) L ' = r r

+L. + Pll 2(1 - P) 11 + j
+ 20, + " I Z1 + zo +  r ,[ r(l -V) 2¢zz +  ",zzz r r 17

U0, 0 Abc 2v O,1 2(1 - v) 0,k" -z 0, !_ °° 27r(I - v) z r r r rz

2vM(, + v)e- - - (26)Sir(1 - v) 2 r r

-~ ~ 0___F, 1 Ll±v)e F,
U.-. _ b Zczzz z 0 Z~,-I

2r(l- v) i r(l - v)

*T , - ibc 0F 1 + z 0,/~ 1 ~. + v)e 0 + 0,1

a-- r - O~

00.

* 9



YU AND SANDAY

When e =0 and 01 = k (I&') Eq. (26) reduces to the same results obtained by Bastecka [221 for
a circular-edge dislocation loop in the half space. In Cartesian coordinate-, EA-1 (26) becomes

" i~ ie(I- 2v)(63 + 63j - )OX~' -OXk1J

Uaj 2w 1 (27)

E aij' = 0 (27)

* j=1

Therefore, for points outside Ql, the stress field caused by the presence of a penny-shaped inclu-
sion in the half space can be obtained by Eqs. (3), (12), and (27). Thus,

"' 
4ir(l - v) IVX3 -c)(, 15 - O~'j3 - (0 i- 3v(5~+a~ 1(,

-2v6 1j(O,', - 0, + 2 33,3 ) + C3,j1

"3~4( j(+ )e 1)tk0' 46 1&1
[0,!-v P ' + 1-2(1 - 200(3 i + 63j 1- ,! 4P 3

0-+ 2X , 'j1 (29)

For points inside Il, the elastic stress at.'jis given by

= a~ - + + a!.' (30)

where -a' is the uniform stress that exists in the inclusion caused by the uniform eigenstrain eT,
*(Eq. 2). The stress (arj at.* is the uniform stress inside the inclusion fl, when the medium is

* infinite. The solution is expressed explicitly by Mura (1131, Eq. 11.20). Equations (5), (12), and
(26) give the stress field in cylindrica:l coordinates.

* 10
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Seo and Mura's results 1121 for the elastic field in a half space caused by an ellipsoidal inclusion
with uniform dilatational eigenstrain (obtained by using Mindlin's solution [251 for Green's function
in the half space) can be obtained as a special case by taking b = 0 (and a I = a 2) in Eqs. (29) and
(30). Mindlin and Cheng's results [9] for a sphere can also be obtained as a special case by taking
a I = a 2 = a 3 and b = 0 in Eq. (29).

ELASTIC STRAIN ENERGY

The elastic strain energy can be expressed as

2 11,0

1 *4 edV - jqo3 bdV, (31)

3
where o* is the dilation stress field in the inclu.oa. It is given by

.:

- -3 2(1 + )e [ 1(1+:." o/ 2 - -- (I + o)c,33

2tt(l + v)b I + 1~ (03 -01 + . (32))

" i= (1 - v')

(I - P) 47r ( ' 3  - 33 +  c ,3 (32)

when b = 0, the strain energy obtained is the same as that obtained by Seo and Mura [121.

THE ELLIPSOIDAL INHOMOGENEITY

When an inhomogeneity contains an eigenstrain, it is called an inhomogeneity inclusion.
Eshelby [61 first pointed out that the stress-field changes caused by an inhomogeneity when the
remotely applied stress is aP can be simulated by the eigenstress caused by an inclusion, if the eigen-
strain eis properly chosen. This eigenstrain is sometimes referred to as the equivalent eigenstrain,
or the equivalent stress-free transformation strain. For a given uniformly applied stress ji and a uni-
form eigenstrain eT*, the normal components of the equivalent eigenstrains eT are given by [231

'S 33
(X - X*)ec + XeT + 214e+2(*-) Si(iteT

S.

= X*e T + (X - X*)ea + 21s*ei" + 2 (, - u*)eP (33)
Ij

where ij = I1, 22, 33 and k1 denotes summation over 11, 22, 33 only; eT, el " and ea are the sum
of three normal components of strains eJ, e,. and ei respectively;

ec _ 1 - 2i' (IlT + 12e 2 + 13e~j3 ) + v er" (34)

4r(l - v) 1-v

11
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In this equation, u , X are the elastic constants of the matrix; A*, X* are the elastic constants of the
.-, inhomogeneity; and 11, 12, 13, and SoikI are constants whose values depend on the shape of the inclu-

sion as given by Eshelby 16-8]. Some detailed expressions for these constants for the inclusions of
special shapes are given by Mura [131. Therefore, by solving the set of three simultaneous equations
in Eq. (33), the equivalent eigenstrains ell, e22 , and e33 are obtained once the uniform eigenstrain
e1 and uniformly applied stress e,9 are given. If both ei7 and e!j are axisymmetric for an axisym-
metrical inclusion, Lhe resultant equivalent eigenstrain eiT is also axisymmetric and can be represented
in the form of Eq. (2). Then the results of Eqs. (3), (5), (12), (26), (27), (29), and (30) can be
applied accordingly to solve the stress field and strain energy of an axisymmetrical inhomogeneous
inclusion in the half space.

SURFACE DISTORTION AND DILATATION FIELD

The roughness of solid surfaces is a second-order effect, but it has profound practical conse-
quences in many fields of engineering and pure science. In many practical situations, the presence of
inclusions or inhomogeneities under an external load will change the surface profile. The displace-
ment of the free surface (z = 0) solved by the present method is:

: bc ___1 ___~ I

Ur = - (0,1)z=0 - ( + )e )=
6i

(35)
b e

U. = 1(0)!I' =0 - C(O,!!)..=1 + - ( , )z =0

The presence of inclusions or inhomogeneities under an external load will also produce a dilata-
tional field. The dilatational field in the matrix obtained in the present study is:

AV (1- 2 v)b [0,' -
V 4ir(I ) , 4,,z 2c4),z1

(1 - 2v)(l + v)e 11
+ r(l - v) (36)

The important relationships between the dilatation field and the equilibrium-concentration distribution
* for dilute solutic, n: in stressed solid are given by Li 126].

SUMMARY

The stress field in the half space (z - 0) caused by a penny-shaped inclusion 01 centered at
(0, 0, c) with eigenstrain eiT = 6 o(e + bbi3) is found by the superposition of the following three
stress fields: (a) the stress field of the inclusion fl I centered at (0,0,c) with eigenstrain eTj in an infi-

*nite medium; (b) the stress field of the image inclusion 2 centered at (0, 0, -c) with eigenstrain
T.-ei ; and (c) the additional fictitious stress field that makes all stress fields satisfy the equilibrium and

" boundary conditions.

The stress field of the penny-shaped prismatic inclusion in an infinite medium obtained by
Eshelby is compared with the stress field of a prismatic loop in an infinite medium as obtained by
Kroupa [211. A relationship is found between the potential function 4) of the inclusion and the integral
function 1  which involves the product of the Bessel functions Jm for the solution of the prismatic
loop.

* 12
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The fictitious stress field is solved first for the two-dimensional problem by using the Hankel
transformation method and then it is transformed into the Lt-ee-dimensional case by use of the rela-
tionship between k and 1o

The solution of the elastic field in the half space with ellipsodial inclusions with uniform dilata-
tional eigenstrains obtained by Seo and Mura (1979) has been rearranged into three terms correspond-

, ing to the sress field of the inclusion tl in an infinite medium centered at (0,0,-c) with eigenstrain
6 e, the stress field of the image inclusion '22 centerd at (0,0,-c) with eigenstrain -ije, and the

additional fictitious stress field. It has also been shown that when aI = a2, Seo and Mura's results
are a special case of the present solution.
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