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Distributed Ada Real-Time Kernel 
Abstract. This paper addresses two distinct needs of real-time applications: distri- 
bution and hard real-time scheduling mechanisms. Specifically, this paper rejects both 
the notion of modifying the Ada language to achieve needed real-time solutions and the 
current fad of extensively modifying the Ada compiler and/or vendor-supplied runtime 
system. Instead, this paper defines the functionality of a Distributed Ada Real-Time 
Kernel (hereafter called the Kernel). The goal of the Kernel is to support effectively the 
execution of distributed, real-time Ada applications in an embedded computer environ- 
ment by returning control to the user, where it belongs. 

1. Rationale 
Many people attempting to use Ada in real-time, embedded systems are dissatisfied with the Ada 
language features defined to provide real-time support and the implementation of those language 
features by compiler vendors. Currently, this results in: 

1. Application-specific tailoring of Ada Runtime Environments (ARTEs) and the addi- 
tion of compiler-specific pragmata to enhance the real-time capabilities of Ada. 
This leads to projects becoming compiler-dependent. Ada code that depends on 
compiler and ARTE modifications is no longer portable (often even to an upgraded 
version of the same vendor's compiler) and is, at best, questionably reusable. 
Maintenance becomes a nightmare, since it now includes a "one-of-a-kind" product 
written by a third party (i.e., the vendor-supplied compiler and ARTE). The conse- 
quence of allowing modified ARTEs and pragma/a is that the 300 languages in use 
prior to Ada have been replaced with 3000+ variants of Ada (i.e., one for each Ada 
project). 

2. Special-interest groups petitioning for additional language features in Ada. This is 
not the solution either; since all users will not be pleased by any single language 
change, the "typical" user is targeted by the proposed language change, with the 
result that NO ONE is satisfied. Once again, the language designers are left in the 
untenable position of attempting to "second guess" the users' needs. Finally, this 
approach is of no help for users of Ada in embedded systems today. These users 
need solutions now, not in five years when the next version of Ada is due. 

What users really want is language functionality, not language features (see [1]). It is imperative 
to recognize that there are certain areas of functionality that are (and should continue to be) 
above and beyond the scope of the Ada programming language, or any programming language 
for that matter. Specifically, it is time to leave the decisions about runtime environments to the 
people who know best: the applications software and systems engineers who know the intricacies 
of the system being built. Nor is the Ada language necessarily the appropriate level to express 
the distribution of an application. Even the Ada Joint Program Office (AJPO) has acknowledged 
this special case for real-time, embedded systems, as the validation policies now recognize that 
an "application-specific runtime library" is considered an integral part of the application on a 
"restricted target" (see [3]), not part of the compiler. 

Based on these sentiments, our position is that since Ada provides legitimate avenues for the 
extension of the language (namely the package construct), we propose to use this avenue as a 
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means to handle distribution and real-time scheduling mechanisms. Therefore, the Kernel will 
provide support for language functionality (i.e., the ability to execute Ada programs in a distri- 
buted, real-time environment) but it will not provide support for language features (i.e., Ada task- 
ing primitives). 
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2. System Models 
This chapter describes a number of the models that underlie the entire Kernel. 

2.1. ISO Model 
The Kernel communication model presents a set of primitives to the user and implements those 
primitives on an underlying set of distributed processors connected by data paths. The model, 
the implementation, and the intended mode of use can all be related to the ISO Reference Model 
(see [5] and [2]). 

The ISO Reference Model identifies seven layers, named, from lowest to highest: 

1. Physical 

2. Data Link 

3. Network 

4. Transport 

5. Session 

6. Presentation 

7. Application 

The target hardware provides the Physical Layer. The Kernel implements the Data Link, Net- 
work, and Transport Layers, and therefore presents to the user the Transport Layer. The Kernel 
thus encapsulates within itself the Data Link and Network Layers, rendering them invisible to the 
user. Thus, it is at the Transport Layer where errors from lower levels are reported to the appli- 
cation, leaving error recovery in the domain of the application code. The application code can 
implement the Session, Presentation, and Application Layers, in part by using other Kernel primi- 
tives. 

2.1.1. Physical Layer 
The Physical Layer is represented by the hardware data paths, which support the transmission of 
a serial bitstream between processors. These hardware data paths are used by the Kernel in a 
packet switching mode; that is, a sequence of bits—a frame—is sent at the discretion of the 
originator, with no implied reservation of resources or preservation of state between frames. 

2.1.2. Data Link Layer 
This is the layer at which basic error detection and recovery and flow control may be provided. 
The Kernel uses a simple datagram model in which a frame is transmitted with no acknowledge- 
ment, no error correction, and no flow control. Minimal error detection is achieved by using a 
datagram checksum, but any recovery is performed by application code (i.e., above the Transport 
Layer). Similarly, datagram storage overflow is recognized and reported by the Transport Layer. 
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2.1.3. Network Layer 
In this prototype, the Kernel has a null Network Layer. The Kernel assumes that point-to-point 
communication is available between any pair of nodes (processors). Routing is accomplished 
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no alter- 
native routing is provided. 

However, since the abstraction presented to the user is above this layer, a real Network Layer 
could subsequently be added without requiring any application code to be changed. 

2.1.4. Transport Layer 
The Kernel builds the Transport Layer by performing physical network connections and subse- 
quent logical-to-physical mappings, actions that together implement the abstraction of direct 
process-to-process communication by means of messages. 

The physical network description is maintained in each processor. The generation of this infor- 
mation is performed by the system/application engineer. Once that information is provided, the 
Kernel verifies the network connectivity and opens the physical connections between processors. 

Subsequently, the logical processes and their physical sites are communicated to the Kernel. 
The model on which the Kernel is based assumes that all processes are created at initialization 
time, that a process never moves, and that a process once dead is never restarted. The Kernel 
therefore computes the logical-to-physical mapping once only and never subsequently changes it. 
Attempts to communicate with dead processes are treated as transport errors. 

The Transport Layer also performs the conversions between messages and the underlying 
datagrams. In this prototype, this is done trivially by using one datagram per message or per 
acknowledgement and, if necessary, by restricting the maximum message size accordingly. 

The Transport Layer is the layer visible to the user. It supports both unacknowledged send and 
end-to-end acknowledged send operations. All errors detected in this or any lower layer are 
reported at this layer, in the form of status codes returned by the Kernel primitives. 

2.1.5. Session Layer 
This layer is implemented by stylized application code. Since it establishes logical connections 
between processes (i.e., initializes the data structures required by the Transport Layer), its 
presence is required, and the user must write specific code to create it. This code is part of the 
application initialization code; it must be present on every processor and, in Ada terms, must be 
part of the Main Unit on that processor. 

The model is one of a set of logical processes, each with a user-defined name and each with a 
single message portior the reception of messages from other processes. 

The Kernel declare process primitive indicates an intent to create or communicate with a given 
named process. It establishes the mapping between application-level process names and Kernel 
internal names. 
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The Kernel create process primitive creates the process (i.e., sites the process and creates the 
execution environment for the process code), establishes its message port, and makes that port 
available to the network. Thereafter, one process may communicate with another. 

2.1.6. Presentation Layer 
In the KemeJ model, the Presentation Layer performs no transformation of data. Rather, it per- 
forms the translation between Ada values—values of user-defined data types—and message 
values. This is done by stylized application code. The purpose of the Presentation Layer is to 
establish above the Transport Layer the strong typing of the Ada language by ensuring that 
communicating processes pass only strongly typed data and do so by referencing a common set 
of data conversion routines bound to a common Ada data type. 

2.1.7. Application Layer 
This layer uses the Presentation Layer for whatever purpose the code requires. The model here 
is of parallel independent threads of control executing Ada code, identifying each other by 
application-level symbolic names and communicating by passing values of Ada data types. 

2.2. Network Model 
Figure 2-1 presents the view of the network taken by the Kernel. 

There are four types of objects the network configuration in which Kernel-based applications 
operate: 

• Processors that are running the Kernel 

• Processors (or devices) that are not running the Kernel 

• Devices that can interrupt processors 

• A system bus connecting all processors 

The network configuration is defined by the user and communicated to the Kernel during network 
initialization. The result of this definition is maintained in a physical mapping table called the 
Network Configuration Table (NCT). 

This model does not assume (or exclude) the existence of shared memory or mass storage 
devices. Such capabilities would be under the control of the application, not the Kernel, although 
the Kernel does control the underlying communication medium (i.e., the system bus) and handles 
all inter-process communication over that medium. 
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2.3. Process Model 
Executing on each processor is the Kernel's general process model. The following are key 
elements of this model: 

1. Each process executes a unit of code, developed as a functional unit. 

2. For each processor, the software engineer performs the following steps (illustrated 
In Figure 2-2): 

a. Develop the process code. 

b. Develop the Main Unit for the processor (the function of the Main Unit is 
explained later). 

c. Compile the code of the processes and Main Unit. 

d. Link the Kernel, Main Unit, and processes together to form the load image 
for that processor. 

3. The load image begins execution at the initialization point of the Kernel, which in 
turn invokes the Main Unit. 

When developing a process, the software engineer need not know where the other processes will 
be located—on a single processor or across multiple processors. The Kernel-supplied communi- 
cation primitives can be used for all inter-process communication, local or remote, with the Kernel 
optimizing the local case. 
The first application code to execute is the Ada Main Unit. The Main Unit has the responsibility 
to: 

• Define the physical topology of the network (the NCT), as described above. 

• Declare all processes with which communication is to occur. This information is 
recorded in the Process Table, which provides the logical topology of the network for 
the processor. 

• Declare and create the processes to run on this processor, and specify their initial 
characteristics (preemption, priority, message queue handling, and so forth). This 
information is also recorded in the Process Table. 

• Perform any other system-dependent initialization. 

Once this has been accomplished, the Main Unit announces to other processors that all process 
declaration and creation are complete, and then the Main Unit is descheduled while the proc- 
esses continue to run independently. The state transition diagram for the Main Unit is shown in 
Figure 2-3.1 Figure 2-3 shows the state transition diagram executed by the Main Unit while it is 
building the logical topology of the processor. 

This process initialization protocol is quite simple, perhaps unrealistically so, for many real-time 
applications. Even after surveying a variety of real-time applications, no consensus of processor 
and process initialization emerged. This led to treating the initialization issue in two parts: 

1See [4] for a complete description of the state transition diagram notation used in this document. 
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1. The Kernel would provide a simple mechanism by which to get an application ex- 
ecuting. 

2. The Kernel would provide a complete, well-defined interface between the initializa- 
tion modules and the rest of the Kernel primitives to allow Kernel users to replace 
the Kernel's initialization protocol with one more appropriate to their application re- 
quirements. This interface is manifest in the NCT, the Process Table constructs, 
and the primitives shown in the appendix. 

2.4. Communication Model 

The Kernel provides a minimal set of primitives to support communication among the processes 
in the network. This was done intentionally to provide a robust, basic set of communication 
primitives on which any number of more sophisticated communication protocols can be built. All 
inter-process communication uses a common set of communication primitives—regardless of 
where the processes are sited (i.e., co-located or remotely located). 
The fundamental concepts on which the communication model is built are: 

• All communication is point-to-point. 

• A sender must specify the receiver. 

• All messages are tagged. 

• A receiver gets all messages and is told the sender of each. 

• A receiver cannot ask to receive only from specific senders. 

• Messages do not have priorities. 

The following communication primitives are provided: 

• Send: The capability to do a "blind" send to any other Kernel process or any non- 
Kernel processor. 

• Send and wait: The capability to do a synchronized send to another Kernel process, 
where a Kernel-to-Kernel acknowledgement is returned upon the receiver's accep- 
tance of the message. 

• Receive: The capability to do a receive of any message from any Kernel process or 
non-Kernel processor. 

The purpose of a message is to convey information between processes. To the Kernel, a mes- 
sage is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives (in the 
Transport Layer); the users may build on them whatever application-specific functionality is 
needed (in the Presentation Layer). 

2.5. Scheduling Model 

There are four concepts that underlie the scheduling model of the Kernel: 

• The state of a process. There are only four states in which a process can ever be, 
as indicated in Figure 2-4. A wnning process is the process currently executing on 
the processor. A suspended process is one that is eligible to be running but, due to 
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its priority, is not currently running. A blocked process is one that is unable to run as 
it is waiting for an event to occur (see events below). A dead process is one that is 
unable to run again; it is terminated. 

• Events that may cause a change in that state. An event is something that happens 
to a process, such as the arrival of a message, the arrival of a Kernel-to-Kernel 
acknowledgement, being killed by another process, and so forth. Events are in- 
herently unpredictable. 

• The time at which certain events occur. The Kernel allows applications to invoke 
time-dependent actions. Such an action is a request for a future change of state. 
After the change of state is made, the process is suspended. Time (elapsed or 
absolute) is a parameter to many of the Kernel primitives. Time slicing is also sup- 
ported. 

• The priority at which a process is maintained. Every process has a priority, which 
may be changed dynamically by the process. Priorities are relative within a single 
processor and incommensurable across processors. Priorities are strict and 
preemptive; higher priorities always shut out lower priorities. (Processes run at the 
discretion of the Scheduler, whose algorithm is governed only by priority.) Each Ker- 
nel primitive that could block provides the capability for the caller to specify the prior- 
ity at which the process is to be resumed once the process unblocks. 

A process is always in a definite state. A process may change its state when it invokes a Kernel 
primitive, as the result of an event, or as a consequence of the passage of time. Some causes of 
change can occur unpredictably, but the Kernel guarantees that the subsequent state change is 
deterministic. A direct consequence of this is that if all events occur at predictable times and all 
transaction processing is of fixed duration, then the execution of an application using the Kernel is 
deterministic. 
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3. Status of Work 
As of this writing, the project developing the Kernel has been underway for eight months. During 
that time, the following activities have taken place: 

1. Project planning (tasks, milestones, budgets, schedules, software development 
plan) and resource planning (hardware and software). 

2. Identification of an application to provide an initial demonstration of the efficacy of 
the Kernel. 

3. Kernel Facilities Definition document produced and extensively reviewed within the 
Software Engineering Institute (SEI) and by key real-time experts outside the SEI. 
This document presents a detailed description of the concepts and models under- 
lying the Kernel—concepts and models that have been only introduced in this 
paper. In addition, the behavioral and performance requirements for each compo- 
nent of the Kernel are identified. The Kernel comprises the following components: 

a. Processor Management (overviewed in this paper; the creation of the phys- 
ical topology). 

b. Process Management (overviewed in this paper; the creation of the logical 
topology; process declaration and creation). 

c. Semaphore Management (a Boolean semaphore capability). 

d. Schedule Management (overviewed in this paper). 

e. Communication Management (overviewed in this paper). 

f. Interrupt Management (supporting the capability to use Ada or other code 
as interrupt handlers). 

g. Time Management (providing the abstractions of hardware time, elapsed 
time, and absolute time). 

h. Alarm Management (allowing processes to set a timer). 

i. Tool Interface (a read-only capability to monitor Kernel and application 
activities). 

4. System Model Review held. A detailed description of the Kernel was presented to 
a number of SEI software and real-time systems experts for scrutiny and evalu- 
ation. The results of this review have been factored into the Kernel Facilities Defini- 
tion document. 

5. Architectural specification of the Kernel and the Kernel interface to the Ada appli- 
cation program. These activities are currently in progress. 
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4. Conclusions 
This paper proposes one solution to the problem of using Ada in distributed, real-time, embedded 
applications—one that can readily be accomplished in the near term. This solution is truly in the 
spirit of Ada-^that is, it uses the Ada language features (e.g., packages, subprograms) to provide 
an adjunct capability for real-time scheduling and inter-process communication. This alternative 
returns explicit control of scheduling to the application implementor and provides a uniform com- 
munication mechanism for supporting distributed processors or a single processor. 

Other difficult areas, such as fault tolerance and multi-level security, are not directly addressed in 
the Kernel definition. We have, however, examined our primitives in light of these and other 
equally demanding issues, and we believe the Kernel definition to be extensible enough to ac- 
commodate future development in these areas. 

Our goal is to provide a viable paradigm of near-term support to a wide number of real-time 
embedded applications currently being required to use Ada for implementation. We believe that 
the applications builders—not compiler vendors, not language designers—know best the system- 
level behavior required for their programs. We believe that standardization of such behavior 
should be provided via a library package interface under the control of the application implemen- 
tor, not via modifications to the Ada language. We believe our strategy and Kernel definition 
provide this kind of support. 
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Appendix A: Summary of Kernel Primitives 

A.1. Network Management 

Initialize Master. Identifies the invoking processor as responsible for network initialization. 

Initialize subordinate. Identifies all other processors and instructs each to wait for the "go" com- 
mand from the Master. 

Start subordinates.  Issues the "go" command to all subordinate processors (which also signals 
that the network is properly connected and healthy). 

Create network configuration. Defines the physical topology of the network. 

A.2. Process Management 
Declare a process. The Main Unit on a processor declares all locally executing processes and all 
remote processes with which communication is desired. 

Create a process. The Main Unit on a processor creates all Kernel processes that are to execute 
on that processor (these may be cyclic or non-cyclic). 

Process creation completed. The Main Unit indicates to the Kernel that all process declarations 
and creations are now complete. 

Die. A Kernel process may indicate that it is complete and ready to be descheduled. 

Kill. A Kernel process may cause itself or another process to be abnormally terminated. 

A.3. Semaphore Management 

Claim. The invoking process attempts to claim the semaphore. The claiming process blocks until 
the semaphore becomes available or the timeout expires. 

Release. The invoking process releases a previously claimed semaphore. 

A.4. Schedule Management 

Set process priority. A process may set or get its own priority. 

Set process preemption. A process may set or get its own preemption status. 

Wait.   The invoking process suspends itself for a specified duration or until a specified time 
occurs. The priority at which the process is to be resumed may also be specified. 

CMU/SEI-88-TR-17 21 



Set timeslice. Defines the timeslice quantum (only processes of equal priority are time sliced). 

Enable time slicing. Enables the scheduler to perform round-robin, timeslice scheduling. 

Disable time slicing. Disable round-robin, timeslice scheduling. 

A.5. Communication Management 

Send a message. Sends a message from one process to another, without waiting for ack- 
nowledgement of message receipt. 

Send a message and wait for an acknowledgement Sends a message from one process to 
another; the sender blocks while waiting for acknowledgement of message receipt or until an 
optional timeout expires. 

Receive a message. Receives a message from another process, blocking until a message is 
available or an optional timeout expires.2 The Kernel automatically performs any required ack- 
nowledgements. 

A.6. Interrupt Management 

Enable. Allows processing for a specific interrupt to occur. 

Disable. Disallows processing for a specific interrupt to occur. 

Enabled. Queries whether a specific interrupt is enabled or disabled. 

Simulate interrupt. Simulates the occurrence of a specific interrupt in software. 

Bind interrupt handier. Asserts that an Ada procedure has been identified as an interrupt handler 
and is to be executed when the specified interrupt occurs.3 

A.7. Time Management 
Reset epoch time. Resets the epoch time of the local processor to the specified date/time. 

Adjust elapsed time. Increments or decrements the elapsed time of the local processor by the 
specified amount. 

Read clock. Reads the current elapsed time from the local processor clock. 

^e sender is not named in the receive primitive; however, the sender can be determined from the message contents 

3A non-Ada code fragment may be used, as long as it follows the semantics of Ada procedures. 
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A.8. Alarm Management 

Set alarm. Sets a timer to expire after the specified duration has elapsed or at the specified time. 

Cancel alarm. Cancels an unexpired timer. 

A.9. Tool Interface 
Begin collection. Begins logging state-change information for the specified process. 

End collection. Terminates logging state-change information for the specified process. 

Read process table. Copies the Kernel's Process Table into application memory. 

Read interrupt table. Copies the Kernel's Interrupt Table into application memory. 
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