
Technical Report
CMU/SEWö-TO-IT
ESD-TR-88- 018
August 1988

Carnegie-Mellon University
Software Engineering Institute

*

Distributed Ada Real-Time Kernel
Judy Bamberger
Currle Colket
Robert Firth
Daniel Klein
Roger Van Scoy

August 1988

<

hW^Wi

Technical Report
CMU/SEI-88-TR-17

ESD-TR-88-18
August 1988

Distributed Ada Real-Time Kernel

Judy Bamberger
Currie Colket

Robert Firth
Daniel Klein

Roger Van Scoy
Distributed Ada Real-Time Kernel

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Q,
Dan Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 Carnegie Melbn University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA. Cameron Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce.
Springfield, VA 22161.

Use of any other trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Rationale 1

2. System Models 3
2.1. ISO Model 3

2.1.1. Physical Layer 3
2.1.2. Data Link Layer 3
2.1.3. Network Layer 4
2.1.4. Transport Layer 4
2.1.5. Session Layer 4
2.1.6. Presentation Layer 5
2.1.7. Application Layer 5

2.2. Network Model 5
2.3. Process Model 8
2.4. Communication Model 10
2.5. Scheduling Model 10

3. Status of Work 13

4. Conclusions 15

5. Acknowledgement 17

References 19

Appendix A. Summary of Kernel Primitives 21
A.1. Network Management 21
A.2. Process Management 21
A.3. Semaphore Management 21
A.4. Schedule Management 21
A.5. Communication Management 22
A.6. Interrupt Management 22
A.7. Time Management 22
A.8. Alarm Management 23
A.9. Tool Interface 23

CMU7SEI-88-TR-17

CMU/SEI-88-TR-17

List of Figures
Figure 2-1: Network View 6
Figure 2-2: Load Image Creation 7
Figure 2-3: Main Unit Outline 9
Figure 2-4: Process State Diagram 12

CMU/SEI-88-TR-17 III

Distributed Ada Real-Time Kernel
Abstract. This paper addresses two distinct needs of real-time applications: distri-
bution and hard real-time scheduling mechanisms. Specifically, this paper rejects both
the notion of modifying the Ada language to achieve needed real-time solutions and the
current fad of extensively modifying the Ada compiler and/or vendor-supplied runtime
system. Instead, this paper defines the functionality of a Distributed Ada Real-Time
Kernel (hereafter called the Kernel). The goal of the Kernel is to support effectively the
execution of distributed, real-time Ada applications in an embedded computer environ-
ment by returning control to the user, where it belongs.

1. Rationale
Many people attempting to use Ada in real-time, embedded systems are dissatisfied with the Ada
language features defined to provide real-time support and the implementation of those language
features by compiler vendors. Currently, this results in:

1. Application-specific tailoring of Ada Runtime Environments (ARTEs) and the addi-
tion of compiler-specific pragmata to enhance the real-time capabilities of Ada.
This leads to projects becoming compiler-dependent. Ada code that depends on
compiler and ARTE modifications is no longer portable (often even to an upgraded
version of the same vendor's compiler) and is, at best, questionably reusable.
Maintenance becomes a nightmare, since it now includes a "one-of-a-kind" product
written by a third party (i.e., the vendor-supplied compiler and ARTE). The conse-
quence of allowing modified ARTEs and pragma/a is that the 300 languages in use
prior to Ada have been replaced with 3000+ variants of Ada (i.e., one for each Ada
project).

2. Special-interest groups petitioning for additional language features in Ada. This is
not the solution either; since all users will not be pleased by any single language
change, the "typical" user is targeted by the proposed language change, with the
result that NO ONE is satisfied. Once again, the language designers are left in the
untenable position of attempting to "second guess" the users' needs. Finally, this
approach is of no help for users of Ada in embedded systems today. These users
need solutions now, not in five years when the next version of Ada is due.

What users really want is language functionality, not language features (see [1]). It is imperative
to recognize that there are certain areas of functionality that are (and should continue to be)
above and beyond the scope of the Ada programming language, or any programming language
for that matter. Specifically, it is time to leave the decisions about runtime environments to the
people who know best: the applications software and systems engineers who know the intricacies
of the system being built. Nor is the Ada language necessarily the appropriate level to express
the distribution of an application. Even the Ada Joint Program Office (AJPO) has acknowledged
this special case for real-time, embedded systems, as the validation policies now recognize that
an "application-specific runtime library" is considered an integral part of the application on a
"restricted target" (see [3]), not part of the compiler.

Based on these sentiments, our position is that since Ada provides legitimate avenues for the
extension of the language (namely the package construct), we propose to use this avenue as a

CMU/SEI-88-TR-17

means to handle distribution and real-time scheduling mechanisms. Therefore, the Kernel will
provide support for language functionality (i.e., the ability to execute Ada programs in a distri-
buted, real-time environment) but it will not provide support for language features (i.e., Ada task-
ing primitives).

CMU/SEI-88-TR-17

2. System Models
This chapter describes a number of the models that underlie the entire Kernel.

2.1. ISO Model
The Kernel communication model presents a set of primitives to the user and implements those
primitives on an underlying set of distributed processors connected by data paths. The model,
the implementation, and the intended mode of use can all be related to the ISO Reference Model
(see [5] and [2]).

The ISO Reference Model identifies seven layers, named, from lowest to highest:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

The target hardware provides the Physical Layer. The Kernel implements the Data Link, Net-
work, and Transport Layers, and therefore presents to the user the Transport Layer. The Kernel
thus encapsulates within itself the Data Link and Network Layers, rendering them invisible to the
user. Thus, it is at the Transport Layer where errors from lower levels are reported to the appli-
cation, leaving error recovery in the domain of the application code. The application code can
implement the Session, Presentation, and Application Layers, in part by using other Kernel primi-
tives.

2.1.1. Physical Layer
The Physical Layer is represented by the hardware data paths, which support the transmission of
a serial bitstream between processors. These hardware data paths are used by the Kernel in a
packet switching mode; that is, a sequence of bits—a frame—is sent at the discretion of the
originator, with no implied reservation of resources or preservation of state between frames.

2.1.2. Data Link Layer
This is the layer at which basic error detection and recovery and flow control may be provided.
The Kernel uses a simple datagram model in which a frame is transmitted with no acknowledge-
ment, no error correction, and no flow control. Minimal error detection is achieved by using a
datagram checksum, but any recovery is performed by application code (i.e., above the Transport
Layer). Similarly, datagram storage overflow is recognized and reported by the Transport Layer.

CMU/SEI-88-TR-17

2.1.3. Network Layer
In this prototype, the Kernel has a null Network Layer. The Kernel assumes that point-to-point
communication is available between any pair of nodes (processors). Routing is accomplished
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no alter-
native routing is provided.

However, since the abstraction presented to the user is above this layer, a real Network Layer
could subsequently be added without requiring any application code to be changed.

2.1.4. Transport Layer
The Kernel builds the Transport Layer by performing physical network connections and subse-
quent logical-to-physical mappings, actions that together implement the abstraction of direct
process-to-process communication by means of messages.

The physical network description is maintained in each processor. The generation of this infor-
mation is performed by the system/application engineer. Once that information is provided, the
Kernel verifies the network connectivity and opens the physical connections between processors.

Subsequently, the logical processes and their physical sites are communicated to the Kernel.
The model on which the Kernel is based assumes that all processes are created at initialization
time, that a process never moves, and that a process once dead is never restarted. The Kernel
therefore computes the logical-to-physical mapping once only and never subsequently changes it.
Attempts to communicate with dead processes are treated as transport errors.

The Transport Layer also performs the conversions between messages and the underlying
datagrams. In this prototype, this is done trivially by using one datagram per message or per
acknowledgement and, if necessary, by restricting the maximum message size accordingly.

The Transport Layer is the layer visible to the user. It supports both unacknowledged send and
end-to-end acknowledged send operations. All errors detected in this or any lower layer are
reported at this layer, in the form of status codes returned by the Kernel primitives.

2.1.5. Session Layer
This layer is implemented by stylized application code. Since it establishes logical connections
between processes (i.e., initializes the data structures required by the Transport Layer), its
presence is required, and the user must write specific code to create it. This code is part of the
application initialization code; it must be present on every processor and, in Ada terms, must be
part of the Main Unit on that processor.

The model is one of a set of logical processes, each with a user-defined name and each with a
single message portior the reception of messages from other processes.

The Kernel declare process primitive indicates an intent to create or communicate with a given
named process. It establishes the mapping between application-level process names and Kernel
internal names.

CMU/SEI-88-TR-17

The Kernel create process primitive creates the process (i.e., sites the process and creates the
execution environment for the process code), establishes its message port, and makes that port
available to the network. Thereafter, one process may communicate with another.

2.1.6. Presentation Layer
In the KemeJ model, the Presentation Layer performs no transformation of data. Rather, it per-
forms the translation between Ada values—values of user-defined data types—and message
values. This is done by stylized application code. The purpose of the Presentation Layer is to
establish above the Transport Layer the strong typing of the Ada language by ensuring that
communicating processes pass only strongly typed data and do so by referencing a common set
of data conversion routines bound to a common Ada data type.

2.1.7. Application Layer
This layer uses the Presentation Layer for whatever purpose the code requires. The model here
is of parallel independent threads of control executing Ada code, identifying each other by
application-level symbolic names and communicating by passing values of Ada data types.

2.2. Network Model
Figure 2-1 presents the view of the network taken by the Kernel.

There are four types of objects the network configuration in which Kernel-based applications
operate:

• Processors that are running the Kernel

• Processors (or devices) that are not running the Kernel

• Devices that can interrupt processors

• A system bus connecting all processors

The network configuration is defined by the user and communicated to the Kernel during network
initialization. The result of this definition is maintained in a physical mapping table called the
Network Configuration Table (NCT).

This model does not assume (or exclude) the existence of shared memory or mass storage
devices. Such capabilities would be under the control of the application, not the Kernel, although
the Kernel does control the underlying communication medium (i.e., the system bus) and handles
all inter-process communication over that medium.

CMU/SEI-88-TR-17

Device o S
wvvO

vN Device
\\\\\

R^^SSI

Main
Unit

^ Merlin P* P*

KERNEL

g ̂ Device S

Main
Unit

P^ & Vjvjan

KERNEL

Processor a

Main
Unit

P-C PC Pc PC PC Ki P2 P3 K4 Kg

Processor b

ri

KERNEL

Processor c

^Interfaces
s Device ^

System Bus

wpiwp

KERNEL

Main
Unit

Processor d ftD*vl'cek
A\\V\

Processor m

KERNEL

Main
Unit

P™ Lancelot P™

Key

p : Process #i running on processor q.

Main Unit: The Ada Main Unit running on the processor.

Merlin, Vivian, and Lancelot are named for use In
examples.

Figure 2-1: Network View

CMU/SEI-88-TR-17

Step Key

(a)

(b)

(c)

(d)

Merlin
< >; -J -t Vivian

Main
Unit

Main
Unit

Kernel

I
Compile

i
Link

I
Processor a
Load Image

Kernel

I
Compile

i
Link

I
Processor b
Load Image

Key

p : Process #i running on processor q.

Main Unit: The Ada main unit running on the processor.

Merlin and Vivian are named for use in examples.

Figure 2-2: Load Image Creation

CMU/SEI-88-TR-17

2.3. Process Model
Executing on each processor is the Kernel's general process model. The following are key
elements of this model:

1. Each process executes a unit of code, developed as a functional unit.

2. For each processor, the software engineer performs the following steps (illustrated
In Figure 2-2):

a. Develop the process code.

b. Develop the Main Unit for the processor (the function of the Main Unit is
explained later).

c. Compile the code of the processes and Main Unit.

d. Link the Kernel, Main Unit, and processes together to form the load image
for that processor.

3. The load image begins execution at the initialization point of the Kernel, which in
turn invokes the Main Unit.

When developing a process, the software engineer need not know where the other processes will
be located—on a single processor or across multiple processors. The Kernel-supplied communi-
cation primitives can be used for all inter-process communication, local or remote, with the Kernel
optimizing the local case.
The first application code to execute is the Ada Main Unit. The Main Unit has the responsibility
to:

• Define the physical topology of the network (the NCT), as described above.

• Declare all processes with which communication is to occur. This information is
recorded in the Process Table, which provides the logical topology of the network for
the processor.

• Declare and create the processes to run on this processor, and specify their initial
characteristics (preemption, priority, message queue handling, and so forth). This
information is also recorded in the Process Table.

• Perform any other system-dependent initialization.

Once this has been accomplished, the Main Unit announces to other processors that all process
declaration and creation are complete, and then the Main Unit is descheduled while the proc-
esses continue to run independently. The state transition diagram for the Main Unit is shown in
Figure 2-3.1 Figure 2-3 shows the state transition diagram executed by the Main Unit while it is
building the logical topology of the processor.

This process initialization protocol is quite simple, perhaps unrealistically so, for many real-time
applications. Even after surveying a variety of real-time applications, no consensus of processor
and process initialization emerged. This led to treating the initialization issue in two parts:

1See [4] for a complete description of the state transition diagram notation used in this document.

8 CMU/SEI-88-TR-17

Network/Application-Specific
Initialization

1
f_ H \

Nlntwork Initialization Comolete

Process Declared r

Process Declaration State Log Process Name

I
>cess Declared Pre

Prnr*»c«ft Frmr

Process Creation Error
+
4 1 Process Declared

Pre »cess Error

- I i

Log rrocess roame

i r
F »rocess Created

Process Creation State
E broadcast "Creation" Message

Process Created

Broadcast "Creation" Message

0 Process Creation Complete

Broadcast "Creation Complete"

Wait State (For all Main Units
to Broadcast Completion)

Initialization T
Expired

me 3 All "Process Complete"
Messages Received

1 r 1 r

Processor Initialization Error Processor Ready

Key Initialization Points
4 All processors know that the physical topology of the network is

correct. All clocks are synchronized
A All processors know that logical topology of the

p Processor configuration is complete; ** network is consistent. The application is ready
waiting for remaining processors to complete. to execute.

Figure 2-3: Main Unit Outline

CMU/SEI-88-TR-17

1. The Kernel would provide a simple mechanism by which to get an application ex-
ecuting.

2. The Kernel would provide a complete, well-defined interface between the initializa-
tion modules and the rest of the Kernel primitives to allow Kernel users to replace
the Kernel's initialization protocol with one more appropriate to their application re-
quirements. This interface is manifest in the NCT, the Process Table constructs,
and the primitives shown in the appendix.

2.4. Communication Model

The Kernel provides a minimal set of primitives to support communication among the processes
in the network. This was done intentionally to provide a robust, basic set of communication
primitives on which any number of more sophisticated communication protocols can be built. All
inter-process communication uses a common set of communication primitives—regardless of
where the processes are sited (i.e., co-located or remotely located).
The fundamental concepts on which the communication model is built are:

• All communication is point-to-point.

• A sender must specify the receiver.

• All messages are tagged.

• A receiver gets all messages and is told the sender of each.

• A receiver cannot ask to receive only from specific senders.

• Messages do not have priorities.

The following communication primitives are provided:

• Send: The capability to do a "blind" send to any other Kernel process or any non-
Kernel processor.

• Send and wait: The capability to do a synchronized send to another Kernel process,
where a Kernel-to-Kernel acknowledgement is returned upon the receiver's accep-
tance of the message.

• Receive: The capability to do a receive of any message from any Kernel process or
non-Kernel processor.

The purpose of a message is to convey information between processes. To the Kernel, a mes-
sage is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives (in the
Transport Layer); the users may build on them whatever application-specific functionality is
needed (in the Presentation Layer).

2.5. Scheduling Model

There are four concepts that underlie the scheduling model of the Kernel:

• The state of a process. There are only four states in which a process can ever be,
as indicated in Figure 2-4. A wnning process is the process currently executing on
the processor. A suspended process is one that is eligible to be running but, due to

10 CMU/SEI-88-TR-17

its priority, is not currently running. A blocked process is one that is unable to run as
it is waiting for an event to occur (see events below). A dead process is one that is
unable to run again; it is terminated.

• Events that may cause a change in that state. An event is something that happens
to a process, such as the arrival of a message, the arrival of a Kernel-to-Kernel
acknowledgement, being killed by another process, and so forth. Events are in-
herently unpredictable.

• The time at which certain events occur. The Kernel allows applications to invoke
time-dependent actions. Such an action is a request for a future change of state.
After the change of state is made, the process is suspended. Time (elapsed or
absolute) is a parameter to many of the Kernel primitives. Time slicing is also sup-
ported.

• The priority at which a process is maintained. Every process has a priority, which
may be changed dynamically by the process. Priorities are relative within a single
processor and incommensurable across processors. Priorities are strict and
preemptive; higher priorities always shut out lower priorities. (Processes run at the
discretion of the Scheduler, whose algorithm is governed only by priority.) Each Ker-
nel primitive that could block provides the capability for the caller to specify the prior-
ity at which the process is to be resumed once the process unblocks.

A process is always in a definite state. A process may change its state when it invokes a Kernel
primitive, as the result of an event, or as a consequence of the passage of time. Some causes of
change can occur unpredictably, but the Kernel guarantees that the subsequent state change is
deterministic. A direct consequence of this is that if all events occur at predictable times and all
transaction processing is of fixed duration, then the execution of an application using the Kernel is
deterministic.

CMU/SEI-88-TR-17 11

Resume

Kev
Labet: User - initiated action

Label: Kernel-Initiated action

Figure 2-4: Process State Diagram

12 CMU/SEI-88-TR-17

3. Status of Work
As of this writing, the project developing the Kernel has been underway for eight months. During
that time, the following activities have taken place:

1. Project planning (tasks, milestones, budgets, schedules, software development
plan) and resource planning (hardware and software).

2. Identification of an application to provide an initial demonstration of the efficacy of
the Kernel.

3. Kernel Facilities Definition document produced and extensively reviewed within the
Software Engineering Institute (SEI) and by key real-time experts outside the SEI.
This document presents a detailed description of the concepts and models under-
lying the Kernel—concepts and models that have been only introduced in this
paper. In addition, the behavioral and performance requirements for each compo-
nent of the Kernel are identified. The Kernel comprises the following components:

a. Processor Management (overviewed in this paper; the creation of the phys-
ical topology).

b. Process Management (overviewed in this paper; the creation of the logical
topology; process declaration and creation).

c. Semaphore Management (a Boolean semaphore capability).

d. Schedule Management (overviewed in this paper).

e. Communication Management (overviewed in this paper).

f. Interrupt Management (supporting the capability to use Ada or other code
as interrupt handlers).

g. Time Management (providing the abstractions of hardware time, elapsed
time, and absolute time).

h. Alarm Management (allowing processes to set a timer).

i. Tool Interface (a read-only capability to monitor Kernel and application
activities).

4. System Model Review held. A detailed description of the Kernel was presented to
a number of SEI software and real-time systems experts for scrutiny and evalu-
ation. The results of this review have been factored into the Kernel Facilities Defini-
tion document.

5. Architectural specification of the Kernel and the Kernel interface to the Ada appli-
cation program. These activities are currently in progress.

CMU/SEI-88-TR-17 13

14 CMU/SEI-88-TR-17

4. Conclusions
This paper proposes one solution to the problem of using Ada in distributed, real-time, embedded
applications—one that can readily be accomplished in the near term. This solution is truly in the
spirit of Ada-^that is, it uses the Ada language features (e.g., packages, subprograms) to provide
an adjunct capability for real-time scheduling and inter-process communication. This alternative
returns explicit control of scheduling to the application implementor and provides a uniform com-
munication mechanism for supporting distributed processors or a single processor.

Other difficult areas, such as fault tolerance and multi-level security, are not directly addressed in
the Kernel definition. We have, however, examined our primitives in light of these and other
equally demanding issues, and we believe the Kernel definition to be extensible enough to ac-
commodate future development in these areas.

Our goal is to provide a viable paradigm of near-term support to a wide number of real-time
embedded applications currently being required to use Ada for implementation. We believe that
the applications builders—not compiler vendors, not language designers—know best the system-
level behavior required for their programs. We believe that standardization of such behavior
should be provided via a library package interface under the control of the application implemen-
tor, not via modifications to the Ada language. We believe our strategy and Kernel definition
provide this kind of support.

CMU/SEI-88-TR-17 15

16 CMU/SEI-88-TR-17

5. Acknowledgement
This report was presented at NAECON '88 in Dayton, Ohio, by the principal authors, Judy Bam-
berger and Roger Van Scoy.

CMU/SEI-88-TR-17 17

18 CMU/SEI-88-TR-17

References
[1] Firth, Robert.

A Pragmatic Approach to Ada Insertion.
In Proceedings of the International Workshop on Real-Time Ada Issues, pages 24-26.

May, 1987.

[2] A.S. Tanenbaum.
Network Protocols.
Computing Surveys 13:453-489,1981.

[3] Ada Joint Program Office.
Validation Procedures and Guidelines.
Technical Report, AJPO, AdalC, 3D139 (1211 S. Fern, C-107), The Pentagon,

Washington, D.C. 20301-3081,1987.

[4] Ward, Paul T. and Stephen J. Mellor.
Structured Development for Real-Time Systems.
Yourdon Press, Englewood Cliffs, NJ, 1985.

[5] H. Zimmermann.
OSI Reference Model - the ISO model of architecture for open systems interconnection.
IEEE Transactions on Communications COM-28:425-432,1980.

CMU/SEI-88-TR-17 19

20 CMU/SEI-88-TR-17

Appendix A: Summary of Kernel Primitives

A.1. Network Management

Initialize Master. Identifies the invoking processor as responsible for network initialization.

Initialize subordinate. Identifies all other processors and instructs each to wait for the "go" com-
mand from the Master.

Start subordinates. Issues the "go" command to all subordinate processors (which also signals
that the network is properly connected and healthy).

Create network configuration. Defines the physical topology of the network.

A.2. Process Management
Declare a process. The Main Unit on a processor declares all locally executing processes and all
remote processes with which communication is desired.

Create a process. The Main Unit on a processor creates all Kernel processes that are to execute
on that processor (these may be cyclic or non-cyclic).

Process creation completed. The Main Unit indicates to the Kernel that all process declarations
and creations are now complete.

Die. A Kernel process may indicate that it is complete and ready to be descheduled.

Kill. A Kernel process may cause itself or another process to be abnormally terminated.

A.3. Semaphore Management

Claim. The invoking process attempts to claim the semaphore. The claiming process blocks until
the semaphore becomes available or the timeout expires.

Release. The invoking process releases a previously claimed semaphore.

A.4. Schedule Management

Set process priority. A process may set or get its own priority.

Set process preemption. A process may set or get its own preemption status.

Wait. The invoking process suspends itself for a specified duration or until a specified time
occurs. The priority at which the process is to be resumed may also be specified.

CMU/SEI-88-TR-17 21

Set timeslice. Defines the timeslice quantum (only processes of equal priority are time sliced).

Enable time slicing. Enables the scheduler to perform round-robin, timeslice scheduling.

Disable time slicing. Disable round-robin, timeslice scheduling.

A.5. Communication Management

Send a message. Sends a message from one process to another, without waiting for ack-
nowledgement of message receipt.

Send a message and wait for an acknowledgement Sends a message from one process to
another; the sender blocks while waiting for acknowledgement of message receipt or until an
optional timeout expires.

Receive a message. Receives a message from another process, blocking until a message is
available or an optional timeout expires.2 The Kernel automatically performs any required ack-
nowledgements.

A.6. Interrupt Management

Enable. Allows processing for a specific interrupt to occur.

Disable. Disallows processing for a specific interrupt to occur.

Enabled. Queries whether a specific interrupt is enabled or disabled.

Simulate interrupt. Simulates the occurrence of a specific interrupt in software.

Bind interrupt handier. Asserts that an Ada procedure has been identified as an interrupt handler
and is to be executed when the specified interrupt occurs.3

A.7. Time Management
Reset epoch time. Resets the epoch time of the local processor to the specified date/time.

Adjust elapsed time. Increments or decrements the elapsed time of the local processor by the
specified amount.

Read clock. Reads the current elapsed time from the local processor clock.

^e sender is not named in the receive primitive; however, the sender can be determined from the message contents

3A non-Ada code fragment may be used, as long as it follows the semantics of Ada procedures.

22 CMU/SEI-88-TR-17

A.8. Alarm Management

Set alarm. Sets a timer to expire after the specified duration has elapsed or at the specified time.

Cancel alarm. Cancels an unexpired timer.

A.9. Tool Interface
Begin collection. Begins logging state-change information for the specified process.

End collection. Terminates logging state-change information for the specified process.

Read process table. Copies the Kernel's Process Table into application memory.

Read interrupt table. Copies the Kernel's Interrupt Table into application memory.

CMU/SEI-88-TR-17 23

24 CMU/SEI-88-TR-17

UNLIMITF.n, imrT.AgqTFTrn
IECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2« SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

lb. RESTRICTIVE MARKINGS

NONE
3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-17

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88- 018

6a. NAME OF PERFORMING ORGANIZATION feb. OFFICE SYMBOL
(If applicable)

SOFTWARE ENGINEERING INSTITUTE! SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. AOORESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City. State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

B«. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c. AODRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Clauification)

DISTRIBUTED ADA REAL-TIME KERNEL

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

BAMBERGER, COLKET, FIRTH, KLEIN, D., VAN SCOY
13a. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr.. Mo.. Day)

AUGUST. 88

15. PAGE COUNT

 ™
16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELO GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

ADA, REAL-TIME, KERNEL, DISTRIBUTED SYSTEMS

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS PAPER ADDRESSES TWO DISTINCT NEEDS OF REAL-TIME APPLICATIONS: DISTRIBUTION AND
HARD REAL-TIME SCHEDULING MECHANISMS. SPECIFICALLY, THIS PAPER REJECTS BOTH THE
NOTION OF MODIFYING THE ADA LANGUAGE TO ACHIEVE NEEDED REAL-TIME SOLUTIONS AND THE
CURRENT FAD OF EXTENSIVELY MODIFYING THE ADA COMPILER AND/OR VENDOR-SUPPLIED RUNTIME
SYSTEM. INSTEAD, THIS PAPER DEFINES THE FUNCTIONALITY OF A DISTRIBUTED ADA REAL-TIME
KERNEL (HEREAFTER CALLED THE KERNEL). THE GOAL OF THE KERNEL IS TO SUPPORT EFFECTIVELY
THE EXECUTION OF DISTRIBUTED, REAL-TIME ADA APPLICATIONS IN AN EMBEDDED COMPUTER
ENVIRONMENT BY RETURNING CONTROL TO THE USER, WHERE IT BELONGS.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITEO O SAME AS RPT. D DTlC USERS Ö

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

DD FORM 1473,83 APR

22c. OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG:

