
Technical Report

CMU/SEI-88-TR-18
ESD-TR-88- 019

Carnegie-Mellon University

Software Engineering Institute

\

The Durra Runtime Environment

Mario R. Barbacci
Dennis L. Doubleday
Charles B. Weinstock

July 1988

\

Technical Report
CMU/SEI-88-TR-18

ESD-TR-88-19
July 1988

The Durra Runtime Environment

Mario R. Barbacci
Dennis L. Doubleday

Charles B. Weinstock
Software for Heterogeneous Machines Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this handbook is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction to Durra 1

1.1. Type Declarations 3
1.2. Task Descriptions 4

1.2.1. Interface Information 4
1.2.2. Attribute Information 5
1.2.3. Behavioral Information 5
1.2.4. Structural Information 5

1.3. Task Selections 7
1.4. Runtime Components 7

2. The Scheduler 9
2.1. Scheduler Instructions 9
2.2. Execution 10

3. The Server 13

4. Application Tasks 15
4.1. Remote Procedure Calls 15

5. A Durra Example 17

6. Compilation and Execution Commands 23

7. Implementation Notes 27

References 29

Appendix A. The C Interface Specification 31

Appendix B. The Ada Interface Specification 33

CMU/SEI-88-TR-18

The Durra Runtime Environment
Abstract. Durra is a language designed to support PMS-level programming.
PMS stands for Processor-Memory-Switch, the name of the highest level in the
hierarchy of digital systems. An application or PMS-level program is written in
Durra as a set of task descriptions and type declarations that prescribes a way to
manage the resources of a heterogeneous machine network. The application de-
scribes the tasks to be instantiated and executed as concurrent processes, the
types of data to be exchanged by the processes, and the intermediate queues
required to store the data as they move from producer to consumer processes.

This report describes the Durra Runtime Environment. The environment consists
of three active components: the application tasks, the Durra server, and the Durra
scheduler. After compiling the type declarations, the component task descrip-
tions, and the application description, the application can be executed by starting
an instance of the server on each processor, starting an instance of the scheduler
on one of the processors, and downloading the component task impiementations
(i.e., the programs) to the processors. The scheduler receives as an argument
the name of the file containing the scheduler program generated by the compi-
lation of the application description. This step initiates the execution of the appli-
cation.

1. Introduction to Durra

Durra [1,2] is a language designed to support PMS-level programming. PMS stands for
Processor-Memory-Switch, the name of the highest level in the hierarchy of digital systems
introduced by Bell and Newell in [3]. An application or PMS-level program is written in Durra
as a set of task descriptions and type declarations that prescribes a way to manage the
resources of a heterogeneous machine network. The application describes the tasks to be
instantiated and executed as concurrent processes, the types of data to be exchanged by
the processes, and the intermediate queues required to store the data as they move from
producer to consumer processes.

Because tasks are the primary building blocks, we refer to Durra as a task-level description
language. We use the term "description language" rather than "programming language" to
emphasize that a Durra application is not translated into object code in some kind of ex-
ecutable (conventional) "machine language" (the domain of the Instruction Set Processor or
ISP level introduced in [3]). Instead, a Durra application is a description of the structure and
behavior of a logical machine to be synthesized into resource allocation and scheduling
directives, which are then interpreted by a combination of software, firmware, and hardware
in each of the processors and buffers of a heterogeneous machine (the domain of PMS).
This is the translation process depicted in Figure 1-1.a.

We see three distinct phases in the process of developing an application using Durra: the
creation of a library of tasks, the creation of an application using library tasks, and the ex-
ecution of the application. These three phases are illustrated in Figure 1-1.b.

CMU/SEI-88-TR-18

Status and Task requests
Get/Put data
Test port
Terminate task

U
=> Ischsdulsr]=>

Schedule

Conectivity

Task names

Transformations

Messages

Start task
Allocate queue

Shutdown

a - Compilation of a PMS-Level Program Graph

Durra
Compiler

Application
Description

*

Scheduler
"program"

Heterogeneous
Machine

1

k_- Vr

Library of Tas
Descnptions

k Library c
Impleme
(C.Lisp.i

)fTas
mtatic
*da,e

k
>ns
tc)

b - Developing a Durra Application

Figure 1-1: Scenario

CMU/SEI-88-TR-18

During the first phase, the developer of the application writes descriptions of the data types
(image buffers, map database queries, etc.) and of the tasks (sensor processing, feature
recognition, map database management, etc.).

Type declarations are used to specify the format and properties of the data that will be pro-
duced and consumed by the tasks in the application. As we will see later in this chapter,
tasks communicate through typed ports; and for each data type in the application, a type
declaration must be written in Durra, compiled, and entered in the library.

Task descriptions are used to specify the properties of a task implementation (a program).
For a given task, there may be many implementations, differing in programming language
(e.g., C or assembly language), processor type (e.g., Motorola 68020 or IBM 1401), perfor-
mance characteristics, or other attributes. As in the case of type declaration, for each imple-
mentation of a task, a task description must be written in Durra, compiled, and entered in the
library. A task description includes specifications of a task implementation's performance
and functionality, the types of data it produces or consumes, the ports it uses to commu-
nicate with other tasks, and other miscellaneous attributes of the implementation.

During the second phase, the user writes an application description. Syntactically, an appli-
cation description is a single task description and could be stored in the library as a new
task. This allows writing of hierarchical application descriptions. When the application de-
scription is compiled, the compiler generates a set of resource allocation and scheduling
commands or instructions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implementations (i.e., programs cor-
responding to the component tasks) into the processors and issues the appropriate com-
mands to execute the programs.

1.1. Type Declarations

The data types transmitted between the tasks are declared independently of the tasks. In
Durra, these data type declarations specify scalars (of possible variable length), arrays,
simple record types, or unions of other types, as shown in the following examples:

type packet IS Size 128 to 1024;
— Packets are of variable length.

type tail is array (5 10) of packet;
— Tails are 5 by 10 arrays of packets.

type rec is record (rows: integer, columns: integer, data: packet);
— Recs consist of two integers and a packet.

type mix is union (head, tail);
— Mixs could be heads or tails.

CMU/SEI-88-TR-18

1.2. Task Descriptions
Task descriptions are the building blocks for applications. Task descriptions include the fol-
lowing information (Figure 1-2): (1) its interface to other tasks (ports) and to the scheduler
(signals); (2) its attributes; (3) its functional and timing behavior; and (4) its internal
structure, thereby allowing for hierarchical task descriptions.

task task-name
ports — Used for communication between a process and a queue

port-declarations

Signals — Used for communication between a process and the scheduler
signal-declarations

attributes — Used to specify miscellaneous properties of the task
attribute-value-pairs

behavior — Used to specify functional and timing behavior of the task
requires predicate
ensures predicate
timing timing expression

Structure — A graph describing the internal structure of the task
process-declarations — Declaration of instances of internal subtasks

bind-declarations — Mapping of internal ports to this task' s ports

queue-declarations — Means of communication between internal processes

reconfiguration-statements — Dynamic modifications to the structure
end task-name

Figure 1 -2: A Template for Task Descriptions

1.2.1. Interface Information
The interface information defines the ports of the processes instantiated from the task and
the signals used by these processes to communicate with the scheduler:

ports
inl: in heads;
outl, out2: OUt tails;

signals
stop, start, resume: in;
range_error, format_error: out;

A port declaration specifies the direction and type of data moving through the port. An In
port takes input data from a queue; an out port deposits data into a queue. A signal decla-
ration specifies only the direction of the scheduler messages. An In signal is a message
that a process can receive from the scheduler; an out signal is a message that a process
can send to the scheduler; an in out signal is used for both directions of communication.

CMU/SEI-88-TR-18

1.2.2. Attribute Information
The attribute information specifies miscellaneous properties of a task. Attributes are a
means of indicating pragmas or hints to the compiler and/or scheduler. In a task descrip-
tion, the developer of the task lists the actual value of a property; in a task selection (Section
1.3), the user of a task lists the desired value of the property. Example attributes include
author, version number, programming language, file name, and processor type:

attributes
author = "jmw";
implementation = "program_nameM ;
Queue_Size = 25;

1.2.3. Behavioral Information
The behavioral information specifies functional and timing properties about the task. The
functional information part of a task description consists of a pre-condition on what is re-
quired to be true of the data coming through the input ports, and a post-condition on what is
guaranteed to be true of the data going out through the output ports. The timing expression
describes the behavior of the task in terms of the operations it performs on its input and
output ports. For additional information about the syntax and semantics of the functional
and timing behavior description, see the Durra reference manual [1].

1.2.4. Structural Information
The structural information defines a process-queue graph (e.g., Figure 1-1.a) and possible
dynamic reconfiguration of the graph. Three kinds of declarations and one kind of statement
can appear as structural information. This is illustrated in Figure 1-3, which shows the Durra
(i.e., textual) version of the example in Figure 1-1.a.

A process declaration of the form

process_name : task task_selection

creates a process as an instance of the specified task. Since a given task (e.g.,
convolution) might have a number of different implementations that differ along different
dimensions such as algorithm used, code version, performance, processor type, the task
selection in a process declaration specifies the desirable features of a suitable implemen-
tation. The presence of task selections within task descriptions provides direct linguistic
support for hierarchically structured tasks (Section 1.3).

A queue declaration of the form

queue_name [queue_size]: port_name_1 > datajtransformation > port_name_2

creates a queue through which data flow from an output port of a process (port_name_1)
into the input port of another process (port_name_2). Data transformations are operations
applied to data coming from a source port before they are delivered to a destination port.

A port binding of the form

task_port = process_port

CMU/SEI-88-TR-18

task ALv
ports

inl, in2: In map_database;
in3: in destination;

structure
process

navigator: task navigator
attributes author = "jmw";

end navigator;
road_predictor: task road_predictor;
landmark_predictor: task landmark._predictor;

ct_process: task comer__turning;
queue

ql: navigator.out1 > > road_predictor.in2;
q2: navigator.out2 > > landmark_predictor.ini;

ql2: position__conputation. out2> > landmarJc_predictor. in2 ;
bind

inl = road_predictor.ini;
in2 = navigator.inl;
in3 = navigator.in2;

end ALV;

Figure 1-3: Structural Information

maps a port on an internal process to a port defining the external interface of a compound
task.

A reconfiguration statement of the form

if condition then
remove process-names
process process-declarations
queues queue-declarations

end if;

is a directive to the scheduler. It is used to specify changes in the current structure of the
application (i.e., process-queue graph) and the conditions under which these changes take
effect. Typically, a number of existing processes and queues are replaced by new proc-
esses and queues, which are then connected to the remainder of the original graph. The
reconfiguration predicate is a Boolean expression involving time values, queue sizes, and
other information available to the scheduler at runtime.

CMU/SEI-88-TR-18

1.3. Task Selections
As described in the previous section, a process is an instance of a task specified in the
process declaration. Given that a number of alternative task implementations might exist in
the library, it is necessary to specify in the process declaration the desirable properties of
the appropriate implementation. Here are some examples of process declarations, which in
turn are used to select tasks:

process
pl: task finder;
p2: task finder ports foo: in heads, bar: out tails; end finder;
p3: task finder attributes author=Mmrb"; end finder;

In a process declaration, an instance of a task is bound to the name of the process. The
task selection contains at least the name of a task and (optionally) interface, attribute, and
behavior requirements (i.e., anything but structural information) and is used to select among
a number of alternative task implementations.

A task can therefore be identified and selected from the library just by its name (if the name
is unique in the library), by its interface properties (e.g., port types), by its attributes (e.g.,
version number), by its functional or timing behavior (e.g., a pre-condition), or by any combi-
nation of these.

1.4. Runtime Components
There are three active components in the Durra runtime environment: the application tasks,
the Durra server, and the Durra scheduler. Figure 1-4 shows the relationship among these
components.

After compiling the type declarations, the component task descriptions, and the application
description, as described previously and illustrated in Figure 1-1, the application can be ex-
ecuted by performing the following operations:

1. The component task implementations (Chapter 4) must be stored in a special
directory in the appropriate processors. The directory name (Chapter 7) is
known to the Durra servers and scheduler.

2. An instance of the Durra server (Chapter 3) must be started in each proces-
sor.

3. The scheduler (Chapter 2) must be started in one of the processors. The
scheduler receives as an argument the name of the file containing the
scheduler program generated by the compilation of the application description.
This step initiates the execution of the application.

In the remainder of this report, we describe in detail the three components of the runtime
environment: the scheduler, the server, and the application task.

CMU/SEI-88-TR-18

scheduler

<■

processor3

runjask
shutdown
restart

init
finish
get_portid
get_typeid
send_port
getjport
test_input_port
test_output_port

processorl

"7 server

'exec"

^L

task2

processor2

Figure 1-4: The Durra Runtime Environment

CMU/SEI-88-TR-18

2. The Scheduler

The scheduler is the part of the Durra runtime system responsible for starting the tasks,
establishing communication links, and monitoring the execution of the application. In addi-
tion, the scheduler implements the predefined tasks (broadcast, merge, and deal) and the
data transformations described in [1]. The scheduler is invoked with a UNIX command of the
form:

sched scheduler_program

where the argument is the name of the file containing the scheduler instructions generated
by the Durra compiler (See Chapter 6 for additional information about this command.)

2.1. Scheduler Instructions
The scheduler currently understands the following instructions produced by the Durra com-
piler:

port allocate

queue_a I locate

transformation

task load

buffer task

This instruction takes four parameters: 1) the name of the task that is
defining the port; 2) the name of the port; 3) the type of the port; and 4)
the direction of the port (i.e., whether it is an input or output port). The
naming convention NAME1 .NAME2 is used to represent process
NAME2 within task NAME1.

(port_allocate MAIN.PA 0UT1 STRING out)

This instruction takes seven parameters: 1) the name of the task defin-
ing the queue; 2) the name of the queue; 3) the name of the task writing
to the queue; 4) the name of the port that task will use; 5) the name of
the task reading from the queue; 6) the name of the port that task will
use; and 7) the maximum number of elements that the queue can hold
(if the queue declaration does specify a size, this parameter is 0). If
transformations are specified in the queue definition, they appear as
separate instructions.

(queue_allocate MAIN QAM PA OUT1 PM INI 0 0 STRING)

This instruction takes three parameters: 1) the name of the task defining
the queue; 2) the name of the queue; and 3) the list of transformations
to be applied to the elements in the queue.

This instruction takes three parameters: 1) the task name; 2) a proces-
sor to run it on (either a specific processor or a class of processors);
and 3) the name of the executable file.

(taskJLoad MAIN.PC VAX "sinJc_tas]c2")

This instruction takes three parameters: 1) the task name; 2) the kind of
buffer task (currently broadcast, merge, and deal are implemented);
and 3) the "mode" of the buffer task (e.g., fifo, round-robin).

(buffer_task MAIN.PM MERGE FIFO)

CMU7SEI-88-TR-18

equal_port
This instruction takes four parameters: 1) the task name of the main
task; 2) the port name used by the main task; 3) the task name of the
subtask; and 4) the port name used by the subtask. This instruction
implements the port bind declarations.

(equal_port MAIN IN PM IN2)

type This instruction takes a variable number of parameters: All have the
following two parameters: 1) the name of the type; and 2) the kind of
type (ARRAY, SIZE, UNION, RECORD). Additionally, an ARRAY type
has the type of elements of the array, followed by zero or more bounds.
A SIZE (scalar) type has an upper and lower bound for the length, in
bits. A UNION type has a list of the types making up the union. A
RECORD type has a list of the field names and types.

(type FLOAT SIZE 32 32)
(type FL0AT_IMAGE ARRAY FLOAT)
(type GENERAL__IMAGE UNION FLOAT_IMAGE INTEGER_IMAGE)
(type RECTANGLE RECORD

FIRST_ROW: INTEGER LAST_R0W: INTEGER
FIRST_COL: INTEGER LAST_COL: INTEGER)

source This instruction takes two parameters, 1) a task name, and 2) the value
of the "source" attribute specified in the task description, if any. If the
source attribute is not specified in the task description, the parameter is
the name of the syntax tree produced by the Durra compiler (See sec-
tion 6 for file-naming conventions). This information might be used by
the task implementation to examine its own Durra description. This in-
formation is passed to the indicated application task at startup.

(source MAIN.DISPLAY "display.durra.TREE")

Section 5 contains a complete example of a Durra application. It consists of two type
declarations, three component task descriptions (and their implementations), the application
description, and the scheduler instructions produced by the Durra compiler.

2.2. Execution
After the file with instructions has been read and processed, the scheduler is ready to start
the execution of the application. In the current UNIX implementation, this is done by per-
forming the following steps:

1. Allocate a UNIX socket for communication with the application tasks. A UNIX
socket is a special intertask communications port defined by the UNIX operat-
ing system.

2. Establish communication with each of the processors running a Durra server
(Chapter 3).

3. For each of the taskjoad instructions, issue to the appropriate server a
run_task remote procedure call (Chapter 3).

4. Listen in on the UNIX socket allocated in the first step for remote procedure
calls from the application tasks (Chapter 4.1).

10 CMU/SEI-88-TR-18

5. Process the remote procedure calls from the application tasks (Section 4.1).

The scheduler waits until all tasks have completed their execution before it, in turn, finishes
its execution.

CMU/SEI-88-TR-18 11

12 CMU/SEI-88-TR-18

3- The Server

The server is responsible for starting tasks on its corresponding processor, as directed by
the scheduler. One instance of the server must be running on each processor that is to
(potentially) execute Durra tasks.

When a server begins execution, it listens in on a predetermined socket for messages from
the scheduler. Once a communication channel is open, the scheduler communicates with
the server using the following set of remote procedure calls:

run_task(name, host, port, id, source_attribute, debugjevel, task_directory)
Requests the server to run (as an independent process) the executable
file "name," a task implementation. See Chapter 7 for details about
locations and directories for task implementations.

The parameters are: the host and socket where the scheduler will be
listening for messages from the task; the identifier (an integer) that the
task should use in identifying itself; the value of the "source" attribute
(used in the scheduler source instruction, described in section 2.1); the
level of information logged for debugging purposes; and finally, the di-
rectory where the server can find the task implementation and where
tracing files, if any, will be created (Chapter 7).

shutdown(exit_code)
Requests the server to terminate and exit.

restart() Reinitialize the server.
The server sits in a loop responding to the above requests from the scheduler, executing
them as directed.

CMU/SEI-88-TR-18 13

14 CMU/SEI-88-TR-18

4. Application Tasks

The component task implementations making up a Durra application can be written in any
language for which a Durra interface has been provided. As of this writing, there are Durra
interfaces for both C and Ada. The C interface appears as Appendix A. The Ada interface
appears as Appendix B.

When a task is started, the scheduler supplies it with the following information (via a server):
the name of the host on which the scheduler is executing, the UNIX socket on which the
scheduler is listening for communications from the task, a small integer to be used in identi-
fying the task, and an application specific string as specified in the "source" attribute in the
task description (used by the scheduler source instruction, described in section 2.1). The
first three parameters are necessary to establish proper communication with the scheduler.
The source parameter is provided for the convenience of the task implementation. These
parameters are provided to the task by the server, which in turn obtains them, via the
run_task instruction, from the scheduler (See Chapter 3).

4.1. Remote Procedure Calls
Application tasks use the interface to communicate with other tasks. From the point of view
of the task implementation, this communication is accomplished via procedure calls, which
return only when the operation is completed. The following remote procedure calls (RPCs)
are provided:

inlt() Opens a connection to the scheduler. There are several hidden
parameters supplied to the interface module by the server, which in turn
obtains them, via the runjask instruction, from the scheduler (Chapter
3).

flnish() Informs the scheduler that the task is terminating.

get_portld(In name; out portid, bound, size)
Given a port name, returns a small integer port identifier to be used in
referring to that port. The name of the port must correspond to one of
the ports used in the task description. This call also returns the number
of elements that can be stored in the queue associated with the port
("bound") and the size of the elements ("size"). If the size is variable,
"size" is set to zero.

get_typeld(ln name; out typeid, size)
Given a type name, returns a small integer type identifier to be used in
referring to that type. The name of the type must correspond to one of
the type declarations stored in the library. This call also returns the size
of elements of that type. If the size is variable (e.g., variable length
strings, or union types of different sized types), "size" is set to zero.

send_port(ln portid, data_address, count, typeid)
Sends a block of "count" bytes of data of type "typeid," stored at
"data_address," to port "portid."

CMU/SEI-88-TR-18 15

get_port(in portid, data_address; out count, typeid)
Receives "count" bytes of data of type "typeid," from port "portid,"
stored at "data_address."

testjnput_port(in portid; out count, type_of_next, size_of_next)
If "portid" is associated with an input port, test_input_port returns the
number of elements in the queue connected to the port and, if that num-
ber is at least one, returns the type and size of the next element in the
queue as well. Thus, test_input_port returns zero in "count" if a
get_port call will block, and a positive number if it will succeed.

The additional output parameters "type_of_next" and "size_of_next" al-
low the calling task to allocate an appropriate buffer area before making
a call to get_port. If "portid" is associated with an output port,
test_lnput_port records an error message and returns zero in each out
parameter.

test_output_port(ln portid; out count)
If "portid" is associated with an output port, test_output_port returns
the number of available slots in the queue connected to the port. Thus,
test_putput_port returns zero if a send_port call will block, and a posi-
tive number if it will succeed. If "portid" is associated with an input port,
test_output_port records an error message and returns zero.

Using this collection of scheduler calls, Durra tasks typically would exhibit the following be-
havior:

1. Call the init function to establish communication with the scheduler.
2. Call get_portld for each of the task ports (these ports must correspond to the

ports used in the task description).
3. Call get_typeid for each of the task types (these types must correspond to the

data types used in the task description).
4. Call send_port and get__port as necessary to send and receive data.
5. Call finish to break communication with the scheduler.

This behavior is illustrated by an example application in the next chapter.

16 CMU/SEI-88-TR-18

5. A Durra Example

This chapter contains a complete example of a Durra application. It consists of two type
declarations, three component task descriptions (and their implementations), the application
description, and the scheduler instructions produced by the Durra compiler.

The example (Figures 5-1 and 5-2) illustrates the use of a predefined task, broadcast,
which is implemented directly by the scheduler. In this application, one task ("taska") is
sending out strings of data, and the broadcast buffer task is sending it on to two other tasks
("taskb" and "taskc"). The application description ("main") cements all of the component
tasks together.

TaskA

Broadcast

TaskB TaskC

Figure 5-1: Application Structure

"Byte" is the basic type (a scalar type 8 bits long). "String" is an unbounded sequence of
bytes.

"Taska" has a single output port, "outl," which produces strings. It can run on any VAX
processor and is implemented by the program "source_task." "Taskb" and "taskc" both
have a single input port, "in1," which consume strings. These two tasks are implemented
by the program "sinkjask."

Task "main" is the application description. It specifies the three tasks that make up the
application, plus an instance of the predefined task broadcast. The structure part specifies
the interconnection of those four tasks.

After all of the above files are compiled, the Durra compiler generates a file with instructions
to the scheduler. See Section 2.1 for further information about the scheduler instructions.
See Chapter 6 for a description of the UNIX commands that invoke the compiler and
scheduler-instruction generator. For this example application, the compiler produces the
scheduler instructions shown in Figure 5-3.

CMU/SEI-88-TR-18 17

type byte is size 8;

type string is array of byte;

a - Type Declarations

task taska
ports

outl: out string;
attributes

processor ■ vax;
implementation = "source_task" ;

end taska;

task taskb
ports

inl: in strings-
attributes

processor = vax;
implementation = "sink_task";

end taskb;

task taskc
ports

inl: in string;
attributes

processor = vax;
implementation = "sink_task";

end taskc;

b -- Component Task Descriptions

task main
structure

process pi: task taska,
p2: task taskb;
p3: task taskc;
pb: task broadcast

ports inl: in string;
outl, out2: out string;

end broadcast;
queues qlb: pi.outl » pb.inl;

<ib2: pb.outl » p2.ini;
qb3: pb.out2 » p3.ini;

end main;

c -- Application Description

Figure 5-2: Durra Type Declarations and Task Descriptions

18 CMU/SEI-88-TR-18

(buffer_tasJc MAIN.PB BROADCAST *)
(port_allocate MAIN.PI OUT1 STRING out)
(port_allocate MAIN.P2 INI STRING in)
(port—allocate MAIN.P3 INI STRING in)
(port_allocate MAIN.PB INI STRING in)
(port_allocate MAIN.PB OUT1 STRING out)
(port_allocate MAIN.PB OUT2 STRING out)
(queue__allocate MAIN Q1B PI OUT1 PB INI 0)
(queue_allocate MAIN QB2 PB OUT1 P2 INI 0)
(queue_allocate MAIN QB3 PB OUT2 P3 INI 0)
(source MAIN "taskxnain.durra.TREE")
(source MAIN.PI "taska.durra.TREE")
(source MAIN.P2 "taskb.durra.TREE")
(source MAIN.P3 "taskc.durra.TREE")
(task_load MAIN.PI VAX "source_task")
(task_load MAIN.P2 VAX "sink_task")
(taskJLoad MAIN.P3 VAX "sink_task")
(type BYTE SIZE 8 8)
(type STRING ARRAY BYTE)

Figure 5-3: Scheduler Instructions

The buffer_task instruction indicates which buffer task to use as process "pb." Buffer tasks
are those tasks predefined in the language (broadcast, merge, and deal).

The port_allocate instructions set up all the ports in the application. Recall that port names
are relative to a process and therefore do not have to be unique across the application.

The queue_allocate instructions set up all the queues in the application. For instance one
of the instructions allocates the queue named "Q1B," taking input from port "OUT2" of proc-
ess "MAIN_P1," and outputting to port "INT of process "MAIN_PB." The queue has the
default queue size.

The source instructions pass to the servers and the task implementations the name of the
syntax tree produced by the Durra compiler.

The taskjoad instructions associate the program to run (the task implementation), the
processor class, and the process name.

The type instructions define the application data types "BYTE" and "STRING."

Finally, we complete the example by listing the task implementations for "sourcejask" and
"sinkjask." These are written in Ada and are shown in Figures 5-4 and 5-5.

CMU/SEI-88-TR-18 19

with System;
with Interface;
procedure source_task is

—| A source task has one output port, "outl". Its behavior is to loop
— I sending 100 strings to outl.

max_message_size: constant integer := 1000;
message_buffer: string(1..max_mes3age_3ize) := (others => ' ');
outl_port_id, outl_bound: positive;
outl_type__id, outl_type__size: natural;

begin
Interface.Init;
Interface. Get_PortID ("outl", outl_port_id, outl_bound, outl_type_size) ;
Interface. Get_TypeID ("string", outl__type_id, outl_type_size) ;
for i in 1..100
loop

interface.Send_Port(outl_port_id,
message__buffer(l) 'address,
max_message_size, —| the real thing
outl__type__id) ;

end loop;
Interface.Finish;

end source_task;

Figure 5-4: Ada Task Implementation of source_task

20 CMU/SEI-88-TR-18

with System;
with Interface;
procedure sink_task is

—| A sink task has one input port, "inl". Its behavior is to loop
—| receiving 100 strings from inl.

max__message__size: constant integer := 10000;
message_buffer: string(1..max_message_size);
inl_port_id, inl_bound: positive;
inl_type__id, inl_type_size: natural;
actual_message_type_id, actual_message__size: natural;

begin
Interface.Init;
Interface.Get__PortID ("inl", inl__port_id, inl_bound, inl_type_size) ;
Interface.Get__TypeID ("string", inl_type__id, inl_type__size) ;
for i in 1..100
loop

Interface. Get_Port (inl_port__id,
message__buffer (1) ' address,
actual__message__size,
actual_message_type_id) ;

end loop;
Interface.Finish;

end sink__task;

Figure 5-5: Ada Task Implementation of sink_task

CMU/SEI-88-TR-18 21

22 CMU/SEI-88-TR-18

6. Compilation and Execution Commands

Several UNIX commands have been defined to invoke the various programs that implement
Durra:

dal I durra_description_file_name
The dall command invokes the Durra compiler to process a type decla-
ration, a task description, or an application description. A lower-level
(I.e., component) task or type must be compiled before a higher-level
task or type that uses it.

By convention, Durra source file names have extension "durra." The
dall command will supply the file extension if it is missing. For example,
invoking the command with "some_task" compiles file
"some_task.durra." The output files (syntax trees stored in the library)
will be named durra_description_file_name.TREE.

dcode application_description_file_name
The dcode command generates the scheduler instructions that execute
the application. This command must be issued after all the components
and the application descriptions have been compiled with the dall com-
mand. The output file will be named
application_description_file_name.SCHED.

dserver {-ödebug_level\
The dserver command starts a Durra server. It must be issued in each
processor that is to execute any of the application tasks. The optional
parameter -ddebugjevel is used for debugging purposes.

dsched { optional-parameters} scheduler'jprogram_file_name
The dsched command starts the scheduler. It must be issued in the
processor in which the scheduler will run. The only parameter required
is the name of a file containing scheduler instructions. By convention,
these files have names of the form application^ame.durra.SCHED.
The dsched command will supply the appropriate file extensions
(".durra" and ".SCHED") if they are missing. For example, invoking the
command with "some_application", invokes the scheduler with
"some_application.durra.SCHED". There are several optional
parameters:

-qqueue_size
Specifies the default size (number of elements) for those queues whose
size was not given in the task or application descriptions. If this argu-
ment is not specified, the default queue size is 1.

•ödebugjevel
Specifies the level of tracing and error login information to be recorded
at runtime. Is used for debugging purposes.

-cconfigurationjile
Specifies the name of a file containing implementation-dependent infor-
mation (e.g., the names of the available processors on which tasks can
execute).

CMU/SEI-88-TR-18 23

-s special_subdirectory
Specifies the name of the subdirectory in which the task implementa-
tions reside and in which tracing and error logging information will be
stored. See Chapter 7 for additional details.

dlibrary switches filenames
The dlibrary command implements a modest library management facil-
ity:
dlibrary -a directory_name
Adds a pointer to another directory to be searched for imported task
descriptions or type declarations.
dlibrary -r directory_name
Removes a pointer to another directory. Task descriptions and type
declarations defined in that directory are no longer accessible.
dlibrary -d durra_file_name
Deletes a task description or type declaration from the library (the
source files are not disturbed, only the library entry is deleted). Under
normal conditions there is no need to delete library entries using this
command because the compiler takes care of inserting or deleting task
descriptions or type declarations from the library.
dlibrary -c
Creates a new library (or reinitializes an existing library). This command
is normally used on a fresh directory, when starting the development of
a new application.

The UNIX Make facility can be used to structure the file dependencies and invoke the com-
pilations in the right order. This is illustrated by the UNIX Make file in Figure 6-1. It defines
the file dependencies and order of compilation for all the files used in the example in Chap-
ter 5.

24 CMU/SEI-88-TR-18

example: sink_task source_task taskmain.durra.SCHED

sink_task: sink_taskB. a
a.make -v -C 'ada -O' -f sink_taskB.a
a.Id sink_task -o sink__task

source_task: source__taskB. a
a.make -v -C 'ada -O' -f source_taskB.a
a.Id source_task -o source_task

taskmain.durra.SCHED: byte.durra.TREE string.durra.TREE \
taska.durra.TREE taskb.durra.TREE \
taakc.durra.TREE taskmain.durra.TREE

dcode taskmain.durra

byte.durra.TREE: byte.durra
dall byte.durra

string.durra.TREE: string.durra byte.durra.TREE
dall string.durra

taska.durra.TREE: taska.durra string.durra.TREE
dall taska.durra

taskb.durra.TREE: taskb.durra string.durra.TREE
dall taskb.durra

taskc.durra.TREE: taskc.durra string.durra.TREE
dall taskc.durra

taskmain.durra.TREE: taskmain.durra string.durra.TREE \
taska.durra.TREE taskb.durra.TREE \
taskc.durra.TREE

dall taskmain.durra

Figure 6-1: A Make File

CMU/SEI-88-TR-18 25

26 CMU/SEI-88-TR-18

7. Implementation Notes

The following implementation details are likely to change as the project evolves.

Special directory and files. The task implementations must be stored in a place where the
scheduler and the servers can find them. Depending on the languages and operating sys-
tems, the format of the command(s) required to compile, link, and move the task implemen-
tations to the processors in which they will execute can vary. In processors running the
UNIX operating system, the task implementations must be stored in directory
7usr/hetsim/bin." The name of the runnable program must be specified as the value of the
"implementation" attribute in the corresponding task descriptions. Thus, if the value of the
implementation attribute is "foo," the runnable program in a UNIX processor would be the file
"/usr/hetsim/bin/foo."

In addition to the task implementations, any "source" parameters such as Durra syntax tree
files used by the implementations also need to be located on those processors in the
"/usr/hetsim/bin" directory. See the source scheduler instruction (Section 2.1) and the
run_task remote procedure call (Chapter 3) for a description of the "source" parameter.

To let the scheduler know what host processors it can count on to execute an application, a
special file, 7usr/hetsim/bin/config_txt," must exist in the processor on which the scheduler
will execute. Config.txt is a text file that describes each host in the following format (one
host per line):

hostname list_ofjprocessor_attribute_values_for_that_host

For instance:

ag.sei.cmu.edu VAX UVAX VAXGROUP1 SEIAG
e.sei.cmu.edu VAX UVAX VAXGROUP2 SEIE
cx.sei.cmu.edu SUN SEICX
sei.cmu.edu VAX VAXGROUP1 SEI

The scheduler first determines the set of processors matching the processor attribute of the
task description and then chooses the least loaded of them (as measured by a raw count of
tasks assigned to that processor). Note that a task can be assigned to run on a specific
processor by giving it a unique processor attribute value (e.g., SEIAG).

Shutting down and restarting the servers. After all the tasks have completed, the
scheduler sends shutdown messages (Chapter 3) to the servers, and they have to be
started anew for each new application execution, using the dserver command (Chapter 6).
Killing the servers is not strictly necessary; in the future the servers could be started at boot
time, along with the other system servers, in each of the processors, and kept running con-
tinuously.

Communication protocols. The scheduler communicates with the servers through a
reserved, preallocated UNIX socket, known to the servers.

CMU/SEI-88-TR-18 27

The current implementation has a single, centralized, scheduler communicating, via TCP/IP,
with the task implementations and the Durra servers on the various processors. All commu-
nication flows through this central scheduler. A later implementation will distribute the func-
tionality of the scheduler, sometimes even allowing direct task-to-task communication. For
implementation on Nectar, the heterogeneous machine currently being designed by the De-
partment of Computer Science at Carnegie Mellon University, a different protocol will re-
place TCP/IP.

Missing pieces. The scheduler is by no means complete. In particular, work is still needed
in the following areas:

• Signals, data transformations, and dynamic reconfigurations are not yet imple-
mented.

• Additional predefined tasks could be implemented by the scheduler. Exactly
which ones are necessary will become apparent as we develop a user base.

• An interactive debugging and monitoring facility is necessary for users to debug
Durra applications by sending commands to the scheduler.

• A centralized scheduler is a bottleneck. The scheduler functionality should be
distributed over a number of processors.

28 CMU/SEI-88-TR-18

References
[1] M.R. Barbacci and J.M. Wing.

Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, Carnegie Mel-

lon University, 1986.
Also Technical Report CMU-CS-86-176, Department of Computer Science, Carnegie

Mellon University, December 1986, and NTIS Report No. AD-A178 975.

[2] M.R. Barbacci, C.B. Weinstock, and J.M. Wing.
Programming at the Processor-Memory-Switch Level.
In Proceedings of the 10th International Conference on Software Engineering. Sin-

gapore, April, 1988.

[3] CG. Bell and Allen Newell.
Computer Structures: Readings and Examples.
McGraw-Hill Book Company, New York, 1971.

CMU/SEI-88-TR-18 29

30 CMU/SEI-88-TR-18 }

Appendix A: The C Interface Specification
/* Header file defining Durra Interface operations */

/* Define short external names for linker */

#define get_portid getpid
#define get_typeid gettid
#define get_port getprt
#define send_port sndprt
#define test_input__port tstinprt
#define test_output_port tstoutprt

extern void init();
/* Synopsis: (Open a communications channel between the

Durra Scheduler and an application task.)
void init(initname, — The name of the application task.

inithost, — The host where the scheduler is running.
initport, — The address of the socket where the

— Scheduler will be listening for traffic.
initidentity, — ID by which task is known to Scheduler.
initdebug); — Debugging level

char *initname;
char *inithost;
char *initport;
char *initidentity;
char *initdebug;

*/

extern void finish ();
/* Synopsis: (Inform the Scheduler that an application

task is terminating.)

— No Parameters
*/

extern void get__portid() ;
/* Synopsis: (Return the unique ID, the associated queue size bound,

and the data size expected for the specified port.)
void get_portid(name,

id,
bound,
size)

char *name;
int *id, *bound, *size;

*/

extern void get_typeid();
/* Synopsis: (Return the Scheduler-assigned ID and the size (in bytes)

of the specified data type.)
void get_typeid(name,

typeid,
size)

char *name;
int *typeid, *size;

*/

extern void send_j?ort () ;

CMU/SEI-88-TR-18 31

/* Synopsis: (Send "count" bytes of data to the port with the
specified ID. If "ty" is nonzero, then the data
is of the type with typeid "ty", otherwise the
type is unspecified.)

void send__port (id,
data,
count,
ty)

int id,count,ty;
char *data;

*/

extern void get_port();
/* Synopsis: (Get "count" bytes of data (or the actual number

of bytes sent, if it is less) from the port with
the specified ID. If "ty" is nonzero, then the data
is of the type with typeid "ty", otherwise the
type is unspecified.)

void get_port(id,
data,

, count,
ty)

int id;
int *ty,*count;
char *data;

*/

extern int test__input_port () ;
/* Synopsis: (Return zero if a get_j?ort from the specified port

will block; otherwise return the positive number
indicating the number of free spaces in the associated
queue. Also return the type of the next element in
next_type, and its size in next_size)

in£ t e s t__input_po rt (id, next_type, next_s i z e)
int id, *next__type, *next_size;

*/

extern int test__output_port () ;
/* Synopsis: (Return zero if a send_port to the specified port

will block; otherwise return the positive number
indicating the number of free spaces in the associated
queue.)

int test__output_port (id)
int id;

*/

32 CMU/SEI-88-TR-18

Appendix B: The Ada Interface Specification
with U_Env; use U_Env;
with system; use system;

package Interface is

—| Durra Scheduler Interface (Low Level)
— I
—| This package provides the interface to the Durra scheduler for tasks
—| written in Ada.
— I
— I The init_* variables are the parameters passed by the server when a
—| task is initialized. The server in turn gets them from the scheduler.

— REVISION HISTORY
— 01/03/88 mrb Package spec created.
— 06/13/88 dd Test_Port expanded to separate routines for

input and output ports.

üser_Task_Name
Scheduler_Hoat
Scheduler_Port
Us er_P ro c« s »_I D
Scheduler_Debug_Level
User_Source_Parameter

procedure Finish;

constant STRING(1..Argv(O).a'length)
constant STRING(1..Argv(l).s'length)
constant STRING(1..Argv(2).s'length)
constant STRING(1..Argv(3).s'length)
constant STRING(1..Argv(4).s'length)
constant STRING(1..Argv(5).s'length)

- Argv(O) . s
» Argv(l).s
= Argv (2).s
■ Argv(3).s
= Argv(4).s
= Argv(5).s

procedure Get_Port (Port_ID
Data
Data_Size
Type_ID

procedure Get_PortId (Port_Name
Port_ID
Queue_Bound
Data_Size

procedure Get_TypeId (Type_Name
Type__ID
Type_Size

in POSITIVE;
in System. Address;

out NATURAL;
out NATURAL);

in STRING;
out POSITIVE
out POSITIVE
out NATURAL)

in STRING;
out NATURAL;
out NATURAL);

procedure Init;

in POSITIVE;
in System.Address;
in NATURAL;
in NATURAL);

procedure Send_Port (Port__ID
Data
Data__Size
Type_ID

(Port__ID
Type_o f__Neact__I nput
S i z e__o f__Ne xt__I npu t
Input s_in_Queue

procedure Test_Input__Port

procedure Test_Output__Port (Port_ID
Spaces_Available

end Interface;

in

in

out
out
out

out

POSITIVE;
NATURAL;
NATURAL;
NATURAL) ;

POSITIVE;
NATURAL);

CMU/SEI-88-TR-18 33

34 CMU/SEI-88-TR-18

UNLIMITED, HNrT.AggTiTTFn
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1« REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEOULE

N/A

lb. RESTRICTIVE MARKINGS

NONE
3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

A. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-18

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-019
6*. NAME OF PERFORMING ORGANIZATION |6b. OFFICE SYMBOL

(If applicable I

SOFTWARE ENGINEERING INSTITUTE SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c AOORESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Codet
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

8a. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(I(applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

11. TITLE (Include Security Classification)

THE DURRA RUNTIME ENVIRONMENT

8c. AOORESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

MARIO BARBACCI, DENNIS DOUBLEDAY, CHARLES WEINSTOCK
13«. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr.. Mo.. Day)

JULY 19ftfl

15. PAGE COUNT

 äfi
16. SUPPLEMENTARY NOTATION

17 COSATI COOES

FICLO GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

DISTRIBUTED APPLICATIONS, REAL-TIME APPLICATIONS,
HETEROGENOUS COMPUTER NETWORKS, TASK SPECIFICATION
LANGUAGES

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DURRA IS A LANGUAGE DESIGNED TO SUPPORT PMS-LEVEL PROGRAMMING. PMS STANDS FOR
PROCESSOR-MEMORY-SWITCH, THE NAME OF THE HIGHEST LEVEL IN THE HIERARCHY OF DIGITAL
SYSTEMS. AN APPLICATION OR PMS-LEVEL PROGRAM IS WRITTEN IN DURRA AS A SET OF TASK
DESCRIPTIONS AND TYPE DECLARATIONS THAT PRESCRIBES A WAY TO MANAGE THE RESOURCES
OF A HETEROGENEOUS MACHINE NETWORK. THE APPLICATION DESCRIBES THE TASKS TO BE
INSTANTIATED AND EXECUTED AS CONCURRENT PROCESSES, THE TYPES OF DATA TO BE EXCHANGED
BY THE PROCESSES, AND THE INTERMEDIATE QUEUES REQUIRED TO STORE THE DATA AS THEY
MOVE FROM PRODUCER TO CONSUMER PROCESSES.

THIS REPROT DESCRIBES THE DURRA RUNTIME ENVIRONMENT. THE ENVIRONMENT CONSISTS
OF THREE ACTIVE COMPONENTS: THE APPLICATION TASKS, THE DURRA SERVER, AND THE DURRA
SCHEDULER. AFTER COMPILING THE TYPE DECLARATIONS, THE COMPONENT TASK DESCRIPTIONS,
AND THE APPLICATION DESCRIPTION, THE APPLICATION CAN BE EXECUTED BY STARTING AN

20. OISTRIBUTION/AVAILABILITY OF A8STRACT

UNCLASSIFIED/UNLIMITED 32 SAME AS RPT. D OTIC USERS XX

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

22c. OFFICE SYMBOL

SEI JPO

DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG

BLOCK 19. CONTINUED

INSTANCE OF THE SERVER ON EACH PROCESSOR, STARTING AN INSTANCE OF THE SCHEDULER
ON ONE OF THE PROCESSORS, AND DOWNLOADING THE COMPONENT TASK IMPLEMENTATIONS
(I.E., THE PROGRAMS) TO THE PROCESSORS. THE SCHEDULER RECEIVES AS AN ARGUMENT
THE NAME OF THE FILE CONTAINING THE SCHEDULER PROGRAM GENERATED BY THE COMPILATION
OF THE APPLICATION DESCRIPTION. THIS STEP INITIATES THE EXECUTION OF THE APPLICATION.

