
'1 AVF Control Number: NBS87VHFSS5302

o
Ada Compiler

VALIDATION SUMMARY REPORT :

Certificate Nuber: 880115S.09017
Honeywell Bull, Inc. -

ONE PLUS Ada Compiler, Version 1.1
Host:

DPS 6 PLUS/420
Target:

DPS 6 PLUS/420

Completion of On-Site Testing:

15 January 1988

Prepared By: 0
Software Standards Validation rou

Institute for Computer Sciences and Technology
.National Bureau of Standards

Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office .

United States Department of Defense

Washington, D.C. 20301-3081

DTIC
ELECTE

SEP 1 31988

H

tDISTRIBUTION .STAThMEiNT A

Ditiutio Ui laite 88 9 12 1i2
D2Lel d

M I~ My*J*-~. *''~'~ J ~
ez .4 'Le =t.

i UNCLASSIFIED
SECYRITY CLASSIFICATION OF THIS PAGE (When Data Entered) _

REPORT DOCUMENTATION PAGE BEAORiD :FST. SOR

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (ardSubtitle) 5. TYPE OF REPORT & RIOD COVERED

Ada Compiler Validation Summary Report: 15 Jan 1988 to 15 1989

Honeywell Bull, Inc., ONE PLUS Ada Compiler,
Version 1.1, DPS 6 PLUS/420 (Host and Target). 6. PERFORMING ORG. RVOR NNUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards,
Gaithersburg, Maryland, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

National Bureau of Standards,
Gaithersburg, Maryland, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 15 January1988
United States Department of Defense 13. NUMBR 9-88LS
Washington, DC 20301-3081 38 p.

14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
National Bureau of Standards, 15a. J SFICATION/DOWNGRADING
Gaithersburg, Maryland, U.S.A. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

1;. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada Ie
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

ONE PLUS Ada Compiler, Version 1.1, Honeywell Bull, Inc., National Bureau ofStandards, DPS 6 PLLS/42,,
under IVS 6 PLUS V1.0, ACVC 1.9.

DD 'u. 1473 EDITION OF 1 NOv 65 IS OBSOLETE
I JAN 73 S/N O:C2-LF-014-66; UNCLASSIFIED

SE %R: C'.ASSIIC TON F THIS E ;Whenar--,t!'-

S,

Ada Compiler Validation Summary Report:

Compiler Name: ONE PLUS Ada Compiler, Version 1.1 0

Certificate Number: 880115Si.09017

Host: DPS 6 PLUS/420 under HVS 6 PLUS V1.0

Target:
DPS 6 PLUS/420 under HVS 6 PLUS V1.0

Testing Completed 15 January 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899 0

I

alidation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Jont Program Office
Virginia L. Castor
Director
Department of Defense 0
Washington DC 20301

%

1%

Ism~

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the ONE PLUS Ada
Compiler, Version 1.1, using Version 1.9 of the Ada Compiler Validation
Capability (ACVC). The ONE PLUS Ada Compiler, Version 1.1 is hosted on
a DPS 6 PLUS/420 operating under HVS 6 PLUS VI.O. Programs processed by
this compiler may be executed on a DPS 6 PLUS/420 operating under HVS 6
PLUS VI.0.

On-site testing was performed 11 January 1988 through 15 January 1988 at

Billerica, MA, under the direction of the Software Standards Validation
Group, Institute for Computer Sciences and Technology, National Bureau
of Standards (AVF), according to Ada Validation Organization (AVO)
Folicies and procedures. At the time of testing, version 1.9 of the

ACVC comprised 3122 tests of which 25 had been withdrawn. Of the
remaining tests, 241 were determined to be inapplicable to this
implementation. Results for processed Class A, C, D, and E tests were
examined for correct execution. Compilation listings for Class B tests
were analyzed for correct diagnosis of syntax and semantic errors.

Compilation and link results of Class L tests were analyzed for correct
detection of errors. The remaining 2856 tests were passed. The results
of validation are summarized in the following table:

RESULT CHAPTER TOTAL
__ 2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 186 499 549 248 166 98 142 326 135 36 232 3 236 2856

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 18 74 126 0 0 0 1 1 2 0 2 0 17 241

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

One, Aoceesslon For ZI

t^- ..

'i --, UtvCode~s

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION
S

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5 -

3.7.3 Test Site3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report /(VS describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features

must conform to the requirements of the Ada Standard.- The Ada Standard
must be implemented in its entirety, and nothing can be implemented

that is not in the Standard.

C-Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation
dependencies- -for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

during the process of testing this compiler are given in this report.

This information in this report is derived from the test results
produced during validation testing. The validation process includes

submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results.'\ The purpose of validating is to

ensure conformity of the compiler to ie Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language' constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

I-I

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted Software Standards Validation
Group, National Bureau of Standards according to policies and
procedures established by the Ada Validation Organization (AVO).
On-site testing was conducted from 11 January 1988 through 15 January
1988 at Billerica, MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in

this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081 A

9'

or from:

Software Standards Validation Group
Institute for Computer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

- n - - - .•9

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.
SofTech,

Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compiler
validations according to established procedures.

AVO The Ada Validation Organization. In the context of
this, report, the AVO is responsible for establishing
procedures for compiler validations.

1-3

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the

test.

Language The Language Maintenance Panel (I14P) is a committee

Maintenance established by the Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect
because it has an invalid test objective, fails to meet

its test objective, or contains illegal or erroneous use

of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A. C, D, and E tests
are executable, and special program units are used to report their

results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see
if the test objective had been met. For example, a Class A test checks

1-4

that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a

compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity

functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
these units is checked by a set of executable tests. These tests

1-5]

Z Nd

produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a

compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under

the following configuration:

Compiler: ONE PLUS Ada Compiler, Version V1.1

ACVC Version: 1.9

Certificate Number: 880115S1.09017

Host Computer: S

Machine: DPS 6 PLUS/420

Operating System: HVS 6 PLUS Vl.O

Memory Size: 7168K WORDS

Target Computer:

Machine: DPS 6 PLUS/420

Operating System: HVS 6 PLUS V1.0

Memory Size: 7168K WORDS

Communications Network: NONE

%-3,

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for

such implementation differences. However, tests in other classes also

characterize an implementation. The tests demonstrate the following

characteristics:

Capacities.

The compiler correctly processes tests containing loop

statements nested to 65 levels, block statements nested to 65

levels, and recursive procedures separately compiled as subunits

nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See

test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and

D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAXINT. This

implementation processes 64 bit integer calculations. (See

tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

- Predefined types.

This implementation supports the additional predefined types

SHORT INTEGER, LONG_INTEGER, and LONG FLOAT in the package

STANDARD. (See tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAX INT during compilation, or it may

raise NUKZRIC ERROR or CONSTRAINTERROR during execution. This

implementation raises NUMERICERROR during execution. (See

test E24101A.)

- Expression evaluation.

Apparently all default initialization expressions for record

components are evaluated before any value is checked to belong

2-2 ,

to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC_ERROR is raised when a literal operand in a
fixed point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.) K

The method used for rounding to integer in static universal
real expressions is apparently round away from zero. (See test
C4AO14A.)

- Array types. -

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.-INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX _INT components are rejected at compile time when
they are detected as containing dimensions with more than
SYSTEM.MAXINT components. (See test C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. NUMERIC ERROR is raised when
an array type with INTEGER'LAST + 2 components is declared.
(See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. NUMERIC ERROR is raised
when an array type with SYSTEM.MAXINT + 2 components is
declared. (See test C36202B.)

2-3

' ' a% %%

A packed BOOLEAN array having a 'LENGTH exceeding INTECER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
subtype is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

2-4

'~' '~~ ~'i

- Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C35502I..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55Bl6A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TRUE -> 1) are
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

-Pragmas.

The prama INLINE is supported for procedures. The pragma

INLINE is supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE220ID, and EE220IE.)

2-5

JOV I

F-
The package DIRECT_10 cannot be instantiated with unconstrained
array types with discriminants without defaults. (See test
EE240lD.)

Modes INFILE and OUTFILE are supported for SEQUENTIAL_10.
(See tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL 10 and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECT_10. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, cannot be
created in OUTFILE mode, and cannot be created in INFILE mode.
(See test EE3102C.)

Only one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE2110B, CE2111D, CE3111B..E (4 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each
external file for sequential I/0 for both reading or both
writing but not reading and writing. (See tests CE2107A..B (2
tests).)

Only one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See
tests CE2107C..D (2 tests) and CE2111D.)

More than one internal file can be associated with each
external file for direct I/0 for both reading or both writing
but not reading and writing. (See tests CE2107E..G (3 tests).)

Only one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107H..I (2 tests) and CE2111H.)

An external file associated with more than one internal file
cannot be deleted for SEQUENTIAL_10, DIRECTIO, and TEXTIO.
(See test CE2110B.)

Temporary sequential files are not given names. Temporary
P direct files are not given names. (See tests CE2108A and

CE2108C.)

2-6

Generics.

Generic subprogram declarations and bodies can not be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in

separate compilations. (See test CA3011A.)

2-

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests of
which 25 had been withdrawn. Of the remaining tests, 241 were
determined to be inapplicable to this implementation. Modifications to
the code, processing, or grading for 39 tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 109 1047 1620 17 17 46 2856

Failed 0 0 0 0 0 0 0

Inapplicable 1 4 235 0 1 0 241

Withdrawn 3 2 19 0 1 0 25

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 - _.U12 13 14

Passed 186 499 549 248 166 98 142 326 135 36 232 3 236 2856

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 18 74 126 0 0 0 1 1 2 0 2 0 17 241

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 95

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35A03E C35A03R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45614C A74106C
C85018B C87B04B CC1311B BC3105A ADIA01A CE2401H
CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 241
tests were inapplicable for the reasons indicated:

C24113H..K (4 tests) contain literals which exceed the maximum line

length for this implementation (120 characters).

3-2

C35702A uses SHORTFLOAT which is not supported by this implementation.

C36003A is rejected at compile time when array type and subtype
declarations are detected as containing dimensions with more than
SYSTEM.MAXINT components.

A39005G uses a record representation clause which is not supported by
this compiler.

C45231D and B8600IDT require a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such type
for this implementation.

C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed point base
types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed point
base types which are not supported by this compiler.

C4AO13B uses a static value that is outside the range of the most
accurate floating point base type. The declaration was rejected at
compile time.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

CA2009C compiles generic package body subunit specifications and bodies
in separate compilations. This compiler requires that generic package
subunit specifications and bodies be in a single compilation.

CA2009F compiles generic subprogram declarations and bodies in separate
compilations. This compiler requires that generic subprogram
declarations and bodies be in a single compilation.

BC3204C and BC3205D compile generic package specifications and bodies in
separate compilations. This compiler requires that generic package
bodies be in a single compilation.

CE2107C..D (2 tests), CE2107H..I (2 tests), CE2108A, CE2108C, CE3112A
require temporary files be given names. This implementation does not
give names to temporary files.

CE2110B, CE2111D, CE2111H, CE3111B..C (2 tests), CE3114B, and CE3115A
are inapplicable because multiple internal files cannot be associated
with the same external file with different file access modes. The
proper exception is raised when multiple access is attempted.

EE2401D uses instantiations of package DIRECT 10 with unconstrained
array types as the element type. These instantiations are rejected by
this compiler.

CE3111D and CE3111E require that, when separate internal files output

3-3

text to the same external file, the output from one internal file
overwrite text output from the other file. The ONE PLUS Ada
implementation does not use such overwrite semantics, but writes the
values to the external file in sequence. The AVO ruled that this
behavior is acceptable, pending further review from the ARC.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)

C45524L..Z (15 tests) C45621L..Z (15 tests)

C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made with the approval of
the AVO, and are made in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into
sub-tests so that all errors are detected; and confirming that messages
produced by an executable test demonstrate conforming behavior that
wasn't anticipated by the test (such as raising one exception instead of
another).

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B33301A B55AOlA B67001A B67001C B67001D
B97103E BC1109A BC1109C BCII09D BC3205C

The following Class B tests were split because syntax errors at one
point resulted in the compiler flagging correct code as being incorrect:

I.

B22003A B26001A B26002A B26005A B28001D
B29001A B37106A B37301B B38003A B38003B
B38009A B38009B B54AOlC B61001C B61001F
B610011 B61001I B61001M B61001R B61001W
B97101E B97104G BC1109A BC1109C BC1109D
BC1202B BC1202E

The following executable test was split because the resulting program

3-4

was too large to be executed:

C35A06N

CE3602A attempts to create an external file with the same name (CE3602A)
as the program file itself and in the same directory. For this
implementation, this is an illegal file name duplication which raises a
USEERROR exception unless the file name is changed or the program file
name is located in a different directory from that of the created
external file name. The AVF manager changed the executable file image
name by the appending of the letter "X" to it, making it 'CE3602AX'.
Both the executable file image name and the created external file name
were located in the same directory and executed with no errors.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the ONE PLUS Ada Compiler, Version 1.1 was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ONE PLUS Ada Compiler, Version 1.1 using ACVC Version 1.9
was conducted on-site by a validation team from the AVF. The
configuration consisted of a Host: DPS 6 PLUS/420 operating under HVS 6
PLUS Vl.0 and a Target: DPS 6 PLUS/420 host operating under HVS 6 PLUS
Vl.0

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were included in their modified form on the
magnetic tape. The contents of the magnetic tape were loaded directly
onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the DPS 6 PLUS/420, and all executable tests were
run on the DPS 6 PLUS/420. Results were printed from the host computer.

The compiler was tested using command scripts provided by Honeywell
Bull, Inc. and reviewed by the validation team. The compiler was tested
using all default (option/switch) settings except for the following:

3-5

'q

r

Option/Switch Effect

-LIB libraryname This required argument specifies the library

file to be used for the compilation being

invoked.

Tests were compiled, linked, and executed (as appropriate) using a

single host computer and a single target computer. Test output,

compilation listings, and job logs were captured on magnetic tape and

archived at the AVF.

3.7.3 Test Site

The validation team arrived at Billerica, MA on 11 January 1988, and

departed after testing was completed on 15 January 1988.

V

.

I

3-6

~' ~ A ~ ~ A.

APPENDIX A i

CONFORMANCE S TATEMENFNT

)N

l'

1'

1-

Appendix A

DECLARATION OF CONFORMANCE

Compiler Implementer: Honeywell Bull, Inc.
A.V.F.: Institute for Computer Sciences and Technology, NBS
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: ONE PLUS Ada Compiler Version: VI.1
Host Architecture - ISA: DPS 6 PLUS/420 OS & VER#: HVS 6 PLUS V1.0
Target Architecture - ISA: DPS 6 PLUS/420 OS & VER#: HVS 6 PLUS V1.0

Derived Compiler Registration

Derived Compiler Name: ONE PLUS Ada Compiler Versira: Vl.l
Host Architecture - ISA: DPS 6 PLUS/400 OS & VER#: HVS 6 PLUS V1.0
Target Architecture - ISA: DPS 6 PLUS/400 OS & VER#: HVS 6 PLUS V1.0

Derived Compiler Name: ONE PLUS Ada Compiler Version: Vl.l
Host Architecture - ISA: DPS 6 PLUS/410 OS & VER#: HVS 6 PLUS V1.0
Target Architecture - ISA: DPS 6 PLUS/410 OS & VER#: HVS 6 PLUS V1.0

Implementer's Declaration

I, the undersigned, representing Honeywell Bull, Inc., have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compilers listed in this declaration. I
declare that Honeywell Bull, Inc. is the owner of record of the Ada
language compilers listed above and, as such, is responsible for
maintaining said compilers in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compilers listed in
this declaration shall be made only in the owner's corporate name.

* 7
Alan C. Lyman ;/Dat6
Manager, Comp ilc Development

Owner's De-laration

I, the undersigned, representing Honeywell Bull, Inc., take full
responsibility for implementation and maintenance of the Ada
compilers listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to
comply with the Ada trademark policy, as defined by the Ada Joint
Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the
Ada Language Standard ANSI/MIL-STD-1815A. I have reviewed the
Validation Summary Report for the compilers and concur with the
contents.

Alan C. Lyman /Date/
Manager, Compiler Development

A-1

APPENDIX B

APPENDIX F OF THE Ada STANDARD

7> only allowed implementation dependencies correspond to
implementatio..-dependent pragmas, to certain machine-dependent
conventions as menticned in chapter 13 of MIL-STD-1815A, and to certain
allowed restrictions on representation clauses. The implementation-
dependent characteristics of the ONE PLUS Ada Compiler, Version 1.1, are
described in the following sections which discuss topics in Appendix F
of the Ada Language Reference Manual (ANSI/MIL-STD-1815A)..
Implementation-specific portions ol the package STANDARD are also
included in this appendix.

package STANLARD is

type INTEGER is range -32768 32767;
type SHORTINTEGER is range -128 .. 127;
type LONGINTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -16#0.FFFFF8#E63 .. 16#0.FFFFF8#E64;
type LONGFLOAT is digits 15 range -16#0.FFFFFFFF_FFFFEO#E63

16#0.FFFFFFFFFFFFEO#E63;

type DURATION is delta 2**(-14) range -131_072.0 .. 131_071.0;

end STANDARD;

I

IAPPENDIX F OF THI Ada STANDARD

V%

B-1

ATTACHMENT 4

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

(per APPENDIX F of the Ada Standard)

The only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent

conventions as mentioned in chapter 13 of MIL-STD-1815A, and to certain

allowed restrictions on representation clauses. The
implementation-dependent characteristics of ONE PLUS Ada R4.1 and V1.1
are described in the following sections which discuss topics one through
eight as stated in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Two other sections, package STANDARD and file
naming conventions, are also included in this appendix.

(1) Implementation-Dependent Pragmas

None

(2) Implementation-Dependent Attributes

None

(3) Package SYSTEM

The specification for the package SYSTEM IS:

package SYSTEM is

type ADDRESS is ACCESS INTEGER;
type NAME is (DPS6, DPS6_PLUS);

SYSTEM NAME : constant NAME DPS6;
STORAGE UNIT : constant 16;
MEMORYSIZE : constant 2**20;

--System-Dependent Named Numbers:

MININT : constant := -2**31;
MAXINT : constant := 16#7FFFFFFF#;
MAXDIGITS : constant 15;
MAX MANTISSA : constant 31;
FINE DELTA : constant 2.0**(-30);
TICK : constant 1.0/120.0;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range 0.. 16;

end SYSTEM;

4-1

ATTACHMENT 4

IMPLEMENTATION-DEPENDENT CHARACTERISTICS (cont'd)

(4) Representation Clause Restrictions

In general, no representation clauses may be given for a derived
type. The representation clauses that are accepted for non-derived
types are described in the following:

Address Clause

Not supported

Length Clause
1

The compiler accepts only a length clause that specifies the number
of storage units to be reserved for a collection.

Enumeration Representation Clause

Enumeration representation clauses may specify representations only
in the range of predefined type INTEGER. 1

Record Representation Clause

A component clause is allowed if and only if:

o The component type is a discrete type different from LONG INTEGER

o The component type is an array type with a discrete element type
different from LONGINTEGER.

No component clause is allowed if the component type is not covered
by the P Lwo inclusions. If the record type contains components
not cov, by a component clause, they are allocated consecutively
after th< comoonent with the highest at value. Allocation of a
record compc-nnt without a component clause is always aligned on a
storage unit boundary. Holes created because of component clauses
are not otherwise utilized by the compiler.

(5) Conventions

No names denoting implementation-dependent components are generated.

(6) Address Clauses

Not supported

4-2

ATTACHMENT 4

IMPLEMENTATION-DEPENDENT CHARACTERISTICS (cont'd)

(7) Unchecked Conversions

Unchecked conversion is only allowed between values of the same
size. In this context the size of an array is equal to that of two
access values and the size of a packed array is equal to two access
values and an integer. This is the only restriction imposed on
unchecked conversion.

(8) Input-Output Packages

SEQUENTIAL_10 Package

type FILE TYPE is NEW BASIC IO.FILETYPE;
procedure READ (FILE: in FILETYPE; ITEM: out ELEMENTTYPE);
procedure WRITE (FILE: in FILE TYPE; ITEM: in ELEMENTTYPE);
function ENDOFFILE (FILE: in FILETYPE) return BOOLEAN;

DIRECTIO Package

type COUNT is range 0 .. 16#7FFFFFFF#;

TEXT_I0 Package

type COUNT is range 0 .. 16#7FFFFFFF#;

subtype FIELD is INTEGER range 0 .. 35;

LOWLEVELIO

Low-level input-output is not provided

(9) Package STANDARD

type IIEGER is -32760 . 32767;
type SHORTINTEGER is -128 .. 127;
type LONG_INTEGER is -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -16#0.FFFFFS#E63 .. 16#0.FFFFF8#E63;
type SHORTFLOAT is not defined
type LONGFLOAT is digits 15 range -16#0.FFFFFFFF FFFF E0#E63

•. 16#0.FFFFFFFFFFFF-EO#E63;

type DURATION is delta 2**(-14)
range -131_072.0 .. 131_071.0

(10) File Names

File names follow the conventions and restrictions of the target
operating system.

4-3

- - ~ -

-a

APPENDIX C

TEST PARA~TERS I

b

S

.5

.5

'a

'a

4~4

C-i

-'p ~-' "a. I.

ATTACHMENT 3

PARAMETERS FOR ".TST" TESTS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG IDI AAA AAl
Identifier of size MAX IN LEN (119 A'S followed by 1)
with varying last character.

$BIG ID2 AAA AA2
Identifier of size MAX IN LEN (119 A's followed by 2) -

with varying last character.

$BIGID3 AAA A3AAA
Identifier of size MAXINLEN (59 A's followed by 3,
with varyina middle character. followed by 60 A's)

$BIGID4 AAA A4A AA
Identifier of size MAX IN LEN (59 A's followed by 4,
with varying middle character. followed by 60 A's)

$BIGINTLIT 000 00298
An integer literal of value 298 (117 O's followed by 298)
with enough leading zeroes so
that it is MAX IN LEN characters
long.

3-1

ATTACHMENT 3

".TST" TEST PARAMETERS (cont'd)

Name and Meaning VALUE

$BIG REAL LIT 000 069.OE1
A real literal that can be (114 O's followed by 69.OEI)
either of floating- or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$BIGSTRINGI "AAA AA"
A string literal which (60 A's enclosed in quotes)
is the same as the first
half of $BIGIDi.

$BIGSTRING2 "AAA Al"
A-string literal which (59 A's followed by 1 all
is the same as the second enclosed in quotes)

half of $BIGIDl.

$BLANKS 100 blanks
Blanks of length MAXINLEN - 20

$COUNTLAST 16#7FFFFFFF#
Value of COUNT'LAST in TEXTIO
package.

$FIELDLAST 35
Value of FIELD'LAST in TEXTIO
package.

$FILE NAME WITH BAD CHARS ^BAD@CHAR[S)
An illegal external file name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR XYZ*
An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 131070.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THANDURATIONBASELAST 131071.5
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILENAMEl ^BAD@CHAR(S)
Illegal external file name.

3-2

Pr u

ATTACHMENT 3

".TST" TEST PARAMETERS (cont'd)

Name and Meaning Value

$ILLEGALEXTERNALFILENAME2 TOOLONG_A_FILENAME
Illegal external file names.

$INTEGERFIRST -32768
The universal integer literal
expression whose value is

INTEGER'FIRST

$INTEGER LAST 32767
The universal integer literal
expression whose value is
INTEGER'LAST.

$INTEGER LASTPLUS_1 32768
The universalinteger literal
expression whose value is
INTEGER'LAST + 1

$LESSTHAN DURATION -131072.5
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESSTHANDURATIONBASEFIRST -131072.5
The universal real value that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

MAX_IN _LEN 120
Maximum input line length
pe..itted by the implementation

$XAX_INT 2147483647
The universal-integer literal
whose value is
SYSTEM.MAXINT

$MAX INT PLUS 1 2147483648
The universalinteger literal
whose value is
SYSTEM.MAXINT+1

$MAX LEN INT BASEDVITERAL 2 :00 011:
universal 'eaf based literal (115 0's)

(using colons) whose value is
2:11:, but with enough leading

zeroes in the mantissa so that
the literal is MAXINLEN characters long.

3-3

ATTACHMENT 3
I

".TST TEST PARAMETERS (cont'd)

Name and Meaning Value

$MAX LEN REAL BASED LITERAL 16:00 OF.E:
Auniversal-real-based literal (113 O's)
(using colons) whose value is
16:F.E:, but with enough leading
zeroes in the mantissa so that
the literal is MAXINLEN characterslong.

$MAX STRING-LITERAL "AAA AA"
A string literal that is (118 A's all enclosed
MAX IN LEN characters long in quotes)
(including the quote characters).

$MININT
The (signed) universalinteger -2147483648
literal whose value is
SYSTEM.MININT.

$NAME none
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNEGBASEDINT 16#FFFFFFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

3-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 25 tests had been withdrawn at the time

of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A A basic declaration (line 36) wrongly follows a later
declaration.

E28005C This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the

matter will be reviewed by the ALIMP.

C34004A The expression in line 168 wrongly yield a value outside of the
range of the target type T, raising CONSTRAINTERROR.

C35502P The equality operators in lines 62 and 69 should be inequality
operators

A35902C Line 17's assignment of the nominal upper bound of a fixed-
point type to an object of that type raises CONSTRAINTERROR,
for that value lies outside of the actual range of the type.

C35904A The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that
of the type.

C35AO3E These tests assume that attribute 'MANTISSA returns 0 when
& R applied to a fixed-point type with a null range, but the Ada

Standard does not support this assumption.

C37213H The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J The aggregate in line 451 wrongly raises CONSTRAINTERROR.

C37215C, Various discriminant constraints are wrongly expected to be
E,G,H incompatible with the type CONS.

C38102C The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

D-1

C41402A 'STORAGSIZE is wrongly applied to an object of an access

type.

C45614C REPORT.IDENTINT has an argument of the wrong type
(LONGINTEGER).

A74106C A bound specified in a fixed-point subtype declaration lies
C85018B outside of that calculated for the base type, raising
C87BO4B CONSTRAINT ERROR. Errors of this sort occur re lines 37 &
CC1311B 59, 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere)

BC3105A Lines 159..168 are wrongly expected to be incorrect; they are
correct.

ADlAOlA The declaration of subtype INT3 raises CONSTRAINT ERROR for

implementations that select INT'SIZE to be 16 or greater.

CE2401H The record aggregates in lines 105 and 117 contain the wrong
values.

CE3208A This test expects that an attempt to open the default output
file (after it was closed) with MODE IN file raises NAMEERROR 0

or USE_ERROR; by commentary AI-00048, MODEERROR should be

raised.

I.!
°.

D-2

.)131

