
Kfli OZ0
SEP 1988 TRAC- F-TM- 1088

ACN 16306

VIC 1.2 MODEL CONVERSION FROM
THE VAX TO THE SUN 4

=°" DTrCTELECTED

Fort Leavenworth

Appeovd im ~b- puhl uams

US AMW

TRAI)OC AALYSIS COMMAND -FPORT LEAVENWORTH
(MAC-FLVN)

OPFITIONS DIECTORATE
-\ FORT L.AVlNWORTH, KANSAS 66027

,88 10 1J
i8

Technical Memorandum TRAC-F-TM-1088
September 1988

TRADOC Analysis Command-Fort Leavenworth (TRAC-FLVN)
Model Support Directorate

Fort Leavenworth, Kansas 66027-5200

VIC 1.2 MODEL CONVERSION FROM THE VAX TO THE SUN 4

by

Mike Hannon

ACN 16306

The views, opinions, and/or finding contained in this report are
not to be construed as an official Department of the Army or
TRAC-FLVN position, policy, or decision unless so designated by
authorized documents issued and approved by the Department of the
Army.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMS No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. ECLS~iICATON DOWGRADNG CHEULEApproved for public release; distribution
2b. ECLS~iFCATON DOWGRAING CHEULEis unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

TRAC-F-TM-1088
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

TRAC-FLVN IATRC-FM
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Director
TRAC-FLVN (ATTN: ATRC-FM)
Ft Leavenworth, KS 66027-5200

8a. NAME OF FUNDING Y SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATiON NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)

VIC 1.2 Model Conversion from the VAX to the SUN 4

12. PERSONAL AUTHOR(S)

MIKE HANNON
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final Report FROM 6,gR TO 8Sq _ 1988 September 21
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB-GROUP

,1
19. ABSTRACT (Continueon reverse if necessary and identify by ock number)

This document describes work completed at the TRADOC Analysis Command-Fort Leavenworth
in converting the VIC 1.2 reference model to the SUN 4 computer. VIC.is a corps/division
level model ,used for combat developments. The VIC model was developed as an analysis
tool used on the Digital Equipment Corporation family of computers. Conversion of the
model to the SUN 4 provides the analysis community with an alternative computer resource
for work requiring the use of VIC.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
I"UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USF',: UNCLASSIFIED

22a. NAME OF P r' SIB_ IOIIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

MIKE HANNON 1 (913) 684-5418 1 ATRC-FM
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ACKNOWLEDGEMENTS

While Vector-in-Commander (VIC) was being converted to the
SUN 4 a number of individuals were working on converting VIC to
other computer systems. Jim Blaise from TRADOC Analysis
Commands-White Sands Missle Range (TRAC-WSMR) was working with
VIC on the Hewlett Packard, Rich Sandemeyer from the Army
Materials Systems Analysis Agency (AMSAA) was converting VIC to
run on the CRAY II, and from RAND, Jim Gillogly along with Walt
Hobbs were converting VIC to a SUN 3. These individuals were
very helpful in passing on suggestions about errors encountered
in their work and possible corrections.

Within TRAC-FLVN, Terry Gach was a valuable resource in
providing information on SUN/UNIX commands and possible reasons
for model problems. Gary VanKuiken and John Lance were
instrumental in providing the system support required with the
SUN 4 computers.

DTi 2

v

CONTENTS

Page

TITLE PAGE...............................a

DD FORM 1473, Report Documentation Page..................... iii

ACKNOWLEDGEMENTS... v

TABLE OF CONTENTS... vii

ABSTRACT...............................ix

MAIN REPORT

Background.. 1

Computer Characteristics.....................................1I

Model Changes ... 2

Building the Running Model................................... 6

Comparison of Results....................................... 10

Conclusion... 14

DISTRIBUTION LIST.. 16

vii

ABSTRACT

This document describes work completed Pt the TRADOC Analysis
Command-Fort Leavenworth in converting the VIC 1.2 reference
model to the SUN 4 computer. VIC is a corps/division level model
used for combat developments. The VIC model was developed as an
analysis tool used on the Digital Equipment Corporation fa'ily cf
computers. Conversion of the model to the SUN 4 provides the
analysis community with an alternative computer resource for work
requiring the use of VIC.

ix

VIC 1.2 MODEL CONVERSION FROM THE VAX TO THE SUN 4

1. Background. The Vector-in-Commander (VIC) model was
developed to represent combat in a combined arms environment at
the Army's Corps-Division level. VIC is currently used as an
analysis tool for combat development studies and scenario
generation.

a. VIC was developed on the Digital Equipment Corporation
family of computers using the VMS operating system. Most of the
model is written in the SIMSCRIPT 11.5 programming language
developed for the VAX. A much smaller portion of the model
consisting of utility routines and graphics interface routines,
is written in FORTRAN. New releases of the model are distributed
to the user community after significant enhancements are made.
The latest release of VIC (version number 1.2) consists of over
1,830 routines.

b. Due to the large number of study requirements for VIC and
the lack of adequate VAX computer resources available within the
TRADOC Analysis Command-Fort Leavenworth (TRAC-FLVN), the Model
Support Directorate began an effort to convert VIC to the SUN 4.
The approach taken was to convert the model without worrying
about converting those routines which allowed for graphics
display during game execution. VIC graphics are currently
designed to display on RAMTEK hardware.

2. Computer Characteristics.

a. The SUN 4 computer that was used in the conversion effort
for VIC had the following characteristics:

- SUN 4/260 using RISC technology with the Scalable
Processor Architecture (SPARC).

- C compiler.

- networking software (terminal communication protocol/
interface protocol (TCP/IP), network file server
(NFS)).

- SunOS Release 4.0 UNIX operating system (a necessary
requirement since earlier levels of the operating
system did not allow for the large number of open
files actively accessed by VIC).

- 260 megabytes of disk storage. For any large study
effort with VIC, this alone will not be enough disk
storage. Larger resident disks or use of a network
file server scheme will be required.

- 32 megabytes of real memory.

- 66 megabytes of swap memory allowed (changed from 32
megabytes) to handle a large run of VIC and allow
other processes to run. Only 41 megabytes for swap
memory need be allocated if only VIC is being run.

- Cartridge tape drive.

a. The following additional software packages were used:

- SIMSCRIPT 11.5 release 1.0 provided by C.A.C.I. for
the SUN 4.

- FORTRAN compiler, libraries and linker used with the
SunOS 4.0 operating system.

- Evaluation copy of network software (TCP/IP and NFS)
for the VAX, obtained through the Wollongong company,
allowing for --

-- Remote logins (telnet) either from the SUN 4 to
the VAX or from the VAX to the SUN 4.

-- File transfer protocol (ftp) for getting files
from the VAX to the SUN 4 or vice versa.

-- The capability to mount a VAX disk to the SUN,
enabling the VAX to act as a network file server
(NFS) to the SUN 4.

3. Model changes.

a. Code Changes. The SUN 4 SIMSCRIPT compiler appeared to
provide better code and syntax checking than the VAX SIMSCRIPT
compiler. In compiling on the SUN 4 a number of warnings
appeared which did not occur during the VAX compile. Model code
related to these warnings were corrected as appropriate.
Warnings and examples of corrections are as follows:

2

- warning 1002 missing ")"

i.e.: WRITE TB.FEATURE.NUMBER(TB.OBSTACLE.NUMBER(.NUMBER)
was corrected to

WRITE TB.FEATURE.NUMBER(TB.OBSTACLE.NUMBER(.NUMBER))

- warning 1007 number of subscripts different from
definition or previous use

i.e.: RESERVE FI.PROB.DETECTION.TABLE(*,*) AS .NR.TABLES
was corrected to

RESERVE FI.PROB.DETECTION.TABLE(*,*) AS .NR.TABLES BY *

(1) Pagefeed characters (^L) in the code were not handled
by the SUN 4 SIMSCRIPT compiler. A large number of these had to
be removed from the decision table module (dt) code.

(2) The SIMSCRIPT compiler 1.0 release for the SUN 4 does
not support the checkpoint/restart feature found with the VAX
SIMSCRIPT compiler. Consequently, OPEN statements, which
indicated files could be repositioned in the instance of a
restart, required modification as follows:

OPEN SS.EXTERNAL.EVENT.FILE, INPUT, RECORDSIZE=132, REPO

The repositionable feature was commented out, thus:

OPEN SS.EXTERNAL.EVENT.FILE, INPUT, RECORDSIZE=132 '',
REPO

The RECORD and RESTORE statements associated with a
checkpoint/restart were also commented out. However, C.A.C.I.
indicated that the next release of the SUN 4 SIMSCRIPT compiler
should support the checkpoint/restart feature.

(3) A number of PREAMBLE changes were required as a
result of work that Los Alamos Laboratory conducted during
conversion of VIC to a UNIX system. Los Alamos had modified
certain utility routines which called VAX system runtime routines
to instead call UNIX-based routines when the variable ..VMS was
set appropriately. The variable ..VMS was defined to mean 0 in
the PREAMBLE to indicate the model was operating under a
UNIX-based system. Normally with the VIC 1.2 release ..VMS is
defined to mean 1, indicating a VMS system is being used.
Another change suggested by Los Alamos was to define PROMPT.V as
a text variable in the PREAMBLE (this system variable is not
currently supported under the SUN 4 compiler) and to comment out
the inword placement of global variables which hold the values
indicating placement of events in the EV.S set. For example,

3

THE SYSTEM
HAS A AT.FIRING.PERMISSION IN WORD 3151
HAS A I.AT.FIRING.PERMISSION IN WORD 3152
HAS A AD.TARGET.CHECK IN WORD 3153
HAS A I.AD.TARGET.CHECK IN WORD 3154

<etc>

became:

THE SYSTEM
HAS A AT.FIRING.PERMISSION IN WORD 3151
''HAS A I.AT.FIRING.PERMISSION IN WORD 3152
HAS A AD.TARGET.CHECK IN WORD 3153
''HAS A I.AD.TARGET.CHECK IN WORD 3154

<etc>

The modifications associated with the VIC PREA4BLE for ..VMS and
PROMPT.V were also incorporated into the UTILITY (UT) SIMSCRIPT
PREAMBLE.

(4) The calls to FORTRAN routines were somewhat tricky in
that FORTRAN expected real arguments to be passed down from
SIMSCRIPT as single precision. This only became a problem when
SIMSCRIPT did not pass a local real variable directly to FORTRAN.
Real variables passed between SIMSCRIPT routines are passed as
double precision. Thus, passing a real variable from one
SIMSCRIPT routine to another SIMSCRIPT routine, then on to a
FORTRAN routine caused the variable to enter into the FORTRAN
routine as double precision but was used by FORTRAN as single
precision. The appropriate correction was to ensure that all
real variables being passed to FORTRAN routines from SIMSCRIPT
were first set to local real variables in the SIMSCRIPT routines.
The SIMSCRI-'T routines changed were
UT.COMPUTE.FRAC.OF.CIRCLE.INSIDE, UT.IS.LOCATION.INSIDE.POLYGON
and UT.IS.POINT.INSIDE.POLYGON. An example of the change, using
code from routine UT.IS.POINT.INSIDE.- POLYGON follows:

DEFINE .X.ARG, .Y.ARG AS REAL VARIABLES
''previously .x and .y were sent as arguments
''put .x and .y values in local real variables and send
''local real variables to fortran routine contour instead
LET .X.ARG = X
LET .Y.ARG = Y

4

CALL CONTOUR(.NR.VERTICES,.VERTICES(l,*),.VERTICES(2,*),
X.ARG, .Y.ARG, .ANSWER)

(5) As previously stated graphics routines were ignored
for the immediate work. The following FORTRAN routines relating
to graphics or VAX system calls were stubbed out.

INIT FORTS
RAMT IME
HOWDRAW
DRAW SYMBOL
MAP
MAKE HARD COPY
KKCOLOR
KRMINIT
KNBATCH
KOERASE
KCIRCLE
KLINTEX
VSHCUR
IMG EXIT
IMG INIT
DOROT
VSHGCUR
HMOVE
HTEXT
KRECT
K TOGGLE FILE WR
GRAPHICS-INIT-
TNITFT
KERASE
KBATCH
TIME

(6) As with any large model there are always some errors
uncovered as the model is reviewed. One such error was that the
global array CO.TRAFFIC.LOAD was not defined as a 3-dimensional
real array in the PREAMBLE. This was corrected and should be
part of the next release nf the model. Los Alamos also noticed
that the variable AT.MUN.ROUNDS.FIRED.FROM.ALL.UNITS should be
declared as a real variable in the PREAMBLE.

(7) The code changes for the conversion have been
forwarded to the VIC model proponent, TRAC-White Sands Missle
Range (TRAC-WSMR).

5

b. Data file changes. The data files used in testing the
conversion of VIC to the SUN 4 were the unclassified division
data base files provided with the reference version 1.2 release.
VIC has two types of data files. The first type has data
interspersed with comments, to help in understanding the data
content and format. The second is the same as the first except
all comments are stripped out using a preprocessing program. The
preprocessed files are used as inp"t to the model. All
documented data files were preprocessed before testing began to
ensure the data matched between the two types of files. The only
data file change required was to alter the control file (i.e.:
division.ctl). The control file is used to notify the model as
to which directory given module data can be found. The data for
each module was defined in this file. Module locations were
specified in the control file, thus:

FL /home/vicdev/data/division.fl
F1 /home/vicdev/data/division.fi
EW /home/vicdev/data/division.ew

-:etc>

Note that file location is given in UNIX format.

4. Building the running model.

a. Compilation. The VIC model was compiled two ways for
testing -- with subscript checking on and with subscript checking
off.

(1) With subscript checking on, the following commands
were used:

simc -cCg PREAMBLE.sim

simc -vcCglx PREAMBLE.sim $module.sim >$module.lis

Simc is the SIMSCRIPT compiler command. Module is a particular
module being compiled (i.e.: FL, DT, etc). Options listed with
this command are:

v - Do not generate object file for PREAMBLE.
c - Do not link any object files after compilation.
C - Perform subscript (runtime) checking.
g - Include code to provide detailed traceback information.

6

r

1 - Display a routine-by-routine listing.
x - Display a local cross-reference listing.

(2) With subscript checking off, the following commands
were used:

simc -cO PREAMBLE.sim

simc -vcO PREAMBLE.sim $module.sim

where the 0 option invokes the C compiler optimizer.

(3) Note that the output from model runs on the SUN 4
were compared using these two methods to verify that the
compilation option used created no differences. This was done to
double check the SIMSCRIPT compiler which is still undergoing a
maturing process, for use on the SUN 4.

(4) After compilation the object files were placed in an
archive library thus:

ar rvl vicon.a $module.o

where vicon.a (vicoff.a if subscript checking off used) is the
archive library. The options listed with the archive (ar)
command are as follows:

r - Replace file in library.
v - Verbose (show what is happening to archive library).
1 - Place temporary files generated in this directory.

(a) The SIMSCRIPT utility routines were compiled just as
above but were placed in a seperate archive library called util.a
(utoff.a if compiled with subscript checking off).

(b) FORTRAN routines were compiled, thus:

f77 -c -C routines.f -o routines.o

with options being:

c - Do not link objects created
C - Do bounds checking during runtime
o - Name of object created follows

The FORTRAN objects were placed in the utility archive library
with the SIMSCRIPT utility routines.

7

(5) When all libraries were completed, a table of symbol
definitions (to ease linking) were placed in the libraries using
the following command:

ranlib vicon.a

Anytime an object module needed to be replaced (due to code
changes) the table of symbol definitions was rebuilt using the
ranlib command.

(6) It should be noted that the SUN 4 SIMSCRIPT compiler
actually does a translation of SIMSCRIPT souce code to C language
code, then the C compiler is invoked to complete the compilation
to object level.

b. Link commands. Since the SIMSCPIPT source code is
translated to C language source, the compiler/loader command
shell that C.A.C.I. provided invoked the link loader after
compilation using the SUN 4 C language compiler command. Several
loader options are required when linking VIC using the C.A.C.I.-
provided shell. To make linking VIC easier, a copy of the
C.A.C.I. compiler/loader shell was modified for VIC use. This
command shell for linking VIC has the following structure:

ar xv vicon.a main.o
cc -Bstatic

main.o
vicon.a util.a
-isim -1F77 -l177 -im

-temp=.
-o vicon.out
rm main.o

The -1 option indicates the named library should be found in what
the system considers standard library locations. Thus either the
SIMSCRIPT library (libsim.a) needs to be put in one of these
locations or the location of the library needs to be explicitly
specified with a path (i.e.: /home/hannon/libsim.a). The
libraries required for FORTRAN are also placed in the above
command stream. All named libraries in the above command shell,
and by default C libraries are used to resolve routine references
during the link load.

Dynamic linking did not work with the SIMSCRIPT 1.0 release.
Therefore, static linking was used. The difference between these
two options for linking is having shared executable code invoked
at runtime (dynamic) or making all executable pieces part of the
VIC executable (static).

8

The -temp=. option forced all temporary files to reside in the
current directory. This assumes the current directory's top
level has enough storage space available.

c. Command file changes for running VIC. The command file
for running VIC on the VAX made a number of logical file
assignments before starting execution of the model. These VAX
assignments were replaced with UNIX links. An example of the
UNIX shell for running VIC follows:

shell script for running vic

change directory to location where model output is desired
cd /home/output

establish links
remember ctl file modified to have location of input files
in /home/input/division.ext SIMU02
In /home/input/division.ctl SIMU50

run model with input from shell for 12 hour test
end of input found with !, standard output goes to logfile
/home/model/vicon.out <<! >logfile
N
EH GA AG AD AT AM AH AA AI DT FL RD DS
WT TB EN SM MF LO GI FI EW CO CH PT
PROCEED
Q
E
E
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI

echo ' -- MODEL RUN COMPLETE '

(1) The model output will show up as SIMUXX files
(i.e.:SIMUl3). These can be renamed using the UNIX mv command
(i.e.:mv SIMU13 post.lis) or can be accessed with the correct

9

output file names using a shell which sets up logical connections
using the UNIX In command as shown above.

(2) If the model is accessing input and exporting output
to a VAX disk using the WOLLONGONG network file server software,
the link (in) command does not work. In this case, a straight
copy can be used in place of the in command, thus:

cp /home/input/division.ext SIMU02
cp /home/input/division.ctl SIMU50

d. System changes. When running the model with a very large
data base, it was found that the SUN 4 system allocation required
for swap memory needed to exceed 32 meg. This was necessary, not
only because of the swap memory used by the model, but also
because windows such as the SUNVIEW texteditor, clock, etc., use
swap memory. To get around this problem a little overkill was
used, and the swap memory allocation was set up to 66 meg.

5. Comparison of results.

a. The model results were compared for a number of test
cases. The first test consisted of comparing runs on-the SUN 4
when the model was compiled with subscript checking on, versus a
run where the model had subscript checking off and the C
optimizer was used when compiling. No differences were found.

b. A second test was designed to verify that the network
software was functioning as advertised. A SUN 4 VIC executable
was run with input data files residing on the SUN and output from
the model going to a SUN directory. Then, the same executable
was run on the SUN 4 with the input data files residing on the
VAX and output from the model going to the VAX. Again no
differences were found.

c. The benchmark test of the 1.2 reference version running
on the SUN to that same model running on the VAX, consisted of
comparing postprocessor output files, i.e., kills by weapon
category, etc. To cut down on possible items which had the
potential to effect the results seen, both the SUN 4 VIC 1.2
executable and the VAX VIC 1.2 executable ran from the same input
files (residing on the VAX). Also, the same postprocessor
executable (residing on the VAX) was used with output from both
VIC runs. Even though the postprocessor at TRAC-FLVN has been
converted for use on the SUN 4, for purity of test results, it
was not used in the benchmarking procedure.

d. The VIC model provides the capability to execute only
selected modules, so the test was conducted in an incremental

10

fashion. When initial modules were executed such as direct fire
and artillery, results were identical. However as more modules
were added results began to differ slightly. In exploring why
this occurred it was found that the sequencing of model events
were not always in the same order when comparing the VAX and SUN
runs. The root o: the problem was that VIC 1.2 has its' basic
unit of simulation time defined in terms of days. When the VIC
model scheduled various events/processes to occur at certain
minute times (i.e.: artillery every 15 minutes, intelligence
sensors on and off on some minute cycles) the model was forced to
convert the scheduled time to an equivalent in days. The
floating point precision between the SUN and the VAX differed on
these scheduled times, thus causing certain events/processes to
occcur in a different sequence. This caused differences in model
results. To demonstrate how the event/process ordering differed
between the two computer systems, the following test program was
run:

PREAMBLE

EVENTS INCLUDE
EV.ONE,
EV.THREE

PROCESSES INCLUDE
PR.TWO,
PR.FOUR

PRIORIY ORDER IS
EV.ONE,
PR.TWO,
EV.THREE,
PR.FOUR
END. SIMULATION

END

MAIN

SCHEDULE A EV.ONE IN 2 MINUTES
ACTIVATE A PR.TWO IN 1 MINUTES
SCHEDULE A EV.THREE IN 2 MINUTES
ACTIVATE A PR.FOUR IN 1 MINUTES
SCHEDULE A END.SIMULATION IN 20 MINUTES

START SIMULATION

STOP
END

21

EVENT EV.ONE SAVING THE EVENT NOTICE
WRITE AS " ENTERED 1",/
RESCHEDULE THIS EV.ONE IN 2 MINUTES
RETURN
END

PROCESS PR.TWO
UNTIL 1=2, DO
WORK 1 MINUTE
WRITE AS " ENTERED 2",/
WAIT 1 MINUTE

LOOP
RETURN
END

EVENT EV.THREE SAVING THE EVENT NOTICE
WRITE AS " ENTERED 3',/
RESCHEDULE THIS EV.THREE IN 2 MINUTES
RETURN
END

PROCESS PR.FOUR
UNTIL 1=2, DO
WORK 1 MINUTE
WRITE AS " ENTERED 4" ,/
WAIT 1 MINUTE

LOOP
RETURN
END

EVENT END. SIMULATION
STOP
END

(1) The design of the above program was based loosely on
artillery code and intelligence code found in VIC. These modules
were the ones under investigation when the ordering problem was
uncovered. Since in the above program events are on a 2 minute
cycle and processes are waiting 1 minute then working 1 minute
the priority ordering should force the write statements to output
every 2 minutes of simulation time in the following order
(always!):

ENTERED 1
ENTERED 2
ENTERED 3
ENTERED 4

12

(2) Because of floating point precision in converting
minutes to days this does not happen. Results from running the
above program on the various systems were as follows:

VAX SYSTEM SUN SYSTEM

ENTERED 1 ENTERED 1
ENTERED 2 ENTERED 2
ENTERED 3 ENTERED 3
ENTERED 4 ENTERED 4

ENTERED 1 ENTERED 1
-- > ENTERED 3 ENTERED 2 <--
-- > ENTERED 2 ENTERED 3 <--

ENTERED 4 ENTERED 4

ENTERED 1 ENTERED 1
ENTERED 2 ENTERED 2
ENTERED 3 ENTERED 3
ENTERED 4 ENTERED 4

ENTERED 1 ENTERED 1
ENTERED 2 ENTERED 2
ENTERED 3 ENTERED 3
ENTERED 4 ENTERED 4

ENTERED 1 ENTERED I
ENTERED 2 ENTERED 2
ENTERED 3 ENTERED 3
ENTERED 4 ENTERED 4

ENTERED 1 ENTERED 1
ENTERED 2 ENTERED 2
ENTERED 3 ENTERED 3
ENTERED 4 ENTERED 4

-- > ENTERED 2 ENTERED 2 <--
ENTERED 4 ENTERED 4
ENTERED 1 ENTERED 1
ENTERED 3 ENTERED 3

ENTERED 2 ENTERED 2
ENTERED 4 ENTERED 4
ENTERED 1 ENTERED 1
ENTERED 3 ENTERED 3

13

ENTERED 2 ENTERED 2
ENTERED 4 ENTERED 4
ENTERED 1 ENTERED 1
ENTERED 3 ENTERED 3

ENTERED 2 ENTERED 2
ENTERED 4 ENTERED 4

Note that the VAX ordering becomes incorrect early on causing a
difference between the ordering shown with the SUN 4. Later the
SUN 4 ordering gets out of sequence but matches the VAX incorrect
ordering at this time. As the simulation is run longer the
ordering of events between the two systems will continue to
differ at various times. Perhaps not so obvious from this test
when looking at the results is that the end.simulation event
occurred before events ev.one and ev.three. This should not have
happened given the priority order set up in the preamble, but is
again caused by the floating point precision problem when
converting minutes to days. While other precision differences in
executing the VIC code on the two systems will cause result
differences, tracking these are very difficult given that game
time events occur at different times between the systems.

e. A production version of VIC being used for the Close
Combat Capabilities Analysis (C3A) study was converted to the SUN
4 to get a feel for not only how significantly the results
differed, but also to find out how run speed compared between the
VAX 8600 and the SUN 4. The model outputs were analyzed by the
C3A study team who found that results matched in some areas and
were 5 percent or less off in other areas. The study team
concluded that the SUN 4 results were within an acceptable
tolerance as differences tended to compensate in the aggregate.
Given this the study team recommended use of VIC on the SUN 4.

6. Conclusion.

a. Under the current SIMSCRIPT 1.0 compiler release there is
quite a penalty in run speed when running with subscript checking
on. Mr. Paul Close from C.A.C.I., who generated the SUN 4
SIMSCRIPT compiler, stated the next compiler release should
impose far less of a run speed penalty when running with
subscript checking on. Additionally, features such as
checkpoint/restart should be available.

b. When VIC was run on the SUN 4 with the C3A data base for
a 48-hour simulation time, it completed in 8 hours and 56

14

minutes. The same run on the VAX 8600 took about 18 hours. Work
going on at Los Alamos with VIC on the SUN 4 and further work
here at TRAC-FLVN has the potential to increase the run speed
even more.

c. Any questions regarding the VIC 1.2 conversion effort at
TRAC-FLVN should be directed to Mr Mike Hannon, TRAC-FLVN, AV
552-5418/5419.

15

DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
ATTN: DTIC, TCA
Cameron Station
Alexandria, VA 22314

US Army Library
Army Study Documentation and Information

Retrival System (ASDIRS)
ANRAL-RS
ATTN: ASDIRS
Room 1A518, The Pentagon
Washington, D.C. 20310

US Army TRADOC Analysis Command-WSMR 1
ATTN: ATRC-WSL (Technical Library)
White Sands Missile Range, NM 88002-5502

US ARMY TRADOC Analysis Command-FLVN
ATTN: ATRC-FOA (Technical Info Center)
Fort Leavenworth, KS 66027-5200

US Army Combined Arms Research Library (CARL)
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027-5000

Commander
US Army TRADOC Analysis Command
ATTN: ATRC
Fort Leavenworth, KS 66027-5200

Thru: Director, TRAC-Fort Leavenworth
ATTN: ATRC-F
Fort Leavenworth, KS 66027-5200

16

