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19. " a grid topology to be coupled to the Euler equation solver. A finite-volume and
central-difference scheme is used by the method.; The finite-volume method does not
require grid lines to be continuous in slope, or orthogonal; thus the grid can be
generated by a variety of ways, including those which do not directly enforce ortho-
gonality. Boundary conditions are applied in the FLO57 Euler method in a variety of
ways, some of which require an extrapolation of interior flow variables to the grid
boundaries. Although the boundary conditions do not explicitly require orthogonal
grids, it is reasonable, when considering-the boundary condition extrapolation, that
orthogonality at the grid boundaries would improve the code's accuracy.
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N INTRCGUCTION

&5 The solution of the Fuler equatiuns for aircraft flow fields involves two
\i

o

j; mcjor problems: grid generation and flow equation solution, A grid must be

Aiﬁ gererated for each new configuration to be studied. The grid must accurately
)

" . .. .

oS mode] the configuration surface geometry and provide sufficient grid

N,

B ‘e . . .

K- resolution in the regdion,around the confiuuration to capture the flow details,
‘ L]

e

1054 Due to current computer speed and memory limits, a computational aerodynamics

P ¢ode must be Timited in the number of ¢grid points it uses, and therefore the
Cal

o

:: aric point locaticons must be chosen carefully. The following pages describe
o

)

:: the development and application of a delta wing grid tcpology.

D)

a2 Grid generation methcds should be tailored according to both the physics
.

:;t of the flow and the flow equation solution method. The primary flow charac-
Cd

S

o, teristic of the delta wing is the leadiny-edge separaticn that rolls up into a

vortex, The vortex position, size and strength are dependent on many factors,

Py

- P
4

one of which is the leading-edge shape. A sharp leading edge will generally

o

produce a vortex nriginating at the edge, while a round Teading edge may

:}- produce a seperation point more inboard on the upper surface thus increasing
\"‘

:ﬁ the strength of the vortex., The leading-edge grid must be fine enough to 1
o

L , . - 03 - 3
o permit the flow solver to capture the flow gradients contributing to leading-
o ~rdge separation in order to accurately predict vortex core position and

~

T strength, UGownstream of the wing, the vortex core will ditfuse to a degree,
'_‘J

N .

W ¢nd may even burst or breakdown, If a computational method, such as an Euler
s solver, is going to precict the occurrence of vortex burst, the downsteam grid
fj must edequately resolve the vortex flow. Fven for cases where burst is not a
X

-

}j consideration, the grid imnediately downstream of the wing must be dense

o
s enough to accurately predict the trailing-edge flow field.
[ o
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The Euler equation solver used in thic work is FLGE7 (Ref. 1). While
F1L.O57 has previously been applied to delta wing configuration, the huilt-in
grid generaticn in FLG57 is inadequate for delta wings. The grid does not
wodel the wingtip and procuces a downstream grid which is highly skewed 1or
configurations with large leading-edge sweeps. A few aspects of FLOL7 should
be kept in niind when considering a grid topology to be coupled to the Euler
equation solver. A finite-volume and centrai-difference scheme is used by the
method, The finite-volume nethod does not require grid lines to be continuous
in slope, or orthogunal; thus, the grid can be generated by a variety of ways,
including those which de ret directly enforce orthogonality. The total grid
may also be broken up into several regions and each reqion yenerated
separately, as long as grid lines are continuous across region boundaries. A
highly skewed grid, however, will generate inaccurate flow field solutions;
i.d., a fact that must be kept in mind when considering nonorthogonal grids,

The central-difference scheme is used to calculate mass, momentum, and
energy fluxes across each grid cell face by averaging the flow variable values
adjacent tc the cell face. This calculation procedure assumes that the
distance between the cell face, where the flux is calculated, and the cell
center, where the flow variables are calculated, is apprcximately the same for
neighboring cells. Should the grid point spacing vary extremely rapidly or in
¢ nonsmooth fashiun, the simple averaying of variables will produce an inaccu-
rate approximation tu the cell face flux., The far-field grid region typically
has rapid grid stretching; however, the flow solution accuracy is not signifi-
cantly degraded in this reyion due to the nearly uniform flow at the far
tield.

Poundary conditions are applied in the FLO57 Euler method in a variety of

ways, some of which reguire an extrapolation of interior flow variables to the

e Y
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grid boundaries. Although the boundary conditions do not explicitly require

o
hY

orthogonal grids, it is reasonable, when considering the boundary condition

-
[ u® ¢

L R Y

extrapolation, that orthogonality at the grid boundaries would improve the

A Y
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code's accuracy.
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- SECTION 11

;& GRID TOPOLOCY

?;, The new delta wing grid developed during this effort is based or & previ-
‘;E ously developed two-dimensional (2-D) gria topoloay for equilateral triangles
::% (Ref. 2), Fia. 1. The leading edge and wingtip are considered to be a single
t?‘ side of the equilateral-triangle grid. The singuliarity point is positioned on
&g the root chord anc therefore should not be in any streng flow gradients region
?: for most problems of interest, Fiqures 2a-c show the wing surface topology

o tor ¢ 65° leading-edge sweep, cropped delta wing. This topology permits 3

;Ez uniform grid point spacing and cell size along the entire length of the

':: Teading edge.  Grid cells can be clustered forward on the wing by moving the
::j singularity point forward, thus permitting adequate grid resoluticr to capture
i; the strung flow gradients in the apex region.

ﬁ: The rew delte wing grid s intended primarily for use with the FLOS7 Euler

SN

<7

analysis code. In order to couple the new grid topology to the existing FLOS7
:: Euler cocde with as few changes to FL0O5/ as possible, the following grid index
33 system was adopted. The ¢rid lires that wrap across the wing surface and
f:; around the leading edge of the wing will be referred to as the I-varying (K
‘EE constant) grid Tires. (See 3a.) The 1 = 1 grid points are located on the
if wing's lower surface roct chorcd., The 1 - Imax grid points are located on the
:L wing's upper surface root chord. The line forming the forward part of the
.o

»
#

rcot chord starts ot the lower surface singularity, varies in I and moves

-

AN - s e e
U O

forward arcund the leading edqge and proceeds aft to the upper surface singular-

ity. This grid line ic varying in I and has a constant ¥ value of ore, The

- F-varying family of curves start at the forward plare of symmetry with a value
'4j nf one and follows peths aft to the downstream exit plane, Thus, the wing's
L
D trailing edge i< formed by a grid line varying in I and a constant K value.
\t
=
B :-‘,
B .- 4
®
L
L
Cad
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To form ¢ three-dimersional (3-U) grid, the C-H grid topology in FLO57
was partially werged to the delta wing grid topolocy to form a wrapped C-H
grid. Fach U wrap followed ap [-varying grid line, with the 0 wraps being
almost spanwise cuts near the wing's trailing edge. A typical 0 wrap from the
3-[ ¢rid is shown in Figs. 4a and b, The wing surface was formed by the J = 1

gric points and the J grid points form the outer shell of the 3-D grid.

max
The delta wing grid tepology is not totally new and is easy to follow if the
viewer considers the grid to be a series of 2-D 0 grids stacked together to
fern the 3-D grid, Figures 3a and b show the plane-of-symmetry grid with
inCex directions indicated.

To couple the 2-D delta wing grid to FLO57, the boundary conditions tc be
applied on each face of the 3-0C computational cube must be determined. The J
= 1 side is the wing surface for all K values less than or equal to the K
value of the wing's trailing edge. For J = 1 and K values greater than K
trailing edge value, the grid collapses to a slit line and a flow through
boundary condition is used. The J = Jmax side is the far-field grid and
appropridte in-flow/out-flow boundary conditions apply. The plane-of-symmetry
grid is forned by the [ = 1, 1 = Imax and the K = 1 sides of the computational

yrid. The only remaining side of the computational space is the K = Kmax side
and this is the downstream boundary grid where appropriate out-flow bhoundary

conditions are applied.
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SECTION 111
GRID GENERATION

The delta wing grid used in the Euler computation wes developed in three
phases: Z-D boundary grids, 3-D wncerior grid, and algebraic downstream grid.
The 2-D grids are the six sides of the 3-D arid, consisting ot the winy upper
and lower surfaces, symmetry plane (3 sides), far field outer shell, and the
trailing-edge plane, The symmetry plane is generated as a single surtace, but
1S actually three sides of the computational space as described in the grid
topology section. It is desirable to directly control grid spacing and shape
upstream of the rnot chord, and spanwise beyond the wingtip. To control the
wingtip region, the delta wing grid is divided by a 2-D surface grid along the
wing trailing edge extending outwards to the far-field grid. Grid spacing on
the Z-D divider grid is specified in both spanwise and vertical directions,
thus, providing the desired grid control in the wingtip region. The 3-D grid
upstream of the wing trailing edge is complex in topology and is created by
the 3-D elliptic grid generation program, which, when properly applied,
prcduces a smoothly varying grid. The downstream grid, cn the other hand, is
essentially 2-D in topology and is created by an algebraic method. The
junction between the twe subgrids is not continuous in regards to grid line
slupe, but a mild variation in slope continuity will not proc.ce significant
errors in a finite volume flow solver,

TWO-CIMENSIONAL BOUNDARY GRIDS (2-D)

The wing surface toupology as previously described, is not unique, but is
very demanding of the arid generation method. A desirable feature of such &
method is the ability to specify the orid spacing along the root chord,
trailing and leading edges, then assimilate this spacing smouthly into the

interjor of the gria. A method for generating quasi 2-D grids on curved




surfaces by Thomas (Ref. 3) exhibits the desired feature. The quesi 2-D
method was derived from the 3-D e1liptic grid generation method by Thompson
(Pet. 2), by rewriting the 3-D equation for grid points being constrained to a
3-D surface. Thus, the ¢-D method accounts for ¢rid point spacing and
position based on a 3-D position vector, not a 2-0 position vector. The wing
leading-edge region is where the added dimension makes the biggest ditterence.
An additional term in the quasi 2-D wethod. but not found in the 3-D
equations, draws grid points toward regions of high curvature, thus, producing
a more accurate modeling of the curvature. The grid spacing in the interior
of the grid is controlled by the grid point spacing on the boundaries by

adding source terms to the elliptic equation. The source term values are

computed solely from the boundary grid point spacing and then interpolated
into the interior grid. The final product of this method is a grid that has
smoothly varying grid point positions and reflects the grid point spacing of
the boundaries. Appendix A 1ists the quasi 2-D elliptic equations.
WING SURFACE

The wing upper ancd lower surfaces are generated separately and then
Joinec together. Grid point spacing is specified at four points on the wing
surfaces, as shown in Fig. 2¢ with T1, T2, T3, and T4 as input parumeters.
The root chord is first spline fitted from the input airfoil shape. Grid
points are then distributed along the root chord based on arc length, with the
leading-edge spacing being T1 percent of the total root chord arc length and
the trailing-edge spacing being T2 percent of the total arc length. A hyper-
belic tangent stretching routine, developed by Virokur (Ref. 4), is used to
determine the remaining grid point positions. The grid point spacing along
the trailing edge is controlled by the T3 and T4 parameters. The spacing at

the wingtip is T3 times T1; therefore, a value of 1.0 for T3 will create an
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_2; constant. grid spacing along the leading edge over the entire length of the
K-
:5; leading edge and wingtip. Even spacing is used along the combined length of
- the leading edge plus wingtip. The grid spacing along the trailing edge at
o
' the root chord is T4 percent ot trailing-edge arc length. The remaining
v
!it‘ trailing-edge points (between T3 and T4) are disrtributed based on the hyper-
; Y bolic tangent stretching function,
*l
10 The wing surface is c¢enerated using the quasi 2-D method and the boundary
\
35; spacing as just described. The thickness of the wing at each grid point is
W linearly interpolated from airfoil cross sections provided as user input. The
Y2
:EE wingtip is rounded over the last 2 percent of semispan as seen in Fig. 5.
0 PLANE OF SYMMETRY
‘: The plane-cf-symmetry grid (or wall in a wing-on-a-wall calculation) is
::; created by the same 2-D elliptic method as the wing surface, simply by
lﬂf rotating the symmetry plane into the wing plane and setting all thickness
({\ values tou zero. The symmetry plane is divided into upper and lower halves,
S
:ws and a separate grid is generated for each half. The two halves are rejoined
"
108
$§ and the joining line is adjusted to give smooth grid lines across the joint.
o The upper and lower halves of the symmetry plane with the sides numbered for
T
'zj reference are shown in Fig., 6a-d. Side two is the wing root chord with grid
W)
;{j point spacing defined by the wing surface grids. Sides one and four were
®
5 straight lines with grid spacing at the ront chord, far field and overall
¢
:j lengths of these lines specified by the user as input parameters T5, T6, and
1:; T7 on side ore and T8, T9, and T10 on side four. The remaining grid points
[ ]
T along sides one and four are distributed using the hyperbolic tangent
|:f stretching routine.
) '~',
L=
g:} Once the upper and Jower halves of the symmetry plares are created, the
:;{ grid points con side one are adjusted to obtain continuous second derivatives
o
b~
i w-:
- 8
o
7
Y
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in grid spacing for the tamily of lines croussing side one. By using two grid
points on one side of side one and one grid point of the some curve on the
other side, secund derivatives in grid spacing can be computed on both sides
of side one. By averaging the two values obtained, a first-order accurate
approximation of the second derivative in grid spacing is obtained for pouints
on side one. Using this approximation and the position of the grid points
immediately on either side of side one, the grid points on side one are
repositioned to satisiy the second-order derivative equation written for side
one points. The result of this repositioning is a continuous second
derivative in grid spacing across the interface of side one.

The 2-D elliptic method used does not directly enforce orthogonality at
the boundaries. The S1 term in the source terms influences the curvature of a
grid line (Ref. 3 and Appendix A). The scurce term is normally computed
automatically from the boundary grid point position and spacing. By locally
adjusting the value of S1, the boundary grids are made more nearly orthogonal.
The S1 parameter was set by trial and error, for the grids included in this
report at the wing leading edge in the plane-of-symmetry grid, and at the
wingtip in the trailing-edge grid to improve orthogonality at the wing surface
beyond that which is obtained from using the automatic controls.

TRAILING-EDGE GRID

The 2-D trailing-edge grid divides the total 3-D physical grid into two
parts: the portion upstream of the wing trailing edge and the portion down-
stream of the trailing edge. This grid is created in essentially the same way
as the symmetry plane grid, but the trailing-edge shape and thickness is
modeled instead of the root chord. The upper and lower halves of the grid are
created separately. The halves are joined together and the joint line is then

smoothed. Indicated in Fig. 7 is the trailing-edge grid side numbering anrd
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::ﬁ spacing parameters used in the computer code. Note the use of T2 and T9 to
s

N control spanwise grid spacing,
!._ Side two is the wing's trailing edge and is generated during the wing
o

aii surface grid calcuiations. Sides one and four are straight lines with end
LAY

:;? point grid spacing and overall lengths specified as input parameters. The
;'f remaining side one and side four grid points are distributed by the 1-D hyper-
2o,

:;: bolic tangent stretching rcutine. Side three is elliptic in shape and has
150

!55 even grid point spacing. Figures 8a and b show a typical trailing-edge grid.
E-f Even though this grid is generated in 2-D, the wing trailing edge need not be
L

.:: a straight line.

SN

R FAR-FIELD CAP GRID

=

T The last grid required to complete the boundaries of the 3-D physical
e

0N

‘\E; space is the far-field cap grid. This grid is an ellipsoid that is created
N

;“;] using the quasi 2-D elliptic method. The far-field cap is identical to the
g; wing surface in topology and side numbering (Figs. 9a and b). A1l sides

R L . . .

NN except the elliptical shaped side three are defined by sides of the other
Lo

- quasi Z-D surfaces. An even grid spacing for the entire farfield cap is used
o on side three.

'\'I

)

el THREE-DIMENSIONAL GRID (3-D)

N

':; The 3-D grid method used to generate the delta wing grid was developed by
L

}ij Thomas (Ref. 3). This nethod is also the basis for the 2-D method previously
e

A described, The standard 3-D elliptic equation was extended to Poisson's

;;Z equation by inclusion of source terms that caused a mimicking of the 2-D

[ ]

;t: boundary grid point spacing in the interior of the 3-D grid. Appendix B
Tl

e outlines the 3-D elliptic equations used in this method. Since all grid
3 .i'

ldﬁ spacing control is evaluated from the 2-D boundary grids in this method, the
®

;2ﬁ 3-D grid generator can be applied to a variety of topologies without any
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special considerations., The grid singularity found in this delta wing grid
topology did prevent standard calculation of the S1 curvature term at the
singularity. The S1 term is not essential to producing a high quality grid
and has been included in the 3-D method only for completeness., The second
curvature term, S2, is, however, critical to achieving high quality grids
around the leading edge of the delta wing. This term is computed
automatically from the 2-0 boundary grids and then interior values are
interpolated from the boundary values.

The method used to determine the values of S1 and 52 in the interior of
the 3-L grid is 2-D transfinite interpolation, more correctly known as blended
bilinear interpolation. The details of blended bilinear interpolation are
included in Appendix C.

The 3-D elliptic equations are solved using a point over-relaxation

scheme. Point iteration schemes are typically slower to converge than are
line iteration and more complex schemes, but are more robust. The iteration
process requires that an initial guess of the grid point locations be made
prior to iterating. The favorable characteristics range of point iteration !
schemes permits the initial guess to be generated by simple and quick methods.

The method used to generate the initial guess is blended trilinear interpola-

tion. The details of blended trilinear interpolation are included in Appendix

D.

ALGEBRAIC DOWNSTREAM GRID

The grid downstream of the wing's trailing edge is generated algebrai-
cally. A 2-D grid of the same outer shape as the wing trailing-edge grid is
constructed at the downstream boundary, consisting of concentric ellipses,
with the intermost ellipse being a slit line. The spacing of grid points on

the slit line and the spacing between the concentric ellipses is determined by

11
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the computer code. The interior of the downstream gria is generated by simple
Tinear interpolation between the wing trailing-edge grid and the downstream
grid. The streamwise spacing of the interior is determined by the hyperbolic
tangent stretching routine. The grid spacing along the K-varying lines is
continuous across the wing's trailing edge.

COMPUTER PROGRAMS

' }f o e O e N A

Twe computer programs perform the grid generation described in this
paper, The first progran generates the six 2-D sides (a more correct term
would be "surfaces") of the 3-D grid as outlined in parts 1-5 of this section.
Appendix E provides directions for use of this program. The second program
generates the complete 3-D grid and requires only the output of the first

program as input data.
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SECTICN 1V

GR1D APPLICATIONS

The 2-D and 3-D elliptic grid generation codes described in this paper
have been applied to several geometries. Two configurations of interest for
which Euler solutions have been obtained are a cropped delta wing and a blunt
nose missile body. The crupped delta wing configuration is depicted in Figs.
1-9. Euler solutions for this configuration at Mach numbers of 0.4 and 0.85
are in good ayreement with experimental results. Drag polars for this
configuration (Figs. 10 and 11) indicate that the generated grid appears
adequate to capture the major flow features, including what appears to be
vortex breakdown. The predicted drag polar has been shifted to reflect zero
lift drag.

The delta wing grid topology was applied to a blunt nose elliptical cross
section missile body (Ref. 5). The missile nose grid and a slice through the
3-D space is shown in Fig. 12, and the 2-D missile base grid (corresponding to
the delta wing's trailing edge) is shown in Fig. 13. Again the 3-D grid
generated appears adequate to resclve the major flow features of this configu-
ration as is demonstrated by the excellent agreement between predicted and
experimental normal force coefficients at Mach 2.0 for angles of attack up to !

14.0 degrees (Fig. 14).

13



SECTICN V
CONCLUSIONS
A gric¢ topology and grid generation method for delta and cropped delta

wings has been described and demonstrated. The grid topology has been adapted
from a similar topology previously used for & different application. The grid
generation method uses & blend of partial differential equations and algebraic
interpolation. The resulting grids have been used in conjunction with an
Euler equation solver to accurately predict the flow about two configurations.
The guality of the prediction is extremely comparable to results produced in a
similar effort of advanced grid generation and flow solution for a delta wing

configuration (Ref. 6),
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LIST OF SYMBOLS

2-D = two-dimensional
3~ = three-dimensional
CD = coefficient of drag, referenced to wing area
CL = coefficient of 1ift, referenced to wing area
CN = coefficient of normal force, referenced to base area
I,J, ¥ = grid indices
max = maximum 1 grid index
Jmax = maximum J grid index
Kmax = maximum K grid index
) = grid generation source term
T = grid generation spacing control term
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) APPENDIX A

Bl QUASI 2-D ELLIPTIC EQUATIONS

g (Ref. 3)
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K, APPENDIX R
: 3-D ELLIPTIC EQUATICNS
l'i (Ref., 3)
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APPERUIX C
BLENDED BILINEAR INTERPOLATION
(Ref, 7 )
Purpose:
Interpolate function F(s,t) which is known on the houndaries of a 2-D }
computational space. The computstional space has dimension which vary in a
direction s from 0 to 1 and in a direction t from 0 to 1.

Assume blended bilinear interpolants of the form: 1

P
3

Py

(1 - s) F(O,t) + sF(1,t)

(1 - t) F(s,0) + tF(s,1).

The function F(s,t) is interpolated on the computational space by the

rule:
F(s,t) = P + Py = PP,
or
F(s,t) = (1 -5s) * F(0,t)
+ ( s * F(1,t)

)
) * F(s,0)
+ ( t) * F(s,1)
y * (1 - t) * F(0,0)

(1 -s)*( t)*F0,0
- s)* (1-1)*F(1,0)
- sy x () *F(1,1).
Grid generation is actually performed on a computational space that

varies in an I direction from 1 to Imax and in a J direction from 1 to Jmax’

The 1 and J indices are related to s and t by

s ={(1-1)/ (Imax - 1) and

F=(0-1) /(9 -1

it
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APPENDIX D
BLENDED TRILINEAR INTERPOLATIONS
(Ref, 7)
Purpose:

Interpolate function F(s,t,u) which is known on the boundaries of a 3-D
compuiational space. The computational space has dimensions which vary in a
direction s from 0 to !, in a direction t from O to 1 and in a direction u
from 0 to 1.

Assume blended trilinear interpolants of the form:

P, = (1 -s) F(O,t,u) + sF(1,t,u)
Pt = (1-t) F(s,0,u) + tF(s,1,u)
Pu = (1 - u) F(s,t,0) + uF(s,t,1).

The function F(s,t,u) is interpolated on the computaticnal space bv the
rule:

F(s,t,u) = PS + P+ Pu - PSPt - Ptpu - Pups + PSPtPu

where,

PSPf = (1-358)(1-~1t)F(0,0,u)
+ (1 -5) ( t) F(0,1,u)

+ ( S) (1 = t) F(I,O,U)

+ s) ( t) F(1,1,u)

pru = (] - t) (1 - u) F(S’OQO)
e (1 - 1) ( u) F(s,0,1)
+ ( t} (1 - u) F(s,1,0)

+ ( t) ( u) F(s,1,1)

PUPS = (1 -wu; (1 ~s) F(0,t,0)
+ (1 - u) ( s) F(1,t,0)

+ ( uy (1 -s) F(0,t,1)

+ ( u) ( s) F(1,t,1)




Wk ¥R W Rl AL ab Al ‘af Sall Vud S0 0.0 A AR AR 'S "
)

: PPP, = (1= 5) (1-1) (1-u) F(0,0,0)

. +(1-5) (1 -t)( u) F(C,0,1)

- +(1-s)( t)(1-u)F(0,1,0)

' + (1 -s)( t) ( u) F(0,1,1)

o + s) (1 -t) (1-u) F(1,0,0)

4 +(s)(1-1)(  u)F(1,0,1)

: +( s)( t)(1-u)F(1,1,0)

¢ +( sy (1) u)F(1,1,1)

8

B The relation between the interpolationr variables s, t, and u and the grid
. generation variables 1, J, and K are:

: s=(1-1)/ (I -1

(¢~ 1)/ (g = 1
(K-1) /(K - 1)

‘ t

<
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APPENDIX E

2-D Grid Generation Code Input Directions

all data is in free format
Cards 2, 4, 6, 10, 14, 19 and 22 are data set header cards and must

be input as indicated; i.e., data is not entered on those cards.

Card #

.

title
MI MJ MK #ITER SIGMA TOC R

mi mj mk fiter sigma toc r

mi = number of grid pts in the I direction
mj = number of grid pts in the J direction
mk = number of grid pts in the K direction
#iter = number of iteration

sigma = spline fit coefficient

0 » cubic spline fit
+ « » straight line fit

toc = percent increase of input airfoil coordinates
1 » no change to input coordinates

r = relaxation factor, 0 < r < 2 (1.1 has been used with some
success)

T1 T2 T3 T4 T5 Te T7 T8 T9 T10 TI1
tl tZz t3 t4 t5 t6 t7 t8& t9 tl0 tll

t1 = percent of root chord arch length for the leading grid point
spacing on the root chord.

t2 = percent of root chord arch lenath for the trailing grid
point spacing on the root chord.

t3 = spanwise trailing-edge grid spacing at the tip, ratioed to
tl; t3 = 1. will cause leading spacing to be constant from
root to tip.

t4 = spanwise trailing-edge grid spacing in percent semispar at

the root chord,
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to = leading edge root chord stand-ofr distance of J = 2 layer,
in percent root chord.
t6 = far-field yrid spacing along J line extending through root
chord leading edge, in percent root chord.
t7 = distance from leading edge root chord to far field in
percent rcot chord,
t& = tip spanwise stand-oft distance of J = 2 layer, in percent
root chord,
t9 = spanwise grid spacinrg at the far field on the trailing edge
grid, in percent root chord,
t10 = distance spanwise from wingtip trailing edge to far field,
in percent root chord.
t11 = vertical distance from root chord trailing edge to
far field, in percent root chord.
€. LEACING-ECGE SHAPF
7. #lepts
#lepts = number of points defining wing's leading edge and
tip.,
8. yl Yo .o Y

spanwise coordinates of points describing the wingtip and
leading edge, from wingtip trailing edge to leading-edge root
chord,

9. X X

1 X5 . n
spanwise coordinates of points describing the wing tip and
leading edge, from wing tip trailing edge to leading edge root

chord.
° 10. TRAILING-ECGE SHAPE
A 11. #tepts
."".
“:J 1” v} \
.:-j [ B 1 )’Z Y jn
"2

spanwise coordinates of points describing the wing trailing edge,
from root to tip.
13. X

X X

1 2 Tt n

spanwise coordinates of points describing the wing trailing edge,
from root tec tip.

A
N 4. UPPER SURFACE AIRFOIL DATA
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EQE 15. ninsecu
{25 ninsecu = number of airfoil sections describing the wing upper
( surface.
- 16. RIRFOIL SECTION IDENTIFIER
(- 17. nptsec xlesec ylesec xtesec ytesec
b nptsec = number of data points describing the airfoil section,
Sjij xlesec, ylesec = the streamwise and spanwise coordinatec of the
T section leadingy edge.
A
s xtesec, ytesec = the strearwise and spanwise coordinates of the

S

section trailing edge.

16, -

LrulY
DI
> <
[aN] —

N [
N —

¥
el

O aaing ;
2. @
RSN

o~
kg
{.‘{i"

XNPTSEC  NPTSEC

airfoil section coordinates ncndimenionalized by local chord,
leading edge x = 0.

Ly
) trailing edge x = 1. ¢r 100.

-f% Repeat cards 16, 17, and 16 NINSECU times to enter all upper surface
N airfoil sections.

o

o 19. WINGTIP SHAPE

®
n:;: 20. npttip = number of points describing the true wingtip (zero
e thickness) camber shape.

.

. X2 %2

o .
i '::~ X . z .

o npttip npttip

\.'.n.
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PLANFORM INPUTS

(X )

NLEPTS, YNLEPTS

(Xpesec, YLEseC

i (Xl, Yl) for leading
(X Y.) edge and tip

for trailing edge (XyrEpTs’ YNTEPTS'

(X Y )

TESEC’ “TESEC

AIRFOIL SECTION INPUTS

X

1r 1 (Xyprsec’ Znprsec’

Figure El. Input Data Definitions
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