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SECTION I

INTRODUCTION

The solution of the Euler equations for aircraft flow fields involves two

'm6jor problems: grid generation and flow equation solution. A grid must be

enprated for each new configuration to be studied. The grid must accurotely

model the configuration surface geometry and provide sufficient grid

resolution in th- reg'ionaround the confiiuration to capture the flow details.

Due to current computer speed and memory limits, a computational aerodynamics

(nde must be limited in the number of grid points it uses, and therefore the

aria point locatiorns must be chosen carefully. The following pages describe

the development and application of a delta wing grid topology.

Grid generation methods should be tailored according to both the physics

of the flow and the flow equation solution method. The primary flow charac-

1 i teristic of the delta wing is the leading-edge separation that rolls up into a

vortex. The vortex position, size and strength are dependent on many factors,

one of which is the leading-edge shape. A sharp leading edge will generally

produce a vortex originating at the edge, while a round leading edge may

produce a separation point more inboard on the upper surface thus increasing

the strength of the vortex. The leading-edge grid must be fine enough to

permit the flow solver to capture the flow gradients contributing to leading-

edge separation in order to accurately predict vortex cnre position and

strength. Downstream of the wing, the vortex core will diffuse to a degree,

• (;nd may oven burst or breakdown. If a computational method, such as an Euler

S
-olver, is going to predictI the occurrence of vortex burst, the downstean grid

I.
-" mrust adequately rasolve the vortex flow. Fven for cases where burst is vot a

consideration, the grid imnediately downstream of the wing must be dense

e nough to accurately predict the trailinq-edge flow field.
S.,



The Euler equation solvEfr used in this work is FtC!7 (Ref. 1). Wh ile

S1F1057 has previously been applied to delta winui configuration, the built-in

urid generation in FL057 is inadequate for delta wings. The grid does riot

model the wingtip and produces a downstream grid which is highly skewed bor

* configurations with large leading-edge sweeps. A few aspects of FLOc'7 should

be kept in ii.ind when considering a grid topology to be coupled to the Euler

equation solver. A finite-volume and central-difference scheme is used by the

method. The finite-volume mrthod does not require grid lines to be continuous

in slope, or orthognal; thus, the grid can be generated by a variety of ways,

including those which do not directly enforce orthogonality. The total grid

may also he broken up into several regions and each region generated

separately, as long as grid lines are continuous across region boundaries. A

highly skewed grid, however, will generate inaccurate flow field solutions;

i.d., a fact that must be kept in mind when considering nonorthogonal grids.

The central-difference scheme is used to calculate mass, momentum, and

energy fluxes across each grid cell face by averaging the flow variable values

adjacent to the cell face. This calculation procedure assumes that the

distance between the cell face, where the flux is calculated, and the cell

cent(,r, where the flow variables are calculated, is approximately the same for

neighboring cells. Should the grid point spacing vary extremely rapidly or ii,

6 nonswooth f,,|hiun, the simple averaying of variables will produce an inaccu-

rdte approximation to the cell face flux. The far-field grid region typically

has vapid grid stretchiri'; however, the flow solution accuracy is not signiifi-

caritly degraded ir, this region due to the nearly uniform flow at the far

field.

Poundary corioltions are applied in the FL057 Euler method in a variety of

ways, some of which req1uire an extrapolation of interior flow variables to the

I



grid boundaries. Although the boundary conditions do) not explicitly reqjoir .

, " orthogjonal grids, it is reasonable, when considering the boundary condition

, extrapolation, that orthogonality at the grid boundaries would improve the

< code's accuracy.
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SECTION 11

GRID TOPOLOGY

The new delta wing grid developed during this effort is based o, it previ-

ously developed two-dimensional (2-D) grid topology for equilateral triangles

(Ref. 2), Flu. 1. The leading edge and wingtip are c(rsidered to be a single

side of the equilateral-triangle grid. The singularity point is positioned on

the root chord and therefore should not b& in any strong flow gradients region

%for most problems of interest. Figures 2a-c show the wing surface topology

Ior e 65' leading-edge sweep, cropped delta wing. This topology permits a

uiform grid poit sl)acirig and cell size along the entire length of the

-lcdding edqe. Grid cells Cdl he clustered forward un the wing by moving the

singularity point forward, thus permitting adequate grid resolution to capture

the strung flow gradients in the apex region.

The Yw delta wirg grid is intended primarily for use with the FLO57 Euler

analysis code. In order to couple the new grid topology to the existing FL057

Euler code with as few changes to FL05i as possible, the following grid index

system was adopted. The arid lines that wrap across the wing surface and

- dr(una the leading edge of the wing will be referred to as the I-varying (K

constant) grid lif;es. (Se 3a.) The I = I grid points are located on the

wing's lower durfacf, root chord. The I - I grid points are located on the

wing's upper surface root chord. The line forming the forward part of the

root chord starts dt the lower surface singularity, varies in I and moves

forward dround the leading edgc and proceed- aft to the upper surface singular-

ity. This yrid line is vorying in I and has a constant K value of one. The

K-vdryinq family of curvws Stdrt at the forward plane of syriretry with a value

of one, aod follows pelhs oft to the downstream exit plane. Thus, the winq's

trailinq edge is formed by a grid line varying in I and a constant K value.

4
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To forn 6 three-dimersional (3-U) grid, the C-H grid topology in FLO57

was partially ir-erged to the delta wing grid topolocy to form a wrapped O-H

grid. Fdch 6 wrap followed an I-varying grid line, with the 0 wraps being

almost spanwise cuts near the wing's trail ing edge. A typical 0 wrap from the

3-[ rid is shown in Figs. 4a and b. The wing surface was formed by the J = I

grid points and the Jmax grid points form the outer shell of the 3-D grid.

The delta wing grid topology is not totally new and is easy to follow if the

viewer considers the grid to be a series of 2-D 0 grids stacked together to

fbrr the 3-D grid. Figures 3a and b show the plane-ol-symmetry grid with

i ndx directions indicatcC.

Io couple the 3-D delta wing grid to FL057, the boundary conditions to be

applied on each face of the 3-D computational cube must be determined. The J

I side is the wing surface for all K values less than or equal to the K

value of the wing's trailing edge. For J = 1 and K values greater than K

trdiling edge value, the Qrid collapses to a slit line and a flow through

boundary condition is used. The J = Jmax side is the far-field grid and

appropriate in-flow/out-flow boundary conditions apply. The plane-of-symmetry

grid is forn-ed by the I = 1, 1 = Imax and thp K 
= I sides of the computational

(,rid. The only remaining side of the computational space is the K K side
'p max

,'p and this is the downstream boundary grid where appropriate out-flow boundary

conditions arp applied.

'

'
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GRID GENERATION

The delta wino grid used ill the Euler computation wes developed in three

, phases: -l-D boundary grids, 3-0 iii erior grid, and algebraic downstream grid.

The 2-D grids are the six sides of the 3-D arid, consisting ot the wing upper

and lower surfaces, symmetry plane (3 sides), far field outer shell, and the

trailing-edge plane. The synmcetry plane is generted as a single surface, but

is actually three sides of the computational space as described in the grid

topology section. It is desirable to directly control grid spacing and shape

. upstream of the root chord, and spanwise beyond the wingtip. To control the

wingtip region, the delta wing grid is divided by a 2-D surface grid along the

wing trailing edge extending outwards to the far-field grid. Grid spacing on

the 2-D divider grid is specified in both spanwise arid vertical directions,

thus, providing the desired grid control in the wingtip region. The 3-D grid

upstream of the wing trailing edge is complex in topology and is created by

the 3-D elliptic grid generation program, which, when properly applied,

produces a smoothly varying grid. The downstream grid, on the other hand, is

essentially 2-D in topology and is created by an algebraic method. The

junction between the two subgrids is not continuous in regards to grid line

slope, but a mild variation in slope continuity will not procice significant

errors in a finite volume flow solver.

TWO-DIMENSIONAL BOUNDARY GRIDS (2-D)

lhe wing surface topology as previously described, is not unique, but is

very demanding of the grid generation method. A desirable feature of such a

method is the ability to specify the grid spacing along the root chord,

trailing and leading edges, then assimilate this spacing smoothly into the

interior of the grin. A method for generating quasi 2-0 grids on curved

6
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surfaces by lhomas (Ref. 3) exhibits the desired feature. lhe quesi 2-D

method was derived from the 3-D Plliptic grid generation method by Thompson

(Pet. 2), by rewriting the 3-D equation for grid points being constrailcd to a

3-D surface. Thus, the 2-D method accounts for grid point spacing and

position based on a 3-D position vector, riot a 2-b position vector. The winoi

leading-edge region is where the added dimension makes the biggest ditference.

An additional term in the quasi 2-D method, but not found in the 3-D

equations, draws grid points toward regions of high curvature, thus, producing

a more accurate modeling of the curvature. The grid spacing in the interior

of the grid is controlled by the grid point spacing on the boundaries by

adding source terms to the elliptic equation. The source term values are

*cnmputed solely from the boundary grid point spacing and then interpolated

inlo the interior grid. The final product of this method is a grid that has

smoothly varying grid point positions and reflects the grid point spacing of

Lhe boundaries. Appendix A lists the quasi 2-D elliptic equations.

WING SURFACE

The wing upper and lower surfaces are generated separately and then

joined together. Grid point spacing is specified at four points on the wing

surfaces, as shown in Fig. 2c with TI, T2, T3, and T4 as input parameters.

The root chord is first spline fitted from the input airfoil shape. Grid

points are then distributed along the root chord based on arc length, with the

loading-edge spacing being Ti percent of the total root chord arc length and

the trdiling-edge spacing being T2 percent of the total arc length. A hyper-

bolic tangent stretching routine, developed by Vinokur (Ref. 4), is used to

determine the remaining grid point positions. The grid point spacing along

the trailing edge is controlled by the T3 and T4 parameters. The spacing at

the wingtip is T3 times TI; therefore, a value of 1.0 for T3 will create an

7
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constant grid spdcirg along the leadii' edge over the entire length of the

leading edge and wingtip. Even spacing is used along the combined length of

the leading edge plus wingtip. The grid spacing along the trailing edge at

the root chord is T4 percent of trailing-edge arc length. The remaining

Srailing-edge points (between T3 and T4) are distributed based on the hyper-

bolic tangent stretching function.

The wing surface is generated using the quasi 2-D method and the boundary

spacing as just described. The thickness of the wing at each grid point is

linearly interpolated from airfoil cross sections provided as user input. The

wingtip is rounded over the last 2 percent of senispan as seen in Fig. 5.

PLANE OF SYMMETRY

S The plane-cf-symmetry grid (or wall in a wino-on-a-wall calculation) is

created by the same 2-D elliptic method as the wing surface, simply by

rotating the syirmetry plane into the wing plane and setting all thickness

values to zero. The symmetry plane is divided into upper and lower halves,

and a separate grid is generated for each half. The to halves are rejoined9.,
and the joining line is adjusted to give smooth grid lines across the joint.

The upper and lower hdlves of the symmetry plane with the sides numbered for

reference are shown in Fig. 6a-d. Side two is the wing root chord with grid

point spacing defined by the wing surface grids. Sides one and four were

straight lines with grid spacingj at the root chord, far field and overall

lengths of these lines specified by the user as input parameters T5, T6, and

T7 on side ore and T8, T9, and T10 on side four. The remaining grid points

along sides one and four are distributed using the hyperbolic tangent

stretching routine.

Once the upper dnd lower halves of the symmetry planes are created, the

grid points orn side one are adjusted to obtain continuous second derivatives

8
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in grid spacing ior the tamily of lines crussing side one. By using two grid

points on one side of side one and one grid point of the Sdme curve on the

other side, second derivatives in grid spacing can be computed on both sides

of side one. By averaging the two values obtained, a first-order accura te

approximation of the second derivative in grid spacing is obtained for points

on side one. Using this approximation and the position of the grid points

immediately on either side of side one, the grid points on side one are

repositioned to satisly the second-order derivative equation written for side

one points. The result of this repositioning is a continuous second

derivative in grid spacing across the interface of side one.

The 2-D elliptic method used does not directly enforce orthogonality al.

the boundaries. The Si term in the source terms influences the curvature of a

grid line (Ref. 3 and Appendix A). The source term is normally computed

automatically from thE boundary grid point position and spacing. By locally

adjusting the value of S1, the boundary grids are made more nearly orthogonal.

The Si parameter was set by trial and error, for the grids included in this

report at the wing leading edge in the plane-of-symmetry grid, and at the

wingtip in the trailing-edge grid to improve orthogonality at the wing surface

beyond that which is obtained from using the automatic controls.

TRAILING-EDGE GRID

The 2-D trailing-edge grid divides the total 3-D physical grid into two

parts: the portion upstream of the wing trailing edge and the portion down-

stream of the trailing edge. This grid is created in essentially the same way

as the symmetry plane grid, but the trailing-edge shape and thickness is

modeled instead of the root chord. The upper and lower halves of the grid are

created separately. The halves are joined together and the joint line is then

smoothed. Indicated in Fig. 7 is the trailing-edge grid side numbering and

9
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spacing parameters used in the computer code. Note the use of T8 and T9 to

control spanwise grid spacing.

Side two is the wing's trailing edge and is generated during the wing

surface grid calculations. Sides one and four are straight lines with end

point grid spacing and overall lengths specified as input parameters. The

remaining side one and side four grid points are distributed by the 1-D hyper-

bolic tangent stretching routine. Side three is elliptic in shape and has

even grid point spacing. Figures 8a and b show a typical trailing-edge grid.

Even though this grid is generated in 2-D, the wing trailing edge need not beI..
a straight line.

FAR-FIELD CAP GRID

The last grid required to complete the boundaries of the 3-0 physical

space is the far-field cap grid. This grid is an ellipsoid that is created

using the quasi 2-D elliptic method. The far-field cap is identical to the

wing surface in topology and side numbering (Figs. 9a and b). All sides

except the elliptical shaped side three are defined by sides of the other

quasi 2-D surfaces. An even grid spacing for the entire farfield cap is used

on side three.

THREE-DIMENSIONAL GRID (3-D)

The 3-D grid method used to generate the delta wing grid was developed by

Thomas (Ref. 3). This method is also the basis for the 2-D method previously

described. The standard 3-0 elliptic equation was extended to Poisson's

equation by inclusion of source terms that caused a mimicking of the 2-D

boundary grid point spacing in the interior of the 3-D grid. Appendix B

outlines the 3-D elliptic equations used in this method. Since all grid

spacing control is evaluated from the 2-D boundary grids in this method, the

3-D grid generator can be applied to a variety of topologies without any

10
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special considerations. The grid singularity found in this delta wing grid

topology did prevent standard calculation of the SI curvature term at the

singularity. The SI term is not essential to producing a high quality grid

and has been included in the 3-D method only for completeness. The second

curvature term, S2, is, however, critical to achieving high quality grids

around the leading edge of the delta wing. This term is computed

automatically from the 2-D boundary grids and then interior values are

interpolated from the boundary values.

The method used to determine the values of SI dnd S2 in the interior of

-the 3-b grid is 2-D transfinite interpolation, more correctly known as blended

bilinear interpolation. The details of blended bilinear interpolation are

6included in Appendix C.

The 3-D elliptic equations are solved using a point over-relaxation

scheme. Point iteration schemes are typically slower to converge than are

line iteration and more complex schemes, but are more robust. The iteration

process requires that an initial guess of the grid point locations be made

prior to iterating. The favorable characteristics range of point iteration

schemes permits the initial guess to be generated by simple and quick methods.

- The method used to generate the initial guess is blended trilinear interpola-

tion. The details of blended trilinear interpolation are included in Appendix

D.

AALGEBRAIC DOWNSTREAM GRID

U, The grid downstream of the wing's trailing edge is generated algebrai-

cally. A 2-D grid of the same outer shape as the wing trailing-edge grid is

constructed at the downstream boundary, consisting of concentric ellipses,

with the intermost ellipse being a slit line. The spacing of grid points on

-. the slit line and the spacing between the concentric ellipses is determined by

411



the computer code. The interior of the downstream gria is generated by simple

linear interpolation between the wing trailing-edge grid and the downstredm

grid. The streamwise spacing of the interior is determined by the hyperbolic

tangent stretching routine. The grid spacing along the K-varying lines is

continuous across the wing's trdiling edge.

COMPUTER PROGRAMS

Two computer programs perform the grid generation described in this

paper. The first program generates the six 2-D sides (a more correct term

would be "surfaces") of the 3-D grid as outlined in parts 1-5 of this section.

1,, Appendix E provides directions for use of this program. The second program

generates the complete 3-D grid and requires only the output of the first

program as input data.
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SECTION IV

-x GRiD APPLICATIONS

The 2-D and 3-D elliptic grid generation codes described in this paper

have been applied to several geometries. Two configurations of interest for

which Euler solutions have been obtained are a cropped delta wing and a blunt

nose missile body. The cropped delta wing configuration is depicted it, Figs.

1-9. Euler solutions for this configuration at Mach numbers of 0.4 and 0.85

are in good agreement with experimental results. Drag polars for this

configuration (Figs. 10 and 11) indicate that the generated grid appears

adequate to capture the major flow features, including what appears to be

vortex breakdown. The predicted drag polar has been shifted to reflect zero

lift drag.

The delta wing grid topology was applied to a blunt nose elliptical cross

section missile body (Ref. 5). The missile nose grid and a slice through the

3-D space is shown in Fig. 12, and the ?-D missile base grid (corresponding to

the delta wing's trailing edge) is shown in Fig. 13. Again the 3-D grid

generated appears adequate to resolve the major flow features of this configu-

ration as is demonstrated by the excellent agreement between predicted and

A_ experimental normal force coefficients at Mach 2.0 for angles of attack up to

.'m, 14.0 degrees (Fig. 14).
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SECTION V

CONCLUSIONS

A gri, topology and grid generation method for delta arid cropped delta

wings has been described and demonstrdted. The grid topology has been adapted

N from a similar topology previously used for a different application. The grid

generation method uses a blend of partial differential equations and algebraic

interpolation. The resulting grids have been used in conjunction with an
N..

Euler equation solver to accurately predict the flowq about two configurations.

The quality of the prediction is extremely comparable to results produced in a

similar effort of advanced grid generation and flow solution for a delta wing

configuration (Ref. 6).
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Figure 2b. Detail Of Delta Wing Apex.
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LIST OF SYMBOLS

2-D two-dimensional

3-0 - three-dimensional

C = coefficient of drag, referenced to witiq area

CL = coefficient of lift, referenced to wing area

CN = coefficient of normal force, referenced to base area

I, J, K = grid indices

I = maximum 1 grid index..4 max

.'; = maximum J grid index

Kmax = maximum K grid index

S = grid generation source term

T grid generation spacing control term

V, - 38
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APPENDIX A

QUASI 2-D ELLIPTIC EQUATIOPNS

(Ref. 3)

.

Ir 2 (x + x) - ~(r r ) x + Ir2(X + T X)

+f (=Ox
Ir 12 (y + y - 2 (r r + Ir12 (y + Y )

n¢ EE E Yn n E nn n)

+ f G= 0
y

where r = r (x,y,Z) , Z f (x,y)

Gj 2 F (I + f 2, f 2f f f + (1 + fx2)f
2y xx x y xy x yy

S(1+ f 2 + f 2)j/ I x y

and

2 En X Y

- - (S + Ir t I S I )

so = (r • rEE) I (Er 12)

S = (r" rn) I (rl Irn2 )

- (s+ jr, I )

o (r r ) / (Ir 12)

SI = (r -, r ) / (Ir n IrE 2)

Note that S and S for defining T are different than S and S for 0.
For the wine surfae aZ/aE was assumpd to be zero and tRe fol1lwing
expressions are used to compute G.

f =-Z Y /i

X

f = Z X +

, = Z + Z y /j1 2

-xx xx nn E
-. fy = Z n + Z X2 /12

.y n nyy nn E

*= Znn - Z Y X IJ]f xy Z xy Tin n
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xx c c Fn E 4n CcT
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and
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APPENDIX R

3-D ELLIPTIC EQUATICS

(Ref. 3)

O1 ( r E + or ) + 2 (rnn + rn + 3 (r + wr

+2 (r rn + f2r + 3 rF;) : 0

where r = (xy,z)

n(Cr n  r )

,= (Ir I Ir 12 - (r * r

a = (Jr Jr 1)2 - (r* r)2

F, 1 = (r r (r " rE) - (r " rr )r l1

2 = (r r{) (r E rn;) - (rn " r ) Jr 2

(r r) (r r (r rU) )r EJ

Sr r (r' r ) / r r r 12

= - So - Jr (T1 + T2)

So = (r2 r) jrj 2

SI = (r r ) / Irn I r 12

S, = (r * r ) / I r 12

-S = r j (T + T?S= (ri r cc ) / Ir jr1.2

=I (

,S, = (r r ) / Ir Jr 12

s (r " ) / Jr 1 2

= r rF;;) JrI r~
ens (r ,- ) / J J Jr J

1 where thp So, Sig S2 values are redefined for each variable w, , w.
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APPFNDIX C

BLENDED BILINEAR INTERPOLATION

(Ref. 7

v.Purpose:

Interpolate function F(s,t) which is known on the houndaries of a 2-D

computational space. The computational space has dimension which vary in a

direction s from 0 to 1 and in a direction t from 0 to 1.

Assume blended bilinear interpolants of the form:

P= ( - s) F(O,t) + sF(1,t)

Pt (I - t) F(s,O) + tF(s,1).

The function F(s,t) is interpolated on the computational space by the

rule:

F(s,t) = P + P PsPt,

or

F(s,t) = (1 - s) * F(O,t)

+ ( s) * F(1,t)

+ (1 - t) * F(s,O)

+ ( t) * F(s,1)

V. - (1 - s) * (1 - t) * F(0,0)

:- (1 - s)* ( t) * F(O,]'
F0,3

-( s) *(1 t) *F(1,0)

• -',- ( s) * ( t) * F(1,1).

Grid generation is dctually performed on a computational space that

varies in an I direction from 1 to I and in a J direction from I to J
max MX

* ~ The I and J indices are related to s and t by

s (I - ) / (Ima x - 1) and

-" . - I)~V -VV

'2" : (  " 1 / (max "
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APPENI~DX D

FU~NDED~ TRILINEAP INTERPOLATIONS

(Ref. 7)

Purpose:

Interpolate function F(s,t,u) which is known on the boundaries of a 3-Dl

compulational space. The computational space has dimensions which vary in a

direction s from 0) to 1., in a direction t from 0 to 1 and in a direction u

from 0 to 1.

Assume blended trilinear interpolants of the form:

Ps= (1 - s) F(0,t,u) + sF(1,t,u)

Pt =(1 - t) F(s,O,u) + tF(s,l,u)

P= (1 - u) F(s,t,O) !uF(s,t,1).

The function F(s,t,u) is interpolated on the computaticnal space by the

* rule:

F(s,t,u) = P5s + Pt + P~ - S t -Pt u -Pu Ps +PSPt Pu

where,

P t=(1 - s) (1I t) F(0,O,u)
+ (1 - s) ( )F(0,1,u)
+ ( s) (-t)F(1,O,u)
+ ( s) ( )F(1,1,u)

P u= (I - t) (1 -u) F(s,0,O)
+ (1 - t) ( u) F(s,O,I)

*+ ( t) (1I u) F(s,].O)
+ ( t) ( u) F(s,1,1)

P P (1 u) (1I s) F(O,t,0)
(1 u) ( s) F(1,t,O)
+ u) (1I s) F(O,t,1)

*+ ( u) ( s) F(l,t,l)

*5 45
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p s p 2 u (1 s)(1 -t)(1 - u) F(0,0,0)
+(1 S) (1I t ( u) F(0,0,1)

+ (1 -s) ( t) (1 - u) F(0,1,0)
+ (1 -S) ( t) ( u) F(0,1,1)
+ ( S) (1 -t) (1I u) F(1,0,0)
+ ( s) (I t) ( u) F(1,0,1)
+ ( s) ( t) (1 -u) F(1,1,O)

The relatinn between the interpolatior variables s, t, anid u and the grid

generation variables 1, J, and K are:

s = (I - 1) / (K - 1).
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APPENDIX E

2-D Grid Generation Code Input Directions

Note: all data is in free format
Note: Cards 2, 4, 6, 10, 14, 19 and 22 are data set header cards and must
be input as indicated; i.e., data is not entered on those cards.

Card #

1. title

2. MI MJ MK #ITER SIGMA TOC R

3. mi mj mk #iter sigma toc r

mi = number of grid pts in the I direction

mj = number of grid pts in the J direction

mk = number of grid pts in the K direction

#iter = number of iteration

*' sigma = spline fit coefficient

0 cubic spline fit
+ -o straight line fit

toc = percent increase of input airfoil coordinates

1 + no change to input coordinates

r = relaxation factor, 0 < r < 2 (1.1 has been used with some
success)

4. TI T2 T3 T4 T5 T6 T7 T8 T9 T1O T11

* 5. tl t2 t3 t4 t5 t6 t7 t8 t9 tlO t11
7--

tl = percent of root chord arch length for the leading grid point
spacing on the root chord.Li t2 = percent of root chord arch length for the trailing grid

* point spacing on the root chord.

0 spanwise trailing-edge grid spacing at the tip, ratioed to
t1; t3 = 1. will cause ledding spacing to be constant from
root to tip.

* t4 = spanwise trailing-edge grid spacing in percent semispan at
*the root chord.
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t5 = leading edge root chord siarid-off di!tance of J =2 layer,
in per-cent root chord.

t6 = far-field gvid spacing along J line extendiny through root
chord leading edge, in percenit root chord.

t7 =distance from leading edge root chord to far field in
-~ percent root chord.

t8 tip spdnWise stand-oft distancp of J = 2 layer, in percent
root chord.

t9 = spanwise grid spacing at the far field on the trailing edge
grid, in percent root chord.

tlO = distance spanwise fromt wingtip trailing edge to far field,
in percent root chord.

tll = verticol distance from root chord trailing edge to
9d far field, in percent root chord.

*C. LEADING-EDGE SHAPE

7. #lepts aigeg nflepts = number of points defining wing's ledigee n
tip.

YI 3'.). .

spanwise coordinates of points describing the wingtip and
leading edge, from wingtip trailing edge to leading-edge root
chord.

9. x1x2X n

spanwise coordinates of points describing the wing tip and
leading edge, from wirlg tip trailing edge to leading edoe root
chord.

*10. TRAILING-EDGE SHAPE

11. #tepts

Y'1 ..2 yr1

* spanwise coordiviates of points describing the wing trailing edge,
from root to tip.

13. x Ix2

fronm root to tip.

14. UPPER SURFACE AIRFOIL DATA
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15. ni nsecu

ninsecu = number of airfoil sections describing the wing upper

surface.

16. AIRFOIL SECTION IDENTIFIER

17. nptsec xlesec ylesec xtesec ytesec

ioptsec = number of data points describing the airfoil section.

xlese(, ylesec = the streamwise and spanwise coordinate, of the
section leading edge.

xtesec, ytesec = the streanwise and spanwise coordinates of the
section trailing edge.

• 16. - I I
1..

* x z
x3 z3

XNPTSEC ZNPTSEC

airfoil section coordinates rundimenionalized by local chord,
leading edge x = 0.
trailing edge x 1. or 100.

Repeat cards 16, 17, and 18 NINSECU times to enter all upper surface
airfoil sections.

19. WINGTIP SHAPE

20. npttip = number of points describing the true wingtip (zero
thickness) camber shape.

21. x

x z2

xnpttip Znpttip
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LOWER SUIFACF AIRFQII UA

23. ninsecl

Repeat cards 16, 17, and 183 IINSELL times to enter all lower surface
airfoil sections.
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PLANFORM INPUTS

X

(NLEPTS NLEPTS )

y

XLESEC, LESEC )

(Xl, Y1) for leading

(X!1 Y 
edge and tip

for trailing edge (XNTEPTS' YNTEPTS)

(XTESEC' YTESEC
)

AIRFOIL SECTION INPUTS

z

x

,(X 1, Z1  (XNPTSEC' ZNPTSEC)

4 Figure El. Input Data Definitions
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