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We consider'the problem of simultaneously designing communication strategies and

control policies in decentralized stochastic systems. Such problems are difficult to solve,

mainly because of the nonclassical nature of their information structure. We have

identified classes of such problems with linear dynamics, quadratic loss functionals and

Gaussian statistics for which the optimality of linear strategies can be established. The

general approach used consists of first finding a lower bound on the cost, and then

constructing joint strategies that attain this lower bound. For some instances of the cases

where linear strategies fail to provide globally optimal solutions, explicit nonlinear

strategies are obtained that demonstrate the inferiority of linear designs. The problems

studied in this thesis can be viewed as important prototype problems, which are essential

,"N building blocks for a general theory of multistage distributed decision making under

nonclassical information, and possibly partial statistical description. We have obtained

-" some fundamental results for two-stage stochastic teams, and have made contributions

towards the development of a general theory for multistage (finite and infinite horizon)

stochastic control and team problems with nonclassical information, in which the control

(decision) variable affects not only the state trajectory but also the quality of information

that is available to the decision makers.
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CHAPTER I

INTRODUCTION

1.1. Motivation

In many engineering situations a variety of possible measurements can be carried out

on a physical system or process, and the question that naturally arises is what measure-

ment process is optimal. Thus it may be necessary to communicate information through

noisy channels to an observer, and a decision on what information to transmit may need

to be made. Based on the observations received, the controller is required to make deci-

sions that may affect the cost incurred as well as the further evolution of the system.

Consider, for example, the following decentralized systems:

(a) Control of a Space Probe from an Earth Station: We may think of a space probe

and an earth station together constituting a decentralized system. The sensor aboard the

space probe is required to transmit data over the downlink, after suitable encoding at

some permissible power level. The earth station may be required to command the space

probe to move along a certain trajectory, or it may wish to form estimates of the

transmitted measurement. The problem, then, is one of simultaneously designing the

communication strategy used by the probe and the control policy of the earth station. P4

(b) Tracking Systems: In tracking systems it may be possible to allow for

transmitting measurements at larger power levels (with an increase in the associated

transmission cost) in order to combat noise and increase control efficiency. Here not only

the communication strategy but also the transmission power level need to be designed.

Problems requiring simultaneous communication and control also arise in many

socioeconomic situations, control of flexible structures, and other areas where the design S
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or allocation of limited transmission resources is important. The essentials of the situa-

tions involve

i) A stochastic system, usually dynamic and/or decentralized, consisting of a

number of decision makers (synonymously agents) along with a mathematical description

of their interaction with the system and among themselves.

(ii) Elements of uncertainty (noises) entering the system, the underlying probability

spaces for which are beyond the control of the decision makers.

(iii) An information structure, which characterizes the information gained and

recalled by each decision maker.

(iv) A set of possible alternatives (decisions) for each agent, and permissible stra-

tegies which are mappings from the information space to the decision space of each agent. .%J

(v) An objective functional that summarizes the preference ordering among various

alternatives for the set of decision makers.

We note here that for the class of problems described above there exist very general

formulations where, for example, the order in which the agents act may be determined by

a chance mechanism (Witsenhausen [19711) or the various agents exhibit a divergence of

interests requiring a different objective functional for each agent (Basar and Olsder

[19821). Here we restrict our attention to classes of problems where in which

(i) The order in which the agents act is fixed in advance.

0 (ii) All noises which may enter the system are zero mean Gaussian, and further

(iii) The problem involves the design of two kinds of strategies:

- Communication strategies for generating information-bearing signals.

%IL.
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- Control policies for forming estimates, minimizing errors and reducing costs.

Many such problems have been the subject of previous investigations. Athans [1972]

considers the problem of selecting, at each instant of time, one measurement provided by

one out of many sensors, with each measurement ha iing an associated cost. For the class

of linear stochastic dynamic systems and measurement subsystems, a weighted combina-

tion of prediction cost and accumulated observation cost is minimized, with the optimal

measurement strategy being obtained by solving a deterministic optimal control problem. •

A similar formulation was considered earlier by Meier et al. [1967] who obtained a com-

putational solution using dynamic programming. Herring and Melsa [1974] generalize the

above results to allow the selection, at each instant of time, of the best combination of

measurement devices as opposed to the best single device, and Mehra (1976] presents

measurement schedules and sensor designs for linear stochastic systems subject to a con-

straint on the total measurement precision so as to minimize a norm of the error covari-

IN ance matrix.

In contrast io the above studies, where the cost is the covariance of the error of the

Kalman estimate, Chu [19781 considers the problem of finding the best measurement for

static problems with arbitrary quadratic cost. A similar framework to that of Chu .s

adopted by Papavassilopoulos [1983] for the case of more than one decision maker, with

the measurements still being restricted to be linear in the state.

Lafortune [ 1985] presents a general theorem for the computation of optimal solution

to discrete time stochastic control problems when the decision makers have the additional S

freedom of choosing at each step among different sets of observations. Lafortune applies

his results to finite stale, controlled Markov chains as well as linear Gaussian systems

with quadratic cosl f[incionals. The Linlrol of Markov chains is also considered by

- - - -- 1110 1
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Varalya and Walrand (1983], who obtain a complete solution for a class of symmetric

channels with noiseless feedback. . !

Whittle and Rudge [1976] consider a situation where one agent observes a stationary

ergodic Gaussian process and on its basis forms a sequence, through not necessarily a

linear transformation. The other agent observes a noisy replica of the first agent's deci-

sion, and he is required to form an estimate of the original Gaussian sequence. This prob-

lem of simultaneous communication and control is solved using the concepts of statistical

communication theory, and the solution requires that arbitrarily large signal blocks be

available at all stages. In control theoretic terms their solutions are unrealizable, since the

actions taken at a given time depend also on observations which lie in the future.

The problem considered by Whittle and Rudge is somewhat different from the ones

mentioned earlier, because in the earlier formulations the measurement model is specified

except for certain parameters, and the optimal selection of these parameters has been

investigated. Here, we shall formulate and solve a class of problems related to that of

Whittle and Rudge under the additional restriction of causality. When the design of the

measurement strategy itself is part of the problem, the problem becomes considerably

more difficult, since the action of one decision maker affects the information of the other,

and there is no way in which this other decision maker can have access to the information

on which the first one acted. Such information structures have been called nonclassical in

the stochastic team literature. In the next section we study different information struc-

tures and the related computational considerations.

* N
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1.2. Information Structures and Computational Considerations

In this section we discuss the various types of information structures associated with

stochastic team problems. These Information structures characterize the precise static or

dynamic information gained or recalled by each decision maker at each stage of a decision

process, and are customarily distinguished as classical, quasiclassical or nonclassical. We

then discuss some of the issues of computational complexity which arise when the numer-

ical derivation of the optimal team solution is considered.

1.2.1. Classical and quasiclassical information structures

Classical information patterns include deterministic patterns and centralized infor-

mation patterns. Deterministic patterns arise when the information is not noise-corrupted

and may be of the open-loop type in which only the initial value of the state is available

and no dynamic information is acquired, or of the closed-loop type where perfect informa-

Z tion concerning the current value of the state is also acquired. Centralized patterns arise

when all agents exchange their measurements without any delay and also recall the past

information.

Under the deterministic or centralized stochastic information patterns, stochastic

team problems become equivalent to stochastic control problems and the solution tech-

niques for these (e.g., Bertsekas [19871, Kumar and Varaiya [1986]) are directly applica-

hie. Thus for stochastic teams with classical information patterns, when

(i) the measurements are linear in the primitive random variables and controls,

9". (ii) the primitive random variables are jointly Gaussian.

(iii) the cost function is quadratic in !he control vector and the primitive random

variables, and

noI
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1.2.2. Nonclassical information structures

U An information pattern is nonclassical if it is not partially nested. Alternatively, if 0

the decision maker j's action affects the information of i, and there is no way by which i

can infer the information available to j, then the information structure is said to be of the

nonclassical type. Under the nonclassical information pattern, the derivation of the

optimal team solution meets with formidable difficulties. One way of viewing these

difficulties is that the control plays a triple role (Ho[ 1980]), viz.,

(i) the deterministic control effort of reducing the error;

(ii) improvement of future knowledge of uncertainty;

0
(iii) signalling to agents acting in the future some useful information that they do

not necessarily acquire;

and these roles are in general conflicting.
0

Classes of tractable problems with nonclassical information have been very difficult

to identify. Witsenhausen [19681 established that some of the simplest linear-quadratic-

Gaussian (LQG) stochastic teams with nonclassical information do not admit optimal 0

linear solutions; in fact the optimal solution to the problem formulated by Witsenhausen

is not yet known. Very recently, however, some success has been reported for two-person

stochastic teams with nonclassical information. Bansal and Basar [1987a] show that it is -

the presence of the product term between the decision variables which, coupled wikh the

nonclassical information, makes the LQG problem intractable, and in the absence of this

0
product term optimal solutions may readily be found. Some nonclassical multipath sys-

tems have also been shown to admit optimal linear solutions under quadratic costs and

Gaussian noises (Bansal and Basar 1987b]).
0

0
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Here we are concerned with nonclassical information patterns because many prob-

lems involving the simultaneous design of communication and control strategies exhibit

an information pattern of this type. Recall that the third role of controlling agents in

nonclassical teams mentioned above is the role of "signalling" information to agents acting

in the future, and this role Is absent in the case of classical and quasiclassical information

structures. When explicit design of the communication strategy itself is considered, it is

the "signalling" policy that is being designed, and nonclassical patterns arise naturally.

It is for the above reasons that the problem considered by Whittle and Rudge [1976],

where the communication strategy is to be designed, is significantly more complicated

* than the other problems, where the measurement model is specified, except for certain

parameters, as in Athans [19721, Herring and Melsa [1974], Mehra [1976].

In the course of this work we shall identify some classes of stochastic teams with
I

nonclassical information which are tractable in spite of the above mentioned difficulties.

1.2.3. Computational complexity of stochastic team problems

The severe difficulty encountered when the solution of stochastic team problems is

attempted via numerical techniques has triggered some research into their complexity.

Some recent results (Papadimitriou and Tsitsiklis [1982], Tsitsiklis and Athans [1985])

," relate the complexity of stochastic team problems to that of known intractable problems.

Using the lools of computational complexity the NP completeness of the discrete version

* of the static team problem has been established, and some progress has also been made in

defining complexity concepts for continuous time problems by relating the complexity of

the continuous version to that of its discretized counterpart (Papadimitriou and Tsitsiklis

* [1986]). In the same work the NP completeness ol lhe discrele version of Wilsenhausen* S

rG F . h. ~ ~ ~ *~F~~



problem has also been established, thus explaining the failures, reported in literature, to

attack it computationally (Ho and Chang [ 1980]).

3 Quite recently, Witsenhausen [1988] has developed a notion of equivalence between

stochastic control problems that is suitable for complexity analysis. He has shown that a

large class of problems with dynamic information can be reduced to equivalent static

problems with a transformed cosL functional, and this class includes all sequential

discrete variable problems. Person-by-person optimalty is then a sufficient condition for

global optimality under smoothness and convexity conditions; however, when there is no

convexity then person-by-person optimality is not sufficient.

While approaches based on the theory of NP completeness shed important light on

the applicability (or nonapplicability) of numerical techniques for discretized versions of

stochastic teams, being a worst case scenario they obscure important special cases which

may admit relatively simple optimal solutions. For example, both the static team prob-

lem as well as Witsenhausen's counterexample have discretized versions which are NP

complete, but the former is quite tractable under linear quadratic Gaussian assumptions

(Radner [1962]), whereas the latter is still unsolved. The problem of carving out classes .

of tractable problems within the general class of nonclassical stochastic teams is an impor-

tant one, and this thesis is a contribution to this direction.

1.3. Nonclassical Patterns and the Problem of Information Transmission

Consider the simplest problem of transmitting information, where the value of a

random variable is to be transmitted, after suitable encoding, over a noisy channel. The

noisy channel output is available at a decoder where it is used to construct an estirnale of

Ihe input variable. In order to make this problem well defined, it is customary in 1he

II



communications literature to assume that the encoder operates under a hard power con-

straint, i.e., the mean-square level at the output of the encoder cannot exceed a certain

predefined level.

This standard information transmission problem is depicted in Figure 1. 1, where x is

the input to be transmitted, u is the encoder output satisfying E[u 2 ](P 2, w is the channel

noise, and the output of the channel

y=u+w

is used by the decoder to form an estimate of x, designated by R.

Note that the communication problem is one with a nonclassical information struc-

ture, since the action of the encoder affects the information of the decoder, but the decoder

does not have access to the information of the encoder. (Indeed, if the decoder did have

access to the information of the en'ier, then the problem would be trivial, the estimate

of x exact, and the channel redundant.)

w

0 Channel Noise

Figure I.I. The information transmission problem.

Information Theory provides the fundamental results for the analysis of the infor-

mation transmission system of Figure 1.1. One of the most important results of Informa-

tion Theory relates channel capacity to the rate distortion of the source. (A study of



channel capacity and rate distortion may be found, for example, in Ash [1%5], Berger

1971] and Gallager [ 1%8].)

Let R(D) denote the rate distortion function, (Berger [1971]), corresponding to a

source under an appropriate distortion measure D. Shannon [1959] proved that it is not

possible with any coding scheme to transmit the source under consideration through any

channel of capacity less than R(D) without incurring an average distortion larger than or

equal to D. Conversely, given any channel of capacity C > R(D), coding schemes exist

(possibly using arbitrarily large block lengths) which result in an average distortion arbi-

trarily close to D when used over this channel. Thus, R(D) is the minimum channel capa-

city required to reproduce the given source at the decoder with average distortion at most

D. For any channel, the minimum possible distortion D* that can result from its use is

related to its capacity C by

R(D*) = C .

We shall find the above relation between capacity and rate distortion quite useful for

the analysis of some decentralized stochastic team problems, because the information

transmission problem is a special case of problems with nonclassical information. We will

also need the concepts of entropy and conditional entropy (see, for example, Abramson

[19631): these will be introduced in subsequent chapters as required.

1.4. Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2 we formulate and analyze

some fundamental classes of stochastic team problems with two decentralized agents.

1. exhibiting a nonclassical information pattern. We identify instances of such problems for

which the optimal solutions are linear and may readily be found despite the intractability

il 111 111 k1
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of the general problem.

In Chapter 3 we consider a stochastic dynamic decision problem, where at ea..h step

two consecutive decisions must be made, one being what information-bearing signal to

transmit, and the other what control action to exert. Such problems arise in the simul-

taneous optimization of both the observation and the control sequences in stochastic sys-

tems. This problem is solved completely for first-order auto-regressive moving average ,.

(ARMA) systems under the quadratic cost criterion. The results are further extended to

cases where the time horizon is infinite and the cost function is discounted.

In Chapter 4 we consider stochastic dynamic decision problems requiring simultane-

ous optimization of both the observation and the control sequences for second- and

higher-order systems, under quadratic cost criteria, and find strategies which are optimal k'

over the affine class. .

In Chapter 5 we generalize the results on the decentralized two-person teams of

Chapter 2, by allowing the action of one agent to be transmitted to the other agent

through a number of noisy channels simultaneously, instead of being transmitted through

a single noisy channel. In Chapter 6 the results of Chapter 2 are extended in another

direction, viz., to the case of more than two decision makers.

In Chapter 7 we expand on the framework by allowing an incomplete statistical

description of the channel used to transmit measurements between the decentralized

agents, and seek optimal solutions under a worst case analysis. It is assumed that the ,

unknown part of the channel noise is controlled by an adversary or "jammer," and the

situation is viewed as a zero sum game. The problems are studied for a variety of fidelily

criteria, under hard and soft power constraints, for the transmitter as well as the jammer.

OEM*'y~ -.1
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Finally, Chapter 8 provides a recapitulation of the results obtained, and concludes
t the thesis.

II
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CHAPTER 2

THE DECENTRALIZED TWO-PERSON TEAM

2.1. Introduction

in this chapter we formulate and analyze some fundamental cla.ses of stochastic

team problems involving two decentralized agents, where the action of one agent affects

the information of the other, and the other agent does not have access to the information

upon which the first one acted. In Section 2.2 we formulate the general two-person sto-

chastic team problem with quadratic costs and Gaussian noises. In Section 2.3 we identify

those instances of the general problem for which the optimal solutions are linear. In Sec-

tion 2.4 we show that for some instances in which we cannot show that linear solutions

are globally optimal, the optimal linear policy may be outperformed by an appropriate

nonlinear strategy. In Section 2.5 we comment on some aspects of the difficulties associ-

ated with Witsenhausen's counterexample, (Witsenhausen [19681), and the concluding

remarks in Section 2.6 end this chapter.

2.2. Problem Formulation

In this section, we formulate a two-person, decentralized, stochastic team problem

with nonclassical information, where the action of one agent affects the information of the

other and the information structure is nonnested (Basar and Cruz [19821). The problem is

to design the controls u o and u, so as to minimize the quadratic cost J(yo,y-), where

J(yo,y) = E[k 0uo2 + s0 u0 x + su2 + s u x],

with

1111 111 0SID112 2 12D 114



U% = yo(z)

-t and

~ul = i(Y),

ko > 0, s > 0, so and s, being prespecifhed constants.

The variables z and y, upon which the two agents base their respective actions, are

given by

z = ax + v (2.1)

y = uo + bx + w. (2.2)

Here x, v and w are zero mean Gaussian random variables, which are independent of

2 2 2
one another, and have variances ox, o and a w, respectively.

The situation is depicted schematically in Figure 2.1 below.

b W

a +x x 'o +t
- -Z U,, Y

Figure 2. 1. The two-person, decentralized, stochastic team.

There are no general analytical or numerical tools which can be used to obtain the optimal

solution of this problem, the difficulty arising mainly due to its nonclassical information

structure. The separation principle (Wonham [1%8]), for example. does not apply here,
".x
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since the estimation part cannot be separated from the control action. Numerical tech-

niques fail to provide any answers because the discretized version is NP complete (Tsit-

siklis and Athans [19851). To further understand the nature of the underlying difficulty,

we may view the above team problem as an equivalent control (one-person) problem, with

the control exhibiting a dual role. We complete the squares to obtain the cost functional

E[kouO + soux + s(u, + - x) 2 ],
2s

which implies that the optimal y, is necessarily given by
jl

u 1 y(y)=-- - E(xIy) (2.3)

* 2s

and hence we have the equivalent problem:

2s o  si

Minimize E[ko(u o + - x) 2 - - E(E(x I y)2)]
YO 2k o  4s

subject to (2.2).

We thus have a quadratic term to be minimized as is usual in stochastic control for-

mulations; in addition, there is a second nonquadratic term which is influenced by the

information about x that y contains. In the absence of this second term the minimum is

attained by choosing u. as a linear function of z:

2

uo =yo(Z) =-- E(x z) =- - z, (2.4)2k o  2ko I 2o I
k0  2 0  a o, +o,)

but the presence of this second term brings in the possibility of a conflict between the two

roles of control and information transmission. Thus, even if affine laws are optimal,



17

indirect techniques need to be used to prove their optimality; but in fact, as to be eluci-

dated below, affine strategies do not always continue to be optimal.

2.3. Instances with Optimal Linear Solutions
2d

In this section we show that if either b = 0 or a- 0, then the stochastic team prob-

lem formulated in the preceding section admits optimal solutions which are linear in the

observation variables.

2B
(a) o =0, b arbitrary

If o: 2 = 0, then we have a = 1 without loss of generality, and we define u'0 = u0 + bx

to obtain the equivalent Problem PI below:

Minimize J'(y'o,y'l)

where V

2 r

J'('o,y') E[kou'o + s'0 U'Ox + _ (u, X)2 + K]
4s

u (0 = Y0 (X) (2.5)

u '= -Y'1 (U'o + w), (2.6)

S = s- 2kob• (2.7)

and K is a constant independent of u'0 and u'1 .

We thus obtain a problem of the type studied in Bansal and Basar [1987a], without a

product term between the decision variables, for which linear strategies have been shown

to be optimal. We briefly outline the approach here for completeness. Note that the situa-

tion is as depicted in Figure 2.2. In view of the discussion in Section 1.3, in which prob-

..
-w -|I . -: - S *~'~ ~ ~ *$.III *~I* , ~
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lems with nonclassical information have been related to problems involving information

transmission, the agent taking action uo may be viewed as a generalized encoder and the

agent taking action u1 as a decoder, in the terminology of the information transmission

system introduced in Chapter 1.

w
Encoder Decoder

x 
U1 p1il .

~Figure 2.2. The transformed Problem P1I.

~We first consider the transformed problem under the additional restriction

E[u,0] v2 . (2.8)

Note that

2

I(;y) ) I(x;u'1 ) )_1 log (2.9)

2 E[(u,1 -x) 2]

where I(a;b) denotes the mutual information of random variables a and b. The first ie-
-v

quality in (2.9) is the data processing inequality, and the second inequality follows from ,

the definition of mutual information (see, for example, Wyner (1970]). 1

0 Further, we have

(x;y) =H(y) -H(y Ix) (2.10) "

IF -,



19

where H(y) is the entropy of the random variable y and H(ylx) is the conditional entropy

of y given x.

Using (2.10) along with the fact that for a given variance the entropy is maximized

by a Gaussian randvii- variable with that variance, (see, for example, Kagan, Linnik and

Rao [19731), we have

P2 +2
1W

I(x;y) ( - log( -  ) (2.11)
2 2

Ow

Using (2.11) along with (2.9) we obtain (under the restriction (2.8))

2 2
E[(u' (2.12)

2 2a

Now let Jp denote the minimum of J'(y'0 ,-y/) under the hard power constraint, i.e.,

P inf J;(Y'o,Y', ) (2.13)

We then have

2

•~~ E 'o=p 21 Uo4SiJ-# > koP2 + Inf E[s'oU'X + Inf E[(u', - x)2 - + K
Etu'o=P 2  Eu'o2]=p<2 4s

2

W k 2 2 + Inf E2s' U, x1+ Inf Ef(u1  - +

koP2  0so 0o 1 +K) -2.1)Efu 0 <p2  Eu' < 4s
2 2 2

2 O x  w  S 1
koP -I s0 P X + + (2.14)

-(p 2 +0 2) 4s
22 2

Ox Ox w s
> = koP* 2 - Is'o I PC + - -W + K

(p2 +o) 4s

FJ
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We thus obtain a lower bound on the optimal cost, and the final task is to note that

this lower bound is tight and is achieved by using the linear policy:
P*u

u*= - (sgn s'o) P- x. (2.15)
ax

We now have Theorem 2.1 below:

Theorem 2.1.

(i) The stochastic team problem of Section 2.2 with av 0, admits an optimal solu-

tion which is linear in the observation variable.;, and is given by

u* 0 y*o(x) = p*x (2.16)

S, (p*+b)a 2

u* - Y y (2.17)
2s (p*+b) 2a2 +0, 2

where

p* -X* - b

and X* is given by the solution to the following parameter optimization problem:

2 2 2
X= arg min[kok 2S 2 + + (2.18)

. 4s (,2V 2.C 2 :
. x "OW)

(ii) The optimal value of the cost is

2 2 2
2 2 2 ,I ax w

KOk ax + s o *o, + - + K (2.19)
4s (A,202+o)

where

*2 2 '
K =a x (-k ob + sob - s,2/ 4 s)

'Is C r,
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Remark 2.1. The parameter optimization problem (2.18) always admits a solution since as

I X--#oo, so does the expression to be minimized, implying that we can restrict the search to a

compact set over which a continuous function always admits a minimum.

(b) b = 0, a arbitrary

If b =0 , then the channel noise becomes independent of the input x, and the problem

is a special case of the multipath system considered in Bansal and Basar [I 987b] for which

linear strategies have been shown to be optimal. For completeness we outline the ,

approach here. We can assume, without any loss of generality, that a I. then introduce

Fthe random variable

m =ENx I z) (2.20)

and make the following observations:

s1
(i) -Y(y) - E(xl y)

2s

(ii) E[E(x I y) - x) 2] = E[ E( y ) -
M )2] + Em -x)

2 ]

(iii) E[uo(z)x] = E[uo(z)m]

(since the random variable (x-E(xlz)) is independent of z).

(iv) The random variable m is Gaussian distributed, since

G2ox
M -- -z,

2 0o×X+a,-

and has the variance

2 4 ( + 2
am O x+a

L11
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In view of the above observations, the problem with b =0 is equivalent to

Minimize J"(y'o,-yl)
V71

where

2

J"(U'o,Ul) = E[kOu'o + SouOm + -- (u - m) + K']4s

with

u ,o0-- ,/o(m)u, =

Ul= Y1 (y)

and K' a constant independent of u'o and u. Since m is zero-mean Gaussian, we have a

problem of the type discussed in part (a) of this section, and the optimality of linear stra-

tegies follows.

Theorem 2.2.

(i) The stochastic team problem of Section 2.2 with b = 0, a = 1, admits an optimal

solution which is linear in the observation variables, and is given by

U*o(z) = X*z

2s X2O

where X* is given by the solution to the following parameter optimization problem:

2 2 a 2 +

k* = arg min koA2(a + a 2) + 2+ .. .a 2
4s 2 22

x '

(a solution to which may always be found as discussed in Remark (2.1)).

2,5
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(ii) The optimal value of the cost is

k * a+ o, + y *oC: +--4s 2CF 2)+ ) 4s

2.4. Nonoptimality of Linear Strategies

In the preceding section we have identified those instances of the general two-person,

decentralized, stochastic team problem for which the optimal strategies are linear and

may be obtained through the solution of a related parameter optimization problem. These

include the cases where either =v 0, i.e., an uncorrupted version of the variable x is

available to the agent acting first, or b = 0, i.e., the channel noise is independent of the

input x. In this section we show that when neither of the above two conditions hold, then

a it is possible to construct some problem instances where the optimal linear strategy is out-

performed by an appropriately chosen nonlinear strategy. In the following, we first

2
assume that b = 1, oW = 0. Note that if these assumptions imply that linear strategies are

not optimal, then we cannot expect linear strategies to be optimal, in general, for the class

2
of two-person decentralized teams with nonzero b and o..

Problem PG

Minimize E[kou2 + s0 UoX + su 2 + sluix]

where

Uo = -Yo(Z), U, = y,(y)

Note that, since z = ax + v, x may be written as x = 3z+n where

O3ao,2/(a2 o + o)

P'
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and n is a Gaussian random variable which is independent of z, with variance

2 2 2 22 2

Thus we obtain the equivalent problem

Minimize E~k 2~ + OSUZ+ u2 +

OuO+ spoulz +i slu~n]

where

u 0 = Yjz) u1II= y1 (u +3Az +n).

(In this restatement we have used the fact that E~u0nJ = 0, n being independent of z, and

having zero-mean.) We next define uO + Oz = u'0 to obtain the cost functional

EtkOu'0 - 13z) + tOsOu'0 - 13z)z + su12 + s113u~z + slu~n]

and arrive at the problem below:

Minimize Mol 0' + (13S0 - 2k013)U'0 Z + Sul + sU~n + s113ul Il

where

u10=y'0 (z) , u1  Y1(u'0 + n) Y1 (Y).

We thus have the situation depicted in Figure 2.3 below.

Figure 2.3. Schematics for the transformed problem.

0 Note the presence of the term E~unJ in the cost functional; in the absence of this term 1hi'
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optimality of linear strategies may be established via information theoretic bounds. We

now have a problem which is similar to the Gaussian test channel problem (Gallager

[181), with the difference that instead of having to estimate the input z, the decoder is

required to estimate a linear combination of the input and the channel noise. We thus

have the problem below:

Minimize ENO u'0 + s'Ou OZ + s(u1 + s11n + s1 2Z)2]

where

u y'jz) , u, = yl(uo +i n)

s 0  O(s 0 - 2k0 )

S1 s112s

We now note that since n =y - u'0 , we have

u1 + sl 1n + s12Z

= 1 + 11(y - U'0) + S12z

Defining 
UI + st ly + S12z - SI Iu' 0

uI= UI+ sily

we obtain the problem

-~VoVMinimize ENO u'0 + s'Ou OZ + s(u'1 + s12z - S1 1IU 0)2

* where

Th. . is a problem of the type ::udied i 2(;alandiir [1987a) with a product term

between the decision variables, and hence, as shown there, regions of the parameter space
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exist where nonlinear strategies outperform the optimum linear strategies.

An Illustration

Consider the Problem PG with parameter values ko = 0.01, so = 6.02, s =1.0,

si 20, 2= 1005,a-0.5/01.0025) aa2= 100-(0.5)/ /1.0025.

With the above choice we may write x = A3z + n where 83 -0.005 and a~ 2 1.0.

2 , 
2

(Recall that we have taken a. =0, b = 1 and aZ= 100.0).

We then obtain the transformed problem

Minimize E[0.01Iu'~ 2 0.03u'OX + (u'1 - u 0 - 0.005z)2]

where

= 0 'o(z)

I v'(U',0 + n) Y1y

Now, if -/'o is linear, then optimal -y', is also linear, and hence restricting y'0 to the form

Yo= Xz, and optimizing over X, yields a cost of -1.2477 which is the best in the linear

class. However, we can show that the nonlinear policy

y'0(z) = 10 sgn z

*YjY 
= 10 if y )'0

V1Y) -10 if y< 0

yields a cost of -1.3911 which is superior to the optimal cost in the linear class.

6JAJ
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2.5. Some Comments on Witsenhausen's Counterexample

The following problem WI, studied by Witsenhausen (1968], is a two-person, decen-

tralized, stochastic team problem with a product term between the decision variables, and

may be viewed as a special case of the reduced version found in Section 2.4.

Problem WI

Minimize E[ko(u0 - X)2 + (uo - u1 )2 ]

where

Uo = Yo(x) ; u -Y yI(Y)

and

y = Uo +W.

Noting that

(u - uI)2 = (y _ W u I )2

and defining

U 1 -=y-U1 ,

we obtain the equivalent Problem WI' below.

Problem WI'

Minimize E[ko(uo - x)2 + (u'1 - w) 2]

with

I

tib
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= yjx) ; u' = Y'1 (u0 + w).

We, therefore, have a problem in which the second agent wishes to estimate the channel ti

noise (which is independent of uo), In sharp contrast to the communication type problems

where the second agent wishes to estimate the observation of the first agent.

Since the second agent necessarily uses u'1 = E(w I y), the second term in the cost

function for Problem WI' becomes

J 2 (Yo) = E[Cw - E(w 1 y)) 2 ].

It is a known result in probability and statistics that for every fixed power level

E[uo2] = P2 , the linear strategy

00

U= -Y0 (x) = Px
ax

maximizes 1
2('Yo), when y = uo + w. To prove this result, consider a zero sum game in

normal form with kernel

G(uo,u1 ) = E[Cw - ul) 21

which is to be maximized by a choice of uo = -yo (x) and minimized by a choice of

ul = yI(y), subject to the constraint E[uo] = p2 . Note that

Max J 2(uo) = Max Min G(uo,U1 ),
U0  U0  U1

i.e., the unrestricted maximum of the function J, is equal to the lower value of the game

with kernel G. But the upper and lower value of a game are equal if a saddle point exists,

and to complete the proof one can Thow that

MOW.- I "
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UO N(O,P)2
* 2Ow

U1  y
u- y

provide a saddle-point solution for the game above.

In view of the above result, we see that for a given power level the linear choice of

strategy yo is the worst possible design as far as the minimization of the second term in the

cost functional for Problem WI' is concerned. It is therefore not surprising that linear

solutions are not optimal for the classes of problems which involve the estimation of

channel noise as in the case of Witsenhausen's counterexample, as well as in the general

case of Section 2.4.

2.6. Conclusion

In this chapter we have formulated and analyzed some fundamental classes of sto-

chastic team problems, involving two decentralized agents, where the action of one agent

affects the information of the other, and the information structure is nonnested. We have

identified those instances of the general problem for which the optimal solutions are

linear. For some instances in which we cannot show that linear strategies are globally

optimal, we have shown that the optimal linear policies may be outperformed by

appropriately chosen nonlinear strategies. We have commented on some aspects of the

difficulty associated with Witsenhausen's problem. The important conclusion that can be

drawn from the analysis in this chapter is that for two-person decentralized stochastic

team problems there do exist classes of parameter values for which the optimal solutions

are linear and may readily be found, despite the fact that the general problem is quite

intractable.

I

ii -,,
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CHAPTER 3

SIMULTANEOUS COMMUNICATION AND CONTROL:
FIRST-ORDER ARMA MODELS WITH FEEDBACK

3.1. Introduction

In this chapter we consider stochastic dynamic teams where at each step two con-

secutive decisions must be taken, one being what information-bearing signal to transmit

and the other regarding what control action to exert. The organization of this chapter is as

follows. In Section 3.2 weshall formally pose the problem with hard power constraints

as Problem Pl. In Section 3.3 we shall use an intermediate Problem P2 to construct Prob-

lem P3. Problems PI and P3 will be shown to be equivalent in the sense that the optimal

solution of one may be constructed from the optimal solution of the other. In Section 3.4

we formulate and solve an auxiliary problem using some results from Information

Theory. In Section 3.5 we shall show that the solution to the auxiliary problem may be

used to provide a solution to Problem P3, thereby solving Problem Pl. In Section 3.6 we

study the associated "soft" constraint version, and in Section 3.7 we study the existence

of stationary optimal policies for the infinite horizon problem with discounted cost. The

concluding remarks in Section 3.8 then end this chapter.

3.2. Problem Formulation

In this section we give a precise formulation of the problem to be solved in the

sequel.

The problem is to control a stochastic dynamic system, the description of which is

available in the form of a general first-order difference equation, with the objective being

to minimize a quadratic cost functional.

U"

177

k101

Aq
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The control v i is based on the observation vector (yo,..,yi), where each of the yk's is a

noise-corrupted version of the information-bearing signal u, the u i's being based on the

current value of the state and all previous y.'s. In the context of the space probe example

of Section 1.1, (with the u s being generated on board the space probe and the vi's being

generated on the earth station), such a situation arises quite naturally because a feedback

line (the uplink) is available which is many times more reliable than the forward link

(the downlink).

The problem clearly has a nonclassical information structure, since the agent taking

action v i does not have access to the information based on which action u i is taken. A pre-

cise formulation of this nonclassical stochastic team problem is provided next.

We specify the stochastic system by the following set of equations:

xi. I =Pixi + m i - v i  (3.1a)

along 
with

E[ui21 Pi2  (3.1c)

ui= hi(Xiy) (3.l1d)

ON and

v == (Y1 ) • (3.1e)

Here (3.1a) and (3.1b) are the state and measurement equations, respectively. The sub-

script i,(i=, l .... ) denotes that the realization of the random variable is at the i-th time

instant, whereas the superscript denotes the history of the random variable up to that

time instant, i.e.,

Y' .(Yo. Y)
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which we are also going to interpret as a row vector. The random variables x., w i and m,
2

(i>0) are all assumed to be independent and Gaussian with mean zero and variance 0(.,

the subcript being the identifier. The functions h i and yi, i-0,1-..., are the control policies,

each one Borel-measurable in its arguments, and leading to second-order random variables

u i and v i , respectively, the former also satisfying the power constraint (3. Ic).

The criterion for comparing different control policies hi's and 'yi's is based on the cost

function we wish to optimize, which in this case is taken to be

N

J(h N,y N E[ 1" (ailXi 2 1 + bivi2)] (3.2)

i=O

where ai+l>0 and bi>0 for all i-0,...,N, and the action variables u, and vi are related to

the policy variables h i and y. via (3.1d)-(3.le). We thus have ?roblem PI below.

Problem PI:

Minimize J(hN,yN)
h N,/

N

subject to (3.la) through (3.1e), where J(h N,y N ) is defined by (3.2).

3.3. Construction of an Equivalent Problem

The gist of this section is as follows: First an equivalent Problem P2 is constructed

from PI which differs only in the form of the cost function. The cost function for P2 is

in the form of a sum of the squar:.' differences between state and control variables. In

the transformation from P1 to P2 the constraints represented by (3,1 a) through (3. 1e) are

unaltered. In a follow-up step Problem P3 is constructed from Problem P2 such that the

0, ",
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structure of the cost function is left unaltered, while the state equations are redefined so

as to facilitate subsequent analysis.

These two transformations are presented below as Claims 3.1 and 3.2, respectively.

Claim 3.1: Under the set of constraints represented by (3.1a) through (3.le), the cost

function for Problem P1, defined by (3.2), is identical to

N
J",(nNN) E[T a'i(vi-b'ixi) 2] + CN (3.3)

i=0

where

b'i ki+lPi/(bi4ki+l) (3.4a)

a'i j- bi+ki+ 1  (3.4b)

N

c0 kOi+1 M (3.4c)
i=0

and {k1} is a sequence defined recursively by
P-

ki = a, + ki+Ibipi2/(bi+ki+) (3.5)

kN+l = aN+ I

Proof: This is a standard result in stochastic LQ control with perfect state information

(see, e.g., Bertsekas [1987] or Kumar an A Varaiya [1986]), known also as "completing the

squares." Note that cN is a constant (independent of the control sequence jv,}), and (3.5)

is the so-called discrete-time Riccati equation for this scalar problem.

4, Claim 3.2: The solution to Problem P2 may be obtained by solving the following

equivalent Problem P3.

pAft

4
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Problem P3:
LIL

Minimize J(h NN) V

where iy

i =~ pXi + m1  (3.6a)

=I y 1(y') (3.6b)

Yi U + w1  (3.6c)

ui= h(Ri1 ,y') (3.6d)

and the u i's satisfy L

E~u] p1
2  (3.6e)

0 with

N

J(h N,_YN) = E[ E a'j(i~j-b' i1i)2] + CN (3.7)
i1=O

Proof: The situation is depicted in Figure 3.1. Substituting for x, using Equation (3.1la)

we get

v1 -b'1 x1  v1+b'1 v0  b'I(POx 0+mO) (3.8)

Similarly,

* v2-b' 2x2 = V 2+b' 2v1 +,b' 2plvo-b' 2(P1(p,,x0 +m0 )+ in), (3.9)

and at the i-th stage we have

=ib'x V +b' 1v -1 +b' A-lVi- 2 +.. +b'i pi. 1 .  pIvO 3.0

- i(Pj11 (P1 .2,( .... (P.x,+M0 ) ... )+M1... 2)+m1...1

We now define

xO =x0 (3.11)
= px+m , i=O,.

and
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V.N -1

PX -2 X .... S - ...

MI - Y 0 YN-2 WN- 1  YO YN -2

M 0 WvI

xU V0

+ +o

Figure 3.1. Diagrammatic representation of Problem P3.

V v+b'1v +.b'v ...b (3.12)

Using these new variables, the cost function (3.3) can be rewritten as

N

JAh Nj N E[ Z a'1( -b'1 ij)2 ] + CN (3.13)

v1  = j'(y , v'

where the evolution of the ~.s is determined by (3.11). Since this is a team problem. and

N"A" for each fixed h the resulting stochastic control problem has classical information.

minimization of (3.13) over (h N N ) is equivalent to its minimization over (hN,'YN) where

Yi has only y' as its argument.

The relationship between 's and v s is given by

~N N T
v =V B (3.14)

where BT is the transpose of the following nonsingular lower triangular matrix:

d 11
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1 0
0 00 00bi 1 00. 0 0

B b'2P1 b2 1 0. 0 0

b' 3p 2p1  b'3 p 2  b'3 1 0 0

1 0

b'NPN-'Pl b'NPN-.P2 b'N 1

We may thus write

N N TiV = [BTI,
I

and we thus see that in order to obtain the optimal solution to P1, we may equivalently

solve the problem in terms of i and ii (over hN,yN), which is precisely Problem P3. This

then leads to the following equivalence between the solutions of Problems P 1 and P3:

Lemma 3. 1.

(i) Problem PI admits a solution if, and only if, Problem P3 does.

(i) If (hN,YN) is a solution for P1, then (hN, yNBT) solves P3; conversely, if (hN'YN)

solves P3, then (hN,YN[BT] - t ) is a solution for P1.

0

3.4. An Auxiliary Problem

In this section we formulate and solve an auxiliary problem which will play an

important role in the solution to Problem P3. I-A

Consider the situation depicted in Figure 3.2, the problem being one of finding the

signals uo . U.. uN subject to the power constraints

E[u 2] <P 2

so as to minimize the mean-square error in the estimation of zN using yo,yl .... YN" It is

Wt t
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given that z., n i, w i, i-O, 1,..., are mutually Independent Gaussian random variables, each

with mean zero and variance indicated by a(.), the subscript being the identifier. Follow-

ing the convention of Information Theory, we let I(zN;yN) denote the mutual information

between zN and y , and call the supremum of this quantity the capacity of the

corresponding system.

We shall first solve this problem for the case when N-1. The proof for arbitrary

finite N will then be shown to follow a similar line of reasoning. The case with N-I is

illustrated in Figure 3.3.

Recall from the discussion in Section 1.3 that for any channel the minimum possible

distortion D* that can result from its use is related to its capacity by

R(D*) = C.

First consider the lower branch of Figure 3.3, redrawn as Figure 3.4. We find D* for

this system. Let us suppose that the input is connected to a Gaussian memoryless source

with variance in which case we have

2

R(D) = Max(O,- log( ')) . (3.15)
2 D

Let z) denote the sequence (zo0 , .. z,,), which we again interpret as a row vector; define0L z

v I and z1 likewise. We introduce

*2
M,, E(z' Iz' = ±~2~o 0

and observe the following.

(a) The components of in, are i.i.d. Gaussian variates with zero mean and variance

- .' d,
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YO Yv- 1  I

A~

z~I
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Figure 3.4. The lower branch of the system depicted in Figure 3.3.

(1 2(y)2+(, 2 (3.16)

(b)

2 a2

El 1MI,-1,11 =l+0,1) 2 a 2 +0 2 (.7

where jildenotes the Euclidean norm. We also have

1 -(1+ 01) 0 zi -2C .

lim Inf - IV Ev-m~jl2  - e (3.18)

1  i n

where

P2 +02

-O log -(.9
2 2r

cW0

Now since

Ellz j-v 1 12  Eljz Lm j+M -v j,1 ljmj 12 + iLE11m jv ,12

we have
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D M7EIIZL, II12

j-aa j 4
a a 20 Z0 21(T 4 a (3.20)ZI Al Z!  O o

~+
(1 2a2+or 2 ((I+Of)2a 2+a ) (p 2

R(D*) may now be computed, and we have the following result: ,

Lemma 3.2: For the system depicted in Figure 3.4, the mutual information I(z1 ;y0 ) is

bounded above by

2 22 2(1, '""Xl+~)UZI+
C 1- (og)(3.21)

2 a(p 2 +0 1 )+( 1+01) 2ua 
2 ni0 W ZI w 0

Now, consider the system depicted in Figure 3.3. We first note that

I(z1 ;y0 ,y1 ) = I(z 1;y o) + I(zl;y 1 I y') . (3.22)

Now,

I(zl;y1 I Yo) I(z1,w;yl I yo)-I(w;y I z1,yo) (3.23a)

<I(zl,w;yl I y o) (3.23b)

I(w;y1 I yo) (3.23c)

= H(y I yo)-H(y, I w,yo) (3.23d)

- H(y1 I yo)-H(y1 I w) (3.23e)

< H(yl)-H(yi I w) (3.23f)

-I(y ;w) (3.23g)

2 2

< - log( ) (3.23h)
2 2

where H() is the entropy and H( I) the conditional entropy. Here steps (a), (d) and (g)
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follow from the definition of mutual information, steps (c) and (e) are due to the Markov

Property, step (b) follows because information is always positive, step (f) is valid because

conditioning cannot increase entropy, and the last step holds because, for a fixed variance,

the Gaussian random variable has the maximum entropy (Kagan et al. [1973]).

Using (3.21) and (3.23), along with (3.22), we obtain the next result.

Lemma 3.3: For the system depicted in Figure 3.3,

til (p 2+01)((+0, 1 )2 c2+a2) P 2 + 2
I(zp;y0 ,y1 ) < - log . (3.24)

2 (2(i Pa wIw) owl

Using this upper bound on I(z,y 01yl) we can find a lower bound on the minimum

mean-square error achievable when the problem is to estimate z1 from the observations y0

and yi.

We have

2

I(z1 ;yo,y 1 ) > I(z,;v1 ) I log (3.25)i , 2 E[(ziv) 1

which implies (using Equation (3.24))

0 ' Z n W2 I ZI
(a (P2 +02 o) + (1 + 1 ) 2z2o) o E[(z-vl) 21

a 2 (a 22 C 2 .+ ( 1) 2 a 2 .
g)2 ] >. ____olog(3.26)

2222 2

2 2h+ ,2i

E[(z 1-v 1 ) (p202)p2a2) (3.27)

0'a ,

~ ~, -,.............................
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We next note that if we use the policy

u0 XoZou= X(z-E(zy)) (3.28)

with X, and X, chosen so as to satisfy the power constraints, the minimum mean-square

error is indeed achieved and we have

Lemma 3.4. The policies given by (3.28) are the policies which minimize the mean-square

error in estimating z, from the pair (yo,yl).

We now consider the case with arbitrary N, depicted in Figure 3.2. First, consider

the problem in the absence of the most recent observation, i.e., the uppermost channel of

Figure 3.2 removed. Assuming that the version of the problem with (N-i) channels is

already solved, the capacity CNIl (i.e., maximum mutual information between input and

output) for the portion of the system within the rectangular box CDEF is known. We can

therefore find the minimum achievable distortion for a memoryless Gaussian source with

variance a when only the portion within the box ABCD is in use, by computing the con-

ditional estimate of zN given zN1, and transmitting this optimally. Using this minimum

achievable distortion we can find an upper bound for I(zN;y - ) as follows (where z' is

the sequence zN. .... zN)

D'= Lim 2 EIIz-v NI
J" J2 2 (lCN24 (3.29) ,

a ZN OnN +N) -2CN-

+ e(+ )2o 2 2 . ,2 2, 2
(l+eN) ON +an +Oe N) az."+On.

i.e.,

I

I

'K~~ 111 1 
-1 V
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I(ZN;yN1) < I log (1+CN)0~+0nN (3.30)
2 o +( I+C=O)2 e- 2 C N - 

1.Nl N) Z
II

We can use a series of inequalities as in (3.23) to show that

2 2
I(zN;YNIY (2- log N WN (3.31)

22
WN

Now since

I(ZN;yN) = I(ZN;y N- l) + I(ZN;YNl) (3.32)

we get

( N)2o2 +c2 2 2N N N n PN+ wN

I(zN;yN) < 2 log
2 a 22+( 1 +ON) 2 -2C _, N

(3.33)

ACN

and we have the following lemma.

Lemma 3.5. The mutual information lzN;yN) is bounded above by CN, which is the last

step of the recursion:
2 2

CO  - log( (3.34a)
2 2

GO w

wk.
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I

and for i-1,...,N

Ci_ _ log (3.34b)
2 2+( "+.,)2 2 - 2 C-1. 2an,--( IOi Gze ow l

Let Ai denote the minimum achievable mean-square error when zi is estimated using y

i.e., (using (3.25))

Ai az, e (3.35)

We therefore have

o -- (3.36a)
2 2

and for i-l,...,N

2 ((+oPi)Owl zI zI 2 .
Ai =--4 I- x + -o0 (3.36b) r

p2 +0 2 a 4)_ + G 2 n,

We shall next show that this lower bound is tight and may be achieved by using the poli- .2

uO = koz o  (3.37a)

and for i=l,....N

Ui -" i(zi-E(zjjy ')) •(3.37b)

Here the Xi's are chosen so as to meet the power constraints with equality. Since
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zi 1 = (+Of1 )zj + ni(3.38)

we may equivalently write

3z 1 = " ilz + m,-I (3.39)

where j~ is a constant,

2
(l Cj) z (3.40)

aziII

and mi. 1 is a Gaussian random variable which is independent of z -, and has variance

a 2

Oa- - an, (3.41)2
az-

1

With the policies chosen as in (3.37), we have

y, = X'z0 + W0  (3.42a)

q6 and for i-I..,N

yi= X(z-E(zjy'') + wi . (3.42b)

Let Ei denote the mean-square error in the estimation of z1 from y when the communica-

tion strategies are chosen as in (3.37), i.e.,

We then have, using (3.36)

P2
2 P

2 (3.43a)
OzO
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and for i-l,...,N

2 P2

a42 (3.43b)

2 I 2

4 2

Further, by our specific choice of policy, (z1-E(zjjy' 1)) is a zero mean Gaussian random

variable, and therefore

S2 2

E[z-Ez y-)-E[(z1 -E(zijy' 1) )Iyi1) 21 s 22 (3.44) 1

where

si2 E((z1-E(zjjy' 1')) 2 1
4 2

2 z 2 (3.45) i

4 2
a i- CF* a J1 j

Also, E(E(zIy'')1yi)0 by our choice of policy, since y1 is independent of y' 1 and there-

fore the expression on the left-hand side of (3.44) becomes

= (z-E( z~iy') )21

and we get the recursion (for i-l,.N)

2 2 42
*i aZ, a 2

P+ anL+)a (3.46a)

2 2 4 2

P +0.

Wv~- *'r'
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with the initial condition

2 2

The recursion for the 1i's is therefore identical to the recursion for the A's (given by

(3.36)), which denote the minimum mean-square error achievable. This shows that the

lower bound on error is indeed tight and thus leads to the following theorem.

Theorem 3.1.

(a) The policies given by (3.37) minimize the mean-square error incurred in estimat-

N1
ing zN from y for the system depicted in Figure 3.2, where the Xi's are defined by (3.43)

using the I ,s defined by (3.46).

(b) The minimum mean-square error is given by the last step of the recursion (3.46)

or equivalently by the last step of the recursion (3.36).

3.5. Solutions to Problems P3 and PI

We now return to Problem P3 defined in Section 3.3, where the policies

"-'.u i = hi(R iy

and

Vi = yi(y i)

are to be chosen in order to minimize

N
J= [ a i(,i-b ixi ) 

2] (3.47) ,

r'g

S
N - - - . -d
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under the constraints depicted in Figure 3.1.

We first consider the minimization of the N-th term in the expression for J, which is '

E[a'N( N-b'NRN ) ] ,

the optimization problem being equivalent to minimizing

E[a Nb ,N(_;v N--N) ],

where

' N A)'
14

VN

b'N

i.e., the problem is one of forming the best estimate of XN under the mean-square distor-

tion criterion. We now show that the situations depicted in Figures 3.1 and 3.2 are identi-

cal except for nomenclature. To show this equivalence we note that for i= 1....N

Zi 1 = (l'+Oi)Z i + ni  (3.48) --

which implies

2
OZI

Zi  0+00- zi-I + mi-I (3.49)
2*( zlit

where the mi's are zero mean Gaussian random variables each with variance

2
2 z1.1 2 "

am- a2  a . (3.50)

a2
oz,.

We therefore have

2

pj-1=(I+Q ) - for i=l,..,N

AA

A 4.

6r_

, - ~ o



49

oand by defining a2 = a 2 we can complete the correspondence between the variables Ri's

and zi's for i-0,1,...,N.

The solution to the problem of minimizing the mean-square error in estimating xN

from y, ... YN may therefore be obtained as in Section 3.4. Using the techniques of Sec-

tion 3.4 we get

(a) The minimum mean-square error in estimating xi using y is given by Ai, where

? A 's satisfy the recursion (for i-l,...,N)

2
AOW 2 2

-= 2 2(Pi_, +a m,. ) (3.5 la)
Pi +o,1 ,

with the initial condition

22
a .aw

,10 = - (3.51b)
P2 +a2

(b) The optimal encoding strategies are 

.

uo = h*O( o ) x O (3.52a)

and for i-l,...,N

i-ii--

ui = h*,(x,y-) = ki(xi-E(xiY )) (3.52b)

where the X i's satisfy the recursion (for i- 1,...,N)
,S.

22

2 Pi
2 2 (3.53a)

".

2,2



with the initial condition

x 2  *

0 2 (3.53b)

(the A 's being as defined by (3.51)).

(c) The optimal choice for the j.'s is

V i = b iE(xily ) (3.54)

where E(xily') satisfy the recursion (for i-1,...,N)

P.
ily) = i-i 2 2*Exy)= pi-I1E(Xi-..1 Y ) + pi p~w (P-Ai-l+°'m .) Yi (3.55a)

Pi +awt

with the initial condition

E(XIY) = (3.55b)
P2 +a2
0

(the A 's being as defined in (3.51)).

We finally note that the policies which minimize the mean-square error in the esti-

mation of xi given y' for i-0, N-1, are identical to the corresponding policies used in the

estimation of RN given y N and we therefore have the following theorem.

Theorem 3.2.

(a) The optimum policies hi and j/i for Problem P3 are given by (3.52) and (3.54),

respectively, using the X,'s and A s as defined by (3.53) and (3.5 1), respectively.

(b) The minimum value of the cost function for Problem P3 is

-.,



N

J*- 1 a'ib'i i+C N .
irno

Now we turn to the original Problem PI formulated in Section 3.2. Taking the difference

--i-b (3.56)
b' b' i-I

and using (3.54), (3.55) and (3.12), we find that

Vi vi-1 Pi 2 -'i

- (p' 1..b ) ++ 1 +0 2 ) Yi (3.57)bi  bi_1  pi +ow ' i-i-+m.)Yi3.7

which implies that the optimal control policies for the original problem are

v* = -* i(y') = b'i E(xijy') A b'jx i  (3.58)

where X R E(xjly') satisfy the recursion (for i-1,...,N)

= " P- i  2 2 1/2--

R= = (P i- - 'i-d.xi- 1 + 2 (Pi-A- +2_)Yi (3.59a)
Pi +Gw.

with the initial condition

,oY, 0  (3.59b) 0
PO +ax.

the A,'s being as defined in (3.51).

We therefore have the following theorem. 0

0

Lt 

n *6. 'C
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7Teoremn 3.3.

(a) The optimum policies Jh*iI and {y*1) for Problem PI are given by (3.52) and

(3.58), respectively, using the Xi's and A1's as defined by (3.53) and (3.5 1), respectively.

(b) The minimum value of the cost function for Problem P1I is

N

* F. a'ib'i 2 A1 +cN.
i=O

03

An Illustration

Consider the case with N-2, the stochastic system model being given as

xi= x 0 +I-rn- v0

X= XI+ m1 - v

3= X2+ m2 - V

and the objective being to minimize

22 2 +v2,

j=0

subject to the constraints of Equations (3.l1b) through (3.l1e), it being given that

2 2 2 =P2 =100
X 0 =Wi =

0
M1  oi

Using Claim 3. 1, (Section 3.2), we get the equivalent cost functional

2

Sa'1(v, - b1xi 2 + c2
i=0

where

49S
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a'o = 13/5, a'1 = 5/2, a'2 = 2,

bo =8/13 ,b 1 =3/5, b'2 = 1/2,

and

c2 - 613/130.

Using Theorem 3.3 above, we obtain the optimal strategies for the problem:

u*0 = xX
u*I -- x1(x 1-E(x I y°))
u* 2 = x 2(x 2-E(x 2 1 y'))

where

- X -213 and X2 -4/7,

and

V*o = 8/3 io
v* = 3/5 xl

V*2 = 1/2 R2

where

o= 1/2 Yo

I 5/26 yo + 3/34 y1

R 2  1/3 yo + 3/ 2 y1 + 7 /16 Y2

E(x 1 I yo)- 7/26 yo

and

E(x 2 y=) 1/13 yo + 3/10 YS 

Further, the optimal cost is 6.1852.

0

jNS
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3.6 The Soft Constraint Version

We consider again the problem depicted in Figure 3.1, but now with the power con-

straints

Efui] I Vi2

removed, i.e., the optimum power levels are also to be determined via the underlying

optimization problem. Such a formulation is useful in situations where more "costly"

measurements that contain more useful or reliable information may be used. It may be

possible to transmit a larger power at the encoder (at additional cost) in order to further

decrease the mean-square error at the decoder, this tradeoff being reflected by the cost cri-

terion. Mathematically, we may represent this as a power constraint which is "implied" or

"soft", appearing as an additional term in the cost functional, which now becomes

N

J(h ,_YN) = E[ E (a i(vi-bx iXi) + qiui2)] (3.60)

i=O

We shall obtain the solution to the soft constraint version by using the solution to the

hard constraint Problem P1 found in Section 3.5. Let J. denote the infimum of J under

the hard power constraints,

p Inf J(hN,yN) (3.61)
hN;YN;E[h,2 1-p-2,fip

We then have the following series of equalities and inequalities:

4}
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N IN

. qPi + mf E Y (a'j(v--b'xi)2)
i-O h1

2]_p 2  i=O

N N1

> E jj+ Inf E 1: (a'j(v1-b'jxj) 2)I
i=0 Ethl 2x P 1

2 1=0

N N

- £ qiPi2 + E a'ib'i2Ai (3.62)
i-O i*0

> Min qiPi 2 + a'ib'i 2A i
p,2> 0 l -

replaced by P'i, i.e., for i-I .IN

2,

A* ."l 2 &_,+a2 )(3.63a)

2 a. 2  11 .-

2 2wihr the in 1iare dnediin (31)adAsardenercuivllkwswth

a.,oOTX
o

0 (3.63b)

*2aaW

In order to find the optimal power levels (P*i2,'s), we can solve the following problem
Min 2 + a j+ i (3.64a)

i P ...... P -O

which is a nonlinear optimal control problem, the solution to which is given by the fol-

a ai

lowing dynamic program (with p-, 4 1 anda 2 0), where Wi(A) is the "optimum cost

to go given that the system is at state A at stage i

JiN
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WN+1 = 0

2 20 2  0 2

2 2, 2 2 2I IA (3.65)(A 2
Wi(A)-M qip i+a'ib'i2 2 (P-iA+-m )+W1( 2 1-

Si 1+0 "Pi 1

and the optimal value of the cost Is

2 2 2M in JCPo ..... PN) -= W o(UXo) (366p ..... P" 36) {

We next show that a solution to the above problem always exists. If we define

a O 2aa2Pi- A2 '22 2

f(A,P 2 ) qP.2 + a 3 1  (Pi~l A + o 2 ) W,.(3
2+ 7, 1  2 2

1 W1  1

then

Wi(A) = Min f(A.Pi2) .
Pt 

2

Note that W, is a continuous function of its argument if W,+, is, since the continuity

of Wi+, implies continuity of f. From the continuity of WN+1 , (which was defined to be

zero), the continuity of W i follows for all i. We also note that as Pi2-.oo, f(APi2)--+oo

also, and since Pi20, the search for P*i can be confined to a compact set over which a

*continuous function always admits a minimum.

The dynamic program (3.65) can therefore be solved, yielding values for
~~P*o'P*I ... P* ',

00

and we have the following theorem.

0
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Theorem 3.4. Consider the problem

Minimize Jh
Sh

N .yN

subject to (3. la) through (3. le) where J(h N, ) is defined by Equation (3.60).

(a) The optimum policies {h* i} and {Jy*i for this problem are given by (3.52) and

(3.58), respectively, using ki's and A 's as defined by Equations (3.51) and (3.53), with the

solution to the dynamic program (3.65) providing the optimum power levels, i.e.,

Pi2 = P*i for i=0,...,N.

(b) The optimum cost is given by

N

W(2o)- qiP*i2 + a'ib' i2Ai ,

0i-o

with the A's being defined by (3.63).

0

An Illustration

The optimal power levels depend critically on the power penalties (qi's). If for the

problem stated at the beginning of this section we assume N-1 and the following parame-

ter values

2 2• ( 2. 1.0 o2 .0 .o w 2 =. 1.0 2 am _ 1.0

q. = 2.0, q= 4.0, po = 0.5 , a' 0 = 1.0

' = 1.0, a', =2.0 andb', = 1.0,

then the optimal value of the cost is 3.5, which is attained by Po2=P2=0.0. If the power

penalty q is changed to 0.25 with all other parameters remaining the same, we can

achieve an optimal cost of 2.9747, which is attained by using P2 1.4495 and p 2  0.0.
P0 = .449 and 0.0
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If the power penalty q, is also changed to 0.25, then the optimal cost is further reduced to

2 2_
1.9968, which is attained by P, - 1.1609 and P - 1.9876. It is notable that the optimal

solution satisfies a threshold property, and the number of channels in use depends on the

relative magnitudes of the weighting terms.

3.7. The Infinite Horizon Problem

Notation

Let xi denote the realization of a first-order Markov process:

xi+1 = pxi + m i. (3.68)

Here xo, M O, mi.... are zero mean Gaussian random variables:

x0 - N(O,o02 )
m i - N(O,a).

The measurement y1 is a noise corrupted version of the control u,:

Yi -ui + wi (3.69)

where w o, wl,.. are zero mean Gaussian random variables:

wi - N(0,o 2)"

We are concerned with obtaining the optimal solution to Problem Po below.

Problem P

00

Minimize J(h*,y=) E[ F (qui +a( 2 )i V
hfI,Yo i=O

where a, q are given positive constants, 13 is the given discount factor (0<3< I) and

N
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ui  hi(x,y ') (3.70a)

vi " Yi(yi). (3.70b)

o

We treat the infinite horizon problem as a limit of the finite horizon case with horizon

length N, as N-oo. This may be done provided that the discounted cost remains bounded

and the optimum policy sequence converges to a well-defined limit.

The truncated version of the finite horizon problem, with horizon length N, is given

as ProblemNPN below:

Problem P/V

N

Minimize JN(hN,yN) E[ E (qui2+a(v-xi)2) i]
hN. IN i=O

subject to (3.68) through (3.70).

iC

For notational convenience, let q'i A q01 and a'i i a 0'

N0

We first consider the following hard constraint version of Problem P

Problem PHN

N

Minimize E([ a'i(vi-x) 21
N Nh Y i=O

subject to

E[ui2 < Pi2

2~
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under the constraint (3.68) through (3.70).

C|

The following Lemma now follows directly from the analysis in the preceding sec-

tions.

Lemma 3.6: (a) Problem PHN admits an optimal solution which is linear in the measure-

ments and is given as follows:

U i = h*i(xi,y i) = ki(xi-E(xi I y i-1))

V* i = Y*i(y i ) = xi

where

=i - o i l... ,(3.71 b)2 2" 
.,

2_

X-- (3.721a)

2

S P 2 for i= l .N (3.71b)
2 2

Pi +w +UM

the A i s satisfy

2 2

A 0 = '(3.72a)

0 W

2
Gw 2 2

Ai(P Ai-l+OYm) for i=l ,...,N .(3.72b)

W Wz

and RI= E(x1 I y') satisfies the recursion

()

%,

P -e0
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90= p - Y+ o pA 1 a~)
2 2 2

Pi +a

(b) The minimum value of the cost is

N

irnO

Now let JP, denote the infimnum of JN(h N,Y N) under the hard power constraints, i.e.,

JP inf JN(h, Y)

Using a sequence of equalities and inequalities as in (3.62), we have

N

i=0

2where the A, s are as defined in (3.72), and A~ are defined likewise, with Pi replaced by

I: 2*
Pi

The next task is to find the optimum power levels I P 2*'si which is done via the fol-

lowing deterministic optimal control problem:

The D~eterministic N-stage Problem

N

'S.Minimize T_ (q pi + aA1)I3 (3.73)
2 2
PO..........................................N i0O

subject to (3.72a) and (3.72b).

Not at ion: For each positive scalar A, let {Wk (A)l N+ I be defined recursively by
k=
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WN+1(A&) =0 (3.74a)

2 2

2kA ac.fiP2  (p2,,+, 2 + OWW(P2 A+iO 2) for k=N,...,0. (3.74b)2k'& 2 12~P+ + 2 j

Let 2( (A) be a minimizing solution of the right-hand side of (3.74b), whenever it

N
exists, and let IA*k k=.. be the trajectory sequence defined recursively by

2 2

A*) (3.75a)

2
aw (p 2 A*. 1 + a 2).(37b

P P2(A* )+a 2

Finally, let

P0 =P 0 (a, (3.76a)

P2' 2 _(3.76b)~k Pk(Ak-)

Proposition 3.1:

(i) The minimization problem (3.74b) admits a solution for each positive A.

(ii) The control problem (3.73) admits a solution _~ = which is given by (3.76) and

the corresponding optimal trajectory is generated by (3.75).

4 2
(iii) The minimum value for the optimal control problem is W 0(oG.

The proof of the proposition above follows from the following lemmata,

Lemma 3.7: The value of the optimal control problem (3.73) is J* W0(O, 2 where W H

is obtained through the recursive equations

*WN+I(zA) 0 (3.77a I

.1' 71
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2 2

Wk(A) = inf[qP + - (p2A+o )+ I3Wk+( (.A+om))]fork (<N. (3.77b)

Furthermore, if tht right-hand side of (3.77b) admits a solution sequence P),

Sk < N, then

2and

PL(A*k,l) for I < k < N

provide the optimal solution, where A*k is generated by (3.75).

Proof: This follows from a standard dynamic programming argument.

Lemrnma 3.8: For every A > 0, there exists a solution to the right-hand side of (3.74b).

Proof: Define f(A,P 2 ) by

2 2f Ap) 2 aa w  a oA+W  )

fk(A,p 2 ) = qp 2 + + Wk+l( M( + a2)) (3.78)
P 2 2 2 2
*P+ow  P +a

so that

Wk(A) = inf fk(AP 2 ) .

p
2

Note that Wk, which is positive for all k, is a continuous function of its argument if Wk+1

is, since the continuity of Wk+ implies continuity of fk" From the continuity of WN+I

* .*.(which is defined to be zero) the continuity of Wk follows for all k. We then note that as

P .-. ,. so does f(A,,p), and since P )O, the seirch for an optimum may be confined to a

compact set over which a continuous function always admits a minimum.
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The following lemmata will be used in the construction of the solution for the

infinite horizon problem.

Lemma 3.9: Wk(A) is strictly increasing for decreasing k, for all A>0, i.e.,

Wk(A) > Wk+l(A) Vk<N.

Proof: Clearly the lemma is true for k-N, since WN+l a 0 and WN(A) is necessarily larger

than zero for all A. We now note the following sequence of equalities and inequalities:

Wk(A) - Wk+1(A) ,_"
2 2

Min[qP2 + a (p2A + 0 m ) + 13W+( 2 (OpA + am)
> P P2+ a 2

2 2

-Min[qP
2 + (p2A + o 2) + 3Wk+(_ w (_A + ))]

Min~(pA + m k)2]p2>0 p 2+0 2 P 2+0 2
2 2 2 W

a w  2 2o
w  2 2)

22

2 2

-2 au a A 2 ) -_oa____ 2A+ 2 )

qP + -w  P k + -

p2 2 p2 _2

2 2 2
-qP,(p p a~)tWo 2  (A)t) :..

= (W k+ 1 -- Wk+2). W( -"G

-2 2 ,
P +o w::,

where P2 is chosen as the argument of the first minimization. (In case of nonunique solu-

tions, any one of the minimizing solutions may be chosen).

Thus if Wk+ (A) is larger than Wk+ 2(A), then Wk(A) is larger than Wk+I(A), Since .-:'S

WN(A) is known to be larger than WN+I(A), the proof is complete.

Li'. .

Lemma 3.10: Wk(A) is an increasing function of A IWk(A) T A} for all k(<N.

- 4" "R,"W'w#",,," '- '"' " " = '- L 
" ' -  

)- ' ',c " ,e ,e' "-- --' , - '- , , -- '- '-"(-',
' ' ' - , , ' - * , . )'A , ' ' ' - '  

' -- ,' J-._5
' '€ -, ' -., : _ .'" " " " ... ' - ',' ' -i 

'
1 € " " - :'- l :'. , ,-) , : - v- . __:' l i - I -" ,__ ,r , . -, w: - ...S..
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Proof: We prove this by induction. First consider the case with k-N. We have

2

WN(A) = Min[qP2 + aa. (p 2,+,2)].

P2 ~O P2+oUw

There are only two possible cases, either P 2*=0, or P 2> 0. if P*=0, then

WN(A) = a(p2A + a2). If p2 , > 0, which requires

ao(p 2 A+om) 2 0
q (P + )

( i.e., 
2

ao(p A+a 2
pZ*[ m_] 2 (3.79)]q O w

q

and we get

WN(A) = 2a kq /aw(pa + a - qo 2 (3.80)

Thus the lemma is true for k-N.

Now, if Wk+l(A) T A, then for each P2

2
Paow-e W a+ W (p2A + o)) TN

WkIp2+ o

since

2

a (p2A + a 2.aow~o + M) T A.

p2+ 2
W

Also,

(qP 2 + a (p2 A'o°) )TA
2 2P +o w

and thus both terms in the expression to be minimized to obtain WK(A) are increasing in A
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2
for all P Therefore, Wk(A) T A.

Lemma 3.11: For each A > 0, Wk(A) is bounded above for all k, by an affine function of

A, i.e.,

0 < Wk(A) QkA + 02,k .

Proof: The proof is by induction, using the observation that since Wk(A) is given by the

2

ized attains when P2 is fixed arbitrarily at zero.
T WN(A) a a(p2 A+2) we may choose , ap2  

2  a
Thus andA M 1,N a2,N

Now consider the following sequence of equalities and inequalities

2 22 aao. w  o w  A+

W =(A) = Min[qP2 + (p2 A + 01) + W+( (O2( +
P 2 +o2 p2 2

aow

Min[qP 2 + W (p 2 A + a2) + OW +1 (p 2 A + a2) 2
2 2 2

'a(p 2A + a 2) + + a 2 )

02A + a0
2 ) ""+ 3 Il.k+l(P2A - a 2,k+

- (ap 2 + o l),k+ Ip 2 )A + a°2 + 1.k+1 a 2 + 3fl2,k+l

I l A + Q2.k

Therefore, the lemma is proved with the sequences J Q1l,k} and i Q2.kI defined recursively

by

v
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QL1 "ap Q 2,N-aam

Ql 1A =ap2 + Opz 21k+1

2k aam2 + 1mk+1 + 2k+"

We now return to the study of the infinite horizon problem. Note that since the

optimal policy for the stochastic control problem is linear, the stationary limiting policy is

given by

h*n(Xn,y ) = X*(xn - E(x, I yn-)) (3.81)

where

p2A ..p.° 2 '(3.82)

P A-+a

with P2* and A* being obtained through the stationary solution of the optimum control

problem as N-.-co.

For each N, denote the solution given by Proposition 3.1. (ii) by {Pk'}N , k<N. We

then expect that

P -*=Lim iP 2*1

* for every finite k.

To establish the existence of this limit, we recall that W k(A) is strictly increasing for

decreasing k<N (Lemma 3.9) and further that it is bounded above by an affine function

(Lemma 3.11). This last property follows since both 0 1 k and Q 2k are bounded in retro-

grade time,

IV
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2 aa
(ilk < ap) and Q 2, < m (3.83)

1-13p2  _,) _21S

Hence, Limit Wk(&) = W(A) where the limiting function satisfies

K ~ 2 W
M 2 + a 2 PA 2 2W(A) Mi 1qP + +3W (P A+oa) (3.84)

Denote the minimizing solution here by P2(A). Now note that since p 1, Equation

2 2(3.75b) describes a stable system with PIk replaced by P ,and hence where A*

solves

2

A* W (p2A*+IU 2) (3.85)
22

P (*)--o
Let

,2* p2(A*).(.6

Then we have the following solution to the infinite horizon problem:

Theorem 3.5: With N--+oo in (3.73), the stochastic control problem in consideration admits

the optimal stationary policies,

h* )L*(x< - E(xn I fl1))

for n sufficiently large, where

_* P 2

2*2

with Ai* and P - given by (3.85) and (3.86).
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To numerically compute the optimal stationary policies, we start with A0 =0 and

run the following algorithm:

Algorithm A:

(1) Compute
2 2

aa2(p 2 A +o )  3(qP2+aAk)

(P;)* - arg min[q( + +
pr>>'O q2 +p+w (I-3)

(2) Compute the new value, Ak 1, by

2

AW+I  (p 2 Ak  )

(P 2 )*+ 2

(3) Go to step (1), and iterate.

The optimal cost is then given by

W(A*) = (q(P 2 )* + aaw(P2 A*+M) )/( -

2U

We next show that Algorithm A always converges. We first note that (Pk)*, found

from step (1) of the algorithm, satisfies

(p MaxIO,( a - ;( l :I3l.2" 2 )1, -2 2)1

* q

which implies that if Ak+l > Ak, then (Pk+,) * > (p2).

Now, given Ak > Ak-1, we have
6t b-

MI

-,
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Ak+ 1 - Ak
2 2 _

(p 2 ,& 2)- W 2 2
(p 2 * a k+Orm)( * y2(p &k-l+aM) 

,
k ,- 2 - 2

(p(2 )*+.o (p 2  a
k2 2

- p2 (A k - Akl)

(p 2)*+2

>0.

Therefore, since AI > A09 it follows that the Ak's form a monotone increasing

sequence. Further, to show that the Ak's are bounded above, we consider the sequence
to = 0 i

,+,- p rk + m,

and note that if rk ) Ak, we have

rk+t,~ k + a m
2 2

> P rk + Urn
) p2 Ak + 0 rn

2Uw

(P> +° 2 +a
(p 2 )*+0 2

- Ak+i

S

i.e., if r k > Ak, then rk+l ) Ak+. But r o = Ao(- 0), and the sequence rk is bounded "

above by

20 m

(IP2

Therefore, the monotone sequence Ak is also bounded above, and the convergence of the - !

algorithm follows.

- :... • .,, , . ... .. . . . . ., 0
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Tables 3.1 through 3.4 provide a few of these convergence results for given parame-

TABLE 3.1. CONVERGENCE RESULTS FOR THE PROBLEM WITH2 22
a= o 0  = 1.0, p =3 =q =0.5.

Iter. # A (P

0 0.0 0.0

1 1.0 0.22474

2 1.22474 0.26979

3 1.26979 0.27963

4 1.27863 0.28035

5 1.28035 0.26069

6 1.28069 0.28076

7 1.28076 0.28077

8 1.28077 0.28077

9 1.28077 0.28077

2
TABLE 3.2. CONVERGENCE RESULTS FOR THE PROBLEM WITH a = am = 1.0.

p =0=0.5, q = O2 = 0.1.

It. # (p

0 0.0 0.60710

1 0.14142 0.63167

2 0.14633 0.63251

3 0.14650 0.63254

4 0.14650 0.63254

S
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TABLE 3.3. CONVERGENCE RESULTS FOR THE PROBLEM WITH ac=1.0,
p 80.5. q 0. 1,ao2= 2 .0.

Iter. # aS (P

0 0.0 1.16227

1 0.63245 1.62798

2 0.72559 1.69161
3 0.73832 1.70021

4 0.74004 1.70138
5 0.74027 1.70153

6 0.74030 1.70155

7 0.74031 1.70156

48 0.74031 1.70156

TABLE 3.4. CONVERGENCE RESULTS FOR THE PROBLEM WITH
p2 a2 2 05 =a I-,q=01

hter. # (P

0 0.0 0.58113

1 0.31622 0.81399

2 0.36279 0.84580

3 0.36916 0.85010

4 0.37002 0.85069

5 0.37013 0.85076
6 0.37015 0.85078

7 037015 0.85078

AZS



73

We finally note that an infinite horizon version of the originally formulated Problem

PI, can be solved via an equivalent problem of the form P

Consider the problem of minimizing J(h ,'y) where

J(h,y') = E[ 3(qu i
2 + aOxi 1 + bvi2)]

i=O

subject to (3. 1 b), (3. Id) and (3. le), where

xi+l = pxi + mi- vi.

Using (3.4) and (3.5), we find that the cost can be rewritten as

00 00

J E q3iui2 + E a'i(%'1i-b'ii)2

i=0 i-0

where

a'i " (b+k) a'3'

and

b"i ko _ b'
a'

with the k found by solving for the positive root of the equation:

(k-a)(k0+b) = kbqp2

i.e., the k satisfies

k - ( .I(bbb3p2 -a3) 2 +4ab3 - (b-b3p2-a3)) .
203

Thus, an infinite horizon version of the originally formulated problem, with discounted

cost, may be solved by solving a problem of the form Poo, with a replaced by a'(b').44 4'.
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3.8. Conclusion

In this chapter we have studied the problem of simultaneous communication and *-

control for first-order ARMA models with feedback. These are stochastic team problems,

where the design of the measurement strategy itself is a part of the problem. As such,

they are difficult to analyze because of the nonclassical nature of the information struc-

ture. For cases with hard power constraints on the measurement strategies, we have

shown that the optimum measurement policy is to linearly amplify the innovation at each

stage, to the maximum permissible power level. For the cases with soft power constraints

the structure of the solution is similar; however, now the optimal design of the power

levels is also a part of the problem. These optimum power levels may be found via

dynamic programming. We have then studied some infinite horizon stochastic team prob-

lems involving a first-order ARMA model, established the existence of optimal stationary

policies for these problems, provided an algorithm that always converges to the optimal

solution, and also provided some numerical examples illustrating the calculation of these N

stationary policies.

0N

'44't

S

0

~~I
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CHAPTER 4 "

SIMULTANEOUS COMMUNICATION AND CONTROL:
GENERAL ARMA MODELS WITH FEEDBACK

4.1. Introduction

In this chapter we study the problem of simultaneously designing communication .A

and control strategies for problems involving ARMA models of orders higher than one. In

Section 4.2 w( formulate the general problem and then the transformed problem consist- 0

ing of squared differences. In Section 4.3 we study one of the simplest such problems

involving a second-order ARMA model, and show that the strategies which are optimal

over the linear class may be outperformed by appropriately chosen nonlinear strategies. )k

In Section 4.4 we consider optimality over the affine class, and show that within this class.

the optimal policy consists of transmitting only the current innovation, multiplied by a

gain factor. In Section 4.5 we study the linear solutions for the second-order ARMA

model; this illustrates the methodology and concepts for the more complex problem

involving the general model which is treated in Section 4.6. The concluding remarks in

Section 4.7 then end this chapter. 'p..

4.2. Problem Formulation

In Chapter 3 we had studied a stochastic dynamic system involving a first-order

ARMA model, with the current state directly correlated only with the immediately

preceding state. In case we allow this correlation to extend to j previous stages, we obtain

a jth-order ARMA model. Accordingly, let us suppose that the stochastic system is

specified by the following set of equations:

- 7
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j-i

xi+1 -- Pi+l,i-kXi-k + M i - vi (4.1)
k=O

and

y = UI + wi (4.2)

along with
} ~i'i-1)"

ui =h 1(x,y ) (4.3)

-= V (y). (4.4)

* Here (4.1) and (4.2) are the state and measurement equations respectivt.y, the ran-

dom variables x0 , w i and m (i O) are assumed to be independent, zero-mean and Gaus-

sian with variances a(. (the subscript being the identifier), and Pk, 0 for j<O. The

functions hi and y, i)0, are the communication and control policies, respectively, each

Borel measurable in its arguments, and leading to second-order random variables ui and

v,, respectively.

As seen in Chapter 3, we may formulate a hard constraint version of the problem, by

restricting the communication policies to satisfy

- E[u21 ( P (4.5)

or the soft constraint version may be formulated, using the additional term

k , " .6)

in the cost functional, implying that a tradeoff between higher signalling costs and lower

estimation costs is permissible.

Ii W,
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These soft and hard constraint versions are given below as Problems PS* and PH0,

respectively.

Problem PS0

N

Minimize E[ iu + 2ilx+ +d
h y i=0 1  1 1x. ~7

subject to (4.1) through (4.4).

NN

2 v214Minimize E[ Cilx~ + div i
O.N i=O

subject to (4.1) through (4.5).

Using completion of squares and a redefinition of the vi's, (as in the case of the first-

order ARMA model) we may obtain th- equivalent problems PS and PH below:

Problem PS

N j-1

Minimize E[ E qiui 2 + ai( 7i - E bi..ki-d k 2 ]
kN ~N

Y i=O k=

subject to (4.2) through (4.4), with xi replaced by R, and vi replaced by ;;i.

Problem PH

Minimize E~(a i - E ii-~-
hy k=0

subject to (4.2) through (4.5), with x replaced by R and v replaced by r. For these

transformed problems, the Rs are given by the following recursion:
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ii+l Pi+-.ii-k + mi (4.7)

k-O

where ioXo is given, p,., 0 for all j<O and b,= 0 for j<O. Furthermore, the precise

(recursive) expressions for the at's are given in Appendix A, where the details of the

justification for this reformulation can also be found. F

We now turn to analyzing these reformulated stochastic team problems.

4.3. Nonoptimality of Linear Laws

In this section we show that for one of the simplest team problems of the type above,

involving an ARMA model of order 2, the optimum linear solution may be outperformed

by an appropriately chosen nonlinear policy.

We first restrict our attention to the following stochastic team Problem Pa, of which

a schematic representation is provided in Figure 4. 1.

rt W2

xYS E(x VIy 2 )=v

Y%

Figure 4. 1. Schematics for Problem Pa. "4,i

4.X

-- . m
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Problem Pa 

Minimize E[(x-v)2]

where

1x + ni(4.8)

u1 -yl(x) (4.9)

'RY 1 =ui + w 1  
(4.10)

112  -Y2(x 1 ,y) (4.11)

y2 U 2 + W 2  (4.12)

and S

Sv = 8(y 1 ,y 2 ) (4.13)

subject to the hard power constraints:

E[u 1 < p12 (4.14a) i

E[u' < P . (4.14b)i

Note that if the problem involved estimating xi at the decoder (instead of x), then

we would have had the two-stage version of a problem involving a first-order ARMA

model as studied in Chapter 3, for which the optimal solutions have been shown to be

linear.

We now show that Problem P. above does not, in general, admit an optimal linear

solution. This is done by constructing an instance of the problem where the optimal linear

strategies are outperformed by appropriately chosen nonlinear strategies.

In order to see why one might suspect nonoptimality of affine laws, consider the

above problem wilh u2 =0. We then have Problem P', below which is represenled 1

6~,(
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schematically in Figure 4.2, and for which the hard power constraint on u2 is immaterial

since there is no noise to combat.

Problem P',

Minimize E((x-v) 21  
-.

d,

subject to (4.8) through (4.11), and (4.13), along with the restriction

Y2 = U2 (4.15)

Note that since

V = S(Yl,y 2 ) (4.16)

where

Y2= = Y2(xI,Y)

U 2=y 2

x E(x yI.y 2 )v

Wi

Figure 4.2. Schematics for Problem P' .a
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u we may equivalently write

V- 8(y '-Y2 (x 1 ',y)) (4.17a)

= 8'(y1,x1) P(4.17b)

and thus Problem P'a may equivalently be represented as in Figure 4.3 below.

We thus obtain a problem of simultaneously designing encoding and decoding policies

with side information at the decoder, for which nonlinear strategies that outperform the

optimal linear strategies do exist (see Appendix B).

Since linear policies are not optimal for Problem P. with a 2 = 0, they may continue

2to be nonoptimal for small enough values of a,,,. We show next that this is precisely the

case. In particular, if we consider the optimal linear design for Problem P., using

u1 = ,Y(x) = k.x

U2 = y/2 (Xly) "= X2 (Xl - E(x 1 I yj))

where X, and X2 are chosen to meet the hard power constraints with equality, (this being

the optimal choice in the affine class, as to be shown later), we have

x V
* " t '

YlIl Y

Figure 4.3. Equivalent representation for Problem P'V.

4-
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E(x1 1Iy1 ) --- l.(4.18) '2 2P1 +o U

and

2 2

owl

x - (x, I y) -n, + - -x - -- -w,(4.19)

1 w iW t

which implies that

2°

u2 -- 2 X w+n

P +(Y P +0c1 Wi"

with

2 ~~ PP 2 + 2
Wi-k22 = P2 (PI +~w

2
2 2 2---2 2

o x aw n 1 +Ow0

The mean square error in estimating x from the simultaneous observation of y, and y,

then is

2 + (4.20) -

E[(x- E(x (p ) - 2 2 2 2 2 2 20
( +0 0" P +

Considering the situation with o 2= 100.0, an, = 0.99, o..., = 1.0, a%2 = 0.01

2~ 2

PI = 85.0423 and P2 = 100.99, we find that the optimal linear policy yields a cost of

0.53467.

We next consider the design

04
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'y(x)=x + e sgn x

yZCX1) = X

OU and

8(y) (y+y-E)2 if Y2 >1 0

y1 +y2+E)12 if y 2 <0

(letting E =-1 .0 we obtain E[uI 2] 85.0423 and E(u2) 100.99).

Now

4y 2 =x + n, + W

X + W

j where

W3- NMI.).

If we calculate the mean square error under the above policy by an analysis similar *o

that used in Appendix B, we find that the nonlinear policy yields a cost of 0.53172, and

hence is superior to the optimal linear policy.

We now return to the problem of showing nonoptimality of linear laws for at least

some instances of higher-order ARMA models. Consider the following second-order model

with feedback, illustrated in Figure 4.4. We have

*X 2 = P1XI+ P20X0 +MI
X= PO + in0

and x0, nio and m, are given independent, zero-mean, Gaussian random variables.

tr.

tI

I I V~ .. '%-~ .-.. >~~.P ~ -< 2KK.:K:.:*:%
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X2 Y2

YeY

WO

Figure 4.4. Schematics for a second-order model with feedback.

The problem is to minimize E[(v,-x 2)2] under the schematics of Figure 4.4, with

v ~2 = Y2(Y0,Y1 .y2).
Let us now suppose that a., is arbitrarily large, essentially making the third channel

redundant, and therefore

E(X2 1 I y0,Y1 2) =E(x2 I yoyl)

4 Further suppose that

P21 =0 P20 =1 2 0 P12

which imply

Xe

and we obtain the problem depicted in Figure 4.5. We thus obtain a problem of the type

%'

Dili.
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m 1

XO YO '1

Wo 0

Figure 4.5. The second-order ARMA model under the given restrictions.

,* P,, discussed earlier in this section. for which there are instances when linear strategies

are not optimal. Hence we see that there are instances of the general problem (described

by second-order ARMA processes) for which optimal linear designs are not optimal in the
~~general class of policies.•

4.4. Optimality over the Affine Class

In the preceding section we have shown that for ARMA models of order higher than ,

one, the strategies which simultaneously provide optimum communication and control are

not necessarily linear. In this section we show that if we confine the design to the affine

class, then the cptimal communication strategies use a linear transformation on the inno-

vation process.

Theorem 4.1. Consider the general formulation of the Problem PS given in Section 4.2, but

with h i resticled to the class

ui = hi(x,,y)- Li(iy )

where L, is a general affine mapping. Then one may, without loss of generality, be
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confined to optimizing over the class of transmitter policies which satisfy the structural

restriction

ui x( i - E( j I yi-')). (4.21)

Thus it is sufficient to optimize over the class of policies which use a linear transformation

on the innovation in xi.

Proof. Note that over the affine class we may write " '

0

u = Li(xiY = i + pi -

with
ai -k- i( i - E(x i I y-))

and

pi = L iy ) 

!

where L' is an arbitrary affine mapping, and 5 and pi are uncorrelated. Thus, we have

N j-1 i- iI- I)

Min (hN,N) -" E F(qiui2 + a(E( 1 bjiiki- k 1 yi) - i"-' ,
YN lii=O k=O k=O

E 1(qii 2 + q iPi2 + a 1(E( E bi..ikXi-k I y') - j i_kik) )

ti-O k=O k=O 0
N j-1 j-i _ 1j-

/ E ~ qili2 + ai(E( . b~i I y') - 7 b ,i-ik

i=O k=O k=O k'' 1 '

We now note that the sigma field generated by y is the same as the sigma field generated S

by y t where

5- :

S
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Yi A

since pi is yj- 1 measurable.

Hence,

N - -I
Min j(hN E Y.(qiui + a b(E( Y bi i )  bi-ik i-k./

YN li-0i k-0 k---O ,

and therefore the cost functional may be optimized under the structural constraint (4.21). 

4.5. Optimal Linear Strategies for Second-Order ARMA Models

We now concern ourselves with the design of communication and control strategies

which simultaneously optimize over the linear class. In order to facilitate an understand-

ing of the concepts and methodology, we restrict ourselves in this section to a study of

second-order ARMA models. The general ARMA model will be studied in the next sec-

tion.

(i) The problem with Hard Power Constraints. 0

Problem PH2

N

Minimize E[ 7 a(vi-b ii-biji-1R i) 2I
hyN NO j=

w here

Ui "- hi(Ri, ) ,"

"vi = y(y')

E[ui ] = pi 2

and the x 's are generated via

0,
.1'
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xI= p10X0 + m

=2 P21RI + P2XO+

=ilp+' + AuIi + m1

XN+I PN+1,NRN + PN+1,N...1N.1 + MnN

Notation

Let

-ERI YJ)) 2 
1 (4.22a)

Ai [R-(iI Yi))(Rk-E(Rk I yJ))]* (4.22b) L

Theorem 4.2. The encoding and decoding policies for problem PH 2 which are optimal over

the linear class, are given by

j= Yj(Ri.y i-) = kiR-(iI y ))(4.23) -

- = Si(y') = bjjER I y') + bi E( ~j-1 I y) (4.24)

and the optimal cost is

N
2 i 2

Z~ ~ ~ ajb' i-III+2ib'-l- (4.25)
i=O

where

E[ytlI ' ER I y-+ p 2E[ 1....I , ) (4-26)

E[i1I y') = III y 'I + E[i1..1  I yjI (4.28)

2 2Pi +Go,
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Pi +awl

where

, 2 = (4.31)

Ai -1

and the A's are generated recursively by

2

A. =Ai (4.32)
2 2

APi-1 2 Ii- 2 A -2

A ' i i-1 + Pi,i-2 i- 2 + 2pii-lPi,i-2Ai-li-2 + m,_ 1  (4.33)
I

p2
-" A i-1 + P,i--1 i_22

P 2 2

i- i-I ( i i- i i--I
Ai-i. 1  (-( . . ++ -,i- 2 Ai-- ,2 (4*34)

"(pi2+o2)

iw-,i = (A i- i i- I ___( 4 .3 5)___
i~ -I i~ --I i- +  

i~i-2 i-l i- 22

"z with the initial condition

--1 2 0 0
AO .. 0  AO , 1  0and - 0 "

4, .?,Proof. Expressions (4.23) and (4.24) are immediate (since we know that the optimum u, is

linear in the innovation and the conditional expectation minimizes the mean square error),

and (4.25) follows from the definition of A. Expressions (4.26) and (4.28) are due to the

* fact that y, is independent of y and (4.27) follows from the definition of R.,

"Wi ' : i
4
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Yi= K1i~i - E(i I y i 1)) + w1  ''P

and

Ei I y1) = E(i- E(I y- 1 ) I y,);

hence we have (4.29), and (4.31) follows from the hard power constraint on E[u7]2.

To obtain (4.30) note that for any two zero-mean Gaussian random variables z, and

z., we may write

4 E[z]Z2

where n is zero-mean, Gaussian, and independent of z 2.

Thus we have

Yi= xjp1.j(i 11j - E(i... I

+ xi-(i2- E(Ri- 2 I y i)) + k i1 + wi

and writing

Ri -E~ii. 2 1 y'-']) (RiI-i - ( i-i -)

(with n independent of (~. 1 E~ 1 I y'') we have

i-IJ-

and therefore

VI.

V:*
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is given by (4.30).

I What remains to establish now, is the validity of the recursions for the A's.

We have

Ai E[(i - E(i I i)2

=E[i - E(iI y'-') - Ei I yi)) 2 ]

M Ai i1 - E[E(ii1 Iyi19]

and using (4.29), (4.32) follows. Further,

Ai i 1 = E((R1 - E(R1 I y i 1 ))2]

and using the definition of R, we have (4.33).

Now

A11=E[i. 1 - E(R1...1 I ''-E(i Iy)2

= A1 - E[E(i1 .. I yi)2 1
2 i-1 i-1

=A~ 1' - _____P __ (p11....A 1... +pi... 2A 1..11..2 )2

(Pi 2+a,~ A2

i.e., we have (4.34). Finally,

-EI(i - E(i 1 I Y'')i. - E(i 1 I y)(iI-ER- - (i1Iy)

= A21 - E(E(ii I yi)E(i-I I y1)]

a dai 1= ER E( R1  I yl i ) (A R - E( R I 11))]

J -1 i- i i- 1 -

+- 
2
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along with

2 i- (A i-1 i-1 ,jq

E[E(Ri I yi) E( i_- I y )] = +pi.A )

_______2 ++ p1 .. 2 I
i-1,i

2 i 2

P.++i2 2

implies (4.35).

The initial conditions for the above hard constraint version are immediate, and it is a

straightforward task to verify that using the given recursions, all expressions required for

the solution to PH2 can be generated.

(ii) The Soft Constraint Version

It follows from the solution to the hard constraint version (as in the case of the

first-order ARMA model) that Problem PS2 may be solved via the following nonlinear

optimal control problem.

Problem NL2

N
Minimize E (qjPj + aibi 2Ai +a b 2_ A i +2abb,.. A 1 ..i

2 2 i i

P*...N i=O

where the A's are generated recursively by (4.32) through (4.35).

2
The solution to Problem NL is given by the following dynamic program:

WN (AIA 2 ;A3 ) = 0

W i(A1 ;A2;A3)

0}
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Mln[q, 1 + aib 2,( )
1 2  2 U
P', Pi+o'

2 Pi2  ( Pii- 1 A 2+Pii-2A 3)2

+ a - __)(Pii_ A2 -+- Pi.i_2A3)

2 2

2+W 1 wt A1b .. i ,IWA2  (Pil 2 .w. +i2i_
2 A 3 ) )

+ 2 14- p2 1  
(p2 +a2

22P1 a 1,
+l 2pi+l,jpj+lij-l(Piji-A2 +4 Pi,i_2A3 ) p21°2

22 2

Ala 2 ' (Pi,i_ 1A2"FPii2 A3)a 
2 '

Further, the optimal value of the cost under linear policies is Wo(a. ;0;0).

0C

4.6. Optimal Linear Strategies for the General ARMA Models

(i) The Transformed Problem with Hard Power Constraints

Problem PH
i

N i-I

Minimize E[E a1(V - E b.i-k~ik)2 1 N

N Nh 'y i=0 ~,

where

"~Il
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u1  h,(R1,y i 1)

= y1i(y'

E[u, 2] =

Yj =i + wi

and

X Pi,i-k~i-k + mi-I.1
k-I

Theorem 4.3. The encoding and decoding policies for Problem PHj, which are optimal over

the linear class, are given by

*i = y(R,y 1 ) = x 1 1- (iIy 1 )) (4.36)

j-1

J- Rj-k 1 yi (4.37)
k=0

and the optimal cost is

N j-1 j-1 b A

i=0 k0O m=O

where

E[RI3 y'I = E[RJ I yllI + EI[J I y1] (439

E(1 I1]yi (4.40)
2 2

Pi +owi

E[ ) k=1 
(.1

E(M YiI=
2 +02

Pi W1

E[i~ I yi''] = Pl..kElRi-k 1 YI-1 (4.42)
k=1I

*1
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2Pi2

xiz = - (4.43)

Ai 1

and the A's are generated recursively by

2 2

- i +awl

ai --"(4.45)i-I 2 i% i-1

Ai I- +m~l4 Z 1: Pi,i-kPi,i-rn i-k,i-rn (4.45)

kffi-lmffl

i-I i i- -2
Am .m (=A Pi.i- ( i-Pk,m)  (i-j M (4.46)(P i + a )Ai k=1

i~~~~~P 2-1 |Ai1 %i-
An.M A- !n.m (P 2 Pi~i-k ii-k~nj -  Piji-k i-ikm) (4.47)

P-.n-kP.,.-Aak~n-p + a _ (i-jn i-l) (4.48)
kfflpffl

i-1o if. -The-pro (i--<Am<n'i-l) (4.49)

with A Ia 2 -1

x.; AkIrn = 0 for either k<O or m<O.

Proof. The proof follows in a manner similar to that for the case j-2 discussed in the pre-

vious section.

* (ii) The Transformed Problem with Soft Power Constraints

It follows from the solution to the problem with hard power constraints thal Prob-

lem PS) can be solved via the following nonlinear optimal control problem:

4%.

.



N j-li-i

Minimize E qiPi2 + a,( . ii.kbii. m Ai

PO .. i-o k-o m-0

where the A's are defined via (4.44) through (4.49).

The solution to the above optimal control problem may be obtained via the following

dynamic program.

WN+I - 0

W i-1 . i-I i-i i-I i-I
Ski ili-(-)A- -1 ... Ai-l-(-1) . i-(-1)i-(J-1)-

j-1 j",Iz[ b i-i

Min qPip2+ai( E 1: hijj ijp(Ai -

P I k=0 p-0
p 2

"'2= 2) Pi 'i-n i-n,i-k ) (  Piji-m i-M,i-p))i-i-

Ai i +w) nl M1

i .i . i .. A i

S-W i+ ii I , Ai) i(j-l),i-(j-l))

where the relationship between the A's is as given in (4.44) through (4.49). The optimal
2

value of the cost is Wo(OXo,0,0'....0).

(iii) Solutions to the Original Problem

The optimal linear solutions to the original problems PH* and PS° can be generated

once the solutions to the transformed problems are available. We indicate how this may

be done for the hard constraint version. For the problem with soft power constraints, the

procedure is identical, except that we first need to find the optimal power levels by solv-

ing the nonlinear optimal control problem via dynami( .)rogramming.

Noting that since v, is y i measurable, we have

xi- E(xi y,-) )i- E( i I y )

( -I
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and hence the optimal ui's are given by

u*i Y*i(x i,y - ki(xi-E(xi I y'-')) ,

with the X's being the same as those for the transformed version. To obtain the optimum

vi's, note that

j-1
V* i = 8*i ( y ,) -- bi,i-kE'(xi I yi) ,

k=O

and recalling that (see Appendix A)

Xi-k = Xi-k - Vi-k-I

we have
j_1 j-1

v=i  Z bijikE( i_k I y i) Z Vi-k-1
k--0 k--0

where the V's are defined in terms of the preceding v*'s as in Appendix A and the expected

values of the R's are given by (4.39) through (4.42).

hqq
4.7. Conclusion

In this chapter we have studied the problem of simultaneously designing communi-

4 cation strategies and control policies for problems involving ARMA models of orders

higher than one. For one of the simplest such problems, involving an ARMA mnodel of

order 2. we have shown that the optimum linear strategy may be outperformed by an

4 appropriately chosen nonlinear policy. This is done by relating the problem involving the

second-order ARMA model, to a problem involving transmission through a Gaussian

channel with noisy side information at the decoder. It has further been shown that over

the affine class, the optimal strategy consists of transmitting the innovation at each stage.

W11I
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The solutions which are optimal over the affine class have been studied for the hard power

constraint version as well as for the soft power constraint version of the general ARMA

model.

0N

P.7

1A..
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5 CHAPTER5

THE DECENTRALIZED TWO-PERSON TEAM WITH
MULTIPLE INFORMATION CHANNELS

5.1. Introduction

In this chapter we consider decentralized, two-person stochastic team problems,

where the action of one agent is transmitted to the other agent through a number of noisy

channels simultaneously. This is a generalized version of the decentralized two-person

team discussed in Chapter 2, where only a single communication channel was allowed

between the two agents.

In Section 5.2 we formalize the problems to be analyzed in this chapter. In Section

5.3 we consider the situation where the channel noises are independent of the input vari-

able to be transmitted, with the observation of the first agent being noise corrupted in

general. For this class we show that the optimal strategies are linear and may be found

through a related parameter optimization problem. In Section 5.5 we analyze problems

where the channel noise is correlated with the input variable to be transmitted and find

that the strategies which are optimal over the linear class may be outperformed by non-

linear strategies (except for a very restrictive subclass), even when the first agent observes

an uncorrupted version of the input. The concluding remarks of Section 5.4 then end this

chapter.

5.2. Problem Formulation

We have noted in Chapter 2 that if the first agent observes a noise corrupted version

of the variable to be transmitted, and the channel noise is also correlated with this vari-

able, then the linear strategies for the general stochastic team problem may be outper-

0
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formed by nonlinear strategies. In view of this result, we shall restrict ourselves to the

following two classes of problems with multiple information channels:

(i) The channel noises are all independent of the input x, while the first agent

observes a garbled version of the input x.

(ii) The first agent observes the input x directly, and the channel noises are allowed

to be correlated with the input x.

These situations are depicted in Figures 5.1 and 5.2, respectively. We consider the

quadratic cost functional J(yo,y1 ) where

J(yo,y 1 ) = E[kou o +soUox+su2+s u1 X]

uo = o), u = ).

and the following two classes of problems are thus identified:

Problem PI

Minimize J(yo,yl)

where

x I Uo+w

yn

Uo = Yo(z)

U1 = y1(y)~~z=x+v.'

and
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Decoder
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Encoder A2eW

xx
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Figure 5.21. The decentralized two-person team. with channel noises
correlnd tedofweh thrado h input.
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Problem P2

Minimize J(yo,y 1 )
vo.yi

where

blx+XIUo+wl

b2 x+x 2 uo+w 2

= y0 x

1 = yy)

with x,v,w .  w n being zero mean Gaussian random variables, independent of one
2

another, having variances denoted by a(.), and with Xi's being given positive constants.

We now turn to analyzing the above classes of problems.

5.3. Instances with Optimal Linear Solutions

In this section we analyze Problem P1 formulated in the previous section and show

that the optimal strategies are linear. This problem has been studied in Bansal and Basar

[1987b] and the analysis is given here for completeness. Towards obtaining the solution

to PI we define

m = E[x I z],

make observations (i) through (iv) as in the case of the single channel problem (Section

2.3 (b)) and obtain the following equivalent problem:

Minimize J'(y'oyl)
0 V ',Yi

-

0 .
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where2

J'(y'0 ,y1 ) =E~kOUO +sOu' 0M+-l(u 1 -m) +c]
4s

with

III = Y1(y)

and c is a constant independent of u'0 and ul.

Let Jdenote the nfimum of J under the constraint E[u'2 j=p 2' i.e.,
P 0

= P y;~ 0 )P ~', 1  (5.1)

We first have

jp> kP 2 + Inf s0E[u',m] + Inf E(u 1 -mn)2+C (5.2)21_ 2  Ely2 p2

By Cauchy-Schwartz inequality, we know that

inf s0E[u' 0m1=I so I Pam (5-3)

2We now consider the optimization problem Inf E(u 1-m) Since in, and ul form a
Ely j' r-

Markov chain, we have

.9~dI<H;I 54

e where Jla;b denotes the mutual information of two random variables a and b.
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Also, we have the inequality

2

I~m;ujI ~ log am(5.5)
2 Ej (U1 -M9}

(Wyner [1970]), and the equality

I1m;Y) = HIYI-H{YImI (5.6)

where Hial is the entropy of the random variable a, and Hi a I b) is the conditional entropy

of the random variable a given b.

The correlation matrix for vector 3% with E~u'1 2 is

2 2 2 2
y .i . XnP +0,.,

which has the determinant

It...I~ = i0(1 +p2o wl (5.7)2

Since for any n-variate random vector with a fixed mean and a fixed covariance matrix,

the maximum entropy is attained by a normal distribution (see, for example, Kagan et al.

11973]), we have

HIY) l 1 og(27re)IrtI ±lg2r )n1 a 2 (1 +p 2  (5.8)
2 z 2 w

2* owl

where A Z SC!.



P

Using (5.8) in (5.6) we get

11rA 2IlgIP~:X (5.9)

2 2
i

I where we have made use of the expression

12
H13FI ml = og(27fe)'fl a W

2

since for fixed yo, the vector 9F given m consists of n independent Gaussian random vari-

ables.

Using (5.5) and (5.9) in (5.4) we get

2

E(_M2> m (5.10)
E.Y.1]_p 2  1+p2 k

It follows from (5.2) (using (5.3) and (5. 10)) that

2

2

Mik0 P- IslPa+ - +)(.1

2

22
P*= ArgMin[k0 P 2_- s~oI Pam + am > 0

P I~+P 2X

Note that P* necessarily exists, since at P-0 the function to be minimized is decreasing and

L as P--.oo, J P -- oo, implying that the search can be confined to a closed bounded region of R

over which a continuous function always admits a minimum. Taking derivatives, we find

V%.
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that the value P-P* which attains this minimum satisfies
LA

(2koP*- Iso I am)(P*2+1)2_ 2P*+M- (5.12)

We now have

Jopt A Inf J(.y) = Inf Jp

o 2 S a 2 (5.13)

> koP - (Iso1om)P*+ + Cl+p'2k

which gives us a lower bound for the infimum of J. The final task is to note that this

lower bound is tight and is attained by linear strategies. We thus have Theorem 5.1

below.

Theorem 5. 1.

(i) The stochastic team problem PI formulated in Section 5.2 admits an optimal

solution which is linear in the observation variables, and is given by

y*o(z) = B*z

= -- E[x I y]
* 2
si Crx n xio* D
--27 - Yi

2s 2 2 2  2 2 2

where * is given by the solution to the following parameter optimization problem:

2 4

s2 2 2 2 2aarg min ko13(OX+Gc<) + sO130o2 + 4

4s (a +o, 2)( 1 +02k( 1O+o 2))

a solution to which may always be found as discussed earlier.
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(iu) The optimal value of the cost is

U 2 a4
k°, - *- o, 2) + S ")o3* , 2 + I X

jopt X VX 4S( a 2 + aov)(1+ 03 k( ax 2+ a ))

2 2 2 2
s1 ax aV S1  2

+ ax.4Sa 2 +a2 4s
x V

5.4. Nonoptimality of Linear Strategies

In this section we analyze problems where the channel noises are correlated with the

input variable x which is to be transmitted through the channel. We show that except for

a very restrictive subclass of such problems, the strategies which are optimal over the

linear class may be outperformed by appropriately chosen nonlinear strategies.

Since Ks are assumed to be nonzero (otherwise the channel is redundant and may be

removed) the observation y for Problem P2 is equivalent to the following observation y',

(b1 /X1) X+Uo+(Wl/k)

y , = -+(bn/)n ) X+Uo+(W/k n)

Lemma 5.1. If b1 /X1 = b2 /X2 = • = bn/Xn, then the search for optimal strategies for Prob-

lem P2 may be confined to the linear class.

Proof. Under the conditions of the lemma we may define

bl

to obtain the equivalent stochastic team problem below:

111101k 0

AC MIM 10
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Minimize E[kou' 2 + s'ouX -+ su 2 + slulx]
y* 0 40

where

u 1 = Yo(x)

ul = 1(y)

andV

klu'o+wn

with

s=5o  -2k o  .
ki

2We thus obtain a special case of Problem P1 with ai1 = 0, for which the optimality of

linear strategies has been established in Section 5.3.

0

We now return to the general Problem P2 without the restriction of equality on the

bi/Xi's, and show that, for this class, nonlinear strategies may outperform the optimal

linear strategies.

In the following we shall, for notational convenience, assume that Xi = I for all i.

This does not introduce any loss of generality since a redefinition of the b 's and the noise

variances yield the original problem.

It is sufficient to establish nonoptimality of linear laws for a special two-channel

case, which we study next.

ii "
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Prob em P2 2  

X 2Minimize J2(y,y 1t) = ENOu +(U1-x9

where

UO= -Y0(x)

Ul= Y1 (y)

and

1i u0 +bx+w 1

y y2j u-bx+w2J

2 2with b>O and oa W 2

Lemma 5. 2. Problem P2 2 is equivalent to the soft constraint version of the Gaussian

Channel Problem with noisy side information at the decoder, studied in Appendix B.

Proof. We need to note that the vector observation y is equivalent to observing

y1 +y2'~ wi +W2

2 UO+ 2

yI-Y 2  w1 -w 2
bx +

2 2

and the lemma is established.

IRC

Since linear strategies are not optimal for the problem witit noisy side information, in

view of Lemma .5.2 the linear strategies are not optimal for Problem P22

VI

K"r
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We next consider the more general two-channel problem with arbitrary (but in view

of Lemma 5.1, unequal) b, and b2, but the variances of w, and w. still being equal.

Minimize J2(1y0,1 ) = E[kou 2 + s~u~x + (u1-x) 2]

where

U= Yjx)

Ul= Y1(y)

and

u0 +blx+w1  S

Iu0 +b2x+w 2 l

with b, > b2.

We let

b1 +b2

0 0 2

to obtain the equivalent cost functional

.J 2y 0 y) E~k~u' 2 + s'0u'Ox + (u1-x) 21

where

* u 0 = .Y OWx

Ul= Y1 (y)

and

*V
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u°+bx+wl

uo-bx+w
2I

with

b1-b2
b=- -

2

and

s0 = s0 o - ko(b 1+b 2 ).

The transformed problem may now be viewed as one involving noisy side informa-

tion at the decoder (cf. Lemma 5.2), and the nonoptimality of linear strategies follows.

5.5. Conclusion

In this chapter we have studied decentralized tv o-person stochastic team problems

with multiple communication channels. For the case when all channel noises are indepen-

dent of the input variable to be transmitted, we have established the optimality of linear

strategies. However, when the channel noise is correlated with the input variabie we find

that linear strategies are in general not optimal for the case with multiple channels, even

when the first agent observes an uncorrupted version of the variable to be transmitted.

The problems in this chapter may be viewed as those involving encoding and

transmitting over vector channels with Gaussian noises (under generalized fidelity cri-

leria), where the source output may be distorted prior to encoding or the channel noises

may be correlated with the source output.

The classical information transmission problem, viewed as a team problem, generally

assumes that one can directly encode the variable to be recovered at the receiving end. A

UI
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model which allows distortion prior to transmission was first considered by Dobrushin

4and Tysbakov [1%2]. If we suppose that the message to be transmitted is a temperature

read by a digital thermometer or the pixel levels of an image, then the message would not

be an exact copy of the object of interest but a noise-bearing variant of it, and the analysis

in this chapter would then be applicable.

We also find that for the case where the channel noise is uncorrelated with the O

encoder input, the nature of the solution is such that it may be considered as first extract-

ing the message from its noisy version under a mean square criterion and then transmit-

ting this extracted message. This is in accordance with the scheme reported for the hard

power constraint version with n-I by Wolf and Ziv [1970], as well as with the "discon-

nection principle" introduced for finite alphabets by Witsenhausen [1980].

We should also note that channels of the form considered in this chapter have been

called multipath channels in the literature (Ovseevich and Pinsker [1958]). In such chan-

nels, even though there is a single transmitter, the reception is as though a number of

channels are operative in parallel. Pinsker [19721 also gives expressions and estimates for

the quantity of information contained in observations with respect to an estimated

parameter for a fixed and random number of observations. For the special case where

each of the Xis are assumed to be unity, our result on maximum information between m

and y (eqn. (3.9)) corresponds to the expression derived in Pinsker [19721, when the

numbei- of observations is fixed, and the variables are all Gaussian. Pinsker's approach.

however, is based on sufficient statistics, whereas here we have employed known results

on entropy maximization.
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3 CHAPTER 6

6.1. Introducti DECENTRALIZED MULTIPERSON TEAMS

In this chapter we formulate and analyze some decentralized, multiperson, stochastic

team problems which are generalizations of the two-person teams studied in Chapter 2. It

is assumed that a (possibly noisy) version of a Gaussian random variable, available at one

location, is used to generate either a single communication signal or a set of communica-

tion signals, which may then be transmitted via noise-corrupted channels to either a sin-

gle location or to a set of locations.

In Section 6.2 we formulate the problems to be analyzed in this chapter. In Section

6.3 we analyze problems with a single transmitting agent, (synonymously, encoder) and

j multiple receiving agents (synonymously, decoders). In Section 6.4 we analyze problems

with multiple transmitting agents as well as multiple receiving agents. In Section 6.5 we

consider problems with multiple transmitting agents and a-single receiving agent. The

concluding remarks in Section 6.6 then end this chapter. 0

6.2. Problem Formulation

In this section we formulate three classes of problems involving decentralized mul-

tiperson teams, where communication between agents is permitted only via noise-

corrupted channels.

First, consider the situation depicted in Figure 6.1, where the measurement variable

uo is generated based on a (possibly noisy) observation of a Gaussian random variable x,

and is then transmitted over a number of noisy channels to various locations. We allow

the possibility of controlling the sign of transmission over each of the channels

I
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individually, and the channel noises may, in general, be correlated with the input variable

x. All agents are assumed to cooperate in minimizing a quadratic cost functional, and we

formally have Problem P1 below:

S1 ~ bIx +W I

YS

S b

Figure 6. 1. The decentralized stochastic team with a single transmitting
agent and multiple receiving agents.

Problem P1

N

Minimize J 1('/ 0 ;'/11 1. YIN;Sl-.,SN) =E[k~u 2+rux+pu +quix1
YO' INA -. SN =

where

O -Y0(z)

with

""Sjx



3 Yi -Siuo + bix + wi•

Here ko,p 1,.... pN are given positive constants, ro, q1's and bi's are arbitrary con-

stants and x, v, w . .. w N are independent Gaussian random variables, with zero mean

and prescribed variances. The s's (i-1,...,N) are design variables, constrained to be either

S+1 or-i; these control the sign of transmission over each of the channels individually.

Note that Problem PI involves the design of only a single communicating agent, and

it is only the sign of transmission on different channels that may be controlled. In case

we have complete freedom of designing the communication variable for each of the chan-

nels individually, we obtain the situation depicted in Figure 6.2, which leads to Problem N
P2 below:

bix +w I

VY

US

Figure 6.2. The decentralized stochastic team with multiple transmitting N

as well as multiple receiving agents.

!,I,~ IM1
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Problem P2

N

Minimize J2('YOI..../; . . .. YI N) EC kio~ioxpiljqu
1/011. . YON;1 I . . YIN

where

10= Y01(z)

u = y11(y1)

with

=i u0i + b1 + wi.

We finally consider the situation shown in Figure 6.3, where multiple commnunica-

tion agents are permitted and noise corrupted versions of all their outputs are made avail-

able at a single location. This formally leads to Problem P3 below.

IV

Z.

bix +W

* *~.t . -
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Problem P3

N

Minimize J3('Yo 1 ..... yON;-1) = E[ (kiuo2+riuoix)+plu 4+qulx]

where

U0i -Oi(z)

ul = 1 (Y.,... 'YN)

with

Yi = u 0i + bix + wi .

The three classes of problems identified in this chapter may all be viewed as generali-

zations of the decentralized two-person team problem studied in Chapter 2, where it was

established that linear strategies are optimal if either one of the following two conditions

holds: (a) the channel noise is uncorrelated with the input, or (b) an uncorrupted version

of x is available at the encoder. Therefore, in order to study how the results for the

two-agent problem carry over to the multiple-agent problems, we shall restrict ourselves

to the following two conditions for each of the Problems PI, P2 and P3:

Case (a): O 2 = 0, bi's are arbitrary, and

Case (b): a, P 0, bi =- 0 for all i-I. N.

In the following three sections we respectively analyze Problems P1, P2 and P3.

under conditions (a) and (b) above.

, * %,
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6.3. The Problem with a Single Encoder and Multiple Decoders

In this section we study Problem Pl identified in Section 6.2. By completing squares,

we find that the cost function J1 may be rewritten as

N N 22

Jl(o;vll ...... N) = E[kou2+roUox+ lpi(uli+-- X)2- a ] (6.1)= 2pi i-1 4Pi

Case (a): ao -0 O, b is are arbitrary.

If o = 0, we may define

uoi = siu o + bix, (6.2)

0and then consider the problem of minimizing
qi

E[(u 1 + - x) 2]  (6.3)
2pi

subject to

U+i - i(Ui + wi). (6.4)

Note that for every fixed E[uo] = p2 , we have

E[u 'I = p2 +bi 2 a 2+E[2sibiuox] (6.5)
P2 +b2a 2+2 1 bPa x I .

Since

Yi Uoi + wi (6.6)
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it follows using (2.10) and (2.11) that

0 2 2I 2 b 2 ,x+ I 1 o i
I(X;y1) < - log I 2b' + jc.1(6.7)

2 a2

and further, using (2.9), we obtain that

2 2 2
q - q j x o w l

E[(uli+ 0 (6.8)
2pi 4p2  (P+bJa) 2 +02~)
2Pi 4Pi2 ( I P I + I biI ax) +w)

Let J1 P denote the minimum of J1 under the hard power constraint E[u:] = p2. We

then have (with K -- (q 2I /4p)a )

N q. 2

JIp > koP + Inf E[rouox] + Inf E[(pi(u 1+-x) ] + KS Euo2P
2  2)- p,2 2Pi

N 2 2 0O2

2 qjx
koP- I-roPo x + E- •

i=l P ( I P I + I bil Ox)+ wi

N 2 2 (6.9)

S> Min koP2 - I roPo I + "2 +- K
p =1 Pi (IPI+Ib i IOx) +ow,

2 2N q2 2x Ow
i = koP *2  I roP*ax I + Z. •, + K

-- 2 +K.
=k0 ~ Ii=l 4 Pi (I P*l+I bil u) '0

i x 0

p.N
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We thus obtain a lower bound on the optimal cost, and the next task is to note that this

lower bound is tight and is achieved by using the linear policies: QV

I P* I
u*o Y*o(x) = -sgn ro  x (6.1Oa)

Ox

qj Si( I P* I + I bi IxO ,

U* i i =Y* i(Yd 2-- -- 2 2) Yi (6.10b) A
2p1 (( 

2 *I+Ib x Ow

where

si=sgn b1 . (6.l10c)

We therefore have Theorem 6.1 below.

Theorem 6. 1.

(i) The stochastic team problem P1 with a - 0 admits an optimal solution which is

linear in the observation variables, and is given by (6.10), where P* is given by the solu-

tion to the following parameter optimization problem,

N 2 2 2
P* = arg min[koP2 + roPo.+ 222

P=1 4 Pi (( IP I+ Ibi I x) w l

which always admits a solution.

(ii) The optimal value of the cost is

N qi2 2 N 2J* - wo rj

Ai 2 2i~l 4i ((I P* I + I bil I x) +(Y111=1 P1  (IPI+I 1 Iu)+u) i=I 4Pi

CO

2

'V

p°

MIM
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I2
Case (b): bi =0 for all i, a. is arbitrary.

If bi's are zero for all 1, then all channel noises are independent of the input x. We

now define

m AE(x Iz)

and use observations (ii) through (iv) of Section (2.3) to obtain the equivalent problem

below:

N qi
Minimize Ekou'o0+rou'om + -(u'n-m)" + K] (6.11)

YY VI.... YIN -4pj

'0 V(m)

UIi -Y' 1i(yi)

and K is a constant independent of u'oU', ... f u'IN. We thus obtain a special case of the

problem discussed in part (a) of this section, and the optimality of linear strategies fol-

lows. Note that the si's in this case may be chosen arbitrarily, since the bi's are all zero;

hence in the statement of the following theorem we have taken si = +1 for all i, without

any loss of generality.

Theorem 6.2.

(i) The stochastic team problem P1, with bi - 0 for all i, admits an optimal solution

which is linear in the observation variables and is given by

u*0 = X*z (6.12a)

X*2

-- Yi (6.12b)
2 pi X*2 ( 2 +0 2 )+a 22.X 2. 2

S
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where k* is given by the solution to the following parameter optimization problem:

N qi 2  xa (X 'ta wa
2 2 2 2 V VI

X*= arg min[kok (a.+a,)+roXa. + Y" l Al

mi-i 4 Pi ( 2 (a 2+ 2)+U 2

a solution to which always exists (Remark 2.1).

(ii) The optimal value for the cost is

N 2 2 2 N 22  Ox (X*2v' w1 q i 2
2 2)2 2X V i -l 4 P i ,X 2 a 2 a 2 ) + 2 j 1 4 P i

X V+,)o, W =1

0
S

64. The Problem with Multiple Encoders and Multiple Decoders &

In this section we analyze Problem P2 identified in Section 6.2. First, by completing

squares, we find that the cost functional J2 may be rewritten as

N 2 q 2 qj 2

J 2 (Y 1,I ... IYON;. I ... IYIN) = i --- r) "  (6.13)
ifi 2pi 4pi x

S

Case (a): a = 0, b 's are arbitrary.

The analysis is similar to that in Section 2.3. We first define

U Oi U0i + biX  (6.14)

to obtain the equivalent cost functional
N2 5

N qj

J' 2 (Y' 0 I. . . . . Y'ON;Y 11' ... Y1IN = E[ [Ekiu 2i+r'Ui x+-(u' i-x) 2 +K1
i=1 4 pi
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where

= , 'i1(VO) (6. 15a)

3 =i y' 1i(u'Oi + w1) (6.15b)

r r- 2k, b1  (6. 15c)

and K is a constant independent of U'Ol,..' ION,U'1ll, ... U WiN.

Let J'2p denote the minimum of J'(-y'0 ,y'1 ) under the hard power constraints

E[u"] = p. 2 . (6.16)

We then have

N 2q

2 . 2 Eu] 2 
2

N 2 2 2

N 2 c2o (6.17)
> N 2 , qj Uxawl

)Min[F(kP 1 _ I r1i I Pa+-)+KI
Pl,> i=1 4pi (p. 2+a 2

2 2 w

N 2_qj Oaw

= .(kP*i2 I r I P* ia K +- -- )+K.
i-i 4P ( +awl,

* Noting that this bound is tight and is attained by linear policies, we have the following

theorem:

-LA
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Theorem 6.3.

(i) The stochastic team problem P2 with a~ 20 admits an optimal solution which is

linear in the observation variables and is given by

=*O Y*o(x) = X* x (6.18a)

U* 2i 2 (6.18b)
y*1.y.) 2pi (X* ~ 2 a +a2

where

-* bj) (6.19)
MV ax

and the P* 's are found by solving the following parameter optimization problem:

2 2 2

2 qj x wP = arg min (k1P1 +r 1Pica ) (6.20)
PI 4pi (p2 +0 2

a solution to which always exists (Remark 2. 1)

(ii) The optimal value of the cost is

N q2 ~:2 2

=* 2 (kP*2 r'iP* ia+- +~ )+K
i=1 4p2 (P*.2 +

where

N 2 qj 2

K J:(-kjb7 +rb--)o
1=1 4 pi
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Case (b): bi = 0 for all i, a, 2is arbitrary.

If b,'s are all zero, then the channel noises are all independent of the input x.We

define

m AE(xlIz)

and use observations GOi through (iv) of Section 2.3 to obtain the equivalent problem

below:

N 2j

Minimize E[ (ku"0 +ru Om u,--)2 +

4 with

and K' is a constant independent of u'0 1,. , u'ION,U', .** u', IN' We thus obtain a special

case of the problem discussed in part (a) of this section, and the optimality of linear stra-

tegies follows.

Theorem 6.4.

(i) The stochastic team problem P2, with b1 = 0 for all i, admits an optimal solution

which is linear in the observation variable and is given by

u*0 1(Z) =X*1z (6.21 Ia)

U* I (y) d - (6.211))2p1 X* ,2 (a2+2)a2

where,\*, is given by 1he solution to the following parameter optimization problem:
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2 2 2 2

X* i= arg m in[k 5Xi (a +a 2 )+ r ix + qj o- X I a)1
4Pi (X2 2+ 2)+a 2

a solution to which always exists (Remark 2. 1).

(ii) The optimal value of the cost is

N q.,2 a (X* 20a2+a q 22,2 2 2
2.* 2 - 2 +i 2 ) 4i 2

(i (o +o )+W1

6.5. The Problem with Multiple Encoders and a Single Decoder

In this section we study Problem P3 identified in Section 6.2. We find that linear

strategies are in general nonoptimal for this class of problems even under the restrictions

that all channel noises are independent of the input and the encoder observes an uncor-

rupted version of the input.

In order to see why linear strategies are not optimal, we consider the special case

with N-2 and b2=b = 0=O, and impose the additional constraints

E[u1
21 P 2  (6.22a)

Etu ] < p. (6.22b)

We thus have a problem of constructing real-time encoding and decoding strategies for a

communication system with hard power constraints where the source dimension is one

and the channel dimension is two. For this problem it is known that linear strategies are

not optimal (Shannon [1949], Wozencraft and Jacobs [1%51). V.

Our task now is to show that it is possible to construct problems with soft power b

constraints, for which linear stralegies are not optimal. This may be done by an analysis

a
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similar to that used in Appendix B. In particular, if we let kl=k2=100.0/.186.0423, ,

* 2 2 2
G u.u, owl --I=.0, then the optimum strategies which are optimal over the linear

class yield a cost of 1.07213, whereas nonlinear strategies of the form

U01 = 'yof(X) = x (6.23a)

U02 =' y 02 (x) = x - sgn x (6.23b)

0

Ul (yl+y2-i-)12 if Y1 )-O (.4u-- (6.24)

(yl+y2-1)12 if y1<O

yield a cost of 1.06634.

We now consider Problem P3 under the additional restriction that the policies lie

within the linear class. Performance bounds and optimum linear coding schemes for S

discrete-time multichannel communication systems have been investigated by Basar, San-

kur and Abut [1980]. They have observed that when the source dimension (n) is less than

the channel dimension (m), then the performance of real-time linear encoders is fairly

close to the optimum achievable performance found via channel capacity. This does not

hold for the case where n> m, where the performance is found to improve significantly by

allowing nonlinearities in the encoding policies.

For stochastic team problems of the kind that are of interest here, we have n-l and

m-N. Thus, in view of the results reported by Basar et al. [19801, it is of interest to

study optimality over the class of linear encoders, where the loss in performance may be

offset by the gain associated with avoiding the complexity of more general encoders.

Optimum linear encoding and decoding strategies for the two-stage stochastic team prob-
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lem have been studied in Basar (1980], where a rigorous solution to the general problem

has been provided. Here we are interested in a special case of that general problem, i.e.,

the case where the source dimension is one, but with the difference that there are addi-

tional product terms in the cost functional, the encoder input is possibly noise-corrupted,

and the channel noises may be correlated with the input. We now study optimality over

the linear class for this case.

Under the restriction that the encoders use linear policies, we have

Uo,= k(x+v) (6.25)

which implies that the observation vector Y is given by W -

X1I(x+v)+blx+wl

K(x+v)+b 2x+w 2

(6.26)

XN(x+v)+bNx+wN

The covariance of x and is given by

Cov(x,Y) =(6.27)

ET

where

a (6.28)

0"
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2 2X 22 2 2 2S I V 1 (x 1+b)(XN+bN)OX+ IXN V

(6.29)

2 2 2 2 2 2 2
(kl+bl)(XN+bN)OX+KlXNU (+bN) Ox + + WN

and

Ey= RXI+b)a 2, (X N+bN)G 2] (6.30)

We now have

E(x = (6.31)

and the error in estimating x from the vector observation Y is given by

-IIe(X'l ..... , XN ) =- Exx - ExyZ -y " (6.32)

The final task is to optimize over the linear coefficients (XI , . X.. N), and noting that the

cost function for P3 may be rewritten as

2 q, ,2 ql 21J3(Yo ...... YON;'Y1) = E[E kiuoi+riuoix+pl(ul+-X) -- axI (6.33)
2p, 4p,

we formally have Theorem 6.5 below:
4

Theorem 6.5.

(i) The optimum linear strategies for Problem P3 are given by

N U* Ui = Y*0i(Z) " A*Z (b.34a)

, .u* y*1(y) = - -- Y(6.3.4h),
= -

2p
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where Y... and E., are defined by (6.29) and (6.30), with XL replaced by X*j, where the

X s are given by the solution to the following parameter optimization problem: 1

2 q
1,. X*N) = arg min N k .. V (6.35)

where e(X1 , . .. , N) is defined by (6.32). (The above parameter optimization problem

always admits a solution.)

GOi The optimal value of the cost under linear policies is

N q,2

3= E[~ kj~ a C +i~ix+ (r eX X*N)).

22

e(X1 ,. .,XN) ax

a2 or2 (6.36)
2 x 2

which implies that the optimum linear coefficients (X*l,... , X*N) may be found by solv-

ing the following parameter optimization problem:

Minimize J 21 .

( 2  2,~

where

N 2 2

j(p2'. p) 7 q ax

4p, N (6.37)
2 2

I+T.(P /("'I



131

and

P P2 =-x i2 a 2  (6.38)

The optimum coefficients from this parameter optimization problem may be found by

applying Theorem 2.2 of Basar [1980] as follows. We order the channels such that

2  2  2

qlaw < q2aw 2  N ... WN (6.39)

The derivative of J(P, ...2, P2) with respect to p 2 is

q, 2 2 /a2

4p N N (6.40)(1+Zp2/ 2

i=1

i=1 
2and clearly all first derivatives cannot be zero unless the product kiow, is equal for all i.

If this product is indeed equal for all i, then we may arbitrarily choose one channel

over which to transmit the information, and all first-order necessary conditions (which

are also sufficient) are satisfied.

2On the other hand, if the product kiaw. is not equal for all i, we can choose any chan-

nel from the set for which this product is the smallest (this set may be a singleton). For

the remaining channels with larger kia , the first derivative is increasing at zero, implying

that zero is indeed optimum.

§ Under the arrangement (6.39), it is therefore sufficient to choose P2 possibly nonzero

while all P 2 for i-2,....N may be restricted to be zero, and we get

arg mrin J(p 2 .... Ip2.  (p , ...... p ,2
( I..... N

where
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0 x -
P sqrt(Max{O, % 'owl) (6.41)

and

P* = 0 for all 1=2,...,N.

We therefore have the following corollary to Theorem 6.5.

Corollary 6. 1.

Consider Problem P3, under the additional restrictions that

a =O; bl=b2 -..- bN=O; rl-r2-..-rNO0

If we assume that the channels are ordered such that (6.39) holds, then the optimal linear

strategies are given by

U*= y*01(X) =X*x

U*oi Y* oi(x) 0 for all i-2,...,N

and

U* x--- Y,2p, a 2a 2

where

4 -2 1 2

ax

and P* 2 is defined by (6.41).

(ii) The optimal value of the cost is

LZI111 wm..
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2 a20.2 2Ui q x w1  2kip*1 + -~ p 2 .) - x
kl 

x4p, (p* I+ (), 4p,

6.6 Conclusion

In this chapter we have formulated and analyzed three classes of decentralized, mul-

tiperson, stochastic team problems, where communication between agents is permitted

only via noise-corrupted channels.

For problems involving a single transmitting agent and multiple receiving agents we

have shown that the optimum strategies are linear when either the encoder observes an

uncorrupted version of the variable to be transmitted, or when all channel noises are

independent of the input.

For problems involving multiple transmitting agents and multiple receiving agents

we again find that in case the encoders observe an uncorrupted version of the variable to

be transmitted, or if all channel noises are independent of the input, then the optimum

strategies are linear.

However, for the simplest classes of problems involving multiple transmitting agents

and a single receiving agent, we find that the strategies which are optimal over the linear

class may be outperformed by appropriately chosen nonlinear policies, and for this case

we have provided strategies which are optimal within the linear class.

: ir

S
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CHAPTER 7

PROBLEMS WITH INCOMPLETE CHANNEL DESCRIPTION

7.1. Introduction

In this chapter, we expand on the framework developed so far, by allowing incom-

plete statistical description of the channel used to transmit measurements between the

decentralized agents. We still operate under nonclassical information patterns and con-

sider a number of cases depending on whether there are "hard" power constraints or

"soft" power constraints on some of the decision variables and/or soft costs on communi-

cation. We obtain minimax rules in all cases, some being saddle points and others not, the

techniques of derivation being very much case dependent. These are all important proto-

type problems which could be considered essential building blocks in multistage, distri-

buted decision making under nonclassical information and with partial statistical descrip-

tion.

In particular, we assume that the variable transmitted through the channel is cor-

rupted not only by an independent Gaussian noise of given variance, but also by an unk-

nown channel noise which is only known to satisfy certain power constraints. Further,

this unknown noise is allowed to be correlated with either the input or the output of the

encoder. (Recall that in Chapter 2 we had allowed part of the channel noise to vary

linearly with the input).

We seek optimal solutions under a worst case analysis. We may therefore consider

the unknown channel noise as being controlled by an adversary or "jammer," who intelli-

gently uses the knowledge of either the input or the output of the channel to design a

"~1'
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jamming strategy. Thus the problems may be viewed as those representing extended ver-

sions of the standard Gaussian Test Channel (Gallager [ 1968]), further including an intel-

ligent jammer.

The organization of this chapter is as follows. In Section 7.2 we identify the prob-

lems to be analyzed in the sequel. In particular, three kinds of communication systems

are identified, each of which is subsequently analyzed under a variety of fidelity criteria,

which are also defined in Section 7.2. The three types of communication systems are

analyzed in Sections 7.3, 7.4 and 7.5. The concluding remarks in Section 7.6 then end this

chapter.

In what follows, we shall refer to the problems studied in this chapter alternatively 0

as zero-sum games, since the jammer wishes to maximize the same criterion which the

encoder-decoder pair is trying to minimize. A general discussion on zero sum games may

be found in Basar and Olsder [1982].

7.2. Problem Description

7.2.1. Channel description

Following the formulation of Basar [ 1983], consider the communication systems dep-

icted in Figures 7.1, 7.2 and 7.3 which represent extended versions of the standard Gaus-

sian Test Channel, (Gallager [1%81), and include an intelligent jammer who has access

either to the input or to the output of the encoder. The input to the encoder is a Gaussian

random variable with zero mean and unit variance, denoted u N(O,). The transmitter

encodes the input signal u into a variable y = y(u) with the encoding policy y being an

*6' S
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Jammear
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Side -channel

Figure 7. 1. Schematics for games of Type 1.

Jammear
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w

Figure 7.2. Schematics for games of Type 2.
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Encoer vDecoder
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Figure 7.3. Schematics for games of Type 3. .
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element of the space r. of random mappings or an element of the space red of determinis-

tic mappings. The encoder is further restricted to satisfy certain power constraints as to

3be elucidated in the sequel. When the encoder map is allowed to be probabilistic we refer

to the problem as a game of Type 1, in which case we also allow for a side channel that

permits the transmission of information regarding the structure of the probabilistic

encoder to the receiver (Figure 7.1). When the encoder map is necessarily deterministic it

is a game of Type 2, for which the side channel is superfluous (Figure 7.2).

In games of Types I and 2 the jammer is allowed to observe the input u. The jammer

then feeds back into the channel a random variable v = (u) so that the input to the

decoder is

z = Y(u) + 0(u) + w

i The jammers policy is an element in the space Fi of random mappings also restricted to

satisfy certain power constraints.

At the receiver, the decoder 8(z) is chosen so as to cooperate with the encoder in

minimizing a (generalized) quadratic distortion measure J(y,8,3). Here the noise w is

2
assumed to be Gaussian with mean zero, variance o W, and is independent of u.

Figure 7.3 represents the situation when the jammer has access to the output of the

encoder instead of u. This situation shall be referred to as a game of Type 3. Games of

Type 3 are investigated in Bansal and Basar [19891 under a variety of fidelity criteria

4 which we next describe.

7.2.2. Fidelity criteria

The general communication game addresses the reproduction of the inpul u. with

high fidelity, at the output of the decoder. This corresponds to minimizing the mean
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square error E{(8(z) - u) 21. In order that this minimization be well defined we restrict

ourselves to using encoding and jamming policies which satisfy E[y 2(u)] p 2 and

E[v 2] K P2. These are the hard power constraints generally assumed in the communica-

tion literature, which lead to criterion C1 below.

Criterion C,:

J1(y,8, ) = E{(8(z) - u)21 (7.1a)

and

EP2() P, Ely2], (P (7.1b)

This is precisely the criterion adopted in Basar [1983] and Basar and Wu [1985],

under which a complete characterization of minimax encoder -decoder policies for games of

Types I and 2 has been provided in Basar and Wu [1985). We introduce here some classes

of problems which have heretofore received less attention. These are problems where the

power levels are not fixed a priori, but are determined as a result of the underlying optim-

ization problem. This is particularly important in situations where it may be possible, for

instance, to transmit a larger power at the encoder (at some cost) in order to further

decrease the mean square error at the decoder. Mathematically this may be represented as

a power constraint which is "implied" or "soft" and appears as an additional term in the

cost functional. Based on the consideration of tradeoffs between power used and the mag-

nitude of the mean square error term, we have criteria C2, C3 and C4 below where

coefficient terms k0 and a are positive scalars in all cases.

U5
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Criterion C2:

J3(7,8,0) = E{(8(z) - u) 2 - oev 2) (7.3a)

Criterion C 4 :

(,) = E{koY2(u) + (8(z) - u)2 ) (7.4a)

E v2 (u)] <p 2 (7.4b)

Under the different criteria above, the spaces in which the policies need to be res-
k

tricted are characterized by using a superscript. For example, r k denotes the class of

Ideterministic encoder policies which are permissible when criterion C. is under considera-

tion.

7.2.3. Solution concepts

We are faced with multiperson decision problems with conflicting objectives. We

thus seek to obtain worst case solutions by minimax and maximin approaches, and

further, saddle-point solutions if they exist.

Under the minimax approach the encoder-decoder pair is assumed to be careful and

defensive, wishing to protect against any irrational behavior of the jammer. Thus, under

the minimax crilerion, we evaluate the upper value J of the zero sum game with kernel J,

J = J(y*,8*,/3*(Y. 8 .)) = min max J(y,8,/3)
i s ( 7 .5 )

- min J(y,8,3*(,8))

IX burg
rrt
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where

=arg max J(y,S8j3) (7.6)

assuming that such a solution exists. The triple Jy,*3(.))defined by (7.5) and (7.6)

above is called the minimax solut ion for the corresponding game.

To obtain the maximin solution, we consider instead the lower value of the zero sum

game:

j= Jy*~,8*~43) =max min A'Y,8j3)

-max 

(7.7)*,/)

where the pair (y,*)is determined by

(-*,*)= arg min J(-y,8,3). (7.8) 5

The triple (y~,*, 3 )defined by (7.7) and (7.8) above is the maximin solution for the IN

corresponding game.

A saddle-point solution (y,* 3 )will exist if and only if

.a=j=Jy**,3) (7.9)

A detailed study of the concepts of minimax and maximin strategies and saddle-point

solutions may be found in Basar and Olsder [19821.

7.2.4. Notation

We shall use a double subscript notation and refer to a game as Game Gik with

i E l1.2,31 and k E 1,2,3,4 J. The first subscript i refers to the game type (Section 7.2.1)

while the second subscript k indicates that fidelity criterion C. is under consideration.

A

............
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with the strategy spaces being r k or r.1, rk and r for the encoder, decoder and jammer,

respectively. Thus for 1-3 the jammer has access to the output of the encoder, whereas

for i-I or 2 the jammer taps the input u. Further, for i-1 the encoder is allowed to use

probabilistic mappings whereas for i-2, the encoder is necessarily deterministic.

7.2.5. Contributions of the chapter

The existence of a saddle-point solution for game G31 is proved in Basar [ 1983] in a

more general framework where it is shown that the parameter space can be partitioned

into regions with the saddle point depending structurally upon the region of operation.

Games Gi, for i-1,2 are considered in Basar and Wu [1985] where the existence of a

saddle-point solution for G11 is established and a complete characterization of minimax

u and maximin strategies for G21 is provided.

In this chapter we study the remaining nine games Gik, iE{ 1.2,31 and kE{2,3,41. In

Section 7.2 we provide saddle-point solutions for games G12, G13 and G14. In Section 7.4

we analyze games G32 , G33 and G34 . For games G2, G23 and G24 saddle-point solutions do

not exist; we provide both maximin and minimax solutions for these games in Section 7.5.

'7.3. Saddle-Point Solutions for Games G,,, GH3 and G, 4

Consider the problem described in Section 7.1, with the encoder allowed to use pro-

babilistic mappings (Figure 7.1), under Criteria C2, C3 and C4, respectively. The solution

is provided in Theorem 7.1 afler inlroducing some notation.

51%

IV S
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Preliminary Notation for Theorem 7.1

We introduce scalar parameters P1o and P*, by dividing the parameter space into dis-

tinct regions as follows:

a. Game G12

1 2 3Define Regions R1 2 , R12 and R, 2 by

R12o (7.1 Oa)

ko
2 ko 2 1R12 - < °w < (7. 10b) [

(ko+oC) 2  ko

3 2 0
R, Z: o < -(7.1Oc)(ko+ .)

Now define P*o and P* by S

in R 2

arw 2 inR 1 2
0 W, (7.1 Ia)ko 

.

o/2 inR12

(ko+C) 0

in R12 and R0 12 1

P* k o  2 / (7.1 b)

(k +°e) 2 O) in Rs2
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b. Game G13

Define Regions R13 and R, 3 by

R3 t>pp2 (p + or)' (7.12a)

13 0 0

Now define P*0 and P~j by

P*O PO in R, 3 andakR 3  
(7.13a)

in R'1

P* 0 13(7.13b)

c. Game G, 4

Define Regions R I and R 2 by

RI1 4: Ic0 1> (P 2 +0 (7.14a)

R14:k< (pI+ a 2)-1 (7.14b)

Now define P% and P*1 by

0 R14

2 * (7.15a)

P = P1  in R,,4 and R14  (7.15b)

The'oremn 7.1: Consider the games (G12 , (;,. and G14 described in Section 1. For cach of

these aines there exists a saddle-point solution (y,*~)given as follows:
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(P*u, P * ,~P 3 )z w.p. 0.5

(y*,S*) = (7.16)

(...P!u,(-P*0 (P!*2+O, +P*? 2))Z) w.p. 0.5

(7.17)

where 7) is a zero mean Gaussian random variable with variance Pl which is independent

of u and w.

Proof: We need to prove that the solutions given above satisfy the saddle-point inequali-

ties:

J(-Y*,8*,B) <J(*,8*,*) ( J(/,8,B3) (7.18)

for all permissible triplets (y, 8 ,O) and under the stipulation that the side channel is used

to carry structural information concerning the probabilistic encoder mappings. The proof

is provided by establishing separately the validity of the right-hand side (RHS) and left-

hand side (LHS) inequalities of (18) under each criterion for each of the regions in con-

sideration.

(a) Game G12  .

Region R 1

(i) The RHS inequality ..

The problem faced by the encoder-decoder pair, with the jammer's policy fixed as

indicated is

min EkoY 2(u) + (8(z)-u)' ]

erwhere z y(u) + w.
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For each fixed power level (E[y 2 (u) = P 2 ) the problem above is the standard Gaus-

sian test channel for which the optimal solution is known to be linear. The optimal power

levels may be found by solving the parameter optimization problem:

min [k 0  + a.,(N + a.)
PO

which gives M = 0 as in the statement of the theorem.

(ii) The LHS inequality

With the encoding-decoding policy fixed at zero, the problem faced by the jammer is

max (-r13(u) + 1)
P(u)

for which the optimal choice is 3*(u) = 0.

Region R 2

(i) The RHS inequality

As in the case of Region RI2, we find that the optimal encoding-decoding policy is

linear and the linear encoding coefficient may be found by solving the parameter optimiza-

tion problem

min f 0PO + OWI(PO + OW)]
PO

which gives P* = (a,.k o ) as in the statement of the theorem.

(ii) The LHS inequality

With the encoding-decoding policy fixed as given, the cost to be maximized by the

jammer is obtained by unconditioning the conditional value of the cost incurred for each

'I
,
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realization of the equlprobable random variable which decides the sign of the linear

encoding. In the expression thus obtained for the cost to be maximized, the jammer's pol- O

icy only enters as a term containing E[s32(u)] with the coefficient

(((o/ko%) o2 2)k0 a 2) ,.

This coefficient is nonpositive in R,, implying that )3(u) - 0 is the jammer's optimal pol-

icy.

3S
Region 12

(i) The RHS inequality

When the jammer uses independent Gaussian noise with the indicated variance, the r.I

problem faced by the encoder-decoder pair is

min E[koY2(u) + (8(z)-u) 2 + K'I

Y's

where z = -y(u)+w+-n and K' is independent of the encoding-decoding policy. For each

fixed power level, E[y 2(u)] = PO2, the problem is the standard Gaussian test channel prob-

lem, and thus the coefficient of the optimal linear solution may be found by solving the

parameter optimization problem

m p 2k°P °2 + (k°/(k°+oe) 2 )1(P2+(k°/(k°+01) 2 ))l

which gives P*0 as in the statement of the theorem.

(ii) The LHS inequality

When the encoder-decoder policy is fixed as indicated, the cost function to be maxim-

ized by the jainmer is obtained by unconditioning the conditional value of the cost which
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gives an expression independent of 3, and thus the jamming policy may be chosen as in

the statement of the theorem.

(b) Game G13

Region R1'3

(i) The RHS inequality

With the jammer's policy fixed at zero, the encoder-decoder pair faces the standard

Gaussian test channel problem for which the optimal linear solution is as indicated in the

statement of the theorem.

(ii) The LHS inequality

When the encoder-decoder policy is fixed as indicated, the cost function to be maxim-

ized by the jammer is obtained by unconditioning the conditional value of the cost which

gives

E[(-c~e + 'P'a2)2)2(u K"

where K" is independent of j3. In the region under consideration the coefficient of E3 2 (u)]

is negative implying that )(u) = 0 is an optimum.

Region R13

(i) The RHS inequality

4With the jaminer's policy fixed as given, the encoder-decoder pair faces the standard

Gaussian test channel problem, and the solution is as given.

4 ,.

r -.
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(i) The LHS inequality

With the encoding-decoding policy fixed as indicated, the cost function to be maxim-

ized by the jammer, obtained by unconditioning the cost, becomes independent of $(u)

which may, therefore, be chosen as in the statement of the theorem.

(c) Game G14

Region R14

(i) The RHS inequality

With the jamming policy fixed as Gaussian noise, the problem faced by the encoder-

decoder pair is

min E[koY2 (u) + (8(z)-u) 2]

with z = y(u)+w+n.

The coefficient of the optimal linear solution to the above problem may be found by

solving the parameter optimization problem

2 2

min koP2 +
PO 2 2 2Po +PJ +a'w

2for which p*0 = 0 in the region under consideration.

(ii) The LHS inequality

With the encoder-decoder policy fixed at zero, the cost function is independent ol

O(u) which may be chosen to be Gaussian noise as in the statement of the theorem.

IWI

' I
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2SRegion,

(i) The RHS inequality

The problem faced by the encoder-decoder pair, with the jammer's policy fixed as

Gaussian noise is

min E[ko y2(u) + (S(z)-u) 2] 'Y.
where z - y(u)+w+, I

The coefficients for the optimal linear solution to the above problem may be obtained

by solving the parameter optimization problem

min koP2 + (a2+P )/(Po+P 2+a)
P0

g which gives the optimal encoding-decoding policies as in the statement of the theorem.

(ii) The LHS inequality

With the encoding-decoding policy fixed as indicated, the cost to be maximized by the

jammer, obtained by unconditioning, increases linearly with E[1 2(u)]. Thus the jammer

may choose any random variable with second moment equal to P3 ; i.e., 13(u) may be

chosen to be independent Gaussian noise as in the statement of the theorem.

4 I

0S

I
.An

, N"
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7.4. Analysis of Games G 32, G3 3 and G 34

7.4.1. Some useful results

The most relevant paper to this section is Basar [1983], where a game of Type 3 with

fidelity Criterion C1 has been studied. Here we reproduce the main theorem of that paper

(in the current less general framework) for future reference. First note that if PO < P1

the solution is trivial since the jammer can cancel out the signal component. If, however,

PO > P, then it is convenient to partition the parameter space into two regions

RI: Po > Pj and P0 P - P 2 < a2

R2: Po > PJ and PoP - P, o 2

and to introduce

*= -PJ/P

and

t* =l-(P2+o, 2)2 /P2P2

Lemma 7.1. Game G3, admits two saddle-point solutions (y*,8 *,A*) and (--y*,-8*,A*),

where

(i) Y*(u) = P u

(ii)A * is the Gaussian probability measure associated with the random variable

X*y in RI 'C

v = "*(y) =

h*( l-t*)ky + ,.* in R2

where T)* (O,t*P)

III VII 1
-M !Z
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(iii) 8* is the Bayes estimator for u under the least favorable distribution A*, com-

puted as

8*(z) = (Po(1+X*)/[Po (l+x*)2+ow2]) in RI

(11P o) z 
in R2

Proof. See Basar 1983].

In order to establish similar results under Criteria C2, C3 and C4, we shall need the

following lemmata:

Lemma 7.2. Consider the stochastic team problem with nonclassical information (which

can be obtained from C2 by setting =(')- 0)

min Elkoy 2(u) + (8(z) - u)2}

where z - y(u)+w. The optimal solution to this problem is linear, i.e.,

Y*(U) P*ou

and

8*(z) = E[u I P*ou+w = [P*o(P 2 + )] z _

where

P* _ arg min kP + w(p2+aw
t p

Proof'. See Bansal and Basar [1 987a].

Lemma 7.3. Consider the stochastic team decision problem with nonclassical information

(which can be obtained from C3 by setting 0() 0) )

,0
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mm E{(Wz) - 0 21

where z - Y(u)+w and E[y 2(u)] ( P2 . The optimal solution is linear and

^Y*(u) = Pu

8*(z) = [PI(P2 +o2)] z .

Proof. The problem may be viewed as the standard Gaussian Test Channel problem,

from which the optimality of the linear solution follows. Alternatively, the proof fol-

lows in a straightforward fashion using a contradiction on Lemma 7.2.

We note here that because of the complex structure of the solution to the hard con-

straint problem (discussed in Basar [1983]), the solution given in Lemma 7.1 cannot

readily be used to obtain the solution to the soft constraint versions. In fact, it turns out

that, for each of the soft constraint versions, the saddle-point property has to be esta-

blished individually.

7.4.2. Solutions to the minimax problem under the three criteria

(a) Game G 32

Preliminary notation for Theorem 7.2. 7

We decompose the parameter space into three regions RI, R2 and R3:
R3 12: ¢x ko

R 2: o >ko and ao - k 2< O a2
02 0 W

and

R3 > ko and otk o -k o > 0 2

32 0 W

- "' _v
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We next introduce the scalar parameters P*o and X* by

inR I

P* (MaxlO,a((k 1 --ot-1 )"-o)((1-ko/c,)2)}) '  in R'

R3

and

in R32

-ko/lO in R32 and R32

Theorem 7.2. Game G32 admits two saddle-point solutions (y*,8*,g*) and (",--.",*g*)

where

(i) y*(u) = P*OU

b(ii) A is the Gaussian probability measure associated with the random variable

(i) isin RI and R 2

V= 3*(y)=3 
3

w3 X*y+vg*~ in R3

" where * is an independent Gaussian random variable, i.e.,I

62 2 2-k 3_c 2o)n , - -N ( O ,o ) - ( O ,k o -  2 3o I 2o,

(iii) 8* is the Bayes estimator for u under the least favorable distribution g*, com-

* puted as

d.
'

S.

- . -
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(P* (1+k*)/(P* (1+X*) 2 +0 2)) Z in R 1 andR2

8*(z) p*z

(j/p*,) z inR

Proof. We shall establish separately the validity of the right-hand side (RI-S) and left-

hand side (LHS) inequalities of (7.18) in each of the Regions R 1 , R 2 and R 3

323212

Region R' 2

(i) The RHS inequality:

With 0(y) = 13(y) = -y, the problem faced by the encoder-decoder pair is

min EINOk0 -)Y 2(U)+l

which implies y*(u) =0 and 8*(z) = E~u I wi = 0

(ii) The LHS inequality:

With -y = S*= 0, the problem faced by the jammer is

max E I - &B 2 (y))

and since y-O a.s., any choice of 13 with E[3 2(y)]=0 attains the maximum (which is 1), one

such policy being 3(y) = -y.

2
Region R32

(i) The RHS inequality:

With the jammner's policy fixed as 13*(y)=(-~k0/a)y, the problem faced by the encoder-

decoder pair is

min E[(k,-kl /ce)y 2(u) + (8(z)-u) 2]

171
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with z = (-klof~y(u) + w.

Defining y'u) = (l-k,/cry(u), the problem may be rewritten as

min E[k'(y'(u))2+ (8(z)-u)2]
V,.6

where z = -y(u)+w. It follows from Lemma 7.2 that the optimal encoder-decoder policies

are linear in the observations, and may be obtained by minimizing over P. " 0 the

expression

J(P 2 k . l-kloe)p2 + a 2 (l-k1ol I+) 2 +

which yields P*0 as in the statement of the theorem.

GOi The LHS inequality:

With the encoder-decoder policy fixed as given, the problem faced by the jammer is

max E((p*2-cr)3 2(y) + 2p*(p*P*Ir0 I )13(y)u] .

Under the assumption p*2-ar<0, its solution is unique (because of strict concavity), and is

given by

3(y) = [p*(p*P* 0 .... )(P* 0(cr-p* 2)M y = *y

With p as indicated, this condition becomes 2P

+( +X*) <

which implies and is implied by

3 2 2
a au > rk 0 -ko
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Region R32

(1) The RHS inequality: A

With the jammer's policy fixed as indicated, the problem faced by the encoder-decoder

pair is min E{(ko-k2/ck)y
2 (u) + ((z)-u) 2 

- an . 2
.

Using Lemma 7.2 as in Region R32, we obtain the encoder policy to be linear, with the

corresponding power level obtained by minimizing over P 2 the expression

J(p0) = ko(-ko/I)P + (OW + a)[(-k ) 2 2 02

2
which requires (by differentiating with respect to Po and noting that the second-order

condition for a minimum is always satisfied)

ko( 1-kdo/) - 2 + 2 X I-k 0 e)2  lokI2& 2+a 2+ 212 N

which is satisfied (uniquely) by P*o2 = Ila. Furthermore,

8(z) = E[ulz] = otz

(ii) The LHS inequality:

With the encoder-decoder policy fixed as indicated, the problem faced by the jammer is

max EI(p* 2 -o) 2(y) + 2p*(p*P*0 -l)/(y) u} .

4 Since p*:- a and p* = I /P*o, this cost is independent of 3, and hence the jammer's policy

may be chosen as indicaled.

, ,p

I.,
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g (b) Game G33

Consider the game of Type 3, under Criterion C3. The solution is provided in i!

Theorem 7.3 below, after introducing some notation.

Preliminary Notation for Theorem 7.3.

We decompose the parameter space into Regions R33 and R3, as follows:

R : (P2 d i10) U (P 2= 1/cr < 4a2)

R2 :P2 4a2
R33: P0 = / W

We next introduce the scalar parameter X* by

arg max Ia 2i[+X) 2 P+G2)_- cX-pj

1± in R3.

2

Note that X* E (-1,0).

Theorem 7.3. Game G3 3 admits two saddle-point solutions (y*,8",/c*) and (-y*,--*,#)

where

(i)Y*(u) = PoU

(ii)/M* is the Gaussian probability measure associated with the random variable

X*V inR3 3

v = *(Y

2 ,2
X*Y 71*in 33

where *" N(O,o = N(O,( I/4ao(7.

'V 0

- ' ' ft", 'Y:;a-', ,k' >,. ,v,,,-," .,,t, ,,Cr,,,.e,..
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NOjj 8* is the Bayes estimator for u under the least favorable distribution ,t'for v,

computed as -

(P(lX*/P.,(#X) 2 + D] z in Rj 33

8*(Z) =p~z 
V

2 .

(11P0) Z in R33

Pr-oof. We shall establish separately the validity of the RHS and the LHS inequalities of

(7.18) in Regions R33 and R33.

Region R.3

(i) The RHS inequality:

With the jammer's policy fixed as indicated, the problem faced by the encoder-decoder

pair is

2 2 2 u ,y 2 (U)] , p

min Ei (8(z)-u) - ck -y ()J E[ 0

where z =(l+X*)-y(u)+w. Noting that X* E (-1,0) it follows that

min EI(S(z) -u)2

under E[y() p2 is achieved by -y(u)l = P U.

Now ok* 2 Ei Y2 (U) is also maximized when -y(u) =P~u and therefore we obtain the

solution of the above problem as ~

Y(11) = Ku

and

8(z) =Efu I z] [P,( I+X*)I(PJ ( +x*) .+oW)] z

N N

NZ.1 C
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g (iGO The LHS inequality:

With the encoder-decoder policies fixed as indicated, the problem faced by the jammer is

Umax E((p *CA)0 2 (y) + 2p*(p*P 0Ol)I3(y)u]

the unique solution to which is

0*(y) = [p*(P*p.....)I(p(O..p *2))] y =X*y

provided that

p *2 -01 <0

or equivalently

.. X*U(I+X*) < a ./ (7.19)

We now show that the inequality (2) holds for all P 2in R1
2 23

(a) First consider the case P =1I/ o < 4 a . Note that under this condition the equa-

tionk +2 ++ 2 JP 2= 0 has no' real roots, which implies that

X* 2 +X*+ 2 /P 2> 0

and hence -~X*(l+X\*) < a 2/P.2

2(b) Now, consider the case P0  ;- l1/a. If P0 = 1/ a we know that X satisfies

[(l+X) 2 p2>I 2 +(g(±X)/X)p =0 (7.20)

which after some manipulations yields

g(,\) = G((1+\) + a /P 2)(a,2 /P 2 + (1+0)/ 0 .(7.21)

This function is illustrated in Figures 7.4a and 7.4b. The extrema are found at the inter-

sections of I he horizontal line at (kA, the necessary condition being

4. 'W
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LfL

A. A

1 2

Figure 7.4a. The function gQOk.

Sf M

II

A A

Figure 7.4b. The function f(X).
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2D =-(+X)/ [X(( I+X) 2p2 + g 2)]24 f k

The quadratic term of (7.21) corresponds to the maximizing roots, whereas the cubic term

in (7.21 ) has only one real root which is the minimizing solution.

MLet

A(X) A X0+X))+ ow/P2 (with roots X A and XA),

and

B(X) a 2/PoI+(l+X)3/X (with real root XB),

so that Equation (7.21) may be rewritten as

I
A() B(X) = 0

2
From Figure 7.4 it is apparent that if a > li/Po, we get a maximizing root smaller than

A 2A
X , which satisfies (7.19), and if oe < IPO, we get a maximizing root larger than X2

1.
which satisfies (7.19), and thus the proof for Region R3 . is complete.

42 Region R3

I(i) The RHS inequality:

With the jammer's policy as indicated, the problem faced by the encoder-decoder pair is

Smin EI(8(7)-u) 2  - (u) -- n Ey 2(u)] P

with z = (l+X*)-y(u) + w + 1)*.

4 It follows then, as in the proof for Region R33, that the required solution is

Y(U) = P0 u

( Eand

8W) E[u Iz] (I 1PO) Z
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(1i) The LHS Inequality,

J(y*,8*,j3) <J *8,*)

With the encoder-decoder policies fixed as indicated we have p*P- I and p* -ce. There-

fore, the maximization problem faced by the jammer, i.e.,

max E[(p -0)3 2 (y) + 2p*(p*Po-1)0(y)u] ,

has a cost function which is independent of 3 which may, therefore, be chosen as in the

statement of the theorem.

Remark 7.1. This solution for the jamming policy in Region R33 is not unique. In fact, S

any pair (X*,7"* ) which satisfies

(i+X*) 2 1- (l+X*) + aeCi 2+a.) -- 0
WP

provides a solution, since this gives

2 2 2 2 ) /
p* = (l+X*)P/((l+X*)Po+a +on) - 1/P0 ,

thus yielding a cost which is independent of 3. The specific choice of the solution pair in IV

the statement of the theorem is motivated by continuity of X* at the boundary of R3 and

2
R33.

(c) Game G34

It turns out that Game G34 does not admit a saddle-point solution and hence the gen-

eral approach used so far is not applicable. This is because the maximin value of the prob-

lem is not well'defined. (In order to find the maximin value, we need to fix the jammer's

policy and then minimize over the encoder-decoder policy; but the jamming policy itself

depends on lhe encoder policy 1hrough the consIraint, thus leading to ill-posedness.)

V,
.. . . .. .. . . , -,.. . . . - .. ..,.. ,.
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However, we can still obtain a minimax solution by proceeding in two stages. First,

we formulate a related problem with an enlarged information structure for which we can

show the existence of a saddle-point solution. We then show that the minimax value of

the original problem and that of the problem with the enlarged information structure are

identical, and hence the saddle-point solution found corresponds to the minimax solution

desired.

Towards this end, suppose that in addition to having access to the random variable

y = y(u), the jammer also has access to the policy y, in other words, the jammer's policy

3 belongs to the space of all Borel measurable mappings which are functions of both y and

y, i.e., v = (yy). The saddle-point solution to the new problem with this enlarged

information structure is presented below in Proposition 7.1 after introducing some nota-

tion.

Preliminary notation for Proposition 7.1.

Let

P*O = arg min f(PO)

where

.ko
P 2 + ow2/(Po--PJ) 

2 +2] if P > P1

¢"~ f(PO)

koP 2 + I if P. < P

Note that either P*, = 0 or P*o > PP

* Furlhermore, decompose the parameter space into Regions R34 and R34 characterized

..- by6'*

0 ',p -
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34 P*O > Pi

R34: P*0 -0. ,

Proposition 7.1. The problem with the enlarged information structure, just described,

admits two saddle-point solutions (y*,**) and (--*,- 8 *,ft*) where

(i) y*(u) = P*o u

(ii) A* is the Gaussian probability measure associated with the random variable

- (PjlIIYlI) y in R34 t

v = 3*(y,y) = .

- y in R2

(iii) 8*(z) =p* z

[(P* -P 1 )/((P*o-P) 2 +o,2)] z in R'

0 in

Proof. We shall establish separately the validity of the RHS and the LHS inequalities of

(7.18) in R14 and R . (The key observation here is that the jammer must know his

opponent's policy in order to determine a minimax solution. The enlarged information

structure enables the jammer to use the policies as in (i) above.)

Region R34.

(i) The RItS inequality:

The problem faced by the encoder-decoder pair, with the jammer's policy fixed as

indicated, is



rain E~kOY 2(U) + (8(z)--u)2 ]

where

~~Z --- 1- PJ[[y[)y +W.

Let us first consider the Problem P1:

. ~ ~~~min Ej (8(z) -) } ; E~y() o

We assert that the minimum value of this problem is achieved by some y satisfying

2
E[y(u)] = P0 . To verify this, we first assume the contrary, that the minimum is

achieved by a y satisfying E[(U)]- p2, where 0 < Pi < P < P0. The solution to the
~~Problem P2: "

min E{(8(z) -u) 2 1 ; E[-y2(u)] -= P"

is then the same as that for the Problem PI. However, for Problem P2 we know that

z --- (1-P/P)-y(u) + w . -
,%

By defining y(u) =-(1-P 3 /P)y(u), and using Lemma 7.3, we find that the solution to -

Problem P2 is linear and yields an optimal performance of
.5I,,

--I.2w/((-Pj) 2+ o w )

By using a linear solution y - P0 u for Problem P1, we obtain the performance

2 )2+2

wicn is cieai ly lower than the one obtained for Problem P2, implying that the minimum

cannot he achieved for E[=(u)] P2 < P2. We now have

2'
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min E[koy 2(u) + (8(z) - u) 2]
Y.8

(Ey2 ()-P2 4P2 A
* J

,, k0 P + cI,[(P0-P )2+0 2.

min (k.Po +Po>PJ

k.P* 2 + a2 1(P*.....P)2+a2]
-ko 0 W +

1

where P* > P necessarily exists in R34. With y(u) = P*o u and 8(z) = E[u I z the above

inequalities are all tight, implying that the minimum is indeed achieved by the policies

given in the statement of the theorem.

(ii) The LHS inequality:

With y* and 8* fixed as indicated, the problem faced by the jammer is

max {p* 2 0(y) + 2p*(p*P* 0-1)0(y)u} ,

subject to the constraint E[3 2(y)] < P2. Clearly the optimal policy for the jammer is to

use a function, linear in u, at the maximum permissible power level, which, under the

enlarged information structure, is

,-*(Y,Y) (P/[iyI) y •

2IRegion R3 4

(i) The RHS inequality:

With 0*(y) = -y, the problem faced by the encoder-decoder pair is

min E(koy 2(u) + I
Y.8

the solulion to which clearly requires -y(u) = 0 and

0p
1

I.e

Ir
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8(z) = E[uIz] = 0

(ii) The LHS inequality:

With the encoder-decoder policies fixed at zero, the cost becomes independent of the

jammer's policy, who may now use 0(y) = -y as the policy which yields the saddle-point

solution.

We finally argue that the minimax values of the two problems with and without the

enlarged information structure are the same. With y fixed, let (3 belong to the space of

Borel measurable functions of y satisfying E[1 2(y)] P, and let 3 be in the space of

Borel measurable functions of y and -y satisfying E[ p (y,y)] P. Then

min max J(y,8,) = min max J(y,8,3)
8,s V, 0

since for fixed y and 8 the two inner maximization problems are identical.

We therefore have Theorem 7.4 below.

Theorem 7.4. Game G34 admits a minimax solution which is equivalent to the saddle-point

solution given in Proposition 7.1.

7.5. Minimax and Maximin Strategies for Games G 22 , G 23 and G 2 4

7.5.1. Minimax strategies

If the encoding policy y is restricted to be deterministic, then to every jamming pol-

icy 03 that is a function of the encoder output y(u), there corresponds a jamming policy

= 1 " y which represents the same random variable

v=3(i)=3('(il) (7.22)
"%

,V1
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Since y is not necessarily invertible, we have the Inequality

sup J(y,8,3(y(u)) < sup J(y,8, (u)) (7.23)

for every pair (y,S), where y is restricted to be deterministic. Taking the infimum of both

sides over (y,8) we obtain for k-2,3,4,

J3k = inf sup Jk(Y, 8 ,43(Y(u)) < 12k (7.24)( y ,5 ) P -'

where J is the upper value of a similar game with fidelity criterion Ck, with the

difference that in this new game the jammer has access to the output of the encoder rather

than the input. Thus the upper value of a game of Type 2 is bounded from below by the

upper value of the corresponding game of Type 3. We shall next show that this inequal-

ity is in fact an equality, and provide for each kE{2,3,4}, a set of minimax strategies that

achieve this value.

Preliminary notation for Theorem 7.5

(a) Game G22 S

Define Regions R12, R,2 and R22 by

ot~ K.R22 : 0 ko
2 a > k o a d ko-k 2 < 2 a (7.25) S

22 kadk- 0 < ow322> 3"
oe > ko and oko-k> ( 2
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Now define I*o and X* by

0 in

P*o= (Max{0,cW((ko---) --w)/((1-ko/oe)2)))% in r22 (7.26)

- i inZA

and . (7.27)

-ko/e in Z 3 and R223

Let ( *, *,g*) be defined by
-)=Po nF Z2 adK3(7.28)

Z~(u=P0u in 22 R2 and

(P*o( Il+X*)I(P*2( l+K*)2+o2))z in R21 and R-

(*(z) -p*z I /F*o)z in V (7.29)

in 22

0 2u =-( kolop*u U in .o2
i~{u= ( 0/c) ~ R 22  (7.30)~~k° in R3

-- )P*ou+)* 2

00

, ~ ~where * is an independent Gaussian random variable, n* ""N(O.ko/o&'-k/ -oj).

(b) Game G 23

Define Regions R2'3 and R 2 by
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1 2  
2 2)R : arg )U (Po/= <4a,)i

01 a - (7.32)
I2 21 in2 2

I

Lo iet X beyeindb

2/( o X 2 +02 _lkp2

-- 22

(Ro 1:*)f(PJ- 1+*) 2 o.4)z n .

S(7.34)
Pu in R

23 (73)

X*PU in R-

22

k ,u n in (735) '
23

where n* is an independent Gaussian random variable, -* N(0,1/4oe-a2)"1). p

(c) Gane G 24

Lei

P*O arg min f(P 0 ) (7.36)

where

%
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2 2 2 2

f(PO ko qwp2j)+, if PO >Pi (7.37)

Note that either PO> P, or P*0 = 0.

Define Regions FZ and K2by

rZ24 P%.> P, 24 2 (7.38)
R24  =0

Let be defined by

= U P*Ou (7.39)

((p*0 ~P1)/((p* 0 - 1
2 ao)z iW))z in R24 (.00 in (7240

-PJu in R240

j~*u) m 24  (7.41)

0 n 2

Theorem 7.5. Sets of minimax solutions for games G 22, G23 and G,4 are provided by

(~*~*j*)and with *9 and 3*defined above in the various regions under

each of the three fidelity criteria.

Proof. We shall first establish that

12k SU~P Jk(Y* 3 /3(u)) = kyT,* 3k (7.42)
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The first inequality in (7.42) is immediate because

72 1L (<SUP JIk(yS,13(u))

for all pairs (y,S). 73K is the minimax value for the corresponding game of Type 3, and

we shall prove the equality in (7.42) by considering individually the various regions

* under each of the criteria and comparing with the minimax strategies for problems of

Type 3 available from Section 7.4.

(a) Game G22  
J

(i) Region R2

J2( *151 3 Efl-o13 2 (u)I.
Therefore, *(u) =0 and

SUP J2(1 *,9*,j3(u)) = T,, in K 2 2

GOi Region K 2

222

max EI( *2-cX)o 2 (u)+2p*( p*P*0 -l 3(u )uI

for which the soiutiori is

Noiing that this provides the same value cis the minirnax val for Game G'32 in Region

R~.we have

SUP i, Q**,3 ir) R,=,,

Op Op LI
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g (ii)Region iR22

The problem faced by the jammer is

max E[(p*2 _a) 2(u)+2p*(p*P*o-1 )/(u)ul,

and the cost is independent of 0, the value being the same as the minimax value for Game

-33

sup J2(;*,3*,1(u)) = j32 in R22 .

We remark that while /3 may be chosen arbitrarily to satisfy the equality, the specific

choice of * as indicated provides the saddle-point solution for Game G23 and further pro-

vides continuity of the jamming policy at the boundary of Regions RZ2 and R:2"

R22  R22.

(b) Game G 23

(i) Region K2'3

The problem faced by the jammer is

'max E[p*-o)132( u)+2p-( P*Po )/3( uju],

m!.

the solution to which is

:: i =P*(P*Po-l),:' *u) -- u =X*pOU.

(a-P*)*.,- ( _p.

* Since this solution provides the same value as the minimax strategy for G33 we have

sup J3 ( *, *,B(u)) = in

'N
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i) Region R2
R23

The problem faced by the jammer is to minimize a cost function which is indepen-

dent of 1 as in the case of Region R,3 and we have

sup J 3(*,8*,10(u)) = 13, in 23

Again 0 may be chosen arbitrarily; the specific choice here is due to the same reasons as

-3
remarked for Region R22 .

(c) Game G2 4

(i) Region R2 4

The problem faced by the jammer is

max El p*2 2 (u)+2p*(p*P*o-I )(u)ul

subject to E[ 2(u)] K P 2 .

Clearly, the optimal policy for the jammer is to use a linear function of u at the

maximum permissible power level, which gives

3*(u) = -pju

and provides the same value as the minimax strategy for Game G 3 4 , implying that

sup J4(?*,*,.( u)) =34 in K
124

(ii) Regto' R2 -'

With the encoding-decoding policy pair fixed at zero, the cost is independent of the

jammer's policy which may be (hosen arbitrarily 1o provide

.

A'A..
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SUP J4(;F*,3*j3(u)) = 74in RZ34

We now see that in all cases we have

SUP3 Jk(T,*P3(U)) = 11

and thus (7.42) holds.

Using (7.42) along with (7.24) it follows that J2k =J31L for k E 12,3,41 and that the

strategy sets given are sets of minimax policies.

7.5.2. Maximin Strategies

Since r. z) red we have

inf JkJY'8'0) ( inf Jk(y,8,43 ) (7.43)
-yE r,s , yr vE rdE r,

for all B3E r. Taking the supremum of both sides over B3E r j we get

(7.44)
4k0

i.e., the maximin value for a game of Type 2 is bounded from below by the maximin

value of the corresponding game of Type 1 (which is also the saddle-point value of the

game of Type 1).

Preliminary notation for Theorem 7.6

(a) Game G,2

Define Regions R1 2, R1 andR 12as in (7.l10), and define (P*,P*) by (7.11)

%

"V%
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Wb Game G23
I

Define Regions RI and R as in (7.12) and define (P*o,P*J) by (7.13).

(c) Game G 24

Define Regions R I and R as in (7.14) and define (P*o,P*j) by (7.15).

Theorem 7.6. Sets of maximin solutions for games G22, G.3 and G24 are provided by

( * ., *) and ( where

Y*(u) = P*ou (7.45a)

22
d8z) (P*/(P*o+P*J +ow))z (7.45b)

and '

O*(u) -- r* (7.45c)

where 71* is a zero mean Gaussian random variable with variance p~j2 which is indepen-

dent of u and w.

Proof. Note that

, -- sup inf Jk(Y'8 ,) sup inf Jk(y8,')
er,k k yEr ' (7.4b)A r, k -, r ed

kI

k1 k1

where Fed and F, are the sets of all permissible linear policies for the encoder and the

decoder, respectively, and the inequality follows because the infimum on the right side is

taken over a smaller set. We next show that the expression on the right side of the ine-

quality in (7.46) is_ i.e., the maximin (or saddle-point) value for the corresponding

game of Type 1.

UM Irk
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(a) Game G2.

Let y(u) =E uand 8(z) =Az. Then

J(,B)= (l-AE )2 + &2 a 2 + A2E[132(u)]

+ 2A&(EA&-I)E~u13(u)] - caE[O3() + k0E

Consider the minimization of the above functional over (E ,A). Using -L. = 0 and

a,&

E +E~u13(u)]

+E(132(U)-Ia 2 +2 E ENut( u)]

Y' as the unique minimizing A* for every fixed E . Therefore,

P J2L. = K0E2 + E[012(U)]+ a 2 -(E[uO( u)])2 E 2

E 2 +E[032(U )]+a 2 +2 E E~u13( u)]

We next minimize J214,* with respect to E. In particular, if ENu1(u) = 0 we get

E*2=Ma (0 EW12(u)]+a2
E*' MaW ~(Ef 32(U)]+a )1

* and, in general, we have

kE*2  + E 32(U)I a 2-(Eu 3(u)]) 2  
- Ei 2

and we note that sgn() -sgnEfuO(u)].

To maximize JA.E. as a function of E~ut3(u)] we differentiate with respect to

* ENuI(u) and find that

AFA Ak -6W
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> 0 if E[u(u)] < 0
d(ENO u)]

and

dIJA.E. < 0 if E[u(u)] > 0.

d(E[u0(u)])

Therefore, JI,.a,, which is continuous in E[u1(u)], admits its maximum at E[u(u)]- 0

and we next maximize over E[ 2 (u)] to find that

E[)32(u)] = Maxi, E* _ (E* 2 +a)}.

Note that if' E*= 0, then E[ 2(u)] is necessarily zero, which is the case if 2 < , i.e.,
ko

Region R12*

Next note that E* could be nonzero with E[B 2 (u)] = 0, which occurs if

Ow 2

V/2

ko

along with

E , <2 (E* + a 2  
,

which together yield ti

kO 2 1 '.

(k o +X) 2  ko

i.e., we have Region RI,.

IT
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Finally note that in Region R 3 where2

ci w(k0 + )1 <o

both E and E[U2(u)] are nonzero.

Observing that the jammer's maximization problem is solved by using any second-

order random variable with the appropriate variance, it follows that a Gaussian random

variable as indicated is an appropriate choice. Thus, with the encoding-decoding policy

restricted to be linear, the cost obtained by using the jammer's maximinimizing policy is

the same as the maximin value of Game G12,

(b) Game G23

With y(u) = E u and 8(z) = Az

J3('yj) = (l-AE)2 + Aa ' + A E[W3(u)I
+ 2A(E A-l)E[u3(u)] - oeE[ 2(u)]

and we obtain as before

E[0l2(U)]+a--(E[UX(U)]) 2

= E 2(uf]-a- oE[32(u)]
E 2+E[ W2(u)]+o +2E E[u3(u)]

and minimization of JL., with respect to E yields

PO if Eu(u)I > 0

E*= -Po if E[u<3(u) <O.

PO or -Po if Eut3(u)] = 0

(Recall that we require I E2 1 < P2). Now,

I- i ' 1a. i %, ,., , .
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E[j(u)]+o2-(E[uOI(u)i)2

P- +E[0 2 (u )]u) f u)2P0 E[u0(u)]

J3IAS. E'
p E[ 23( u) ]+ 2 _2E[u( u) ]

E[3 2 (u)'°2-(E[3(u) - 2(U)] if EVu/3(u)] > 0

PO +E[ 32 (u)]+a.W+2PoE[UO(u)]

Noting that the derivative of this expression with respect to E[u(u)] is increasing for %L
0

negative E[u(u)] and decreasing for positive E[u3(u)], we find that the unique maximum

is at ENuO(u)J = 0.

To further maximize with respect to E[O2(u)] we take the derivative and get

u,=--- ) > (P + a2 )

(i.e., Region R2), and zero otherwise (i.e., Region R1
1
3).

Also note that with the encoding-decoding policy restricted to be linear, the cost

obtained by using the jammer's maximizing policy is the same as the maximin value for

Game G, 3.

(c) Game G24

With y(u)= Eu and 8(Z) = Az

E[03( ull+o 2-([uWu)2

J4LA ko +

2+E[CB2 u )I+±2+2 E E[u3( u)]

and

"N
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2 6

k. E + E[ -(E[uO(

E *2+E[IS 2 (U)]+ a W'2E *E[u13(u)]

with sgn(E*) = -sgn E(u1(u)].

We differentiate J4[*.Es with respect to E[u3(u)] to find that the maximizing value is -

E[u1(u)] = 0. Further since J41,,,. is an increasing function of E[u3(u)], its maximum

over 1(u) subject to E[u(u)] < P2 is attained at E[132(u)] = P2. Any second-order ran-

dom variable with the appropriate variance may be used as the maximinimizing solution,

yielding a cost which is the same as the maximin value for Game G14.

We have thus shown that for each of the games the expression on the right side of

the equality in (7.46) isaK, i.e., we have

-ay <-L • (7.47)

Now using (7.47), along with (7.45), we find that JK =-&K' and the strategies indicated

are indeed the maximin strategies.

7.6. Conclusion

In this chapter general classes of communication games have been studied, which

include situalions where the encoder mapping may be random or restricted to be deter-

ministic, the jammer may tap the input to the encoder or the input to the channel, and the

power constraints on ihe encoder and the jammer may be hard or soft. For each of the

above cases, minimax, maximin or saddle-point solutions have been provided. I
The important results obtained are

0
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(1) Games of Type 1 where the encoder structure is allowed to be probabilistic and the

jammer taps the input to the encoder, admit saddle-point solutions under all fidelity

criteria considered.

(i) Games of Type 2 where the encoder structure is restricted to be deterministic do not

admit a saddle-point solution; however, both minimax and maximin strategies may

be found in this case.

(iii) The minimax value for a game of Type 2 coincides with the minimax value of the

corresponding game of Type 3, and the maximin value for a game of Type 2 coincides

with the maximin (saddle-point) value of the corresponding game of Type I.

The least favorable jamming noise for games of Type I is Gaussian, and this adds to

the list of results previously available in the literature where the Gaussian distribution

has been shown to be extremal. However, it is important to note that for games of Type 1

the least favorable jamming noise is independent of the input, whereas for games of Type

1 3 this least favorable noise is correlated with the output of the encoder.

It is noteworthy that the analysis here cannot be trivially extended when the input

s., sequence is vector valued or the number of channels is more than one, since the counter-

',". part of the standard Gaussian test channel does not admit a simple linear coding scheme in

the vector case.
0
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CHAPTER 8

RECAPITULATION AND CONCLUSIONS

In this thesis we considered the problem of simultaneously designing communication

and control strategies for decentralized systems. The main thrust was towards identify-

ing classes of problems with linear dynamics, quadratic loss functionals and Gaussian

statistics for which the optimality of linear strategies could be established. The general

approach used consisted of first finding a lower bound on the cost, and then constructing

strategies which achieved this lower bound. For some instances of the cases in which

linear strategies failed to provide globally optimal solutions, explicit nonlinear strategies

were obtained to demonstrate the inferiority of linear designs.

In Chapter 1 we introduced scenarios in which the simultaneous design of communi-

cation strategies and control policies may be desired, and provided a discussion of various

types of information structures associated with stochastic team problems. Some issues of

computational complexity, which arise wheii the numerical derivation of the optimal

team solution is attempted, were also discussed in Chapter 1.

In Chapter 2 we formulated and analyzed some fundamental classes of stochastic

team problems with two decentralized agents. We identified those instances of the general

problem for which the optimal solutions are linear. It was shown that if the first agent

observes an uncorrupted version of the variable to be transmitted, or if the channel noise

is uncorrelated with the input, then the decentralized team problem admits an optimal

solution which is linear in the observation variables, and the linear coefficients may be

found by solving for the roots of the fifth-order polynomial. For some instances where

the first agent observes a noise-corrupted version of the variable to be transmitted, with

%A -Jk I-- I - - - - , -f -%P ~ ,. - , '. '-,A



184

the channel noise also correlated with this variable, we provided nonlinear strategies that

Ioutperform the optimal linear strategies. We also commented on some aspects of the

difficulties associated with Witsenhausen's problem, which is one of the most important

and most referenced counterexamples in stochastic control, refuting the common belief

(prior to 1968) that all linear quadratic Gaussian control problems admit linear solutions.

In Chapter 3 we considered stochastic dynamic team problems where at each step

two consecutive decisions must be taken, one being what information-bearing signal to

transmit, and the other regarding what control action to exert. Such problems arise in the .7

simultaneous optimization of both the observation and the control sequences in stochastic

systems. We solved the problem completely for first-order systems under quadratic cost

criteria. This was done by first constructing an equivalent problem having a cost function

consisting of a sum of squared differences, and then solving this equivalent problem by

using some bounds from Information Theory. For cases with hard power constraints, it

was shown that the optimum measurement strategy is to linearly amplify the innovation

at each stage to the maximum permissible power level. For cases with soft power con-

straints, the structure of the solution was found to be similar, with the optimum power %

levels being found via solving a nonlinear optimal control problem, this in turn being

done by using a dynamic program. The results were then extended to cases with an

infinite time horizon and a discounted cost functional, and the existence of optimal sta-

tionary policies for these problems was established.

In Chapter 4 we considered stochastic dynamic decision problems requiring simul-

taneous optimization of both the observat ion and the control sequences for second-- and

higher-order systems under quadratic cost criteria. We showed that for some of the sim ,.

plest of such problems, involving a second-order systen, the opt imal linear slraegies may

.S
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be outperformed by appropriately chosen nonlinear strategies. We considered optimality

Iover the affine class for problems involving a general j-th order model, and showed that

within this class, the optimal strategy for the hard power constraint problem consists of

transmitting the innovation linearly, at each stage, at the maximum permissible power

level. For the soft power constraint version the structure of the solution was found to be

similar, with the optimal power levels being found via solving a nonlinear optimal control

problem. S

In Chapter 5 we generalized the results on decentralized, two-person teams obtained

in Chapter 2, by allowing the action of one agent to be transmitted to the other agent

through a number of noisy channels simultaneously, instead of being transmitted through

a : 'ngle noisy channel. We showed that if all channel noises are independent of the input I
variable, then linear strategies are optimal, even if the first agent observes a noise cor-

rupted version of the input, the linear coefficients being found through a related parameter

optimization problem. We further showed that when the channel noises are indeed corre-

lated with the input variable, then there are instances in which the strategies which are

optimal over the affine class may be outperformed by nonlinear strategies. even when the

first agent observes an uncorrupted version of the input variable.

In Chapter 6, the results of Chapter 2 were generalized to cases with more than two 0

decision makers. We considered problems with a single transmitting agent and multiple

receiving agents, problems with multiple Iransmitting as well as receiving agents, and

finally problems with multiple transmilling agents and a single receiving agent. For prob-

lems involving a single transmitting agent and multiple receiving agents, we showed that

the optimal strategies are linear when eilher the first agent observes an uncorrupted ver-

sion of the input, or when all channel noises are lndependenl of the input. For problems

A N6-A _
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with multiple transmitting as well as receiving agents we again found that the optimal

strategies are linear when either al' transmitting agents observe an vrncorrupted version of

the variable to be transmitted or when all channel noises are independent of this variable.

However, for the simplest classes of problems involving multiple transmitting agents and

a single receiving agent, we found instances in which the strategies which are optimal over

the atone class may be outperformed by appropriately chosen nonlinear strategies, even

when the first agent observes an uncorrupted version of the input to be transmitted, and

the channel noises are independent of the input. For this case, we provided strategies

which are optimal within the affine class.

In Chapter 7, we allowed incomplete statistical description of the channel used to

transmit measurements between the decentralized agents, and sought optimal solutions

under a worst-case scenario. Assuming the unknown part of the channel noise to be con-

trolled by an adversary or "jammer." we viewed the problems as zero-sum games. We

considered a number of cases depending on whether there were hard power constraints or

soft power constraints on the decision variables. The unknown channel noise was allowed

to be correlated with either the input or the output of the encoder, i.e., the jammer was

assumed to have the ability to tap the channel. We found that if the encoder is proba-

bilistic and the jammer taps the input to the encoder, then saddle-point solutions exist

under all fidelity criteria. If, however, lhe encoder structure is restricted to be deter-

rministic, then saddle-point solutions do not exist, but both maximin and minimax stra-

tegies may be found. The maximin value here was found to be the same as the maximin

Jft'value of a corresponding game where the encoder is allowed to be random, with the jam-

mer still lapping the input to the encoder; and the minimax value here was found to be

___

* 1 -~~
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be outperformed by appropriately chosen nonlinear strategies. We considered optimality

Uover the affine class for problems involving a general j-th order model, and showed that

within this class, the optimal strategy for the hard power constraint problem consists of

transmitting the innovation linearly, at each stage, at the maximum permissible power

level. For the soft power constraint version the structure of the solution was found to be

similar, with the optimal power levels being found via solving a nonlinear optimal control

problem.

In Chapter 5 we generalized the results on decentralized, two-person teams obtained

in Chapter 2, by allowing the action of one agent to be transmitted to the other agent

through a number of noisy channels simultaneously, instead of being transmitted through

a single noisy channel. We showed that if all channel noises are independent of the input

variable, then linear strategies are optimal, even if the first agent observes a noise cor-

Wrupted version of the input, the linear coefficients being found through a related parameter

optimization problem. We further showed that when the channel noises are indeed corre-

lated with the input variable, then there are instances in which the strategies which are

optimal over the affine class may be outperformed by nonlinear strategies, even when the

first agent observes an uncorrupted version of the input variable.

* In Chapter 6, tie results of Chapter 2 were generalized to cases with more than two

decision makers. We considered problems with a single transmitting agent and multiple

receiving agents, problems with multiple transmitting as well as receiving agents, and

finally problems with multiple transmitting agents and a single receiving agent. For prob-

lems involving a single transmitting agent and multiple receiving agents, we showed that

the optimal strategies are linear when eilher the first agent observes an uncorrupted ver-

sion of the input, or when all channel noises are independent of the innut. For problems
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the same as the minimax value of a corresponding game where the jammer taps the output

5 of the encoder.

The problems studied in this thesis can be viewed as important prototype problems,

which could be considered essential building blocks for a general theory of multistage dis-

tributed decision making under nonclassical information, and possibly partial statistical

description. A major focus has been on the question: Are all stochastic team problems

which involve simultneous communication and control, and hence exhibit nonclassical

information patterns, inherently difficult and complex? We have shed some light on this

question, obtained fundamental results for two-stage stochastic teams, and have made

some contributions towards the development of a general theory for multistage (finite and

infinite horizon) stochastic control and team problems with nonclassical information,

where the control (decision) variable affects not only the state trajectory but also the

quality of information available to the decision makers.

0
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APPENDIX A

REFORMULATION OF THE TEAM PROBLEM

In this appendix we show how the squares may be completed to obtain the equivalent

problems PS and PH from the problems PS° and PH, respectively.

We first note that for k> i we may write

k-i i-I n 5

XkXi- 8 k.i.nmX 2 + E Pk,i,niVnXi + y ( Z Pk.i,mvnXrn)

m=O n-i n-O m=n-(j-2)

where the S's are defined recursively as follows:

8100 -Pl
r-1

SrmO = Pm. 0 + E Pm,kk.0,0 for I < m j-

k= 1k-1 k--1

k-I rn-I

8 k.m,p E Pk,n 8 n,m.p + Z Pk,nSm,n,p for p < m

n=m+I n=p
k-i

8 k.m.m Pkm + Z' Pk.n8 nrm.m
nm+i

and the p's are defined by

Pk.mk-l,m =--l
n-1

Pk,m.k-nm Z Pkk-iPk-imk-n,m for 2,<n <k-m

k-1 m-I

Pk.n.- E PktPt,m,n,i + Z PktPmt,ni
*t=m+1 =

We define Pa.b,c,d to be zero whenever any of the following conditions holds:

(i) d < 0
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GOi d > Min(b,c)

(iii) d -b and c> k-l

(iv) c <bandd < c--2)

and 8ab~ is defined to be zero whenever c > b.

We therefore have

i-I k2

E v,,( E 2ri+l.kmxm) + T.q+.1'
k-O mu-k-(j-2) k0O

where the r's and q's are given as follows:

ri+I~~p a-Im~kk-ni

g k=i-(j-2) mi-(j-1)

Sk-I

qi,, Nk.k, f for 0 n<i-n

and

Sk-I

qj=a~ + for i-j<n~i.

We can now write

i-I kI

pi+,,x, 2 Vk( 2si,,... + ti

ni(j1)k=O m=k-(j-2) M=O0

and

'n

AC0
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Ii-i k
a( b1 .x.) 2  E ~ 2s'i~ikmX ) + IF t' x

n---)k-O mink-(j-2) M-0

Here s,+,,,. and ti.l are given by expressions identical to those for rl~k and qj+1,~

respectively, with the 'I being replaced by pi+,,,, and s'i+~km and t'+, are given simi-

larly by replacing 1. by bi and further multiplying by aj.

The completing of the squares now proceeds as follows. At the first step we have

cN+I X~l + dNvN

2 22v( 2
=dNvN + CN+l(VN-vN(. PNImm + MN

znN-( -i)

N-1 k N

+Ev,(2 L N+1.k,m~m)~ + N+1,mm

k-0 m~k-(j-2) M-0

i.e., we can complete the first square to obtain

aN = dN + CN+

bNN = CN+IPN+1,N
aN

cN+l PN+ 1 N-( ;-1) i

=aN

Coming to the second step now, we have the following terms containing vN- 1.

*dNl1v 2 +c CXN2 + (tN+1,N tl N+1,Nx )X

+ 2vN-l( N-I (SN+1,N-1.m-"'N+I.N-1lm)Xm

m=N- I-( j-2)

Letting

IP
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C0N= N+ (tN+1.N-t'N+ 1,N)

we obtain

aN-.1 = dN-.1 +CO

and expanding xN2 we get the following expressions for bN...lf's:

bN-1,N-1
aN-1

= CNPNNj

Moving on to the third step, we have the following expression for terms containing vN...2.

dN- 2 vN.. 2 + CN..IXN..1+(tN+IN-1... ,-Ix- + (tNNi-t .- XI

m=N-2-0(-2)

N-2

+ 2vN-. 2 ( 7. (SN.N-2.m-S'NN-2,m)XM.

m=N-2--(j-2)

Letting

C N-I CN-1 + (tN+ N-1- tN+1 N-1) + (tN.N.i-t'NN..)

we obtain

0

NS
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=N- e'N- 1 + dN-.2
_C'N-IPN-1 .N-2(SNI1.N-2N-2-S'N+ 1 N-2,N-2)-(SN,N-2,N-2-SN,N-2N-2) O

bNZN-2 IN

aN.. 2

bN-2Nj-i C'N-IPN-1i N-F-(SN+ 1 N-2.N-f-S'N-s-,N-2.N-j)-{SN,N-2.N-f-S'N.N-2.N-])

aN-2.

bN-.N j- -C N...PN.1,N..j-.1

aN-2Z

Proceeding in a similar fashion we can obtain the general expression for the a's and

b's as follows:

a.I= C , + dk...

where

Nk+1

for k-j- I lm k-lI we have

C kPk,m- E (Snk-lm-s n,k-1.m)

b k...im -
n k l a -

and

C kPkk-

This completes the first step of the transformation and we now have a cost functional of

the form

7-

K 1111;111 11 1 11111
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N i-1

E[ a(vi- Z j.._kXI_.k)2 + TN

where N s a constant given by

Nif N- ,j1 2 +, 2UN -- c i+ I oa + C' aO2

To complete the transformation, we now need a redefinition of the v's. Towards this end,

we first note that with R's defined by j-

i-I

Xi+1 -30 Pi+l'i-i-k + M i '

k=0

0
we have for i-0,1,2....

ix 4i1 -- Ri+l 1

where

i Vi + E Pi+li-kVi-(k+l)

k=O

Therefore, we have

j-1
Vi- Z bi.i-kXi-k

k=O

= V i- Z bii-k(xi-k-Vi-k-I)

i-Ij-1 j-1

=Vi+ Z bji-k. -k- I- E bi S-'i-k

kO k=O
j-I Q
"-Zbi~i-kA-k

k=O

and hence, the new 1's are defined in terms of the original v's by

'I'%
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i-I
i Vi + Z biji-ki-k-I

k=O

which is an invertible transformation.

0
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APPENDIX B

THE GAUSSIAN CHANNEL WITH SIDE INFORMATION AT THE DECODER

Consider Problem PI defined below where the objective is to simultaneously design

the measurement policy y and the control policy 8 to minimize a quadratic cost.

Problem P1

Minimize J(u,v) = EkOu 2 + (v-x) 2 ] (B. 1)

where

u = y(x) (B.2a) S

v = 8(xl,x 2 ) (B.2b)

and

= x + w1  (B.3a)

x2 = u + w 2 . (B.3b)

Here x, w i and w2 are zero mean, independent, Gaussian random variables, with

2 2 2variances a and o 2. respectively.

To facilitate the study of Problem P1, we formulate a related problem, P2, which is

the hard constraint version of Problem P1, i.e., the term E[kou 2] is removed from the cost

functional and the further stipulation is made that

Efy() (p. (13.4)

We therefore have Problem P2 below.

,

,€.,.
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Problem P2

Minimize J2 (u,v) E[(v-x) 2] (B.5)

given (2), (3) and (4).

Problem P2 is represented schematically in Figure B. 1 below. Note that this problem

may be viewed as one of designing encoding and decoding strategies in the presence of side

information at the decoder. If the side information were absent, then this would be a spe-

cial case of the problem studied in Bansal and Basar [1987a], without a product term

between the decision variables, and the linear solution would be optimal. For the above
problem, however, the linear solution is not optimal as we shall elucidate in the sequel.

Encoding-decoding problems with side information have been the subject of some

previous investigations. The rate distortion for source coding with side information at the

decoder has been studied for general sources in Wyner [19781. It has been shown tha! if

the source and side information are jointly Gaussian, then the minimum rate (in the usual

Shannon sense) required for encoding the source at a distortion level about d, is equal to

x W 2

x1

Wi

Figure B. 1. Schematics of Problem P2.II

5,

SW
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the rate which would be required if the encoder (as well as the decoder) had access to this

side information. Since the coding theorem uses the fact that long ergodic sequences are

Oasymptotically typical and therefore can be encoded into sequences that have the distribu-

tion which achieves capacity, Wyner's result implies that if block encoding and arbitrary

delays were permissible, then the least mean square error for Problem P2 would be the

same as that for the system depicted in Figure B.2 below. Note that the only difference

between Figures B. I and B.2 is that in the latter the encoder too has access to the side

information.

The situations we envisage are control theoretic applications, where the encoder out-

put represents system measurements and the decoder has to control the system in real

time. Thus, bounds which are asymptotically tight are of little use in our application,

where sample by sample transmission is required. Real-time coding-decoding problems

have also been studied earlier, notably in Walrand and Varaiya (19831, where finite

sources are considered and feedback information has been shown to be useful for the

x I,

V I

- s = 
W i !

Figure B.2. rhe encoder has side information also.

4%0

A0
AW 

- WJ



198

causal encoding-decoding problem. In the problems of interest to us here, feedback is not

permitted.

Wyner's [1978] result implies that if block encoding were permitted, then the least .

mean square error for Problem P2 would be the same as in the case illustrated by Figure

B.2. For the situation depicted in Figure B.2 we have

2 20x  ""0wl

I(x;xd) = log( ) (B.6)
2 2awl

and

P 2 +a2
w2I(x;x' 2 I x1) < - log( - ) (B.7)

W
2

Now since

I(x;x1 x 2 ) = I(x;xl) + I(x;x' 2 I x1), (B.8)

we have

2 2(a +a )(p2+0 I

I(X;Xl,' 2 )  -log( ).1I (B9)
]2 2 2 =

1 2

The rate distortion function for a Gaussian source of variance a2 under a mean

square distortion criterion is

2
4 R(d) =Max(,- log-). (B. 1O)

2 d

ea
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Further,12

I~~1 x 2 ) >) I(X;v') > - log--B11I 2 E((x-v') 2)

which implies that

2 2

Now if we use the causal policy

u(x) X'(x -E(x I x)) (B. 13)

where X' satisfies

2 2 2)
( P P(OX +aw

then this least possible distortion dis attained with equality, implying that the linear

strategy indicated is optimal for the problem with feedback.

In Problem P2 feedback is not available, and hence the optimal linear strategy con-

sists of using

u(x) = xx (B. 15a)

Vv = E[x I x,'X2  (B. 15b)

which yields the mean square distortion d* given by

2 2 2

X* =
1 ~ (B. 16)

Po VI+ a 2 (a 2)+I

I 1111 1C III il 111 1 1
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Clearly d*>d, since P2 a2>0. This is not unexpected since in the case of d, addi-

tional information was used at the encoder. As discussed earlier, if arbitrarily large

delays are allowed, then the least distortion for P2 is also d, hence strategies may be con-

structed via block encoding which would improve upon the case of linear sample by sam-

ple transmission.

The important issue now is whether a reduction in the least mean square error d*

(obtained via linear coding) is possible without block encoding. We now show that the

optimal causal linear strategy may be outperformed by a causal nonlinear strategy, i.e.,

without block encoding and thus with no delay.

We first provide an example where the optimum linear strategy for Problem P2 may

be outperformed by an appropriately chosen nonlinear policy. Towards this end, we pro- K

pose the following design:

u = x + Esgn x (B.17)

(x1 +x 2 -)/2 if x, > 0

v-- (B. 18)

(x1 +x 2+E)/2 if x i < 0

We next find the mean square error using the policy proposed in (B.17) and (B.18).

We have

E((x-v)2] = E[(x-v)2 I x1 > O]Prob[x1 >, 01 + E[(x-v)2 I x < O]Prob[x1 < 01

= E[(x-v)2 1 x >01.

Now,

E[(x-v) 2 I X >' 01

.~ p 7
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=E[(x-v) 2 I x, > 0,x > 0]Prob[x >, 0 1 xJ > 01

+ E[(x-v) 2 I X > 0,x <0]Prob~x < 01 x,> 0]. 0

* Since

a2 +a2

E[XV2I X , x >' 01=

and

a 2+a2

E(x-v) 2 1 X,1  X < 01 W1  W2 -+f2

we have

a2 +a2
2 I+a > 2

E[(x-,v)x >0]= + E Prob[x < 0 1x,> 0].
4

Now Prob(x < 01 x, > 0) may be easily computed, since the joint density of x and x, is

known:

PXl(--)exp - - -_X2 _
2 1raxawi 2a 2 2a 2

Further,

Prob(x < 01 x, > 0) =I-Prob(x > 0 1 x, > 0)

Prob(x > Ox1 > 0)
lro(x>.-0 1x1 )0) - a - =21

Prob(x 1 )>'0) 1/2

where
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I f f dx dx1 •
0 0

Letting o -- 1 we get

cc 1 x2  00 (yX)2
X2

f exp(-x )dx f exp(- (Y-)
o27tox  2ao2 0 2

0 1 2 1 0
-f. exp(- )dx - f e dt

0 c -x, 2

=-f- exp(--)O(-x)dx
2

01 -x
- 2

=f- exp(- )O(-z)dz.

Thus, I may be evaluated and the error using nonlinear policies:

2

CNL - + E(l-21)

4

may be found, and hence the mean square error using linear strategies and that using this

nonlinear strategy may now be compared.

We now provide some examples where the optimum linear strategy for Problem P2 is

outperformed by a nonlinear strategy of the form given by (B.17) and (B.18). We then

illustrate how these results may be used to construct instances of Problem P1 where a

nonlinear strategy may be used to outperform the optimal linear strategy.

2 2 2
Consider Problem P2 with parameter values ax = 100.0, o, = oW = 1.0. Letting

p2 = 85.0423, we get E =- and the nonlinear strategy achieves a mean square error of

0.53172. The optimum linear strategy at the above power level attains a mean square

error of 0.53751, which is inferior to 1hal attained by the nonlinear policy.
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Table B. 1 below gives other instances of Problem P2 where the nonlinear policy out-

performs the optimum linear policy, the third column indicating the improvement

(CL-CNL), i.e., the difference between the mean square errors for the two cases, and the

last column indicating percentage improvement over the optimum linear design. In all the

cases considered in Table B. 1, we have used a 2= 2 = 1.0.

TABLE B. 1. SOME INSTANCES OF PROBLEM P2 WHERE NONLINEAR STRATEGIES
OUTPERFORM OPTIMUM LINEAR STRATEGIES.

(, --e Improvement % change

4.0 1.00 0.001375 0.24

6.0 1.10 0.001736 0.31

6.0 0.90 0.009627 1.74

6.0 0.80 0.011973 2.19

6.0 0.70 0.013262 2.46

6.0 0.50 0.012691 2.41

10.0 0.80 0.009148 1.73

10.0 0.60 0.009994 1.92

1 10.0 0.55 0.009813 1.89

We now construct an instance of Problem P I by finding ko which corresponds to the

appropriate hard power constraint. Returning to the example with o 2= 100.0,

2 2
0., = a = 1.0, we note that when the policies are lirear, the optimum power level is

given by

1~ 2 2 ~'
p= arg min kotP2 +  2

' 2
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which implies that ko and P*2 satisfy

k- 100 0.WIk0- =0,
(p,2+ lO I )IM

and for the case in consideration with P 2 = 85.0423, we may let

%= too 2 0.0028892.
(186.0423)2

Therefore, for Problem PI with parameter values k = 0.0028892, a, 2 100.0,
2 2 0.00889 x8502

o =o2 = 1.0, the optimum cost over the linear class is given by (0.0028892 x 85.0423

+ 0.53751 -) 0.78321 whereas a nonlinear policy of the form (B.17) and (B.18) with

f= -1 attains 0.77742.

C

-T I
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