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We consider;’/the problem of simultaneously designing communication strategies and
control policies in decentralized stochastic systems. Such problems are difficult to solve,
mainly because of the nonclassical nature of their information structure. We have
identified classes of such problems with linear dynamics, quadratic loss functionals and
Gaussian statistics for which the optimality of linear strategies can be established. The
general approach used consists of first finding a lower bound on the cost, and then
constructing joint strategies that attain this lower bound. For some instances of the cases
where linear strategies fail to provide globally optimal solutions, explicit nonlinear
strategies are obtained that demonstrate the inferiority of linear designs. The problems
studied in this thesis can be viewed as important prototype problems, which are essential
building blocks for a general theory of multistage distributed decision making under
nonclassical information, and possibly partial statistical description. We have obtained
some fundamental results for two-stage stochastic teams, and have made contributions
towards the development of a general theory for multistage (finite an‘;d infinite horizon)
stochastic control and team problems with nonclassical information, in which the control
(decision) variable affects not only the state trajectory but also the quality of information

that is available 1o the decision makers.
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CHAPTER 1 o
INTRODUCTION "

1.1. Motivation

In many engineering situations a variety of possible measurements can be carried out

S8 ¥ TR e

W
on a physical system or process, and the question that naturally arises is what measure- :::
AR o
v §
& ment process is optimal. Thus it may be necessary to communicate information through ',::"
E noisy channels to an observer, and a decision on what information to transmit may need
y %
4

3
to be made. Based on the observations received, the controller is required to make deci- :“

1
. |‘(
g sions that may affect the cost incurred as well as the further evolution of the system. :',‘.f
.
Consider, for example, the following decentralized systems: e

(a) Control of a Space Probe from an Earth Station: We may think of a space probe A

S
ok

and an earth station together constituting a decentralized system. The sensor aboard the

@ space probe is required to transmit data over the downlink, after suitable encoding at Wi
¢

some permissible power level. The earth station may be required to command the space §

h

! probe to move along a certain trajectory, or it may wish to form estimates of the 9
g transmitted measurement. The problem, then, is one of simultaneously designing the E:-
communication strategy used by the probe and the control policy of the earth station. E:':

@

E (b) Tracking Systems: In tracking systems it may be possible to allow for :0‘5:
% transmitting measurements at larger power levels (with an increase in the associated .::‘
J

transmission cost) in order to combat noise and increase control efficiency. Here not only '

X

x4

the communication strategy but also the transmission power level need to be designed.

Harsy

Problems requiring simultaneous communication and control also arise in many

s

socioeconomic situations, control of flexible structures, and other areas where the design o
N
Wy Ny
w 2
b
)
sR A
-
l}.‘

)
X

" A a 0 ~ oy ) X . ., o .
W LGOMUUNY “"“.- Ol 4'-'\"'!['&. al Ak u‘"ﬂ"‘l"‘n."al ) 'J"u"‘q’hn' A ﬂ"" .'.‘n. X ."! ‘!0“" .4.",. J:’ ‘e‘“ﬂ Ch M N o ‘el 4 ,q'."".'..p'., “.“J .‘..lg~.‘.‘




IO U TR IR . ERURN N URC I T aA AL T O T TR Y TR R O Y P T WY R YR

N Py

.f‘ or allocation of limited transmission resources is important. The essentials of the situa-

X

o tions involve r
2

,‘% (i) A stochastic system, usually dynamic and/or decentralized, consisting of a @
4

“ number of decision makers (synonymously agents) along with a mathematical description

\

§§§ of their interaction with the system and among themselves. 3
R

;::é (ii) Elements of uncertainty (noises) entering the system, the underlying probability E::

spaces for which are beyond the control of the decision makers.

-
e

0 (iii) Ap information structure, which characterizes the information gained and

4

v:"

K recalled by each decision maker. a
'é:" (iv) A set of possible alternatives (decisions) for each agent, and permissible stra- -
" s
o Ke
{'.',: tegies which are mappings from the information space to the decision space of each agent. -
W

,c‘: o

{(v) An objective functional that summarizes the preference ordering among various

.':4: alternatives for the set of decision makers. &

w

o ™

, A

::?. We note here that for the class of problems described above there exist very general

N formulations where, for example, the order in which the agents act may be determined by x>
J 4
»

bl a chance mechanism (Witsenhausen [1971]) or the various agents exhibit a divergence of .

N’l

) . . , o~
! interests requiring a different objective functional for each agent (Basar and Olsder b

@

:,": [1982]). Here we restrict our attention to classes of problems where in which E

? A&

M

:',: (i) The order in which the agents act is fixed in advance. -

R =

(ii) Al noises which may enter the system are zero mean Gaussian, and further

o .

a )|

.:‘;q (iii) The problem involves the design of two kinds of strategies:

i‘e..‘

EXy

Ty - Communication strategics for generating information-bearing signals. R

o

l'\~ ) &

:’: ’hp

o

oy .

o)
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R b
% 0
)

3 .

;
» '
- Control policies for forming estimates, minimizing errors and reducing costs. N

'.

i T ;
Many such problems have been the subject of previous investigations. Athans [1972] ®

b

]

% considers the problem of selecting, at each instant of time, one measurement provided by !
s

one out of many sensors, with each measurement ha ving an associated cost. For the class ',

g of linear stochastic dynamic systems and measurement subsystems, a weighted combina- “_
F

tion of prediction cost and accumulated observation cost is minimized, with the optimal :

measurement strategy being obtained by solving a deterministic optimal control problem. .

A similar formulation was considered ear.ier by Meier et al. {1967] who obtained a com-

putational solution using dynamic programming. Herring and Melsa [1974] generalize the

we o6 B

above results to allow the selection, at each instant of time, of the best combination of
» ]
g measurement devices as opposed to the best single device, and Mehra [1976] presents By
Y
a measurement schedules and sensor designs for linear stochastic systems subject to a con- '.:
straint on the total measurement precision so as to minimize a norm of the error covari- .,

{

-

o ance matrix. 2
o W
a‘;
! In contrast 10 the above studies, where the cost is the covariance of the error of the Y
‘ Kalman estimate, Chu [1978] considers the problem of finding the best measurement for -
.

» “
:.‘,( static problems with arbitrary quadratic cost. A similar framework to that of Chu s .
. :
ety

adopted by Papavassilopoulos [1983] for the case of more than one decision maker, with ;

.y ~
the measurements still being restricted to be linear in the state. =)
N
X -
' Lafortune [1985] presents a general theorem for the computation of optimal solution K
- K
- to discrete time stochastic control problems when the decision makers have the additional
" ]
b )
] Oy
Lo freedom of choosing at cach step among different sets of observations. Lafortune applies ]
r"} his results to finite state, controlled Markov chains as well as linear Gaussian systems ]
’ . . - : [ )
with quadratic cost functionals. The control of Markov chains is also considered by x
o N
o ¥
~t
Q‘l
) (]
_ [ )
3
iy
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A =

Ho .

0 Varaiya and Walrand [1983], who obtain a complete solution for a class of symmetric

- U0
channels with noiseless feedback. o

ﬂ’" Whittle and Rudge [1976] consider a situation where one agent observes a stationary @
3 !
i .

Rt ergodic Gaussian process and on its basis forms a sequence, through not necessarily a

v ,
:::. linear transformation. The other agent observes a noisy replica of the first agent’s deci- ﬁ
)

:

}‘.:’ sion, and he is required to form an estimate of the original Gaussian sequence. This prob- C:C
AR b
(% A
’ lem of simultaneous communication and control is solved using the concepts of statistical

AN

:'.:: communication theory, and the solution requires that arbitrarily large signal blocks be g
S

(U

%y §

"ﬁ':s available at all stages. In control theoretic terms their solutions are unrealizable, since the

g g
@ - actions taken at a given time depend also on observations which lie in the future.

, N
':' The problem considered by Whittle and Rudge is somewhat different from the ones S:,
iy

4 mentioned earlier, because in the earlier formulations the measurement model is specified
l'.- m

‘

e except for certain parameters, and the optimal selection of these parameters has been
‘.' (V)
[XY) o

‘ ‘ X
::B' investigated. Here. we shall formulate and solve a class of problems related to that of &
R
)
e Whittle and Rudge under the additional restriction of causality. When the design of the 3
-":::: measurement strategy itself is part of the problem, the problem becomes considerably o

3
W i
(,j more difficult, since the action of one decision maker affects the information of the other, o

~ o
S,,{ WU
® ’ and there is no way in which this other decision maker can have access to the information
o .’vf
:::.: on which the first one acted. Such information structures have been called nonclassical in !
‘E::': the stochastic team literature. In the next section we study different information struc- E.
b e
B »
@ tures and the related computational considerations.
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12. Information Structures and Computational Considerations

In this section we discuss the various types of information structures associated with
stochastic team problems. These information structures characterize the precise static or

dynamic information gained or recalled by each decision maker at each stage of a decision

: process, and are customarily distinguished as classical, quasiclassical or nonclassical. We

then discuss some of the issues of computational compiexity which arise when the numer-

=2

ical derivation of the optimal team solution is considered.

T

1.2.1. Classical and quasiclassical information structures

2
&
« Classical information patterns include deterministic patterns and centralized infor-
)
Y .
) _‘:'3‘ mation patterns. Deterministic patterns arise when the information is not noise-corrupted
, and may be of the open-loop type in which only the initial value of the state is available
1 g and no dynamic information is acquired, or of the closed-loop type where perfect informa-
[{
! -
ﬁl tion concerning the current value of the state is also acquired. Centralized patterns arise
N .\
) when all agents exchange their measurements without any delay and also recall the past
SRS information.
\
[}
::,' Under the deterministic or centralized stochastic information patterns, stochastic
o)
p team problems become equivalent 1o stochastic control problems and the solution tech-
tee
N niques for these (e.g., Bertsekas [1987), Kumar and Varaiya [1986]) are directly applica-
< ble. Thus for stochastic teams with classical information patterns, when
S
q (i) the measurements are linear in the primitive random variables and controls,
!
=f (ii) the primitive random variables are jointly Gaussian.
o (iii) the cost function is quadratic in the control vector and the primitive random
- variables, and
b
S
H
! W,
~
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1.2.2. Nonclassical information structures

An information pattern is nonclassical if it is not partially nested. Alternatively, if
the decision maker j’s action affects the information of i, and there is no way by which i
can infer the information available to j, then the information structure is said to be of the
nonclassical type. Under the nonclassical information pattern, the derivation of the
optimal team solution meets with formidable difficulties. One way of viewing these

difficulties is that the control plays a triple role (Ho [1980]), viz.,
(i) the deterministic control effort of reducing the error;
(ii) improvement of future knowledge of uncertainty;

(iii) signalling to agents acting in the future some useful information that they do
not necessarily acquire;

and these roles are in general conflicting.

Classes of tractable problems with nonclassical information have been very difficult
to identify. Witsenhausen [1968] established that some of the simplest linear-quadratic-
Gaussian (LQG) stochastic teams with nonclassical information do not admit optimal
linear solutions; in fact the optimal solution to the problem formulated by Witsenhausen
is not yet known. Very recently, however, some success has been reported for two-person
stochastic teams with nonclassical information. Bansal and Basar [1987a] show that it is
the presence of the product term between the decision variables which, coupled wi.h the
nonclassical information, makes the LQG problem intractable, and in the absence of this
product term optimal solutions may readily be found. Some nonclassical multipath sys-
tems have also been shown to admit optimal linear solutions under quadratic costs and

(Gaussian noises (Bansal and Basar [1987h]).
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RN Here we are concerned with nonclassical information patterns because many prob- =
!:;:‘ lems involving the simultaneous design of communication and control strategies exhibit nj
:‘.{‘:: an information pattern of this type. Recall that the third role of controlling agents in @
sty
i;::: nonclassical teams mentioned above is the role of "signalling” information to agents acting '
%:‘.'o" in the future, and this role is absent in the case of classical and quasiclassical information g
EE::E.: structures. When explicit design of the communication strategy itself is considered, it is 3
R the "signalling” policy that is being designed, and nonclassical patterns arise naturally. &
Ay <
:E:t:' It is for the above reasons that the problem considered by Whittle and Rudge [1976], Y
gg? where the communication strategy is to be designed, is significantly more complicated %
‘v than the other problems, where the measurement model is specified, except for certain .
':’Séi parameters, as in Athans [1972], Herring and Melsa [1974], Mehra [1976]. g
SR
:.:E: | In the course of this work we shall identify some classes of stochastic teams with ')
;:‘.:‘. nonclassical information which are tractable in spite of the above mentioned difficulties. ‘

PR
e e o,
- U-J-

-

i 3

Z::a, 1.2.3. Computational complexity of stochastic team problems
(
~; The severe difficulty encountered when the solution of stochastic team problems is =

o8

&,

:.::. attempted via numerical techniques has triggered some research into their complexity. Q—Q

(0 ‘ A

" Some recent results (Papadimitriou and Tsitsiklis [1982], Tsitsiklis and Athans [1985})

i X, :

‘T relate the complexity of stochastic team problems to that of known intractable problems. E:;
‘.’

b Using the tools of computational complexity the NP completeness of the discrete version .
3 3
-8

° of the static team problem has been established, and some progress has also been made in

i;’ p) i*

u - defining complexity concepts for continuous time problems by relating the complexity of J
" %

' 3 the continuous version to that of its discretized counterpart (Papadimitriou and Tsitsiklis o
3y A

.r__r [1986]). In the same work the NP completeness of the discrete version of Witsenhausen's ‘
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problem has also been established, thus explaining the failures, reported in literature, to

attack it computationally (Ho and Chang [1980)).

Quite recently, Witsenhausen [1988] has developed a notion of equivalence between
stochastic control problems that is suitable for complexity analysis. He has shown that a
large class of problems with dynamic information can be reduced to equivalent static
problems with a transformed cost functional, and this class includes all sequential
discrete variable problems. Person-by-person optimality is then a sufficient condition for
global optimality under smoothness and convexity conditions; however, when there is no

convexity then person-by-person optimality is not sufficient.

While approaches based on the theory of NP completeness shed important light on
the applicability (or nonapplicability) of numerical techniques for discretized versions of
stochastic teams, being a worst case scenario they obscure important special cases which
may admit relatively simple optimal solutions. For example, both the static team prob-
lem as well as Witsenhausen's counterexample have discretized versions which are NP
complete, but the former is quite tractable under linear quadratic Gaussian assumptions
(Radner [1962]), whereas the latter is still unsolved. The problem of carving out classes
of tractable problems within the general class of nonclassical stochastic teams is an impor-

tant one, and this thesis is a contribution to this direction.

1.3. Nonclassical Patterns and the Problem of Information Transmission

Consider the simplest problem of transmitting information, where the value of a
random variable is to be transmitted, after suitable encoding, over a noisy channel. The
noisy channel output is available at a decoder where it is used to construct an estimate of

the input variable. In order to make this problem well defined, it is customary in the
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communications literature to assume that the encoder operates under a hard power con-

(29
straint, i.e., the mean-square level at the output of the encoder cannot exceed a certain
un
predefined level. g
, This standard information transmission problem is depicted in Figure 1.1, where x is
= the input to be transmitted, u is the encoder output satisfying E[u?J<P?, w is the channel g
L3} !
Wy
::0 noise, and the output of the channel .
y o)
& 5
y=u+w

» -
o e
i

e is used by the decoder to form an estimate of X, designated by X.

=

Note that the communication problem is one with a nonclassical information struc-

" ture, since the action of the encoder affects the information of the decoder, but the decoder

R .
o": &3
o does not have access to the information of the encoder. (Indeed, if the decoder did have d
ti'

B access to the information of the enc~der, then the problem would be trivial, the estimate o
J‘ -
o of x exact, and the channel redundant.)

)'. a
"

) u y

ﬁ x — Encoder »(F)- Decoder |—» x &
& &
,“ w

@

" Channel Noise

l'. ’
‘p' .y
)

"

» ) . o
W, Figure 1.1. The information transmission probiem. s
® s J
C.‘

::: Information Theory provides the fundamental results for the analysis of the infor- C’S
“ N
',.': mation transmission system of Figure 1.1. One of the most important results of informa-

! .

b et

tion Theory relates channel capacity to the rate distortion of the source. (A study of

5
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channel capacity and rate distortion may be found, for example, in Ash [1965], Berger

[1971] and Gallager [1968).)

Let R(D) denote the rate distortion function, (Berger [1971]), corresponding to a
source under an appropriate distortion measure D. Shannon [1959) proved that it is not
possible with any coding scheme to transmit the source under consideration through any
channel of capacity less than R(D) without incurring an average distortion larger than or
equal to D. Conversely, given any channel of ¢apacity C > R(D), coding schemes exist
(possibly using arbitrarily large block lengths) which result in an average distortion arbi-
trarily close to D when used over this channel. Thus, R(D) is the minimum channel capa-
city required to reproduce the given source at the decoder with average distortion at most
D. For any channel, the minimum possible distortion D* that can result from its use is

related to its capacity C by

R(D¥)=C

We shall find the above relation between capacity and rate distortion quite useful for
the analysis of some decentralized stochastic team problems, because the information
transmission problem is a special case of problems with nonclassical information. We will
also need the concepts of entropy and conditional entropy (see, for example, Abramson

[1963)): these will be introduced in subsequent chapters as required.

1.4. Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2 we formulate and analyze
some fundamental classes of stochastic team problems with two decentralized agents.,
exhibiting a nonclassical information pattern. We identify instances of such problems for

which the optimal solutions are linear and may readily be found despite the intractability
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S of the general problem.

o In Chapter 3 we consider a stochastic dynamic decision problem, where at each step
two consecutive decisions must be made, one being what information-bearing signal to

transmit, and the other what control action to exert. Such problems arise in the simuli-

;;:‘;: taneous optimization of both the observation and the control sequences in stochastic sys-
N
\";‘Q_‘
:::'f tems. This problem is solved completely for first-order auto-regressive moving average

(ARMA) systems under the quadratic cost criterion. The results are further extended to

:.;::} cases where the time horizon is infinite and the cost function is discounted.

‘:;t In Chapter 4 we consider stochastic dynamic decision problems requiring simultane-

;' ous optimization of both the observation and the control sequences for second- and

‘Eb higher-order systems, under quadratic cost criteria, and find strategies which are optimal

'E:E over the affine class.

::’:: In Chapter 5 we generalize the results on the decentralized two-person teams of

:::E, Chapter 2, by allowing the action of one agent to be transmitted to the other agent

R through a number of noisy channels simultaneously, instead of being transmitted through

:\ a single noisy channel. In Chapter 6 the results of Chapter 2 are extended in another

f:' direction, viz., to the case of more than two decision makers.

o

. In Chapter 7 we expand on the framework by allowing an incomplete statistical -
{ :
:":‘: description of the channel used to transmilt measurements between the decentralized a
N

‘::; agents, and seek optimal solutions under a worst case analysis. It is assumed that the ,':.‘:
unknown part of the channel noise is controlled by an adversary or '‘jammer,” and the N
?2 situation is viewed as a zero sum game. The problems are studied for a variety of fidelity i-\
" criteria, under hard and soft power constraints, for the transmitter as well as the jammer. »
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FAS
Finally, Chapter 8 provides a recapitulation of the results obtained, and concludes

the thesis.
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CHAPTER 2

THE DECENTRALIZED TWO-PERSON TEAM

! 2.1. Introduction

= &5 5t

In this chapter we formulate and analyze some fundamental clzsses of stochastic

)

.
For

team problems involving two decentralized agents, where the action of one agent affects
the information of the other, and the other agent does not have access to the information
upon which the first one acted. In Section 2.2 we formulate the general two-person sto-

chastic team problem with quadratic costs and Gaussian noises. In Section 2.3 we identify

* 3W VS S oW i g X X X T X

those instances of the general problem for which the optimal solutions are linear. In Sec-

e

tion 2.4 we show that for some instances in which we cannot show that linear solutions

K

18 88 BB =

are globally optimal, the optimal linear policy may be outperformed by an appropriate

nonlinear strategy. In Section 2.5 we comment on some aspects of the difficulties associ-

ated with Witsenhausen's counterexample, (Witsenhausen [1968]), and the concluding

remarks in Section 2.6 end this chapter.

2.2. Problem Formulation

In this section, we formulate a two-person, decentralized, stochastic team problem

Tl o=

with nonclassical information, where the action of one agent affects the information of the

other and the information structure is nonnested (Basar and Cruz [1982]). The problem is

to design the controls u, and u, so as to minimize the quadratic cost J(y,,y,), where

Hyey,) = Elkqug + squox + su +s,u,x]

N 5
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Uy = y,(2)
and

kg > 0,5 > 0. sy and s, being prespecified constants.

The variables z and y, upon which the two agents base their respective actions, are
given by

z=ax+ Vv (2.1)

y=uy,+bx+w. (2.2)

Here x, v and w are zero mean Gaussian random variables, which are independent of

, 2 2 2
one another, and have variances ¢,, 0, and o, respectively.

L The situation is depicted schematically in Figure 2.1 below.
] w

{.L
] A
Y X +

& —u

L7
5=

~

.-
-
-

A 71 e U 1

‘;i, ~ z uo ¥

s

:.:' ?{\‘ a v

I @

:,’ & Figure 2.1. The two-person, decentralized, stochastic team.

:l 3 There are no general analytical or numerical tools which can be used to obtain the optimal
' solution of this problem, the dificulty arising mainly due to its nonclassical information

)

“ ) .

:::} ") structure. The separation principle (Wonham [1968]), for example. does not apply here,
»
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since the estimation part cannot be separated from the control action. Numerical tech-

niques fail to provide any answers because the discretized version is NP complete (Tsit-

1
siklis and Athans [1985]). To further understand the nature of the underlying difficulty, 8
we may view the above team problem as an equivalent control (one-person) problem, with
. the control exhibiting a dual role. We complete the squares to obtain the cost functional 3
&
‘ 2 Sl 2
Elkquy + squgx + s(u, +;-x) 1, Eﬁ
. S
:t“
fa: which implies that the optimal y, is necessarily given by @
: $
S u, =y,(y)=——EXxly) (2.3) ﬁ
® 2s
4,
X ,
,:: and hence we have the equivalent problem: g
X
\ 2
" So § o
Minimize Elky(u, + — x)* = — E(E(x 1 y)*)]
i) .

T e
- -

subject to (2.2).

We thus have a quadratic term to be minimized as is usual in stochastic control for-

&

:3 mulations; in addition, there is a second nonquadratic term which is influenced by the

e )
R

;"‘ information about x that y contains. In the absence of this second term the minimum is o
7. attained by choosing u, as a linear function of z: T
0 5
L)

o 2

% So So ao,

.:' Uy = y,(z2) =— — Elxl2)=— z, (2.4) E

~ 2kq 2kg (azax2+o,,2)

;l

Q) Y
:: but the presence of this second term brings in the possibility of a conflict between the two Q{
g ‘X
4

;:: roles of control and information transmission. Thus, even if affine laws are optimal, oy
\ :
.’l »
N .-'
, .
'l
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indirect techniques need to be used to prove their optimality; but in fact, as to be eluci-

dated below, affine strategies do not always continue to be optimal.

2.3. Instances with Optimal Linear Solutions ]
In this section we show that if either b=0 or av2 =0, then the stochastic team prob-

lem formulated in the preceding section admits optimal solutions which are linear in the 5

{

observation variables.

(a) 0} =0, barbitrary ' ,
If a,,2 =0, then we have a =1 without loss of generality, and we define u’y = u, + bx v

to obtain the equivalent Problem P1 below:

Minimize J'(y'y,y",)
Y'o-Y'l

where
2 (
r ’ ’ I2 4 ’ sl ’ 2 .
F(y'y')) = Elkgu'y +s'ju'ox + — (u'; = x)° + K]
4s \

'y =yo(x), (2.5)

=27

u, =y (v +w), (2.6)

s’y = 59— 2kgb . (2.7)

Dt

and K is a constant independent of u’j and u’,.

We thus obtain a problem of the type studied in Bansal and Basar [1987a], without a

product term between the decision variables, for which linear strategies have been shown

to be optimal. We briefly outline the approach here for completeness. Note that the situa-

tion is as depicted in Figure 2.2. In view of the discussion in Section 1.3, in which prob-
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lems with nonclassical information have been related to problems involving information
transmission, the agent taking action u, may be viewed as a generalized encoder and the

agent taking action u, as a decoder, in the terminology of the information transmission

system introduced in Chapter 1.

Encoder Decoder

Y1 P— U

Figure 2.2. The transformed Problem Pl.

We first consider the transformed problem under the additional restriction

Elu'dl < P2, (2.8)

Note that

2

Oy

(2.9)

1
I(x;y) 2 I(xiu')) 2 — log
2 E(w,~x)]

where 1(a;b) denotes the mutual information of random variables a and b. The first ine-

quality in (2.9) is the data processing inequality, and the second inequality follows from

the definition of mutual information (see, for example, Wyner [1970]).

Further, we have

I(x;y) =H(y) — H(y | x) (2.10)
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where H(y) is the entropv of the random variable y and H(ylx) is the conditional entropy
of y given x.
Using (2.10) along with the fact that for a given variance the entropy is maximized
by a Gaussian randui: variable with that variance, (see, for example, Kagan, Linnik and
Rao [1973]), we have ‘

P2+a:

). (2.11)

2 t

Ow

1
I(x;y) € — log(
2

Using (2.11) along with (2.9) we obtain (under the restriction (2.8))

2 2
OxO0w

El(w', — x)?) > (2.12) '

P2+a“2,
Now let J°, denote the minimum of J'(y’o:y,) under the hard power constraint, i.e.,

I o4 inf J(y'oy'y) .
? “‘o'“'pﬂul:]:i’z (2.13)

We then have

z
I, 2 kP + Inf Elsquxl+ Inf El(w,-x)]—+K
Elu',=P* Elu’ 2}=P? 4s
52
> kPP + Inf Elsquxl+ Inf El(uw,— x)’— +K
Elv',J<P? Elu' 2I<P? s
2 2 2
5 , 6,0, S
=koP"—~ Isy!Po, + ——— — +K (2.14)
(P*+02) 4 :
2 2 2
2 , 040y $y
2 MinlkP* ~ Is’y}Po, + ——— —]+K
P20 (P*+0 %) 4s
» 2 2
2 0y 0y 5
= kP¥ = s IP*o, + ———— — + K.
(PP+0)) ds
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We thus obtain a lower bound on the optimal cost, and the final task is to note that
o this lower bound is tight and is achieved by using the linear policy:
%

! ! P
o u*, =—(sgns'y)— x. (2.15)

iat
& g
..” X

ny We now have Theorem 2.1 below:

X Theorem 2.1.

W (i) The stochastic team problem of Section 2.2 with a,,2 =0, admits an optimal solu-

tion which is linear in the observation variable.:, and is given by

u*; = y*,(x) = p*x (2.16)
N (p"‘+b)ox2
W u =yh(y)=~—
) 2s

y | (2.17)

2.2, 2
(p*+b) o, +o,
e where
|:l p* =A*-b

and A* is given by the solution to the following parameter optimization problem:
o 2 5252
- 1
e A* = arg min[ko)\chx2 +shol+ — — " 1. (2.18)
‘s A 4s 2.2, 2
(Ao +0y)

3 (ii) The optimal value of the cost is

) 2 2 2
o s1 oxow

Ad kAP ol +sprel+ — —— 7 4K (2.19)
= 4s x2 2 2
Y A*“0 . +0)

O where

K = 0 J(=kgb” + sob — 5,/4s) .

U 3 . W Ty < o oy Wy W
RO 90 Y e, o -~ ‘vf
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Remark 2.1. The parameter optimization problem (2.18) always admits a solution since as 2
A—o0, so does the expression to be minimized, implying that we can restrict the search to a o

compact set over which a continuous function always admits a minimum. ’

(3) b=0, o,,2 arbitrary

If b=0, then the channel noise becomes independent of the input x, and the problem X
is a special case of the multipath system considered in Bansal and Basar [1987b] for which N
linear strategies have been shown to be optimal. For completeness we outline the X
approach here. We can assume, without any loss of generality, that a=1, then introduce X

the random variable A

m = E(x12) (2.20) N

and make the following observations:

S
(i) v, (y)=——E(xly)

s “

(ii) E[E(x1y) = %)} = E(E(x1y) ~ m)’] + El(m — x)’] P

OB OB S TR SR 5 B D A S

(iii) Eluy(z)x] = Eluy(z)m] P‘?‘,

AR
c»fo "

(since the random variable (x-E(xlz)) is independent of z). ‘(

(iv) The random variable m is Gaussian distributed, since Yoy

’:.

ErY,
St

and has the variance

@

3
it
xQ
N
S
.’-’o

2 a,. 2 2
o.=0,(a, +0,).

2 e
A e
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In view of the above observations, the problem with b =0 is equivalent to

Minimize J“(y’,.y,)
Yot
where
2
, .2 , 51 2 ,
J(w'gu,) = Elkgu’y + squ’om + — (u; = m)” +K’']
4s
with

w'y=7v"o(m)

u =y,(y)
and K’ a constant independent of u’y and u,. Since m is zero-mean Gaussian, we have a
problem of the type discussed in part (a) of this section, and the optimality of linear stra-

tegies follows.

Theorem 2.2.
(i) The stochastic team problem of Section 2.2 with b=0, a = 1, admits an optimal

solution which is linear in the observation variables, and is given by

u*y(z) = \*z

2
s, A*o
ut (y)=— — . y
25 I\ 40 )+0l

where A* is given by the solution to the following parameter optimization problem:

2 2.2 2, 2
s ) , si | 9x(Wag+ay)
A* =arg min (kA" (0, + 0.) +spAo, + —
2 2
. s () (ox2+o‘.z)+o“.

(a solution to which may always be found as discussed in Remark (2.1)).
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(ii) The optimal value of the cost is

2

2 2, 2 2
22, 2 L2, S o AP+ )) s, ,
KA* (0, + 0,) +sA\*o  + — -— o,

B (\Hol+oD+al) ¥

2.4. Nonoptimality of Linear Strategies

i

In the preceding section we have identified those instances of the general two-person,
decentralized, stochastic team problem for which the optimal strategies are linear and

may be obtained through the solution of a related parameter optimization problem. These

s B

. . 2 . , . .
include the cases where either ¢, =0, i.e., an uncorrupted version of the variable x is

available to the agent acting first; or b=0, i.e., the channel noise is independent of the

input x. In this section we show that when neither of the above two conditions hold, then
it is possible to construct some problem instances where the optimal linear strategy is out-
performed by an appropriately chosen nonlinear strategy. In the following, we first
assume that b= 1, o: = 0. Note that if these assumptions imply that linear strategies are

not optimal, then we cannot expect linear strategies to be optimal, in general, for the class

W <5 W

of two-person decentralized teams with nonzero b and ovz.

P

Problem PG
Minimize Elkqu; + syuox + su,” + s,u,x]
.. Yo¥
;p, (X8
2 where
g Uy = vo(2), u, =vy,(y)
o Note that, since z = ax + v, X may be written as x = 8z+n where

2,02 2 2
B=ao /(a0  +0.)

Lt T e 1 Lty e G T RS S T e Q ' , o7 " y
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and n is a Gaussian random variable which is independent of z, with variance

Zaf

2 2 2,2 2 2
o, =0,0,/(ac, +0,).

*
58 )
=
AT

Thus we obtain the equivalent problem

X Minimize E[kqug + Bsquez + su” +s,8u,2 + s,u,n]
oy Yot1

g~ P

N where
uy=y,(2), v, =y,(u,+Bz+n).

(In this restatement we have used the fact that Eluyn] =0, n being independent of z, and

i .\ '
a5 having zero-mean.) We next define u, + 8z = u’y, o obtain the cost functional

BRSOy B

&y
P Elko(u'y — Bz)* + Bsy(u’y — Bz)z + sulz +5,Bu,z +s,u;n}

e and arrive at the problem below:

LR At
i

S

L
a3 53

Minimize E[k(,u'oz + (Bsy — 2kgBlu'yz + 5“12 +s,u,n +s,8u,z]
7'0-7|
o where

wo=v42) . uy=y,(u,+n)=y,(y).

. &

j" We thus have the situation depicted in Figure 2.3 below.

Ce Y

-~ -
e
B>

s Figure 2.3. Schematics for the transformed problem.

® Note the presence of the term E[u;n] in the cost functional; in the absence of this term the

’
o
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optimality of linear strategies may be established via information theoretic bounds. We

,
=

now have a problem which is similar to the Gaussian test channel problem (Gallager

3

{1968]), with the difference that instead of having to estimate the input z, the decoder is

v a
-’

required to estimate a linear combination of the input and the channel noise. We thus

have the problem below:

Minimize Elkou's + '’z + s(u, + s;,n + s,,2))

w s e o

g 'Y'ov'h
K where
&
)
' Wo=7v0(2) , u, =vy,(wy+n)
]
¥ S|, =5,/2s
o g S;; =5,B8/2s.
ki
I
&
K ﬁ We now note that since n =y — u’,, we have
¥
i: . u, + 5,0 +5,,2
K =u, +s,,(y—u',) +s,,2
F X 1T S,y 0 12
) =1, +5),y +5;5Z =5,
o .
by Defining
L)
; é’i ,
y X u; =u, ts,y
\J
S we obtain the problem
l -
Y
S Minimize Elkgu'y + 'ou'sz + s(0') +5,,2 = 5,,0p)’]
| 3 Y'o-Y'|
e where
0
' % ’ ’ ’ ’
:; wo=vo2), v =7y (y).
l
2 T Th.; is a problem of the type studied in Bansal and Basar [1987a} with a product term

between the decision variables, and hence, as shown there, regions of the parameter space

- v e

5
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%
exist where nonlinear strategies outperform the optimum linear strategies.
.
o

. An IlUustration

X2

Consider the Problem PG with parameter values k,=0.01, s,=6.02, s= 1.0,

) s, =2.0, 0,2 = 1.0025, a = — 0.5/(1.0025) and ¢ 2 = 100—(0.5)’/ 1.0025.

Ny 1 X v ~

2y

o With the above choice we may write x =8z + n where 8=-0.005 and ¢ nz = 1.0.

iy ‘-'.

. (Recall that we have taken 02 =0, b= 1 and 0,> = 100.0). ~

: We then obtain the transformed problem o

t b

K

N Minimize E[0.01u’§ — 0.03u’gx + (u'; — u'y — 0.0052)] e

s Y'Q:Y') _‘i

.".

N where

3 e

iy <,

: o= (o ,

. u’l =y’1(u'o+n) = 'y’l(y). N

;1

;:‘ Now, if ¥’y is linear, then optimal y’; is also linear, and hence restricting Yo to the form E

4 »

R Y'o = Az, and optimizing over A, yields a cost of -1.2477 which is the best in the linear

:: class. However, we can show that the nonlinear policy y

5 .

: ¥y o(z)=10sgn z -

v. -

@ , |10 ify=20

b YiW=1 10 ry<o -
? .
' yields a cost of -1.3911 which is superior to the optimal cost in the linear class. - \
e ~o
3‘ -y g
’ n"‘ 1
K O
) A
e. 4
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2.5. Some Comments on Witsenhausen’s Counterexample

The following problem W1, studied by Witsenhausen [1968], is a two-person, decen-

g tralized, stochastic team problem with a product term between the decision variables, and
g may be viewed as a special case of the reduced version found in Section 2.4.
ﬁ Problem WI
' Minimize Elky(ug — x)? + (ug — u,)’]
g 70'71
where
ﬁ Uy = ¥o(x) s u; = v,(y)
.\’?‘ and

y=uy+w.

Noting that

228 WIF

(uy—u)? =(y —W~-uxl)2

and defining

uL=y—-u,

X

we obtain the equivalent Problem WI' below.

o

Problem W'

e

Minimize Elky(u, — x)* + (', = w)’]
hﬁ}

AN
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Uy =yo(x); 0’y =y (uy + w).

We, therefore, have a problem in which the second agent wishes to estimate the channel h
noise (which is independent of u,), in sharp contrast to the communication type problems

where the second agent wishes to estimate the observation of the first agent.

Since the second agent necessarily uses u’; = E(w |y), the second term in the cost

function for Problem W1’ becomes &
1,(y,) = El(w — E(w 1 y))7]. §

It is a known result in probability and statistics that for every fixed power level

Elu.] = P?, the linear strategy

=

P
Uy =y(x) = — x

Oy

maximizes J,(y,), when y =u,+ w. To prove this result, consider a zero sum game in

normal form with kernel

R

G(ug,u,) = El(w = u,)’]

which is to be maximized by a choice of u0=yo(x) and minimized by a choice of

SX&

u, = y,(y), subject to the constraint E[u(,z] = P, Note that

Max J,(u,) = Max Min G(u,.u,) , Ay

u, u, u, ™

XA

i.e., the unrestricted maximum of the function J, is equal to the lower value of the game Q{,‘

with Kernel G. But the upper and lower value of a game are equal if a saddle point exists,

1
<A

and to complete the proof one can show that
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provide a saddle-point solution for the game above.

In view of the above result, we see that for a given power level the linear choice of
strategy vy, is the worst possible design as far as the minimization of the second term in the
cost functional for Problem WI' is concerned. It is therefore not surprising that linear
solutions are not optimal for the classes of problems which involve the estimation of
channel noise as in the case of Witsenhausen's counterexample, as well as in the general

case of Section 2.4.

2.6. Conclusion

In this chapter we have formulated and analyzed some fundamental classes of sto-
chastic team problems, involving two decentralized agents, where the action of one agent
affects the information of the other, and the information structure is nonnested. We have
identified those instances of the general problem for which the optimal solutions are
linear. For some instances in which we cannot show that linear strategies are globally
optimal, we have shown that the optimal linear policies may be outperformed by
appropriately chosen nonlinear strategies. We have commented on some aspects of the
difficulty associated with Witsenhausen's problem. The important conclusion that can be
drawn from the analysis in this chapter is that for two-person decentralized stochastic
team problems there do exist classes of parameter values for which the optimal solutions
are linear and may readily be found, despite the fact that the general problem is quite

intractable.
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CHAPTER 3

SIMULTANEOUS COMMUNICATION AND CONTROL:
FIRST-ORDER ARMA MODELS WITH FEEDBACK

3.1. Introduction

In this chapter we consider stochastic dynamic teams where at each step two con-
secutive decisions must be taken, one being what information-bearing signal to transmit
and the other regarding what control action to exert. The organization of this chapter is as
follows. In Section 3.2 we-shall formally pose the problem with hard power constraints
as Problem P1. In Section 3.3 we shall use an intermediate Problem P2 to construct Prob-
lem P3. Problems Pl and P3 will be shown to be equivalent in the sense that the optimal
solution of one may be constructed from the optimal solution of the other. In Section 3.4
we formulate and solve an auxiliary problem using some results from Information
Theory. In Section 3.5 we shall show that the solution to the auxiliary problem may be
used to provide a solution to Problem P3, thereby solving Problem Pl. In Section 3.6 we
study the associated ‘‘soft” constraint version, and in Section 3.7 we study the existence
of stationary optimal policies for the infinite horizon problem with discounted cost. The

concluding remarks in Section 3.8 then end this chapter.

3.2. Problem Formulation

In this section we give a precise formulation of the problem to be solved in the
sequel.

The problem is to control a stochastic dynamic system, the description of which is
available in the form of a general first-order difference equation, with the objective being

to minimize a quadratic cost functional.
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. The control v, is based on the observation vector (y,,..,y;), Where each of the y,’s is a “
noise-corrupted version of the information-bearing signal u;, the u,’s being based on the
v
i
& current value of the state and all previous y,’s. In the context of the space probe example ::
‘ U
Yy
of Section 1.1, (with the u;’s being generated on board the space probe and the v;'s being )
5 generated on the earth station), such a situation arises quite naturally because a feedback ':_
2
;;3 line (the uplink) is available which is many times more reliable than the forward link ::
- "
\J
(the downlink).
g
The problem clearly has a nonclassical information structure, since the agent taking :
“
4
ﬁ action v, does not have access to the information based on which action u, is taken. A pre- ::
4
_ cise formulation of this nonclassical stochastic team problem is provided next. ¥
7y ;
5 3
" We specify the stochastic system by the following set of equations: ::
. E:
a Xigg = PX; +m; = v, (3.12) °
ﬁ Vi=u+w, (3.1b) ::
§
along with g'
0
| Elul] < P2 (3.1¢) °
._1 '.‘
0 u, = hix,y ) (3.1d) R
A and A
g =iy . (3.1e)
)
(!
o Here (3.1a) and (3.1b) are the state and measurement equations, respectively. The sub- :::
J
' script i,(i=0,1....) denotes that the realization of the random variable is at the i~-th time )
o
’g instanl, whereas the superscript denotes the history of the random variable up to that -
", t
time instant, i.e., :
% 3
I , ~
y=(y°""‘yl)v
.;‘

&R

;
®
N
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which we are also going to interpret as a row vector. The random variables x_, w; and m;
> (i>0) are all assumed to be independent and Gaussian with mean zero and variance a(?),
¥ the subscript being the identifier. The functions h, and vy, i=0,1,..., are the control policies,
each one Borel-measurable in its arguments, and leading to second-order random variables

kX u, and v;, respectively, the former also satisfying the power constraint (3.1c).

a8
" The criterion for comparing different control policies h;’s and y;’s is based on the cost

function we wish to optimize, which in this case is taken to be

1, A
i N_N : 2 2
::‘ Ih"y ) =El T (g, x4y + bv;)] (3.2)
n i=0
-
” where a; ;>0 and b,>0 for all i=0,...,N, and the action variables u; and v, are related to
Pl .
::i the policy variables h, and vy, via (3.1d)-(3.1e). We thus have roblem Pl below.
KN
o Problem Pl:
"
'::‘ N_N
:', Minimize J(h',y )
oA hN YN
-
® subject to (3.1a) through (3.1e), where J(hN,yN) is defined by (3.2).
;?
": 3.3. Construction of an Equivalent Problem
7 | e . .
N The gist of this section is as follows: First an equivalent Problem P2 is constructed
e
$
-~ from Pl which differs only in the form of the cost function. The cost function for P2 is
A *
@ in the form of a sum of the squar:.’ differences between state and control variables. In
Pl
'
‘ the transformation from P1 to P2 the constraints represented by (3.1a) through (3.1e) are
L)
;f\. unaltered. In a follow-up step Problem P3 is constructed from Problem P2 such that the
@
\/
3
R
f‘.'
3
N, ety 5&} .G.T.m D00 R ! ey ' N nTh L o it . _":_‘.(,;iﬁt;v:m.

A

S ===




LY )

S = R =

m2 L3

2 i i e e
-
h b
-t

R
4
§
+SEE N
JERSe

‘an---.
P

25

4
,I
b4
’l

K e
."

[}

. -
N
l"
(~v

!

4 [Tt

N -

4

)

[ g

,,ﬁ'«.ﬁ‘h. )

.9 ¥

S48 VAT AP A I B b D 0,00, D Ak el 0 K Gl E B B RYD BV RIR kA Rk Vh ik Aot MU VRUWLU U VWUV U OO

33

structure of the cost function is left unaltered, while the state equations are redefined so
as to facilitate subsequent analysis.

These two transformations are presented below as Claims 3.1 and 3.2, respectively.

Claim 3.1: Under the set of constraints represented by (3.1a) through (3.1e), the cost

function for Problem P1, defined by (3.2), is identical to

N
1(aNyM) = E T o' (vi=b'x,)"1 + oy (3.3)
=0
where
b,i é ki+1pi/(bi+ki+1) (3-4a)
a' 4 btk " (3.4b)
N
2 2
cn Ko, + F k0 (3.4¢)
i=0

and {k;} is a sequence defined recursively by

ki = 3, + kip 0o,/ (DK, ) (3.5)

Kne1 = 2ny
Proof: This is a standard result in stochastic LQ control with perfect state information
(see, e.g., Bertsekas [1987] or Kumar an 1 Varaiya [1986]), known also as "completing the

squares.” Note that ¢y is a constant (independent of the control sequence {v,}), and (3.5)

1s the so-called discrete-time Riccati equation for this scalar problem.

O
Claim 3.2: The solution to Problem P2 may be obtained by solving the following

equivalent Problem P3.

o™=t @ K=
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Problem P3:

Minimize 3Ny
hN.YN

XSO T ok

Xip1 = piX; + My

2]

v, = Yi(yi)

LESY

yi=su+w;

v, =h(X,y ")

&

and the u;’s satisfy

2 2

Elu.

1

1<P,

N
BNy =BT a (30 %) + ey - (3.7)

i=0
Proof: The situation is depicted in Figure 3.1. Substituting for x; using Equation (3.1a)

we get

v,=b';x, = v, +b’" v, — b’ (p,x,+m,) .

Similarly,

Vo= g%y = Vy4b v 6750, v, =0 {0y (pox +m )+ m, ),

and at the i-th stage we have

vi=bx = vibiv_ +bp v+

— b' (P (p_gleenlpXg+m ) )+m_y)+m_ ) .

We now define

AN 0 - q "] N = q“-(b‘nv---.‘N ® oy 3 e » WO e . v . T~
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Figure 3.1. Diagrammatic representation of Problem P3.

V.= Vb v D o Vit kD0 ey Yy (3.12)

i~1
Using these new variables, the cost function (3.3) can be rewritten as
y N
INFY =EE a(3-0'% )1+ cy

-
=3y,

(3.13)

where the evolution of the X;'s is determined by (3.11). Since this is a team problem. and
for each fixed h" the resulting stochastic control problem has classical information,
minimization of (3.13) over (hN.)?N) is equivalent to its minimization over (h".y") where

¥; has only yi as its argument.
The relationship between V,'s and v/'s is given by
N = vNBT (3.14)

where B is the transpose of the following nonsingular lower triangular matrix:

"

- e
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We may thus write

vi=3BT, 5
= »
and we thus see that in order to obtain the optimal solution to P1, we may equivalently .;Q :
Y
solve the problem in terms of v, and X; (over hN,yN), which is precisely Problem P3. This @ v
\J
then leads to the following equivalence between the solutions of Problems P1 and P3:
- 53
% 4
Lemma 3.1. v
a B
&
(i) Problem P admits a solution if, and only if, Problem P3 does.

| ;

(i) If (hN,yN) is a solution for P1, then (hN,yNBT) solves P3; conversely, if (hN,yN) ﬁ

solves P3, then (hN.yN[BT]-l) is a solution for P1.

3.4. An Auxiliary Problem

In this section we formulate and solve an auxiliary problem which will play an

important role in the solution to Problem P3.

Consider the situation depicted in Figure 3.2, the problem being one of finding the

signals u, . .., uy subject to the power constraints

Elu’1 <P} * 4

so as to minimice the ncan-square error in the estimation of zy using y_,y,... ..
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given that z, n;, w;, i=0,1,..., are mutually independent Gaussian random variables, each
with mean zero and variance indicated by a(?), the subscript being the identifier. Follow-
ing the convention of Information Theory, we let I(zN;yN) denote the mutual information
between z, and yN, and call the supremum of this quantity the capacity of the
corresponding system.

We shall first solve this problem for the case when N=1. The proof for arbitrary
finite N will then be shown to follow a similar line of reasoning. The case with N=1 is

illustrated in Figure 3.3.

Recall from the discussion in Section 1.3 that for any channel the minimum possible

distortion D* that can result from its use is related to its capacity by

R(D¥)=C .

First consider the lower branch of Figure 3.3, redrawn as Figure 3.4. We find D* for
this system. Let us suppose that the input is connected to a Gaussian memoryless source
with variance ozzl, in which case we have

2
(o)

1 2
R(D) = Max(0,— log(—)) . (3.15)
2 D

Let z. denote the sequence (z,. . . ., Z,;). which we again interpret as a row vector; define

n/, v/ and z/ likewise. We introduce

. o “+°‘1)°z2, _
m, 4 E(z/12)) = z;
2 2, 2
(1+a,)"0, +0,
1 )

and observe the following.

(a) The components of m| are i.i.d. Gaussian variates with zero mean and variance
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Figure 3.2. Diagrammatic representation of the auxiliary problem.
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Figure 3.3. The auxiliary problem with Ne=|.
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a;z,+n, w,

M B 3 WX M
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e
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Figure 3.4. The lower branch of the system depicted in Figure 3.3.

[
! % [(1+eyo T
Y (3.16)
2
; 33 : (l+o:1)2azzl+a“zl
e (b)
e 2
)
' &j 1 iz 2,%n,
: Bl m/=2') = (317)
' ﬁ ] (14+a;)0, +0,
E)
[}
3 § where ||| denotes the Euclidean norm. We also have
4
| 2 4
. i (14e,)°0, s
. 2 i i — ! o
' B’ lim Inf ~ Ellvj-m/||"= - e (3.18)
K s joreo J (l+al)zoz "Fon2
b ! ! {
R where !
E
i
e [, l P°2+o“2,° k
- 2 '
: ',':5 Now since
A
' Do o= L B oo i = L el i 2 4 i_y i .
’ g - Ellz,-v|I° = - Ellz/—m/+m/—v/]|" = - Ellzj—m||" + -,-E||m1—"1|| ' .
A i j j \
|. . ,
Y we have
e
Y
"
g :
.' "
' A
1 X ;
1
: A

] - v - » -y A P02 ¢ AR wX TS A < b LA b “R-‘;:‘t
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1
D*=lim > Elzj—v/P
el 2 4 2
9,0, . (14, )0, Oy, (3.20)
(I+oz‘)20221+an21 ((1+a1)zozzl+on2l) (P°2+aj°)

R(D*) may now be computed, and we have the following result:

Lemma 3.2: For the system depicted in Figure 3.4, the mutual information I(z;;y ) is

bounded above by
1 (P°2+o‘2,°)((l+a1)zoz21+o“2l)
Ca= 5 log Z(P o )+(1+a1)2 3 2 . (3.21)
O
Now, consider the system depicted in Figure 3.3. We first note that
z.;y,.y,) =1zy,) + Uzy, y,) - (3.22)
Now,
1Gz;sy, 1y,) =Wz, wiy, 1y )-l(wiy, 12,.y,) (3.23a)
< Uz, wiy, ly,) (3.23b)
=(wy,1y,) (3.23¢)
= H(y, ly,)-H(y, ! w,y,) (3.23d)
= H(y, Iy, )~H(y, w) (3.23e)
< H(y)-H(y, I w) (3.23f)
=1l(y;;w) (3.23g)
1 P12+oj’
- log(——z—) (3.23h)
o\v

1

where H(+) is the entropy and H(:[-) the conditional entropy. Here steps (a), {(d) and (g)

yole
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follow from the definition of mutual information, steps (c) and (e) are due to the Markov
Property, step (b) follows because information is always positive, step (f) is valid because
conditioning cannot increase entropy, and the last step holds because, for a fixed variance,

the Gaussian random variable has the maximum entropy (Kagan et al. [1973]).

Using (3.21) and (3.23), along with (3.22), we obtain the next resulit.

Lemma 3.3: For the system depicted in Figure 3.3,

| (Pl+o ) X140 Yo 240)  Pl+ol
Kz5y,y,) € — log T 5 > . (3.24)
2 (0, (Pi+oy I+ (14eq) 0, 0,) Oy

o

Using this upper bound on I(z,,y,,y,) we can find a lower bound on the minimum

mean-square error achievable when the problem is to estimate z, from the observations y

and y,.
We have -
2
1 02‘
z,5y,y,) 2 Uz;3v,) 2 — log———— (3.25)

2 El(z;—v,)

which implies (using Equation (3.24))

1 (P°2+03,°)((l+al)zozzl+an21) P12+°\\2/1 , 1 azzl

— log . 2 — log—————  (3.26)
22, 2 2 2 2 2 2

2 (0, (P40, J+(1+, )70, 0, ) Oy, 2 El(z=v)Y

i.e.,

, ovz,l(onz‘(Poz+ojo)+( 1+oz1)zazzlo\f,°)
El(z,—v )] 2 — : (3.27)
(Py+oy, XP+0oy, Jo,

P
2. V% 4% Iy

AN A ", " S
' ho¥ N, 0 oh. 8T,

3
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g

i
We next note that if we use the policy ]
U, = A2, ’

(3.28
u, = A,(z,—-E(z,|y,)) )

with A, and A, chosen so as to satisfy the power constraints, the minimum mean-square

error is indeed achieved and we have

TG ] & &R

Lemma 3.4. The policies given by (3.28) are the policies which minimize the mean-square

)
error in estimating z, from the pair (y,,y,). B
R
We now consider the case with arbitrary N, depicted in Figure 3.2. First, consider
the problem in the absence of the most recent observation, i.e., the uppermost channel of &
t
Figure 3.2 removed. Assuming that the version of the problem with (N-1) channels is § :
already solved, the capacity Cy_, (i.e., maximum mutual information between input and
o 1}
output) for the portion of the system within the rectangular box CDEF is known. We can S
U
¥
therefore find the minimum achievable distortion for a memoryless Gaussian source with ﬁ )
variance o li. when only the portion within the box ABCD is in use, by computing the con- \
¢
ditional estimate of zy given zy_,, and transmitting this optimally. Using this minimum w3 \
achievable distortion we can find an upper bound for I(zN;yN—l) as follows (where z,f, is s
the sequence zy , . - - , zy ) \
J
s
‘ Loy SR
D" =Lim — Eljz)-v}I} y
e ] 2 2 2 4 A ;
0,00, (14ay) O, 2, (3.29) iy
= + e
(H”"'N) o +o (l+cxN) o +o & ¥
i.e., ( :
4
% B
]
h
.
@ f
v
\J
an "
»
o ]

&
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B "
2 2, 2

) I(zsy )< —log e | (3.30) »
0':{"( l+ozN)2ozie a 5

A

(]

L]

We can use a series of inequalities as in (3.23) to show that b

2, 2

& N—1 1 PN+O' Wy .:
IzyNly™ ) < S le—— (3.31) X

: =
1

N

g Now since
! (]
- - \

Wzgy™ = Wzy™ ™) + Wzgyply” (3.32) g

& :
we get

g \
.1 (+eyYol+0l  Potog '

I(zyiy ) < — log . '

2 2 ( 1 )2 2 -ZCN-I o 2 :

(3.33) ]

.

1

B 4 Cy ;
t

‘ ¢
v and we have the following lemma. :
Lemma 3.5. The mutual information 1(z;y") is bounded above by Cy, which is the last h

§ step of the recursion: ‘
O

¢

"

g N P°2+ Oy, :‘
i’y C, = — log( ) (3.34a) |
2 o ;

B ° 5
LY g
. i
".

% ]
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% ;
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and for i=1,....N

o

(l+ozi)zo:+onz’ P‘2+o:,‘ - !

Ci=—1 . . “ B
S e o Gaw) 5§
o, +(1+a,)°0 e Ow, oM

) 1 ‘f

]

b
- 3

Let A, denote the minimum achievable mean-square error when z; is estimated using y',

N

i.e., (using (3.25))

(3.35)

R 29

[ Jo o i mre ] Wl el

We therefore have

and for i=1,...,N

L

(3.36b)

2 ®
Pi +0w, oz,_, Zy, :.:, "
o
We shall next show that this lower bound is tight and may be achieved b)g using the poli- 3:3 i
v ‘\\ 8
cies ®
R wJ
i J
U, = Az, (3.37a) f
O
Yy

and for i=1,...,.N

u, =\ (z—=E(z]y'"™)) . (3.37b)

o ]

Here the A;’s are chosen so as to meet the power constraints with equality. Since

(™ AL R »
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7, = (1+a))z; + n; (3.38) ¢

we may equivalently write ::
2= PioyZimy + My (3.39) "

where p,_, is a constant, ;;‘;

2 \]
o L)
z, i

Piy & (lba)— (3.40) %

2

and m,_, is a Gaussian random variable which is independent of z,_, and has variance

O = oy - . (3.41) 0

] bt
2y ':Q

With the policies chosen as in (3.37), we have )

Yo = A2, + W, (3.42a) A

o
T

and for i=1,...,N ..,

y, = ki(zi—E(zilyi-1 N+w, . (3.42b)

S @ I

<L =B

-

Let I; denote the mean-square error in the estimation of z; from y' when the communica-

lﬂh g
LS t-

tion strategies are chosen as in (3.37), i.e.,
?‘; « Y

~ I, = El(z~E(z{y"))] .

% We then have, using (3.36)

(3.43a)

& )
A= ‘z
&
"




o
and for i=1,...,.N
"]
i‘j'? 2 piz i
A, kl = .
: 2 az‘? azz 2 (3.435) Q
«, (l+al) 5 A 21_1+ . 2 O'ni !
;:; 2 2 g
’;;E Further, by our specific choice of policy, (zi—E(zilyi-l)) is a zero mean Gaussian random
{1‘ 7
v variable, and therefore %
i i-1 -1 2 sizo“’l 33
" El(z—E(z)y™ -El(z—E@zly” Ny D)T= — (3.44) e
® t
8
\
¥ where
4
&
3 2 i=1yy2 @
¥ s;” 4 El(z—E(z}y" )]
2 4 2
& a 2 o 2 (
s 3.45) ®
=(1+a)— 3 _ + — 0.
RX 2 ! -
A
:;: Z, 4 t'
i i j—
;:: Also, E(E(zilyl 1)Iyi)=0 by our choice of policy, since y; is independent of y ! and there- ne
}’.
fore the expression on the left-hand side of (3.44) becomes x
g El(z~E(zJy"™ )-E(z)y )] 2
,3 = El(z~E(z}y' )] o
5
W %
:: and we get the recursion (for i=1,...,.N)
¥ 3
0 af, (l+azi)20: o,
[] i i 1 2
W L= s 2 ) It 2 Oy, (3.46a) o
::' P, +0“’| Ziq 4 ‘&b
.
)
‘ A
"
: -
¢ 2
.‘ -
'l
Y vy
| oy

s
L]
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with the initial condition

2, 2
P, tog,

S SR WRE OSSS B

The recursion for the L's is therefore identical to the recursion for the A’s (given by
(3.36)), which denote the minimum mean-square error achievable. This shows that the

lower bound on error is indeed tight and thus leads to the following theorem.

Theorem 3.1.

R BKA BRE

(a) The policies given by (3.37) minimize the mean-square error incurred in estimat-

ing z from yN for the system depicted in Figure 3.2, where the A,’s are defined by (3.43)

£

using the £;'s defined by (3.46).

ﬁ (b) The minimum mean-square error is given by the last step of the recursion (3.46)

> or equivalently by the last step of the recursion (3.36).

3.5. Solutions to Problems P3 and P1

Ll

We now return to Problem P3 defined in Section 3.3, where the policies

b

Ny

and

are to be chosen in order to minimize

N
I=E(F a (¥-b'%)] (3.47)

I=0

P

Pl

o
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j
’ under the constraints depicted in Figure 3.1.

-

oy We first consider the minimization of the N-th term in the expression for J, which is Ly

o

;‘ ‘ b ¢ =~ 2 l

" the optimization problem being equivalent to minimizing "

:: %

; ’ ’ >~ ~ 2

" Ela'yb'¢(¥'y—=%)T.

¥, ¢

I where g

¥ \ -N . q‘

§ o dt S S,

! VNE ¥

" b'n

% .

s &

[ i.e., the problem is one of forming the best estimate of xy under the mean-square distor- )

/

. tion criterion. We now show that the situations depicted in Figures 3.1 and 3.2 are identi- ﬁ

Py, e

;" cal except for nomenclature. To show this equivalence we note that for i=1....,N
' L0

D z,_, = (l+o)z, + n, ' (3.48) ”

by which implies &

K kY

[} 2 X
4 02|

" z,= (l+ozi)—2— z,_,+m_, (3.49) <

X o, -

3 1-1

4’ ¥

" where the m;'s are zero mean Gaussian random variables each with variance e

. 2

¥ s

\l 2 _ 3 2 o

N Om == %, (3.50)

- o, - ]
. ’:.:

We therefore have |

, <

) 2 ‘::'

) oz‘ '

N piy = (1+a) for i=1,..N .

‘ ozl-l ) s
; \
: S '

[} \\

“ ~
’

az t

'
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and by defining o; = azz we can complete the correspondence between the variables X;’s

and z;'s for i=0,1,...,N.

The solution to the problem of minimizing the mean-square error in estimating Xy

from y,, ..., yy may therefore be obtained as in Section 3.4. Using the techniques of Sec-
tion 3.4 we get

(a) The minimum mean-square error in estimating x; using yl is given by A, where

-
¥

A;'s satisfy the recursion (for i=1,....N)

-

E;l

(3.51a)

=7
&
)
—_
.~
[
i
L
+
Q
B
»v

=5

with the initial condition

N 2T

0'202
X, Y,

Ao = —, (351b)
P°2+o“z,

o

(b) The optimal encoding strategies are

‘.

u, = h* (X)) =A%, (3.52a)

o]

and for i=1,...,.N

o,

[l &

= bRy = A G~E&]y"™) (3.52b)

where the A;'s satisfy the recursion (for i=1,...,.N)

A= (3.53a)
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2.
"

-«

S

. with the initial condition
R , p2 w
X A, =— (3.53b)

(the A;’s being as defined by (3.51)).

Q
om I
254 AR

o
"
";‘f (c) The optimal choice for the y;’s is
& . &
‘ v, = b Exy") (3.54)
3 - 2
B where E(X]y') satisfy the recursion (for i=1,...,N) ot}
.
0 P i
2 ol s -l i 2 2 % he
E(Xly) =pi ER_ly" )+ - (Pl By +om )Y (3.55a)
:,q Pi +o W
MY L %
K} &
0 o " >
:,: with the initial condition
M <
'\ o Pooiﬂyo
ik B ly") = —— (3.55b) )
- P 2 +0 2 @
N o Tx,
*

(the A;'s being as defined in (3.51)).
: i
-. We finally note that the policies which minimize the mean-square error in the esti-
f mation of X; given yi for i=0, N-1, are identical to the corresponding policies used in the g
@ -~
o estimation of Xy given yN, and we therefore have the following theorem. -
..3 Ry
b Theorem 3.2. <3
3 3
(a) The optimum policies h, and ¥, for Problem P3 are given by (3.52) and (3.54),
N -7
:‘k. respectively, using the A;'s and A;'s as defined by (3.53) and (3.51), respectively. oy
(b) The minimum value of the cost function for Problem P3 is ¥
R
n‘:‘: W
Y
° o~
L) o
'
[
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F=F ap A +cy-
j=0

Now we turn to the original Problem P1 formulated in Section 3.2. Taking the difference

Vi Vi~1
b’ b’

i i~1

and using (3.54), (3.55) and (3.12), we find that

Vi , Vi-1 pi 2 2
— =(p_— b)) + (o)A to, )y,
b’ b’ 2 b

i i=1 P +o

1 W‘
which implies that the optimal control policies for the original problem are
vk = Y*i(yi) =b) E(xilyi) A b'K,
where %, 4 E(xilyi) satisfy the recursion (for i=1,...,.N)

P

% = (o =b' )%y + __2_1_2_ (pi-z-lAi—l+o:H )y,
P +ao,,
with the initial condition
. POOXO
o P02+ax2o Yo

the A's being as defined in (3.51).

We therefore have the following theorem.
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(3.56)

(3.57)

(3.58)

(3.59a)

(3.59b)

~'

» >~ l ", ,t.',c ) ..,.n‘l- .:".!.I » 0'



T W P L U Yo Lo av VR AUE AUE gtp 78 v 4€s i gvd gi LVRAKL pY4 ath a¥BaNs a¥a-adR ¥} atdt Lk US

\

(3

g A
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52 :

f h

g ,

Theorem 3.3. .;'
o

)

(a) The optimum policies {h*} and {y*} for Problem Pl are given by (3.52) and »

k)

(3.58), respectively, using the A,’s and A;’s as defined by (3.53) and (3.51), respectively. @ ‘
(b) The minimum value of the cost function for Problem Pl is .

T 8

N &

r 2 "

J*= 3 a'b'["A +cy . .

j=0 &c_,- N

O o

a ‘

% A

An Ilustration "
% B

Consider the case with N=2, the stochastic system model being given as g‘f 4

¥ 3‘

X=X, +m; =V, s,

"

and the objective being to minimize i
)

2 % ;

Iy =3 (x2, +vD), 8
=0 = 3

4

subject to the constraints of Equations (3.1b) through (3.1e), it being given that x»
R

"

T

2 2 2 2 ¢

0x°=aw|=om|=Pi = 1.0. P

o 8
% gt

Using Claim 3.1, (Section 3.2), we get the equivalent cost functional R

~% »
2 i ¥

Talv,—=bx) +c, °

i=0 ' A
! X}
¢ {
where ¢
NS

®

[0 J
.o St

bt

o o,

O OO0 K Y 3 AP K AR A P A
Vg & 3 o ", T " 4 /
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a’',=13/5,a";=5/2,a’,=2,
b,=8/13,b,=3/5,b,=1/2,

@ [OTETSASA

o

and

g

- .

¢, =613/130.

-
- g

g Using Theorem 3.3 above, we obtain the optimal strategies for the problem: Y
et ¥y = XoXp \

w*, =\, (x,~E(x, 1 y")) A
g u*, = xz(xz—E(xz ! yl)) :'l';

g where

o %

"o

- -
T .

Ae=1,A=2/3and A, =4/7,

2Ll
2 LG

and

la Y
ﬁ v =8/3 %, Py
‘ vt =3/5%, '
% V*z = 1/2 RZ A %:
4
’ where p
o —
N by
< %o = 11270 2
o %, =526 yo +3/34 v, )
%, =1/3y,+3/2y,+7/16y,.

iy
- E(x, 1y°)=7/26y, .
and ;E:
‘ E(x,1y')=1/13y,+3/10y, . !
[ J
A‘\ '|‘.
&'.‘ Further, the optimal cost is 6.1852. )
\
\

. ! PN v v RNy W » ( " X %] e ) . %8
T e O e T e T M O M A RO AN



TRAPENERELERAER VR Waita.074 4% 4 VTUSUR LY VY U L A AR RN Y A TR AW O, VYW ‘--.
. 1 . e A

3.6. The Soft Constraint Version

- . N
£ e - s s

K We consider again the problem depicted in Figure 3.1, but now with the power con-

i straints 3

‘ o~
Elu’] < P?

B 7.)-

i s

R removed, i.e., the optimum power levels are also to be determined via the underlying ‘

optimization problem. Such a formulation is useful in situations where more "costly”

K measurements that contain more useful or reliable information may be used. It may be 3
*
: possible to transmit a larger power at the encoder (at additional cost) in order to further
iy .
? decrease the mean-square error at the decoder, this tradeoff being reflected by the cost cri- N
)
4,
;' terion. Mathematically, we may represent this as a power constraint which is "implied” or P
D . -
, *soft", appearing as an additional term in the cost functional, which now becomes o
i N ":-‘ A
. N_N / Y 2
y J(h',y )=ElT (@ (v~b'x,)" +qu)]. (3.60)
§ i=0 S
v o
i We shall obtain the solution to the soft constraint version by using the solution to the R
hard constraint Problem P1 found in Section 3.5. Let Jp denote the infimum of J under )
[}
\
4 the hard power constraints,
3 t
!
! N N ¢
‘ J 4 Inf I(h™y)
. p - ) .
: nYiy™Eln,"1=P 2 5 (361) ook
™
) We then have the following series of equalities and inequalities: 3
‘o )
» :t E
)
; L
) . (3
1) -:, {
' i
o

W Wy =

CERCN Y A AL EV IO = LR Y .t . . - X ‘ .
3 nﬁb‘-" g LA N 0- ad) .0"‘. PV PN N ’*N\' '.0'..- ‘.l.l Yo ..I.' ) || A ML N '( A -‘l‘!‘l \‘\ \ \‘ !

W WL W
8 §
N
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13 A'
g 55 o
{ '.
' f\l
' Ib=XqP "+ Inf E|T (@(vi-b'x))
i=0 ahlz}'l’az j=0 0;
N N :4
B > T qPi+ Inf E|F (@ v=bx)) :
=0 Eh’I<P? =0
& N N o
reu2
| =Y qP}+ L a'b’ A, (3.62) N
i=0 =0 ‘:
> Min P’ +a b A ¢
z Z qP +aiba,; '
Pﬁ?o i=0 .
g . :
=T qP*’+a'b’las ]
=4 9F; Tab; Ay )
i=0 \
» 4
& ,:
where the A/'s are defined in (3.51) and A¥s are defined recursively likewise, with P, ®
¢ -
% replaced by P%, i.e., for i=1,....N ,:‘
3
2
ﬁ Tw, 2 2 j
A% = — (pl,A%_, + Tm,, ) (3.63a) ;
0y P*i +0W| ::
% d
with the initial condition ::
! 2 2
X awnoxo .:
o = — (3.63b) "
X Pxiyol !
}0 [+] W, ‘:
Q
N
&Q In order to find the optimal power levels (P*iz's). we can solve the following problem »
L . .
N 3
< Min T qP2+a'b'2a, (3.64) 4
yd P.... Py =0 i
. »
§ which is a nonlinear optimal control problem, the solution to which is given by the fol- ot
lowing dynamic program (with p_, 4 1 and a; : A 0), where W (A) is the "optimum cost X
: to go" given that the system is at state A at stage i .

A
“x

T 2

ALV AR VP N "y } .
DOONERST R PSS S Ao YK BT A VY .,p‘,,:‘s,;,o,_‘,.n. K18 , L T O DOt Yl
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Wye1 =0
2 YA awz'l 2 2 0“2,' 2 2 (3-65)
W(A)=Min |qP +a'b’ — (pi_1A+crmi_l )+Wi+1(—;—-——2— (Pi_l.A-l-om’.l ))
p? P, +0£' P, +0w'
and the optimal value of the cost is
Min J(P),...,PQ)=WJ(a]). (3.66)

Pl....P3

We next show that a solution to the above problem always exists. If we define

s 2 2, 2 2
5 5 a;by Oy, 5 5 O‘V|(pi’1A+oma-1 )
f(AP") A qP;" + 2 (oA + Om,, )+ Wiy S (3.67)
Pi+og, Pi+ay

then

W(A) =Min f(A,P2).

P?

Note that W, is a continuous function of its argument if W, is, since the continuity
of W,,, implies continuity of f. From tl;e continuity of Wy, ,, (which was defined to be
zero), the continuity of W, follows for all i. We also note that as P’—oo, f(A,P%)mc0
also, and since Pi2>0, the search for P"‘i2 can be confined to a compact set over which a

continuous function always admits a minimum.

The dynamic program (3.65) can therefore be solved, yielding values for

Px Px . ... Px

o’

and we have the following theorem.
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Theorem 3.4. Consider the problem

Minimize J(hN,YN) ,
hN.YN

subject to (3.1a) through (3.1e) where J(hN,yN) is defined by Equation (3.60).

(a) The optimum policies {h*} and {y*} for this problem are given by (3.52) and
(3.58), respectively, using A's and A;’s as defined by Equations (3.51) and (3.53), with the
solution to the dynamic program (3.65) providing the optimum power levels, i.e.,

P’ =P*} for i=0,...N .

(b) The optimum cost is given by

N
" 2 -— 2 ’ ’ 2
- =0
' ﬁ with the A%’s being defined by (3.63).
¥ ?; o
: R An lllustration
4
‘ !_( The optimal power levels depend critically on the power penalties (q;'s). If for the
D)
§ QS problem stated at the beginning of this section we assume N=1 and the following parame-
- ter values
-
E peX a,:=l.0,of,°=l.0,o“z,l=1.0.a:;°=l.0
3 " q,=20,q9,=4.0,p,=05,2,=10
RN b,=10,a;,=20and b’ =10,
4
i g. then the optimal value of the cost is 3.5, which is attained by P°2=P12=0.0. If the power
, . penalty q, is changed to 0.25 with all other parameters remaining the same, we can
. achieve an optimal cost of 2.9747, which is attained by using Po2 = 1.4495 and sz =0.0.
.
S
¥
) in
+
x
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‘* If the power penalty q, is also changed to 0.25, then the optimal cost is further reduced to
o 1.9968, which is attained by P‘,z = 1.1609 and Pl2 = 1.9876. It is notable that the optimal
'7"2 solution satisfies a threshold property, and the number of channels in use depends on the

‘ relative magnitudes of the weighting terms.

4
: 3
5

B 3.7. The Infinite Horizon Problem

3
..-
-
227
;

Notation
i %
wl) Let x; denote the realization of a first-order Markov process: o
(W
n
1
! Xi41 = PX; + m, . (3.68) g{
@
2 8
’:g Here x,, mg, m,,... are zero mean Gaussian random variables: y
* Al
i:? : :
:': Xo -~ N(O,ox )
) ~N(0,02) o
& m; 00
o
‘3
: The measurement y; is a noise corrupted version of the control u;: %
‘
:.. WX
’ yi = ui -+ \yi (369)
i S
., where w,, W,,.. are zero mean Gaussian random variabies:
Y o
; w; ~ N(0,0 %) &
@
9: : - r
‘,:. We are concerned with obtaining the optimal solution to Problem P~ below. ~
'y
‘:'. 5
y Problem P™ -~
@
vt ) \&
:; Minimize J(h™,y™) = E[ ¥ (qu, +a(v,—x,)")8'] N
A nfl,y i=0
;. " _-:\
where a, q are given positive constants, 8 is the given discount factor (0<8<1) and
L)
B¢ ) 4
y o
"
!' .
A .
a =
¥

¢ - - -
OO o€, A% Ve DMIAS D OO N " . B - -
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w =hx,y ) (3.702)
vi=v(y). (3.70b)

]

We treat the infinite horizon problem as a limit of the finite horizon case with horizon
length N, as N—oco. This may be done provided that the discounted cost remains bounded

and the optimum policy sequence converges to a well-defined limit.

The truncated version of the finite horizon problem, with horizon length N, is given

as Problem PN below:
Problem PN

N
Minimize J(h",y") = El 3 (qu+a(v,—x)")B']
Yy i=0

subject to (3.68) through (3.70).

0
For notational convenience, let q'; 4 qBi and a’; & afB'.
We first consider the following hard constraint version of Problem PN,
Problem PHV
N
Minimize E( § a’i(vi—xi)zl
hN,yN =0
subject to
2 2
Elu] <P,
T e e £ e A M Y 0 AT A o b o TN A AT

O



under the constraint (3.68) through (3.70).

J»

] .

The following Lemma now follows directly from the analysis in the preceding sec- g
tions. _
Lemma 3.6: (a) Problem PH" admits an optimal solution which is linear in the measure- ,

(=5~

ool
%
—— e A

ments and is given as follows:

3

ur, = b (x,y" ) = N (x—E(x; 1y )

Ve = y&i(yi) =X,

where g
®
2 P 5 K
Ag = —, (3.71a) ru K
o 2 y) ‘:
w N
-:-Q 0‘
2
) P, . -
AD= — for i=1,....N , (3.71b) !'!
pAto, :::
et K
the A/'s satisfy 3
-
2 2 &
o, 0, X
By = ——, (3.72a) o B
P°2+o % ::
®
0‘3 2 2 &
A= (p%B_,+0 %) for i=1,...N (3.72b) &
Pi2+o W
E\ o
and & = E(x, | y') satisfies the recursion °
] ‘
ol N
;t“ v
l.!
N
®
gt
oo
o s"‘
W,
LYY \
— L
N,
5
it

Ve ¥ ¥ i S e p ) . e N TR TN R SRR e . o - 'y
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(b) The minimum value of the cost is

N
J*= 3 a'A,.
i=0

Now let J; denote the infimum of JN(hN,-yN) under the hard power constraints, i.e.,

b4 inf LGNy,
hN,yN,E[h,2]=P,2

Using a sequence of equalities and inequalities as in (3.62), we have

N
I, = L{qP"+aa%)B
i=0
where the A/'s are as defined in (3.72), and A*’s are defined likewise, with Pi2 replaced by

P2,

1

The next task is to find the optimum power levels {P-Z"s}, which is done via the fol-

1

lowing deterministic optimal control problem:

The Deterministic N-stage Problem

N
Minimize § (qP] + aA,)8' (3.73)
P: ..... P!’: =0

subject to (3.72a) and (3.72b).

Notation: For each positive scalar A, let {\X/k(A)}kN;;)1 be defined recursively by

r

» o .

A T T KT K A K K o " s o s ¥ me e e
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62 N
o
f.
Wya(A)=0 (3.74a)
2 2 pry ] h
2, 2%, 2 Ow 2 2 -
W, (A) = inf[qP"+ (p"A+0 ) + BW,,, (p°A+0 ) [l for k=N.....0. (3.74b)
P P2+a“2, P2+aj @,

Let P/ =P2(A) be a minimizing solution of the right-hand side of (3.74b), whenever it

.
exists, and let {A*k}:__o be the trajectory sequence defined recursively by < X
t
2 2 )
040y )5"
At =(—2 % ) (3.75a)
Poz(ox2)+o“2, - p
ol "
w \
At = — (o°a%,_ +0l). (3.75b) 9
2 b3
PXA%_ )+ <
Finally, let g:} ;
% "y
Py =Pi(0]) (3.76a) o |
PS =pPXa%,_) (3.76b) ;
Z=piar_). 3.76b
- Proposition 3.1: §\
(i) The minimization problem (3.74b) admits a solution for each positive A. o
(ii) The control problem (3.73) admits a solution {Pf‘}:io which is given by (3.76) and )
the corresponding optimal trajectory is generated by (3.75). A :
)
(iii) The minimum value for the optimal control problem is Wo(oxz). i~
The proof of the proposition above foliows from the following lemmata.
) :": !
)
Lemma 3.7: The value of the optimal control problem (3.73) is J* = Wo(oxz) where W () ~
Nt
,,"
is obtained through the recursive equations T
s
W4y (8)=0 (3.77a) ,

IS R L TR
{'h Lr. a.ﬁ.ii’h;’hﬁi‘:’ Y p
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ao 2 c 2
W,(A) = inflqP? + ——— (p*A+0 1)+ BW, , ,(——(p’A+ o 2)]fork N. (3.77b)
P P2+a“2, P2+ow2

Furthermore, if the right-hand side of (3.77b) admits a solution sequence {sz 1,

k €N, then

PHoD)

and
Pl(A%,_,) for 1 <k €N

provide the optimal solution, where A%, is generated by (3.75).

Proof: This follows from a standard dynamic programming argument.

a
Lemma 3.8: For every A > 0, there exists a solution to the right-hand side of (3.74b).
Proof: Define f(A,P*) by
ac ol
£ (AP =qP* + —— + W, (——— (p’A+02)) (3.78)
P2+o‘3 P2+o\f,

so that

W, (A) = inf £,(8,P?).
P2

Note that W, which is positive for all k, is a continuous function of its argument if W,
is, since the continuity of W, implies continuity of f,. From the continuity of W,
(which is defined to be zero) the continuity of W, follows for all k. We then note that as
P’ o0, so does f(A,P?), and since P*20, the seirch for an optimum may be confined to a

compact set over which a continuous function always admits a minimum.
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The following lemmata will be used in the construction of the solution for the

e
infinite horizon problem.
Lemma 3.9: W, (A) is strictly increasing for decreasing k, for all A>O0, ie., E;

W, () > W,,,(A) k<N,

Proof: Clearly the lemma is true for k=N, since W, 4 0 and W(A) is necessarily larger i
than zero for all A. We now note the following sequence of equalities and inequalities: .
=
LACYER .Y o
ao’ o}
2 0
= MinlqP’ + (p*A+02)+BW,,( (p’a + o 2))] X
]
{ P*>0 P2+o2 ‘2, P2+g“z,
ao [ o
~ MinlgP® + (P’a+02)+BW, (b’a+a2)] &
, P50 2 52 2, 2 ~
i Fz’ o, f +o,,
! a2 aoc,, 5 5 LY
2 qP +———(pA+o )+wa+1( (pA+om)) N
p? +o P +o
acl ol o~
a2 w
- qP +—-—-—(p2A+o;)—BWk+2( hd (p2A+onz1)) N
f’2+o“z, 132+o£
] o“z,(pzA+o;)
= B(Wyyy = W) - (o)
132+o“2, i
a ::I
‘ where P’ is chosen as the argument of the first minimization. (In case of nonunique solu-
tions, any one of the minimizing solutions may be chosen). '-
Thus if W, _,(A) is larger than W, ,(A), then W,(A) is larger than W, ,(A). Since )
W (A) is known to be larger than W, ,(A), the proof is complete.
o
i N
Dy
Lemma 3.10: W, (A) is an increasing function of A {W,(A) 1 A} for all k<N. "'
"
L
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There are only two possible cases, either P**=0, or P**> 0. If P =0, then

§ 65
g Proof: We prove this by induction. First consider the case with k=N. We have
ag
Wy (4) = Min[qu + o (pzA + o:‘)] .
ﬁ P20 Pr+ol
s

t
wy(A) = a(p?A + o;). If P* > 0, which requires ::
v )
ao 2(p’A+0 ) ;
q- =0
g (P*+02)’
i.e.,
2, 2 2
§§ ac (p°A+0) |
L i il L 03 (3.79)
5 a
' and we get
a Wy(a) =2a"q"s (o*A+02)* —qol. (3.80)
g Thus the lemma is true for k=N. ' '
. Now, if W, . (A) T A, then for each P? N
’ ac’ by
- )
e Wl (W*A+alNTaA, :
f' P2+o: "
{ since iy
v ]
ao’ Y
w
o (oA + 0;) TA. ¢
'., 2 2
N P'+o, ¢
! Also, »
"\"' g
) A |
- , ao\,z,(pzA+on21) :’.
L. (qP” + )TA, "
- P2+of, \
Y >
and thus both terms in the expression to be minimized to obtain W(A) are increasing in A g
. y,
s
', ]
) N
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4 5 &
o0 for all P°. Therefore, W, (4) T A.

h -
i o
::‘:é Lemma 3.11: For each A > 0, W,(A) is bounded above for all k, by an affine function of %
ot

s A, ie, :
K m
A ¥
;::: O<WI(A)<Q,,A+Q,,. ..
lr .;:;y
K <4

Proof: The proof is by induction, using the observation that since W, (A) is given by the

minimum over Pz, an upper bound is given by the value that the expression to be minim-

IR
s 224

l:('t
ok ized attains when P’ is fixed arbitrarily at zero.
> Thus Wy(A) € a(p’A+02) and Q, =ap’Q, =20’
" us Wy & alp'4+0, ) and we may choose Q, y=ap",Q, y=ao .
bt s
::: Now consider the following sequence of equalities and inequalities <
bt
':f: 2 2 on
2, 2%, 2 Tw 2 .

o W, (48) =MinlgP’ + ——— (0*A + 0 2) + BW,, ,(—— (p’A + 0 2))]
o P Pl+o P40

» w '8
i aol v

) w
:: ) < Min[qu + —— (%A + o;) + BWkH(pZA + omz)] &
* P P’+02

w

v 2 2 2 2 N
b Salpb+0)+BW,, (pA+0,)
)
P . Wxi
o t\:_}

< alp’a + o;) + B(Ql,kﬂ(PzA + Unz,) + Qp i)

@
% A
e = (ap® + BQ A 2 2 Q
.‘.u': =\ap Lks1P )B tao +BQ, 0, +BQ,, .,
Y &
@
;@ 8Q,,0+Q,,. n
R %
i

W Therefore, the lemma is proved with the sequences {Q, ,} and {Q, !} defined recursively 3
@

s by

N
1.4 \“
» » L]
N N
.l.

0..
® W
o -
g

:”. "

...)----" 2 -F'.’.-'.-"-‘y‘ - [ TP I R N (" -
R e A R e e e et b oo e A

B [




.......

2 2
Qn=ap" , Q,y=ao,

2 2
Ql.k-—-ap +Bp ‘Ql,k+l

2 2
Q) =20, +B0, Q)4 +BQy44-

We now return to the study of the infinite horizon problem. Note that since the

Q: § optimal policy for the stochastic control problem is linear, the stationary limiting policy is
K
n‘ y

given by \
I )
' g -1 n—1 :
g h* (x,y ) =\dx,—E(x,ly" ) (3.81)
K where
X &

2%
8 P ]
a % \* = - (3.82) :
o p A¥o

with P* and A% being obtained through the stationary solution of the optimum control

problem as N—co.

L W

For each N, denote the solution given by Proposition 3.1. (ii) by {sz "IN K<N. We

then expect that

&
j'

N '

2e_ oo
' ; P

for every finite k.

To establish the existence of this limit, we recall that W (A) is strictly increasing for

decreasing k<N (Lemma 3.9) and further that it is bounded above by an affine function

(Lemma 3.11). This last property follows since both Q,, and Q,, are bounded in retro-

grade time,

by STl ety Ny AT NN LAY W AT ‘ CHICN) C* ‘ )
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2 ao >
% ) and Q,, < =__. (3.83) .

1-Bp’ (1-B)1~p2B)

. Q, <(

Hence, Limit W, (A) = W(A) where the limiting function satisfies

ko

, ao 2(p’A+a 2) o s 2 -
Y W(A) = Min |[qP” + - + BW — (p"A+0 ) || (3.84) D
5 X
| P PP+ol P°+o )
¢ RN

Denote the minimizing solution here by Pz(A). Now note that since p2<l. Equation

(3.75b) describes a stable system with P replaced by P, and hence A —A* where A*

solves

2 S 't

o
AR (pzAHo;) . (3.85) ‘.
2 2 o
P(A%)+o, oY

P> = P¥(A%).

Then we have the following solution to the infinite horizon problem:

Theorem 3.5: With N—oo in (3.73), the stochastic control problem in consideration admits

the optimal stationary policies,

-1
h* = x¥(x, — E(x, 1y" )

for n sufficiently large, where

; 2
)\*2 = _.f__ ,
! pzA*—!-onz1 » »

with A*and P?* given by (3.85) and (3.86).
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To numerically compute the optimal stationary policies, we start with A;=0 and

run the following algorithm:

Algorithm A:
(1) Compute

ao 2(p’A+0 D) B(qP2+aAk)]
-+

e e T

R 56 ™ P B 985

(sz )* = arg min[qP? +
P20 P+ol (1-B8)

(2) Compute the new value, 4,,,, by

| 7 s
w 2 2
s By = . . (p"ay +0)
,‘: 5 (P P+a,
b,
;! o (3) Go tostep (1), and iterate.
: i 5
)
' g The optimal cost is then given by
,
o 5 a0 2(p°A*+0 ) _
.— W(A*) = (q(P)* + )(1—=8).
2 2
;v (P )*+a,
? O
,: 2
B
e We next show that Algorithm A always converges. We first note that (P})*, found
¢
w from step (1) of the algorithm, satisfies
iy
)
¢ Yy 1/
D o a (l"‘B) 1,
,;: (Pl)* = Max{0,( ———— o (p’8+0 D)~ o 2))
9
T
. ;\:‘\ which implies that if A, 2 A,, then (sz,,,)* 2 (P~
« EA
k)
N Now, given 4, > A,_,, we have
~
L {
¢, ;
|' W
P ::“
)
]
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3
1 ?
!
Byi1— 8 i
ol ol "
w w
- (Patod) = —— (i, rod "
2 2 2 2 :
(P, )*+0 (P,_,)*+o, )
ol . el 2 §
2 > - (p*A,+0 1) - ——2-———;(p2Ak_l+om) )
(P )*+0 (P )*+o,
2 N N
Oy 2 :§ ‘
= 2 5 P (Ak - Ak-l) .|’
(Pk P*+o i ':
>0. * W
g
§ 3
Therefore, since A, > 4, it follows that the A,’s form a monotone increasing u '::‘
\
\
sequence. Further, to show that the A,’s are bounded above, we consider the sequence Qf ::
[
T =pT, +0} T B
e =P Ly +oy, Wb
"
4
and note that if I, 2 A,, we have LU
)
- .‘\
2 2 S,
Ly =pTy+o, xR
P pzAk + oﬂzl C’x :
5 )
o, N
2 ——(p’A+ 0 )) “
(PI*+o o
Nt
‘n" . :
= Dgyr N
T
®
SN
ie, if T, 2 A,, then T, 2 A,,,. But T=Ay(=0), and the sequence T, is bounded < R
D.‘.
above by 0 )
% d
oF W
2
om l
(1—p%) o
4
Therefore, the monotone sequence A, is also bounded above, and the convergence of the X f.'n
algorithm follows. )
SES
- K
®
~ -
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Tables 3.1 through 3.4 provide a few of these convergence results for given parame- B
i .
ter values. Y

|‘

£ i
H "
TABLE 3.1. CONVERGENCE RESULTS FOR THE PROBLEM WITH v

g a=o0,=0,=10,p"=B8=q=0.5.

N

N\

‘Q
’Q
% Tter. # A ey “
N oY

0 0.0 0.0 °

% 1 1.0 | 022474 3
' \J
2 | 122474 | 0.26979 3

F 3 | 1.26979 | 0.27%63 )
4 1.27863 | 0.28035 )

§$ s | 1.28035 | 0.26069 '
6 | 1.28069 | 0.28076 :“

ﬁ 7 1.28076 | 0.28077 X
8 | 1.28077 | 0.28077

)

3 9 1.28077 | 0.28077 3
- %
%

(N

R
h , . 4
" TABLE 3.2. CONVERGENCE RESULTS FOR THE PROBLEM WITH a=o, =10, £
5,5 p’=8=05q=02=0.1. )
J

. ®
::: . N
™ Iter. # L Py b
% 0 00 | 0.60710 -
5 1 | 014142 | 0.63167 S
. 2 | 014633 | 0.63251
o~ b\
b 3 | 0.14650 | 0.63254 4
. 4 | 0.14650 | 0.63254 ;i
o 1
®

3 .
N 3
~
'\

. ., N . Q:
D e A N Y A A T L 17 T L b 4 S e N
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TABLE 3.3. CONVERGENCE RESUzLTS FOR THE PROBLEM WITH a= a:l = 1.0,
p’=8=05.q=0.102=20.

Iter. #

A

L&)

0

0.0

1.16227

0.63245

1.62798

0.72559

1.69161

0.73832

1.70021

- 0.74004

1.70138

0.74027

1.70153

0.74030

1.70155

0.74031

1.70156

ol lslwINI—

0.74031

1.70156

TABLE 3.4. CONVERGENCE RESULTS

FOR THE

p2=a;=B=0.5.a=a‘2,=1.0.q=0.l.

A

ey

0.0

0.58113

0.31622

0.81399

0.36279

0.84580

0.36916

0.85010

0.37002

0.85069

0.37013

0.85076

0.37015

0.85078

-
qouawn.'—-oﬁ
*

0.37015

0.85078

PROBLEM

WITH

X2k

o v |
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g
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We finally note that an infinite horizon version of the originally formulated Problem

L

P1, can be solved via an equivalent problem of the form P”.

w2

Consider the problem of minimizing J(h*,y™) where

JB=y*)=E T Blqu] +aBx>, +bv?)]

s

i=0
&
X subject to (3.1b), (3.1d) and (3.1le), where
v ——
1‘;5, Xigg =PX;+m;, — Vv,
&; Using (3.4) and (3.5), we find that the cost can be rewritten as
/ S S
i=0 i=0
E where
™
! '

and

o k
b,i — -B— =b ,
- a’
3
) with the k found by solving for the positive root of the equation:
e 2
< (k—a)(kB+b) = kbBp",
::: i.e., the k satisfies
*y
' 1
n k = —(/(b—bBp"—aB) +4abB — (b—bBp’—aRB)) .
4 28
. Thus, an infinite horizon version of the originally formulated problem, with discounted
cost, may be solved by solving a problem of the form P”, with a replaced by a’(b').
“*
-
o
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3.8. Conclusion

! = Y]
b In this chapter we have studied the problem of simultaneous communication and KA
i)

4

Z:‘ control for first-order ARMA models with feedback. These are stochastic team problems, S-;
20
il Y
AS where the design of the measurement strategy itself is a part of the problem. As such,
o d
::: they are difficult to analyze because of the nonclassical nature of the information struc- ES_,
9
)
::o' ture. For cases with hard power constraints on the measurement strategies, we have 9,
LM O
Ay Y
. shown that the optimum measurement policy is to linearly amplify the innovation at each
! o~
:: stage, to the maximum permissible power level. For the cases with soft power constraints }"
2} N
Z’é the structure of the solution is similar; however, now the optimal design of the power o
o T
. 1.
levels is also a part of the problem. These optimum power levels may be found via
3
£ -
::u dynamic programming. We have then studied some infinite horizon stochastic team prob- :
) [+
0

;:' lems involving a first-order ARMA model, established the existence of optimal stationary -
N policies for these problems, provided an algorithm that always converges to the optimal

-!. )

2

’:' solution, and also provided some numerical examples illustrating the calculation of these "
K Oy
M stationary policies.
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CHAPTER 4

SIMULTANEOUS COMMUNICATION AND CONTROL:
GENERAL ARMA MODELS WITH FEEDBACK

4.1. Introduction

In this chapter we study the problem of simultaneously designing communication
and control strategies for problems involving ARMA models of orders higher than one. In
Section 4.2 we formulate the general problem and then the transformed problem consist-
ing of squared differences. In Section 4.3 we study one of the simplest such problems
involving a second-order ARMA model, and show that the strategies which are optimal

over the linear class may be outperformed by appropriately chosen nonlinear strategies.

In Section 4.4 we consider optimality over the affine class, and show that within this class .

the optimal policy consists of transmitting only the current innovation, multiplied by a
gain factor. In Section 4.5 we study the linear solutions for the second-order ARMA
model; this illustrates the methodology and concepts for the more complex problem
involving the general model which is treated in Section 4.6. The concluding remarks in

Section 4.7 then end this chapter.

4.2. Probiem Formulation

In Chapter 3 we had studied a stochastic dynamic system involving a first-order
ARMA model, with the current state directly correlated only with the immediately
preceding state. In case we allow this correlation to extend to j previous stages, we obtain
a jth-order ARMA model. Accordingly, let us suppose that the stochastic system is

specified by the following set of equations:
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o

j=1
Xig1 = X PiarimxKimx T 10—V, (4.1) i
x=0 &2
and g
@
Y=yt w (4.2) ”
e

along with

;=h0x, ¥y (4.3) =
v, = yi(yi) . (4.4) &
3
Here (4.1) and (4.2) are the state and measurement equations respective.y, the ran- ;_':
dom variables x,, w; and m; (i20) are assumed to be independent, zero-mean and Gaus- -

sian with variances o(,z), (the subscript being the identifier), and Py, = 0 for j<0. The

functions h; and 7, i20, are the communication and control policies, respectively, each ﬁ
Borel measurable in its arguments, and leading to second-order random variables u; and -
-
v,, respectively. ~
As seen in Chapter 3, we may formulate a hard constraint version of the problem, by ".
restricting the communication policies to satisfy o
\‘:
¢ 2 < 2 ™
® E[ui ] X pi (45)
N ‘-
P
_E " .
* ——y
t-'.:f' or the soft constraint version may be formulated, using the additional term -
-’ S
ta.'r
e 2 -
o E[Xau’] C4.6) -
o
0 3
j:, in the cost functional, implying that a tradeoff between higher signalling costs and lower .S'J
LN
g estimation costs is permissible.
»
N,
Ll
" ‘l
e
N
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)
S
e
\ »

. PP R
""I". (AN -"".'f\-’.\‘l"\f ”

A AT O




PELRTTUATTAITA ATV N

- 2 KBS

S S

K} :v
B
"W}

P

’-.

sP IR O

—
bt
iy

s

e, e
.

fab % - NN R R Bl - 4 A TN 4 Vi m, et @ g\, B w oy ™ » " Ry NN 2% ot 2%t ‘a’s 2%k 2t a'h’ W

7

These soft and hard constraint versions are given below as Problems PS° and PH®,

respectively.
Problem PS°
N
Minimize E[Z qiuiz + ci+1xii1 + divi2]
N i=0
subject to (4.1) through (4.4).
Problem PH®
N
Minimize E[ cmxiil + diViZ]
™ =0

subject to (4.1) through (4.5).

Using completion of squares and a redefinition of the v;'s, (as in the case of the first-

order ARMA model) we may obtain th~ equivalent problems PS and PH below:

Problem PS
N -1
Minimize E[¥ qu’+a(¥,— 5 bi'i_kii_k)zl
oY i=0 k=0

subject to (4.2) through (4.4), with x; replaced by X, and v, replaced by V..

Problem PH
-1
Minimize Ela(V, — ¥ bi_i_kii_k)zl
BNy k=0

subject to (4.2) through (4.5), with x, replaced by X, and v, replaced by V.. For these

transformed problems, the X.'s are given by the following recursion:

AR P i P - R~ A ~p 3 =~ n e = o
A QRS A Sl oy e A R A ey A A A O G T (G NN

XX @ L

- - - - o

A

CLEEAW L

- S

SO A,



. a

Xio1 = 2 PisrimicXimk T 1, (4.7) o
N x=0 .
0 “
;e: where X,=X, is given, p, ;=0 for all j<0 and b, ;=0 for j<O. Furthermore, the precise 3:
P ]
1y
. (recursive) expressions for the a,’s are given in Appendix A, where the details of the
[V} F
3 justification for this reformulation can also be found. -
ot
b We now turn to analyzing these reformulated stochastic team problems. “r:z
e
K 4.3. Nonoptimality of Linear Laws T
il Y
‘,:‘ In this section we show that for one of the simplest team problems of the type above,
C.‘ ':.'
® involving an ARMA model of order 2, the optimum linear solution may be outperformed =
:C by an appropriately chosen nonlinear policy. :‘
2
sl We first restrict our attention to the following stochastic team Problem P,, of which .
LA
g; a schematic representation is provided in Figure 4.1.
. 1N
L)
) t*
i N
[> n, wa
L~ .
o \ -
',:_. X “y Y2 )
K< Y2 -
o i
J .
: + s 8§ |——s E(xlyyy))=v 5
. Uy Y1
N 71 4 ::“
.. W
P
» T &
Ly W, A |
2
. ~
po Figure 4.1. Schematics for Problem P,.
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‘ Problem P,
Minimize E[(x—v)?]
@ 71728
where
& X, =x+n, (4.8)
'@ u, = y,(x) (4.9)
Yy, =u, +w, (4.10)
]
" u, = y,(%,.¥,) (4.11)
Sj y,=u, +w, (4.12)
and
<
o v=28(y,.y,) (4.13)
% subject to the hard power constraints:
2 2
.« Elu 71 < P; (4.14a)
el
N Elu]1 < P}. (4.14b)
...'~ Note that if the problem involved estimating x, at the decoder (instead of x), then
“ we would have had the two-stage version of a problem involving a first-order ARMA
o
model as studied in Chapter 3, for which the optimal solutions have been shown to be
¢
to
e linear.
) j::- We now show that Problem P, above does not, in general, admit an optimal linear
o
{ solution. This is done by constructing an instance of the problem where the optimal linear
N,
rc'_". strategies are outlperformed by appropriately chosen nonlinear strategies.
i In order to see why one might suspect nonoptimality of affine laws, consider the
above problem with 0“2_2=0. We then have Problem P’, below which is represented
g
(X%

v 2 0. 0% Py Ve SO e W™ 2 %
AN A N AN AL s

" L]
JLal R b M) Rog 2t

X @ Fuloldlod]
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B X T X
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X2 W - f e
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é‘ig'l g
e'ﬁ‘ M
J:’; schematically in Figure 4.2, and for which the hard power constraint on u, is immaterial
&%
i« since there is no noise to combat. o
.!i,
.‘i’
" )
I
:ﬁ: Problem P’, @
0:7
;Q.: Mlmmlze E[(x-‘v )2] -
e
:::: subject to (4.8) through (4.11), and (4.13), along with the restriction ,
n B
-+
Yy, =u,. (4.15)
AP\
:&n =
;0:' Wl
;:,l
W Note that since e
o ’
o
;:?‘: v=38y,y,) (4.16) "
"': KC
) &
i::: where
)
M he
a0 Y2 =y = ¥ (xpyy)
)
g g
> ", ¢
W
0 b
el * 3=y,
Wi >
| Y2 o
) L |
:".: x 8 —— E(xly.y,)=v »
) Ly Y1
W
W 71 4 S
h]
® 2
7, .
[ g-': ﬂ‘
| 2 v, $:
L, Figure 4.2. Schematics for Problem P’,. h
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,

' u we may equivalently write

R

: v =38(y,,v,(x,.y,)) (4.17a)
L

" @ =8(y,.x,), (4.17b)
V

. ﬁ and thus Problem P’, may equivalently be represented as in Figure 4.3 below.

]

()

;' . We thus obtain a problem of simultaneously designing encoding and decoding policies
X g

K)

E with side information at the decoder, for which nonlinear strategies that outperform the
. )
K :3 optimal linear strategies do exist (see Appendix B).

D -

:: Pl Since linear policies are not optimal for Problem P, with 0‘32 =0, they may continue
¢ P

to be nonoptimal for small enough values of 0“2,2. We show next that this is precisely the h
X .

Y
j. 2}: case. In particular, if we consider the optimal linear design for Problem P,, using
4

) .

b g u, = y,(x) =A;x
" u, = y,(xX,¥,) = (%, — Elx, 1y,))

NS

A\ e where A, and A, are chosen to meet the hard power constraints with equality, (this being
i L the optimal choice in the affine class, as to be shown later), we have

¥ A
¥

/ % n,

SO xy
o . 7‘(1} N

o
I X 5 — v
Y 3 {l’ u y
Py 1 1
. 7

YN

W T
,) 1

'y
® Figure 4.3. Equivalent representation for Problem P’,.
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N e
4 v.:
]
Alox2
E(x,ly,)=-2—~2—y1 ) (4.18) "~
f) Pl +Gwl [
3
and N
2 2
e 0“’1 Aoy ~
b x; —E(x,ly,)=n, + —_—X——w, (4.19) Il
:‘ p2yg? p2ig2
Q: 1 c"wl 170w o
! 7
Al
i which implies that -
: -
P 2 ‘ o
ot owl KIO'
ﬁ uz - A.z X w+ nl [
! P12+o: P +0o w7
. 1
Q .
\ with o3
" \-\"
s 22y 2 '
W P,(P/+0, ) .-
Iy 2 - 1 '
> M= 2 2 2,02, 2+
:: o, owl+onl(P1 +ow1)
i X
j The mean square error in estimating x from the simultaneous observation of y, and y, '
‘ then is
I\ :
K 2 2 2 2 g
o, 0 P,o
2 2 X 7wy 2 2
3 El(x —E(x1y,.y,)) 1= Og,¥ - (4.20)
2 2 2
° (P, +o£‘)(P22+o‘32) (on21+ox o“.l/(P,2+o:‘,l))
-
4 2 2 2 2 -
:' Considering the situation with o, =100.0. Op = 0.99, 0, =10 oy =00L
he 2 o
~ Plz = 85.0423 and Pz2 = 100.99, we find that the optimal lincar policy yields a cost of -
$ '
A 0.53467. ol
“ L3 _
‘.: Ly
We next consider the design f
e o
' oM
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v (x)=x+ esgnx

7(x) =%

and

(y1+Y2—€)/2 lf yZ > 0

Z

&y,y,)=
v, +y,+6i2 if y, <0

(letting €= —1.0 we obtain E[u,}] = 85.0423 and E(u,) = 100.99).

=% PSS

N
o ow
o
y,=X + n, +w,
ﬁ =X+ w,
a where
Wy~ N(0.1).

If we calculate the mean square error under the above policy by an analysis similar *o

that used in Appendix B, we find that the nonlinear policy yields a cost of 0.53172, and

-

hence is superior to the optimal linear policy.

- We now return to the problem of showing nonoptimality of linear laws for at least
- some instances of higher-order ARMA models. Consider the following second-order model

with feedback, illustrated in Figure 4.4. We have

Xy = Py Xyt PypXp + My

Xy = ProXg + My

and x,, m, and m, are given independent, zero-mecan, Gaussian random variables.

R A AT P =W

C o
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Figure 4.4. Schematics for a second-order model with feedback. ¥y

o

'

The problem is to minimize E[(v2~x2)2] under the schematics of Figure 4.4, with a0
>

vy =7,(yoyy¥y) :

Let us now suppose that 0\32 is arbitrarily large, essentially making the third channel

AW SrmoR s

redundant, and therefore

E(x, 1 ¥o¥,,¥2) = E(x, 1 yoy,)

Further suppose that

which imply

-
-t
R

Xy = Xp "y

x1=x0+m1

and we obtain the problem depicted in Figure 4.5. We thus obtain a problem of the type
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Figure 4.5. The second-order ARMA model under the given restrictions.

P,. discussed earlier in this section, for which there are instances when linear strategies
are not optimal. Hence we see that there are instances of the general problem (described
by second-order ARMA processes) for which optimal linear designs are not optimal in the

general class of policies.

4.4. Optimality over the Affine Class

In the preceding section we have shown that for ARMA models of order higher than
one, the strategies which simultaneously provide optimum communication and control are
not necessarily linear. In this section we show that if we confine the design to the affine
class, then the cptimal communication strategies use a linear transformation on the inno-
vation process.

Theorem 4.1. Consider the general formulation of the Problem PS given in Section 4.2, but
with h, resticted to the class
u = h.(i‘.,y'—‘) = Li(ii.yl_‘)

H

where L is a general affinc mapping. Then one may. without loss of generality. be

-4\-_ --., ‘» : - 8 O AT RN NN LG .r;.r‘) .-‘ A A S P TN W A, '.{‘»“«".- 'J-'_‘a".r-‘.f-\r-"‘ e
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confined to optimizing over the class of transmitter policies which satisfy the structural

restriction -

T @il @

u = A&~ EE 1y ™). (4.21)

o
- o

Pty

Thus it is sufficient to optimize over the class of policies which use a linear transformation

We now note that the sigma field generated by §'i is the same as the sigma field generated

55
on the innovation in X; T
N X
}-_‘1 A
Proof. Note that over the affine class we may write .
L
-1 O
~ i—- ~ . s
w,=L(X,y )=\ +p o
)
4
. N
with S B
". N
1 ®
ﬁ'i = A'l(;(l - E(il l yl )) v o
~ ;
-
and
o
fpoimt o}
=Ly ) 7]
2N
where L', is an arbitrary affine mapping, and U; and p; are uncorrelated. Thus, we have "
e
hy
N_N 2 i, N 2 .
Min J(h ¥y )=E|¥(qu +a(E( T b, X_ ly)— X b %)) S
N i=0 =0 k=0 o
N -1 -1 o
=E|S(qd +qpl +a(E(T b Ky 1Y) = T b yKic)?) 2o
=E|Z(qu +qp" +a(E(L b X .|y Z biiXiek RS
i=0 k=0 k=0 °
N =1 =1 R
~2 % 1vh s 32 N
E\X qb +a(BE( L b WX 1y)— Z b %) o
i=0 k=0 k=0 v,
A
L)
. .1"_ +
by y' where o
&
o
)
AR
A
n? WA
o R
(e, ‘
e
Y
[t
: \J
W R e "‘»-" 2 S R Y A g R A AT o S o e o A -:
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. il 0\
since p;isy ~ measurable. "

Hence, ' Y

) N =1 . =1
Min 3" y™) 2 E{Z (g8 +a(E(T b K 17~ T b %) Q)
i=0 k=0 k=0 R

L L Sk R =3
A

N jo==

and therefore the cost functional may be optimized under the structural constraint (4.21). 03

4.5. Optimal Linear Strategies for Second-Order ARMA Models Yy

Bz A
o

We now concern ourselves with the design of communication and control strategies R
Y

E==

3
-
-

which simultaneously optimize over the linear class. In order to facilitate an understand-

ing of the concepts and methodology, we restrict ourselves in this section to a study of

| 5
o

second-order ARMA models. The general ARMA model will be studied in the next sec- -

e

tion. o,
s

. (i) The problem with Hard Power Constraints. 2
2 .
ot Problem PH L‘.:
‘:': 3
N " ~

. Minimize E( ¥ a(v—b, X~b, ._ %,_,)] ®
D, NN . ' ' 3
Fe hly i=0 ‘.
where 3

O T
n =)
=h %y =

i i li' ’

- ~ -
i-‘ vi - Yl(y ) -.\"
o 2 2 g
e , | gt
and the x's are generated via ‘

o
Py Y
4
v -
-4

“~
e ]
» ®
3

. o !
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X) = p1oXo + My
Xy = Py Xy + PyoXg + M,

Xie1 = Pis11% + Py iy Ximg Ty

XN+1 = PN+t NXN T PN N—1 XN T My -

Notation
Let
) = ElR~ER, 1 y))]

A) = ElG~E& | y)R ~EX, 1 y))].

‘.A.».J‘

(4.22a)

(4.22b)

Theorem 4.2. The encoding and decoding policies for problem PHZ, which are optimal over

the linear class, are given by

u = vk y ") = AE-ER 1y )

v, =8(y") =b EX1y)+b,_EZ_, 1y)

i,i=

and the optimal cost is

N
T aba!+b’ Al +2b. b Al

Li" Li=19 LiYiLi=19,i—1
i=0

where

El,1y1=Elx 1y 1+ EX 1 y)

El% 1y 1=p,_E&_, 1y " +p LE&_,Iy™"]

1=

E[ii—x lyl= E[;(i_l | y'-'] +Elx_, ly]
Elx 1y )= _— yi
P.2+0W2

! 0

(4.23)

(4.24)

(4.25)

(4.26)
(4.27)

(4.28)

(4.29)

x_ =
[0 e}

L
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-1 -1
APy i Ay +05 080 2

E[J“(i_l ] yi] = Yy, (4.30)
Pi2+o
i
where
P’
Aiz = : ‘ (4.3 1 )
A i-1

o,
i i-1 i
A =D ——— (4.32)
Pi2+o
i
i—1 2 il 2, -1 i-1 2
A =oALy F A, 20,0128 i F O (4.33)
p2
i i-1 i i=1 i~1 2
A =4 — . 2 (P -8y + pi.i—ZAi—l,i-Z) (4.34)
(P, +ow‘)
2
i -1 i-1 Tw,
A my = (o g8y + 0580 -2) 5 (4.35)
P +o
with the initial condition
By '=0. 8y =0and 4’ =0,
a

Proof. Expressions (4.23) and (4.24) are immediate (since we know that the optimum u, is
linear in the innovation and the conditional expectation minimizes the mean square error),
and (4.25) follows from the definition of A. Expressions (4.26) and (4.28) are due to the

fact that y, is independent of yi“1 and (4.27) follows from the definition of X,

?

- A
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Now, -l
a0
' v = NE —EG 1y + w; v
; and & f
‘ EX 'y, = B — B, 1y D1y
‘ g
! hence we have (4.29), and (4.31) follows from the hard power constraint on E[uizl. ’
To obtain (4.30) note that for any two zero-mean Gaussian random variables z; and % X
) Z,, we may write }«5‘ '
A o ‘
! Elz,z,) ‘
E[ZZZ]
-
N where n is zero-mean, Gaussian, and independent of z,. 3 5
, I
: Thus we have x '
. i~1 -
‘ Vi = AP (R —EGRiy 1y ) f
fi + M0y — ERp 1y T )+ Ami, + W, ﬁ
;
and writing \
i =9
: i-1
- - i~ i-1i=2 - -
! (%,_, — Elx_, !y’ = — - 11 (X_, —Ex_, 1y % +n, g
4 =
4 8y
. : . ~ ~ -1 e )
. (with n independent of (X,_,—E(X,_, 1y~ ))) we have W]
4 =
i-1
! A, « N
=Li=2 . - i— , i
; ¥, = AP oy + pi’i_z-—l-'—l—)(xi_‘ —EX_ Iy +n 2 ;
- o
Ay
;l ) g
B and therefore ﬁ ,
y
4 -
X g
)
i
¢ o
) L)) d
: TR
)
b

3,
5
e
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Elx_, |y)=E%_, —EG_, 1y Dly])
is given by (4.30).
What remains to establish now, is the validity of the recursions for the A’s.
We have

| = El(% — E(%;1 y))*)
= El(x, — E(X | y™) = E(%;1 y))’)
= A" - EEGF 1y))

and using (4.29), (4.32) follows. Further,
AT = El], - ER, 1y ™)
and using the definition of X; we have (4.33).
Now

Aii_l = E[(ii—l - E(ii—l I yl))z]
=El(x_, ~E(x_, 1y ~E&_, 1y))]

= a7 = EEG_, 1y)]
2 -1 -1 2
P (91 A0y #0128 2

1

=1
=4, —

i-1
1

(Pi2+o‘2,|) A,
i.e., we have (4.34). Finally,

WIS - (G : CHED) CANES - CNE'D))
= El(%, — E(& 1 y'™") = EG& 1y )%, — EG,_, 1Y) = EGp, 1 y))]
=87} — EEG, 1y JEG_, 1 y)]

and

A = El(% — EGR ly ™ ), — EGy_y 1y ™))

b=

_ i-1 i-1
= Pi-18im1 P82
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along with

2, i~1 i-1 -1
ARy Ay 0,08 o)

E[E(il I Yl) E(ii—l | y‘)] =

Pi2+o“2,I
= Piz ( AR, ALy
= 2 2 Pii—18i-1 i,i=2"i=1,i=2

P, +ow'

implies (4.35).

The initial conditions for the above hard constraint version are immediate, and it is a
straightforward task to verify that using the given recursions, all expressions required for

the solution to PH” can be generated.

(ii) The Soft Constraint Version

It follows from the solution to the hard constraint version (as in the case of the
first-order ARMA model) that Problem ps? may be solved via the following nonlinear

optimal control problem.

Problem NL*

N
Minimize ¥ (qui2 + aibi,ziAil + aibiﬁ_lAi'_1 + 2aibi'ibi'i_1Aifi_l)
P: ..... P.: 1=0

where the A’s are generated recursively by (4.32) through (4.35).
The solution to Problem NL? is given by the following dynamic program:

Wi (81:82:85) =0

W.(4,:4,:4,)

O T, X (WY

(1%

' 'v'A p ~ (] g " N, e - B ~ . -
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2 , B1%w )

P’ P40l a

N - 2 2 v
::: 2 P; (P i-18,+P; 1~283) ;‘.
+ab;; (8, — A :f

@ (Pl +0w|) Al \
Ly 2 N
; 0ol ::

- + 2aibi.ibi.i—l(——;—_Z_)(pi.i-lAZ + P i-203) 5
§ P, +chI i;

2

2 W 2 P! 2
. + Wi+1(Pi+z,i‘_z'_—z‘ A+ Piyy {8y = A (pyi-182 + Pyim283)7) Q
Pi+og (P, +owl)A1 &

Bf 2 ;
owl b

+ 20111 Pir1,i-1(Pi -1 B2 + P gDy )—

P 40l 4

ﬁ W Ly
| A0l (pyAytp_,A)0 g
190w, Piim18270;i—283/0w, v

: j\

2 2, 2 '

ﬁ P 4oy P 4o,
:

» “
5': Further, the optimal value of the cost under linear policies is Wo(ofo;O;O). "

L&

"
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. 4.6. Optimal Linear Strategies for the General ARMA Models Y

\

N

)

(i) The Transformed Problem with Hard Power Constraints ®

v‘ «
& :
Problem PH’ {

:ﬁ' t
¥ N - '
- Mirlirr:‘ize ElY a(v,— T bi‘i_kii_k)zl
S hy i=0 k=0 \
W

where

%
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:;i, = I PpimXimg + My - @
o k=1
E:::’ Theorem 4.3. The encoding and decoding policies for Problem PHj, which are optimal over "_‘;
RN e,
.',}) :
R the linear class, are given by
1:\:} @
4y - _
u =y &y D=AE-E& Iy ™) (4.36) ,
b - .
g N ~ i o
o v, =8(y)=1% bi,i-—kE[xi-k Iyl (4.37) Ay
;::" k=0
g X
", and the optimal cost is -
‘.,,
_:::; N =1 =1 L‘g
1! 1.8 _ . {4
’:"::‘ r=Zall Z bi,i—kbi.i—mAil—k,i—m) (4.38) '
AN i=0 k=0 m=0
[}
) =
iu:.: where
&"‘O
N . . o
0 E%;1y']= EX, 1y + EI% 1 y] (4.39)
) A, Aii-l .
P El% 1y]l= —— vy, (4.40) o
:.':: Pi2+oii
, j w
& -1 '
A Zpi,i—kAil—k.m e
0 . k=1 4.41
R El%, ly]= v, @4ty
e 2, 2 \
“" P°+o s
. .
] -
P . . . oy
y Elx; | y' = z pi,i-—kE[xi—k ly' '] (4.42)
N k=1
‘ -
) [0
[/ \f
) X
!‘.:
‘ A
':.:, v
)
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2
A 2 = _;.’_l_
i-1
4;
and the A’s are generated recursively by
i-1_2
i Ail w,
A=
Pi2+a:‘
i-1 2 i~1
4 =0, t Z I Pi-kPii—mBi—x.i—m
k=1m=1
i i-1 Piz : APl
Al;l = Am - ‘ X Z b, 1—k ik, m) ’(I~J<m<1—l)
(Pi2+a‘f,l)Ail k=1
. . P’ j y
1 and
An.:n = A‘n.rn — Z Pi, e l—k n)( Z u-k |~k m)
(P +0 ) k=1 k=1
1 ] i1 2
= Z Z pn.n-kpn,n--pAnl-k,n—p + omn_l(i—jgngi—”

k=lp=1

l = z pn n—kAn—km (l—j<m<n<i_l)
k=1

with Ao_l =0 2;

Xg

Ak-,:, =0 for either k<0 or m <0.

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

Proof. The proof follows in a manner similar to that for the case j=2 discussed in the pre-

vious section.

(ii) The Transformed Problem with Soft Power Constraints

It follows from the solution to the problem with hard power constraints that Prob-

lem PS’ can be solved via the f ollowing nonlinear optimal control problem:

AR YA W . O \ (¥ a P AN o Ay
B SR Y X A NE KA SRR AT AL ST D O K U ST U R KON ) N R "n.‘




N 1 -1

. 2 :
Minimize ¥ qP"+a(} 2 bi,i—kbi,i—mAil—k.i'-m)

2 2
Po, caay PN =0 k=0 m=0

g
3

¢

' where the A’s are defined via (4.44) through (4.49).

K The solution to the above optimal control problem may be obtained via the following

dynamic program.

-
-

. e

\

D N+1 0

-~

i-1 i=~1

i=1 i1 i-1
WI(A et Ai,i—(j—l)'Ai—l,i—l’ R Ai—l,i—(j-—l)' trte Ai—(j-l),i—(j—l))

i

oA B2 4 B3R

»

*y

3 -1 -1

)) - 2 i-1

o = Mizn P +a( X T b by (A~ i
! Py =0 p=0 §
P’ : i=1 : i-1

t, . o 1=
*; . 2 (Z pi,i—nAi—n,i-k)( z pi,i—mAi—m,i—p)) ‘t&,
W AT(P +0.) =1 m=1 b
] )

o

? i i i i i

+ Wil ..., Biim(=1Bim1 o+ Bimpi(ry v e Ai—(j—l).i—(j—l))

4

K}

N where the relationship between the A’s is as given in (4.44) through (4.49). The optimal §
. .
i value of the cost is Wo(oxi.0.0,...,O).

N s
¢ (iii) Solutions to the Original Problem

N )

§

; 4
:' The optimal linear solutions to the original problems PH® and PS° can be generated 1
@

T once the solutions to the transformed problems are available. We indicate how this may =
M )
:: be done for the hard constraint version. For the problem with soft power constraints, the
‘ N
5 procedure is identical, except that we first need to find the optimal power levels by solv- N
@

Y ing the nonlinear optimal control problem via dynamic programming. 2
! | 3
K Noting that since v, is y' measurable, we have

] [
I. i -t r?‘
5 x,—E(xly )=x,—EX1y ")

)
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! N
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3
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and hence the optimal u;'s are given by
ur = yr gy ) = A (x=Ex, 1Y),
with the A’s being the same as those for the transformed version. To obtain the optimum
v,'s, note that
N :
v =8(y)= T b, E(xIy),

k=0

and recalling that (see Appendix A)

~

Ximx = Xj—g = Viex—1
we have
-1 ) =1
£ — ~ iy __ -
vh=3 b (EX o ly)— X Vi
k=0 k=0

where the ¥'s are defined in terms of the preceding v*'s as in Appendix A and the expected

values of the X’s are given by (4.39) through (4.42).

4.7. Conclusion

In this chapter we have studied the problem of simultaneously designing communi-
cation strategies and control policies for problems involving ARMA models of orders
higher than one. For one of the simplest such problems, involving an ARMA mmodel of
order 2, we have shown that the optimum linear strategy may be outperformed by an
appropriately chosen nonlinear policy. This is done by relating the problem involving the
second-order ARMA model, to a problem involving transmission through a Gaussian
channel with noisy side information at the decoder. It has further been shown that over

the affine class, the optimal strategy consists of transmitting the innovation at each stage.
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The solutions which are optimal over the affine class have been studied for the hard power

-8 |
e constraint version as well as for the soft power constraint version of the general ARMA u
}; ) model. %
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. CHAPTER 5 3

j -

THE DECENTRALIZED TWO-PERSON TEAM WITH ::;

g MULTIPLE INFORMATION CHANNELS .:;
\ )
e

S.1. Introduction . "

"

' In this chapter we consider decentralized, two-person stochastic team problems, ':aj

.J A

}j} where the action of one agent is transmitted to the other agent through a number of noisy ) )

M 2

channels simultaneously. This is a generalized version of the decentralized two-person

g team discussed in Chapter 2, where only a single communication channel was allowed :3

4

()

82 between the two agents. ::':‘

. In Section 5.2 we formalize the problems to be analyzed in this chapter. In Section

& (N

) 5.3 we consider the situation where the channel noises are independent of the input vari- ‘:oé

W

able to be transmitted, with the observation of the first agent being noise corrupted in

general. For this class we show that the optimal strategies are linear and may be found

- 5
%

= R
@

through a related parameter optimization problem. In Section 5.5 we analyze problems ‘c:

"

&

! where the channe! noise is correlated with the input variable to be transmitted and find <
®

r Q

= that the strategies which are optimal over the linear class may be outperformed by non- &
" o
Ej linear strategies (except for a very restrictive subclass), even when the first agent observes g
FY,

. an uncorrupted version of the input. The concluding remarks of Section 5.4 then end this ".

: N
< chapter. :::
v

o ‘:I
\

‘8 5.2. Problem Formulation W

We have noted in Chapter 2 that if the first agent observes a noise corrupted version

&=

of the variable to be transmitted, and the channel noise is also correlated with this vari-

able, then the linear strategies for the general stochastic team problem may be outper-

®
o )
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e

,._.: formed by nonlinear strategies. In view of this result, we shall restrict ourselves to the
*.‘::'!_ following two classes of problems with multiple information channels:

:::.e (i) The channel noises are all independent of the input x, while the first agent

observes a garbled version of the input x.
N (ii) The first agent observes the input x directly, and the channel noises are allowed
N to be correlated with the input x.
O These situations are depicted in Figures 5.1 and 5.2, respectively. We consider the

X quadratic cost functional J(y,,y,) where

Jygy,) = Elkgug+squox-+su +s,u, ]

M Uy =v,(),u, =v,0),

0 and the following two classes of problems are thus identified:

Wy Problem Pl

‘l ) P
, Minimize J(y,,y,)
) Yo%y

N where

d
'.}l Augtw,
-~ _ .

y =

N }\nuo+wn

:5 u, = yl2)
' u, =vy,(y)
:>‘ z=x+v

1 and
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Decoder "
Ay w1 .
.
]
v ;
Encoder A, w, ‘
i Yo (D rD—! '
Ug ) 1 7 — U,
) : ;
[} [] d
i 1 N
: ; ’
xn w, "
'
— f —( f y—= {
b)
Figure 5.1. The decentralized two-person team, with channel noises 1
independent of each other and of the input. X
]
(3
]
Decoder !
Encoder A, box 4w, "
Db :
X —— yO X ] .
Yo ' | 71 e u,
' [
A, b, x+w,
f ¥ g
1 'i
)
. . N
Figure 5.2. The decentralized two-person team with channel noises
correlated with the input. X
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o "
“ =
oy Problem P2

'3
;::; Minimize J(YO;'Y!) ™
:'i: YoY1
N
0:0' g
:5; where ‘

X)

X byX+A Uy +W, B
’:‘f‘ b,x+A,uy+wW, ,
o y= : :%
Y . !
b X+A us+w,
\"|l E
W :
:':! Uy = 'Yo(x)
i
W u, = y,(y) 8
(o
1)
K. with x,v,w,,...,w,_  being zero mean Gaussian random variables, independent of one a
a :
N

:: : another, having variances denoted by a(?), and with A;'s being given positive constants.
:': n\\
" We now turn to analyzing the above classes of problems.
a.,“
:':' 5.3. Instances with Optimal Linear Solutions N
"

In this section we analyze Problem Pl formulated in the previous section and show B
) :'-r
ny that the optimal strategies are linear. This problem has been studied in Bansal and Basar
R n: :'-.

Y [1987b] and the analysis is given here for completeness. Towards obtaining the solution i
o

. to P1 we define 3

b

; m=E[xlz],

o
:4 make observations (i) through (iv) as in the case of the single channel problem (Section &
," \

K 2.3 (b)) and obtain the following equivalent problem: g
::' N

¢ o
:.:: Minimize J'(y'o,y,) o
® Yo ‘
gl
u N
! N
K)

:': 2
o
0 -
Y
o
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g ':
..
' where !
) v
N 3 L
2 51 2 \
g J(y'0y1) = Elkgu’g +s4u’gm+—(u,~m)"+c] \
4s '
i
& with -

uio = y’o(m)

¥

a5 t

@ u = %,(y) )

n and c is a constant independent of u’y and u,.

& :

Let J, denote the infimum of J under the constraint E[uozl =P ie., '

5 i

' I = inf Iy'y) - \

P ) ) o7l . »

% Yoy Ely =P (5.1) 4

o We first have ;

4

t

) g

ﬁ I, 2 k P2+ Irzlf ; S,Elw,;ml+ Inf E(u,~m)*+¢ (5.2) '

Ely =P Hy l=P?

% By Cauchy-Schwartz inequality, we know that '

) )

inf s E[lu’ ml=-1s IPo_ . .

¢

- \ ]

N We now consider the optimization problem Inf E(ul—m)z. Since m, ¥ and u, form a X

Pad N_p2 '

Ely, =P '

~; Markov chain, we have )

b d

9

“r Hm,} € Hm:y} (5.4) A

- where l{a;b} denotes the mutual information of two random variables a and b. \
n

»zs -=

4

3

. A

2 '3

' b
3
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v \d

i i - { W - A » » - » >, y
B R R N R R T N T T N N AT A b e e VNI R D O L DM M WA



L gl ok cai et LBk e b aE O ek ualh Yol BaP VAl vk v gk vab’ ) A K IR A R AN A XA A O N S R O R e oo

=3

o 104 |
§
I Also, we have the inequality

"
. 2
o 1 (o w
3 Imu,} 2 — 103—-———2- (5.5)
S 2 E{(y;~m)’} a

(Wyner [1970)), and the equality

=H.

Hm;¥} = H{F} —H{F I m} (5.6)

o

o where H{a} is the entropy of the random variable a, and H{a | b} is the conditional entropy

of the random variable a given b.

! The correlation matrix for vector §, with E[u'ozl =P is

MPHoS AP

X €c_= .
iy AMPE e A PPel

n

A;‘
]

which has the determinant

(

4 2

n A,
e I€g) = Tol(14P T —) . (5.7)

.e‘i i=1 i 0 Y

]

K Since for any n-variate random vector with a fixed mean and a fixed covariance matrix,
oY the maximum entropy is attained by a normal distribution (see, for example, Kagan et al. &;
[1973]), we have )

" 1 1 i
n H{F} < —log(27e)" 1| = — log(27e)" T o 2(1+P\) (5.8)

o 2 2 i=1 2

' %0
l'. P

2
® A;
o where A 8 3 —.

2
i 0w|

o=

D00
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Using (5.8) in (5.6) we get o

1 )\iz =
Hm;y} < ;10g(1+?22—;-) (5.9) e

. 'Q
i Ow| . e

where we have made use of the expression

l n
H{F Im} = — log(27e)" 1T a; , e
2 i=1 g

since for fixed yo', the vector ¥ given m consists of n independent Gaussian random vari- Y,

ables.

Using (5.5) and (5.9) in (5.4) we get

2 X

2 Om )
BlCu=m)3 > (5.10) 3
Ely =P 1+P°A R

It follows from (5.2) (using (5.3) and (5.10)) that v
P 2 k) s.‘,%'
DEkE
J, 2 kon = Is,|Po_ + — 2 4+ .,:}::
(14P?A) ®
: On e
2 Minlk P°~Is | Po_ + +c} (5.11) o
P20 1+P%A S

2
om

=k,PP — Is, I1P*a_ + +c
14+P 2\ oo

where "

T =

2
14 it

m
]>0.
1+P2>\ W

P* = Arg Min[k P* - Is, | Po_ +
P

Note that P* necessarily exists, since at P=0 the function to be minimized is decreasing and i'..‘;

-

as P~oo, Jp—’oo, implying that the search can be confined to a closed bounded region of R,

over which a continuous function always admits a minimum. Taking derivatives, we find S

R
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that the value P=P* which attains this minimum satisfies

E

%

2
2P*o
2 (5.12)

1,
K (2k°P'-Isolam)(P'2+-;) =—

==

We now have

i By -
«;a} Jopt & Inf J('yo.yl)—lr;f I,
Al Yoti P20

> kP2=(Is 1o, )P*+ ——— +c
i N 1+P 2)\
i which gives us a lower bound for the infimum of J. The final task is to note that this

a lower bound is tight and is attained by linear strategies. We thus have Theorem 3.1

by below.

2 BS R &3 s @3

g Theorem 5.1.

" (i) The stochastic team problem P1 formulated in Section 5.2 admits an optimal

5
A

solution which is linear in the observation variables, and is given by

y*(2) = B*z
.la‘ $ %
B y* (y)=~—— Elxly]
i 2s
o s ol n A B* E
) 1 X i
- == z Yi

@
. 2 gl+al = 0l[(1/(0 240 1)+8¥A]

2

i where * is given by the solution 1o the following parameter optimization problem:

d : 4

o Sl ox l

o,

“;. B* = arg min kOBZ(oxz-HIvz) + S(,Box2 + -
Ig‘ B8 45 (0x2+o\/2)(1+32}\(0x2+0\'2))

a solution to which may always be found as discussed earlier.

=

- -
Pl a8
2.
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(1) The optimal value of the cost is

2 _4
slax

Jopt = kOB‘z(axz+ovz) + SOB*G: + 2 2 2 2
4s(0 2+ H(1+B¥N(0 40 1))

2 2 2 2
§; 040y ST,
+ — -—o0,.
4s 2 2 4s
o, +a,

5.4. Nonoptimality of Linear Strategies

In this section we analyze problems where the channel noises are correlated with the
input variable x which is to be transmitted through the channel. We show that except for
a very restrictive subclass of such problems, the strategies which are optimal over the

linear class may be outperformed by appropriately chosen nonlinear strategies.

Since A;’s are assumed to be nonzero (otherwise the channel is redundant and may be

removed) the observation y for Problem P2 is equivalent to the following observation y’,

(by/IN,) x+ug+(w,/A,)

’

y = : -
(by/N,) x+ug+(w /X))

Lemma 5.1. If by/A| =b,/A, ="-=Db_ [\, then the search for optimal strategies for Prob-

lem P2 may be confined to the linear class.

Proof. Under the conditions of the lemma we may define

bl
1

to obtain the equivalent stochastic team problem below:

A @ LASAGS

=

.

E R

.

-
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(g

s : ’ 2 4 ’, 2
Minimize E[kyu’y + s'yu’ox + su;” +s,u,x]
Yon

£

s

IS where

e b
-

4 = Yl(y) &
“.0 .
!:t*
B and .
o w
ot ‘.r’
oy )
i Aup+w, -
4 .
',:s. y= . &'
::E: xnu'o-"'“’n
A a
p o)
® with &
b "
oW , bl $
f@: S°=s°_2ko—.
\;:t Al
[ N
X0 ' We thus obtain a special case of Problem Pl with ovz =0, for which the optimality of
(niQ
Lo !
LN i
AN linear strategies has been established in Section 5.3. §
(‘i
0 °
st -
.‘q: We now return to the general Problem P2 without the restriction of equality on the
of‘
N %y
4::‘ b/A;'s, and show that, for this class, nonlinear strategies may outperform the optimal o
EN LU
tad
linear strategies.
4.}
,‘: K]
:‘ Uy
:‘ In the following we shall, for notational convenience, assume that A, =1 for all i.
) .-
‘ This does not introduce any loss of generality since a redefinition of the b,'s and the noise ~
@
:i: variances yield the original problem. 5
K> &
: . It is sufficient to establish nonoptimality of linear laws for a special two-channel
¥ v
) L)
N case, which we study next.
".
- :
:’.‘ ]
|.|. ".n
.I
K
", i

N\ ~ '\“ -
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.
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Problem P2*
Minimize J,(y,.y,) = Elkqui+(u,—x)’]
where
Uy = y(x)
u, =vy,(y)
and
Y, Uy +bx+w,
y 3 —
Y, Uy—bx+w,

with b>0 and a:l =gl

Wi

Lemma 5.2. Problem P27 is equivalent to the soft constraint version of the Gaussian

Channel Problem with noisy side information at the decoder, studied in Appendix B.

Proof. We need to note that the vector observation y is equivalent to observing

Y1 t+Yy, witw,
2 2
A Sd £} W)\ —w,
bx + —————
2 2

and the lemma is established.

O

Since linear strategies are not optimal for the problem witi noisy side information, in

view of Lemma 5.2 the linear strategies are not optimal for Problem p2%,

NI ONDOUORORGONROONONU OO ) 0\ ) T g r N A KR MmO O vy )
O N R NS R o LS DR OO L L S XM M NN D ST A L 4 AR e TN !,'n?'.o..‘.o A NI
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i 2

.ﬂ K
‘ We next consider the more general two-channel problem with arbitrary (but in view

a

iy of Lemma 5.1, unequal) b, and b,, but the variances of w, and w, still being equal. o

Problem P2°°

' o 2
i Minimize J,(y4y,) = Elkqug + squex + (u,—x)’]
AR
A
"‘t‘.
KRN where -
4':' ?!,..
- Uy = yo(x)
Yy
R W= () 3
W
e,st
A
uly and g
O
z::: Uy +b x+w, o
" y= g,;
HEXY
,:?:' Uy +b,x+w,
4K m
. , '
‘:.;,v with b, >b,.
u | .
o We let E
R '
R
. b, +b, N
::Q‘ u’y =y, + X A
i 2
s g
;‘,o.' to obtain the equivalent cost functional =2
St
‘ ’ I ’ 2 4 4 2 -
:::;: 3, (¥ 0y,) = Elkgu'y + sou’gx + (u;—x)7] =
t§$
:..., where .
\ Fe
.‘ ’ ’ R
e o =¥o(x)

S o
:::.o v, =v,(y) %
,'l.: )
gl
i and

g :
i
L}
-
w 3
g ‘
e |
~
.’). hp
AN
[W)
’:‘:

RN 000 000 ) O AR - « - - -
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Ug+bx+w,
y —
Ug—bx+w,
with
b,—b,
b= _1__..2_
2
and

S0 = S — Ko(b,+b,) .

The transformed problem may now be viewed as one involving noisy side informa-

tion at the decoder (cf. Lemma 5.2), and the nonoptimality of linear strategies follows.

5.5. Conclusion

In this chapter we have studied decentralized tw o-person stochastic team problems
with multiple communication channels. For the case when all channel noises are indepen-
dent of the input variable to be transmitted, we have established the optimality of linear
strategies. However, when the channel noise is correlated with the input variabie we find
that linear strategies are in general not optimal for the case with multiple channels, even

when the first agent observes an uncorrupted version of the variable to be transmitted.

The problems in this chapter may be viewed as those involving encoding and
transmitting over vector channels with Gaussian noises (under generalized fidelity cri-
teria), where the source output may be distorted prior to encoding or the channel noises

may be correlated with the source output.

The classical information transmission problem, viewed as a team problem, generaily

assumes that one can directly encode the variable to be recovered at the receiving end. A

v ".u é‘n"‘\"‘?‘-’&‘»"‘.n'l‘|'l‘§“’u'i‘|'l‘&'l‘\."w‘i‘.".\‘!‘.'l‘l.l,. ' ‘I!..Igu.le1'0?Q'.E.‘.‘,g’.’.‘l‘.‘l’q‘l,| A, "". \

R

e

-

)
s




model which allows distortion prior to transmission was first considered by Dobrushin

and Tysbakov [1962]. If we suppose that the message to be transmitted is a temperature
read by a digital thermometer or the pixel levels of an image, then the message would not
be an exact copy of the object of interest but a noise-bearing variant of it, and the analysis

in this chapter would then be applicable.

We also find that for the case where the channel noise is uncorrelated with the
encoder input, the nature of the solution is such that it may be considered as first extract-
ing the message from its noisy version under a mean square criterion and then transmit-
ting this extracted message. This is in accordance with the scheme reported for the hard
power constraint version with n=1 by Wolf and Ziv [1970}, as well as with the "discon-

nection principle” introduced for finite alphabets by Witsenhausen [1980].

We should also note that channels of the form considered in this chapter have been
called multipath channels in the literature (Ovseevich and Pinsker [1958]). In such chan-
nels, even though there is a single transmitter, the reception is as though a number of
channels are operative in parallel. Pinsker [1972] also gives expressions and estimates for
the quantity of information contained in observations with respect to an estimated
parameter for a fixed and random‘ number of observations. For the special case where
each of the A;'s are assumed to be unity, our result on maximum information between m
and ¥ (eqn. (3.9)) corresponds to the expression derived in Pinsker [1972], when the
number of observations is fixed, and the variables are all Gaussian. Pinsker’s approach.
however, is based on sufficient statistics, whereas here we have employed known results

on enlropy maximization.
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CHAPTER 6
DECENTRALIZED MULTIPERSON TEAMS

6.1. Introduction

In this chapter we formulate and analyze some decentralized, multiperson, stochastic
team problems which are generalizations of the two-person teams studied in Chapter 2. It
is assumed that a (possibly noisy) version of a Gaussian random variable, available at one
location, is used to generate either a single communication signal or a set of communica-
tion signals, which may then be transmitted via noise-corrupted channels to either a sin-

gle location or to a set of locations.

In Section 6.2 we formulate the problems to be analyzed in this chapter. In Section
6.3 we analyze problems with a single transmitting agent, (synonymously, encoder) and
multiple receiving agents (synonymously, decoders). In Section 6.4 we analyze problems
with multiple transmitting agents as well as multiple receiving agents. In Section 6.5 we
consider problems with multiple transmitting agents and a‘single receiving agent. The

concluding remarks in Section 6.6 then end this chapter.

6.2. Problem Formulation

In this section we formulate three classes of problems involving decentralized mul-
tiperson teams, where communication between agents is permitted only via noise-

corrupted channels.

First, consider the situation depicted in Figure 6.1, where the measurement variable
u, is generated based on a (possibly noisy) observation of a Gaussian random variable x,

and is then transmitted over a number of noisy channels to various locations. We allow

the possibility of controlling the sign of transmission over each of the channels
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individually, and the channel noises may, in general, be correlated with the input variable
X. All agents are assumed to cooperate in minimizing a quadratic cost functional, and we

formally have Problem P1 below:

Sy bix+w,

I
_é_—%—J‘ 711

52 bzX'.'Wz

-—-u(%)———.(%)__..yz

U, bNx+wN

B N, W

Figure 6.1. The decentralized stochastic team with a single transmitting
agent and multiple receiving agents.

Problem Pl

N
C e 2 2
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Z2=X+vV
Yi=su,+bx+w,,
Here kq,p,. ..., py are given positive constants, r,, g,'s and b;'s are arbitrary con-
stants and X, vV, W, ..., wy are independent Gaussian random variables, with zero mean

and prescribed variances. The s;'s (i=1,...,N) are design variables, constrained to be either

+1 or -1, these control the sign of transmission over each of the channels individually.

Note that Problem P1 involves the design of only a single communicating agent, and

2 e X B B B B

it is only the sign of transmission on different channels that may be controlled. In case

we have complete freedom of designing the communication variable for each of the chan-

%

nels individually, we obtain the situation depicted in Figure 6.2, which leads to Problem

a0,

P2 below:

bix+w,

v Yo1 ‘ Y %

z byx +w,
R — y2
Yo2 —'é———ﬂ R4V Y2

D =R B
=

ﬂ'\
[N ' i
»" | '
I ]
! [
Y. " b N X +w N 1
~ |
t ' Yv : ‘
~ Yov __‘é_——‘{z:__* “uw
LA '
o
P

A

Figure 6.2. The decentralized stochastic team with multiple transmitting
as well as multiple receiving agents.
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Yor -+ YourYir oo+ s YaN

Minimize LYorr ++ +» YoniYapo -+ -
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N

i=]

P OO O T I TO OO K TOR TSR TORTY

2 2
s Yin) = ELT kjug+rugx+puyi+qu, x]

where

i

. uy; = 7,(yy)

; with

3

P

! Z=X+V

y;=uy + b +w,;.

U

{

‘ We finally consider the situation shown in Figure 6.3, where multiple communica~
tion agents are permitted and noise corrupted versions of all their outputs are made avail-
able at a single location. This formally leads to Problem P3 below.

,:

9

b x+w,
{ y 1
: v Yo1
z byx 4w,
X —— f Y2
¢ Yoz ——‘é———' Y1 — U,
: byx+wy
' Yv
N Yon ‘——ﬁé———"

Figure 6.3. The decentralized stochastic team with multiple transmitting

agents and a single receiving agent.
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: Problem P3
, N
Minimize J;(yqq + « - » YoniY1) = E[2(kiuo‘,;+riu°ix)+p1u12+qlulx]
B -
& where
3 Ug; = ¥oi(2)
@ Wy =y 0y VN
y I with
R

Z=X+vV

Yi= Uy +bx+w,.

The three classes of problems identified in this chapter may all be viewed as generali-

P

zations of the decentralized two-person team problem studied in Chapter 2, where it was

R 4

22 @

established that linear strategies are optimal if either one of the following two conditions
holds: (a) the channel noise is uncorrelated with the input, or (b) an uncorrupted version
of x is available at the encoder. Therefore, in order to study how the results for the

two-agent problem carry over to the multipie-agent problems, we shall restrict ourselves

wis

i
¢
. to the following two conditions for each of the Problems P1, P2 and P3:
! Case (a): ovz =0, bs are arbitrary, and
q
: ‘; Case (b): ov2¢0. b, =0 for all i=1,..., N.
h) o
1
| 3 In the following three sections we respectively analyze Problems P1, P2 and P3.
¥ vy
Pl ‘ under conditions (a) and (b) above.
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0
‘
R
1 "5
s
*
I
N
v

v
A (A () h y \ 1 o VRO AT g N LAY, o rg ~ )
u‘u’l.~"’,’I'-‘\".0.5&."!."’!.."t'..lt..\"’l".b.. AN e e J‘"J...l.\ t'!.\'. .«.l.,' N 0N S O XY (X . { Y M) A‘ \ O N \(41, "\ A ; .( 1 . .I\V ' ‘ ’:‘C'

‘W

SN
e 8%

-

Cmac—

Ve

Caa =~ —u—

%' ¢
..0 LALR



“ 118 g

6.3. The Problem with a Single Encoder and Multiple Decoders

3

?

K In this section we study Problem P1 identified in Section 6.2. By completing squares,
we find that the cost function J;, may be rewritten as
2 . 9% . qiz 2
‘ =1 20 =1 9P
Case (a): 07 =0, b/'s are arbitrary.
1 If 0,,2 =0, we may define

h Ug; = Siup + bix , (6.2)

and then consider the problem of minimizing

q;
a9 El(u,;, + — x)%] (6.3)
[ 2p;

TS o B Oerd Rl O B

u subject to

-,
el

. uy; = 'Yli(um + Wi) . (6.4)

4

N Note that for every fixed E[uo2 1=P?, we have

M, E[uozi] = P2+bizox2+E[2sibiuox]
[ (6.5)
2 < P4+blo 2421bPo | .

z

;.. Since

i,
s

Y= Uy + W, (6.6)
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PREC
SN
5
-

it follows using (2.10) and (2.11) that oy

2_2 2 (!
P+b’al+21bPa, 140 i

I(x;y;) € — log (6.7) o0
2 G 2 1Y

t l'E

and further, using (2.9), we obtain that e

$

\

2 2 2 U
o0 |.|

qi b 4 W’ ..

~ . (6.8) T
((IP1+1b10,)+0]) m

= 2 a8 -

q.
E[(ul i+_;X)2] )
2p; 4piz

: 2 _ 2
Let J,p denote the minimum of J, under the hard power constraint Eluy]=P". We "o

N
then have (with K & =¥ (q,”/4p)0.})

i=1

N . "

Jp 2 kPP + Inf Elrguxl+ Inf E[F pi(u“+f‘-x)2] +K \
EHul}=p? Hull=P® iz 2p; ®

N2 22 e

5 q; 0x 0 Wy : S ’

=koP"— IrgPo, | + 3 —* +K e
=1 (IP1+1bi0 )Y +0)

TR O BROBy KR 9
':z.'-

T
(3

O
N qil oxzoj‘ (6.9) X
y—- +K oy
=19P  (IPI+1bl0 ) +0] B
= ! il Oy owi '

S

> Min [k,P* — IrPo, | +
P

-
>l
‘]

A

2 2
2
N q g,0, bty

= kP — IrP*a, | + T — - ' —+K. o
=1 P, (lP*I+|bion)2+owi ity
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‘
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We thus obtain a lower bound on the optimal cost, and the next task is to note that this
lower bound is tight and is achieved by using the linear policies:

| P*|

o

u*, =y*(x)=—sgnr,"

X (6.10a)

X
q; s(IP*I+Ibla)o,

u =y =—-— P Yi (6.10b)
2P ((IP*1+1b1 0,0 +0))

where

s;=sgnb,. (6.10c)
We therefore have Theorem 6.1 below,

Theorem 6.1.
(i) The stochastic team problem P1 with av2 =0 admits an optimal solution which is
linear in the observation variables, and is given by (6.10), where P* is given by the solu-

tion to the following parameter optimization problem,

N 52 o,(2 o,f,'
i

: P* = arg min[k,P* + r,Po, + ¥ — ]
P =1%Pi ((1PI+1b,1 0, )40
: i
; which aiways admits a solution.
1 (ii) The optimal value of the cost is
. 2 2 2
: 2 Y g Ix Tw, N g’ 2

=3P ((IPF1+1b1 0 +03) =1 4P,
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Case (b): b, =0 forall{, 0! is arbitrary.

If b’s are zero for all i, then all channel noises are independent of the input x. We

now defme'
m 4 E(x12z)

and use observations (ii) through (iv) of Section (2.3) to obtain the equivalent problem

below:
N g
Minimize E{kqu'g+rou’;m + ¥, —(u';~m)* +K] (6.11)
YooY ¥iv mp P

wy=7vy'y(m)

Wy =y, (y)
and K is a constant independent of u'y,u’;,, ..., u’y. We thus obtain a special case of the
problem discussed in part (a) of this section, and the optimality of linear strategies fol-
lows. Note that the s;'s in this case may be chosen arbitrarily, since the b;’s are all zero;
hence in the statement of the following theorem we have taken s, = +1 for all i, without

any loss of generality.

Theorem 6.2.

(i) The stochastic team problem P1, with b, =0 for all i, admits an optimal solution

which is linear in the observation variables and is given by

u*) = A*z (6.12a)

q; x*oxz

“'1i="'2"‘ > . ; ¥ (6.12b)
Bi | ax (ox+ov)+ow‘
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KRS

where A\* is given by the solution to the following parameter optimization problem:

N g2 0’ el+0l)
20 2, 2 2 9i x VoW
A* = arg min[kA“(0 [ +0 . )+t Ao, + T — ]
A mi=t 4P \¥(0 240} )+of,‘)

=g

a solution to which always exists (Remark 2.1). \!3
(ii) The optimal value for the cost is o
2 2, 2 S
N g2 00 +0l) N g2
22,2 N’ i ' i 2
KA*¥ (o, +0, J+rA*o + T — -r —o,. g
=1 4P (,\,*z(oxz+o‘,2)+ajl) i=1 4P

64. The Problem with Multiple Encoders and Multiple Decoders o
o
L
In this section we analyze Problem P2 identified in Section 6.2. First, by completing

c{-

squares, we find that the cost functional J, may be rewritten as
N 2 -

‘ q; q;
2 i o2 o2
L,¥010 + + +» YoniYire « - - » Yin) = EL T (Kjugi+rugx+p(u)j+—x)'——0a,) . (6.13) ?f
i=1 2p; 4p;
Case (a): 0. =0, b,'s are arbitrary.
..:\
The analysis is similar to that in Section 2.3. We first define "
’ ":
u'; = ug; + bx (6.14) =
to obtain the equivalent cost functional ?:Q
N 2
. ‘' ’ ’ ’ , 2 v qi ’ 2 A
V¥ op oo YooY e - o o Y1) = ELZ k' g u gpx b —(0' =x )" +K] -3
i=1 p; :

s
N
.
-
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where
u'g; = ¥'oi(%) (6.15a)
u'y; = 'Y'u("l'm +w,) (6.15b)
r;=r1,—2kb, (6.15¢)

’

and K is a constant independent of ;... Won0yy, o0 Wiy

Let J',p denote the minimum of J'(y’;,¥’;) under the hard power constraints

E[“'ozi] =P}. (6.16)
We then have
N o2
V,p 2 T(kP2+ Inf Elruwexl+ Inf El—(u’, ~x)*)+K
j=1 E‘.“’o“:FP‘z HU’:‘]:PE 4p,
2 2 2
N , q> 9x0,
= ¥ (kP =1, P,0 (+— ————)+K
i=1 P (Pl+al)
N , q oxzoj,i (6.17)
2 Minl ¥ (kP - 11| P.o,+— ————)+K]
P20 im i (Plog)
2 2
N 2 , Qiz ax 0W|
= Y (kP*'~Ir,IP*o +— ———)+K..
i=1 W (Prr+ol)

Noting that this bound is tight and is attained by linear policies, we have the following

theorem:

000 % . \ - . . - . .
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X
N Theorem 6.3. -
-7

(i) The stochastic team problem P2 with ov2 = 0 admits an optimal solution which is

linear in the observation variables and is given by

&3

. u*) = y*(x) = A*%x (6.18a)

3 g
a:‘

o o | O*+b)o) %

Ky ut, = Y*u(yi) ==— Y; (6.18b)
205 |(arb o 240l

N where
[
P#

. At =(— —b,) (6.19)

1)
z‘. o,

and the P*s are found by solving the following parameter optimization problem:

2 2
“ 2
oxowl

q.
. P* = arg min (kiPi2+r’iPiox+—‘— —_—) (6.20)
P Py 4p; (Piz'*'a\i,)

a solution to which always exists (Remark 2.1).

“

Y (ii) The optimal value of the cost is .
i N Qiz oxzowz_
y: J*, = Z(k‘iP*iz—r'iP*iox+—— —)+K ’
" =1 4p (p*iz.*.o;) g{:
. where ‘EZ
‘| N 2

. 2 9 2
I K - X (=kb +rb——)o, . 2
o i=1 4ap;

"
" L

» . “.‘
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N
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Case (b): b,=0 for alli, o is arbitrary.

If bs are all zero, then the channel noises are all independent of the input x. We

define
m4 E(x12)

and use observations (ii) through (iv) of Section 2.3 to obtain the equivalent problem

below:
N 2
’ 2 ’ qi ’ 2 4
Minimize E[T (ku'g+ru’ gm+—(u';~m)") + K
Yor-ee- Y oY 1Y 1N j=1 4pi
with

o =Y (m)

u'y; =)

and K’ is a constant independent of u’y, ..., g0, ..., U . We thus obtain a special
case of the problem discussed in part (a) of this section, and the optimality of linear stra-

tegies follows.

Theorem 6.4.

(i) The stochastic team problem P2, with b, =0 for all i, admits an optimal solution

which is linear in the observation variable and is given by

u*(z) =A%z (6.21a)
q; A*ioxz
wt(y)=—— y; (6.21b)

2p; )\"‘iz( ox2+of)+o\3,‘

where A* is given by the solution to the following parameter optimization problem:

U RaC RO MR IR M NI M MG ) y ) N 3
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2 Qiz oxz()‘izovz+o:|)
A*. = arg min[ki)»iz(axz +0,)+r\0 x2 +— ]
P Hol+o+a)

a solution to which always exists (Remark 2.1).

(ii) The optimal value of the cost is

20 g2 2, 2
. 2, 2, 2 2 i2 9x (A% ov+aw‘) qiz 2
T (kA* (0 +0, T A% 0 +— - 6.
CrRe vy 2, 2, 2 2 4p.
jm=] pi (X*i (ox +ov )+ow|) pi

6.5. The Problem with Multiple Encoders and a Single Decoder

In this section we study Problem P3 identified in Section 6.2. We find that linear
strategies are in general nonoptimal for this class of problems even under the restrictions
that all channel noises are independent of the input and the encoder observes an uncor-

rupted version of the input.

In order to see why linear strategies are not optimal, we consider the special case

with N=2 and bl=b2=a,,2 =(), and impose the additional constraints

Elu]] < P} (6.22a)
Elu/] < P/, (6.22b)

We thus have a problem of constructing real-time encoding and decoding strategies for a
communication system with hard power constraints where the source dimension is one
and the channel dimension is two. TFor this problem it is known that linear strategies are

not optimal (Shannon [1949], Wozencraft and Jacobs [1965]).

Our task now is to show that it is possible to construct problems with soft power

constraints, for which linear strategies are not optimal. This may be done by an analysis

[y et X S 1 - 3 . .
s b kX 7 r ” . - -
RIOGOO00H hin RIS Mt A 2 1O SR T D DS LD LR CoP OO e T o E R O

2 |
|

b

= xR

S

Crc—e WP o ecmar—

=X

B £ KBS

PR

R

I T g R

n P23

]
R R
P, h
Y
W
R
3
e ]
»
X
(;‘P
\

r,
) SO

\]
..l'|.l'. .l‘l.a.l’



&5

- = F IS

17 2 &

A o . o P o . e AR AR A AR g p o Amn R ma
s T e U e A N L LA N T T T T A L A IR L R T, G AR O e

U 10N AU IRAE YOl I - $a afa L iaTaty ¥R LU WG INER R SR AE NN PAN A 0D Baf .8 4.8 gt - gt gl ogh av. gB " Y} t"

127

similar to that used in Appendix B. In particular, if we let k1=k2=100.01(186.0423)2.

o: =100.0, 03,1=a‘2,2=1.0, then the optimum strategies which are optimal over the linear
class yield a cost of 1.07213, whereas nonlinear strategies of the form

Ug; = Yoi(x) =x (6.23a)

Ugy = ¥02(X) =x — sgn x (6.23b)

(y,+y,+1)I12 ¢ v,20
u, = (6.24)
(y,+y,~-1)/2  if y,<0 -

yield a cost of 1.06634.
N

We now consider Problem P3 under the additional restriction that the policies lie
within the linear class. Performance bounds and optimum linear coding schemes for
discrete-time multichannel communication systems have been investigated by Basar, San-
kur and Abut [1980]. They have observed that when the source dimension (n) is less than
the channel dimension (m), then the performance of real-time linear encoders is fairly
close to the optimum achievable performance found via channel capacity. This does not
hold for the case where n>m, where the performance is found to improve significantly by

allowing nonlinearities in the encoding policies.

For stochastic team problems of the Kind that are of interest here, we have n=1 and
m=N. Thus, in view of the results reported by Basar et al. [1980], it is of interest to
study optimality over the class of linear encoders, where the loss in performance may be
offset by the gain associated with avoiding the complexity of more general encoders.

Optimum lincar cncoding and decoding strategics [or the two-stage stochastic team prob-
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KN k=

N )

lem have been studied in Basar [1980], where a rigorous solution to the general problem

= B

has been provided. Here we are interested in a special case of that general problem, i.e.,

WAL

the case where the source dimension is one, but with the difference that there are addi-

-

tional product terms in the cost functional, the encoder input is possibly noise-corrupted,
and the channel noises may be correlated with the input. We now study optimality over

the linear class for this case.

RO 8BRS

Under the restriction that the encoders use linear policies, we have ®

BEI
e

ug; = A (x+v) (6.25)

2
b’

which implies that the observation vector ¥ is given by

A (x+v)+b x+w, _ ' ]
A,
't
A (x+v)+b,x+w, % "t
"
\
= R
¥ A
ApN(X+V)+byx+wy >
[ J
The covariance of x and ¥ is given by A
'
zxx Zx? :::\

Cov(x,§) = (6.27) B
T (4
Lo Ly I

Y {
.t

[
where ;'.: "
, W N
L. =0, (6.28) ) \
o
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i
u b ol 00400 (A +b )by )o 24 Ao
& Zw_ = : (6.29)
O +b ) +b o A dya) by o 4N o +o s
5
' and
§ = [(A\+b)a 2, ..., (\y+by)o] (6.30)
)
& We now have t
@ Ex19) = (T T2)F (6.31)
)

and the error in estimating x from the vector observation ¥ is given by '

=

CCVRID VO LD 2L D 20 iy i (6.32)

Y
o

The final task is to optimize over the linear coefficients (Aj. ..., Ay). and noting that the
cost function for P3 may be rewritten as

N

= A

q, q )
- I5(yors -+« » YoniY1) = ELZ kiuozi+riu0ix+p1(u1+—x)2———o,f] . (6.33) ‘
i=1 2p, 4p,

P&

we formally have Theorem 6.5 below:

y Theorem 6.5.

. (i) The optimum linear strategies for Problem P3 are given by

w u*o = v (z) =A%z (6.34a)

. = % Iy
& ut = yn(F) = — (L L5 Y (6.34b) :
2p, ’

y f
ne A
¢ +
{
i
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where ¥ o and T .o are defined by (6.29) and (6.30), with A, replaced by A*, where the

A*’s are given by the solution to the following parameter optimization problem:

N 2
q :
A%, .... A% ) =arg min [T ka0 40+ 0 0+—elry, ... A)] (6.35)
(€ PR W 4p,

where e(X,, ..., Ay) is defined by (6.32). (The above parameter optimization problem

always admits a solution.)

(ii) The optimal value of the cost under linear policies is

N 2
q

* =EY ki)\*iz(ox2+ov2)+ri>\*iax2+z—(oxz—e(x*l, ce AR
i=1 P

a

One special case is of particular interest, that with ov2=0; b,=b,=..=b=0,

r,=r,=..=ry=0. In this case we get
2
ax
eAp, ... A= .
5 oxz ) oxz (6.36)
14N ——+.+A
17, N
Ou, 0w,

which implies that the optimum linear coefficients (A*,, ..., A*y) may be found by solv-

ing the following parameter optimization problem:

Minimize J(P[, . . .. Pl
(rL.... P2)
where
N 2 2
» 4 o
IPL ..., PO =T kpP’+ -
- ap, N (6.37)

1+Z(P’la))
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and

Pl=2l02. (6.38)

The optimum coefficients from this parameter optimization problem may be found by

\ l',R applying Theorem 2.2 of Basar [1980] as follows. We order the channels such that

I

R 0l <q0l <. Sqyol (6.39)
o U, N ROw, S e S ANO - :

o, !

S

The derivative of J(P/, . .., PZ) with respect to P is

v;: §

& 2, 2

:: qlz ox /ow‘

0 k. — ,

0: ) ! 4 N (6.40)
4 Pr 2, 2

(1+ X P, low‘)

i=1

O S
| J 55)

and clearly all first derivatives cannot be zero unless the product kia“z,I is equal for all i.

- -
-

g If this product is indeed equal for all i, then we may arbitrarily choose one channel

G

}

s:: % over which to transmit the information, and all first-order necessary conditions (which
L)

'

D)

;: are also sufficient) are satisfied.
X L: On the other hand, if the product kia\ii is not equal for all i, we can choose any chan-
Y

P

" o nel from the set for which this product is the smallest (this set may be a singleton). For
N
the remaining channels with larger kiawi the first derivative is increasing at zero, implying
L

a [

4 s that zero is indeed optimum.

o

! .
¥ 1 Under the arrangement (6.39), it is therefore sufficient to choose Pl2 possibly nonzero
e \J’f
while all Pi2 for i=2,...,N may be restricted to be zero, and we get

)

)

W g

! arg  min P ... PO =(P*} ... Px])
Ky A ... Pd)

O where

1 ':}.
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P*} = sqrt(Max({0,

and

P*’=0 for all i=2,...N.
We therefore have the following corollary to Theorem 6.5.

Corollary 6.1.

Consider Problem P3, under the additional restrictions that

ovz =0; b,=b,=..=b\=0; r;=r,=..=r=0.

BR ¢.F &|,&E BB

If we assume that the channels are ordered such that (6.39) holds, then the optimal linear

strategies are given by

u*Ol = y*OI(X) = )\*IX
u*, = y*'u(x)=0 for all i=2,..,.N

and
2
_ q A* 0y
u*l=y*l(y)=— > — ; yl
P Ao, +ay,
where
1
2 _ 2
}‘*l =— P*,

and P*? is defined by (6.41).

(ii) The optimal value of the cost is

POXE P O

{

w3 e
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%]

[l
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=
[ iy

4
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6.6. Conclusion

In this chapter we have formulated and analyzed three classes of decentralized, mul- o

only via noise-corrupted channels. N

)
g tiperson, stochastic team problems, where communication between agents is permitted ::
g For problems involving a single transmitting agent and multiple receiving agents we

have shown that the optimum strategies are linear when either the encoder observes an

uncorrupted version of the variable to be transmitted, or when all channel noises are

T
« a

independent of the input.

For problems involving multiple transmitting agents and multiple receiving agents

BT @ Pk

we again find that in case the encoders observe an uncorrupted version of the variable to

-

A =5 8
S

be transmitted, or if all channel noises are independent of the input, then the optimum ‘.:

strategies are linear,

t

& However, for the simplest classes of problems involving multiple transmitting agents n'
A and a single receiving agent, we find that the strategies which are optimal over the linear ".‘

:?: class may be outperformed by appropriately chosen nonlinear policies, and for this case
? we have provided strategies which are optimal within the linear class. :E
4 N

X XX

\

‘Q‘ \
‘ ®
N A

) Y
A b
i "
C.o

‘i

'.U\ ‘:
= ®

\]

.

t
h .‘
.I

gL 0 WAyt OO0 ! O v , ) , : !
NUAS AR I l‘-'l‘;‘!‘t‘l‘-bl’-‘“’.l‘m A DQUAS R INOCHE U u'!.t.,‘ﬂ'..lt. 5 .\'.':I\ 5 ".t".".'?!‘l’t ,-"‘-I". ".0!0:0 X O.l.nllf".to !o'l,l e '0.0".:1 WY, ,o'\¢ 8 -.M:‘-‘




> -
£

RIS

-
-

-

P

P N A R

2 "

A Y L UKL

e O
""_(rl‘_'&..gs.

o)

OOTOGALHG

r

PRt L Rt Y ¥ A 2, L Yo ¥ . [ X7 v, Vel R RN R AL TR AR AW R O ‘avy w""\“‘~v»,v'ali.‘.‘l by

134

CHAPTER 7
PROBLEMS WITH INCOMPLETE CHANNEL DESCRIPTION

7.1. Introduction

In this chapter, we expand on the framework developed so far, by allowing incom-
plete statistical description of the channel used to transmit measurements between the
decentralized agents. We still operate under nonclassical information patterns and con-
sider a number of cases depending on whether there are ‘“‘hard” power constraints or
“sof t”’ power constraints on some of the decision variables and/or soft costs on communi-
cation. We obtain minimax rules in all cases, some being saddle points and others not, the
techniques of derivation being very much case dependent. These are all important proto-
type problems which could be considered essential building blocks in multistage, distri-
buted decision making under nonclassical information and with partial statistical descrip-

tion.

In particular, we assume that the variable transmitted through the channel is cor-
rupted not only by an independent Gaussian noise of given variance, but also by an unk-
nown channel noise which is only known to satisfy certain power constraints. Further,
this unknown noise is allowed to be correlated with either the input or the output of the
encoder. (Recall that in Chapter 2 we had allowed part of the channel noise to vary
linearly with the input).

We seek optimal solutions under a worst case analysis. We may therefore consider

the unknown channel noise as being controlled by an adversary or ‘‘jammer,” who intelli-

gently uses the knowledge of either the input or the output of the channel to design a
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jamming strategy. Thus the problems may be viewed as those representing extended ver-
sions of the standard Gaussian Test Channel (Gallager [1968]), further including an intel-

ligent jammer.

The organization of this chapter is as follows. In Section 7.2 we identify the prob-
lems to be analyzed in the sequel. In particular, three kinds of communication systems
are identified, each of which is subsequently analyzed under a variety of fidelity criteria,
which are also defined in Section 7.2. The three types of communication systems are
analyzed in Sections 7.3, 7.4 and 7.5. The concluding remarks in Section 7.6 then end this

chapter.

In what follows, we shall refer to the problems studied in this chapter alternatively

as zero-sum games, since the jammer wishes t0 maximize the same criterion which the
encoder-decoder pair is trying to minimize. A general discussion on zero sum games may

be found in Basar and Olsder [1982].

L KR

7.2. Problem Description

7.2.1. Channel description

Following the formulation of Basar [1983], consider the communication systems dep-
icted in Figures 7.1, 7.2 and 7.3 which represent extended versions of the standard Gaus-
% sian Test Channel, (Gallager [1968]), and include an intelligent jammer who has access
either to the input or to the output of the encoder. The input to the encoder is a Gaussian
random variable with zero mean and unit variance, denoted u ~ N(0,1). The transmitter

encodes the input signal u into a variable y = y(u) with the encoding policy y being an

.55.50
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element of the space I', of random mappings or an element of the space I' 4 of determinis-~
tic mappings. The encoder is further restricted to satisfy certain power constrain.ts as to
be elucidated in the sequel. When the encoder map is allowed to be probabilistic we refer
to the problem as a game of Type 1, in which case we also allow for a side channel that
permits the transmission of information regarding the structure of the probabilistic
encoder to the receiver (Figure 7.1). When the encoder map is necessarily deterministic it

is a game of Type 2, for which the side channel is superfluous (Figure 7.2).
In games of Types 1 and 2 the jammer is allowed to observe the input u. The jammer
then feeds back into the channel a random variable v = 8(u) so that the input to the

decoder is
z=vy(u) +Bu) +w .
The jammers policy is an element in the space I'; of random mappings also restricted to
satisfy certain power constraints.
At the receiver, the decoder 8(z) is chosen so as to cooperate with the encoder in

minimizing a (generalized) quadratic distortion measure J(vy,8,8). Here the noise w is

. . . 2 o
assumed to be Gaussian with mean zero, variance o, and is independent of u.

Figure 7.3 represents the situation when the jammer has access to the output of the
encoder instead of u. This situation shall be referred to as a game of Type 3. Games of
Type 3 are investigated in Bansal and Basar [1989] under a variety of fidelity criteria

which we next describe.

7.2.2. Fidelity criteria

The general communication game addresses the reproduction of the input u. with

high fidelity, at the output of the decoder. This corresponds to minimizing the mean
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square error E{(8(z) — u)’}. In order that this minimization be well defined we restrict
ourselves to using encoding and jamming policies which satisfy Ely*(u)] < Poz and
Elv?] € P,z. These are the hard power constraints generally assumed in the communica-

tion literature, which lead to criterion C, below.

Criterion C1:
1,(y.8,8) = E{(8(z) — u)’} (7.1a)

and

Ely* (W) < P2, ElVY I < P}, (7.1b)

This is precisely the criterion adopted in Basar [1983] and Basar and Wu {1985],
under which a complete characterization of minimax encoder -decoder policies for games of
Types 1 and 2 has been provided in Basar and Wu [1985). We introduce here some classes
of problems which have heretofore received less attention. These are problems where the
power levels are not fixed a priori, but are determined as a result of the underlying optim-
ization problem. This is particularly important in situations where it may be possible, for
instance, to transmit a larger power at the encoder (at some cost) in order to further
decrease the mean square error at the decoder. Mathematically this may be represented as
a power constraint which is “implied” or “soft’”’ and appears as an additional term in the
cost functional. Based on the consideration of tradeoffs between power used and the mag-
nitude of the mean square error term, we have criteria C,, C; and C, below where

coefficient terms Kk, and « are positive scalars in all cases.
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Criterion Cy:
1,(,8,8) = E{kgy*(u) + (8(z) — u)* — av?} (7.2)

Criterion Cy:
1,(y.8.8) = E{(8(2) — u)* — av?) (7.3a)
Ely’(u)] < P} (7.3b)

Criterion C:
7 (y.8.8) = E{kyy*(u) + (8(2) ~ u)’} (7.42)
Elvi(w)] < P}. (7.4b)

Under the different criteria above, the spaces in which the policies need to be res-
tricted are characterized by using a superscript. For example, I‘::1 denotes the class of
deterministic encoder policies which are permissible when criterion C, is under considera-

tion.

7.2.3. Solution concepts

We are faced with multiperson decision problems with conflicting objectives. We
thus seek to obtain worst case solutions by minimax and maximin approaches, and

further, saddle-point solutions if they exist.

Under the minimax approach the encoder-decoder pair is assumed to be careful and
defensive, wishing to protect against any irrational behavior of the jammer. Thus, under

the minimax criterion, we evaluate the upper value J of the zero sum game with kernel J,

I= J(y*3*B%..5.) = min max J(y.5,8)

vé B
(7.5)
= min J(v.8,8%_s))
v.8
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B‘(y,&) =arg m:x J(y.8.8) (7.6)

assuming that such a solution exists. The triple J(y*8%8%,.s.)) defined by (7.5) and (7.6)

above is called the minimax solution for the corresponding game.

To obtain the maximin solution, we consider instead the lower value of the zero sum

game:

1= J(y*s,,8%;,,8%) = max min J(v,5,8)
8 (4.8

= max J(y*3,8%4,8)
8

where the pair (y*4,8%;) is determined by

(y*5,8%3) = arg min J(y,8,8) . (7.8)
(v.8)

o

The triple (y*;,..5%;5,,8*%) defined by (7.7) and (7.8) above is the maximin solution for the

-
-

corresponding game.

P

A saddle-point solution (y*,5% 3%) wil] exist if and only if

-

BN

-

1=T=J(y*5%5%). (7.9)

A detailed study of the concepts of minimax and maximin strategies and saddle-point

P rox] @ G

solutions may be found in Basar and Olsder [1982].

-

7.2.4. Notation

We shall use a double subscript notation and refer to a game as Game G,. with
i€{1,2,3| and k€{1,2,3,4}. The first subscript i refers to the game type (Section 7.2.1)

while the second subscript k indicates that fidelity criterion C, is under consideration,
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3

with the strategy spaces being I’ :, orT :, I ,k and I'jk for the encoder, decoder and jammer,
respectively. Thus for i=3 the jammer has access to the output of the encoder, whereas
for i=1 or 2 the jammer taps the input u. Further, for i=1 the encoder is allowed to use

probabilistic mappings whereas for i=2, the encoder is necessarily deterministic.

7.2.5. Contributions of the chapter

The existence of a saddle-point solution for game G, is proved in Basar [1983]} in a
more general framework where it is shown that the parameter space can be partitioned
into regions with the saddle point depending structurally upon the region of operation.
Games G, for i=1,2 are considered in Basar and Wu [1985] where the existence of a
saddle-point solution for G,, is established and a complete characterization of minimax

and maximin strategies for G,, 1s provided.

In this chapter we study the remaining nine games G,,, i€{1,2,3} and k€{2,3.4}. In
Section 7.2 we provide saddle-point solutions for games G,,, G,; and G,,. In Section 7.4

we analyze games G;,, G;; and G,,. For games G.,, G,; and G, saddle-point solutions do

not exist; we provide both maximin and minimax solutions for these games in Section 7.3.

P

7.3. Saddle-Point Solutions for Games G,,, G,; and G,,

N Consider the problem described in Section 7.1, with the encoder allowed to use pro-
v, babilistic mappings (Figure 7.1), under Criteria C2, C3 and C4, respectively. The solution

is provided in Theorem 7.1 after introducing some notation.
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Preliminary Notation for Theorem 7.1

We introduce scalar parameters P*, and P*; by dividing the parameter space into dis-

tinct regions as follows:

a. Game G,,

Define Regions Rllz, Rlz2 and Rl'; by

. 2
ko
k
2 0 2 1
Ry s So,<— (7.10b)
(kg+a) ko
k
3 2 0
Rp:0, <~ (7.10c)
(koﬁ“a)
Now define P*; and P*; by
. 1
inR
0 12
in Rlz2
P* = (—W - 2)‘/2
0 k‘h w (7-113)
0
3
) in R
o 12
(k0+a)
. 1 2
0 in Rj; and R,
P* = K : (7.11b)
( 4] 2)\/2 3
TP nR
(k0+a)2 L
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b. Game G,
Define Regions R}, and R} by
R‘l_,‘ ta 2 POZI(PO2 + 03)2
RY:a < PP +0l).
Now define P*, and P*; by
P, =P © inRyand R/
0= Yo In Xy3and Ky,

0 in Ry,

p* = ; .
! (Pyla™) — (Pl+ad) inR/,
c. Game G,
Define Regions R& and Rlz,, by

R, : ko 2 (P + o)
R Ky < (P + o).
Now define P*, and P*; by

0 ianl‘,
P¥= 2, 2y % 2, 2\ L2

(P40 .) kg )=(Py+0 ) inR,
px, =P, inR/,and R} .

.....

o A caf. at. AN A

(7.12a)

(7.12b)

(7.13a)

(7.13b)

(7.14a)

(7.14b)

(7.15a)

(7.15b)

Theorem 7.1: Consider the games G,,. G, and G, described in Section 1. For cach of

these games there exists a saddle-point solution (y*,5* 3*) given as follows:
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(P*,u,(P*,/(P*2+0 24+P*1))z) w.p. 0.5
(5 = (7.16)

(—P*u,(~P%,/(P*2+0 24+P*1))z)  W.p.05

gHu)=n (7.17)

where 7 is a zero mean Gaussian random variable with variance P*;’, which is independent

of uand w.

Proof: We need to prove that the solutions given above satisfy the saddle-point inequali-
ties:

I(y*8%,B) < J(y*,8+%B%) < J(v,8,8%) (7.18)
for all permissible triplets (y,8,8) and under the stipulation that the side channel is used
o carry structural information concerning the probabilistic encoder mappings. The proof
is provided by establishing separately the validity of the right-hand side (RHS) and left-

hand side (LHS) inequalities of (18) under each criterion for each of the regions in con-

sideration.
(a) Game G,,
Region Rll2

(i) The RHS inequality
The problem faced by the encoder-decoder pair, with the jammer's policy fixed as
indicated is
min Elk,y’(w) + (8(z)—u)’]

v.8
where z = y(u) + w.
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N
l For each fixed power level (Ely*(u)]= Poz) the problem above is the standard Gaus- Y
®
sian test channel for which the optimal solution is known to be linear. The optimal power :}
o
§ levels may be found by solving the parameter optimization problem: :ﬁ
.)
b
2 2,p2 2 N
min [kPy + 0, /(Py + a )]
’ P, ‘:i
"
| , ‘
@ which gives P*¥; = 0 as in the statement of the theorem. 4
: <)
e
§ (ii) The LHS inequality 1
5!
( With the encoding-decoding policy fixed at zero, the problem faced by the jammer is ::
ﬁ , )
max (—aB(u) + 1) ®
. B(w) )
. 3
Qg e
; for which the optimal choice is B(u) =0. :,‘
&
. 2 ®
Region R, 2
N
i )
(i) The RHS inequality 2
b
! As in the case of Region Rllz, we find that the optimal encoding-decoding policy is g
o linear and the linear encoding coefficient may be found by solving the parameter optimiza- N
J b
- tion problem h
o 2
Y min [k,P, + 0\5/(1’0Z + 0‘5)] 4
Py ':
- ¢
& . . 2 73 2 . ‘I‘
¢ which gives P*¥) = (0 /k, ) — 0, as in the statement of the theorem. W
[ _J
E'g "
(ii) The LHS inequality "
\l
N
7 With the encoding-decoding policy fixed as given, the cost to be maximized by the ‘:’.

jammer is obtained by unconditioning the conditional value of the cost incurred for each

"3 £

»
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v
4
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realization of the equiprobable random variable which decides the sign of the linear

;5 5 v
BTG @ B S XiapcX @ EX Ta

ol
encoding. In the expression thus obtained for the cost to be maximized, the jammer’s pol- i
icy only enters as a term containing E[8%(u)] with the coefficient g
Y
(((ay/kgD) =6 kgl0 ) = . .
2R
This coefficient is nonpositive in Rlzz, implying that B(u) =0 is the jammer’s optimal pol- :‘:‘
r!
icy. 7."{ +
@
Region sz ' E '.:
W,
E(
3
§
(i) The RHS inequality @ Y
®
When the jammer uses independent Gaussian noise with the indicated variance, the ' '_“\ :’::i
%) \
problem faced by the encoder-decoder pair is W
5§
, 2 2 . °®
min E{(kyy“(u) + (8(z)—u)” + K'] ' ~ =
y.8 W
Q:‘
WY,
where z = y(u)+w+n and K’ is independent of the encoding-decoding policy. For each g :ﬁ
fixed power level, Ely*(w)] = Poz, the problem is the standard Gaussian test channel prob- < ®
o
lem, and thus the coefficient of the optimal linear solution may be found by solving the ,::r
“ 03
parameter optimization problem e .::‘
_ 2 2 2 2
min (koPy + (ko (kg+a)*)/(Py+(k /(ky+a)*))] g o
P, ]
O

which gives P¥, as in the statement of the theorem.

(LSS
53

(ii) The LHS inequality

s
o,

When the encoder-decoder policy is fixed as indicated, the cost function to be maxim- -

ized by the jammer is obtained by unconditioning the conditional value of the cost which
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gives an expression independent of 8, and thus the jamming policy may be chosen as in

the statement of the theorem.
() Game G,;
Region R113

(i) The RHS inequality

With the jammer's policy fixed at zero, the encoder-decoder pair faces the standard
Gaussian test channel problem for which the optimal linear solution is as indicated in the

statement of the theorem.

(ii) The LHS inequality
When the encoder-decoder policy is fixed as indicated, the cost function to be maxim-
ized by the jammer is obtained by unconditioning the conditioﬁal value of the cost which
gives
El(—a + PE1(P2+0 D)) (uw)+K"]
where K"’ is independent of 8. In the region under consideration the coefficient of E[8%(u)]

is negative implying that 8(u) =0 is an optimum.
A 2
Region R

(i) The RHS inequality

With the jammer’s policy fixed as given, the encoder-decoder pair faces the standard

Gaussian test channel problein, and the solution is as given.

PR @ P R vy

-

-y .

Z 3@ VS o ww tl B T

xR K

—
LG K K il

x1W ol

2

P i

ROR0R0000 T 0 D0 3 o O o
P N N Y N O oA o N R T L T e T N NN A NN O]



Ty

LR oo o

- A

g
RO Rl

et

148

(ii) The LHS inequality

With the encoding-decoding policy fixed as indicated, the cost function to be maxim-
ized by the jammer, obtained by unconditioning the cost, becomes independent of A(u)

which may, therefore, be chosen as in the statement of the theorem.
(c) GameG,,
Region R,{,

(i) The RHS inequality
With the jamming policy fixed as Gaussian noise, the problem faced by the encoder-

decoder pair is

min Elkyy*(u) + (8(z)—u)})
v.8

with z= y(u)+w+n.

The coefficient of the optimal linear solution to the above problem may be found by

solving the parameter optimization problem

5 o\f,-i-PJZ
min kyPy +

Po Py+Pl+0l

for which P"‘o2 =0 in the region under consideration.

(ii) The LHS inequality

With the encoder-decoder policy fixed at zero, the cost function is independent of

B(u) which may be chosen to be Gaussian noise as in the statement of the theorem.
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.2
Region R,

(i) The RHS inequality

The problem faced by the encoder-decoder pair, with the jammer’s policy fixed as

Gaussian noise is

min Elkgy’(w) + (8(z)—u)’]
v.8

where z = y(u)+w+n.
The coefficients for the optimal linear solution to the above problem may be obtained

by solving the parameter optimization problem

min kP + (0 2+P1)I(PE+P 40 2)

P

which gives the optimal encoding-decoding policies as in the statement of the theorem.

(ii) The LHS inequality

With the encoding-decoding policy fixed as indicated, the cost to be maximized by the
jammer, obtained by unconditioning, increases linearly with E[Bz(u)]. Thus the jammer
may choose any random variable with second moment equal to Pf; i.e., B(u) may be

chosen to be independent Gaussian noise as in the statement of the theorem.
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74. Analysis of Games G;,, G;; and G,
7.4.1. Some useful results

The most relevant paper to this section is Basar [1983], where a game of Type 3 with
fidelity Criterion C1 has been studied. Here we reproduce the main theorem of that paper
(in the current less general framework) for future reference. First note that if P, < P,

the solution is trivial since the jammer can cancel out the signal component. If, however,

P, > P,, then it is convenient to partition the parameter space into two regions

R1: P, > P; and PP, —

R2: P,> P, and P,P;—P > 0
and to introduce

A* = —Py/P,

t* = 1—-(P}+02)P2P}

Lemma 7.1. Game G,; admits two saddle-point solutions (y*,8*,u*) and (—y*—8&* u*),

where

(i) y*(u) = P,u

(ii) u* is the Gaussian probability measure associated with the random variable

- - -
o ]

Aty inR1
v = B%y) =

A(1—1%)*y + n*  inR2

G NN & T

where n* ~ (O.I*PJZ)
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(iif) 8* is the Bayes estimator for u under the least favorable distribution u«* com-

puted as

PP +0Dz Ry

*(z) =
(1/P)) z in R2

Proof. See Basar [1983].

In order to establish similar results under Criteria C2, C3 and C4, we shall neeci the

following lemmata:

Lemma 7.2. Consider the stochastic team problem with nonclassical information (which

can be obtained from C2 by setting 8(-) = 0)

min E{k,y’(u) + (8(z) — u)’}
.8

where z = y(u)+w. The optimal solution to this problem is linear, i.e.,

y*(u) = P*u

and

§*(z) = ElulP* u+wl=[P* /(P2 +0 )] z ,
where

. 2, 202 2
P* A arg m;n {k P"+ 0 /(P+a )} .

Proof. Sec Bansal and Basar [1987a].

Lemma 7.3. Consider the stochastic team decision problem with nonclassical information

(which can be obtained from C3 by setting 8(+) = 0)



where z = y(u)+w and Ely*(u)] € P’. The optimal solution is linear and

Proof. The problem may be viewed as the standard Gaussian Test Channel problem,

from which the optimality of the linear solution follows. Alternatively, the proof fol-

152

min E{(8(z) — u)*}
v.8

y*u)=Pu ,
§2) = [PI(P*+0 D] z

lows in a straightforward fashion using a contradiction on Lemma 7.2.

straint problem (discussed in Basar [1983]), the solution given in Lemma 7.1 cannot

readily be used to obtain the solution to the soft constraint versions. In fact, it turns out

We note here that because of the complex structure of the solution to the hard con-

on
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that, for each of the soft constraint versions, the saddle-point property has to be esta- ‘:;

blished individually.

(a) Game G,

7.4.2. Solutions to the minimax problem under the three criteria

Preliminary notation for Theorem 7.2.

and
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We decompose the parameter space into three regions R1, R2 and R3:

Ry o € K

[+]

Razz: a > k, and orko—ko2 < 0130\3,

R): o > k, and ak,—k? 2> a’c)
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We next introduce the scalar parameters P* and A* by

p* (Max{0,0 (k. —a"")"~0 )I((1=k o))"

and

~1 inRy
A* = .

—k /@ in R} and R,

Theorem 7.2. Game G,, admits two saddle-point solutions (y*.8*,u*) and (—y*,~8&*u*)

where

(i) y*(u) = P*u

(ii) u* is the Gaussian probability measure associated with the random variable

A*y in R;z and R322
v=BYy)=
X * . 3
Aty +7* in Rj,
where n* is an independent Gaussian random variable, i.e.,

n* ~ N(0,0 .) =N(Ok /o’ ~k /o'~ 0 })

(iii) 8* is the Bayes estimator for u under the least favorable distribution u*, com-

puted as

<
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(P* (14A*)/(P*2(14+A*)’+0 2)) z inR), and R2

5

3*(z) = p*tz =

(1/P*) =z in R, .

Proof. We shall establish separately the validity of the right-hand side (RHS) and left-

hand side (LHS) inequalities of (7.18) in each of the Regions R;z, R32z and R332,

Region R;z

(i) The RHS inequality:

With B8(y) = B*(y) = —y, the problem faced by the encoder-decoder pair is

; min E{(k,—a)y’(u)+1} 3
s Y.s . y

%3

which implies y*(u) =0 and 8%(z) = E[uiw]=0

(ii) The LHS inequality:

With y* = 8* = 0, the problem faced by the jammer is

max E{1 — aB%(y)}
8

O T W (i OC e M

and since y=0 a.s., any choice of 8 with E[8%(y)]=0 attains the maximum (which is 1), one

such policy being B(y) = —y.

Region R 322

(i) The RHS inequality:

With the jammer’s policy fixed as 8*(y) =(—k_ /a)y. the problem faced by the encoder-

<5

0

decoder pair is

i
» 5

min El(k,~k 2/ o)y’ () + (8(z)=u)’]
v.8
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with z = (1-k /a)y(u) + w.
Defining y'(u) = (1—k /a)y(u), the problem may be rewritten as

min Elk'(y(w))* + (8(z)-u)’]
]

where z = y'(u)+w. It follows from Lemma 7.2 that the optimal encoder-decoder policies
are linear in the observations, and may be obtained by minimizing over Po2 2 0 the
expression
IPY) = k(1=K jo)P? + 0 2j(1=k ja)Pl + 0l |
which yields P*, as in the statement of the theorem.
(ii) The LHS inequality:
With the encoder-decoder policy fixed as given, the problem faced by the jammer is

max El(p *—a)B*(y) + 2p*(p*P*,—1)B(y)u] .
8

Under the assumption p'z—a<0. its solution is unique (because of strict concavity), and is

given by
By) = [p*p*P* —1)/(P* (a—p* )]y = A%y .
With p* as indicated, this condition becomes
=A% (1 +2%) < o }/px}
which implies and is implied by

3 2 2
a0, > ak, — Kk
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Region R;z

%
: ' [
) (i) The RHS inequality: L
‘ With the jammer’s policy fixed as indicated, the problem faced by the encoder-decoder §

pair is

0 min E{(k,~k2/a)y’(u) + (8(z)—u)’ — an*’} .
;‘.‘: ‘)‘»5 f
c!“:q. .-:
3 N
e Using Lemma 7.2 as in Region sz, we obtain the encoder policy to be linear, with the -
4 ,
:'»:. corresponding power level obtained by minimizing over Po2 the expression g
i '
R
hh
b IP) = k(1=K /)P + (02 + 0 WIl(1=k [a)’Pl+0 2+0 2] .
J
::i‘ which requires (by differentiating with respect to Po2 and noting that the second-order .
L N
;;::' condition for a minimum is always satisfied) N
\3:::
st 2, 2 2 2002, 2, 272 x
s k(1=ky/a) = (o o +0  )(1—k /o) [[(1=Kk /) P* +o +0 ] = 0 K
‘.‘i"
0y
f;::: which is satisfied (uniquely) by P"‘o2 = l/a. Furthermore, {3
2 . kL
¥,
e 8z)=Elulz]l = Vaz .
rﬁ v :r:'
X y | . "
2 (ii) The LHS inequality:
o 7
:::'s With the encoder-decoder policy fixed as indicated, the problem faced by the jammer is Ef
.*'1 *2 2 re
o max E{(p*"—a)B7(y) + 2p*(p*P* ,~1)B(y) u} . ~
: 8 Y
y
. Since p*z =« and p* = I/P*, this cost is independent of 8, and hence the jammer's policy 'S
¥ ) o
@
K may be chosen as indicated.
R &
,;:;. he
0
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(b) Game G, e
®

Consider the game of Type 3, under Criterion C3. The solution is provided in

Theorem 7.3 below, after introducing some notation.

Preliminary Notation for Theorem 7.3. 4%y

We decompose the parameter space into Regions R;3 and R323. as follows:

Ry (P2# 1/a) U (Pl=1a<4d0))

Y
RZ: P2 = lla > 40l . 3

We next introduce the scalar parameter A* by Y

arg max {af,l[(1+/\)2Poz+a\‘2,]—o:)\zPoz} in R/ '::'2
A

e = &

. Note that A* € (—1,0). bl

¥ Theorem 7.3. Game Gj; admits two saddle-point solutions (y*.8*u*) and (—y*,—8*u) '

where L

g

i) % = v
(i) y*(u) = P,u }::

(ii) u* is the Gaussian probability measure associated with the random variable

. 1
G A*y in Ry, 3

v = B*(y) = ‘\U‘
Y
= A*Y + 1% in R}, R

) =N 1/da~a 1)), .

,
where n* ~ N(O.on'.
(]
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(iii) 8* is the Bayes estimator for u under the least favorable distribution u* for v,

computed as

P RANIPH1+A*+a 2Dz in R},

3*(z) = p*z =
(1/P,) z in R .

Proof. We shall establish separately the validity of the RHS and the LHS inequalities of

(7.18) in Regions Ry, and R;}.

Region R;_,,

(i) The RHS inequality:
With the jammer's policy fixed as indicated, the problem faced by the encoder-decoder
pair is

min E{(8(z)~u)? — ex®y*(w)} , Ely*(w)] < P
v.6

where z = (1+A*)y(u)+w. Noting that A* € (—1,0) it follows that

min E{(8(z) = u)*}
.8

under Ely*(u)] € P2 is achieved by y(u) = P,u.

4]
Now aA*E{y*(w)} is also maximized when y(u) = P u and therefore we obtain the

solution of tire above problem as

y(u) = P_u

(o]

and

8(z) = Eluiz]l = [P,O+A%)(P(14x*) 40 2)] z .
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(ii) The LHS inequality: N

o
2

With the encoder-decoder policies fixed as indicated, the problem faced by the jammer is X

‘max El(p?=a)B%(y) + 2p*p*P,~1)B(y)u] , N
B O

.,A,,-
N
-

the unique solution to which is Ty

B*(y) = [p*(p*Po—l)l(Po(a—p*z))] y = Aty , E;b.(
g

provided that
pP-a <0, 3

or equivalently

.;,-'*

—A{1+A*) < o 2/P? . (7.19)
w [\]

ayt
i 1 ) { .‘
We now show that the inequality (2) holds for all P, in R;,. X

&:

(a) First consider the case Po2 = l/a < 40 2. Note that under this condition the equa- : ,:.;
L [ l.
§ tion A*? + A% + o‘f,lp‘,2 = 0 has no real roots, which implies that .“
ol

2 2,52
! A¥ +A*+0,/P >0,
i
2,52 W
s and hence ~A*(1+\*) < 0 [/P.. Yy
3 o
(b) Now, consider the case Po2 # la. If Po2 = /o we know that A satisfies gl
‘“" 2 232 ”"E.
- [(+APP2 + 0 2P + (o 2004+0)0P2 = 0, (7.20) 4
s
o= which after some manipulations yields f": .
22y 2,52 3
';; gA) = (W(1+N) + 0 /P ) o /P, + (1+A)7A) = 0 . (7.21) ;:;::E
" i
4 e
2 This function is illustrated in Figures 7.4a and 7.4b. The extrema are found at the inter- .:‘.::;
' sections of the horizontal line at «A, the necessary condition being "
«’ ::: t
= o
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Figure 7.4b. The function f(x).
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a = =0 )N + 0 D A TOV).

The quadratic term of (7.21) corresponds to the maximizing roots, whereas the cubic term

in (7.21) has only one real root which is the minimizing solution.

Let

A & A1)+ 0 2/P2 (with roots A* and A,

and

B(A) & o2/P2+ (140D’ /A (with real root A®),

so that Equation (7.21) may be rewritten as
A(A) - BA) =0
From Figure 7.4 it is apparent that if o > l/Poz, we get a maximizing root smaller than

XIA, which satisfies (7.19), and if o < l/Poz, we get a maximizing root larger than AZA,

which satisfies (7.19), and thus the proof for Region R;3 is complete.

Region R 323
(i) The RHS inequality:

With the jammer's policy as indicated, the problem faced by the encoder-decoder pair is

min E{(8(z)-u)’ = aA*’y*(0) — wo 1}, Ely*(w)] < P}
v.8

with z= (1+A*)y(u) + w + n*.

It follows then, as in the proof for Region R3]3. that the required solution is

y(u) = P u

and

8(z) = Elulz] = (1/P )z .
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XX

SN

(i1) The LHS inegnality:
J(y*,8*%.8) < J(y*5*B8*) .

With the encoder-decoder policies fixed as indicated we have p*P, =1 and p*2 = «. There-

fore, the maximization problem faced by the jammer, i.e.,

M= 5tk

.V
max El(p¥—a)B%(y) + 2p*(p*P,~1)B(y)ul] , v
8(y) & d
{
'
has a cost function which is independent of 8 which may, therefore, be chosen as in the )
] 34
! )
statement of the theorem. & )
)
g
Remark 7.1. This solution for the jamming policy in Region R;3 is not unique. In fact,
any pair (x*,a,,.) which satisfies < t
\
2 * 2, 2 4
(I4A%)" = (1+A%) + alog+0,) =0 g
N
provides a solution, since this gives - ‘i
A
— 202, 2, 2y _ R
p* = (Q+AXP/((1+A*)P+o 40 .) = 1P, g
thus yielding a cost which is independent of 8. The specific choice of the solution pair in -
the statement of the theorem is motivated by continuity of A* at the boundary of R313 and . .ﬁ
2 oy
Rss Ty
gt
(c) Game G,, B \
\}’ “
It turns out that Game G;, does not admit a saddle-point solution and hence the gen- . ‘
cral approach used so far is not applicable. This is because the maximin value of the prob- ™
f\
.

lem is not well*dcfined. (In order to find the maximin value, we need to fix the jammer's
policy and then minimize over the encoder-decoder policy; but the jamming policy itself

depends on the encoder policy through the constraint, thus leading to ill-posedness.)

>
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However, we can still obtain a minimax solution by proceeding in two stages. First,

we formulate a related problem with an enlarged information structure for which we can

Wx ) R KRS R OEE s =

show the existence of a saddle-point solution. We then show that the minimax value of
the original problem and that of the problem with the enlarged information structure are
identical, and hence the saddle-point solution found corresponds to the minimax solution

desired.

Towards this end, suppose that in addition to having access to the random variable

y = y(u), the jammer also has access to the policy ¥, in other words, the jammer’s policy
B belongs to the space of all Borel measurable mappings which are functions of both y and
K y, i.e., v=B(y.y). The saddle-point solution to the new problem with this enlarged
informétion structure is presented below in Proposition 7.1 after introducing some nota-

tion.

ot

Preliminary notation for Proposition 7.1.

-.,..
e o
=

K Let
a9 Q'A
:‘ L P* = arg min f(P,)
o P, 20
<
4 S
where
. .
‘\ Il
. 2 2 2, 2y
" . k,Py + o ll(P—P))°+0]] if P, 2P,
& W
o f(P,) =
WIS °
kopoz + 1 if P, <P,
S
Y
<
Y
3 Note that either P* =0or P* > P
s -
~ ) 1 2
® Furthermore, decompose the parameter space into Regions R;, and R;, characterized
h' L
LN by
-
P |
@
r =
)
'0
.‘.I Ny T TA TS AR L S ANV I P e V0 IV TR e LDy - i m A 3" A
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|1 ]
3y
. ]
1 \
2 ()
R34: P*O = 0 . m ':‘
'A
3
Proposition 7.1. The problem with the enlarged information structure, just described, @ :
.I
admits two saddle-point solutions (y*8*u*) and (—y*—56*u*) where s
T 3
(D) y*uw) = P* u ]
3
: ¢
(ii) u* is the Gaussian probability measure associated with the random variable ?S ¢
( J
o1 <o)
— (PyllylD y inR;, - ‘
-~ ‘:
v=pyy) = - 3
Y.y g\‘\- :
-y in R2
o
(iii) &%(z) = p*z b& i
0 N
[(P* ~P)/((P*,—P,Y+02D)]z in R,, T
(3
— \J
. 2
0 in R,, LU
Proof. We shall establish separately the validity of the RHS and the LHS inequalities of Y ;:‘.
o
(7.18) in R;,, and R:‘,. (The key observation here is that the jammer must know his o

Saek

$4

-

opponent’s policy in order to determine a minimax solution. The enlarged information

o
structure enables the jammer to use the policies as in (ii) above.) oo
0
4 1 N,
Region Rj,. ,:: D
e
(i) The RHS inequality: (-
- N
N -~
The problem faced by the encoder-decoder pair, with the jammer's policy fixed as :"
"\ »
. . " L*
indicated. is [
L
)W
\_J Wil
=) “.
3
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e
Y
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min Elk_y’(u) + (8(z)—u)’]
v
where

z = (1 =PyllylDy +w .
Let us first consider the Problem P1:

min E{(8(z) = w’} ; Ely*(w)] < P2 .
v.8

We assert that the minimum value of this problem is achieved by some vy satisfying

Ely*(w)}=Pp2

5+ To verify this, we first assume the contrary, that the minimum is

achieved by a y satisfying Ely*(u)] =P? where 0 < P; < P < P,. The solution to the

Problem P2:

min E{(8(z) —u)?} ; Ely*(w)] = P?,
v.8

is then the same as that for the Problem P1. However, for Problem P2 we know that
z = (1-Py/Ply(u) +w .

By defining y'(u) =(1—P;/P)}y(u), and using Lemma 7.3, we find that the solution to

Problem P2 is linear and yields an optimal performance of
0 2I(P~P)*+0 ) .

By using a linear solution y = P_ u for Problem P1, we obtain the performance
o 2I(P~P ) +0})

whicn 1s cieaily lower than the one obtained for Problem P2, implying that the minimum

cannot be achieved for Ely*(u)l = P? < Poz. We now have

L0 2 SO, LGl i e, of . Eall

EallnX
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v BB =]

min  Elk,y*(u) + (8(z) — v)’]

v.8
@y’ = 27 < D

k

et

> kP2 + oll(P—P)+0])]

2 min (k,P2 + o 2/l(P,~P)*+0 )]
P,>P,

ol B

= k P*2 + o2/((P* =P +0 ]

=

where P*, > P, necessarily exists in Ry, With y(u) =P* u and 8(z) =E[u 2] the above
inequalities are all tight, implying that the minimum is indeed achieved by the policies

given in the statement of the theorem.

o aC e TR W

(i) The LHS inequality:

5 R

With y* and 8* fixed as indicated, the problem faced by the jammer is

- L e

max {p?BXy) + 2p*(p*P* —1)B(y) u} , .
R \
v
v subject to the constraint E[B%(y)] P,z. Clearly the optimal policy for the jammer is to o
| \]
use a function, linear in u, at the maximum permissible power level, which, under the !
X S
enlarged information structure, is N \
. g
B y.y) = =PllylDy - §q 4
. 2 ]
R R =

egion R, =
Y )

(i) The RHS inequality:

o~
: '-\ -
¢ With B*(y) = —y, the problem faced by the encoder-decoder pair is = .
w (]
min Elk,y*(uw) + 1], g's ;
y.8 A
e ¢
the solution to which clearly requires y(u) =0 and ' )
A
: 2
‘ ,
Y ~
)

Ly's
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8z) = Elulzl = 0

(ii) The LHS inequality:

With the encoder-decoder policies fixed at zero, the cost becomes independent of the
jammer’s policy, who may now use 8(y) = —y as the policy which yields the saddle-point
solution.

We finally argue that the minimax values of the two problems with and without the
enlarged information structure are the same. With ¥y fixed, let B belong to the space of
Borel measurabie functions of y satisfying E[B%(y)] € P,z, and let B be in the space of

Borel measurable functions of y and v satisfying E[Bz(y,y)] < P,z. Then

min max J(y.5,8) = min max J(y,5.8) ,

vy B 8 B
since for fixed y and & the two inner maximization problems are identical.

We therefore have Theorem 7.4 below.

Theorem 7.4. Game G;, admits a minimax solution which is equivalent to the saddle-point

solution given in Proposition 7.1.

7.5. Minimax and Maximin Strategies for Games G,,, G,; and G,,
7.5.1. Minimax strategies

If the encoding policy ¥ is restricted to be deterministic, then to every jamming pol-
icy B that is a function of the encoder output y(u), there corresponds a jamming policy

B = By which represents the same random variable

v =B(u) = Bly(u)). (7.22)
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Since +y is not necessarily invertible, we have the inequality

sup J(y,8,8(y(u)) < sup J(v.,8,8(u)) (7.23)
B B

for every pair (y,8), where 7y is restricted to be deterministic. Taking the infimum of both

sides over (y,8) we obtain for k=2,3,4,

Ty, = inf sup J,(y.8.8(y(uw)) €T, (7.24)
(v.8) 8

where J;, is the upper value of a similar game with fidelity criterion C,, with the
diﬁ' erence that in this new game the jammer has access to the output of the encoder rather
than the input. Thus the upper value of a game of Type 2 is bounded from below by the
upper value of the corresponding game of Type 3. We shall next show that this inequal-
ity is in fact an equality, and provide for each k€{2,3,4}, a set of minimax strategies that

achieve this value.
Preliminary notation for Theorem 7.5

(a) Game G,,

Define Regions ﬁ;z, ﬁzzz and ﬁzjz by

=1
R22 T & Ko
ﬁzzz ‘o > Kgand ozko—koz < ozjo

=3
R,,: o > kyand aky—k, 2 oo
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Now define P*, and A* by
. =1
0 inR,,
Pt = | (Max{0,0,((ky "= )"=0 )1~/ )N*  inRy,
o " in ﬁzz'z

-1 in ﬁzlz

A%

—ko/®  inR,andR,,

Let (7*,5% B*) be defined by

§%u)=P*u  inR,, R and R,

(PH(1+A0)(PR2(1+A*+62))z  in R,; and Ry,

z)=psz=
P2= 1 (ypaye R

=1
0 inR,,
Bu) = | —(ko/a)P*;u inR},
K =3
_(_(_)_)p*ou+n* in Ry,

[0 4

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

2 2 2
where n* is an independent Gaussian random variable, n* ~ N(O.kola'~ko“/a3—o“',).

(b) Game G,,

Define Regions §2]3 and ﬁzzj by
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= 1 1

Ry, : (Pim—) U (Pl=— < 402
[ 4 [* 4

= 1

Ry :Pi=—240].

Now define A* by
arg max (0 2/(( 1+h)2P02+0w2)—o:>\2P02) =1
N inR,,4
A¥= -1
_.l_ inR,,
2

Let (7%,5%,B*) be defined by

y*(u) =Pyu in 1_2213 and i;

(P(1+A®) (PA(14+x*+0 1))z inRy,
5=

(1/Py)z in §223

A*Pju in R213

B* = —3
A*Poutn* in Ry,

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

where n* is an independent Gaussian random variable, n* ~ N(O.l/4a—ow2)‘/’).

(c) Game G,,
Let
P*, = arg min f(P,)

Pg2 0

where

R AE A

(7.36)
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2
-

koPi+a 2/((Pe—P+02)  if Py 2 P,

£(p.) = . (7.37)
(PO) kopoz if Po < P] .':

Note that either P*, > P, or P*,=0. o

Define Regions R, and R, by "

7 X% ) 68 IF

-

=1
R, : P% > P,
-2 (7.38)

Let (y*.5%,B%) be defined by 0

yH(u) = P*ju (7.39)

LewN

((P#,~P))I((P#,~P,)’+02))z  inR,,

5u) = _ _ (7.40)
! 0 in R224

N

L e

! =Pu in Rzl4
B*(u) = - (7.41)

~ 0 in R,,

S5 @ R g Gl g !

Pak sk dy o8 o0 4
IR o)

]
e @ =

~ Theorem 7.5. Sets of minimax solutions for games G,,, G,; and G,, are provided by

(¥%,5%B*) and (—y*—5*—B*) with 7*5% and B* defined above in the various regions under

'
LT
" 2

X, .

b
’.
=" each of the three fidelity criteria. '?5\
)
o )
! Proof. We shall first establish that ‘:
- _ ~ _ :‘:
tl ']2k < Sup Jk('-y-*-S*'B( u)) = Jk()_,*'s*'B*) = J3k . (7.42) :'
. 8 [
\-:; 0 f
G o
§,
e
[ 3 .n"l
= [ J
¥
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The first inequality in (7.42) is immediate because

1,, < sup J (y.5,8(1)
8

for all pairs (y,8). Jx is the minimax value for the corresponding game of Type 3, and
we shall prove the equality in (7.42) by considering individually the various regions
under each of the criteria and comparing with the minimax strategies for problems of

Type 3 available from Section 7.4.

(a) Game G,,
(i) Region R,,

1,(7%5%,8) = E[1—aB8%(u)].
Therefore, B u) =0 and

sup J,(y*x8*.B(u)) =T,, in 1—1212 .
8

(ii) Region R,
The problem faced by the jammer is

max E[(p¥—a)B (u)+2pX p*P*,—1)8(w)u]
[}

for which the soiution is
BXu) = —(k,joP%u .
Noting that this provides the same valuc as the minimax val ¢ for Game G;, in Region

sup J,(yx&*Blul)=7,, n R,
Q@

» v

b2 2

P
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<
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(iti) Region ﬁ;z
The problem faced by the jammer is

max E[(p¥—a)B%(u)+2pX p*P*,—1)B(ulu],
8

and the cost is independent of B8, the value being the same as the minimax value for Game
.. g3 .
G3, in R,,, ie.,

sup J,(y%5%B(u)) =1T;, in ﬁ;z .
8

We remark that while 8 may be chosen arbitrarily to satisfy the eguality, the specific
choice of B* as indicated provides the saddle-point solution for Game G,; and further pro-

= =3
vides continuity of the jamming policy at the boundary of Regions R222 and R,,.

() Game G,,
(i) Region 1_2213
The problem faced by the jammer is

max El(p¥—a)B%(u)+2p¥ p*P,~1)B(ulul ,
8

the solution to which is

-

pX(p*P,—1)
pH(u) = ———

— u=A*P,u.

(a—p*¥)

Since this solution provides the same value as the minimax strategy for G;; we have

sup J,(7%8*8(u) =T, inR,; -
B

-------
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(i1) Region -§223

s u
0 The problem faced by the jammer is to minimize a cost function which is indepen- 0
3.%

”e: dent of B as in the case of Region R,, and we have g
o
-

_ - =2

' sup J;(%5%8(u)) =7;; inR,; .

@ 8 3
E:: Again B may be chosen arbitrarily; the specific choice here is due to the same reasons as >
o =3 &
¢ remarked for Region R,,. ’
. T
c' v
" (c) Game G <
[} .\

Q.‘ [.¢a}

M }
® (i) Region i;,,

::: ;
j:'n The problem faced by the jammer is g
B

W max E{p¥ 8 (u)+2pX p*P*,~1)B(u)u} , rg
L ﬁ -_—
&

N . 2 2 e
b subject to E[8"(u)] < P;". 0N
Ko o>
4 Clearly, the optimal policy for the jammer is to use a linear function of u at the
{ maximum permissible power level, which gives £

B¥(u) = —Pju i
® and provides the same value as the minimax strategy for Game G,,, implying that ~a
ad :;,f
() - N T )
[ sup J(7%8*%8(u)) =T,, inR,,. .

P 8 X
(ii) Region ﬁ;, N
‘. ~ :::
'.‘J: With the encoding-decoding policy pair fixed at zero, the cost is independent of the N
o , , g,
.- Jammer’s policy which may be chosen arbitrarily to provide i
W
:: "‘
B &
‘l
! e}
®
L, cr
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sup J(7%8%8(u)) =1,, in 1—2324 . 6
B

We now see that in all cases we have \

sup J,(7*%5%,8(u) =1, , .
8

Sl B AlF s B

and thus (7.42) holds.

-

5
B,

Using (7.42) along with (7.24) it follows that J, =17y, for k€{2,3,4} and that the o

strategy sets given are sets of minimax policies. h

Ve
o

7.5.2. Maximin Strategies Wy

Since I', O T4 we have

oo

[ 8
-

inf J(v.8,8) < inf J(y.3.8) )
y€T,8€T, . yET 48€T, . (7.43) :

“‘-

for all B€T;. Taking the supremum of both sides over B€T;, we get )

Ao

L Sl (7.44) 2\

b |
e

i.e., the maximin value for a game of Type 2 is bounded from below by the maximin

g value of the corresponding game of Type 1 (which is also the saddle-point value of the -
o pe P )
game of Type 1). X

\;, ®
W R
Preliminary notation for Theorem 7.6 N

= 3
- !
(a) Game G,,

&j Define Regions Rllz, Rlz2 and sz as in (7.10), and define (P*,,P*) by (7.11). ‘3
‘;x :
®

l~

< "
™~ W
A

[ o] ’:.‘\‘
o @
]

]

A
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(b) Game G,,

Define Regions R,; and R} as in (7.12) and define (P*,,P#)) by (7.13).

(c) Game G,,

Define Regions R/, and R/, as in (7.14) and define (P%,,P*;) by (7.15).

Theorem 7.6. Sets of maximin solutions for games G,, G,; and G,, are provided by

(y*8*.8*) and (—y*—5* 3*) where

y*(u) =P*u (7.45a)
5¥z2) = (Pr)) (P} +Pr 240 1)z (7.45b)

and
BX u) = n* (7.45¢)

where n* is a zero mean Gaussian random variable with variance P*/~ which is indepen-

dent of u and w.

Proof. Note that

Jyy = sup inf J (v.8,8) € sup inf J (v.5.8)
BeT ) yer) ger) yery (7.46)
sert serX

K :
‘where l'c):,1 and T, ! are the sets of all permissible linear policies for the encoder and the
decoder, respectively, and the inequalily follows because the infimum on the right side 1s
taken over a smaller set. We next show that the expression on the right side of the ine-

quality in (7.46) is J,. i.e., the maximin (or saddle-point) value for the corresponding

game of Type I.
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‘ g (a) Game G,,
A Let y(u) = €u and 8(z) = Az. Then

@ 1,(v.8.8) = (1~A€) + A0 2 + A’EIR*(w)]

+ 2A0€ A—1E[uB(u)] — «EIB*(w)] + k€.

& |
; 2 ‘
s Consider the minimization of the above functional over (€,A). Using —|,,= 0 and
" g 84 .
1 62J2 |
. ﬁ noting that —— > 0, we obtain !
\' aA
‘:: X . € +E[uB(u)]
| e 2+E[8% ()0 2+2€ EluB(u)] ‘
VI
'3 P as the unique minimizing A* for every fixed €. Therefore,
¥
L}

i ,  EB(wl+o i~(EuB(wI]Y ,
v Jolaa = Ko€~ + — «E[g7(w)].
; 5 €2+E[B ()0 2+2€ EluB(u))
.l “ {
_ Eh We next minimize J,|,, with respect to €. In particular, if E{uB(u)] =0 we get
. ' 2 2
SRS El8“(uw)l+o 5 5
; €¥ =Max {0, |——— | = (E[B*(W+a))
T ko
v "“-'
A
® and, in general, we have
A‘ m
b A 2 2 2
" E(B“(u)l+0 ,—(EluB(u)D "
" Hanee=ko€¥ + — «E[B*(w)]
¥ e+ E[B ()40 2+2€*E[uB(u)]
@
) g, and we note that sgn( €*) = —sgnE[uB(u)].

Cal

| o

To maximize J|,, ., as a function of E{uB(u)] we differentiate with respect 1o

.';{
® E(uB(u)] and find that
4
' | -
&
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dj ] ®
_Hlae >0 if EluB(w) <0
d(Elug(ul))

and

dllpe es
——iﬁ-— < 0 ifEugw]>o0.
d(E[uB(u)])

Therefore, J|,, .. Which is continuous in E[uB(u)], admits its maximum at E[uB(u)]=0

and we next maximize over E[Bz( u)] to find that

E[B%(w)] = Max{0, — — (e¥40 1)} .

h
o

1
Note that if €*=0, then E[8%(u)] is necessarily zero, which is the case if — < 02, i.e.,

Ko
Region R, .
Next note that €* could be nonzero with E[8%(u)] = 0, which occurs if

(4

e¥=_" — 0\3
Ky
along with
e 22
— < (€*+o0)
[0 4
which together yield
Ko 1
———<oal<—,
(ko+oz)Z Ko

,
t.e., we have Region R ;.

TRy

bo

e s Y YW

'.'. 8

W =

Pl o

v s e, oy

Y R W e
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TS W L™ "

Finally note that in Region R132 where

02k + )’ < ky,

R N -

o oS BS

both €% and E[B%*(u)] are nonzero.

Observing that the jammer’s maximization problem is solved by using any second-

=)

order random variable with the appropriate variance, it follows that a Gaussian random

(&

variable as indicated is an appropriate choice. Thus, with the encoding-decoding policy

restricted to be linear, the cost obtained by using the jammer’s maximinimizing policy is

s

the same as the maximin value of Game G,,,

-y

(b) Game G,,

P P

With y(u) = €u and 6(z) = Az

s

g e gt em an
-

1,(y.8,8) = (1-A€)* + A% 2 + AZE[B*(w)]
+ 2A(€ A~1)E[uB(u)] — «E[B%(w)] )

and we obtain as before

E8*(w)}+ 0 J—(EluB(w)})’ \
Jilae = — «E[B" ()]

€2 +E(B*(w)l+0 J+2€EluB(u)]

v

and minimization of J|A, with respect to € yields

Py if E[uB(uw)] >0
€x= —P, it Elug(u)] <0.
if EluB(w)]=0

- - b

(Recall that we require | €21 g POZ). Now,

> ool WY w -

B LY 3 ~ n . » ~ ~ Al AW .
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E[B*(w)}+0 2~(Elug(w)])’ ,
— «E[B“(u)] if E[uB(w)] €0

PZ+E[B*(u)l+0 2~2P EluB(u)]

JslAs.e- =

E[B*(w)}+0 s—(Elu(w))’ ,
— oE[87(u)] if E[uB(u)] 2 0

PZ+E[B*(w)}+0 2+2P EluB(u)]

Noting that the derivative of this expression with respect to E[uB(u)] is increasing for
negative E{uB(u)] and decreasing for positive E[uB(u)], we find that the unique maximum

is at E[ug(u)]l =0.

To further maximize with respect to E[B%(u)] we take the derivative and get

P P
EHE (W= — — (P2 +02) if(—)> (P+al)
Va2 7]
[+ 4 [0 4

(i.e., Region R123). and zero otherwise (i.e., Region Rlls).

Also note that with the encoding-decoding policy restricted to be linear, the cost
obtained by using the jammer’s maximizing policy is the same as the maximin value for

Game G, ;.

(c) Game G,,
With y(u) = €u and 8(2) = Az

ElB%(w)+0 2 —(EluB(w)])’

Ja'a- =kt 2 R
.
€ "+E[B (u))+0 J+2€E[uB(u))
and
O B A L L e B R it ST

=X

3
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El8%(w)+o0 2—(E[uB(w)))?

Jlaseo = ko€¥ +
€ P+E[BY W)+ 0 Z+2€+Elup(u)]

with sgn( € *) = —sgn E{uf(u)l.

We differentiate J,|,, ¢, With respect to E[uB(u)] to find that the maximizing value is
EluB(u)] =0. Further since J,|,, ¢. is an increasing function of E[uB(u)], its maximum
over B(u) subject to E[uB(u)] < sz is attained at E[8%(u)]=P/’. Any second-order ran-

dom variable with the appropriate variance may be used as the maximinimizing solution,

yielding a cost which is the same as the maximin value for Game G,,.

We have thus shown that for each of the games the expression on the right side of

the equality in (7.46) is J,¢, i.e., we have

Lox Sk - (7.47)

Now using (7.47), along with (7.45), we find that J,x =] ;. and the strategies indicated

are indeed the maximin strategies.

7.6. Conclusion

In this chapter general classes of communication games have been studied, which
include situations where the encoder mapping may be random or restricted to be deter-
ministic, the jammer may tap the input to the encoder or the input to the channel, and the
power constraints on the cncoder and the jammer may be hard or soft. For each of the

above cases, minimax, maximin or saddle-point solutions have been provided.

The important results obtained are
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(1) Games of Type 1 where the encoder structure is allowed to be probabilistic and the
jammer taps the input to the encoder, admit saddle-point solutions under all fidelity

criteria considered.

=%

(ii) Games of Type 2 where the encoder structure is restricted to be deterministic do not
admit a saddle-point solution; however, both minimax and maximin strategies may

be found in this case.

(iii) The minimax value for a game of Type 2 coincides with the minimax value of the

& 36k

corresponding game of Type 3, and the maximin value for a game of Type 2 coincides

with the maximin (saddle-point) value of the corresponding game of Type {.

.'1"“34

et

The least favorable jamming noise for games of Type 1 is Gaussian, and this adds to

the list of results previously available in the literature where the Gaussian distribution

has been shown to be extremal. However, it is important to note that for games of Type 1

hy =

the least favorable jamming noise is independent of the input, whereas for games of Type

3 this least favorable noise is correlated with the output of the encoder.

It is noteworthy that the analysis here cannot be trivially extended when the input

o 2

sequence is vector valued or the number of channels is more than one, since the counter-

e
i

g’!

part of the standard Gaussian test channe! does not admit a simple linear coding scheme in

the vector case.

TSR R e I
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CHAPTER 8

RECAPITULATION AND CONCLUSIONS R0

In this thesis we considered the problem of simultaneously designing communication 0
and control strategies for decentralized systems. The main thrust was towards identify-
ing classes of problems with linear dynamics, quadratic loss functionals and Gaussian .‘:n;
statistics for which the optimality of linear strategies could be established. The general

approach used consisted of first inding a lower bound on the cost, and then constructing R

5 w223
25

strategies which achieved this lower bound. For some instances of the cases in which

linear strategies failed to provide globally optimal solutions, explicit nonlinear strategies

=

were obtained to demonstrate the inferiority of linear designs.

»
[ A5 S 4

In Chapter 1 we introduced scenarios in which the simultaneous design of communi-

cation strategies and control policies may be desired, and provided a discussion of various

A

types of information structures associated with stochastic team: problems. Some issues of

8'?‘5' computational complexity, which arise whei the numerical derivation of the optimal
g team solution is attempted, were also discussed in Chapter 1.

o In Chapter 2 we formulated and analyzed some fundamental classes of stochastic

x: team problems with two decentralized agents. We identified those instances of the general
g}.‘: problem for which the optimal solutions are linear. It was shown that if the first agent "5 :
4
. observes an uncorrupted version of the variable to be transmitted, or if the channel noise Y '.::‘
fd is uncorrelated with the input, then the decentralized team problem admits an optimal '
~ solution which is linear in the observation variables, and the linear coefficients mav be ‘f'.; “
o RSN
' found by solving for the roots of the fifth-order polynomial. For some instances where ":
Q-A the first agent observes a noise-corrupted version of the variable to be transmitted. with .
i =
; L2
5 05
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£ ]

the channel noise also correlated with this variable, we provided nonlinear strategies that ‘ i

outperform the optimal linear strategies. We also commented on some aspects of the e

¢

difficulties associated with Witsenhausen's problem, which is one of the most important § s

and most referenced counterexamples in stochastic control, refuting the common belief i
(prior to 1968) that all linear quadratic Gaussian control problems admit linear solutions. §

In Chapter 3 we considered stochastic dynamic team problems where at each step %

two consecutive decisions must be taken, one being what information-bearing signal to ¥ ’

o (]

transmit, and the other regarding what control action to exert. Such problems arise in the ; :E‘

simultaneous optimization of both the observation and the control sequences in stochastic on g

systems. We solved the problem completely for first-order systems under quadratic cost

criteria. This was done by first constructing an equivalent problem having a cost function ‘i‘; .

consisting of a sum of squared differences, and then solving this equivalent problem by u:‘ :t

using some bounds from Information Theory. For cases with hard power constraints, it =y

\

was shown that the optimum measurement strategy is to linearly amplify the innovation :: :

at each stage to the maximum permissible power level. For cases with soft power con- : E

straints, the structure of the solution was found to be similar, with the optimum power :

levels being found via solving a nonlinear optimal control problem, this in turn being ::-_ ‘

done by using a dynamic program. The results were then extended to cases with an i ;

infinite time horizon and a discounted cost functional, and the existence of optimal sta- :‘

tionary policies for these probleins was established. - W

N

In Chapter 4 we considered stochastic dynamic decision problems requiring simul- '

]

taneous optimization of both the observation and the control sequences for second- and :§ E

higher-order systems under quadratic cost criteria. We showed that for some of the sim- = t

plest of such problems, involving a second-order system, the optimal linear strategies may
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be outperformed by appropriately chosen nonlinear strategies. We considered optimality 1N
over the affine class for problems involving a general j-th order model, and showed that "

within this class, the optimal strategy for the hard power constraint problem consists of N

@

transmitting the innovation linearly, at each stage, at the maximum permissible power

[ )

s: level. For the soft power constraint version the structure of the solution was found to be ::v
. similar, with the optimal power levels being found via solving a nonlinear optimal control ;

J

@ problem. ‘
4 . , . o
" In Chapter 5 we generalized the results on decentralized, two-person teams obtained t:'.o“
in Chapter 2, by allowing the action of one agent to be transmitted to the other agent "‘;

==

through a number of noisy channels simultaneously, instead of being transmitted through

a: ‘ngle noisy channel. We showed that if all channel noises are independent of the input

o]

variable, then linear strategies are optimal, even if the first agent observes a noise cor-

rupted version of the input, the linear coefficients being found through a related parameter

optimization problem. We further showed that when the channel noises are indeed corre-

e

lated with the input variable, then there are instances in which the strategies which are

=3

optimal over the affine class may be outperformed by nonlinear strategies. even when the

::, first agent observes an uncorrupted version of the input variable.
dd_'
In Chapter 6, the results of Chapter 2 were generalized to cases with more than two
-~
& decision makers. We considered problems with a single transmitting agent and multiple

receiving agents, problems with multiple transmitting as well as receiving agents, and

5

finally problems with multiple transmitting agents and a single receiving agent. For prob-

<~
CaE,

lems involving a single transmitting agent and multiple receiving agents, we showed that
t the optimal strategies are linear when either the first agent observes an uncorrupted ver-

sion of the input, or when all channel noises are independent of the input. For problems

v PR3 " g - - . v - . .
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with multiple transmitting as well as receiving agents we again found that the optimal
strategies are linear when either al transmitting agents observe an vucorrupted version of
the variable to be transmitted or when all channel noises are independent of this variable.
However, for the simplest classes of problems involving multiple transmitting agents and
a single receiving agent, we found instances in which the strategies which are optimal over
the affine class may be outperformed by appropriately chosen nonlinear strategies, even
when the first agent observes an uncorrupted version of the input to be transmitted, and
the channe! noises are independent of the input. For this case, we provided strategies

which are optimal within the affine class.

In Chapter 7, we allowed incomplete statistical description of the channel used to
transmit measurements betweer. the decentralized agents, and sought optimal solutions
under a worst-case scenario. Assuming the unknown part of the channel noise to be con-

’

trolled by an adversary or “jammer,” we viewed the problems as zero-sum games. We
considered a number of cases depending on whether there were hard power constraints or
soft power constraints on the decision variables. The unknown channel noise was allowed
to be correlated with either the input or the output of the encoder, i.e., the jammer was
assumed 10 have the ability to tap the channei. We found that if the encoder is proba-
bilistic and the jammer taps the input to the encoder, then saddle-point solutions exist
under all fidelity criteria. If, however. the encoder structure is restricted to be deter-
ministic, then saddle-point solutions do not exist, but both maximin and minimax stra-
tegies may be found. The maximin value here was found to be the same as the maximin

value of a corresponding game where the encoder is allowed to be random, with the jam-

mer still tapping the input to the encoder: and the minimax value here was found 1o be
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be outperformed by appropriately chosen nonlinear strategies. We considered optimality
over the affine class for problems involving a general j-th order model, and showed that
within this class, the optimal strategy for the hard power constraint problem consists of
transmitting the innovation linearly, at each stage, at the maximum permissible power
level. For the soft power constraint version the structure of the solution was found to be
similar, with the optimal power levels being found via solving a nonlinear optimai control

problem.

In Chapter 5 we generalized the results on decentralized, two-person teams obtained
in Chapter 2, by allowing the action of one agent to be transmitted to the other agent
through a number of noisy channels simultaneously, instead of being transmitted through
a single noisy channel. We showed that if all channel noises are independent of the input
variable, then linear strategies are optimal, even if the first agent observes a noise cor-
rupted version of the input, the linear coeficients being found through a related parameter
optimijzation problem. We further showed that when the channel noises are indeed corre-
lated with the input variable, then there are instances in which the strategies which are
optimal over the affine class may be outperformed by nonlinear strategies. even when the

first agent observes an uncorrupted version of the input variable.

In Chapter 6, the results of Chapter 2 were generalized to cases with more than two
decision makers. We considered problems with a single transmitting agent and multiple
receiving agents, problems with multiple transmittling as well as receiving agents, and
finally problems with multiple transmitting agents and a single receiving agent. For prob-
lems involving a single transmitting agent and multiple receiving agents, we showed that

the optimal strategies are linear when either the first agent observes an uncorrupted ver-

sion of the input, or when all channel noises are independent of the input. For problems
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the same as the minimax value of a corresponding game where the jammer taps the output s

£
8
! of the encoder. '
ot
@ The problems studied in this thesis can be viewed as important prototype problems, ::»
.
which could be considered essential building blocks for a general theory of multistage dis- :9:
@ tributed decision making under nonclassical information, and possibly partial statistical ’:‘:‘:
$ description. A major focus has been on the question: Are all stochastic team problems '01
| which involve simultaneous communication and control, and hence exhibit nonclassical i
ﬁ information patterns, inherently difficult and complex? We have shed some light on this ;;::.:
)
m question, obtained fundamental results for two-stage stochastic teams, and have made E::E
* some contributions towards the development of a general theory for multistage (finite and
@ infinite horizon) stochastic control and team problems with nonclassical information, :i?
" . \N
where the control (decision) variable affects not only the state trajectory but also the 3:3

quality of information available to the decision makers.
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APPENDIX A
otk a
_»i:f‘;c REFORMULATION OF THE TEAM PROBLEM
ti‘f\:
y !\ {
':: In this appendix we show how the squares may be completed to obtain the equivalent E
b
. problems PS and PH from the problems PS°® and PH®, respectively.
R p
R %
ilg b :
:“EE: We first note that for k>i we may write
o ’ o
el i k-1 -1 n >
= 2 =
R XX = X 8 imXn+ L PriaiVoXit Z0 L Prinm¥eXm)
_!tx:u\g m=0 n=i n=0 m=n-(j—2)
1‘.1
0
'.Q;j where the §'s are defined recursively as follows:
o 100 = P10
,::: m-—1
:;:: 800 =Pmot L Pmuidroofor 1<m<j—I @
';u k=1
oy k-1 m—1 -
O sk-m-P = z pk.nan.m.p + 2 pk.nam.n,p for p<m o
1.‘!‘ a=m+1 n=p
.*;": k-1
_' ——
3.:':: 8k,m.m =Pgm T Z pk.nsn,m,m §§
:‘0:: n=m+1 *
f and the p’s are defined by ﬁ
~ W
e
3] Pgmik-1m = —1 &
e n~1 "
. Pemk-nm™= Z Py x-iPx—i,m.k—n,m for 2€<n<k-m
:;.:' =1 ‘ﬁ
s
Ny k-1 m—1
D » -
f' Pxmpn: = Z Py +Ptm n,i + Z Pk +Pm,t.n.i * '\?ﬁ
® t=m+1 +=0 ’
fb We define p to be zero whenever any of the following conditions holds: q
P .: a.bc.d 8 Ry
g/ N
poh (i)d<0 o,
@ l
Ny b
e |
B 3
,'.‘l
v..'Q
50X
% w
3 x

) I ) y 8 G = A PRihE ) n - . . ,
RAMAA }r'i.x'ﬁ -'»‘.v-".,'i..s § -'l‘4~‘¢ Lt '.‘Ah Een S a‘l’.‘. 4 .p‘. » ‘l ..n'l‘o 0“" o a'l‘.‘l i "..'. N jJ ‘I.., ,l". el 0, 014,800, 8%,87 A X h N .O. A ) \' " \, .l,.'u
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(i1) d > Min(b,c)
(iii) d =band c > k-1

(iv) c<bandd < c-(j-2)

and §, , . is defined to be zero whenever ¢ > b.

We therefore have

= ) = 2
(@X; + T X et B Xm0

i—1 X i
2
=X vil I 2rp;Xn)t T GarxXe
k=0  mmk—(j-2) k=0

g
i
§

where the r’s and q’s are given as follows:

i k=1

I‘i-l-l.n.p = Z Z a mpk.m.n,p ’
k=i=(j=2) m=i-(j~1)

i k-1
%a= 2 2 33,5 ,,for 0Sn<i—j
k=i=(j=2) m=i~(j~1)

F

and
&\: i k-1
: 2 = = . .
e Qpa=2, + X L 338, fori—j<n<i.

k=i~(j—2) m=i-(j—1)

e

We can now write

) i i-1 K i

by 2 ;

' CZ panX) =Z vl T 25, nX%)+ Ity mXm
n=i=(j=1) k=0 m=k—(j=2) m=0

&=L

and

T

P23
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i -1 x i

2 ’ ’ 2

al T b x)=Xv( ¥ 280 ;m*)+ L ViermXa -
a=i=(j=1) k=0 m=k—(j~2) m=0

Here s;,; y » and ti-i:l,n are given by expressions identical to those for r,,,, ; and q;,, .
respectively, with the @, being replaced by p;,,,, and s’ , , and t;,, ; are given simi-
larly by replacing @, by b, , and further multiplying by a;.

The completing of the squares now proceeds as follows. At the first step we have

2
Cn+1XN+1 T ANVN
N
=d Vv, + cy, (v2=2v,( x_ )+ mZ
= ONYN T On+1'\YN N z PN+1,mXm/ T My
m=N-{j—1)
N-1 k N

2
+ Z vk(2 Z SN+l.i.mxm)+ Z tN+1.mxm)
k=0 m=k—(j—2) m=0

i.e., we can complete the first square to obtain

ay =dy + cyyg

CN+1PN+IN
byn = ——m—
ay

CN+1PN+1,N—(j~1)

bnN-(-1) =
an

Coming to the second step now, we have the following terms containing vy_;:

2 2 , 2
dy_1 V-1 T OnXN + (g NN %N

N-1

+ 2vy_ > (SN-H.N-I,m_S N+1.N=1.m%m *
m=N—-1-(j=2)

Letting

OO0 OGN O O”G \ ’ 3 ‘
OO ONUOUON '-"‘. DO ‘,0'.‘"‘.0..‘0...i'..u"d"..".b".. X =0.‘.|.‘9' L0 ,!“,0 et e M0 9 ‘!“",0 OO l.t‘l,g““o“ KN ) Q'l\’ .‘J“\\ l&a’i,. OO 0(.‘0.
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cIn=cy+ (b N tNaN)

we obtain

an-y =dyy +Cy
and expanding x,ﬁ we get the following expressions for by_, ,'s:

¢ NpN.N—l-(sNH,N-—l.N—l—s N+1,N—1.N—1)

W A

bnoiN-1 =
aN-y

¢ NpN,N—j+l_(sN+l,N—I,N-j+1-s N+1.N-1.N-j+l)

bN—l.N—j+1 =

-

aN-y

’
C NPN,N-j
bN-l.N—j - )
aN-1

E N-2

+ 2vy z (SN+1,N—2.m-S N+1.N-2.mXm

m=N-2-(j-2)
g N=-2
+ 2vy,( 2z (SNN-2.m~S' NN-2.m)%m -
E m=N-2—(j-2)
Letting
x
6 ’ — ’ ’
C'Not = oy +F (e et Viern-1) + (-1~ tUin-1)

ﬁ we obtain
K
N
[}
3
"\
)
[
i ‘1“‘-"‘-5"\"‘-",'A.'..‘n"‘»’.‘uh.a‘!‘i‘s . l.‘l‘:‘l&'. c'!‘o" (N O'E'I‘-‘l':.l“ W, l'u.l.- %%, .‘.. a, L) J I S l'o.'p.. o.l.l |

Moving on to the third step, we have the following expression for terms containing vy_,:

2 2 , 2 , 2
dy—3Vn-2 F Oy X1 e N U N—1 %Nt (= Unin- 1 %1

oLl
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i

aN_3 = C'n-y T dyo,

|3

’ ’ ’,
c N—le—l,N—Z—(SNH.N—Z.N—Z—S N+1,N-2,N—2)—(SN,N—2,N-2—S N,N-2.N—=2) o

2

bn-2n-2=

aN-2

'~

A RS

c N—le—l.N—j—(SN+l.N—2.N-j—S N+1,N-Z.N—j)_(SN.N—Z.N-j-S N,N-Z.N—j)

DN-2N-} =
anN-2
€ N-1PN-1,N-j-1

by N-j-1 = . X
aN-2 )

FSS R B~

Proceeding in a similar fashion we can obtain the general expression for the a’s and

b’s as follows:

( J==

I
A = C +dy ¢
-
where i
>
N+1 -
’ ’ ‘?
= — . 3

Ce=c+ T (=t ) ¥
n=k+1 g W
W :A’
by
for k—j+1<m<k—1 we have M
' 4
b,
N+1 E“ ‘:\‘
- — U
“Pem™ Z (Sok-1.m™S nx-1.m) b
A "

n=k+1 "-(.‘
byoim = O
A ®
'S :
§ !
and ' !
, SO
€ kPrk-j SN

By = — -
Q.
k-1 .

This completes the first step of the transformation and we now have a cost functional of

5
0

the form S
W)

X lh

Y

o X

@

- »

4
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-’. .-

LX)
N i )

20 =
E[X a(vim X b% Y1+ 3y Al
=0 k=0

where T is a constant given by 0
N ‘h‘!‘
- — , 2 ’ 2 .
tN=L¢ i+19m T €0, - ety
i=0 N

To complete the transformation, we now need a redefinition of the v’s. Towards this end, !

we first note that with X’s defined by : o

i~1 e
Xipy = 2 Pis1 ik Xi~x T M, :.:
k=0 .‘
we have for i=0,1,2,... 00

= — »
X1 = X4 — Y5 !

where Ay

=1 it

Vi=vit X Py ikVieken) - 4 '0..:
k=0 O

%
>
@

Therefore, we have "‘
A

j=1 ‘|‘0
—_ (X}
vi— L b kX sl
k=0 °
-1 )
=v,—= X b (X Vi) "5\‘.
k=0
=t =1
=v;+ 2 b Vi1~ Z b Xk
s k=0 k=0 Ay
Wr =1 W 1
v— > ~\
= 2 b Xk e
Y k=0 ".“‘

b= J =N

and hence, the new V's are defined in terms of the original v's by ——

L3 NP L -Nm LY B e LSRR L - LY 2N NA NN N o8 | W : { 9,
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L

=1
Vi=vi+ X b Vi
k=0

which is an invertible transformation.

a
Bl kB

= Xy X8

2

e
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APPENDIX B

THE GAUSSIAN CHANNEL WITH SIDE INFORMATION AT THE DECODER

Consider Problem P1 defined below where the objective is to simultaneously design

the measurement policy vy and the control policy § to minimize a quadratic cost.

Problem Pl
Minimize J(u,v) = Elk,u’ + (v—x)’] (B.1)
v.8
where
u = y(x) (B.2a)
v =8(x,.x,) (B.2b)
and
X, =X+ w, (B.3a)
Xy = U+ W, (B.3b)

Here x, w, and w, are zero mean, independent, Gaussian random variables, with

. 2
variances o, , 0,

2, and 0‘52, respectively.

To facilitate the study of Problem Pl, we formulate a related problem, P2, which is
the hard constraint version of Problem P1, i.e., the term E[kouzl is removed from the cost

functional and the further stipulation is made that

Ely(x)] < P*. (B.4)

We therefore have Problem P2 below.
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Problem P2
)
Minimize J,(u,v) = El(v—x)% (B.5) %
y.8
0:;
given (2), (3) and (4). 1
Problem P2 is represented schematically in Figure B.1 below. Note that this problem Q '
may be viewed as one of designing encoding and decoding strategies in the presence of side )
Y
information at the decoder. If the side information were absent, then this would be a spe- :US !
)
cial case of the problem studied in Bansal and Basar [1987a], without a product term N
n

between the decision variables, and the linear solution would be optimal. For the above

1
-

| o

problem, however, the linear solution is not optimal as we shall elucidate in the sequel.

Encoding-decoding problems with side information have been the subject of some

previous investigations. The rate distortion for source coding with side information at the

ol
decoder has been studied for general sources in Wyner [1978]. It has been shown that if )
the source and side information are jointly Gaussian, then the minimum rate (in the usual ,}g

p
Shannon sense) required for encoding the source at a distortion level about d, is equal to

)

w )

) x N
ulx 2 g‘: y
y =) r 4
T '
—_— ) — Vv :’_ :
X Wz i
x, 7 '
N

0

-}
‘-' '
Figure B.1. Schematics of Problem P2. Rro
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o 2
N o
the rate which would be required if the encoder (as well as the decoder) had access to this ':::

i side information. Since the coding theorem uses the fact that long ergodic seguences are o
(..:
g asymptotically typical and therefore can be encoded into sequences that have the distribu- .',::
+
oy
tion which achieves capacity, Wyner's result implies that if block encoding and arbitrary ':":
@ delays were permissible, then the least mean square error for Problem P2 would be the W
Eg same as that for the system depicted in Figure B.2 below. Note that the only diff erence (
W ]
between Figures B.1 and B.2 is that in the latter the encoder too has access to the side e
®
g information. :,;
i
ah
m The situations we envisage are control theoretic applications, where the encoder out- E::’
f
."‘
put represents system measurements and the decoder has to control the system in real °
3 "
?& time. Thus, bounds which are asymptotically tight are of little use in our application, :ﬁ ;
ﬁ where sample by sample transmission is required. Real-time coding-decoding problems :
()
have also been studied earlier, notably in Walrand and Varaiya [1983], where finite .
4
™ \J
::: sources are considered and feedback information has been shown to be useful for the :::
. ? \‘ :
3
] .
=T ]
' u(x.x,) x, M
g y n
-’ &
b= —_— ) —— Vv ‘.
v g
Pal X x, w, X
vl x 1 :
fa =P~
=
'\T/
ﬁ: t J
] w 1 Y
e
™ ]
PN Q'
- Figure B.2. The encoder has side information also. i
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causal encoding-decoding problem. In the problems of interest to us here, feedback is not
permitted.

Wyner's [1978] result implies that if block encoding were permitted, then the least
mean square error for Problem P2 would be the same as in the case illustrated by Figure

B.2. For the situation depicted in Figure B.2 we have

2, 2
o, +0wl

I(x;x,) = é log(—) (B.6)

2

g
Wy

and

1
I06x°, 1%,) < y log(—). (B.7)

Now since
I06x,,x",) = 10xx, ) + 1(xx7, 1 x,), (B.8)
we have

(6 402 )PP+0l)
1 2
I(xix; . x',) € > log( ). (B.9)

. . ) . . 2
The rate distortion function for a Gaussian source of variance 0, under a mean

square distortion criterion is

2
1 Oy
R(d) = Max(0,— log—) . (B.10)
2 d
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Further,

2
Oy

1
I(x:ix,,x",) 2 I(x;v') 2 — log

2 E((x=v")®)

which implies that

2 2 2
0x0q0u,

El(x—v')’] 2

2, 2yp2, 2
(o +og AP +ay )
Now if we use the causal policy
u(x)=\(x —E(xx,))

where A’ satisfies

then this least possible distortion d is attained with equality, implying that the linear .:s',

strategy indicated is optimal for the problem with feedback.

Of CF O P

ad.

(B.11) W

(B.12) ™ )

(B.13) o

(B.14) v

In Problem P2 feedback is not available, and hence the optimal linear strategy con- Aty

sists of using
u(x) = Ax
v = Elx | x;,x,)

which yields the mean square distortion d* given by

22, 2, 22
Prog taglo+oy)

0’0 0‘1

(B.15a) e

(B.15b) o

( B.16 ) ;.l"

] L In OMG 1
T M ettt



i Clearly d*>d, since P20x2>0. This is not unexpected since in the case of d, addi-
;:;:; tional information was used at the encoder. As discussed earlier, if arbitrarily large
faal

LA ) -

‘L‘:9 delays are allowed, then the least distortion for P2 is also d, hence strategies may be con-

structed via block encoding which would improve upon the case of linear sample by sam-

) ple transmission.

X The important issue now is whether a reduction in the least mean square error d*
(obtained via linear coding) is possible withour block encoding. We now show that the
W optimal causal linear strategy may be outperformed by a causal nonlinear strategy, i.e.,

O without block encoding and thus with no delay.

We first provide an example where the optimum linear strategy for Problem P2 may
) be outperformed by an appropriately chosen nonlinear policy. Towards this end, we pro-

o pose the following design:
! =X + €sgn x (B.17)

A (xy+x,=€)(2 j¢ x; 20
(B.18)

v= .
koo (x,+x,+€)/2 if x, <0

We next find the mean square error using the policy proposed in (B.17) and (B.18).
'0:: We have

IProblx, 2 0] + El(x=v)* | x, < OJProblx, < 0}

s El(x—v)" ] = El(x=v)* I x, 2
2 0].

0
= E{(x=v)’ | x, 20

) Now,

El(x=v)?1x, > 0] -

S . | S . )
ADEDHADNINICHNS D ; : Ay Y \ 2 ! MAK N Y Nl Ay % > YLD '
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= El(x—v)*1x, > 0,x 2 OlProblx > 01x, > 0]
2

+ El(x—v)? 1%, 2 0,x < OJProb{x < 01x,> 0].

Since
2 2
, °w,+°w,
El(x-v) 1%, 2 0x 2 0]=
4
and
2 2
, aw‘+owz )
E(x—v) 1%, 20x <0]l= — + ¢,
4
we have
X 0“2,l+0‘,‘2,2 )
El(x—v)"Ix, 2 0] = ———— + €Prob[x < 01x,2 0].
4 .

Now Prob(x < 01x,2 0) may be easily computed, since the joint density of x and x, is

known:
1 (x‘-x)z X2
Pyx () = ——— exp |~ -
21roxaw| 20\31 20x2
Further,
Prob(x < 01x,2 0)=1—=Prob(x > 0Ix,2 0)
Prob(x 2 0.x,2 0) |
Prob(x 2 01x,2 0) = Y = 2]
Prob(x, 2 0) 1/2
where
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I=ff Py, A% dX, -
00
Letting "wz, =] we get

I=f ! exp( X )dxfexp(—(y;X) dy
0

=f exp( X )dx [e 244
0 V2mo 262 V27 —x
X

o« 2
=f exp( X )(—x)dx
0 X 20 x2

2
exp( z J$(—o, z)dz .
2

Thus, I may be evaluated and the error using nonlinear policies:

I+a‘$'2
+ &(1-21)

Cn 8 4

may be found, and hence the mean square error using linear strategies and that using this

nonlinear strategy may now be compared.

We now provide some examples where the optimum linear strategy for Problem P2 is
outperformed by a nonlinear strategy of the form given by (B.17) and (B.18). We then
illustrate how these results may be used to construct instances of Problem Pl where a

nonlinear strategy may be used to outperform the optimal linear strategy.
Consider Problem P2 with parameter values o = 100.0, o = o\f’,)= 1.0. Letting

P? = 85.0423, we get e=—1 and the nonlinear strategy achieves a mean square error of
0.53172. The optimum lincar strategy at the above power level attains a mean square

error of 0.53751, which is inferior to that attained by the nonlinear policy.
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Table B.1 below gives other instances of Problem P2 where the nonlinear policy out-
performs the optimum linear policy, the third column indicating the improvement
(C,—Cy). i-e., the difference between the mean square errors for the two cases, and the
last column indicating percentage improvement over the optimum linear design. In all the
cases considered in Table B.1, we have used 0‘2,, = 032 = 1.0.

TABLE B.1. SOME INSTANCES OF PROBLEM P2 WHERE NONLINEAR STRATEGIES
OUTPERFORM OPTIMUM LINEAR STRATEGIES.

o -€ Improvement % change
40 | 1.00 0.001375 0.24
6.0 | 1.10 0.001736 0.31
60 | 0.90 0.009627 1.74
60 | 0.80 0.011973 2.19
60 | 0.70 0.013262 2.46
6.0 | 0.50 0.012691 241
10.0 | 0.80 0.009148 1.73
10.0 | 0.60 0.009994 1.92
10.0 | 0.55 0.009813 1.89

We now construct an instance of Problem P1 by finding k, which corresponds to the

appropriate hard power constraint. Returning to the example with ox2=100.0.

2

3
o, =0, =1.0, we note that when the policies are lirear, the optimum power level is
] 2

given by

ki
P** = arg min k(,PZ +

: 222, 2 2
220 2
2 P n“,‘+u“,2(ox+owl)
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which implies that k, and P* satisf y ‘

100
kg = ———=0,
(PP+101)*

and for the case in consideration with P> = 85.0423, we may let

ko= ——20—— = 0.0028892 .

0™ 2
(186.0423)

Therefore, for Problem Pl with parameter values k,=0.0028892, oxz= 100.0,

ol = o\,z,2 = 1.0, the optimum cost over the linear class is given by (0.0028892 x 85.0423

"1
+ 0.53751 =) 0.78321 whereas a nonlinear policy of the form (B.17) and (B.18) with

= —] attains 0.77742.
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