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VERTEX CONNECTIVITY OF GRAPHS: ALGORITHMS AND BOUNDS

Arkady Kanevsky, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1988

This thesis considers several problems concerning vertex connectivity of undirected graphs

and presents new bounds and algorithms for these problems.

We have proved that the upper bound for the number of separating triplets of a triconnected

(n=1)(n—4)

3 , and it exactly matches the lower bound, which is achieved by the wheel

graph is
n 2
graph. This result has been generalized to an O (2* T) upper bound on the number of separat-
kn’
ing k-sets in a k-connected graph. We have also obtained a new Q(2 —kT) lower bound.

Even though the upper bound for the number of separating k-sets is not linear but quadratic
in n, we have obtained a linear space representation for the separating k-sets of a k-connected
graph. For k=3 this representation is a collection of wheels, where every nonadjacent pair on the
cycle of a wheel gives a separating triplet of a triconnected graph. For general &, we have

obtained an O (kzn) representation.

We have designed a new sequential O (n2) algorithm for the problem of determining if the
graph is four-connected or not. Consequently, we find all separating triplets of the graph if it is
not four-connected. The algorithm has a parallel version which runs in O (log?n) time using
0 (n? processors, which is also an improvement over O (nm) processor count of the best previ-

ously known parallel algorithrn.

We have designed algorithms for generating all separating k-sets of a k-connected graph.

The sequential algorithm runs in O (2¥n3) time and parallel one runs in O(klogn) deterministic

6
parallel time or in O (logzn) randomized time using O (4":—2) processors on a CRCW PRAM.
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! CHAPTER 1 .
g INTRODUCTION :
%\,&. " 1.1. Motivations 1
~ Connectivity is one of the fundamental graph properties, and there has been a considerable k¢
4% 4 <
'; amount of work on algorithms and structural aspects of this property. Applications of graph )

772,

connectivity arise in operation research for scheduling problems, network analysis in electrical

engineering, and many other real-life problems.

~

{
i

The most direct application of this problem is for the reliability of networks,
{3,4,40,7,8,42,43} A fundamental criterion for evaluating performance of a communications
network is its ability 1o withstand the failure of its components “f-3]: Two most important meas-

ures of network reliability are reachability and connectedness’, [ 41 + Usually, a network is

viewed as an undirected connected graph in which both vertices and edges have some probabil-

-,
" ity of failure. Most of the analyses of a network reliability are concerned with link (edge)
L failure, rather than vertex failure. The reason for ignoring vertex failure is not only real-life
v models but nonexistence of good upper bounds for the number of minimum size separating ver-
: tex sets of graphs. On the other hand it has been known that the number of separating edge sets
= is upper bounded by [;] [6,30]. The list of all minimum size separating vertex sets and their
> //’
- number play a fundamental role in analyzing the connectedness of a network.
o Another important measure of network reliability is to determine the subgraphs which are
: © “highly"” connected and to decompose the network into them. The results in all of these meas-
N ures help in the design of optimum communication networks. N
.

In recent years more and more network designs are based upon distributed networks (e.g.
: ARPANet) rather than tree type networks with multiedges [16,2,53,54,17]. These networks
7
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are more reliable for node failure and use less hardware than tree type networks. Until recently
most networks designed had small connectivity (1 or 2) [ 12,2,37,38]. So the network (graph)
can be easily decomposed into connected, biconnected or strongly connected components
(directed case) [3,28,12,37,38]. This is needed in order to find which parts of the network can
still communicate (with high probability) in case of edge and vertex failures. So in addition to
connectedness, a relevant measure of network reliability is also what percent of nodes can com-
municate in case of failures of edges and vertices [ 38]. For more complex networks we need to
find connected components with higher connectivity, along with all the separating vertex sets

and edge sets of the network [ 1, 12,37, 38,32, 3,34].

1.2. Previous Results

There are well-known sequential linear-time algorithms for determining vertex connectivity
and biconnectivity (see e.g., [11] ), as well as triconnectivity [16,27]. These algorithms use
either the depth-first search technique [11,16,35] or the ear-decomposition technique
[39,24,25,26). The best deterministic sequential algorithms for testing graph 4-connectivity
had time complexity O (nm), where n is the number of + zrtices in the input graph and m is the
number of edges. There are two such algorithms. One is based on a reduction to a network flow
[9,10,14,15]. The other uses the O (m) algorithm for testing triconnectivity [16,27] to test
four-connectivity in a triconnected graph in O (mn) time by deleting each vertex of the graph in
turn, and testing triconnectivity in the resulting graph; this algorithm also finds all separating tri-
plets in the graph, if the graph is not four-connected. The best sequential algorithm for general &
is O (max(k,n”)kmn ") algorithm for determining the connectivity of a graph which is based

upon a network flow [ 9,10, 14, 15].

Efficient parallel algorithms were designed for determining graph connectivity tor small &

Clearly, there are NC algorithms for testing graph k-connectivity for any fixed k. Simply,
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remove all k£ vertex subsets of the graph and test for graph connectivity, simultaneously on a
CRCW PRAM. The best parallel algorithms for graph k-connectivity for k = 1,2 are the
efficient O (logn) parallel time algorithms using O (m+n) processors on a CRCW PRAM
[45,50], for k =3 an O (logn) parallel time algorithm using O ((m+n)logn) processors on a
CRCW PRAM [36,41] and for k =4 an O (logn) parallel time algorithm using O (nm) proces-
sors on a CRCW PRAM by using the triconnectivity algorithm by deleting each vertex of a
graph in turn in parallel [41]. There is no efficient deterministic parallel algorithm for determin-
ing the connectivity of a graph for general k. We also note there are some randomized algo-
rithms for testing k-connectivity for k > 3 [5,29]; the running times of these algorithms are

O (n? + nk>2) [29], and O (n>?m) [ 5).

The other question which often raised with connectivity is to find all minimum size separat-
ing vertex sets. This idea lies in the heart of the algorithms for determining graph k-connectivity
for k =1,2,3,4. The algorithms for graph (one)-connectivity, biconnectivity, triconnectivity and
4-connectivity find all articulation points, separating pairs, separating triplets of a graph in order

to determine that a graph has a higher connectivity.

1.3. Main Results and Organization of the Thesis
Chapter 2 presents several definitions which will be used in the later chapters.

In chapters 3 and 4 we address the following question: what is the maximum number of

separating k-sets in a k-connected undirected graph?

An undirected graph G on n vertices and m edges has for any & a trivial upper bound of [Z]

on the number of separating k-sets. The graph on n vertices with no edges achieves this bound.
However, the more interesting question is the one raised above, namely the bound when the
graph is k-connected. For k=1 the maximum number of articulation points in an undirected con-

nected graph is (n-2), and a path on n vertices achieves this bound.

PN TN A N T T e T s A
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Chapter 3 presents a lower bound on the maximum number of separating k-sets in a k-
connected undirected graph. It also presents the cycle and the wheel, the graphs that achieve the
lower bounds for k = 2,3. For general k generalizations of cycle and wheel are presented. The

lower bound obtained on the maximum number of separating k-sc.s of an undirected k-connected

2
graph is Q(Z":—Z).

Chapter 4 presents the upper bound on the maximum number of separating k-sets in a k-

connected undirected graph. For k=2 the maximum number of separating pairs in an undirected

n(n-3)

biconnected graph is >

, and a graph that achieves it is a cycle on n vertices [23]. For

k=3 the maximum number of separating triplets in an undirected triconnected graph is

(n—-1)(n—4)

> , and a graph that achieves it is a wheel on n vertices [23].

Chapter 5 presents the O (n2) bound on the number of separating k-sets in a k-connected
2
graph for any fixed £ [24,26]. The exact bound is O (2"—'—'k—). Furthermore, it presents a linear

representation of s narating k-sets in k-connected undirected graphs. There is an O (n) represen-
tation for separating pairs in a biconnected graph [ 23] and there is an O (k%n) compact
representation for separating k-sets in a k-connected graph [ 26]. Table 1 summarizes these

results.

Chapter 6 presents new sequential and parallel algorithms foi graph four-connectivity. The
new best deterministic sequential algorithm for testing graph four-connectivity has time com-
plexity O (n?) [25] and is based upon ear-decomposition technique. The new efficient parallel
algorithm for testing graph 4-connectivity runs in O (log®n) time using O (n?) processors on a

CRCW PRAM [ 25]. Table 2 summarizes these results and their relationships to earlier results.

Chapter 7 presents sequential and parallel algorithms for finding all minimum size vertex

separating sets for general & [ 27]. Table 3 presents the current time complexities of algorithms
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Bounds for the number of separating k-sets

in a k-connected graph on n vertices
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Finally, in Chapter 8 we give the conclusion of the Thesis and state several open problems. 2 X
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o CHAPTER 2
;g‘b E
i DEFINITIONS
o §
KA
siO..
i 2.1. Graph Connectivity
) T
Sl | .
::.: An undirected graph G =(V,E) consists of a vertex set V and an edge set E containing unor-
o

L

dered pairs of distinct elements from V. A path P in G is a sequence of vertices <vg, * - *, V>
such that (v;_;,v;)eE,i=1, - - - ,k. The path P contains the vertices vg, - * - ,v; and the edges
(vo,v1), * * * »(Vik~1,Vx) and has endpoints v, vi, and internal vertices vy, - -+ ,v¢_1. The path P
is a simple path if v, - - - v,y are distinct and v, - - -, v, are distinct. P is a simple cycle if it is

a simple path and vp=v,. A single vertex is a trivial path with no edges. We denote by |P |, the

T
e B\ A

i

{%: number of vertices contained in path P.

;‘ A

l“

" Let P=<vyg, * * *,v¢_1> be a simple path. The path P (v;,v;),0<i,j<k -1 is the simple path

[

:“E: connecting v; and v; in P, i.e., the path <v;,v;,1, * **,v;>, if i<j or the path <v;, vy, * -, v;>,
() ¥y

;..2: '3." if j<i. Analogously, P [v;,v;] consists of the path segments obtained when the edges and inter-

. nal vertices of P (v;,v;) are deleted from P.

7 ,‘j"

:: Let G=(V,E) be an undirected graph and let V'CV. A graph G’=(V",E’) is a subgraph of G

!' u

: ; ‘5 if E'CE~{((vi,v,)1vi,vj€ V’). The subgraph of G induced by V" is the graph G'=(V",E") where

> ﬁ E"=E {(vi,vj) v, vje V'),

) -,.

§: We will sometimes specify a graph G structurally without explicitly defining its vertex and

e e

‘ ’ g edge sets. In such cases, V (G) will denote the vertex set of G and E (G) will denote the edge set

o of G. Also, if V' ¢ V and ve V we will use the notation V"Uv to represent V'U{v}.

1S :'H:

:.0‘ - An undirected graph G =(V,E) is connected if there exists a path between every pair of ver-

0‘.

0) ™

X 'J\; tices in V. For a graph G that is not connected, a connected component of G is an induced sub-

graph of G which is maximally connected.
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A vertex veV is an articulation point (a.p.) of a connected undirected graph G=(V,E) if
the subgraph induced by V—{v} is not connected. G is biconnected if it contains no articulation

point.

Let G=(V,E) be a biconnected undirected graph. A pair of vertices v,,vpeV is a
separating pair for G if the induced subgraph on V—{v,v,} is not connected. G is triconnected

if it contains no separating pair.

A triplet (v1,v3,v3) of distinct vertices in V is a separating triplet of a triconnected graph if
the subgraph induced by V ~ {v{,v4,v3} is not connected. G is four-connected if it contains no

separating triplets.

In general, an undirected graph is k-connected if and only if between every pair of vertices
there are k vertex disjoint paths, or alternatively, removal of any k-1 vertices leaves a graph
connected [14]). The equivalence of these two definitions is the well-known Menger theorem

[34].

Let G=(V,E) be a k-connected undirected graph. A set V~ of k distinct vertices of G is a

separating k-set if the subgraph induced on V-V “ is not connected.

2.2. Ear Decomposition of Graphs

An ear decomposition [31,55] D=[Py, ***,P,_;] of an undirected graph G=(V,E) is a
partition of E into an ordered collection of edge disjoint simple paths P, - - -+ ,P,_; such that P
is a simple cycle and each endpoint of P;,i=1, - - - ,r—1 is contained in some P J»J <i, while none
of the internal vertices of P; are contained in any P;,j <i. The P;’s are called the ears of D. D is
an open ear decomposition if none of the P;,i=1, - - - ,r—1 is a simple cycle. A trivial ear is an
ear consisting of a single edge. A graph has an open ear decomposition if and only if it is bicon-

nected [55].
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Let G=(V,E) be a biconnected graph, and let Q be a subgraph of G. We define the bridges
of Q in G as follows (see also [ 14] ): Let V’ be the vertices in G -Q, and consider the partition

=5E YW 55 R

of V’ into classes such that two vertices are in the same class if and only if there is a path con-

O
;. necting them which does not use any vertex of Q. Each such class X defines a (nontrivial) bridge
J

a'.. vt

::'0 B=(Vp,Ep) of Q, where B is the subgraph of G with Vg=K\_j {vertices of Q that are connected

by an edge to a vertex in K}, and Ep containing the edges of G incident on a vertex in K. The
vertices of @ which are connected by an edge to a vertex in K are called the attachments of B.
An edge (4,v) in G~Q, with both u and v in Q, is a trivial bridge of Q, with attachments u and v.

The nontrivial and trivial bridges together form the bridges of Q in G. In general, wherever we

e BB AN

use the term bridge, we mean nontrivial bridge.

X o

Let G=(V,E) be a biconnected graph, and let Q be a subgraph of G. We define the bridge
graph of Q, S=(Vs,Eg) as follows: Let the bridges of Q in G be B;,i=l, ‘- ,k. Then

=~

;::v . Vs=V( @) U{B1, ' - ,Bx} and Eg=E (@3 _{(v,B;))| veV(Q),1<Si<k, and v is an attachment of

g 5 Bi}.

’e.. b_; Figure 2.1 illustrates some of our definitions relating to bridges.

?:a :‘ Let G=(V,E) be a graph and let P be a simple path in G. If each bridge of P in G contains

i.' :E exactly one vertex not on P, and there is a bridge B of P with the endpoints of P as attachments,

T then we call G the star graph of P and denote it by G (P). We denote the bridges of G (P) by

::::. R stars. The unique vertex of a star that is not contained in P is called its center. Note that, in a '
:.:' é’ connected graph G, the bridge graph of any simple path in G is a star graph. Let G (P) be a star

I graph, and let Sy, - - - ,S; be some of the stars in G (P). The operation of coalescing the stars ]
X " S;,i=1, - - - ,k removes these stars and replaces them by a new star § whose attachments are the |
‘:: Y union of the attachments of S, * - - ,Sk. ﬂ

;;, Let G be a biconnected graph with an open ear decomposition D =[P, - - - ,P,_;]. Let the ;

)'i'
iy % bridges of P; in G that contain vertices on ears numbered lower than i be B, - ,B,. Weshall




G with open ear decomposition D = (P Py P2, P13, Pa4l;
Po=<1,2,3,4,5,1>, P1=<3,7,6,5>, P5 = <6,4>, P3=<7,8,6>, P 4=<3,5>.

C C C

Bridges of P ;.
B
B B, B 4

C G F E
Bridge graph G, of P;.
Figure 2.1.
Dlustrating the ear decomposition

call these the anchor bridges of P;. The ear graph of P;, denoted by G;(P;) is the graph obtained

from the bridge graph ot P; by coalescing all stars corresponding to anchor bridges. We will call
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P
S

this coalesced star, the anchoring star of G;(P;). For any two vertices x,y on P;, we denote by

Vi(x,y), the internal vertices of P;(x,y); we denote by V;[x,y], the vertices in P;[x,y]-{x,y} Y

- e e
-~

together with the vertices in anchor bridges. For a star graph G (P), the set V (x,y) denotes the A

-
-

vertices in P (x,y)- {x,y}, and the set V [x,y] denotes the vertices in P [x,y ]—- {x,y}.

s -
s S
£

2.3. Network Flows and Graph Connectivity ;

A network consists of the following data:

..a
b

wlx

T

§: (1) A finite directed graph G (V,E) with no self-loops and no multiple edges. R

j2

(2) Two specified vertices s and 1; s is called source and ¢, the sink

(3) Each edge e€ E is assigned a non-negative number ¢ (e) called the capacity of e. X

S58

A flow function f is an assignment of a real number f (e) to each edge e, such that the fol- 3

lowing two conditions hold:

b &

:. (1) For every edge ee E, 0<f (e)<c (e)

N

:: Q (2) Let o(v) and B(v) be the sets of edges incoming to vertex v and outgoing from v, respec-

'0

) L tively. For every vertex ve V—{s,t)

R ]
, 0= 3 f@- X fle. )
Sl eca(v) eef(v) '
Y ,

The total flow F of fis defined by

F= 3% f)- X f(e).
eca(r) eeB()

The maximum flow problem is to find an f for which the total flow is maximum.

‘ .é Let S be a subset of vertices such that se S and reS. Let S be the complement of S, i.e. E
4 w §=V -5. Let (5,5) be the set of edges of G whose start vertex is in S and end vertex is in S. .
R ' The set (§,S) is defined similarly. The set of edges connecting vertices of S with S (in both ;
i A directions) is called the cur defined by (S.5). ;
I ~
¥
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Lemma 2.1. [ 15] Forevery §

F= % flee- % f(e.

€€ (S,5) e€(S.S)

Let us denote by c¢ (s) the capacity of the cut determined by (S,§ ) which is defined as fol-

lows:

cS)= Y c(e).

ee(S.5)

Lemma 2.2. [15] For every flow function f, with total flow F, and every S,

F <£c(S).

By the capacity constraint, the flow across any cut cannot exceed the capacity of the cut.
Thus the value of the maximum flow is no greater than the capacity of a minimum cut. The

max —flow min —cut theorem states that these two numbers are equal.

Theorem 2.1. [15] If F and S are such that F = ¢ (S) then F is the maximum and the cut defined

by S is of the minimum capacity.

The residual capacity for a flow f is the function on vertex pairs given by
riv,w)=c(v,w) - f (v,w). We can push up to r(v,w) additional units of flow from v to w by
increasing f (v,w) and correspondingly decreasing f (w,v). The residual graph R for a flow f is
the directed graph with vertex set V, source s, sink ¢, and an edge (v,w) of capacity r (v,w) for
every pair v,w such that r (v,w) > 0. An augmenting path for f is a simple directed path from s
to £1n R. There are several algorithms for finding the network flows in a digraph [14, 49, 32,20]
using augmenting path to increase flow. But for faster algorithms for network flows

blocking flow technique is used [10,49].
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®
§
3
! There are special types of networks which are often used: a unit network is the network
with all edge capacities integers and each vertex v other than s and ¢ has either a single incoming )
g edge, of capacity one, or a single outgoing edge, of capacity one.
ES Theorem 2.2. [49] On a unit network, Dinic’s algorithm finds a blocking flow in O (m) time

and a maximum flow in O (Vam) time.

SE There is a direct connection between a network flows and connectivity of an undirected :
o graph [ 14]. Let N(v,w) be the least cardinality vertex separator between v and w (a smallest
“ cardinality vertex set S such that there are no path from v to w in V=), and let p (v,w) be the ’
“;’ maximum number of pairwise vertex disjoint paths connecting v and w in G.
N Lemma 2.3. { 14,34] (Menger’s Theorem) If (v,w)e E then N (v,w) =p (v,w). :
w Based upon this lemma we construct a directed graph G from undirected G and find a max- :
‘ imum flow between kn pairs of vertices in order to determine the minimum p (v,w) in G [12].
. Theorem 2.3. [ 14] Connectivity k of G is equal to t:n‘? p(v,w).
ﬁ First, we construct a digraph G = (V,E) as follows. For every vertex ve V there are two
"? vertices v~ and v *“ in V with a directed edge (v',v e E. For every edge (u,v)e E, there are two A
9: edges (u"",v Je E and (u",v")e E. Define now a network with digraph G, source s **, sink ¢ *, unit ’
-t capacity for all internal edges (edges of the form (v/,v")) and infinite capacity edges for all other
ﬁ edges (external) of G [14] (see figure 2.2).

In order to find connectivity of G maximum flow has to be found between kn pairs of ver-
% tices of G [14]. Thus gives O (k%mn) time algorithm for finding the connectivity of a graph
{3 [14]. More refined algorithms for this problem have O (max (k, Nm)km\n ) time [18, 19], where
;'; the algorithm in [19] has the best space bound. For more information on the use of network .

flows for graph connectivity see [14].

WL SR LSRG Gt iy
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Nlustrating the reduction from G to G. AT
- L
2.4. Models of Parallel Computation . ,’,\
P NN
The model of parallel computation that we will be using is the PRAM model, which con- G
sists of several independent sequential processors, each with its own private memory, communi- R :
M %
m
cating with one another through a global memory. In one unit of time, each processor can read ) t :
AL W
one global or local memory, execute a single RAM operation, and write into one global or local ORI
)
memory location in that order. DU
S
PRAM s are classified according to restrictions on global memory access. An EREW PRAM ’::j ;
P
is a PRAM for which simultaneous access to any memory location by different processors is for- 4 ;:
<
bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no RN
M
simultaneous writes. A CRCW PRAM allows simuitaneous reads and writes. In this case we * -8
: : . : . LN
have to specify how to resolve write conflicts. We will use the ARBITRARY model in which ;
>
any one processor participating in a concurrent write may succeed, and the algorithm should % \
13
Y2
¥
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e

L AR ¥R

work correctly regardless of which one succeeds. Of the three PRAM niodels we have listed, the
EREW model is the most restrictive, and the ARBITRARY CRCW model is the most powerful.
It is not difficult to see that any algorithm for the ARBITRARY CRCW PRAM that runs in
parallel time T using P processors can be simulated by an EREW PRAM (and hence by a CREW

PRAM) in parallel time TlogP using the same number of processors, P (see e.g., [28]). h

Pe 4

Let S be a problem which, on an input of size n, can be solved on a PRAM by a parallel

. ‘f:: algorithm in parallel time ¢(n) with p (n) processors. The quantity w(n)=t(n)-p (n) represents

:e‘:. ~ the work done by the parallel algorithm. Any PRAM algorithm that performs work w (n) can be )
':' S". converted into a sequential algorithm running in time w(n) by having a single processor simu-

\ " late each parallel step of the PRAM in p (n) time units. More generally, a PRAM algorithm that

E’ ’ :': runs in parallel time #(n) with p (n) processors also represents a PRAM algorithm performing ;

R "' O (w (n)) work for any processor count P <p (n). A

::' .. Define polylog (n)=\_ O (log"n). Let S be a problem for which currently the best sequential

:':‘. :3- k>0 .
3 algorithm runs in time T (n). A PRAM algorithm A for S, running in parallel time ¢ (n) with p (n)

K t; processors is efficient if 7

..": « a) t(n)=polylog (n); and

: :' b) the work w (n)=p (n)-t(n) is T (n)-polylog (n). :

_' N An efficient parallel algorithm is one that achieves a high degree of parallelism and comes )

: : to within a polylog factor of optimal speed-up. A major goal in the design of parallel algorithms E
’ is to find efficient algorithms with z(n) as small as possible. The simulations between the vari-

E‘ ::; ous PRAM models make the notion of an efficient algorithm invariant with respect to the partic- :

| E : ular PRAM model used. For more on the PRAM model and PRAM algorithms, see [28]. :

R :

o

R 3
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CHAPTER 3

LOWER BOUNDS FOR THE NUMBER OF SEPARATING K-SETS

3.1. Cycle and Wheel for k=2,3

The n-node graph that achieves the maximum number of articulation points of a connected

graph is a path P, on n vertices. The cycle C, is a simple path P, = <vg, - - *,V, Vo> on n ver-

(n—=3)

tces suéh that its endpoints coincide (se: Figure 3.1). It has 2 2 separating pairs, which is

a Jower bound for the maximum number of separating pairs for a biconnected graph on n ver-

aces.

The wheel W, [52] is a cycle C,_; together with a vertex v and an edge between v and

every vertex on C,_; (see Figure 3.2). After removal of v and all edges adjacent to it we get

Cn-1, which yields -D@r—4)

2 separating triplets. And removal of any three vertices of C,,_;

4

Figure 3.1.
Cycle.
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‘ i Wheel
¥
: - does not disconnect the wheel. Hence the number of separating triplets of a wheel is
1 -
n ~ . . . . .
B Q—l)i(—n—-f'—)- This is a lower bound for the maximum number of separating triplets of a tricon-
Y nected undirected graph on n vertices.
R
;:‘; > 3.2. Generalized Cycle and Wheel for General k >3
\' .
Let us now generalize the wheel graph and the cycle graph to achieve lower bounds for the
N
;o number of separating k-sets for odd and even k, respectively. (see Figure 3.3 ).
i‘ ‘ k
3 L For even k take —:— complete graphs K on & vertices, arranged in a cycle. Take > vertices
"‘- “u . .
7 of each K. Two adjacent complete graphs are connected via —;— edges, one edge per vertex,
» .‘1
‘ L
: - such that every vertex of K has one and only one edge outside X;. Removal of these 3 edges
: .. and analogous —;— edges which connect two other adjacent complete graphs on the ’cycle’ will
R
K
.
- -
’ -
1 S
B o D R T L e e e L e AR e e R P




B R BB A ih e n R Sk AR BB Ty 20 8" 00780 6.2 3, \ 2a o' O R R T R N T R R TR I R ey o

v e
W
°
X
20 ” \
X L%
| NN
:
PUR L
[ ]
oAy
et
LY
\

o
° &9 ° |
c:
°
X
O © :; ‘\.
he
F
e
O =
o P
£ R
= W,
2
.,
W N
K
K Ky -~ 2
- J
Figure 3.3. o 0:-
Generalization of cycle for even k (k = 6). o
separate the graph. Since for removal of each edge we can use either of its endpoints we get 2 ) j_‘ '
g
. . n(n=3) . . - f:
factor for each such separating edge set. Since a cycle has — separating pairs, we get :.::
S
n? ~
Q(_i') separating edge sets of cardinality k. Hence, the number of separating k-sets for the NN
k i ¢ :.:;-: \
generalized cycle graph is Q| 2* % . If n is not divisible by & then one complete graph will be 5 :’ ’
k o
bigger than k in order to take extra ( » mod k) vertices. But the number of the edges between ! !
o ¢
JAl
two adjacent complete graphs on the cycle still remains % A
“ [} [ N ‘I
®

The generalized cycle is a k-connected graph. To see this consider any two vertices v, and

LY
F ey

A
"

N
v, of it. There are two cases: they belong to two different complete subgraphs on & vertices (K I: N
\
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and K3), or they belong to the same one K3. If it is the first case, then clearly there are % pair- ’

wise disjoint paths between v, and v, going clockwise on the generalized cycle, and there are

e xS K»

L3 aths between v and v, going counterclockwise on the generalized cycle. If it is the second
5 P

.

case, then there is one path which is just a single edge, k~2 paths inside K'3 and one path which

>
o

connects v and v, via the rest of the generalized cycle. N '

s

Analogously, we have the lower bound for odd k, which is achieved by a '

P

."v.“_'l. ')"‘I ',"n_"" - "._-' P s , :”I"- ¥ A

ﬁ generalized wheel. A generalized wheel is a generalized cycle on n~—1 vertices and one vertex h
Q in a center which is connected to every vertex on a generalized cycle (see Figure 3.4). \
. 2
. r ) 0
§ .
o
3 %
0O (o)
! Kk-1 Kg-1
A
~ C @
*
o o)
5
— )
o Kk-1 Kk-1 3
+ Figure 3.4. X
‘ Generalization of wheel for odd & (k = 7). o
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CHAPTER 4

UPPER BOUNDS AND REPRESENTATIONS
FOR SEPARATING PAIRS AND TRIPLETS

In this and the following Chapter we present compact representations for separating k-sets
of a graph as well as upper bounds for the maximum number of separating &-sets in an n-node
k-connected graph. By representation of separating k-sets we mean a data structure that takes
less space than the input graph itself and for which there is a fast procedure to list all separating

k-sets of the graph; when computing the space required for a representation, we assume that we

bz

<
A

are using one unit of space for each vertex, and for each edge.

In this chapter we provide upper bounds and representations for £k =2 and k =3. In PZB
Chapter 5 we generalize these techniques for general k. o
4.1. Separating Pairs "i
4.1.1. l(l-‘i:él Upper Bound N
Theorem 4.1. The maximum number of separating pairs in an undirected biconnected n-node
graph is l(';—_?’l -’
Proof: Let {v1,v,]} be a separating pair of a biconnected graph G on n vertices and m edges, %
whose removal separates G into nonempty G and G, (see Figure 4.1). "
Then we can divide all separating pairs of G into four types: u

1). Separating pairs completely inside G, U{vy,v3}, ~
2). Separating pairs completely inside G, U{v,va}, :::
3). Separating pairs with one vertex from G, and one vertex from G ,, 1N
4). The separating pair {v,,v,]}.
=
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Figure 4.1.
Separating G into nonempty G, and G, by separating pair {v,,v;}
Let f (n) be the maximum number of separating pairs in a biconnected graph on » vertices.
The number of separating pairs of type one and type two are upper bounded by f (/+2) and
f (n-1), respectively, where [ is the cardinality of V (G,) and n—/-2 is the cardinality of V (G ;).
Let us denote the separating pairs of type third as the cross separating pairs. The number of
separating pairs of type three is trivially upper bounded by / (n—/-2). Hence, any function f (n)

that satisfies the recurrence

fn) s 131:":5_3[f(1+2)+f(n-l)+1(n--1—2)+ 1] ;

is an upper bound on the number of separating pairs in a biconnected graph on » vertices.

We note that this is the recurrence for the cycle and that the recurrence implies that

fn)s _n_(nz_—3_l Combining this upper bound with the lower one found in Chapter 3, we get

that f (n) = _rinz_-B_)

O Theorem 4.1.

4.1.2. O(n) Representation by Cycles

Even though the number of separating pairs in a biconnected n-node graph G = (V,E) can

be as large as ©(n?), we observe that there are more succinct representations for them.
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1). The tree of triconnected components of a biconnected graph has size O(m+n), where
|E | =m [22,36], and this is a representation for all separating pairs together with the tri-
connected components of the graph.

2). The algorithm in [ 36] enumerates the separating pairs as a collection C = {Vy, - -,V,} of
subsets of V, with the interpretation that any pair of vertices within a single V; is either a
separating pair for G or the endpoints of an edge in a specified "ear’ in G, and further, every

separating pair for G appears in at least one of the V’s. We show below that

t
Y. 1V;1 = O (n); thus this gives an O (n) representation for separating pairs.

i=1

Let us first look at the subsets V; (cycles) which are the representation of separating pairs.
Look at the star embedding which we get for each nontrivial ear of an open ear decomposition of
a biconnected graph (see Figure 4.2). If there is a separating pair of G then it belongs to some

nontrivial ear [36].

Figure 4.2.
Star embedding
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Let p be the number of vertices of a nontrivial ear P. Let L be a planar region of the star

- Ben WS

embedding of P. L consists of the set of vertices in the stars of P and all other vertices

s

(v, ***,vx) on P. It divides P into a collection of paths P’ (1-v,v1~Vv3, * * * ,Vx=P), including

trivial paths of length O for the vertices of L on P which are the endpoints of two other regions.

S

We will denote each of the trivial paths by a single vertex. For example planar region G of star

embedding of P divides P into paths: (1-8,8-9,9-10,10,10-11,11,11-13,13-14,14-15). Each

vertex of P belong to at most 3 of these paths. Let group L, be the union of those paths of P

)

which belong to L (including trivial paths). Let L, be the union of 1-v, and v,—p. Let groups

.

L3, -+ ,Ls be the other paths. For example if G is the planar region of P then L; is

-
T

8-9u10U11U13-14, L, is 1-8U14-15, L3 is 9-10, L4 is 10-11 and L5 is 11-13. All vertices

- e -
il X

¢

:
j i

of P of each remaining planar region of the star embedding of P belong to L; for some i. Let p;

R)

-
L .ﬂ

s
be the number of vertices of L;, then ¥ p; <p +2(s—1). This is true because every vertex of P is
i=1

counted once unless it belongs to L and some other group, then it is counted at most 3 times. Let

5%

r (p) be the number of vertices of P in all planar regions of the star embedding of P including

A

repetitions. Let r (p;) be the number of vertices of P in all planar regions of star embedding of P

which uses only vertices of L;. Then,

r(p) < max(3r ()

S =1

R . X

We can show that this inequality implies that r (p) < 3p — 6 (see Appendix 4.1.3). Note that if L

paN

has only two adjacent vertices on P (like D) then we get r (p) < r(p) + r(2), where r (2) = 2. But
there are at most p of them. And for all other L’s 7 (p;) <r(p) for all i’s. Hence, all separating
pairs which belong to ear P have O (p) size representation. Summing over all nontrivial ears we

get an O (n) size representation for the separating pairs of a graph.

3). There is another representation of separating pairs of G. It is based upon the decomposition

of a biconnected graph into a collection of cycles. Actually both representations are the
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Let G = (V,E) be an undirected biconnected graph with n vertices and m edges. We denote Eu f"
% 4%
Ly (
by g (n) the upper bound on the size of a compact representation of the separating pairs of a :Eﬁ.-
biconnected graph on n vertices. Let {v,,v;]} be a separating pair that divides G into nonempty '.:‘ “
e
G, and G,. Let {w,,w) be a separating pair of the third type with w;e G ; and w,e G 5. g &
- x }\. %
- .‘-(*
Consider a maximal set of vertices ¥ in G, such that {w,u} is a cross separating pair and, v '.‘ )
ORI Y,
analogously, consider a maximal set of vertices x in G such that {x,w,} is a cross separating -::: 3;_:
LY [y,
pair. The set of u’s is the set of articulation points in G,. Moreover, the set of u’s along with . :ﬁ*
oA
the subgraphs of G, between them form a path between v, and v,. Analogously, the set x’s is a < ’
set of articulation points of G;. And the set of x’s along with the subgraphs of G between them g b.:
O U
S N
form a path between v and v,. Number the vertices vy, ¥’s, v,, and x’s by y;, y, and so on vy
5 :" 1
going clockwise along these paths. We denote by G; the subgraph of G between y; and y;,; (the v o
-’\n ¥
last G; is between y; and y;). Note that some G; can be empty (consists of a single edge). Thus, < f."-.";
«~
4
the graph G becomes a cycle with vertices y’s and G;’s alternating on it (see Figure 4.3). = :‘ !
‘ -
Every pair of vertices y; and y;,j >i gives a separating pair of G unless j=i+1 and the sub- = 5 N
graph G; between them is empty. Hence, we can represent all separating pairs of this form by - ":;
e
the following structure (cycle): R
®
1) the set of vertices y’s, X B
B L s

2) avertex for every G; with the flag to specify if G; is empty,

¥ 4

3) edges between G; and y;, y;41- Y
Note that when there are no cross separating pairs in G then we get a trivial cycle with two -" 2
NG
\f_- \
vertices v and v,, two vertices G; and G, and four edges connecting them. Since the sets x's ., f\
[ ~
and «’s are the maximal sets, all other separating pairs of G are inside some G;Uy;Uy;,;. Note q
. . . NN
that G; can be the union of disconnected components, but each of them is connected to y; and § Qe
[ T
Yi+1- Let the cardinality of the set of y’s be /. Let n; be the cardinality of G;, and ¥ (n; + 1) =n. ~ N
i=1 - @
r. ‘::_\
A
B T i g e ™ e ot e e L e e B e e R s
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;
4
N
\
Figure 4.3.
Representation for k=2.
U
Based upon the above observations we get the following recurrence relation
bt
l .
g(n) smax(X g (ni+2)+30),

boian .
where g (n; + 2) represents the upper bound for all separating pairs of G inside G;Uy;Uy; .. We 3

assume that we are using one unit of space for each G;. The space to represent the cycle is 3!:
one / for the set of y;’s, one [ for the set of G;’s, and one / for the set of the flags of G;’s. Any ‘
g (n) that satisfy this recurrence will be an upper bound on the size of representation of separat- N
Y

ing pairs of G. Clearly, linear g (n) is one of them (see Appendix 4.1.3).

Using the above representation we can list all separating pairs in a biconnected -raph in

"y

O (M + n) time, where M is the number of separating pairs in a graph. For each cycle every pair

-

of vertices of the form (y;,y;), i <j give a separating pair of a graph, unless j =i + 1 and there is
a flag for the vertex for the subgraph G; specifying that it is empty. Note that some of the

separating pairs can be repeated.

:
F
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,
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4.1.3. Appendix

5
1). Solution to the recurrence r (p) < max( Y7 (p;)) for the second representation of separating

2).

S =l

pairs with restrictions

s
Ypisp+2s-2 2<ssp.

i=1
Let r(p) =3p — 6, then

3p-6=r(p) Smax(ir(pi)) =max(§s:(3p,- -6)<max(3p +65s ~6—-6s)=3p -6
5 s ‘=1 5

i=1
Hence, r(p) <3p - 6.

l
Solution to the recurrence g(n)<max(Y g (n; +2)+ 3l) for the third representation of
i=1

separating pairs with restrictions

1
Yni+1)=n 2<!<n n; 20.

i=1

Letg(n)=3n-12,

i
gn) < m?x(zllg (n; +2)+30) =mf1x(2(3(n,- +2)-12)+3D) =

i=1 i=]

i
mflx(32(n,- +1D+31-121+3]) =mlax(3n -60)<3n-12

i=1

Hence, g (n) £3n - 12.
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4.2. Separating Triplets

4.2.1. O(n) Representation by Wheels and O(n?) Upper Bound

Let G be a triconnected graph on n vertices and m edges. Assume there exists a separating

triplet {v,,v3,v3} in G, which separates G into nonempty G; and G, (see Figure 4.4).

Then all separating triplets of G can be divided into the following six types:
1). Separating triplets completely inside G, v {vi,v2,v3},
2). Separating triplets completely inside G, U {v1,v3,v3},
3). Separating triplets with one vertex from G,, one vertex from G, and one vertex from
(vi,va,val,
4). Separating triplets with one vertex from G, and two vertices from G,,
5). Separating triplets with two vertices from G and one vertex from G,
6). The separating triplet {v,v2,v3]}.
Lemma 4.1. Only one of three vertices {v;,v3,v3} can participate in the third type separating

triplets {w,,v;,w,} such that w;e G, w2€ G, and v;e {v,v,,v3}.

Figure 4.4,
Separating G into G, and G, by separating triplet {v{,v;,v3}
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Proof: Assume there is a separating triplet {w;,v3,w2} of the third type in G (see figure 4.5), .‘
LY y
where w, € G| and w, € G,. It separates G into Ky and K5, and separates G, into K3 and ".:
- "y
K4. Vertices v, and v3 must belong to the different components of G with respect to the S; A :
A i
separating triplet {w,,v,,w,}. Otherwise either {w,v,} is a separating pair, or {w,,v,} is a P :
S
separating pair, or both. I~ ]
r_.,;-
Claim 4.1. Vertex v, has an edge to every nonempty subgraph K ,K,,K3,K 4. ; ’.\, !
Py
e
o o
Proof: W.L.O.G. assume that K, is not empty and VxeK,, (x,v7)¢E. Then {v,;,w,} is a ¥ :::"
s
separating pair of G, which separates K'; from the rest of the graph. 2 g\: |
O Claim 4.1. e
.
l" L]
Now, we will prove that there is no separating triplet of the third type which uses v, or v3. DI ':,
. - "
We will prove this by contradiction. W.L.O.G. assume there is a separating triplet {u,v,u3}, -~ \:."
®
-
» .‘.- ¢
3
) ‘-':_‘
wd
__
A
[ 4.-\‘
R
\:. .'_’.\. ¢
A ) ;
KRN
~ 2,
SN
o
R
Ve LN
]
;:- 3
~ f.}*
t ‘ﬂ :-‘l;
Fab
. e
Figure 4.5 wh
Nlustrating the proof of Lemma 4.1. ® q
A
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such that u; € G, and u, € G, \u, may be equal to w, and u, may be equal to w,).

Case 1: u, €K,, if K4 is not empty (see Figure 4.5).

With respect to the separating triplet {u,vy,u2}, the sets Ky, {w;}, and K, — {u}
belong to the same connected component of G—{u,v1,u2}. This is true because of the Claim
4.1 for v, and the existence of separating triplet {u;,vq,42}. If v, belongs to the same com-
ponent then {v,,u;} is a separating pair which separates K3\ {wy} UK4U {v3} from the rest
of the graph. If v, does not belong to the same component then {v,,u;} is a separating pair

which separates KU {w;} UK, — {u} from the rest of the graph.

Analogously, u,eK 4.

Case2:u; =w.

Since {u,,v,uz} is a separating triplet, K is empty by Claim 4.1, otherwise {v;,u;} is a
separating pair which separates K;U{v,]} from the rest of the graph. But then {v,.u;} is a
separating pair, if {#1,v,u7]} is a separating pair.

Analogously, u; #wj.

Case3: u, €K and u; €K3.

Either {u,,u5}, or {u;,v,}, or {v,,u;} is a separating pair, if {u,v;,u,} is a separating
triplet.

That means that if there is a separating triplet of the third type which uses one of the
vi,i=1,2,3 then there is no separating triplet of the third type tb : uses the other two v;’s.

OLemma 4.1.

Let {v,,vg,v2} be a separating triplet of a graph G on n vertices, and v be the only one of
the three vertices of this separating triplet which might participate in a separating triplets of the
third type with respect to {v,,vq,v,}. Consider the separating triplet {v,,vo,v2}, together with
all separating triplets of the third type {w,,vg,w,} such that w,e G, and woe G,. All such

separating triplets use v as the "central” vertex. Let W, be the set of vertices w, in G, such

e

vuvvn.’&—
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that there is a separating triplet of the third type which uses w ;. Analogously, let W, be the set . g
of vertices w, in G, such that there is a separating triplet of the third type which uses w,. Let ..
. A
Y
G’y =Gu{v1,v3}, and analogously, let G’ = GU(v,v3 ). - :,’
. 8
M
- o,
Claim 4.2. Every vertex in W is an articulation point in G’{, and analogously, every vertex in -_"L"
.. .,*?_
W, is an articulation point in G’,. ot ;-(-Q’
. . . o
Proof: We will prove Claim for W, only, since W, and W, are symmetric. If w,e W, is not an P
e
articulation point of G’; then there is a path between v; and v3 in G’y~{w}. Hence, either G is ~ b
Lg% (
not triconnected or there is no separating triplet of the third type which involves w. '::: F‘-' !
g
O Claim 4.2. ;‘
s ;’.'{
G’y — W consists of a collection of subgraghs {Cy, - - - ,C}. Let us replace each C; by a 3-;*
Lo
complete graph cn vertices of W which are adjacent to C;. Let us denote this structure (the set K4 ';’ '
of W, with these complete graphs connecting them) by W’;. Let us denote by W', the structure :;"‘
\-:_" ¥
which we get by applying this procedure to G’;. o "4; ~
hith
. ®
Claim 4.3. W’ is a simple path connecting v, and v3. Analogously, W’; is a path connecting ':-f-'_
v
vy and v3. RN
v g
Proof: We will prove Claim: for W’; only, since W’; and W', are symmetric. There is always a :
=
path between v; and v3 through W’; formed by the vertices of W;. Assume there is vertex N

o

ve W which is not on that path. Then there is a path through W’;—{v} between v; and v3. So ey

there is a path through G’| between v, and v3. Hence, either G is not triconnected or there is no

:1. X

separating triplet of the third type which involves v. o ;__i
0 Claim 4.3, L EF

The combinations of these paths W’y and W’; create a cycle. Rename the vertices v, the IS
vertices in W, v3 and the vertices in W into a sequence <yy,y2, ' * - ,y;>, such thaty, =v, y, “ E:
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is woe W closest to v; on W', and so on following this cycle clockwise starting from v, (see

Figure 4.6). Note that y; is w;€ W closesttov; on W’;. Letyg =vg.

Lemma 4.2. For all i and j with i <jj, either the vertices y;, y; and yo form a separating triplet of
G, or j=i+1 and there is an edge (¥;,y,)€ E.

Proof: If y;e G, and y;je G, then {y;,y;,y0} is a separating triplet of G, since y; is an articulation

point in Gy, and y; is an articulation point in G,. If y; and y;e G, then either {y;,y;,yo} is a

separating triplet of G or j=i+1 and there is an edge (3;,y;)€ E, since y; and y; are articulation
points in G ;. Analogously, either {y;,y;,yo} is a separating triplet of G or j=i+1 and there is an
edge (y;,y;)e E, if y; and y;€ G,.

O Lemma 4.2.
The set of y;’s together with each G; replaced by an edge connecting the two y;’s adjacent to it
forms a cycle. Any two nonadjacent vertices on the cycle of this wheel form a separating triplet
together with yo. The subgraph between y; and y;,; is denoted with G; for each i, and some of
them may be empty. Now, the graph G looks like a wheel with y in a center, with y;’s and G;’s

(i=1, - --,l) on a cycle (see Figure 4.6).

Every pair of veniices on the cycle of the wheel forms a separating triplet with y, unless
they are adjacent (y; and y;.;) and the subgraph (G;) between them is empty. Hence, we can

represent these separating triplets by the following structure (wheel):
D {ye.y1, .y} with edges of G between them,
2) avertex for every G; with a flag to specify if G; is empty,

3) the edges between G; and y;, y;41 i=1, - - - . The edge between yq and G;,i =1,

the flag to specify if the edge is in G.

Let us see where the rest of separating triplets of G lie.
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Representation for k=3 B L
Lt
Lemma 4.3. Each remaining separating triplet of G belong to G; Uy ¢Uy;Uy;+1 U {the neighbor ::3( :f:
RO
of y; in G;_; if such a neighbor is unique} U {the neighbor of y;.; in G;,; if such a neighbor is !
I 3
unique} for some i. o 0
3 .3
Proof: This is true for Type 1 and Type 2 separating triplets. All separating triplet of Type 3 are o A
B
{ on the wheel so the Lemma is true for them. Also Type 6 separating triplet is on the wheel. o
) . ]
Hence, we need to prove this Lemma for Types 4 and S only. Since these two Types are sym- o N '
)
metric we will consider only Type 4. L
Let {w,w7,w3} be a separating triplet with w, € G and wy,w3e G,. The separating tri- oY i'&
plet {w,,w,,w3} separates G, into L and L;, and separates G, into L3 and L4 (Figure 4.7). ,
Let us see how the original separating triplet {v,,v,,v3)} is separated by the separating triplet ‘
{(wi,wa,w3}. )
N \\ ;
" A
NN
g
o™
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Figure 4.7.
llustrating the proof of the Lemma 4.3.

s

bELL ol

The vertices {v;,v,,v3} cannot belong to the same connected component of G with respect

L)

to the separating triplet {w;,w3,w3}. Otherwise either w; would be an articulation point, or

<

{w2,w3} would be a separating pair, or both. W.L.O.G. assume that v; belongs to one con- 3

ﬁ:&_ nected component and v,,v3 to the other with respect to the separating triplet {w,w2,w3}.
N
b Subgraph L, must be empty, otherwise {w,v} becomes a separating pair separating L :
E from the rest of the graph. Since the graph is triconnected, we have :
g 1) (wq,vy)EE,
2) There exist vertices x,ye L3\ {w,,w3} such that (x,v,)eE, and (y,v)e E; and ‘ ‘

é 3) Forevery ze LoUL4U{v3,v3]) there is no edge in G of the form (z,v).
% Hence, vertex w; is the unique neighbor of vertex v, in G;. Moreover, if there are any :
. separating triplets of G with one vertex in G, and two vertices in G, which separate v, from v, o
;': and v3, then w is one of the vertices of this separating triplet. -'

:
o

b )

- ot . -, w .y g, w - - - - )
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A separating triplet of G cannot Lave all of its three vertices in three different G;’s, for oth-
erwise two of these vertices would form a separating pair. From the proof of the Lemma 4.2 and
the fact that the set {y;,y2, - *,y:} is maximal, we know that if there is a separating triplet
which involves a vertex from G;, then the other two vertices belong to {y; }U{yi+1 JV{yo}VG;
and the neighbor of y; in G;_;, if such a neighbor is unique, and, symmetrically, the unique
neighbor of y;,; in G;,,, if such a neighbor exists. This proves the Lemma 4.3.

O Lemma 4.3.

Let g (n) be the size of a compact representation of the separating triplets in a graph on n

l
vertices, and let the number of vertices in G; be n;. Then Y (n; + 1) + 1 =n, and by Lemma 4.3.
i=1

we can write the following recurrence
!
g (n) smax(3g (n; + 5+ (Gl+1)),
i=1
where (5] + 1) stands for the size of the representation of the wheel. The solution to this
recurrence is clearly linear (see Appendix 4.2.3). This proves that there is a succinct O (n) size

representation of the separating triplets.

Analogously, the recurrence for the upper bound on the number of separating triplets

becomes,

I(I 1)

f(n)<1rpax (Zf(m+5)+ —_—),

where f (n) is the upper bound on the number of separating triplets of a triconnected graph on »

vertices. The solution to this recurrence is clearly O (nz).

Using the above representation we can list all separating triplets in O (M) time, where M is

the number of separating triplets, using the procedure similar to the one for separating pairs.
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4.2.2. Tight (n_—_l_)z(_ni) Upper Bound

As mentioned in Chapter 3, the wheel W, is triconnected and has

triplets. In the following theorem we prove that this is the worst-case for the number of separat-

ing triplets in an n-node triconnected graph.

Theorem 4.2, The number of separating triplets in an undirected triconnected graph is

< (n-1)(n—4)

) for any n.

Proof: Assume there exists a separating triplet {v,v,,v3} in G, which separates G into

nonempty G, and G, (see Figure 4.4).

Then all separating triplets of G can be divided into six types as in Section 4.2.1.

s

Let the number of vertices in G; be /. Then the number of vertices in G, is n—[-3. Let

g (n) be the maximum number of separating triplets in a graph on n vertices, A (/,n-[) be the

W maximum number of separating triplets of the third type with respect to a separating triplet
oY

which divides the graph into subgraphs of cardinality / and n—{-3 and f (/,n—{) and f (n-{,]) be
a the maximum number of separating triplets of the fourth and fifth types with respect to the

N separating triplet which divides the graph into subgraphs of cardinality / and n-/-3, respec-
8{ tively.

: Then any g (n) that satisfies the recurrence
IR gn)smax (g(U+3)+g(n-D+hl,n=-)+fU,n=1)+f (n-11)+1)
» [
:: is an upper bound for the number of separating triplets in G.
o
Let us now find the upper bounds for the functions 4 and f.
&
! Lemma 44. f (ln—0)+ f (n-L1) < -i— (3n-14).
ﬁ Proof: Let {w,w,,w3} be a separating triplet with w,e G, and w,,w3e€ G,. The separating
T

..).’. l.‘ ..C.pl“.l- .D. 'I * ' \ 'Q .n - L) . .v .*- - .1. '.'!. . - - - "‘ ' "\‘.-..~,' J ..Q

.%._

i
o
o

ALY

s
L

's .
-.I "
e

\ 5
I d

[ Py

bab o o SR S N

wh
<5,

7

[4
o

%

L

5
Pty o

P

s

R

S

..
1;’

"

pod



TN

24

- e

e . W
[ A

Z 00 LY

-
o

-

QYRR AN K

Rt

T Y T T TR R R OO OO T R DO O G IR O O O Y I UV DN DS OV TS T

e
38 4
triplet {w;,w,,w3} separates G, into L and L,, and separates G, into L3 and L4 (see Figure “:
4.7). As stated in the proof of the Lemma 4.3. we know that W.L.O.G. v, belongs to one :
separated component and {v;,v3} to the other component with respect to separating triplet :’E:
{wi,wo,w3}, that L, is empty, and that (w,v)€E, I x,ye Lyuwauws: (x,v1)EE, (y,v|)eE -
and V ze LoUL4UvoUvs: (z,v)€ E. Hence, vertex w) is unique up to a division of the original “
separating triplet {v,,v,,v3} into vy and {v,v3}. As a consequence we have the following ‘f;
useful observation. o
Observation 4.1. If there is a separating triplet of the fourth type which separates v; from v, ;“.
and v3 then there is no separating triplet of the fifth type which separates v, from v, and v;.
O Observation 4.1. E‘;E
Let us see how many separating triplets of the fourth type separate the original separating s
triplet {v,,v,,v3} into v, and {v,,v3}. The vertex w; must belong to all of them. Let us see v
the choices for {w,,w3} € G, such that {w;,w;,w3) is a separating triplet of the fourth iype. 7'
Assume there is a separating triplet of the fourth type {w,u,u,}, where uyeLs, uselLy.
The separating triplet {w;,u,,u,} separates L3 into L3 and l~,3, and separates L4 into L’; and N
L 4 (see Figure 4.8), such that L'3UL’, is separated from L3UL 4 by (w1113 ). :~
The vertex v, is connected by an edge to at most one of the L3 {u;} and [~,3, otherwise ~
{wi,u1,u3} is not a separating triplet. If v, is not connected to either L'3\U {u; or Z3 then :'.;:
(w2,w3} is a separating pair. W.L.O.G. assume for every xei,gz (x,v)¢ E. By the symmetry :.,
{v2, v3} is connected to only one of the L’y and 1:4. Let us see how the separating triplet -
{wq,u,,u,) separates {wo,ws3}. \:‘
If vertices w, and w3 are not separated by {w,u,us) then there are four cases to con- &
sider.
bt
o
P e e R N e i N W NN YN M N NN LM T AT BN A '-“.'\'-.'-'*.'.
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_ Figure 4.8. . H
Separating L into L’y and L3 and L4 into L4 and L4 by {w,u,u2} ::
!
When w, and w3 belong to the same component as L’; and L’ with respect to the separat- -
b
ing triplet {w,,u,42} and {v,,v3} is connected by an edge to f.4 then {w,u3} is a separating
pair which separates L,U{v,,v3 )UZ4 from (v JUL3U{w,,wq JUL’,.
When w, and w3 belong to the same component as L3 and L’4 with respect to the separat-
ing triplet {w,u,u2} and (v,,v3) is connected by an edge to L'4 then {u;,u3} is a separating
pair which separates L 3L 4 from the rest of the graph. S
When w; and w3 belong to the same component as Z3 and l-,4 with respect to the separat- 3
ing triplet (wq,u,u3} and {v,,v3} is connected by an edge to L', then {u,u,} is a separating 3
pair which separates Z;u{ wia, w3 }uf,4 from the rest of the graph. ’
When w; and w3 belong to the same component as l~,3 and 1:4 with respect to the separat- .y

ing triplet {w,u,u,} and {v,,v3} is connected by an edge to [-,4 then {w,u} is a separating

pair which separates L’30({v } from the rest of the graph.

: AN ) e O DR I o el D D Do
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Hence, w2 and w3 belong to different components with respect to the separating triplet
{wi,uq,u3}. Subgraph l-.3 must be empty; otherwise {u;,w3} becomes a separating pair.
Hence, (4;,w3)€ E, otherwise {w),w3} is a separating pair. If {v;,v3} is connected to L4 then
{uy,uz} is a separating pair or {w;,u,,u2} is not a separating triplet. So, for every
xel’y: (x,v2)eE, (x,v3)eE, 3y,ze£4u{w2,w_~,}: (,v2)€E, (z,v3)e E. Subgraph L', must be
empty, otherwise {w,,u,} is a separating pair or (w,u1,u,} is not a separating triplet. Hence,
(up,wq)€ E, otherwise {w,w3} is a separating pair (see Figure 4.9).

The above means that for each separating triplet {w;,w;,w3} there exists at most one
separating triplet {w,u 1,42} such that u;eL; anduseL,. So, for every xeL’;, and every
yei,, {wi.x,ws), {(wi.xuz}, {wy,y,w2}, {wy,y,4,} and {w,,y,x} are not separating triplets.

Let the number of vertices in L3 be /3. Then the number of vertices in L4 is

(n—{-3-l3—4) = (n—I-I3—7). Then the maximum number of separating triplets that use w is

-l-3)< [ ] ={1=5) - +2) - 4] =
r(n-1-3) Oszﬂa;’.(-lq r(n=l={3=5)=1+r{s+2)-1+

Figure 4.9,
[lustrating the configuration between separating triplets (w;,w,w3} and {w,uy,u,)
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. max [r(n-l—l3-5)+r(l3+2)} +2, r@Q)=1,r(1)=0,

Y g 0< 13 <n-l-7
X h
\ g where r(n—I-{3-5)—1 counts all separating triplets which use w; and two vertices from )
h ( l~,4u{u2,W3}, r(I3+2) — 1 counts all separating triplets which use w; and two vertices from
¥,
, Qﬁ L300 {uy,wy} and 4 counts {wy,u,u3}, {wi,wa,wi}, {wy,u,w2} and {wq,us,w3}. !
i D
k L}
;: g‘a The solution for this recurrence is r (n—~/-=3) = %(n ~1=3) —2. We note that this analysis :
4 @ leads to the following observation, which we will need later.
]
K| '
: :
X
. 38 Observation 4.2. The maximum number of separating triplets of the fourth type which separate
:‘ N {v;} from {v,,v,,v3}-{v;} is £ %(n —{-3) — 2, and the maximum number of separating triplets j
N~ Y
4 ° )
;: i‘ of the fifth type which separate {v;} from {v,v,,v3}-{v;} is at most %-I -2.
Ii [0 Observation 4.2. n
1 X
% g Since there exists a unique w, for every separation of v; i=1,2,3 from the other two v;’s,
K)
¢ L the upper bound for the separating triplets of the fourth and fifth types together is:
I 3 . 3 3 X
| . fn=-D+f(n=1,1)<3 = ( max (n—=(-3,,[)-2)< = 3(n-4)-2 = =(Bn-14).
] 2, 2 1<i<n—4 2 2 .
N

O Lemma 4.4.
W Y]
L 0
) .
S Lemma4.5. h(l,n—I) <i(n-I-3).
1 (e .
y & Proof: From Lemma 4.1 we know that only one of {v,,v2,w;]} can participate in the third type
' f,' inG. Since |G| =land 1G,| =n-I-3, h(l,n-1) <l (n-1-3). .
5 ot 4
:: . (0 Lemma 4.5. ]
+. B '
- Let us now tighten the upper bound for the number of separating triplets in the triconnected
'l
R . . WV@G)!
X graph G. Assume that (v,,v,,v3) divides G such that the ratio —I_V—(G_)I is as close to one as
‘)l 2
X

e
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possible over all separating triplets in G. From Lemma 4.5 we know that there is a unique vertex
among {v,,v2,v3} that participates in the separating triplets of the third type. W.L.O.G., let this

vertex be vj.

Lemma 4.6. If there is a separating triplet of the fourth type or the fifth type that separates v,
from v; and v3 then there are no separating triplets of the third type.

Proof : W.L.O.G., assume there exists a separating triplet of the fourth type {w;,w,,w3}, with
w1€G and w,,w3e G4, which separates v, from v and v3. It separates G into X; and K5,
and separates G, into K3 and K4. From the proof of Lemma 4.3, X, is empty, (w;,v,)e E and
for all xe G yU{v,,v3}—={w1}, (x,v2) ¢ E (see Figures 4.10a and 4.10b).

Figure 4.10a.
Mustrating the proof of Lemma 4.6.
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t Assume there is a separating triplet of the third type {u;,v,,u5}, where u;€G; and
I'“ R
::: u,eG,. It separates G, into L3 and L4. Let L4nK4=L,4. By Claim 4.1 v, must be con-

sl
3

nected by an edge to every nonempty component of G;,G, which is created by separator

" %ﬂ {uq,v2,uz}. Butsince w, is the only vertex in G that is connected to v,, we must have either

;§' Uy =wj, or u; is the unique neighbor of v, in G, or u, is the unique neighbor of v5 in G;.

%:;b: rs However, if u; =w; then K5 must be empty, otherwise {w;,v3} is a separating pair or {w,v,}
@ is a separating pair or both. Hence in the case when u; =w;, G, consists of the single vertex

‘ ¥ w1 =u;, which is connected to v, v,, and v3. Since the cases when « is the unique neighbor

::'_ :i_' of vy in G and when u is the unique neighbor of v3 in G, are symmetric we can W.L.O.G.

analyze only for the case when u is the unique neighbor of v, in G,. :
3 i |
NN

If vy, v, and v3 are separated by {w,w,,w3} from each other then we have the following

analysis. In this case Z4 consists of two disjoint parts: one L’y which has all of the paths

™~

:Eg ) between L’ 4 and u, passing through w,, and the other L” 4 which has all of the paths between

:;(. :‘g L”, and u, passing through w3 (see Figure 4.10a). One of w, and w3 must be in the same com- ]
2 . ponent as vy in G — {u1,v,,u2}, and the other must be in the same component as v3. This is '
; % the case because if both w, and w3 are not in the component of vy in G — {uy,v,,u3}, then

‘ 53 {w,uz} separates v, from w, and wj, since {w,w,,w3} separates v, v,, and v3 from each

X other and every path between v; and {w;,w3} must pass through u;. W.L.O.G. assume that

_;: 'f.*- wj and v; belong to the same connected component in G ~ {u;,v,,u,}, and w3 and v3 belong

£

,, to another component (see Figure 4.10a). Hence, edges (v,,w3) and (v3,w,) cannot be present

in G. Moreover by the same argument, there are no edges (/,ws),l€ L 4 and (l,w,),leL”;. Also

L
-
! ;‘ there are no edges (u3,v,) and (u,,v3) in G, since {w;,w,,w3} is a separating triplet which )
. - y
«'.: .. separates v, Vo, and v3 from each other. Moreover by the same argument, there are no edges p
' A
' (lug),le L4. As noted above, we assume W.L.O.G. that u is the unique neighbor of v, in K 5.
;, lﬁ Hence {u;,w;,} separates {v;} UL’s from the rest of G,, which contradicts the fact that G is
W
A
|" -
R
hA
..l
)
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triconnected.

If v, and v are not separated from each other by {w;,w2,w3} then we have the following
analysis. Recall that G, is separated into K3 and K4 by {w;,w3,w3} (see Figure 4.10b). Since
u, is the unique neighbor of v in K5 and {uy,v7,u,} is a separating triplet, u, must break all
paths either between v, and {v;,v3} through G;, or between v; and {v,,v3} through G,. If
u,€K; then {w,,u,} separates v, from vy, since {¥;,v,,%,} is a separating triplet. If u,eKy4
then in order for {u;,v;,u3} to be a separating triplet, either {#,,u;} separates v, from vj, or
{va,uq)} separates wy and w3 from v3. If uze {wz,w3} then (u;,v5,u2} is not a separating
triplet, since there is a path from w to K3 through K5 = {u1), v3, KqU{vy, and {wq,w3}-{u7])

inG - {u1,va,u2}.

These two contradictions prove the lemma.

O Lemma 4.6.

Figure 4.10b.
Nustrating the proof of Lemma 4.6.
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Now we will do a case by case analysis of trade-offs between separating triplets of the third

type and the separating triplets of the fourth type and the fifth type.

If there exists a separating triplet of the fourth type that separates v, from v, and v3, then
no separating triplet of the fifth type exists which separates v| from v, and _ (Observation 4.1).
Since the separating triplets of the fourth type and the fifth type are analogous, we need to con-

sider only one of them in the case analysis.

If there is a separating triplet of fourth type {w;,w3,w3} with w;€G, and wy,w3eG,,
that separates v, from v, and v3, then we have the following analysis. G, is separated by
{w1,w2,w3]} into G’3 and G and G = {w }UG (see Figure 4.11). Choose {w,w,w3) to

maximize | V(G’;)Il. Let | V(G'3 )u{wy,w3}l =/;. Now we will consider two cases

Figure 4.11.
Mlustrating Case A in trade-off analysis.
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depending on whether or not a separating triplet of the fifth type exists, which separate v from
{vi,v2}. We do not restrict separating triplets of the third type (recall that such a triplet always
includes v;), or separating triplets of the fourth or fifth types which separate v, from {v,v3}.

Case A: There is no separating triplet of the fifth type that separates {v3} from {v;,v,} with
x1€Gy and x,,x3€ G,. If there is a separating triplet of the fourth type (x;,x2,x3} that
separates {v3} from {v,v,} withx,€ G, and x,,x3€ G, (see Figure 4.11), then it separates G,
into 52 and the rest of G,. Since it separates v3 from {v{,v,}, we must have for every
X€ Ezz(x,vz)e E. Vertices x; and x3 eézu {wa,w3]} (recall that C-}z =Gy -Gy - {wa,w3)),

otherwise there is no vertex of G, which has an edge to v,.

Let éz =(~;2 —52. Furthermore, suppose {x;,x3,x3} maximizes | V(az ). Let
IV(Ez)u{xz,xﬂ I =72. Note that if there is no separating triplet of the fourth type which

separates v3 from {v,v,} thchz =0.

Assume there is a separating triplet {u,,v;,u3}, of the third type where u,;e G, and
u,€G;. Since {w;,w;,w3} separates v, from v, and v3, and since |G’; | is maximum among
all separating triplets of the fourth type which separate v, from v, and v;, we must have for
every xe G’:(x,v)¢ E. From Claim 4.1 we know that there must be edges between v, and
every nonempty component of G with respect to the two separating triplets {v,v,,v3} and
{ur,va,uz}. If upe G’,u{wy, w3} then {w,u,} would be a separating pair. Hence, u,e 62.
Analogously, using the above analysis for the separating triplet {x,x,x3}, we get that u,e éz.
Hence, using Lemma 4.5 we get that the number of separating triplets of the third type is at most

V(G 1)1 IV (Ga)l =1 (n=l~l's=12=3).

By the proof of Lemma 4.4 and the fact that |G’y | is maximum we know that for all
separating triplets {y,y2,y3} of the fourth type which separate v, from v, and vj, vertices y,
and y3 are inside G, U{wjy,w3}. By the proof of Lemma 4.4 and the fact that iC—;zl 1S max-

imum we know that for all separating triplets {x,x,,x3} of the fourth type which separate v,
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from v, and v, x4 and x3 are inside (_}2u{w2,W3 }. Hence, the number of separating triplets of

fourth type which separate vertex v3 from v, and from v; or v; from v, and v is at most

V(G + IV(G)I = %(1'2+72) (Observation 4.2).

We can have separating triplets of the fourth or fifth types which separate v, from {vy,v3}
if we do not have any separating triplets of the third type (Lemma 4.6). We cannot have separat-
ing triplets of both the fourth and fifth types which separate v, from {v;,v3} by Observation
4.1. If we have separating triplets of the fourth type which separate v, from {v; v3} then by the

analysis above the maximum number of separating triplets of the fourth type which separate one
of three vertices {v,,v,,v3} from the other two is upper bounded by %(n ~[=3). If we have

separating triplets of the fifth type which separate v, from {v; v3} then by the analysis of Case
B below (i.e. there is a separating triplet of the fifth type {x;,x;,x3} which separates {v3} from
{va,v1} with x;€G, and x,,x3€G ) for separating triplets of the fifth type the maximum

number of separating triplets of the fourth or fifth types which separate one of three vertices
{vi,vo,v3} from the remaining two 1is at most %(1'2+72 +1/-1). Note that
—;—(1’2+72 +/-1)< %(n —4), because 0<l, € n—I-I';—4, 0</', Sn—I—4 and 1 <1 < n—4. Hence,

we obtain that the upper bound on the number of cross separating triplets of Case A is

fa=max( max ((n -1—1'2—72-3) + 2(1'2+72)) , i(n -4)) .
0<l,<n—1-4 2 2

0<l,<n—I~I'p—4

Case B: There is a separating triplet of the fifth type {x{,x;,x3} which separates {v;} from

{va,v1} withx;€G, and x9,x3€ G (see Figure 4.12). It separates G into G’y {w} and C~71.

Choose {x1,x,,x3} to maximize | V(&l ). Let71 = lV(él)u{xz}u{x;;} b
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Tlustrating Case B in trade-off analysis. E’ A
e be
oo
If there is a separating triplet of the third type {u;,v2,u2}, where u;€ G, and u,€ G,, then o
by analysis of Case A uje 62u {x1]). Analogously, by the same analysis for the separating tri- , -
RO
plet {x,,x2,x3}, u1€G’ ;U {w,. Hence, using Lemma 4.5 the number of separating triplets of V
< 4
o
the third type is at most (n—[~I"3=3)(I-{,). ~ooN )
Y
The number of separating triplets of the fourth and the fifth types except the ones which IS; ;
- T
separate v, from {v,v3} is at most %(l’2+11) by the analysis of Case A and the above analysis. “ -
RS
R
We can have separating triplets of the fourth or fifth types which separate v, from {v,v3} if we ::"
&8
don’t have any separating triplets of the third type (Lemma 4.6). We cannot have separating tri- ) :’
plets of both the fourth and fifth types which separate v, from {v,,v3} by Observation 4.1. If N
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we have separating triplets of the fourth type then number of separating triplets of the fourth type

is at most %(n —I-3) by the analysis of Case A. If we have separating triplets of the fifth type

then number of separating triplets of the fifth types is at most %-1 by the above analysis. Hence

in this case the upper bound on the number of cross separating triplets is

fo=max(_max (n=l-Ip-3)0 ) + W), %<n—4»

=3 2_5’!"1
o<l si-1

Combining the results from Cases A and B we obtain the following recurrence for g (n):

g(n)s 1<,m<ax_4(g (I+3) + g (n=D) + max(fo.fo) + 1)

Note that the first term in each of f, and f;, is bilinear in /'3, 72 and 71 , hence the maximum
is reached at the endpoints of the intervals for /', 72, and 71. The recurrences we get at the end
points of the intervals for 72 and 71 are identical up to the symmetry with respect to / and n—/-3.

Hence, we will analyze the recurrence for /’,, 72 only.
The maximum is reached at I, =72 = (0 when n—4>/>1 and the recurrence become

g(n)s max (g(U+3)+gn-D+I1(n-1-3)+1)
1sisn-4

2

The largest function satisfying this recurrence is g (n) = -%—n - %n + 2. Note that, with this

solution, equality holds since this recurrence is the recurrence for the wheel and the wheel W,

has this number of separating triplets.

If /=1 or if /I=n—4 then maximum is reached only when 71 ={"=0 and 72 =n—4 or
72 =71 =0 and !, = n—4. But then either {v,,w;,w3} or {v3,x2,x3}, or the separating triplet

of the fourth or fifth type which separate v, from {v,,v3} would be chosen instead of

V(G )]

v1,V3,v3) to get the ratio ————
{vi,vo,v3}tog ratio VGl

closer to one. Hence, / cannot be equal to 1 or n 4.
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Hence the maximum number of separating triplets for an undirected triconnected graph on

n vertices is exactly %nz - %n +2.

O Theorem 4.2.

4.2.3. Appendix

1
Solution to the recurrence g(n) Sm?x(Zg (n; +5)+ 51 +1) for the representation of
i

separating triplets with constrains

1
Z(ni+l)+1=n 2<i<n-1 n; 20
i=1

Let g (n) =5n — 46,

! !
g(n) Sm?.x(z‘,g(ni +5+51+1)= m?.x(Z(Sn; -2D)+5l+1)=
i=1 i=1

I
m?x(S(Z(n,- +D+1)-26l+51-4)= m.;:lx(Sn -211-4)<5n-46
i=1
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CHAPTER 5

UPPER BOUND AND REPRESENTATION
FOR THE SEPARATING K-SETS: GENERAL K

- l.r {.F{"‘ﬁ... \l(l.
LSAGD O e b”s

2 ot
5.1.0(2% nT-) Upper Bound and O(k?n) Representation for General k .‘;:
ot
4
Let G=(V,E) be an undirected k-connected graph with n vertices and m edges. We denote .;}
with g (n) and f (n) the upper bounds on the size of representation and the number of a separat-
ing k-sets for k-connected graph on n vertices. Let V'={v,,v,, -+ ,v;} be a separating k-set, E$
J
whose removal separates G into nonempty G; and G2 (see Figure 5.1). A separating k-set : :%
{wi,waq, - -+ ,wi) of G is a cross separating k-set with respect to V" if for some i and j, w;e G, ®_
8
and wj€ G3. Let the cardinalities of G and G, be [ and n—/-k, respectively. Let the upper ‘.,
{ 'l
bound on the size of the representation of the cross separating k-sets be A (l,n~{), and the max- ':
imum number of cross separating k-sets be 7 (I,n-/). Then maximal g (n) and f (n) that satisfy g
~
the recurrences B
g(n)Smlax[g(l+k)+g(n—1)+h(l,n—13 . :~
" 73
N
-
)
23
L4

Figure 5.1.

Dividing G into G, and G, by separating k-set {v, - -+ ,vy}

5N ER LS ERALL OO AN R b
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fn) Sm?x[f (d+k)+f(n=-D+rd,n=0)+ 1] ,

are upper bounds on the size of representation and the number of separating k-sets in G. Now
we will derive upper bounds for the functions 4 and r and solve the recurrences.

Let {wi,wa, -+,w¢} be a cross separating k-set with {wy, - -,ws} <G,
{Wegrs1, =W} €G22 and {weyy, -+, wee} < (vy,---,v). The separating k-set
{wy,w2, - -+ ,w) separates G, into G3 and G4, separates G, into G5 and G¢, and divides

{(vi,oowedinto {vy, -+ - v b, {Vesesrs -0 o) and vy = wey, § = 1,2 (see Figure 5.2)

Case 1 None of G;, i =3,4,5,6 are empty. (see Figure 5.2)

The sets {WI'WZ’ T Weans Vi1tV ), {wl9w2’ s WsatsVrgrsls T ek

Vi, VrstsWeueats » <o owi ) and {Vpgy, * 0 0 Wk, Weypat, * * * Wi} are separating sets of G that

D
— @~ L 2 ﬁ+
w
\ s s+t+1
r+(+1 //
B /
k
Figure 5.2.

Dividing G into nonempty components by separating k-sets
(vi, -+ vl and {wq, -+ w ).
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separate G3, G4, G5 and G¢ respectively, so their cardinalities are greater than or equal to k.

Then,
r r
s+t+r2k r+s+t2k
r+t+k-s—-t2k r2s r=s
Is+t+k-r—t2k = Ys2r = {r+s+t=k
k-r+k-s—-t2k k2r+s+t

From now on we replace the subscript r by s. LetA = {vq, - ,v}, B = {Vgurs1, """ Vi),
C= {Wl’ e ,Ws},D = {Ws+t+lv e ,Wk}, and T= {vs+l’ ot ’V.H-t} = {Ws+l’ t ‘WS+!}- For

Case1|A|=|B|=|c1=|D|=52’—‘.

Claim 5.1, Forall i, i =s+1,...,t and for each j = 3,4,5,6, there is xj€Gj, j =3,4,5,6 such that
(vi,xj)eE.
Proof: W.L.OG. assume there is v; such that for all xeGj:(x,v;))¢eE. Then
{(vi, * oVeawy, - - oW} — {v;]) is a separating (k-1)-set.

O Claim S.1.
Claim 5.2. For every xe A there are ye G3 and ze G5, such that (x,y)e E and (x,z)e E. Analo-
gously, for every vertex x of B, C and D there are vertices v; in those G;, i=3,4,5,6, which are
adjacent to x, such that (x,v;)e E.
Proof: W.L.O.G. assume there is x€ A such that for every ye G3 (x,y)¢ E. Then AUCUT-{x)
is a separating (k-1)-set.

0 Claim 5.2.
Lemma 5.1. All cross separating k-sets containing C'UT and at least one fixed vertex of D can be

k—t

represented in O ((%)2) space, and their number is O (2 2,

Proof: Assume we have a separating k-set

R={wy, WerrraiXsataasls " KsarsasbrYs+trarb+ls * " sYk b where
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(Xgatva+ls ** 1 Xstra+b}EG sy (Ysaraarbsls " ,Ye}€Gg, a 2 1, and either b or k—s—t~a-b is

greater or equal to 1 (the new cross separating k-set is different from the old one) (see Figure
5.3).

Let H = {Xg1r4a4ls * " Xsstvasp) A0 T = {Ygireasb+1s * Yk}, and let D be divided into
D’, E, and F, where: D’ = {Wgyrs1, * ** »Wsar+a)s E is in the same connected component of G
with respect to the separating k-set R as G3, A, and part of Gs; and F is in the same connected
component of G with respect to the separating k-set R as G4, B and part of G¢. Also let H

divide G 5 into G’s and G”’5, and let I divide G¢ into G’s and G”¢ (see Figure 5.3).

Separating sets TUD'UEUH and TUD'UFUI separate G”s and G”¢, respectively. The
cardinalities of these separating sets are less than k. Hence, G”s and G”¢ are empty. Moreover,
since CUTUD'UHUF and CUTUD'UEUI are separating sets and CUTUD and

CUTUD’UHUI are separating k-sets, |E | = |H |, and |I| = |F |. Note that the argument still

Figure 5.3.
NNustrating the proof of Lemma 5.1.
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holds if either H or/ is empty.

Next, we will show that if we replace part of E and/or part of F we will necessarily use only
vertices of H and/or [ for it, regardless of whether we replace part of D’ or not. In other words,

H and I are unique for E and F. The proof is by contradiction.

Assume that there exists [, UH | # [UH, such that CUTUD"UH Ul | is a separating k-set.
Let H,cGs and I, CGg. Also, letI+H divide E into E | and E 5, and divide F into F{ and F,

(see Figure 5.4).

Let H, be separated into two parts, H’; adjacent to E and E”; adjacent to F. By the above
arguments H’; is adjacent to E,, H”; is adjacent to F,, and [, is adjacent to EyUF ;. Since all
neighbors of E in G ¢ are also in /, and all neighbors of F in Gs are alsoin H, H”; c Hand I, is
divided into Iy =IUI', and I”;=1,-TI’,. Let H' =H-H"; and let I =I-I',.

\

A\

&

Mlustrating the uniqueness of a replacement for a part of cross separating &-set.
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The separating set TUD’UH’) UH separates E | from the rest of the graph and has cardinal-
ity less than k. Hence, E; is empty and we have I =I'y, E = E, and H, = H”|. Analogously,
the separating set 7UD’UI ) UH separates F, from the rest of the graph and has cardinality less
than k. Hence, F, is empty and we have F =F,, E=E |, H=H, and I =,. This contradicts

the assumptions.

Note that the arguments still hold if either H or / is empty, or if we replace only parts of £
and F. If part of D’ is replaced as well, then we will not replace it, so that we will look only at
the replacements for E and F. Also, if there exists a separating k-set that replaces F by H, then
there is no I, CG¢ that replaces any part of F for any cross separating k-set described in Lemma

5.1.

Thus, any replacement of any part of F for any cross separating k-set specified by Lemma
5.1 lies in H. The fringe of D is the set of vertices which is used for all possible replacement of
any part of D for a cross separating k-set specified by Lemma 5.1. H is the fringe of F and [ is

the fringe of E. Note that there could be parts of D which do not have any replacements. The

cardinality of the fringe of D is less than % = |D |. Hence, the representation of all cross
separating k-sets with CUT fixed along with at least one vertex from D takes 0((%)2) space,

where O (( £;—t)z) space is needed to specify all edges between D and its fringe. This proves the

space complexity for the representation.

The number of different subsets of D is 2'2'. Since for every subset E\UF of D there is a

unique replacement (if it exists), the number of separating k-sets of G with CUT and at least one
—t
2

vertex from D fixed is upper bounded by O (2 © ). This proves the second part of the Lemma.

O Lemma 5.1.

Corollary 5.1. All cross separating k-sets containing TUD and at least one vertex from C can
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k—t
2

be represented in O ((kT_t-)z) space, and their numberis O (2 “ ).

Take a maximal set X={C; Cj, - -,C,)} of disjoint C;eG; such that C;UTUD is a
separating k-set and that for each C; there are no vertex of Cj,j #i in the fringe of C;. Analo-

gously, take a maximal set Y={D D,, - ,Dp} of disjoint D;e G, such that CUTUD; is a

separating k-set and that for each D; there are no vertex of D;,j #i in the fringe of D;. For T

fixed,
k-t
02 ?% 1x12

all Cross separating k-sets are upper bounded by

k-t
2 1YH=0@** 1X11Y1), and are representedinO((%)z(le+ 1Y 1))

space. Next we will see how many different T°s we need to consider.

Take the smallest T=T; such that a cross separating k-set will have nonempty G;

xR R &

i=3,4,5,6, if it exists. If there is a separating k-set with different T =T, T 1#T ,, then it can be of

four different types:
~ Type 1). ToNA=D and T,NB=D,

Type 2). [Tzr\A:@ or Tan=®] and T NT =D,

Type 3). [T2M=® or szB=®] and T NT =0,

& Type 4). T, A= and T,NB=0.
"4
- Let us first consider type 4 cross separating k-sets. Since I'; must lie completely inside T,
v
o and T has the smallest cardinality, then T, =T,. Let the cardinality of X, the maximal disjoint
:d set of C’s, be /1, and let the cardinality of Y, the maximal disjoint set of D’s be /,, where
. [1 + 12 =1. Recall that the set X is the maximal disjoint set of separating %-sets in G, and
A

the set Y is the maximal disjoint set of separating k-—t—-sets in G,. Let C be the separating
Iy 2
’ -kz;t-sets in G such that all other C’s € X are on one side of it (C | separate G into G’ and G”.
§ (Ci€ G or\C;e G”.) and all paths from them to B in G ;\UB must pass through it. Let C; be
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. .
the separating %—scts in G such that all C; j<i are on one side of it (analogous to the one '
above). Note that by Lemma 5.1 such an ordering of C;’s must exist. By Lemma 5.1 and the ,'Tf'?
=/ ~‘.)(l‘
fact that the C;’s themselves are disjoint, note that such an ordering of C;’s must exist. Analo- Y.y
°
gously, let D; be the separating %-scts in G, such that all other D’s €Y are on one side of it i :Z:E.‘:
and all paths from them to A in G,UA must pass through it. And let D; be the separating -k—z.i ::Tj !_
sets in G, such that all D; j <i are on one side of it. Let us relabel A, the set of elements of X, B - 'ﬁ:
0 \
and the set of elements of Y. So A becomes A, the D; becomes A», ..., D, becomes Ay, B '&_ a::
!
W
becomes Ap.,,, C becomes Ap,3, ... , Cq becomes Ay 442 (see Figure 5.5). The cardinality of e
®
this set is / + 2. From ihc proof of Lemma 5.1 we know that all cross separating k-sets of type 4 . .:.o:
bR
consist of three parts: T, C which is inside G, and is inside some C’s from set X and its fringe, -~ %_
and D which is inside G, and is inside some D’s from set Y and its fringe. Note that TU any o ;&
I“-"
two A;,i=1, ---,l+2 are also separating k-sets if the parts of the graph between them are ;;
.y
nonempty. We can also replace parts of A; by its fringe as long the above condition will be true. 1::Z :.-f_"
N
Let the part of the graph G between A; and A;,,i=1, - - - ,[+2 be G;,i=1, - - - ,I+2 (i in this case .
taken mod [+2). Let G; — the fringe of A; in G; — the fringe of A;,; in G; be G'i,i=1, - - ,[+2. R,
The only case when TUA;UA  (or parts of the fringe of A; and A, ;) i <j is not a separating k-set ;:{;:
- .-.:'/:
when i=j-1and G’; = @. _ !
o ::f !
Based upon above observations the structure (structure 1) which covers all cross separating w5 ~':
k-sets of type 4 will be the following (see Figure 5.5): w ‘ﬁ '
& vl
1) A, with its fringes for all i=1, - - - ,I+2, < 'g}
AN
F." ,\' J
2) For every nonempty G’;,i=1, - - - ,[+2 we fill all nonexistent edges of the complete graph ~ :; '
AY
on the neighbors of G; as real edges. If G';,i=1, - - - ,/+2 is empty for some i then we fill <
®
these edges as virtual edges. All of the edges of G between A, and G,,,.i=1, - - ,[+2 are
in the structure as real edges. % l,.'.
N
A
" S
.'_'.\
N T N AT A N ‘i'hl\.'.‘,:‘
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55 %
‘ Figure 5.5. oy
R ﬁ INustrating the representation of the separating k-sets R
& of Case 1 Types 3 and 4
! ) (Structure 1). M
i 3
' Let us see where the rest of the separating k-sets lie assuming there are no cross separating :
1 ’:i k-sets of type 1 and type 2. Note that we allow separating &-sets of type 3. Let us first define o
. ” exceptional separating k-sets. A separating k-set is exceptional if it separates only part of A; and
Ky 2
o nothing else for some i=1, - -+ ,[+2. ¥
! ,_E Lemma 5.2. All separating k-sets which are not covered by the structure 2 and not of type 1 .'
i, ]
T - and 2 and not exceptions are inside G;UA; and its fringes inside G;_,\ A, and its fringes inside '
Y
4 Y
nt G‘ +1- by
‘_C Proof: Since there are no type 1 and type 2 and no exceptions in separating k-sets, no separating
‘). n Y
k-set uses T. There are also no cross separating k-sets which are not covered by the structure 1. "
-¢ .-'

-
.
-

Let us see what happens if a separating k-set crosses some A;,i=1, - - -,/+2 (see Figure 5.6).

= (Separating k-set divide G into G’ and G” and it is such that there is xe A; and xe G’ and there is .
o ¢
"~ ye€A; and ye G”)) E

-l
~
.
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W.L.O.G. let EUFUH is this separating k-set, which crosses A;, where EcGs, FcGg and PY
N Nl
HcA;. It divides A; into A”;, A”; and H. It also divides G5 into G'; and G”’;, and it divides G¢ . .::
Iy \
into G’ and G”’s. Both A”; and A’; are nonempty, otherwise the set Y is not maximal, or there is i .
~ -
no cross separating k-set. If G5 and G” are nonempty then EUHUA”; and FUHUA"¢ are - B
~7 o
separating sets with cardinalities bigger or equal to k. But both of them can not have cardinality . :;
L3 -fﬂ ¢
\"ﬁ
bigger or equal to k, hence, one of G”’s or G must be empty. W.L.O.G. let G”5 be empty. Ngh
Since A}, UTUA; and A, UTUA’; UHUF are separating k-set and separating set, respectively i
ORI
IF1214”;1. Since EVHUA"; is a separating set, and since both G”s and G” cannot be ha ‘:*‘
empty (exception), we must have 1A”;| 2 |F |. Hence, A”;| = |F |, and F is part of the fringe 3 :‘_:
.U
of A;. s
13 . 'N"'
Let us see what happens if a cross separating k-set crosses (as defined above) two adjacent f'-:'.' %
)
A;’s. W.L.O.G. EUHUFUH I is a separating k-set, which divides A; into A”;, Hy, and A”}, o n’
[
& &
AL o NN
A Al
O 2 © o
l. -
v
PR
o
LY,
b,
O A
=
. '-::'
s
@, )
~ o
.-l' I.“l
N
o~
Nustrating the proof of Lemma 5.2. .
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| u and divides A;,; into A’;,y, Hy, and A”;,,. It separates G;_, into G’;_; and G”;_,, it separates
k
. a G; into G’; and G”}, it separates G;,; into G';,; and G”;,,. By the above argument, G”;_; and
p .\

p = . .

A~ G”;4+1 are empty, and E belongs to the fringe of A;, and / belongs to the fringe of A;-;. Note that

" we don’t need to use the assumption that there are no exceptions. A cross separating k-set can-
k o
3 not cross three adjacent A;’s, since with respect to the middle A; neither of G”5 and G”’¢ can be
b .-

4 . . . . . .
o empty. Hence, all other separating k-sets, except exceptions, belong to G;UA;U { its fringes in
= G;.1 } AV {its fringes in Gi+l }.

b \"

J -

o O Lemma 5.2.

b . . . : .

. Let us now consider exceptions. W.L.O.G. let there exist an exceptional separating k-set,

A

e

o which separates part of A;. In other words, there is a separating k-set which separates part of A;

r

e (A’}), such that all of the vertices not in A;UT are neighbors of A”;. The number of the neighbors

i ‘o of A’; in G;_; UA; 1 UG;UA, 4 is less than k. Consider the minimal set of subsets of A; that cov-

! ers all vertices of A; which can be separated by some exceptional separating k-set. The number

g -

p s . . . . . k—

! of subsets in thls set is less than or equal to the cardinality of A;, hence is at most _/cz_t The
’, number of neighbors of A; that are used for separating these subsets is less than or equal to k ver-

4

. : : k? k?

R tices per subsets, so their total is ai most 5 Note that —2——k such vertices can be inside either

-"

A Gi-1UA;_ or G;UA;, . Moreover, if veA; participates in some subset of A;, that can be

b - . . M .

: separated by an exceptional separating k-set, then v has less than &k vertices in

1 . . .

t Gi_1VA;1UG;UA; ;1. Hence, if we take the union of the following sets

P -

) 1) GiUAVA
% . .

Ad 2) the neighbors of A, in G;_;UA,_y, that are used for exceptional separating k-sets

N 3) the fringe of A,

)

. 4) the neighbors of A;,; in G;,;UA, ., that are used for exceptional separating k-set:
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5) the fringe of A;.1

for all i’s we will obtain all separating k-sets which are not covered by the structure.

The number of exceptional separating &-set for A; is bounded by the number of different
k—t

——

subsets of A;. Hence, it is less than or equal to 2 2 . Thus, the number of exceptional separat-

k-t

ing k-sets is at most (/ +2)2 2,

Based upon Lemma 5.1 and the above observation about exceptions, and using structure 1,
we can write the following recurrence, which is valid if there are no type 1 or type 2 separating

k-sets:

1+2 -
g (n) S max( 3. g (nork (k=1)+1) + <1+2)<%)k +1),

i=1

k=t

> ) +t is the upper bound

where every term inside the sum covers one of the G;’s, and (/+2)(

1+2 _
on the size of the structure 1. Note that ¥ n;+ ¢ +2)2(k )

i=1

+t = n. Note also that for some of the

g (nj+k (k—1)+t) we might not be in Case 1 anymore, then we will use the recurrences for Cases
2 and 3. Once we enter Case 2 or 3 we can never return to Case 1. The solution to this
recurrence is O (kn + k3) (see Appendix 5.2). Note that each (n; + k (k—t)+t) is less than n itself.

We will show later that solutions for Case 2 and 3 are lower than above solution.

Analogously, the recurrence for the upper bound on the number of separating k-sets become

k-t

{+2 —_—
142 07T 142y)

fn)< m?.x( Y f (ni+k (k=t)3+1) + 2
i=1

2
The solution to this recurrence is O (2"—’51(—). Note that all cross separating k-set of type 3 are

also covered vy these recurrences.
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Now we will look at type 1. Let T, A=T"z, ToB=T",, and T;NT,=T,. With respect to
a new Cross separating k-set which uses T, some G; i=3,4,5,6 could be empty. Let us first look
at a harder case when none of G; i=3,4,5,6 are empty with respect to a new Ccross separating k-

set.

A new cross separating k-set must cross C and D of the old cross separating k-set which
uses T, otherwise the Claim 5.1 with respect to the new cross separating k-set will be violated
(see Figure 5.7).

Second, f2=T1 , otherwise Claim 5.1 will be contradicted for the old cross separating k-set.
Third, C'{UCUH (UT{UT";, C"UC"yUH UTUT3, D’yUD’3UH,UTUT",, and
D" UD"'yUH o UT | UT”, are separating sets with cardinalities less than &, which separate G”4,

G”3,G"”s, and G”s, respectively. Hence, G”3, G"4, G”'s, and G”¢ are empty.

725
4 L]

: /%%/2

Figure 5.7.
Ilustrating the configuration between two cross separating -sets
which use different T’s.
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Fourth, C’1UH WC"UT UD "y UH LD, C’'yUH {UC"yUT 2D’ UH ,UD”
C/yUH (UC” UT UD yUH yUD”,, and CyUH UTUD’\WH,UD”, are separating sets.
Hence, 1C 1 21C%1, D1 21D, IC"121C”" |, and ID”;|21D";1. Also,
C’1UH {UC"qUT T yUD’{ UH UD” 1, C’oUT” UH 1 C” VT yUD’{WH D",
C'\VH UC”{UT UT"yUD' 3 UH D"y, and C'yUH{WC"1UT{UT 3D\ UH D", are
separating sets. Hence,

(1C% 1+ 17,1 2 1€ 12 1C51 >0
[C"V + 1T 1 21C" 1 21C"1 >0

|D’2| + |T”2| 2 |D’1' 2 |D’2| >0
|D”2| + |T'2| 2 ID"II 2 lD”zl >0

A,

Also since we are still in Case 1 with respect to both old and new cross separating k-sets, we
have the following equalities

1T, = 1T", |

Ayl = 1Byl = ID | + IHyl + D"yl = IC 1 + {1H | +1C" |
Note that the set T"; has edges to the set D”;, the set T, has edges to the set D’;, the set T’ has
edges to the set C’}, and the set T, has edges to the set C”}, because of Claim 5.1 with respect
to the new cross scparating k-set. Hence, the maximal disjoint sets for C’s and D’s (X and Y)

will have cardinalities equal to 1.
Let us take a maximal T, and let us take the fringes of A,, B,, C and D (see Figure 5.8).

C’y does not have the fringe in G 4, otherwise part of C’; which has a fringe becomes a part
of I'y. If C’) has the fringe in G 3 then the part of C’; which has the fringe can be separated from
the rest of the graph by a separating set C’, UT",UT U {the fringe of C’) in G5}, whose cardi-
nality is less than k. Hence, C’; does not have the fringe. Analogously, C”;, D’,, and D", do

not have the fringes. Symmetrically, T, and T""; do not have the fninges.
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» Figure 5.8.
= Ilustrating the representation of separating k-sets of Case 1
. if two or more different intersecting T"s exist.
5 . (Structure 2).
E
A -
\ Let T, be the union of vertices which are used for all possible T, which create a cross
3 |_; separating k-sets with nonempty G; i=3,4,5,6. Let D"l be the union of all possible D", 15”1 be
[
A e the union of all possiole D", C’; be the union of all possible C’;, C*; be the union of all possi-
B io: . . R
S ble C”;, C’; be the union of all possible C’;, C*'; be the union of all possible C”;, D’; be the
:'j union of all possible D’;, and ﬁ”z be the union of all possible D”,. Let us show that all of these
: ‘
N sets are disjoint.
) :N.
b

Since all of them are symmetric we will prove it only for é'l and (3"1. Assume there are
T3 and T4 such that C”; for T3 is not disjoint from C’; for T4. Then C”,NC’; is nonempty and

1s separated from the rest of the graph by a separating set C”; for Ty WT3; UT VT, U’

for T4, whose cardinality is less than £. This contradiction proves the statement.
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The cardinality of the union D’ ’zuﬁ'zul"4u1'4 is less than -kz;t and analogously, the car-

dinality of (,:"zué’zul'l UI”; is less than kT_t- Let us call é’z, C:"z, ﬁ’z, and lf"z the pseu-

dofringe. Note that A and B might have fringes , but by the symmetry f'z—Tl does not have any
fringes.
The structure which represents all separating k-sets for all possible T”s will be the following

(structure 2) (see Figure 5.8):
1) the original separating k-set with its fringes,
2) the cross separating k-set with minimum cardinality T'; with its fringes and pseudofringes,

3) forevery nonempty G’; i=3,4,5,6 we will fill all nonexistent edges of the complete graph on
the neighbors of G’;. If G’; is empty for any i=3,4,5,6 we will {ill these nonexistent edges
of this complete graph by the virtual edges. (For G'3 we fill the edges between the vertices
of the fringe of A in G5, T, f'z, part of A, which does not have any fringes, (,:'1, r'y,H,,

I”; and C"y).

From the construction of the structure it is easy to see that this structure covers all cross
separating k-sets for all possible Ts, of type 1. Let us see now where the rest of the separating

k-sets lie, if we have separating k-sets of type 1.

If there exists T, with at least one of the G; empty i=3,4,5,6, assuming it is not exception,
such that there is another T, with ToNT; nonempty along with nonempty T,"B and T,MA,
then all cross separating k-sets of this T, are covered by the above structure. (They belong to
the fringes of A and/or B in G, or G, and the rest belong to the original cross separating k-set
with its fringes or pseudofringes). So all cross separating k-sets are covered by this structure,
assuming there are no exceptions, hence, all separating k-sets are either inside G | UAUBUT ;U
the fringes of A and B in G, or G,UAUWBUT U the fringes of A and B in G, or cross separat-

ing k-sets covered by the structure. Since the structure is symmetric, we can look at the cross
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separaling k-sets where the original separating k-set is CUD\UT ;. Then the pseudofringes of C
and D become the pseudofringes of A and B. With respect to this separation of G all separating
k-sets are either inside G 30 VG sUCUDUT U the fringe of C in G4 and the fringe of D in G¢, or
inside G 4UG g uCUDUT (L the fringe of C in G35 and the fringe of D in G, or separating k-
sets covered by the structure. But since in both cases they are the same separating k-sets, all
separating k-sets are either inside G3\UAUT UCU the fringe of C in G 4L the fringe of A in G 5,
or inside G 4UBUCUT U the fringe of B in G, or inside G5\UAUDUT U the frirge of A in
G3u the fringe of D in G, or inside G ¢ UBUDUT U the fringe of B in G 4 the fringe of D in
G s, or the separating k-sets covered by the structure. To cover all exceptions we will do what
we did for types 3 and 4 separating k-sets, we will add & (k—t) neighbors of A, B, C and D to
each of G3, G4, G5 and of G¢ which can participate in exceptional separating k-sets. Hence,

the size of representation is

4 -
gm = g n+klk—rrn +8E Dk s
i=1

where every term inside the sum covers one of G; i=3,4,5,6 along with its appropriate neighbors

k1)

and fringes, and 8 >

k +t is the upper bound on the size of the structure. Note that
4
Y n; + 2k — t = n, hence the solution to the above recurrence is O (nk + k3) (see Appendix 5.2).
i=1
(Note also that the above recurrence and the recurrence for Types 3 and 4 are basically the same
up to a constant factor, hence we can modify the recurrence for Types 3 and 4 to incorporate all

k-t

three types). The number of exceptional separating k-sets is upper bounded by 4-2 2 . The

upper bound on the number of separating k-sets becomes

i=1

4 ket
f)y=Yf(n+kk-t)+) + [j 2kt 4.2 2

The solution to it is O (2¥n + 2k?) (see Appendix 5.2).
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Let us now see what happens if we are in type 2 and no separating k-sets of type 1 exist.
W.L.O.G. assume there is a separating k-set which uses T,=T",\UT,, where T";€ A and T,e T},
and no separating k-set of type 1 exist (see Figure 5.9). If G;’s i=3,4,5,6 are nonempty with
respect to a new Cross separating k-set then we revert to Case 1 with respect to a new cross
separating k-set, hence 1A, | = IB | which is impossible. Hence, one of the G; i=3,4,5,6 with
respect to a new Cross separating k-set must be empty. W.L.O.G. let the empty G; be either G5
or G4 with respect to the new cross separating k-set. If G4 is empty then G s with respect to the
new Cross separating k-set must be empty, otherwise T ;\UT 2\ UA ;UD 5 of the new cross separat-
ing k-set becomes a separating set with cardinality less than k. Hence, if G4 is empty then all
cross separating k-sets of type 2 belong to the original separating k-set with its fringes. Then all
separating k-sets are inside G 1\UAUBUT U the fringe of A in G s {the fringe of B in G¢}, or
inside GUAUBUT (L {the fringe of A in G3} U the fringe of B in G4, or they belong to the

union of AUBUT U {the fringes of A and B}. Note that in the third case the separating k-sets

O 6

D

T 2
c, : %
T

)

Nustrating type 2 separating k-set when no type 1 separating k-set exist.
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are covered by structure 2. We can write the recurrences similar to the above ones except for the

sum which will be up to 2 instead of up to 4. The solution will be still of the same order. If G3

is empty then IC,! 2 1A, 1, otherwise CoUT >, UT | UB is a separating set with cardinality less

5 than k. If D, crosses Dy (see Figure 5.6) then A,UT,UTUD, is a separating set, sO
- ICyl = 1451, CUT,UD’;UHUD”, is a separating set, so |D",121D” 1. Also
‘:- CoUT WD WHUD” is a separating set, so |D”;| 2 1D”; 1. Combining these two we get

ID”1V =1D”3). Since, CUT,;UT,UDUHUD”; and C,UT,UT WD’ VHUD"”, are
g separating sets, so |T5UD’, | 2 ID’{| 2 |D’; 1. Since TwD’{\HUD’, separates G”¢ from the
ﬁ rest of the graph, and since the cardinality of this separating set is less than k, G”’s is empty.
. Hence, D", belongs to the fringe of D in G¢. T, =T in order for the Claim 5.1 with respect to
:‘; the old cross separating k-set to be true. And since |1C, 1+IT, | = |A | and since the cardinality
i of the new cross separating k-set is k, |D’y | = I D"y |. So, all cross separating k-sets of this type

belong to G5 UAUDUT L the fringe of A in Gau the fringe of D in G, if there are no excep-
- tional separating k-sets. Also in the maximal set of disjoint D’s (Y) all of D’s except D belong

2 to Gg¢. If G5 with respect to the new cross separating k-set is nonempty, then by the above argu-
i ment C, will belong to the fringe of A. Hence, all cross separating k-sets belong to the set men-
3-‘ tioned above, namely, G 4 UAUTUD U the fringe of A in G U the fringesof D in G 5.

Let us take the maximal set of C’s and D’s (X and Y). We know that all cross separating k-

I sets of type 2 with nonempty G 5 belong to G s UAUD\UT U the fringe of A in G3U the fringe
'y of D in G¢. Since we need to consider all symmetric cases, and since we don’t have any cross
~ separating k-sets of type 1, all cross separating k-sets of the type 2 belong to G3UAUCUT U
i the fringe of A in G5 the fringe of C in G4, or G4UBUCUT U the fringe of B in G U the
. fringe of C in G3, or GsWAUDUT ;U the fringe of A in G3u the fringe of D in G, or
* G¢UBUDUT (U the fringe of B in G 4U the fringe of D in G5. Note that C’s and D’s are not
;_Q the same in these sets. In case of G3 C =C,eX in case of G4 C =C€X, in case of G5
»
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D =D eY,andincase of Gg D =D,eY. Let us see where the rest of separating k-sets must lie.
First, if there are no cross separating k-sets with G5 nonempty (or some other appropriate sym-

metric G; i=3,4,5,6) then it is still possible to have cross separating k-sets.

All cross separating k-sets consist of three parts: part one is in G, part two is in G, and
part three is T';. Part one belongs to some C from the set X or its fringe or the fringe of A in G 3
or the fringe of B in G 4. Part two belongs to some D from the set Y or its fringe or the fringe of
A in G 5 or the fringe of B in G¢. That covers all cross separating k-sets which use T, otherwise
either set X or set Y is not maximal. We don’t have any cross separating k-sets of type 1. All
cross separating k-sets of type 2 with nonempty appropriate G; with respect to them belong to
the part of the graph between A and the nearest D in G5 along with A and its fringe and D and its
fringe. Hence, all other separating k-sets belong to G{UAUBUT; with its fringes, or

G,UAUBUT | with its fringes.

Hence, all cross separating k-sets of type 2, except exceptions are covered by the structure
2 or inside the subgraphs associated by G 1, Gy,+1, Gy 42 and Gi4z. As for the exceptions the
upper bounds we got for types 3 and 4 still hold, since no part of T; can be separated by them
(otherwise Claim 5.1 is contradicted). So, the recurrence which was written for the type 3 and 4

separating k-sets covers type 2 cross separating k-sets also, including exceptions.

Cuinbining all four types we get the following recurrence for representation of separating
k-sets
142 k_t
gn) < mlax(Zg (ni+k (k—=t)+1) + 2(1+2)(—2—)k +1),
i=1
whose solution is the same as the one for Types 3 and 4 up to a constant. The recurrence for the

upper bound on the number of separating &-sets is
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D ‘a2 k-t 1+2 in
" fn)s m?x(Zf (ni+k (k—t)y+t) + 2 "1—2— +2 ° (I+2)),
rt
I ‘
L8 whose solution is the same as the one for Types 3 and 4 up to a constant. This concludes Case 1.
Case 1.
.\_\‘: {J Case
‘:) Case 2 For any separating k-set every cross separating k-set will have one of the G; i=3,4,5,6
~ empty. Not every vertex in both G, and G, can be used for cross separating k-sets.

W.L.O.G. let G3 be empty (see Figure 5.10).

Py

Since G4 is nonempty by assumption, and G's is nonempty since there are no exceptions,

CUTUB and AUTUD are separating sets. So their cardinalities are bigger or equal to &, hence,

Tr
-
- ICl=1Aland IB1=1D 1. So, C is part of the fringe of A in G,. Since this is true for every
'-.j’ T, all cross separating k-sets belong to G;UAUTUBU ({the fringes of A and B in G}, or
5

A
| c
"y
“
o 5

T
.
- '
v 8
‘s
iz

Figure 5.10.
Mlustrating Cases 2 and 3.
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G, UAUTUBU {the fringes of A and B in G, }, except for exceptions. Let E be the set of ver-
tices in G which are used for exceptional separating k-sets which separate parts of A or B.
Analogously, let F be the set of vertices in G, which are used for exceptional separating k-sets
which separate parts of A or B. The cardinalities of E and F are at most k2. So all separating k-
sets including the exceptions are either inside G;UAUBUTUE or inside G,UAUBUTUF.

Hence,
g(n)=g(ny +k(k=1)) +g(ny +k(k-1)) +4k?,

where n| and n, are the cardinalities of G; and G,. We still have that n; + ny + k = n, and the
solution to this recurrence is O(k2 +n) (see Appendix 5.2). Note that n; + k(k—1) < n for
i=1,2. Note also that for g (n, + k(k—1)) or g(ny + k(k-1)) all separating k-sets may be of

Case 3 only, but once we enter Case 3 we cannot return back to Case 2.

For the upper bound on the number of separating k-sets we get the following equality
f(n)=f(ny +2k)+f(ny+2k)+ 2%,
where 2% covers all exceptional separating k-sets. And its solution is clearly smaller than
0 (2"-"{—) (see Appendix 5.2). This concludes Case 2.

O Case 2.
Case 3 For every separating k-set all cross separating &-sets are lopsided (one of the G; i=3,4,5,6
will be empty). And either G or G, is such that every vertex of them is used for some cross
separating k-set.
W.L.O.G. let G3 be empty and let G 4UC correspond to the smallest G; such that every
vertex of G| is used for some cross separating k-set (see Figure 5.10). There are two subcases:
either G 5 is empty or G¢ is empty. If neither is empty we will be in Case 2. Take C as large as

possible.
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If G¢ is empty then AUBUCUDUT with all edges between them and filling real edges for
nonempty Gs and G4 and virtual otherwise (analogous to the structure 1) will specify all cross
separating k-sets. If G s is empty, then CUTUD separates A from the rest of the graph. Hence,

CUTUD is an exceptional separating k-set. So the third structure will be the following:
1) A, BandT - the original separating k-set,

2)  All the neighbors of AUBUT that are used for a cross separating k-sets with edges between

them and the original separating &-set.

Since there are no other separating k-sets, otherwise we would be in Case 2, we derive the

following upper bound for the size of the representation:
g(n)sk?.

Analogously, we have the following upper bound on the number of separating k-sets
fn)<2*,

O Case 3.

That concludes the proof of all cases. Our final result is that all separating k-sets have

2
O (k%n) space representation, and their number is O (2* nT)'

From the above representation we can generate all separating k-set in O (c¥M) time, where
M is the number of separating k-sets. For that we will take every possible subset of every spoke

of the representation and run a matching algorithm to find replacement for this subset. That can

be done in O (polylogk) time, since the size of the graph is O (k?). Each replacement generates a

separating k-set of a graph.
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5.2. Appendix

The solution to the recurrence which we get for the representation of Type 3 and 4 separat-
ing k-sets of Case 1:

!
g(n)Sm?.x(Zg(n,-+(k -Dk+t)+ 1k

i=1

'gkz——t)'i't)

with initial conditions

1 -
Z(n;+%)+t=n 0srsk-2  251€27=

i=1

Let g(n) = 2nk — 4k> + 2kt + %IJ -3kt -1,

l -
gn) Sm?.x(Zg(n,- +(k-1t)k +t)+lk%+t) <

i=1

1 -
max( 3 2k (n; + k (k = 1) +1) = 4k>31 + 2k%1 + %kzl ~ kil -t +1kk—2i +1)=

i=1

1 - —
m?.x(Zk(Z(nﬁth-)H) - 2k1—k—2—£ — 2kt + 2k21 (k—t) + 2kel — 4k31 +

i=1

2k + %kzl =3kl —ti + lkk—z—i +1)=

m?.x(an F2630U =20+ 2k~ + D) +k2(%1 + —é- D+ kt(l ~2+2 - é 3+~ + 1)<

2en — 4k3 = 3kt + £ < 2kn - 4k + 2%t + -%kz - 3kt -1

Hence, g (n) = O (nk + k3).
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The solution to the recurrence which we get for the upper bound of Type 3 and 4 separating

k-sets of Case 1:

k-t
l _ kot
£ () Smax(3.f (i + k& —t)+t)+2""—1—(12—2) +2 2 1)
i=1
with initial conditions
1 - -
Yo+ Xty s i=n 2512kt 0<r<n-2
P! 2 k-t
Let
F(n) =25 nl = 257 K20 4 2kl + %2"-%1 - —2—2"":[ + 25k
1 : ket
=2kt =22k 2 2k - 2k 22 2,
2 2
l
f (m) S max(E (mik (k - 0) + )28 = 281,22 4 2kt g2 4 %2"%12 - %2"—%12 + 2Kl +
i=1
k-t k=t
1 1 2 1 1 N

2kt — 2 2Kty pk—ty E:>."-‘12 -227% 4 Ez"-'ﬂ - E2"-'1 +2

[) = max(2*~*In -
2 {

%2"“/(12 + %2"":12 S 2kt k22 gkt gkt gkt 22 kg2 | Lok

k-t 1 1 k—t
2 k—t;2 k~t 2
[+ =27 - =2"1+2

2 2

%2"'%12 + 2K htl + %2"‘%1 _ kg2 kg %2“"12 ~22

k-1
m?x(zk-’m — 2252 w2kl + %2"‘%1 ~ 2257 2 2%y %2"-‘1 ~2?D<

m;ax(2"“1n =22 2Kl + %2"‘%1 - —3—2""’:1 + 2%kt +
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k-t
2

%2"-% _ 9 2k=t2 _gkty _ %2"-'1 _22 2

2
Hence, f (n) = O (2"—"k— + 2%nk).

The solution to the recurrence which we get for the representation of Type 1 and 2 separat-

ing k-sets of Case 1:

4 -
g(n)SZg(n,-+k(k—t)+t)+8kk t+t
i=1
with initial conditions
4
Yn+2k~t=n 0<r<k-2
i=1
16,5 16,4, 4 ., 16 1
Let =4nk - —k°> + —k —k“ - —kt — —1t,
et g(n)=4nk 3 3 t+3 3 3

4
gim)sYgm+kk-)+n+4k-nk+1<

i=1
4
@ +kk—1t)+ )k ~ -—lﬁk?’ + _1—6-](2; + _4_/(2 - 1_6/“ - -l—t)+4(k k4t =
i=1 3 3 3 3 3
4
AKC 42k =) = 82 + dkt + 16k — 16k% + 16kt = 203 4 Zokr 4 S2k2

1=1

64 4 2
—kit — —t+4kc -4kt +1 =
3 3

s+ 8206 - 420 E 16+ 122 gy pari6- 2o g0 - 5=
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4
FSTfi+kk—1)+1)+62F+42

dkn — l36—k3 + 13—6k2t + —

Hence, g (n) = O (nk + k3).

The solution to the recurrence which we get for the upper bound of Type 1 and 2 separating

k-sets of Case 1:

k-t

4
fMSTfm+ktk-0+0+62"+42 2
i=1

with initial conditions

k—t

v Aoka, Bokety,  Soket, , 2ok- 2_4,7
Let f (n) =28"'n = 257"k + 2%tk - 28 SO0 - 224 - 22 2
Hf=2n -y 3 3 37 3

k—t
— 4
2 <Y k-1 +1) - 2" %2 + ‘3‘2“‘%:

i=1 i=1

k—t
S okt 2 k-t k- _ 4,72
=2+ =2k =22 - =2
3 3 3

k—t
2

Y+628F 442 2 =kt gkt g pk=ty _pk=ty 4

k-t

16

42572 - 42 ke + 42K - =24k 4+ —136—2""'/( 20 52+ Bt 18,70 6okt 4y

3 3 3

2

, A
_2/(-lk_22k—l -=2 2
3 3

Pty _ %2"-‘/(2 + %2""1« ~ Dokt

Hence, f (n) = O (2kn + 2%k?).
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The solution to the recurrence for the Case 2 for the representation of separating k-sets
gn)Sg(ny +k(k—1)+g(ny +k(k 1)) +4k>
with initial conditions
ny+ny+k=n ny,ny20
Let g (n)=n — 92 + 3k,

gn)<ny+k2—k—9k2+3k+ny+k%~k -9k +3k +4k2 =n - 9k* + 3k

Hence, g (n) = O (n + k?).

The solution to the recurrence for the Case 2 for the upper bound of separating k-sets
F(r)Sflny +2k)+ f(ny +2k) + 2
with initial conditions
ny+ny+k=n ny,ny 20
Let f (n) =2%n - 3 2%k - 2%,
Fn)y<2%ny +2k2% =3 2%k = 2% + 2kn, + 2k2k — 3 2%k - 2K + 2% =2kn —3 2Kk - 2

Hence, f (n) = O (2*n).
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CHAPTER 6

ALGORITHMS FOR GRAPH FOUR-CONNECTIVITY

"

D«

) o

0

. ‘; ; This chapter presents new sequential and parallel algorithms for graph four-connectivity.
.4 g The new sequential algorithm for testing graph four-connectivity has time complexity O (n?)
N

¥

o'
(A
stalx

and is based upon an ear-decomposition technique. The new efficient parallel algorithm for test-

ing graph four-connectivity runs in O (logn) time using O (n?) processors on a CRCW PRAM.

o5 -

o Both algorithms represent improvements over previous algorithms for this problem. The algo-

rithms actually compute the set of all separating triplets of the input graph G, and if G has no

P
)-l

separating triplets, then G is four-connected.

by
3
S 6.1. Open Ear Decomposition and Graph Four-Connectivity

A A triconnected graph is four-connected if and only if it does not have any separating tri-
L4 s
(4 .:.j plets.
I il’;
2 Ca Lemma 6.1. Let G=(V,E) be a triconnected undirected graph for which r=(x,y,z) forms a
)
:5 o separating triplet. Let D be an open ear decomposition for G. Then there exists an ear P; in D
4 P

' that contains two of the three vertices in ¢, say x and y, such that V;(x,y) contains a vertex other
5 l:'- than z, and every path from a vertex in V;(x,y) to a vertex in V;[x,y ] in G, passes through x, y, or
§ z. Further ear P; uniquely determines a connected component C in the subgraph induced by V -
.« {x,y,z}, in the sense that there is no ear P; in G such that:

] _--’ .

4 _-:j 1). Pj contains x and y.
i 2). P, contains a vertex in C,
" » 3). Vix.y)- {x,y,z} is nonempty, and
N ;'::
b
1 "
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4). every path from a vertex in V;(x,y) to a vertex in V;[x,y] in G, passes through x, y, or z.

Proof: Since t=(x,y,z) forms a separating triplet, the subgraph of G induced by V~{x,y,z} con-
tains at least two connected components. Let C; and C, be two such connected components.

Case 1 The first ear P contains no vertex in C, (see Figure 6.1):

Consider the lowest-numbered ear, P;, that passes through a vertex v in C',. Since its end-
points are distinct and must be contained in lower-numbered ears, P; must enter C, through one
of the three vertices in ¢, say x, and must leave C, through one of the remaining two vertices in ¢,
say y. Thus P; must contain two of the three vertices in ¢, and V;(x,y) contains at least one ver-
tex other than z. Further, all vertices in V;(x,y) lie in C,, and none of the vertices in V;[x,y] lie

in C,. Thus the vertices in V;(x,y) are separated from the vertices in V;[x,y] by .

To prove the second claim of the lemma for this case, suppose P; is an ear that contains x
and y and also a vertex, say u, in C,. Then j >i, since P; is the lowest-numbered ear to contain a
vertex in C. Since P; contains x and y, x and y must be the endpoints of P;, and all other ver-

tices on P; lie in C,. Further, since i <j and vertex v is contained in P;, the vertices in the bridge

Figure 6.1.
Case 1 in the proof of Lemma 6.1.
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of P; containing v (call it B’) are in V;[x,y], and since C is a connected component in the sub-
graph induced by V—{x,y,z}, there is a path from B’ to the vertex u in Vi(x,y) that avoids x, y,
and z. This establishes the second claim of the lemma for this case.

Case 2 P contains a vertex in C5:

If Py contains no vertex in C, then case 1 applies to C,. Otherwise P contains at least
one vertex in C; and one vertex in C,. But then, since P g is a simple cycle, it must contain two
of the three vertices in ¢, say x and y, such that (by the argument of case 1), every path from a
vertex in V(x,y) to a vertex in Vg[x,y ] contains x, y or z, and P is the unique ear with this pro-
perty, which has a vertex in C,.

O Lemma 6.1.

We will say that a separating triplet £=(x,y,z) separates ear P; if P; contains two of the ver-
tices in ¢, say x and y, with V;(x,y) not a subset of {z}, and the vertices in V;(x,y) are discon-
nected from the vertices in V;[x,y] in the subgraph of G induced by V- {x,y,z}. We will denote
this by writing ¢ as i ([x,y ],z) to indicate that P; contains x and y, and V;(x,y), which contains a
vertex other than z, is separated from V;[x,y] by {x,y,z}. By Lemma 6.1, every separating triplet
in G separates some ear, and hence can be written in the above form. We will write i ([x,y ],z) as

simply ([x,y ],2), if the ear number is obvious from the context.

Analogously, for a star graph G (P), a triplet of vertices t=([x,y],2) in G separates P if P
contains x and y, V(x,y)— {z} and V[x,y]-{z} are non-empty, and the vertices in V (x,y) are
separated from the vertices in V' [x,y ] when x, y and z are deleted from G (P).

Lemma 6.2. Let G=(V,E) be a triconnected graph with an open ear decomposition
D=[Py, - ,P,_1]. Leti([x,y],z) separate P;. If P; does not contain z then

i) z is an articulation point in one of the bridges of P;, and

ii) if P; is the largest-numbered ear that contains z, then j >i.

Proof: Let B be the bridge of P; containing z. Then B has an attachment in both V;(x,y) and
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Vilx,y1, since otherwise, x,y would be a separating pair. Let a be an attachment of B in V;(x,y) = ; '

and let b be an attachment of B in V;[x,y]. Suppose there is a path p between a and b in B that &
avoids z. Then, if x,y, and z are removed from G, the vertices of V;(x,y) will remain connected ::«, j::"_
to the vertices of V;[x,y] by the path p. But this is not possible since ([x,y],z) separates P;. .. E .
3 Hence, every path between g and b in B must pass through z, i.e., zis an a.p. of B. %z ::
b NS
5 Let C be the connected component containing V;(x,y) ir G -{x,y,z}. To prove the second .‘; :
claim of the lemma, we note that, by Lemma 6.1, P; is the lowest numbered ear containing a ver- 3 .;;
tex in C. Hence every edge (w,z) with w in C must belong to an ear numbered greater than i. By '3 ‘
the first part of this proof, we know that there is at least one such edge (w,z). This proves the Poog »E:
second part of the lemma. '\
O Lemma 6.2. *“ ,.2

ol
Using Lemma 6.2, we can classify triplets separating ear P; into two types: Type 1 separat- A i.
ing triplets are those for which P; contains all three vertices; type 2 separating triplets are those g-
for which P; contains two vertices, and the third is an articulation point in one of the bridges of E
P;. Let n; be the number of vertices contained in a nontrivial P;. Let us number the vertices on -:
P; from 1 to n;. Vertex a is to the left of b and vertex b is to the right of a if a<b. Type 1 » .'
separating triplets can be further classified into three types (see Figure 6.2): Type la, in which z o ;':

is to the right of x and y on P;, type 1b, in which z is to the left of x and y, and type 1c, in which z : :
is between x and y on P;. The same definitions apply to a star graph G (P); in this case the center :‘ -
of every star is its unique a.p. E:‘
N <

Let ([x,y],2) be a type 2 triplet separating P;. By Lemma 6.2, z is an a.p. in a bridge, B, of * :
P;, and z lies on an ear Pj,j >i. We shall refer to such a.p.’s as highap.’s. Let By, - - - .B, be the ._:_E
connected components of B - (z}, and let C be the set of remaining bridges of P;. Then \_3 ;_
CU(CJ{Bi }) are the bridges of P; in G - {z}. Let J;(2) be the ear graph of P, in G - {z}. L
=l 3 ?N
Lemma 6.3. Let G be a triconnected graph, and let G;(P;) be the ear graph of P,. Then, - [N
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1S Classification of type 1 separating triplets
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G;.
b) ([x,y],z) is a type 2 triplet separating P; in G if and only if (x,y) is a pair separating P, in
Ji(2).

Proof: We note that, since G is triconnected, every anchor bridge of P; in G has attach-
ments to the two endpoints of P;, and to at least one internal vertex of P;; we shall call this Facr
1. We prove parts a) and b) of the lemma separately.

a) First we note that if ([x,y],z) is a type 1 triplet separating P; in the ear graph G; then it cer-

tainly separates P; in G.

For the reverse, two cases arise:
i) If x and y are the endpoints of P;, then by Fact 1, ([x,y],z) is a type 1 triplet separating P, if
and only if every anchor bridge of P; has exactly one internal attachment on P;, and that attach-
ment is at z. If this holds in G then it continues to hold in the ear graph G;, since by coalescing
such anchor bridges, we do not create any new attachments.
ii) If either x or y is not an endpoint of P;, then no anchor bridge of P; can have an attachment in
Vi(x,y)— {z}. Once again, this condition will continue to hold if all anchor bridges are coalesced,
and hence will be true in G; if it was true in G.
b) As in case a), if (x,y) is a pair separating P; in J;(z) then clearly ([x,y],2) is a type 2 triplet
separating P; in G. For the reverse, once again, two cases arise.
i) z is a high a.p. in an anchor bridge B. Hence z lies on an ear numbered higher than i. Every
attachment of an anchor bridge on a vertex in V;(x,y) must be adjacent to z (since otherwise
([x,y },z) would not separate P; from vertices on lower-numbered ears). Hence in G —{z}, no
anchor bridge has an attachment in V;(x,y), and so, in the ear graph G;, the anchoring star has
not attachment in V;(x,y). The non-anchor bridges cannot have an attachment in both V;(x,y)

and V;[x,y], since each of them is a bridge of G and ([x,y],z) is a triplet separating P, in G. Thus

X,y must separate P; in J;(z).
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If one of x or y is not an endpoint of P;, then every anchor bridge B’ other than B has no
attachment in V;(x,y). This continues to hold in G; as well.
ii) z is an a.p. in a non-anchor bridge: In this case no anchor bridge of G can have an attachment
in V;(x,y), and the result follows by an argument as in case i.

(O Lemma 6.3.

Based on the characterization in Lemmas 6.1,6.2 and 6.3, we obtain the following high-

level algorithm to find all separating triplets in a triconnected graph.

Algorithm 6.1: Finding All Separating Triplets in a Triconnected Graph G =(V,E)
1) Find an open ear decomposition D =[Py, - - - ,P,_;] for G.
2)Fori=r-1,r-2,---,0do

if P; is a nontrivial ear then

A) Construct the ear graph G;(P;).

B) Use G;(P;) to find all type 1 triplets separating P;.

C) In the bridges of P;, find the a.p.’s that lie on ears numbered higher than i, and use them

to find all type 2 triplets separating P;.

Let |V I=nand |E |=m. Step 1 has a linear-time sequential algorithm and an O (logn) time
parallel algorithm with O (m) processors on a CRCW PRAM [33,35]. Step 2A has a linear-
time sequential algorithm and an O (logn)-time parallel algorithm with O (mlogn) processors on

an ARBITRARY CRCW PRAM [36,41].

Let n; be the number of vertices contained in a nontrivial P;, and let m; be the number of
edges incident on vertices contained in P;. Since G is triconnected, it is not difficult to see that

Ymi=0 (m + n2) and ¥ n;=0 (n) when the summation is over nontrivial ears. In section 6.2.1,
i i

we present algorithms to find type 1 triplets separating P; in O (n?+m;) sequential time, and in
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O (logn) parallel time with n? processors on an EREW PRAM. In section 6.2.2, we show how to
find all high a.p.’s in the modified bridges of each ear, organized in a forest of block-trees, in

Y0 (n+m;)=0 (n2) time plus some additional time for processing trivial ears, which is O (m)

i
over the execution of the entire algorithm. This parallelizes into an O (logzn) time algorithm to
find a.p.’s in bridges of all nontrivial ears on an ARBITRARY CRCW PRAM with n? proces-

sors. We use this to develop an algorithm to find all type 2 triplets in Y O (n-n;+m;)=0 (n?)
i

sequential time, and in O (log?n) parallel time using n? processors on an ARBITRARY CRCW
PRAM. Thus we obtain an O (n?) time sequential implementation of Algorithm 6.1, as well as
an O (log?n) time parallel implementation on an ARBITRARY CRCW PRAM with n?2 proces-

SOTS.
6.2. Finding All Triplets that Separate an Ear

6.2.1. Finding Type 1 Separating Triplets

In this section we give algorithms to find type la, 1b and lc separating triplets on an ear P;.
Recall that ([x,y],z) is a type 1 triplet separating P, if x,y and z lie on P;, and the vertices in

Vi(x,y) are separated from the vertices in V;[x,y ] when x,y and z are removed from P;.

As shown in Lemma 6.3, if x and y are the endpoints of ear P; then ([x,y],z) form a type 1
triplet separating P; if and only if the anchoring star in G;(P;) has exactly one internal attach-
ment on P;, and that attachment is z. This is a simple condition that can be checked in constant
time. For finding any other type 1 triplet separating P;, it suffices to view the ear graph G;(P;) as
the path P; together with a collection of stars, and to identify all type 1 triplets separating P, n
G;. For this we can work with a star graph G (P) without any reference to the fact that it is the

ear graph of an ear.
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Let G (P) be a star graph with & vertices on P, [ stars, and a total of p edges on the stars. We
present an O (k2+p) time sequential algorithm and an O (logk) time parallel algorithm with &2+p
processors on an EREW PRAM to find all type 1 triplets separating P in G (P). Assume that the

vertices on P are numbered in order as 1, - - - ,k from left to right as specified before.

For a closed interval [x,y] on P, let
L [x,y] be the leftmost attachment among all stars that have an attachment in [x,y ],
S [x,y] be the second leftmost attachment among all stars that have an attachment in [x,y], and
R[x,y] and M[x,y] be the rightmost and second rightmost attachments, respectively, of stars

that have an attachment in [x,y ].

The following lemma is straightforward.
Lemma 6.4. Let x,y,z be three vertices on P. Then
a) ([x,y],2) is a type la triplet separating P if and only if L[x+1,y-1]=2,S[x+1,y-1]2x and
R[x+1,y-1]<y; and
b) ([x,y],z) is a type 1b triplet separating P if and only if R [x+1,y-1]=z,M [x +1,y —-1]<y and
Lx+1,y-1]2x.

O Lemma 6.4.

We compute L [x,y],S[x,y],R [x,y] and M [x,y] for every interval [x,y] with x <y by a dou-
bling technique that first computes these values incrementally for intervals whose size is a power
of 2, and then computes the values for all remaining intervals as follows. This algorithm rurs in

O (k*+p) time sequentially, and in O (logk) time on an EREW PRAM with n? processors.

1) [Initialize: Fori=1, --- k compute L[i,i], S{i,i], R[i,i], and M [i,i]. These values can be
computed in O (k+p) sequential time and O (logn) parallel time on an EREW PRAM with
k+p processors by using bucket sort to order the star edges in increasing order of attach-
ment, with ties broken in decreasing order of the leftmost (rightmost) attachment of the star

the edge belongs to for L[i,i] and S[i,i] (for R{i,i] and M [i,i]).
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For j=1,---,[logd compute, for each i, L[i,i+2/~1] from LI[i,i+2/~'-1] and
L[i+2/7,i+2/~1]. Similarly compute S [i,i +2/],R [i,i+2/) and M [i,i+2/]. Each of these
values can be computed in constant time in parallel, and hence sequentially as well. Thus,
this total step takes O (klogk) time sequentially and O (logk) parallel time on an EREW
PRAM with k processors.

For each pair [x,y],x <y, let iy, be the integer satisfying x+2i"Sy <x+2*1, Compute
L(x,y] from the pre-computed values L[x,x+2i" -1} and L[y—Zi”+I,y] in constant time.
Similarly compute S[x,y],R[x,y] and M [x,y]. As in step 2, each of these values can be
computed in constant time, and hence this step requires O (n2) sequential time; it is
straightforward to implement this in O (logn) paral..] time on an EREW PRAM with n?

Processors.

For complete parallel algorithm for type la separating triplets separating ear P; see appen-

dix 6.3.

An analogous procedure identifies type 1c separating triplets. Let L [x,y] and R [x,y] be as

before. Let z; be a vertex in [x,y ] which is an attachment of a star with an attachment at L [x,y ];

analogously let z, be a vertex in [x,y] which is an attachment of a star with an attachment at

R[x,y]. Let §’[x,y] be the leftmost attachment of stars with an attachment in [x,y] - {z;} and let

M’[x,y] be the rightmost attachment among stars with an attachment in [x,y] - {z,}. Then the

following lemma is again straightforward.

Lemma 6.5. the triplet ([x,yl,z) is a type lc triplet separating P if and only if

S’lx+1,y-112x,M’[x +1,y—1]<y and one of the following three conditions hold:

a) z;=2,=z; or

b) L[{x+1,y-1]2x and z=z,; or

¢)R[x+1,y-1]<yand z=z.

O Lemma 6.5.

o\ N1 -.,- PP T Lo ud ,&g.l. 2,

A




R R WU WU WA TR N NG W W I S R I S S R WG W W W WU SR TR TR Toe 1% RN T W T, W PO e *2UR" 00" 00" ha " ANAS RaV 8% Qv tuv 0ot Aav et 4gt fat

g "]
o
W
% 89 N '3
Y . i+
oy
n Using Lemma 6.5 we can compute the type lc triplets separating P in a manner analogous ®
Y
to the method used for finding type 1a and 1b triplets separating P. For complete parallel algo- j',-.
o P
ﬁ rithm for type lc separating triplets separating ear P; see appendix 6.3. b, .:
'y
= :
¥ 6.2.2. Finding Type 2 Separating Triplets g
‘ ".
E’i There are many implementation details in this algorithm. We give a high-level description :'.'.' ;
first, and then elaborate on each of the steps. We use the result in Lemma 6.2 that if ([x,y },z) is a %_

553
-

type 2 triplet separating P;, then z is a high a.p., i.e., z is an a.p. in one of the bridges of P;, and z

«.,
y‘ belongs to a higher-numbered ear than P;. Observe that the number of blocks (biconnected com- E )
\ ponents) and the number of articulation points in the bridges of an ear P; is no more than n. As a I!'
E‘}? matter of notation, we will denote the star(s) in G; corresponding to a bridge or a collection of :-::
bridges B of P; by s (B), and similarly, the bridge(s) of P; corresponding to a star or a collection 2

2
S

of stars § of G; by b(S). We now present the high-level algorithm for finding type 2 triplets

Y
83 separating P;. For convenience we assume that the vertices of G are numbered so that any vertex :
h contained in P; has a smaller number than a vertex in the interior of any P joJ . x. N
hY 1)  For each star s of G;, we construct a list L (s) of those pairs of vertices x,y on P; for which s .}_
:‘j is the only star that has attachments in both V;(x,y) and V;[x,y]. Note that there can be no (EE'
N more than ;% entries in the lists for all of the stars of G, since each pair can appear on at .
?‘:'.'—:‘ most one list. The list for each star is in lexicographically increasing order on (x,y). ’ '
g 2) For each ear P;, we determine the high a.p.’s in each of its bridges. \,
3)  For each bridge B of P;, for each high a.p. a in B, we find all pairs of vertices separating P; .,.

=
A e

Y in Py (B~ {a}) (note that we do not include the remaining bridges of P; in this graph), ;,’
S
& v
5 using the triconnectivity algorithm in [36,41]. These separating pairs can be specified as :'f-
. , »
regions in the star embedding of the coalesced graph of Py s (B~{a}) [36]. We maintain
o)
- o
‘. . . . . . ) . N
‘y these regions over all articulation points for a given bridge B in a properly sorted manner; o
~
-\ t
') LS,
.:'; ‘.
i:::
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we call this the region representation for B.

4) 'We compare the entries in L (s) for each s with pairs of vertices in a common region in the

region representation for b (s), and each match gives a type 2 separating triplet for P;.

We need the following observation.
Observation 6.1. Let z be a high a.p. of a bridge B of P;, and x,y, a pair of vertices on P;. Then
([x,y],2) is a type 2 triplet separating P; if and only if
a) (x,y) is a pair separating P; in the graph P;\_)(B—{z}), and
b) s (B) is the only star of G; that has an attachment in both V;(x,y) and in V;[x,y].
Proof: If ([x,y],z) is a type 2 triplet separating P;, then by Lemma 6.2 we know that z must be
ar: a.p. of the bridge B of P; to which it belongs. Deleting z renders x,y a pair separating P; in G -

{z}, and thus certainly in the graph P;_(B —{z}). Further if any other bridge B’ of P; has an

attachment in both V;(x,y) and V;[x,y ], then removal of x,y, and z leaves V;(x,y) connected with

Vilx,y ], which is not possible since ([x,y],z) separates P; by assumption. Hence part b) of the

observation must hold as well.

For the converse, assume that parts a) and b) hold. Then it follows that x,y is a pair separat-
ing P; in G - {z}, since by b), no bridge other than B can connect V;(x,y) with V;[x,y]in G -
{x,y,z}. Hence ([x,y ],z) must be a type 2 triplet separating P;.

O Observation 6.1.

All pairs of vertices on P; satisfying property b) appear on the list L (s (B)), which we con-
struct in step 1. The pairs satisfying property a) are those that lie in a common region in the
region representation for B, which we construct in step 2. In step 3 we scan these two sets of
pairs of vertices, and identify matches between the two sets; each such match gives a type 2 tri-
plet separating P;, and every type 2 triplet separating P; appears as such a match. This estab-

lishes the correctness of the above algorithm.
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We now explain how to implement steps 1 through 4 to obtain the stated time and proces-

sor bounds.

STEP 1

The algorithm for step 1 is similar to the algorithm for finding type 1 separating triplets. By
Lemma 6.3, if x and y are the endpoints of ear P;, then the anchoring star of G; is the unique star
with attachments in both V;(x,y) and V;[x,y]. For any other pair x,y we can work with a star

graph G (P) without any reference to the fact that it is the ear graph of an ear.

As in section 6.2.1, given a star graph G (P) we compute certain values for each interval of
vertices on P. The values computed are L [x,y],5”[x,y],R [x,y ] and M"[x,y], where L [x,y] and
R[x,y] are, as before, the leftmost and rightmost attachments, respectively, among all stars that
have an attachment in the closed interval [x,y]. Let s; be a star with attachments at L [x,y ] and in
[x,y], and similarly, let 5, be a star with attachments at R [x,y] and in [x,y]. $”[x,y] is the left-
most attachment among all stars with an attachment in [x,y ] except star s,; similarly, M”[x,y] is
the rightmost attachment among all stars with an attachment in [x,y] except s,. From these
definitions, the following lemma is straightforward.

Lemma 6.6. Star s is the only star that has an attachment in V (x,y) and V [x,y ] if and only if one

of the following three hold:
a) S”[x,y]2x,R[x,y]<yand s=s;; or
b) L[xy]2x,M"[x,y]<y and s=s,; or
c)  S”[xyl2x,M”[x,y]<y and s =s;=s,.
O Lemma 6.6.

Using Lemma 6.6 and the method of section 6.1, we can form the lists L (s) for all stars of
all nontrivial ears in O (nz) sequential time and in O (logn) parallel time on an EREW PRAM

with n? processors.
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STEP 2

Sequential Algorithm

i
Let Hi=P;. Let Ay, - - - ,A; be the bridges of H;. Let B; be A; with its attachment edges
j=0

and vertices deleted. A split of P, is an articulation point in one of the B;. An ex-node of P; is a
vertex in one of the B; adjacent to an attachment on H;. An adj-node of P; is an ex-node, which
is adjacent to an vertex on P;. For example in Figure 6.3, H has four nontrivial bridges and one
trivial bridge; vertices a, b, and ¢ are some of the split nodes of P; vertices a, b, d, and e are
some of the ex-nodes of Py; of which a, b, and d are adj-nodes as well. We observe that by
Lemma 6.2, if ([x,y],2) is a type 2 triplet separating P; then z is a split or ex-node of P; or z is an

attachment of one of the Aj on H;_;.

We organize the splits and ex-nodes of P; in a forest of split-trees analogous to the tree of
biconnected components. There is one split-tree for each Bj, whose vertices are the splits, ex-
nodes and blocks of B;. There is an edge between a split and each block it lies in, as well as an
edge between each ex-node (that is not also a split) and the unique block it lies in (see Figure
6.3). For u an ex-node, let A (u,j) be the jth smallest vertex adjacent to u and belonging to H,_;,
if it exists, null otherwise, for j=1,2,3,4. By our numbering scheme for vertices,
A(u,j),j=1, - - - ,4 (when defined) represent four distinct vertices on lowest numbered ears adja-
cent to u. For example, in Figure 6.3 vertex a has A(a,1)=1,A(a,2)=5, A(a,3)=0,
A (a, 4) = . The number of entries in A (4, /), over all ex-nodes u, is O (n).

Let F;,_; be H;_; with the two endpoints of P; deleted. Let A (u) be the set of two smallest
non-null vertices in F;_;~ {A (4, 1),A (4, 2),A (4, 3),A (u, 4)}. By construction, A (4) contains
the two smallest numbered vertices in F;_, adjacent to 4 (when they exist), and can be obtained
in constant time per ex-node, since we have the A (u4,j). Note that if we did not have the A(u,j),
then finding the A (u) would take time proportional to the number of edges incident on the ex-

nodes and that could be as large as 6(m).
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From the forest of split-trees we derive the forest of trees of biconnected components (or
block-trees ) of the bridges of P; by first constructing the augmented graph as follows: We aug-
ment the vertex set of the forest of split-trees by adding in vertex v to represent H;_;, — a poten-
tial “high-block’ (i.e., a connected component that contains no high a.p.’s), and we add in the set

of vertices U= 1 A (u), — potential high a.p.’s. We put in an edge between v and each ver-
ex-nodes u

tex in U as well as edges between u and vertices in A (), for each ex-node u.

Observe that a vertex w in H;_, is a high a.p. in a bridge of P; if and only if, for some
split-tree T of P;, w is the only vertex in F;_; that is adjacent to a vertex in T. Since by construc-
tiop A (u) includes the two smallest vertices adjacent to y, if they lie in F;_;, it follows that w is
a high a.p. in a bridge of P; if and only if it is an a.p. in the augmented graph. Similarly, an ex-
node u in a split-tree T is an a.p. separating vertices in T from the rest of the bridge of P; if and
only if 4 has an attachment in F;_; and no other ex-node in T has an attachment in F;_;. This
again holds if and only if u is an a.p. in the augmented graph. Hence the blocks and articulation
points in this augmented graph are precisely the blocks and articulation points in the bridges of
P;. We find these in O (n) sequential time, using a linear-time algorithm for biconnectivity [48].
At this point we have the forest of block-trees for the bridges of P;. In additional O (m;) time, we

can obtain all of the adj-nodes by scanning all edges incident on the internal vertices of P;.

All that remains is to incrementally obtain the split-trees for P; and the A (u,/) for the new
ex-nodes of P; in an efficient way, where P, is the next nontrivial ear. To update information for
Py, we first process the forest of split-trees for P; to eliminate those splits and blocks that disap-

pear and the new ones that appear when P;,P;_, --,P;,; are added. This is done in

i
O (n+m+1—i) time by finding blocks, a.p.’s and ex-nodes in the graph \ B, \_ Pr {attach-
jo k=il

ment edges of each B; in the interior of P;j. This gives us the split-trees for P;. The new ex-

nodes for P; are the nodes in the interior of P; adjacent to a vertex in Hj; in particular, this
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includes the nodes in the interior of P; adjacent to its endpoints. We compute the A (i, /) values
for these new ex-nodes. This computation takes O (m) time over the entire execution of the algo-
rithm. Now we are ready to find type 2 triplets separating P;.

Parallel Implementation of Step 2:

This step is similar to the algorithms in [36,41] that find the ear graphs of all nontrivial
ears. The only difference is that we now find the forest of block-trees instead of connected com-
ponents. For this we can use any efficient parallel block finding algorithm [33, 35, 50]. By not-
ing that the total size of the graphs present at each stage of the algorithm is O (n?), we obtain an

O (log®n) time parallel algorithm on an ARBITRARY CRCW PRAM with n? Processors.

STEP 3

Sequential Algorithm

We number the vertices in the forest of block-trees in post-order with respect to a dfs. We
label each attachment edge to P; in the bridges of P; by the number of the block it belongs to
(since each such edge is incident on an adj-node, this is done in constant time per edge). We
remove any multiple occurrences of edges with the same block number and attachment. Since
the number of blocks and the number of articulation points is O (n) (over all bridges of P;) this

step can be done in O (n+m;) time for all of the bridges.

We now sort (using bucket sort) the labeled attachment edges in increasing order of the
attachments, with edges having the same attachment sorted in increasing order of their label, and
we leave the sorted edges in stacks corresponding to their attachment number. Now, with
another post-order traversal of the block-trees, we can determine, for each a.p. s of each bridge B

of ear P;, the stars formed from B when s is deleted from B, in O (n+m;) time.

At this point, for each high a.p. x of bridge B, we have s (B —{x}), the collection of stars

formed from B when x is removed from B. Each of these stars has no more than n; attachments.
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Using the algorithm in { 36] we can find the separating pairs on P; corresponding to these stars

in O (k-n;) time, where k is the number of stars. These are organized as the vertices on the faces

)
e,
SN Y R

e
of the planar embedding of the coalesced graph [36]; this has an O (k'n;) size representation. >
We find such a representation for each a.p. ~ )
Parallel Implementation of Step 3: ) :
) :"r. j
- ' "
This step can be implemented on ear P; in O (logn) time with O (n-n;) processors using SN
»
efficient parallel algorithms for computing post-order numbering on trees [50], for sorting [9] T
O
and for finding separating pairs in a star graph [41]. ::2
S
o
4
STEP 4 “ '_:
A
Sequential Algorithm: L :;:-
- T
In order to execute step 4 efficiently, we store the representation obtained in step 3 in a spe- 4
cial way. Let us confine our attention to a specific bridge B (note that we execute step 3 bridge i (’*
Oy 1‘
by bridge). Let B have [ a.p.’s sy, - - - ,5;, and let the ith a.p. have ¢; children in the block-tree ‘.~3 ;_
! r
(each of which is a block of B). Thus t=1+3 t; is the number of blocks in B. The total number U -
j=1 - w2
of regions for B is no more than ¢, and further, none of these regions interlace. We represent "o

these regions as follows: We have n; stacks, one for each vertex on P;, and in the stack for ver-

-
N
]
tex v, we place pointers to all regions that contain v. These pointers are arranged in increasing g:; ;: X
-
order of the first vertex in the region, with ties broken in decreasing order of the last vertex in the R \\-‘
l\ -

. . . . . 2o
region (the topmost pointer points to the region with the lowest numbered vertex). For each S .\
region we maintain a pointer to the current leftmost position in the region; initially the pointer ~ "

« b ¢
. . . LN L QY
for each region points to its leftmost vertex. b
woowN
We now scan the entries in L (s (2)) in order. If the current entry is (x,y), we look at the )
-"’
topmost region R in the stack for vertex y and check its current leftmost vertex z. If z >x then we - )
: .
proceed to the next entry in L (s (B)). If z=x then we have found a match, and hence a type 2 Y
- fl
»
. -
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triplet separating P;. If z <x, we move the leftmost pointer for R right until it points to a vertex
u2x. If u=x, then we have located a type 2 triplet and we leave the leftmost pointer at u. If u=y
then we pop the pointer to R off the stack; otherwise we leave the leftmost pointer at u. It is easy
to see that this scan locates all type 2 triplets ([x,y],z) with z in B, and the time it takes is pro-
portional to the sizes of L (s (B)) and the regions representation for B. Hence, over all bridges of
P; this procedure takes time O (n,z+n-n,-)=0 (nn;).

Parallel Implementation of Step 4:

To implement step 4 in parallel we allow ourselves O (logn) time per entry (x,y) on
L (s (B)) to determine if x lies in the same region as y for some entry in stack y; this is accom-
plished by binary search on the entries in stack y followed by a binary search on the vertices in

the relevant region R. Hence this step takes O (logn) time with n? processors on a CREW

PRAM.

6.3. Appendix

Let L(x,y)=L[x,y], which is defined in section 6.2.1. Analogously, R (x,y) stands for
R[x,y], S(x,y) stands for S[x,y], and M (x,y) stands for M [x,y]. Let L(x) stands for the left
most attachments among all stars that have an attachment at x. Analogously, S(x), R (x), and
M (x) denote the second leftmost, rightmost, and the second rightmost attachments among all

stars that have an attachment at x, respectively.
6.3.1. Algorithm for Type 1a Separating Triplets for an Ear
STEP 1: For every vertex v on ear P; do

L(v,v+2)=min(v,L(v+1))

R, v+2)=max (v+2,R (v+1))
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. Sw,v+2)=min(S(v+1),v) _:
'!..
:::'o For k=1 to logn; do -
o =
b find L (v,v+25), R (v,v+2), and S (v,v+25)
i (L (v,v+2%)=min (L (v,v+2%71),L (v 4251,y +2%),L (v 4257 1)) <
'».' \ L%
i R (v.v+25)=max (R (v,v+2*71),R (v+2*~" v +2%),R (v+2¢ 1))
(% N
D)
' (S (v,v+25)= second smallest N
" (L (v,v 425, L (v+2571 v 425), S (v,v+2571), 8 (v 42571 v428),
e A
i L(v+2571),S (v+2571y)) '
lt.| .
'_ If R(v,v+2%)=v+2* and S (v,v+2%)=v then <]
\;; (x,y,z) is a separating triplet for ear P;, where x=v, y=v+2" and z=L (v,v +2").
At \
:;§ End If %
End For K™
i:, " STEP 2: For every other interval (v,w) of ear P; do -
: find k; such 2+l o o
o nd k£ such that v+ >wand v+2"' <w, n
0'. :
= find k, such that w—-2"" <v and w—-2"*>v, ,
K v
O (ky=k,= log(w -v)) b
)
} W
;:' IfR(w 2k ;w)=v+2* and R (v,v+2k‘ )<v+2* and § (v,v-0—2k1 )=v and S (w—2k2 W2V \';
' and (S (v,v 25 )2v or S(v,v+2k' )=S (w —2k’,w) _
- then (v,w,S (w—2*2,w)) is a separating triplet for ear P;, A
N
\:.: otherwise no. 2
X w
- End If
‘.:: End For o
o
fn
W '
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{J 9
i *
n
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6.3.2. Algorithm for Type lc Separating Triplets for an Ear

STEP 1: For every vertex v on ear P; do

R ©

IfR(v+1)2R (v+2) then R (v,v+3) = max(R (v+1),v+3)
Z,(v,v+3)=v+l
else R (v,v+3) = max(R (v+2),v+3)

z,(v,v+3)=v+2

L X X 3 ¥ 1 ¢
R X0 I X AL

End If 3
If L(v+1) < L(v+2) then L (v,v+3) =min(L (v+1),v)
ziv,v+3)=v+l
else L (v,v+3) = min(R (v+2),v)
2i(v,v+3) =v+2
End If
M (v,v+3) = max(v+3,min(R (v+1),R (v+2))
S (v,v+3) = min(v,max (L (v+1),L(v+2)) 1
If o
Syv+)=v&Muv+3)=v+3 & R,v+3)=v+3 1 Lv,v+3) =v | z;(v,v+3) = z,(v.v+3))) 23
then
IfL(v,v+3)=vthenz =z,(v,v+3)
else z = z,(v,v+3) o
[(v,v+3),z] is a separating triplet
End If
End If

For (v,v+4) use STEP 2.

P

For k=3 to logn; do

“y "y %
L)

1

find L (v,v+2%), S (v,v +25), M (v,v +25), M (v,v +25), z,(v,v+2"), and z,(v,v+25)
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If L (v,v+2F71) SL(v+ik-1,v+2k) then L (v,v+2%) = L (v,v+2F71)
z,(v,v+2") = z;(v,v +2k'1)
else L (v,v+2F) = L (v4+2%71 v 42%)
zl(v,v+2") =z(v +2k-1 v 42K
End If
IfR (v,v+25"1) 2 R (v42571 v 42%) then R (v,v+25) = R (v,v+2¢ 1)
z,(v,v+2k) =z (v,v +2"‘1)
else R (v,v+2%) = R (v+2¢1,v +2%)
z,(v,v +2") =z (v +2k-1 ,v+2k)
End If
S (v,v+2") = second
smallest (S (v,v+2¥71), Sw+2%1,y 2"), L(v,v+2*-1y, L(v+2%-1 vy 425
M (v,v+2%) = second
largest (M (v,v+2571), M (v 42571,y 2%, R (v,v+2%71), R (v+2%~1 v +2K)
If R (v+2%71) > R (v,v+2¥) then R (v,v+2%) = R (v +2¢°1)
z,(v,v +2") = y42k-1
M (v,v+2%) = max(R (v,v+2%),M (v+2¢71))
else M (v,v +2%) = max(M (v,v+2F),R (v+2%~1)
End If
IfL(v+2571) < L(v,v+2F) then L (v,v +25) = L (v +2K°1)
21(v,v+2F) = y42k-1
S (v,v+2%) = min(S (v,v +2%),S (v +2% 1Y)
else S (v,v+2%) = min(S (v,v+2%),5 (v +2¢71)
End If
If Sy =v & Mv,v+2%5)=v+2F &
[R (vv+2%) = v 42K | Lyyv+2by=v | (v,v+25) = z,(v,v+2ki ) then
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If L (v,v+2F) =v) then z = z,(v,v +2*)

else z = z;(v,v +24
End If
[(v,v+25),z)is a separating triplet
End If
End For
End For
STEP 2: for every other interval (v,w) of ear P; do
k=|loga(w - v)
If L (v,v+2%) S L (w=2%,w) then L (v,w) =L (v,v+2%)
zitv,w) = z,(v,v+2k)
If z;(v,v +2k) # zi(w =2¢.w)
then S (v,w) = min(L (w—2%,w),S (v,v+2%))
else S (v,w) = min(S (v,v+2%),S (w—2*,w))
End If
else L (v,w) =L (w-2%,w)
21(v,w) = z;(w—2F,w)
If z,(v,v+2k) # z,(w-2k,w)
then S (v,w) = min(S (w=2%,w),L (v,v +2%))
else S (v,w) = min(S (v,v+2%), 5 (w=2%,w))
End If
End If
If R (v,v+2%) 2 R (w=2%,w) then R (v,w) = R (v,v+2¥)
z,(v,w) = 2,(v,v+2%)
If 2, (v,v+2%) # z,(w=2%,w)

then M (v,w) = max(R (w =2%, w),M (v,v +2%))
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else M (v,w) = max(M (v,v+2%),M (w=2%,w))
End If
else R (v,w) = R (w-2%,w)
z,(v,w)=2z,(w —2",w)
If z,(v,v +2%) % 2,(w -2k, w)
then M (v,w) = max(M (w=2%,w),R (v,v+2%))
else M (v,w) = max(M (v,v+25),M (w 2%, w))
End If
End If
FESwvw=v&Muyw)=w& Rv,w)=w | L(v,w)=v | zj(v,w) =z,(v,w))) then
If L(v,w) =v then z = z,(v,w)
else z = z;(v,w)
End If

{(v,w),z] is a separating triplet

2 1%, ¥ |.l‘c. ) ‘o... l'\,l..,l'lj |_l'¢.l’u.l.10 .|'L..0,‘l.". »0%. 'gl.. $o'uly ' > .,0'. Ok

o \J ", - L/ ., 15, o, ' L
-' +
o e
L ..
®
tf,'l ]
A
l:" .".'
o
D \
-'. ‘l
~al
®
g oy ‘:
¢ "l
3 b
) Q"
[y LS
0 -.1
™ W
N
o
i .
“-'.l ~ d
(S I,
®
"y "
w
.
N
~ » ‘:x
.= —
®
oA
W WY

N
= i) “‘
l'
. 4
.J‘ . ‘
L
M l."\
N
.
R
™
‘l
- *n
N o
AT
A
®
— o 3
)
.,\'
-' .‘
~ .-’\
- i,
:‘_. " ]
- e
L
. ‘ ]
N
) »
".\
.
o
™
b »
)
— 1
. @
(o g



BN VPN

v T

-

b7

N N T S

Ny rﬂm'\(.wvv-.mrvw

103

CHAPTER 7

ALGORITHMS FOR FINDING ALL SEPARATING K-SETS OF A GRAPH

7.1. Sequential Algorithm

In this section we describe a sequential algorithm for finding all minimum size separating

vertex sets in an undirected graph G = (V,E). Note that the number of separating &-sets in an

2
undirected k-connected graph is O (2""T) [26].

First, we find the connectivity k of G using network flows [13, 18,19]. The time complex-
ity of this algorithm is O (max(k,n %)kmn "). Next, we take a subset of vertices X of G of size k
and find all minimum size separating vertex sets (of size k) between pairs of the form (x,v),

where xe X and ve V. Note the following simple observation.

Observation 7.1: Let xeX and ve V. Assume that we have found all k-sets separating x and v
in G. Then we can add edge (x,v) to E without changing (adding or deleting) any other separat-

ing k-sets of G.

Proof: This is because for any other separating k-set Y, which does not separate x and v, x and v

can not belong to two different components of the graph induced by V-Y.
(0 Observation 7.1.

We repeat this process for every xe X and every ve V. During this process we add at most
kn edges to E. At the end of this process every vertex xe X is connected by an edge to every ver-
tex ve V. Now, if there is separating k-set Y in this graph, then Y=X. So, we check if X is a

separating k-set of G. Every minimum size separating vertex set of G is obtained by this compu-

tation.
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| We note that for a given xeX we only need to conduct this procedure for these vertices °
ve V which are not adjacent to x. Hence, for our algorithm we choose X to be a set of & vertices VC:
=0
of G of maximum degrees. "R B
Yt
R ..“
Algorithm 7.1. <
: ¥
ooy
-.“Q WU
1. Find the connectivity k of G. (vertices of G are numbered from vy, - - - ,v,). ¥ .‘;
A
2. Find k vertices with the largest degrees (x, * * * ,Xk). i "'%
& ‘. L
Check if these k vertices form a separating k-set of G o n!':*
o
(Let G be the directed graph which we get from G by applying the Even-Tarjan reduction . :f»".-
(see Section 2.3 )) o gx
Doi=1---k R iﬁ
Doj=1-"n Ty
o
. . ’-H S0
3. If v;#x; and v; is not adjacent to x; then Mooy
)]
4. Compute a maximum flow fin G from x; to v f . P,
S '..:.:
If If1 =k then 5N
RN
(Find all k-sets separating x; and v; as follows:) 7
o
5. Construct the residual graph G of G with respect to the maximum flow f P e
po
6. Shrink the strongly connected components of G 3 .;F'_;_'
P ]
G .
7. Find all closed sets of the resulting acyclic network o ]
NN
(The subset C of nodes of network is a closed set iff for every vertex of C all j'r_f ":_{
<o
of its predecessors are also members of C). . 5‘
®

For each closed sets find the corresponding separating k-set of G
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End If o
8. Add edge (x;,vj) t0 G. oy

End If xy

[ 4

enddo

EEES

enddo

RO

N

The results in Picard and Queyranne [38] establish the correctness of steps 5-7 for finding

ot

all separating k-sets. Let f be any maximum flow in a network N. The subset C of vertices of N

Yok g 1@
2L e

2

is a closed set if and only if for every vertex ve C all of its predecessors are also members of C

> 2
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Lemma 7.1: [38] A cut (S,5) separating s from ¢ in N is a minimum cut if and only if § is a

closed set of N containing s but not ¢.

-
X

£

w5 RR

Let R be the residual graph of N with respect to the maximum flow f. Let C be a strongly

S

connected component of R and ve C. Then based upon this Lemma if ve S then C is also subset

<
10

of S. 5 '-

" g

" ot

B0 e

Observation 7.2: There is one-to-one correspondence between the mincuts of G and the closed '.'

o 73

o sets of N. o

ot

F S

n — A
& Definitions 7.1: Let N be the residual network of G with respect to a maximum flow. Shrink its ®

strongly connected components into single vertices. Let L be the resulting acyclic network. (We o

=X

will use Ly, to emphasize the fact the maximum flow is taken between s” and ¢).

v

g Theorem 7.1: [4,38] The resulting acyclic network L is the same for any maximum flow.
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Based upon the above Theorem 7.1 and Lemma 7.1 the problem of finding all s —¢ mincuts
in L is reduced to the problem of finding all closed sets in L which we get after shrinking all
strongly connected components of N. This justifies Step 6 of the algorithm. Hence, this estab-

lishes the correctness of the algorithm by our discussion preceding the algorithm.

Let us state time complexities of all steps of the above algorithm. We establish the bounds
for Steps 1 and 7 below. Step 1 takes O (max(k,n'/’)kmn%) time [18,19]. Step 2 takes O (m+n)
time. Steps 3-8 are repeated kn times. Step 4 takes O (min(k, Va)(m+n)) time and step 5 takes
O (m+n) time. Step 6 also takes O (m+n) time. Step 7 takes O (min(M;jn + kn?,M;jkn + n))
time, where M;; is the number of separating k-sets between v; and x;. Step 7 takes
O (min(Mn + k2n3,Mkn + knz)) time over the execution of both loops, where M is the number
of separating k-sets in G. Step 8 takes constant time. The total time for the algorithm is
O(min(Mn+k2n3 ,Mkn + knmmin(k, Vn ))) = O (2kn3).

Steps 4-7 show how to find all separating k-sets between a pair of vertices s and r of G. Let
us see in detail how we actually do this. First, we construct a digraph G = (V,E) as stated in

Chapter 2.3.

Lemma 7.2: [14,34] If (s,2)e E then the least cardinality (s,z) vertex separator is equal to the

maximum number of vertex disjoint paths between s and ¢.

There are two ways to find a maximum flow from s” to # in G. The first method is faster
for small values of &, and works as follows. We find k directed paths in G from 5” to ¢, one path
at a time. Call the resulting flow F. There are no k-sets separating s and ¢ in G if and only if we
can find a path from s” to ¢ in the residual graph G with respect to F. This entire algorithm runs

in O (k (m+n)) time.

The second algorithm is faster then the first for large values of k. In this algorithm we sim-

ply find a maximum flow in O (mVn) time using Dinic’s algorithm in a unit network [49, 13].
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Hence we implement step 4 using one of these algorithms depending on the value of k. Hence

the time complexity of this step is O (min(k, Nn ) (m+n)).

There are several different algorithms which find all closed sets of an acyclic directed net-
work [4,47]. We will present one of them after the following lemma. Let us see know how

many edges the directed acyclic network L can have.

Observation 7.3: Take any two adjacent vertices of G. There are four vertices in G correspond-
ing to them. If the vertices of G corresponding to them were not used in a maximum flow from

s”” to ¢ then in the residual network they will form a directed cycle of length 4 (see figure 2.2).

Let f be a flow from s” to ¢ in G, which we create by using shortest augmenting paths only.
That is, we always choose a shortest augmenting path of the current residual graph to increase

the flow. Let us call this flow a shortest path flow [11].

Lemma 7.3: Let f be a shortest path flow from s” to ¢ in G. Let N’ be the residual graph of G
with respect to f. Let L” be the acyclic graph which we get after shrinking the strongly con-
nected components of N. Then the number of edges in L” is O (If 1-n), where n = [V |, (Note

that there is one path from s” to 7 in G for every unit of flow f. These paths are vertex disjoint).

Proof : We will prove that the number of edges of L’ is at most 7/n by induction on /, where [ is
the number of paths in G for flow f (If | = ).

Let [ = 1. Take a shortest path P from s to ¢ in G. There are no edges between vertices of the
path P except the edges E (P) (edges of the path itself), because the path is the shortest. A shor-
test path P in G corresponds to a shortest path PinG. Every edge in P corresponds to two edges
in G, one forward edge which is part of P, and one backward edge which connects two vertices

of P. Also every vertex of P corresponds to an edge in P. Hence, the number of edges in G

................

422 &

5

cd

2gtem W )KL XIS Wy
- .

.

25c%e 58

- I X
Bl

3
-

-

Tl o A e T e e T T g .f.i"f_'.“' Py

s

W aEgE L



108

corresponding to P is 3p, where p is the length of P in G.

All vertices of V—~P which are not on P have at most 3 edges incident on the path. Hence,
the number of edges E’ between vertices of P and the vertices in V —P is at most 3(n ~p), where p
is the length of P. All edges of G which correspond to E—E’—E (P) in G will be shrunk in N’ by
Observation 7.3. There are 2 edges in G corresponding to each edge of E’, and there is one edge

inG corresponding to each vertex of G. So, the number of edges in L’ is at most 7n.

Assume the claim is true for / <, and let / = r+1. That means that there are at most 7rn
edges in L for flow f when If | =r. Let P'=(Py, ---,P,) be the r vertex disjoint paths in G
which form the flow f. Consider the edges E in G, which neither belong to paths P” from s” to ¢’
nor are adjacent to (one of the endpoints belongs to the paths and the other one does not) them.
By the assumption there are at most 7rn edges in E - E adjacent to paths P" from s” to ¢ or on
them. Let N, be the residual graph of G with respect to the flow f. Find the shortest augmenting
path P in the residual graph N of G with respect to f from s” to . Let N, be the residual graph
of G with respect to the new flow fUP. An edge ee E will be shrunk in N 2 unless e belongs to P
or is adjacent to P. Note that all of the neighboring edges of all previous 7 paths P" were already
counted by the assumption. We claim that there are at most 7n edges adjacent to P or on P

which are in I;'

Case 1. Let e =(v;,v,)eP such that v, and v, are not vertices of P" (v, and v, do not belong
to any of the paths P"). Let E; be the set of all edges of this type on P. Then there are at most 3
edges between each vertex of V and the endpoints of £, which are in E’, because P is the shortest

augmenting path.

Case 2. Let e =(v},vp)eP such that vieP” and v,eP’. Then all of the edges adjacent to e

were already counted by the assumption.
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Case 3. Let e =(v1,v3)e P such that either vie P” or v,e P™ but not both. Note that the only
edges of G which were reversed in N are the edges of P”. There are two subcases
Case A. v;eP’”. Then there is only one edge outgoing from v, which is the edge of Case 1.

Hence, all of the edges adjacent to v, were already counted in Case 1, and all of the edges adja-

o =R W X%

cent to v, were counted in Case 2.

g

Case B. vo,eP’”. Then there is only one edge incoming to v, which is the edge of Case 1.

§ Hence, all of the edges adjacent to v, were already counted in Case 1, and all of the edges adja-
cent in v, were counted by Case 2.

& That conclude the proof of the induction step. Hence, the number of edges in the network L

-, is at most 7(r +1)n.

This concludes the proof of the lemma.

ﬁ O Lemma 7.3.
A Corollary 7.1: The number of edges in network L is O (kn). ( Follows from Theorem 7.1 and
b Lemma 7.3).

E An antichain in an acyclic network is a subset of nodes R such that for all pairs of nodes i
. and j in R, i is neither a predecessor nor a successor of j. The algorithm Antichain below finds
;: all closed subsets of a directed acyclic network L, and runs in a linear time per subset [4].

i)

- Observation 7.4: [4,38] There is one-to-one correspondence between antichains of L (together
E‘E with all of their predecessors) and closed sets of L.

Let V(L) be the set of vertices of L, and E (L) be the set of edges of L. We now give an

e o4

algorithm by Ball and Provan that finds all antichains in a single-source acyclic graph. The algo-

Ca

rithm constructs the antichains in a set C, which is initially empty. The algorithm constructs

successive antichains by adding a vertex to C at each step.
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Antichain (V(L),E (L),C ;M)

Step 1: Choose an ie V(L) of in-degree 0 and output CU({i}; set M = 1; if V(L)-{i} = O, then

stop.

Step 2: Delete i from V(L) to obtain L = (V (L),E (L)) and Call Antichain (V(L),E (L),C :M");
setM =M + M.

Step 3: Find all successors of i, denoted by SC(i). If V(i)—SC (i)—{i} =D, then stop; otherwise
delete SC(i)u{i} from V(L) to obtain L = (V(L),E(L)) and Call Antichain (V(L),E(L),Cu
(ihMY); setM =M + M.

The correctness of this algorithm can be found in [4]. The time complexity of this algo-
rithm is O (Mm), where m is the number of edges in L and M, is the number of k-sets separat-

ing s and r in G. Note that all antichains are unique.

But it can be improved. Let us find all successors of each vertex of L before calling algo-
rithm Antichain. That can be done in O (mn) time, where m is the number of edges in L and » is
the number of vertices in L. We build a depth first search tree T, of successors of x for each ver-
tex x of L. Each DFS takes O (m) time per vertex, hence total time is O (mn). Since L is an acy-
clic graph we can find all successors of x in linear time from T,. Then all substeps of Step 3 of
the algorithm Antichain take only O (n) time, since we only need to read and merge lists of max-
imum size n. Step 2 clearly takes O (n) time. Hence, the entire algorithm takes O (Myn + mn)

time instead of O (Mgm).

Recall that m = O (kn) for L. The time spent by the algorithm to find all k-sets separating s
and tin G is O (min(Mgkn + min(k, Vn)kmn),(Mgn + k2n3)).
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Each antichain together with all of the predecessors for all of the vertices of the antichain
creates a closed set S. The edges between set S and S=V-S§ give a mincut in G. All of these
edges are internal edges of G, and hence each edge corresponds to a vertex in G. The cardinality
of a mincut in G is &, hence the edges of each mincut of G correspond to a separating k-set of G.

Since no antichain is repeated, all separating k-sets are distinct.

Since we add edge (x;,v;) to G after processing the network with source x; and sink v;, the
separating k-sets which we find from network L, cannot be found again for any other pair of
vertices in the updated G. Hence,

i=k j=n

2 XMi=M,

i=1 j=1
n?
where M is the total number of separating k-sets in G. Since M =0 (2"—k—) {26], we conclude

that the total time complexity of the algorithm is
©(min(Mnk + kmnmin(k, Vn ),Mn + k*n3)) = 0 (2¥n®). Note that for finding all minimum size
edge separators we need to find all minimum separating edge sets between at most n~1 pairs of
vertices [4]. In contrast our algorithm needs to consider kn pairs in order to find all minimum

size separating vertex sets.

7.2. Parallel Algorithm

In this section we present a parallel algorithm for finding all minimum size separating ver-
tex sets of G. Note that if & is bigger than polylog(n), then the time complexity of the sequential
algorithm from the previous section might be greater than polynomial in n. The parallel algo-

rithm is very similar to the sequential one, but every step of it will use a parallel version.
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Algorithm 7.2. b
A |
" 53 ,
' 1. Find connectivity k of a graph G S
X ,
5 2. a). Take a set K of k vertices of G. Check if the set K is a separating k-set of G. 3'7
P S

b). Form all pairs of vertices (x,v), where xeK and ve G. There are kn pairs. Number

: ¥
K these pairs (arbitrarily). >
M 3.  For every pair (x,v) make a copy of the graph G and add an edge (y,z) for every pair (y,z) -"_ .
d SR
N whose number is smaller than the number of the pair (x,v). Call this graph G,,.
¥ u
W ,'-’
' -~ o.‘:
4. For every pair (x,v) create a directed graph G, by using the Even-Tarjan reduction. Find
- B _
[ the maximum flow f, from x” to V' in G,,. v
o 5. Iff,, =k then
" 6. Shrink all strongly connected components of the residual graph of Gy, With respect to :
‘ .
b fe. Let Ly, be the resulting acyclic directed graph. o
VN (%
N
A 7. Find all closed sets of L,,,.
W End If ’
)
-: o
P \,: <
>
Now, we will show how to implement each step efficiently in parallel. For step 1 we will -
v -
5 use ideas from the sequential algorithm. We will take a subset K of k vertices of G and find the <
2
> maximum flow between every vertex in K and every vertex of G. Note that since we can run all
v .
of these kn maximum flows in parallel, we can stop as soon as we find the maximum flow for
ke NI
*. one of the pairs. -
e
l:: For maximum flow we can use two different algorithms. The first algorithm is determinis- D
x tic and is better for small values of k. It uses the straightforward implementation of the first '
‘0
':: N(l :': :
::: sequential algorithm for this problem. It takes O (klogn) parallel time using O (kn log ) oo
D n
e
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processors on a EREW PRAM, where N is the number of processors needed for matrix multi-
plication [ 28]. We use matrix multiplication for finding the shortest path in G,, for each pair

(x,v) in parallel. We need to repeat this at most k times.

The second algorithm is a randomized algorithm, but runs faster for large k. We find a
maximum flow for every pair in a unit network using randomized parallel algorithm for match-
ing [37,28]. That takes O (logzn) parallel time using O (kn N %) processors on a CRCW PRAM
and gives an RNC algorithm.

The first part of Step 2 takes O (logn) parallel time using O (n+m) processors on a CRCW
PRAM [45]. The second part of Step 2 takes O (lognk/loglognk) parallel time using
O (nk/logkn) processors on a CREW PRAM using a parallel prefix computation [28]. Step 3
takes O (1) parallel time using O (nk (m+n)) processors on a EREW PRAM. Step 4 is essentially
the same as step 1. Step 6 takes O (logn) parallel time with O (:nN®) processors on a CRCW
PRAM [21]. Step 7 takes O (logn) parallel time using O(M,zwnz) processors on a CRCW

PRAM. We will show the implementation of this step below.

Let L,, be the residual graph of G with respect to a maximum flow from x” to v with
shrunk strongly connected components. Recall that there is one-to-one correspondence between
the k-sets separating x and v in G and the antichains in Ly,. If we add to L,, all edges between
every vertex y and all of its successors, then we get a transitive closure L},. Then every
antichain in L}, still gives an (5.5) cut in Ny,.. The network L}, is still acyclic and directed. We

will use the adjacency matrix of L3, to determine whether two vertices are incomparable.

For the problem of finding all antichains in a transitive closure of an acyclic network we
will use well-known doubling technique. We will first find all antichains of sizes of powers of 2,
and then use them to find all other antichains of all other sizes. Take every single vertex as an
antichain. Take all antichains of the current size and take all possible unions between them.

Now, check all created sets and remove all sets which are not antichains of the double size or
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oy
repetitions. Repeat that procedure logn times. This creates all antichains of the sizes of powers T e
N "™
of 2. Now we can use these antichains and get antichains of all others sizes using at most logn Rty
Y
antichains of the sizes powers of 2. Ve ;' >
Algorithm 7.3. :
e
1. Form the transitive closure L* of an input network L. -~ : .
N,
hY b
N
2. Take every vertex as antichain ::,' \
M
3. Repeat logn times ~ “‘.
Find all antichains of the double size using antichains of the current size o ;-
I
4. Find all other antichains of all other sizes using at most logn independent sets of sizes of E?_“
v PN
powers of 2. ) 2
-“..
- ~
5. Find all separating k-sets in the network using antichains. Y ::-‘.' A
~
M
v
| J
Let us state the time complexities and processor bounds for each step of the above algo- IS,
.\1"
rithm. We establish the bounds for Steps 3 and 4 below. Step 1 of the above algorithm runs in % ':E
O (logn) time using O (N®) processors on a EREW PRAM, where N is the number of proces- AN
®
sors used for matrix multiplication [28). Step 2 runs in O (1) parallel time using O (n) proces- o j'-j'.:'-'
sors on a EREW PRAM. Step 3 runs in O (logn) parallel time using O (M%n?) processors on a _ -r\
CRCW PRAM as shown below. Step 4 runs in O (logn) parallel tme using O (M%n?) proces- 2 .
8%
sors on a CRCW PRAM [50]. Step S runs in O (1) parallel time using O (Mym) processors on a N ‘;'.-'_:
"o ave
6 N
CREW PRAM. Hence, total parallel time spent is O (logn) using eMin?) =0 (4""—) proces A
kz "\ A &:
. -
sors on a CRCW PRAM. o
r
- e
Ly 3 '.“
W
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Let us see in detail the implementation of Step 3. Note that the number of antichains in L},
is equal to the number of k-sets which separate s and ¢ in G (Mg). First of all, we take all §, and
S, which are two different antichains of current size i, to create at most M2 sets of size 2i. In
order to check if a created set is an antichain of size 2i we need to check two properties: first,
that the created set is an antichain, and second, that its cardinality of a set is 2i. For the first pro-
perty we will check the nxn adjacency matrix of L},. For the second property we check if a#b
for every pair of elements (a,b), where ae S, and be§,. So we can check each set in O(1)
parallel time using O (n?) processors on a CRCW PRAM. Hence, on a CRCW PRAM Step 3
runs in O (logn) parallel time using O (M%n?2) processors and Step 4 runs in O (logn) parallel

time using O (M%n?) processors.

We have to run the above algorithm for kn L,, graphs, one for each pair (x,v). But

i=k j=n i=k j=n 6
T TMin2<(T T M;Pn?=Min? <4,
i=1 j=l i=1 j:l k

since no separating k-set is created twice.

Hence, step 7 of the parallel Algorithm 7.2 for finding all minimum size separating vertex
6
sets runs in O (logn) times using O (4"%2—) CRCW PRAM processers for all kn pairs of vertices

(x,v)xeK and ve V.
The entire parallel algorithm runs in O<(klogn) deterministic time using

6
OWM?2n? + knN%*) =0 (4* %— + knN®) CRCW PRAM processors, or runs in O (log?n) random-

6
ized parallel time using ©(MZn? +kn2N“)=0(4k—l’cl-i-+kn2N“) CRCW PRAM processors,

where N¢ is the number of processors needed for matrix multiplication.
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CHAPTER 8 - 3

CONCLUSION AND OPEN PROBLEMS

8.1. Summary of Results - b
“ ™

NG )

* o

In this dissertation we have studied various algorithms and bounds which arise in graph - J

~ ) % 4

connectivity. We have presented bounds on the number of separating k-sets and algorithms for .' ."f

finding all separating k-sets for k 2 3.

In Chapter 3 we presented lower bounds on the worst-case number of separating k-sets for ‘::‘,
hal (
an undirected k-connected graph. For k& =2 the graph that achieves the lower bound is the cycle. h '!'
The lower bound is E("T‘:"l For k = 3 the graph that achieves the lower bound is the wheel. 4 .:-
N A
0
The lower bound is M)z(_":ﬂ For general k the generalized cycle and generalized wheel o
n2 ~ bty
give an Q(2* ;2—) lower bounds on the number of separating k-sets for an undirected &- -+
~ RS
.
.“ -,
connected graph on n vertices for even and odd k, respectively. e
o
In Chapter 4 we presented the upper bounds on the number of separating k-sets as well as N
representations for an undirected k-connected graph on n vertices for small k’s. For k =2 the - :.'
20X
- N
upper bound is the same as the lower bound, namely n(nT?u) For k =3 the upper bound once .'
- NN
again matches the lower bound of Lnl)z(—n—4) The representation for k = 2 is based upon the - ;;-:
- o
v A
decomposition of an biconnected graph into a collection of cycles, where every pair of vertices Pl :

on a cycle is either a separating pair of the graph or a pair that separates an edge from the graph.
The size of the representation is O (n). The representation for k = 3 is based upon the decompo-
sition of an triconnected graph into a collection of wheels, where every pair of vertices on the
cycle of the wheel together with the center of the wheel is either a separating triplet of the graph

or a triplet that separates an edge from the graph. The size of the representation is also O (n).
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In Chapter 5 we advanced the ideas of the previous chapter for general k. We achieved an
2
02k —nk—-) upper bound on the number of separating k-sets in an undirected k-connected graph on

n vertices. The representation for general k is based upon the decomposition of an undirected k-
connected graph into a collection of generalized wheels (or cycles). The size of this representa-

tion is O (k2n).

In Chapter 6 we presented improved algorithms for testing graph four-connectivity. Conse-
quently, these algorithms find all separating triplets of an triconnected graph if it is not four-
connected. The algorithms are based upon the ear decomposition technique. The sequential
algorithm runs in O (n?) time which is an improvement over O (mn) time sequential algorithm
which was the previous best. The parallel algorithm runs in O Oogzn) time using O (n?) CRCW
PRAM processors. That is an improvement over a previous O (logn) time algorithm which uses

O (mnlogn) CRCW PRAM processors.

In Chapter 7 we presented algorithms for finding all separating k-sets in an undirected -
connected graph on n vertices and m edges for general k. The sequential implementation runs in
O(min(max(Mnk,knmmin(k, \n )),max(Mn,k2n3))) = 0(2"n3) time, where M is the number of

minimum Ssize separating vertex sets in the graph. The parallel implementation runs either in

6
0O (klogn) deterministic time using @(M2n2+an°‘)=0(4"Z—2) processors on a CRCW

6
PRAM or in 0(10g2n) randomized time using @(M2n2+kn2N°‘)=0(4"£7) processors,

where n is the number of vertices in the graph and & is the connectivity of the graph, and N® is
the number of processors needed for parallel matrix multiplication of nxn matrices in O (logn)

time.
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8.2. Open Problems

As we have seen there are linear time algorithms for testing whether a graph is connected,
biconnected and triconnected. For testing four-connectivity the best algorithm runs in O (n?)
time. There are linear space representations for all separating k-sets of a k-connected undirected
graph for any fixed k.

1). Is there a linear time sequential algorithm for testing graph k-connectivity for all fixed &?

Closely related is the question of finding the representation for all separating k-sets of a
graph efficiently. Another question is finding the connectivity of a graph. The best deterministic
algorithm uses network flows.

2). Is there another algorithm for finding the connectivity of a graph without use of network

flows?

There are O (logn) time parallel algorithms for testing graph k-connectivity for any fixed «.
But the number of processors is increasing by the factor of n for each .
3). Is there an O (logn) time parallel algorithm for testing graph k-connectivity for any fixed

which uses O (n2) processors?

As we mention in Chapter 4 there are fast procedures to list all separating pairs and triplets
in a biconnected and triconnected graphs, respectively. The procedure for listing all separating
k-sets runs in O (c*M), where M is the number of separating k-sets in a graph. We are currently
investigating better algorithms for this procedure. Also we plan to design efficient procedures

for answering the following queries:
A) Decide if a set of k vertices is a separating k-set,

B) Decide if two vertices are in the same connected component with respect to all separating

k-sets, and

C). Decide if two vertices are in the same component with respect to a separating k-set.
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As we can easily see from Table 1 there is a gap between lower and upper bounds on the
number of separating k-sets of an undirected k-connected graph. We conjecture that the real
upper bound is the same as the current lower bound, and moreover, the graph that achieves it is

the generalized cycle for even k and the generalized wheel for odd .

The number of minimum size separating edge sets of an undirected graph is O (n2) as was
stated before. But it was proved for general multigraphs.
4). Is there a better upper bound on the number of minimum size separating edge sets of an

undirected simple graphs?

We have some preliminary results which indicate that the upper bound for k edge con-

nected graphs for odd £ is actually linear.
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