
nrrr r rnrpy.
CS) AUgUSt 1988 UILU-ENG-88-2247,coy

ACT-97

O1 COORDINATED SCIENCE LABORATORY
College of Enginering 0
Applied Computation Theory

Ie

I ..x -,'

VERTEX
CONNECTIVITY
OF GRAPHS:
ALGORITHMS
AND BOUNDS

Arkady Kanevsky DTIC
OELECE i-0-. :,, 'l

SEP 2 3 1988,

.- .. ,U

H~

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. . .-

F..,,

: - Z llZ- .i P l, l' .i ? Ji, 'l 1.il . ¢ - 'k
'

- ' "- " "' " "'' ' " """"""- " -"* "" " .' p-.-

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARI(NGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILASIUTY OF REPORT

Approved for public release;
2b. DECLAZSIFICATIONIDOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2247 (ACr-97)

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab i(c aN ofl S, Uniersiy ofIlliois N/AOffice of Naval Research
University of Illinois N/A Semiconductor Research Corporation

6c. ADDRESS (CtY. State, dW Z/PCode) 7b. ADDRESS (City, State, & ZIP Code)
1800 G. St., Washington D.C. 10552

1101 W. Springfield Avenue 800 N. Quincy St., Arlington, VA 22217 i
Urbana, IL 61801 P.O. Box 12053, Research Triangle Park 27709

Ba. NAME OF FUNDINGISPONSORING 6ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION NSF, JSEP, SRC Of applicable) ECS 8404866 , N00014-84-C-0149,

I__.__, SRC-87-DP-'109PRE
k. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

' 1800 G. St., Washington D.C. 10552 PROGRAM PROJECT TASK WORK UNIT
800 N. Quincy St., Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

SP.O., Box 12053, Research Triangle Park, NC

11. TITLE (include Security Classification)

Vertex Connectivity of Graphs: Algorithms and Bounds
12. PERSONAL AUTHOR(S)

Kanevsky, Arkady

S13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Yeat, Month, Day) S. PAGE COUNT
Technical I FROM TO ____ August, 1988 I130

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Contnu on reverie if wcesusay and identify by block number)
FIELD GROUP SUB.GROUP graph theory, combinatorial algorithms, parallel

algorithms, vertex connectivity, data structures

19. ABSTRACT (Continue on reveise if necessary and identify by biock number)

This report considers several problems concerning vertex connectivity of undirected graphs and

presents new bounds and algorithms for these problems. -

We have proved that the upper bound for the number of separating triplets of a triconnected

graph is , and it exactly matches the lower bound, which is achieved bv the wheel graph.
2 2

This result has been generalized to an 0(2 n) upper bound on the number of separating k-sets in a

k kn

k-connected graph. We have also obtained a new n(2 lower bound.
k'

(over)
20. DISTRIBUTION /AVAILABI u TY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

|IUNCLASSIFIEDAJNLIMITED 03 SAME AS RPT. O3 OTIC USERS Unclassified ---
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Include Area Code) 22c. OFFICE SYMBOL

0 DO FORM 1473, 4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED

_V e, , , ,

UNCLASSIFIED

19. Abstract (continued)

Even though the upper bound for the number of separating k-sets is not linear but quadratic in
n, we have obtained a linear space representation for the separating k-sets of a k-connected graph.
For k=3 this representation is a collection of wheels, where every nonadjacent pair on the cycle of a
wheel gives a separating triplet of a triconnected graph. For general k, we have obtained an O(k-n)
representation.

We have designed a new sequential O(n2) algorithm for the problem of determining if the graph
is four-connected or not. Consequently, we find all separating triplets of the graph it it is not four-
connected. The algorithm has a parallel version which runs in O(log2n) time using 0(n12) processors,
which is also an improvement over O(nm) processor count of the best previously known parallel algo-
rithm.

We have designed algorithms for generating all separating k-sets of a k-connected graph. The
sequential algorithm runs in 0(2 k n) time and peirallel one runs in O(klogn) deterministic parallel

time oi in 0(legn) rand,_,uized time using 0(4 k) processors on a CRCW PRAM.
k

I.'

-II

clV.

V-

~ For

Dist

VERTEX CONNECT IVITY OF GRAPHS: ALGORIT'HMS AND BOUNDS

BY

ARKADY KANE VSKY

B.S., Univerisity of Illinois at Chicago, 1983
M.S., Univerisity of Illinois at Urbana-Champaign, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

VERTEX CONNECTIVITY OF GRAPHS: ALGORITHMS AND BOUNDS

Arkady Kanevsky, Ph.D.

Department of Computer Science
University of Illinois at Urbana-Champaign, 1988

This thesis considers several problems concerning vertex connectivity of undirected graphs

and presents new bounds and algorithms for these problems.
0

We have proved that the upper bound for the number of separating triplets of a triconnected

(n -1)(n -4)graph is 2 and it exactly matches the lower bound, which is achieved by the wheel

n2

graph. This result has been generalized to an 0 (2k--) upper bound on the number of separat-

k2
ing k-sets in a k-connected graph. We have also obtained a new f0(2k 11) lower bound.

k
2

Even though the upper bound for the number of separating k-sets is not linear but quadratic

% .in n, we have obtained a linear space representation for the separating k-sets of a k-connected

graph. For k =3 this representation is a collection of wheels, where every nonadjacent pair on the
cycle of a wheel gives a separating triplet of a triconnected graph. For general k, we have

0% obtained an 0 (k2 n) representation.

We have designed a new sequential 0 (n 2) algorithm for the problem of determining if the

graph is four-connected or not. Consequently, we find all separating triplets of the graph if it is

not four-connected. The algorithm has a parallel version which runs in 0 (log2 n) time using

0 (n2) processors, which is also an improvement over 0 (nm) processor count of the best previ-

ously known parallel algorithm.

We have designed algorithms for generating all separating k-sets of a k-connected graph.

The sequential algorithm runs in 0 (2 kn3) time and parallel one runs in O(klogn) deterministic

parallel time or in 0 (log2 n) randomized time using 0 (4kL-2-) processors on a CRCW PRAM. P

k!

U'! U'' S - -

ACKNOWLEDGEMENTS

I express my deepest gratitude to my advisor, Professor Vijaya Ramachandran, who has

had a profound influence on the development of my work, including this thesis.

Many thanks to the rest of my Ph. D. preliminary and final exam committee members: Pro-

fessors H. Edelsbrunner, C. L. Liu, M. C. Loui, and E. Reingold for their constructive criticism.

At different stages of this thesis, I have benefited from many useful discussions with Rene

Cruz, Dan Gusfield, Nany Hasan, Scot Hornick, David Luginbuhl, Sanjeev Maddila, David

Muller, Franco Preparata, Harold Rosenberger, Steven Skiena, Roberto Tamassia, Prasoon

Tiwari, Ioannis Tollis, Pravin Vaidya, Douglas West, and Dian Zhou.

This work has been partially supported, at various stages, by the National Science Founda-

tion under Grant ECS 8404866, by the JSEP under Contract N00014-84-C-0149, and by Sem-

iconductor Research Corporation under Contract ECS 87-DP-109.

I would like to thank my parents for their encouragement and support in my education.

Finally, to my wifeland daughtemm owe a heartfelt thanks for their constant sup-

port, understanding and unfaltering faith without which this thesis would have been impossible.

~ ~y "N 'i N'

V X K V.

TABLE OF CONTENTS
I

CHAPTER PAGE

1 INTRODUCTION ... 1

1.1. Motivations .. 1

1.2. Previous Results .. 2

1.3. Main Results and Organization of the Thesis ... 3
I

2 DEFINITIONS ... 9
2.1. Graph Connectivity ... 9

2.2. Ear Decomposition of Graphs ... 10

2.3. Network Flows and Graph Connectivity ... 13

2.4. Models of Parallel Computation 16

t 3 LOWER BOUNDS FOR THE NUMBER OF SEPARATING K-SETS 18

3.1. Cycle and Wheel for k =2,3 .. 18

3.2. Generalized Cycle and Wheel for General k >3 19

4 UPPER BOUNDS AND REPRESENTATIONS FOR THE SEPARATING PAIRS

AND TRIPLETS ... 22

4.1. Separating Pairs ... 22

4.1.1. n~n Upper Bound .. 222

4.1.2. O(n) Representation by Cycles 23

4.1.3. Appendix ... 28

4.2. Separating Triplets .. 29

4.2.1. O(n) Representation by Wheels and O(n 2) Upper Bound 29

(n-l)(n-4)
4.2.2. Tight Upper Bound ... 37 ,.
4.2.3. A ppendix .. 50

SN

I

Vi'
a,

5 UPPER BOUND AND REPRESENTATION FOR THE SEPARATING K-SETS:

GENERAL K .. 51

2
5.1. O(2k -2--) Upper Bound and O(k 2 n) Representation for General k 51

5.2. Appendix ... 74

6 ALGORITHMS FOR GRAPH FOUR-CONNECTIVITY .. 79

6.1. Open Ear Decomposition and Graph Four-Connectivity 79

6.2. Finding All Triplets that Separate an Ear .. 86

6.2.1. Finding Type 1 Separating Triplets .. 86

6.2.2. Finding Type 2 Separating Triplets .. 89

6.3. Appendix ... 97
6.3. 1. Algorithm for Type la Separating Triplets for an Ear 97

6.3.2. Algorithm for Type lc Separating Triplets for an Ear 99

7 ALGORITHMS FOR FINDING ALL SEPARATING K-SETS

OF A GRAPH .. 103

7.1. Sequential Algorithm .. 103

7.2. Parallel Algorithm .. 111

8 CONCLUSION AND OPEN PROBLEMS ... 116

8.1. Summary of Results ... 116

8.2. Open Problems 118

REFERENCES ... 120

V IT A .. 125

:

a-',

RCHAPTER 1

INTRODUCTION

S 1.1. Motivations

- Connectivity is one of the fundamental graph properties, and there has been a considerable

amount of work on algorithms and structural aspects of this property. Applications of graph

connectivity arise in operation research for scheduling problems, network analysis in electrical

engineering, and many other real-life problems.

The most direct application of this problem is for the reliability of networks,

"- [3,4,40,7, 8, 42,43: A fundamental criterion for evaluating performance of a communications

network is its ability to withstand the failure of its components t[-3]. Two most important meas-

ures of network reliability are reachability and connectedness i [4-1 Usually, a network is

viewed as an undirected connected graph in which both vertices and edges have some probabil-

ity of failure. Most of the analyses of a network reliability are concerned with link (edge)

failure, rather than vertex failure. The reason for ignoring vertex failure is not only real-life

models but nonexistence of good upper bounds for the number of minimum size separating ver-
.4.

tex sets of graphs. On the other hand it has been known that the number of separating edge sets

is upper bounde~l by n] [6,30]. The list of all minimum size separating vertex sets and their

, .. number play a fundamental role in analyzing the connectedness of a network.

Another important measure of network reliability is to determine the subgraphs which are

;5 , "highly" connected and to decompose the network into them. The results in all of these meas-

ures help in the design of optimum communication networks.

In recent years more and more network designs are based upon distributed networks (e.g.

ARPANet) rather than tree type networks with multiedges [16,2,53,54, 17]. These networks

.4

are more reliable for node failure and use less hardware than tree type networks. Until recently .

most networks designed had small connectivity (I or 2) [12, 2, 37, 381. So the network (graph) -',-l

can be easily decomposed into connected, biconnected or strongly connected components

(directed case) [3, 28, 12, 37, 38]. This is needed in order to find which parts of the network can *

S -a- ~ ~ - * - S - S ,=f - S ,,

still communicate (with high probability) in case of edge and vertex failures. So in addition to -,

connectedness, a relevant measure of network reliability is also what percent of nodes can corn- .,.

municate in case of failures of edges and vertices [38]. For more complex networks we need to
find connected components with higher connectivity, along with all the separating vertex sets

and edge sets of the network T1, 12, 37, 38, 32, 3, 34. ti cp oh w a

1.2. Previous Results Z .-

There are well-known sequential linear-time algorithms for determining vertex connectivity •

and biconnectivity (see e.g., [11), as well as triconnectivity [16,27]. These algorithms use

either the depth-first search technique [11,16,35] or the ear-decomposition technique

[39, 24,25, 26]. The best deterministic sequential algorithms for testing graph 4-connectivity

had time complexity 0 (n), where n is the number of, rtices in the input graph and m is the ,

number of edges. There are two such algorithms. One is based on a reduction to a network flow•-

[9, 10, 14, 15]. The other uses the 0O(m) algorithm for testing triconnectivity [16, 27] to test•

four-connectivity in a triconnected graph in 0 (mn) time by deleting each vertex of the graph in .''

turn, and testing triconnectivity in the resulting graph; this algorithm also finds all separating tri-

plets in the graph, if the graph is not four-connected. The best sequential algorithm for general k

is 0O(max(k, n ')kmn I"') algorithm for determining the connectivity of a graph which is based "

upon a network flow [9, 10,14,153.8,32,3,4]. .,

Efficient parallel algorithms were designed for determining graph connectivity for small k-

Clearly, there are NC algorithms for testing graph k-connectivity for any fixed k. Simply,

N,.

3 '

remove all k vertex subsets of the graph and test for graph connectivity, simultaneously on a

CRCW PRAM. The best parallel algorithms for graph k-connectivity for k = 1,2 are the

efficient 0 (logn) parallel time algorithms using 0 (m +n) processors on a CRCW PRAM

[45,50], for k = 3 an 0 (logn) parallel time algorithm using 0 ((m+n)logn) processors on a

CRCW PRAM [36,41] and for k = 4 an 0 (logn) parallel time algorithm using 0 (nm) proces-

sors on a CRCW PRAM by using the triconnectivity algorithm by deleting each vertex of a

N7 graph in turn in parallel [41]. There is no efficient deterministic parallel algorithm for determin-
ing the connectivity of a graph for general k. We also note there are some randomized algo-

Pj rithms for testing k-connectivity for k > 3 [5,29]; the running times of these algorithms are

0 (n5'2 + nk5/2) [29], and 0 (n 312 m) [5].

The other question which often raised with connectivity is to find all minimum size separat-

ing vertex sets. This idea lies in the heart of the algorithms for determining graph k-connectivity

for k = 1,2,3,4. The algorithms for graph (one)-connectivity, biconnectivity, triconnectivity and

4-connectivity find all articulation points, sepaiating pairs, separating triplets of a graph in order

to determine that a graph has a higher connectivity.

1.3. Main Results and Organization of the Thesis

Chapter 2 presents several definitions which will be used in the later chapters.

In chapters 3 and 4 we address the following question: what is the maximum number of

separating k-sets in a k-connected undirected graph?

An undirected graph G on n vertices and m edges has for any k a trivial upper bound of [nj

on the number of separating k-sets. The graph on n vertices with no edges achieves this bound.

However, the more interesting question is the one raised above, namely the bound when the

graph is k-connected. For k =1 the maximum number of articulation points in an undirected con-

NN

nected graph is (n-2), and a path on n vertices achieves this bound.

4 , .

Chapter 3 presents a lower bound on the maximum number of separating k-sets in a k-

connected undirected graph. It also presents the cycle and the wheel, the graphs that achieve the

lower bounds for k = 2,3. For general k generalizations of cycle and wheel are presented. The """ t

lower bound obtained on the maximum number of separating k-s,,,s of an undirected k-connected

~2 l
graph is Q(2

Chapter 4 presents the upper bound on the maximum number of separating k-sets in a k-

connected undirected graph. For k=2 the maximum number of separating pairs in an undirected

biconnected graphi and a graph that achieves it is a cycle on n vertices [23]. For
2.

k=3 the maximum number of separating triplets in an undirected triconnected graph is

(n -1)(n -4)
2 - and a graph that achieves it is a wheel on n vertices [23].

Chapter 5 presents the 0 (n 2) bound on the number of separating k-sets in a k-connected

n 2graph for any fixed k [24,26]. The exact bound is 0 (2k). Furthermore, it presents a linear ..
k

representation of s narating k-sets in k-connected undirected graphs. There is an 0 (n) represen-

tation for separating pairs in a biconnected graph [23] and there is an 0 (k n) compact r

representation for separating k-sets in a k-connected graph [26]. Table 1 summarizes these 1':

results.

Chapter 6 presents new sequential and parallel algorithms foi graph four-connectivity. The

new best deterministic sequential algorithm for testing graph four-connectivity has time com-

plexity 0 (n 2) [25] and is based upon ear-decomposition technique. The new efficient parallel

algorithm for testing graph 4-connectivity runs in 0 (log n) time using 0 (n 2) processors on a . ,

CRCW PRAM [25]. Table 2 summarizes these results and their relationships to earlier results. -.

Chapter 7 presents sequential and parallel algorithms for finding all minimum size vertex

separating sets for general k [27]. Table 3 presents the current time complexities of algorithms

I

I.
Bounds for the number of separating k-sets

in a k-connected graph on n vertices

Lower Upper Representation

k=1 n-2 n-2 0 (n)

k =2 n (n-3) n (n-3) 0 (n) Kanevsky2 2

Ramachandran [25]
[Chapter 4]

k =3 (n -1)(n -4) (n -1)(n -4) 0(n) Kanevsky
2 2

Ramachandran [251
[Chapter 4]

22
general k Q (2 0 0 (2 c k 0 (k 2 n) Kanevsky [26]

[Chapter 5]

Table 1.

A

* .1

V.

t/I.

6

Algorithms for determining graph connectivity

in a k-connected n-node, rn-edge graph

Sequential Parallel

Time Time Processors

o (Iog2n) CREW Hirschberg,
Chandra,Sarwate [211

k=1 0 (m+n) 0 (m +n)
Shiloach,

o (logn) CRCW Vishlun [45]1

0O(logn) CREW Tsin, Chin [511

k=2 0 (m +n) Tarjan [48) 0 (m+n)
Tarjan,

o (logn) CRCW Vishkin [50]

Hopcroft, 0 (log2 n) 0 (m +n) Miller,
Tarjan [221 Ramachiindran [361

k=3 0O(m +n) CRCW
Miller, Ramachandran,

Ramachandran (36] Oogn) O ((m +n)logn) Vishkin (41)

o (logn) 0 (inn) Ramachandran,
Vishkin [41]

-- 4 0 (n) Kanevsky, CRCW
Ramachandran (241 Kanevsky,

(Chapter 6] 0 (logn) 0 (n 2) Ramachandran [24]
[Chapter 61

0 (max(k,n)Iann) Galil [18];
___________________ Girkar,Sohoni_[19]1 _____ ________________

Table 2. r

7

Algorithms for finding all separating k-sets

in a k-connected n-node, m-edge graph

(M is the number of separating k-sets)

Sequential Parallel

Time Time Processors

0 (log2 n) CREW Tsin,Chin [51]

k=1 0 (r+n) Taijan [48] 0 (re+n)
Tarjan,

0 (logn) CRCW Vishkin [50]

Hopcroft, 0 (og 2n) 0 (m +n) Miller,
Tarjan [22] Ramachandran [36]

k=2 O (m +n) CRCW
Miller, Ramachandran,

Ramachandran [36] 0 (logn) 0 ((m +n)logn) Vishkin [41]

t.---

O (logn) 0 (rn) Ramachandran,
Vishkin [411

k=3 O(n 2) Kanevsky, CRCW
Ramachandran [24] Kanevsky,

'. [Chapter 6] 0 (log2 n) 0 (n 2) Ramachandran [24]
[Chapter 6]

8(min(Mnk + 0 (klogn) NC 8(M 2 n2 + kn 3.376)
kmnmin(4n' ,k)),

general k (Mn + k2n3))= Kanevsky [271 0 (4 k -) CRCW Kanevsky [27]
0 (2kn 3) [Chapter 7]

0 (log 2n) RNC &(M 2 n 2 + kn 4.376)

Table 3.

t-

I-,

for finding all minimum size separating vertex sets in an undirected k-connected graph.
Finally, in Chapter 8 we give the conclusion of the Thesis and sta te several open problems.,.

'S2

%N ~

.. ,..

:'% V

oS

9

CHAPTER 2

DEFINITIONS

2.1. Graph Connectivity

An undirected graph G =(V,E) consists of a vertex set V and an edge set E containing unor-

dered pairs of distinct elements from V. A path P in G is a sequence of vertices <vo, " " ",v >

such that (vj_1 ,vj)eE,i=l, .. ,k. The path P contains the vertices Vo, ',Vk and the edges

(v0 ,v 1), " "" ,(vk-l ,vk) and has endpoints v0 , Vk, and internal vertices v 1, " ,vk-1. The path P

is a simple path if v0 , - • • , vk-1 are distinct and v1 , --• ,vk are distinct. P is a simple cycle if it is

a simple path and vo--vk. A single vertex is a trivial path with no edges. We denote by IP I, the

number of vertices contained in path P.

Let P=<v0 , ' " ,vk k-> be a simple path. The path P (vi,vj),0:i,j<_k-1 is the simple path

connecting vi and vj in P, i.e., the path <vi,vi+1, " " ,vj>, if i5j or the path <vj,vj+l, vi>,

, if] <i. Analogously, P [vi,vj] consists of the path segments obtained when the edges and inter-

nal vertices of P (vi,vj) are deleted from P.

Let G =(VE) be an undirected graph and let V'cV. A graph G'=(V',E') is a subgraph of G

I'

if E"-E(-(vi,vj) 1vi,ve V'). The subgraph of G induced by V" is the graph G"=(V,E") where

E"=E rq { (vi,vj) I vi,V V}.

We will sometimes specify a graph G structurally without explicitly defining its vertex and

edge sets. In such cases, V(G) will denote the vertex set of G and E (G) will denote the edge set

of G. Also, if V" _ V and ve V we will use the notation V'Qv to represent V'u{v }.
" An undirected graph G =(V,E) is connected if there exists a path between every pair of ver-

tices in V. For a graph G that is not connected, a connected component of G is an induced sub-

graph of G which is maximally connected.

10

A vertex v e V is an articulation point (a.p.) of a connected undirected graph G =(V,E) if
.

the subgraph induced by V-{v) is not connected. G is biconnected if it contains no articulation

point.

Let G=(VE) be a biconnected undirected graph. A pair of vertices v1 ,v 2eV is a

separating pair for G if the induced subgraph on V- { v , v2 } is not connected. G is triconnected

if it contains no separating pair.

A triplet (v 1 ,v 2,v 3) of distinct vertices in V is a separating triplet of a triconnected graph if

the subgraph induced by V - {v 1 ,v 2 ,v 3) is not connected. G is four-connected if it contains no

separating triplets. Z

In general, an undirected graph is k-connected if and only if between every pair of vertices

there are k vertex disjoint paths, or alternatively, removal of any k-1 vertices leaves a graph

connected [14]. The equivalence of these two definitions is the well-known Menger theorem

[34].

Let G =(V,E) be a k-connected undirected graph. A set V' of k distinct vertices of G is a

separating k-set if the subgraph induced on V-V'is not connected.

2.2. Ear Decomposition of Graphs

An ear decomposition [31,55] D=[P0 , ' PrI] of an undirected graph G=(V,E) is a

partition of E into an ordered collection of edge disjoint simple paths Po, " ,P- such that P 0

is a simple cycle and each endpoint of Pi,i=l, • •, r-1 is contained in some PjJ <i, while none ,

of the internal vertices of Pi are contained in any P,j <i. The Pi's are called the ears of D. D is .

an open ear decomposition if none of the Pi,i=l, ,r-1 is a simple cycle. A trivial ear is an

ear consisting of a single edge. A graph has an open ear decomposition if and only if it is bicon-

nected [551.

M &)!ti III(H11)? I y 6t

Let G =(V,E) be a biconnected graph, and let Q be a subgraph of G. We define the bridges

of Q in G as follows (see also [14]): Let V be the vertices in G -Q, and consider the partition

of V' into classes such that two vertices are in the same class if and only if there is a path con-

necting them which does not use any vertex of Q. Each such class K defines a (nontrivial) bridge

B=(VB,EB) of Q, where B is the subgraph of G with VB=K.J [vertices of Q that are connected

by an edge to a vertex in K}, and EB containing the edges of G incident on a vertex in K. The

vertices of Q which are connected by an edge to a vertex in K are called the attachments of B.

An edge (u,v) in G--Q, with both u and v in Q, is a trivial bridge of Q, with attachments u and v.

S The nontrivial and trivial bridges together form the bridges of Q in G. In general, wherever we

use the term bridge, we mean nontrivial bridge.

Let G =(V,E) be a biconnected graph, and let Q be a subgraph of G. We define the bridge

graph of Q, S=(Vs,Es) as follows: Let the bridges of Q in G be Bi,i=1, '"- ,k. Then

Vs=V(Q)U.j{B , ,Bk) and Es=E (Q)U,{(v,Bi)I v e V(Q), 15i<_k, and v is an attachment of

IB.

Figure 2.1 illustrates some of our definitions relating to bridges.

Let G =(V,E) be a graph and let P be a simple path in G. If each bridge of P in G contains

exactly one vertex not on P, and there is a bridge B of P with the endpoints of P as attachments,

then we call G the star graph of P and denote it by G (P). We denote the bridges of G (P) by

stars. The unique vertex of a star that is not contained in P is called its center. Note that, in a

.-,. connected graph G, the bridge graph of any simple path in G is a star graph. Let G (P) be a star

graph, and let $1, • Sk be some of the stars in G (P). The operation of coalescing the stars

Si,i =1, ,k removes these stars and replaces them by a new star S whose attachments are the

union of the attachments of S 1, " Sk.

Let G be a biconnected graph with an open ear decomposition D =[P 0 , ... ,Pr_ 1. Let the

bridges of Pi in G that contain vertices on ears numbered lower than i be BrI, • I We shall

tv '

I

A 12

0 G 3 22

0I

F
A 0 E.

G with open ear decomposition D (F0, P 1.P2, P 3 , P 41;
Po=< 1,2,3,4,5, 1>, P i=< 3 ,7 ,6 , 5 >, P2 -<6,4>, P 3=<7,8,6>, P 4--<3,5>.

C C C G
GI

B

B 4
BD

A 2
I

BF -
3

F

E E E
Bridges of P 1 .

B~B 4

2" 3

,. .

Bridge graph G 1 of P.
Figure 2.1.

Illustrating the ear decomposition

call these the anchor bridges of Pi.The ear graph of Pi, denoted by Gi(Pi) is the graph obtained

from the bridge graph of Pi by coalescing all stars corresponding to anchor bridges. We will call

.- %4

,,L.,

13

this coalesced star, the anchoring star of Gi(Pi). For any two vertices x,y on Pi, we denote by

Vi(x,y), the internal vertices of Pi(x,y); we denote by Vi[x,y], the vertices in Pi[x,y]-{x,y)

together with the vertices in anchor bridges. For a star graph G (P), the set V(x,y) denotes the

vertices in P (x,y)- {x,y}, and the set V[x,y] denotes the vertices in P [x,y]- {x,y}.

2.3. Network Flows and Graph Connectivity

A network consists of the following data:

(1) A finite directed graph G (VE) with no self-loops and no multiple edges.

(2) Two specified vertices s and t, s is called source and t, the sink

(3) Each edge er E is assigned a non-negative number c (e) called the capacity of e.

A flow function f is an assignment of a real number f (e) to each edge e, such that the fol-

lowing two conditions hold:

(1) For every edge ee E, 0!f (e)<c (e)

(2) Let ot(v) and 03(v) be the sets of edges incoming to vertex v and outgoing from v, respec-

Ltively. For every vertex v V-fs,t}

0= f (e) - , f (e).
eeVv ere (v)

The total flow F of f is defined by

F= f f(e) - , f (e).
eE ea t) ee P(t) "

The maximum flow problem is to find an f for which the total flow is maximum.

Let S be a subset of vertices such that se S and te S. Let S be the complement of S, i.e.

S = V - S. Let (S,S) be the set of edges of G whose start vertex is in S and end vertex is in S.

The set (S,S) is defined similarly. The set of edges connecting vertices of S with S (in both

directions) is called the cut defined by (S,S).

0.

14

Lemma 2.1. [15] For every S

F= f f(e) - f f(e).

e (s,S) e (S,S)

Let us denote by c (s) the capacity of the cut determined by (S,S) which is defined as fol-

lows:

c (S)= c, c(e).

ee (S.S)

Lemma 2.2. [15] For every flow function f, with total flow F, and every S,

F :5c (S).

By the capacity constraint, the flow across any cut cannot exceed the capacity of the cut. bN

Thus the value of the maximum flow is no greater than the capacity of a minimum cut. The .-

max -flow min -cut theorem states that these two numbers are equal.

Theorem 2.1. [15] If F and S are such that F = c (S) then F is the maximum and the cut defined

by S is of Lhe minimum capacity.

The residual capacity for a flow f is the function on vertex pairs given by

r(v,w) =c(v,w)-f(v,w). We can push up to r(v,w) additional units of flow from v to w by

increasing f (v, w) and correspondingly decreasing f (w,v). The residual graph R for a flow f is

the directed graph with vertex set V, source s, sink t, and an edge (v,w) of capacity r(v,w) for -

every pair v,w such that r(v,w) > 0. An augmenting path for f is a simple directed path from s

to t n R. There are several algorithms for finding the network flows in a digraph [14,49,32,20]

using augmenting path to increase flow. But for faster algorithms for network flows

blocking flow technique is used [10, 491. J.

a ..¢ ¢ ' - %r- : . * ? ° ? '. ', ,, ,,' ,. ' € . . : , € --: ..-" '. ,.. ,,, . , ... A

"15

There are special types of networks which are often used: a unit network is the network

with all edge capacities integers and each vertex v other than s and t has either a single incoming

edge, of capacity one, or a single outgoing edge, of capacity one.

VTheorem 2.2. [49] On a unit network, Dinic's algorithm finds a blocking flow in 0 (m) time

and a maximum flow in 0 (-Fn m) time.

wThere is a direct connection between a network flows and connectivity of an undirected

graph [14]. Let N(v,w) be the least cardinality vertex separator between v and w (a smallest

cardinality vertex set S such that there are no path from v to w in V-S), and let p(v,w) be the

maximum number of pairwise vertex disjoint paths connecting v and w in G.

Lemma 2.3. [14,34] (Menger's Theorem) If (v,w)OE then N(v,w) =p (v,w).

Based upon this lemma we construct a directed graph G from undirected G and find a max-

imum flow between kn pairs of vertices in order to determine the minimum p (v,w) in G [12].

Theorem 2.3. [14] Connectivity k of G is equal to min p (v,w).
v,w

First, we construct a digraph G = (V,E) as follows. For every vertex ve V there are two

vertices v ' and v " in V with a directed edge (v ,v ')e E. For every edge (u,v)e E, there are two

edges (u ',v)C E and (u ,v ') E. Define now a network with digraph G, source s , sink t , unit

a capacity for all internal edges (edges of the form (v',v")) and infinite capacity edges for all other

edges (external) of G [14] (see figure 2.2).

In order to find connectivity of G maximum flow has to be found between kn pairs of ver-

tices of G [14]. Thus gives 0 (k mn) time algorithm for finding the connectivity of a graph

[14]. More refined algorithms for this problem have 0 (max (k, 4J')kmn) time [18, 19], where

the algorithm in [19] has the best space bound. For more information on the use of network

flows for graph connectivity see [14].

16

,',

04

((b)

.F.%P

.R~ ar lsiidacrigt|etitos ngoa eoyacs.A RWPA

(o%.

(b) I

Figure 2.2. " "

bllustrating the reduction from G to G. ro

2.4. Models of Parallel Computation ads
ap~a .

The model of parallel computation that we will be using is the PRAM model, which con-

Isists of several independent sequential processors, each with its own private memory, communi- j-

cating with one another through a global memory. In one unit of time, each processor can read ,

one global or local memory, execute a single RAM operation, and write into one global or local :

memory location in that order.-. -

PRAMs are classified according to restrictions on global memory access. An EREW PRAM

is a PRAM for which simultaneous access to any memory location by different processors is for- -"

bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no .

simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we

-ahave to specify how to resolve write conflicts. We will use the ARBITRARY model in which

any one processor participating in a concurrent write may succeed, and the algorithm should .

-% ,0 ",%., ' '. ',-/,',.' e ' ' ' %¢ ' %'- ¢ ' ;-:, ,, :-...-.; :- '. ,- . :::. ,- ;.;,., :-.' .' :P

17

work correctly regardless of which one succeeds. Of the three PRAM models we have listed, the

EREW model is the most restrictive, and the ARBITRARY CRCW model is the most powerful.

It is not difficult to see that any algorithm for the ARBITRARY CRCW PRAM that runs in

S parallel time T using P processors can be simulated by an EREW PRAM (and hence by a CREW

PRAM) in parallel time TlogP using the same number of processors, P (see e.g., [28]).

xLet S be a problem which, on an input of size n, can be solved on a PRAM by a parallel

algorithm in parallel time t(n) with p (n) processors. The quantity w (n)=t (n).p (n) represents

the work done by the parallel algorithm. Any PRAM algorithm that performs work w (n) can be

converted into a sequential algorithm running in time w (n) by having a single processor simu-

late each parallel step of the PRAM in p (n) time units. More generally, a PRAM algorithm that

* runs in parallel time t(n) with p (n) processors also represents a PRAM algorithm performing

Sk 0 (w (n)) work for any processor count P <p (n).

Define polylog (n)= U.0 (logn). Let S be a problem for which currently the best sequential
k>0

algorithm runs in time T(n). A PRAM algorithm A for S, running in parallel time t (n) with p (n)

processors is efficient if

a) t(n)=polylog (n); and

b) the work w (n)=p (n)'t (n) is T(n).polylog (n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes

to within a polylog factor of optimal speed-up. A major goal in the design of parallel algorithms

S is to find efficient algorithms with t (n) as small as possible. The simulations between the vari-

ous PRAM models make the notion of an efficient algorithm invariant with respect to the partic-

ular PRAM model used. For more on the PRAM model and PRAM algorithms, see [281.

I,

18 ,

CHAPTER 3 *0

LOWER BOUNDS FOR THE NUMBER OF SEPARATING K-SETS
' -

3.1. Cycle and Wheel for k =2,3 0

The n-node graph that achieves the maximum number of articulation points of a connected

graph is a path P,, on n vertices. The cycle Cn is a simple path P, = <v 0 , - -- ,vn, v0 > on n ver-

tices such that its endpoints coincide (see Figure 3.1). It has , (n - separating pairs, which is "S".
2 .

a lower bound for the maximum number of separating pairs for a biconnected graph on n ver-

tices.

The wheel Wn [52] is a cycle Cn- 1 together with a vertex v and an edge between v and

every vertex on C,._ 1 (see Figure 3.2). After removal of v and all edges adjacent to it we get
(n -1

Cn_1 , which yields separating triplets. And removal of any three vertices of Cn-1 -

2

F-. y,

5-.

Cycle.

N S

.5S.

19

Q.'

Figure 3.2.
Wheel

does not disconnect the wheel. Hence the number of separating triplets of a wheel is

(n-)(n-4) This is a lower bound for the maximum number of separating triplets of a tricon-

nected undirected graph on n vertices.

3.2. Generalized Cycle and Wheel for General k >3

Let us now generalize the wheel graph and the cycle graph to achieve lower bounds for the

number of separating k-sets for odd and even k, respectively. (see Figure 3.3).

,,.'* For even k take - complete graphs Kk on k vertices, arranged in a cycle. Take - vertices
k 2

of each Kk. Two adjacent complete graphs are connected via k- edges, one edge per vertex,
'p2

?, .3, such that every vertex of Kk has one and only one edge outside Kk. Removal of these -L edges
2

and analogous - edges which connect two other adjacent complete graphs on the 'cycle' will
2

'4

k k

K k K k -i

Figure 3.3. "

Generalization of cycle for even k (k =6).

separate the graph. Since for removal of each edge we can use either of its endpoints we get 2k

22

S..

n2

K2(-- separating edge sets of cardinality k. Hence, the number of separating k-sets for the.-"

•-. :::

genealizd ccle raphis 2 1 k k If n is not divisible by k then one complete graph will be

bigger than k in order to take extra (n rood k) vertices. But the number of the edges between "

Kk "S

two adjacent complete graphs on the cycle still remains 7.

The generalized cycle is a k-connected graph. To see this consider any two vertices v I and ;

V 2 of it. There are two cases: they belong to two different complete subgraphs on k vertices (K ,.,

I

h.

• I

21

and K 2), or they belong to the same one K 3. If it is the first case, then clearly there are k pair-

wise disjoint paths between v 1 and v 2 going clockwise on the generalized cycle, and there are

k paths between v I and v2 going counterclockwise on the generalized cycle. If it is the second2

case, then there is one path which is just a single edge, k-2 paths inside K3 and one path which

connects v1 and V 2 via the rest of the generalized cycle.

Analogously, we have the lower bound for odd k, which is achieved by a

generalized wheel. A generalized wheel is a generalized cycle on n-i vertices and one vertex

in a center which is connected to every vertex on a generalized cycle (see Figure 3.4).

Nb

i Kft

0 0

C 0
2i"

:'1 0 0

K

ek-I -"+

Figure 3.4.
Generalization of wheel for odd k (k = 7).

%f%

4 ,
. • *** . 4* .- ' ,U %U * *~ . ~ U ~ . * - ~ .


~~~NL~~~~~~~V~r WWL7U1L'ZAF K', lr7A.~ ' 5 ' .. J.

22

CHAPTER 4

UPPER BOUNDS AND REPRESENTATIONS

FOR SEPARATING PAIRS AND TRIPLETS

In this and the following Chapter we present compact representations for separating k-sets

of a graph as well as upper bounds for the maximum number of separating k-sets in an n-node -

k-connected graph. By representation of separating k-sets we mean a data structure that takes

less space than the input graph itself and for which there is a fast procedure to list all separating

k-sets of the graph; when computing the space required for a representation, we assume that we

are using one unit of space for each vertex, and for each edge. S

In this chapter we provide upper bounds and representations for k =2 and k =3. In
*,¢

Chapter 5 we generalize these techniques for general k.

4.1. Separating Pairs ~ ~4

4.1.1. n(n-3) Upper Bound2

Theorem 4.1. The maximum number of separating pairs in an undirected biconnected n-node

rap h s n (n -3)
2

Proof: Let {vl,v 2 } be a separating pair of a biconnected graph G on n vertices and m edges,.7

whose removal separates G into nonempty GI and G 2 (see Figure 4.1).

Then we can divide all separating pairs of G into four types:

1). Separating pairs completely inside G 1uv 1 ,v 2  ,

2). Separating pairs completely inside G 2 u {v 1, v 2,

3). Separating pairs with one vertex from G and one vertex from G 2,

4). The separating pair {v ,v 2}

,

,'.4

k-? t &i-;.& e't ' - --. ----¢- '-? -- ¢' ,,' ,',,'',GN,,: '- o'',- ' ,, ',,' ',." S



23

* V1

G1 2

Vk

Figure 4. 1.
Separating G into nonempty G 1 and G 2 by separating pair {v 1 , v 2

Let f (n) be the maximum number of separating pairs in a biconnected graph on n vertices.

The number of separating pairs of type one and type two are upper bounded by f (1+2) and ',

i f (n-1), respectively, where I is the cardinality of V(G ) and n-1 -2 is the cardinality of V (G2).

Let us denote the separating pairs of type third as the cross separating pairs. The number of

separating pairs of type three is trivially upper bounded by I (n-l-2). Hence, any function f (n)

that satisfies the recurrence

f(n)5 max (f(+2)+f(n-l)+i(n-1-2)+1.l~.n 3 J p.

is an upper bound on the number of separating pairs in a biconnected graph on n vertices. del

We note that this is the recurrence for the cycle and that the recurrence implies that

2f (n) : Combining this upper bound with the lower one found in Chapter 3, we get,, 2

that f (n) = n (n -3) -

f Theorem 4.1.

4.1.2. O(n) Representation by Cycles

Even though the number of separating pairs in a biconnected n-node graph G = (V,E) can

C be as large as 9(n 2), we observe that there are more succinct representations for them.- c

17 - I"



24

1). The tree of triconnected components of a biconnected graph has size 0 (m+n), where

I E I = m [22, 36], and this is a representation for all separating pairs together with the tri-

connected components of the graph.

2). The algorithm in [ 36] enumerates the separating pairs as a collection C = (V Vj of

subsets of V, with the interpretation that any pair of vertices within a single Vi is either a

separating pair for G or the endpoints of an edge in a specified 'ear' in G, and further, every ...

separating pair for G appears in at least one of the Vi's. We show below that l

L I Vi I = 0 (n); thus this gives an 0 (n) representation for separating pairs.

Let us first look at the subsets Vi (cycles) which are the representation of separating pairs.

Look at the star embedding which we get for each nontrivial ear of an open ear decomposition of

a biconnected graph (see Figure 4.2). If there is a separating pair of G then it belongs to some

nontrivial ear [36].

V 0  a

0S

A
G

0

B
D E H vM I J V K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.'1

Figure 4.2.
Star embedding



25

Let p be the number of vertices of a nontrivial ear P. Let L be a planar region of the star

embedding of P. L consists of the set of vertices in the stars of P and all other vertices

(v 1 , "'" ,v.) on P. It divides P into a collection of paths P' (l-V 1,V I-V 2 , "'" ,vX-p), including

trivial paths of length 0 for the vertices of L on P which are the endpoints of two other regions.

We will denote each of the trivial paths by a single vertex. For example planar region G of star

embedding of P divides P into paths: (1-8,8-9,9-10,10,10-11,11,11-13,13-14,14-15). Each

vertex of P belong to at most 3 of these paths. Let group L 1 be the union of those paths of P

which belong to L (including trivial paths). Let L 2 be the union of l-v 1 and vx-p. Let groups

L 3 ,L, be the other paths. For example if G is the planar region of P then L 1 is

8-9ul0ullul3-14, L2 is 1-8u14-15, L3 is 9-10, L 4 is 10-11 and L 5 is 11-13. All vertices

of P of each remaining planar region of the star embedding of P belong to Li for some i. Let pi
S

be the number of vertices of Li, then .Pi <p +2(s-1). This is true because every vertex of P is
i=1

?counted once unless it belongs to L and some other group, then it is counted at most 3 times. Let

r (p) be the number of vertices of P in all planar regions of the star embedding of P including

repetitions. Let r (Pi) be the number of vertices of P in all planar regions of star embedding of P

which uses only vertices of Li. Then,

r(p) 5 max(X r (pi))
>7s i=1

We can show that this inequality implies that r(p) < 3p - 6 (see Appendix 4.1.3). Note that if L

has only two adjacent vertices on P (like D) then we get r(p) < r(p) + r(2), where r(2) = 2. But

there are at most p of them. And for all other L's r(pi) <r(p) for all i's. Hence, all separating

pairs which belong to ear P have 0 (p) size representation. Summing over all nontrivial ears we

get an 0 (n) size representation for the separating pairs of a graph.

3). There is another representation of separating pairs of G. It is based upon the decomposition

of a biconnected graph into a collection of cycles. Actually both representations are the

, I-..



26 ~

J0

same.

Let G = (VE) be an undirected biconnected graph with n vertices and m edges. We denote

by g (n) the upper bound on the size of a compact representation of the separating pairs of a

biconnected graph on n vertices. Let {v 1,v2 ) be a separating pair that divides G into nonempty *-.

G1 and G 2. Let {w1,w2 ) be a separating pair of the third type with w 1 e G 1 and w2e G 2..

Consider a maximal set of vertices u in G 2 such that (w 1, u ) is a cross separating pair and,

analogously, consider a maximal set of vertices x in G 1 such that {x, w2 } is a cross separating

pair. The set of u's is the set of articulation points in G 2. Moreover, the set of u's along with

the subgraphs of G 2 between them form a path between v I and v2 . Analogously, the set x's is a

set of articulation points of G 1 . And the set of x's along with the subgraphs of G 1 between them -.

form a path between vl and v 2 . Number the vertices v 1, u's, V2 , and x's by y 1 ,y 2 and so on

going clockwise along these paths. We denote by Gi the subgraph of G between yi and yj+I (the S

last Gi is between Yj and y 1 ). Note that some Gi can be empty (consists of a single edge). Thus, % "Cr

the graph G becomes a cycle with vertices y's and Gi's alternating on it (see Figure 4.3).

Every pair of vertices yi and yj~j >i gives a separating pair of G unless j =i + 1 and the sub-

graph Gi between them is empty. Hence, we can represent all separating pairs of this form by

the following structure (cycle):

1) the set of vertices y's,

2) a vertex for every Gi with the flag to specify if Gi is empty,

3) edges between Gi and yi, yi+l.

Note that when there are no cross separating pairs in G then we get a trivial cycle with two

vertices v I and v 2, two vertices G I and G 2 , and four edges connecting them. Since the sets x's

and u's are the maximal sets, all other separating pairs of G are inside some Gijkyiuyi+ 1. Note "

that Gi can be the union of disconnected components, but each of them is connected to yi and

Yi+- Let the cardinality of the set of y's be 1. Let ni be the cardinality of Gi, and ,(ni + 1) = n.
i=1 •0

p. ,*%



-1 V G 1 
27'd

Gi'l 
4 : W

3 V27

y i1

Figure 4.3.
Representation for k=2.

Based upon the above observations we get the following recurrence relationIL

g(n)5max(yg(n +2) + 31),y i=1

. where g (ni + 2) represents the upper bound for all separating pairs of G inside i^Yi+. We

assume that we are using one unit of space for each Gi. The space to represent the cycle is 31:

one I for the set of yj's, one I for the set of Gj's, and one I for the set of the flags of Gj's. Any

g (n) that satisfy this recurrence will be an upper bound on the size of representation of separat-

ing pairs of G. Clearly, linear g (n) is one of them (see Appendix 4.1.3).

Using the above representation we can list all separating pairs in a biconnected :aph in

0 (M + n) time, where M is the number of separating pairs in a graph. For each cycle every pair
*) of vertices of the form (yi,Yj), i <j give a separating pair of a graph, unless j = i + 1 and there is

a flag for the vertex for the subgraph G, specifying that it is empty. Note that some of the

separating pairs can be repeated.

60 yZ



28 "-" j .
28.

4.1.3. Appendix 
L

1). Solution to the recurrence r (p) < max( i r (pi)) for the second representation of separating
SS

pairs with restrictions

y Pi <p +2s-2 2<s:5p. J ,
i=l 

L.

Let r (p) =3p - 6, then

S S

3p - 6 =r(p) < max( Yr (pi)) =max(y (3pi - 6)) < max(3p + 6s - 6 - 6s) 3p - 6
s i=1 S i=1 s

I

Hence, r(p) < 3p - 6. ,. '.

2). Solution to the recurrence g (n)<5 max(yg (ni + 2) + 31) for the third representation of
l i=1 "

separating pairs with restrictions

Y,(ni+ 1)=n 2 l n ni >O.
i=1

Let g (n) =3n - 12, U'

g(n)<max(g(ni +2)+31)=max(X,(3(ni +2)- 12) + 31)
_ i=L =1

max(3 Y(ni + 1) + 31 - 121 + 31) = max(3n - 61) < 3n - 12l i=1 1I "0 /r!

Hence, g (n) 5 3n - 12. .

I

J._

OP

a~~~~~~~~~~~~~~ A,~"4 ~ 0 ~ '~' v ''



29

4.2. Separating Triplets

4.2.1. O(n) Representation by Wheels and O(n 2) Upper Bound

Let G be a triconnected graph on n vertices and m edges. Assume there exists a separating

triplet (v1 ,v 2 ,v3 ) in G, which separates G into nonempty G1 and G2 (see Figure 4.4).

b€ Then all separating triplets of G can be divided into the following six types:
1). Separating triplets completely inside G1 U V1,V 2,V3}

2). Separating triplets completely inside G2 u (V1,V-2,v 3 },

3). Separating triplets with one vertex from G 1 , one vertex from G 2 and one vertex from
e ., (V 1 ,V 2 ,V 3 },""

4). Separating triplets with one vertex from G 1 and two vertices from G 2 ,

j 5). Separating triplets with two vertices from G 1 and one vertex from G 2 ,

6). The separating triplet {V 1 ,V 2 ,v 3 }.

Lemma 4.1. Only one of three vertices (Vl ,V2 ,V3 ) can participate in the third type separating .

triplets [w 1 ,v,w 2) such that w 1 eG, w 2 e 2 andvire IV,v 2,v 3}.

, i v 
,

)v

3V

.1,

Figure 4.4.

Separating G into G and G2 by separating triplet (v 1 ,v 2 ,v 3 }

--

- - - - - -- - - - -



J /-- . -

30 I ;l

Proof. Assume there is a separating triplet {w1 ,v 2 ,w2 ) of the third type in G (see figure 4.5),

where w eG 1 andw 2 e G 2 . It separates GI into KI and K2 , and separates G 2 into K 3 and

K4 . Vertices v 1 and v3 must belong to the different components of G with respect to the

separating triplet {w1 ,v 2 ,w 2}. Otherwise either (wl,v 2 ) is a separating pair, or {w2 ,v 2} is a

separating pair, or both.

Claim 4.1. Vertex v 2 has an edge to every nonempty subgraph K 1,K 2 ,K 3,K 4. .

Proof: W.L.O.G. assume that K, is not empty and VxeK,, (x,v 2)eE. Then {vl,wl} is a

separating pair of G, which separates K I from the rest of the graph. lee

0 Claim 4.1. 0

Now, we will prove that there is no separating triplet of the third type which uses v I or v 3.

We will prove this by contradiction. W.L.O.G. assume there is a separating triplet {u 1,V1,U2 }, .

v ,K

K :V.

w

K 4-:

V .. ,.'.

2S

Figure 4.5 "-.

Illustrating the proof of Lemma 4.1. 5

%

r~i:1* ~ u 0.-'W



31

such that ul eG and U2  G 2 (ul maybe equal tow, and U2 maybe equal tow 2).

Case 1: u1 eK 2, ifK 2 is not empty (see Figure 4.5).

With respect to the separating triplet (u1 ,v 1 ,u 2}, the sets K 1, {wl}, and K 2 - {U1 I

belong to the same connected component of G - {uv 1, u 2 }. This is true because of the Claim

4.1 for vI and the existence of separating triplet {u1,v1,u 2 )}. If v2 belongs to the same com-

ponent then IVl,u 1 }is a separating pair which separates K3 U {w 2 } ,.uK 4U (v 3 ) from the rest

of the graph. If v 2 does not belong to the same component then {vl,ul } is a separating pair

which separates K 1 u w I ) uK 2 - { u 1 ) from the rest of the graph.

Analogously, u24EK 4.

Case2.ul =wl.

Since {Ul,V l ,U2} is a separating triplet, K 1 is empty by Claim 4.1, otherwise (vl,u 1 } is a

i separating pair which separates K 1U{v 2} from the rest of the graph. But then {v1 .u 2} is a

separating pair, if (u 1 ,vI,u 2 ) is a separating pair.

Analogously, u 2 *2.

Case3: ul rK 1 andu 2 eK 3.

Either {u1 ,u2 ), or {u1 ,v I or v1 ,u2 )} is a separating pair, if {u1,v1,u2} is a separating

triplet. .

That means that if there is a separating triplet of the third type which uses one of the

vi,i=1,2,3 then there is no separating triplet of the third type tr; uses the other two vi's.

0 Lemma 4.1.

Let {V1 ,V0 ,V2 ) be a separating triplet of a graph G on n vertices, and v0 be the only one of

the three vertices of this separating triplet which might participate in a separating triplets of the

third type with respect to I v 1, v 0, v 2 }. Consider the separating triplet I v 1, v 0 , v 2 }, together with

all separating triplets of the third type {W I ,VO,W 2 ) such that wieG1 and w 2 EG 2 . All such

separating triplets use v0 as the "central" vertex. Let W1 be the set of vertices w1 in G such 1%

A'

r~r, -,,.',',,'.,-'.',,,,..'. .'.-.,.'-, , ,,-. '..'...-, , .-.... """.. ,.'v,." .,'"'.'%. ,',,*~' -.i



32 '

that there is a separating triplet of the third type which uses w 1 . Analogously, let W2 be the set 0

of vertices w2 in G 2 such that there is a separating triplet of the third type which uses w2 . Let - ,.

G', = G I v 1 ,v 3 }, and analogously, let G' 2 = G 2 U { Vl,V 3 }. a,

Claim 4.2. Every vertex in W, is an articulation point in G' 1 , and analogously, every vertex in

W 2 is an articulation point in G'2 -

Proof: We will prove Claim for W I only, since W 1 and W2 are symmetric. If w 1 e W I is not an

articulation point of G' , then there is a path between v I and v3 in G' , -{w 1 ). Hence, either G is -•.

not triconnected or there is no separating triplet of the third type which involves w 1.

0 Claim 4.2. 'V.-

G', - W1 consists of a collection of subgraphs {C 1 , C ,Cs}. Let us replace each Ci by a S

complete graph on vertices of W, which are adjacent to Ci. Let us denote this structure (the set

of W, with these complete graphs connecting them) by W' 1. Let us denote by W 2 the structure

which we get by applying this procedure to G' 2. .1'

Claim 4.3. W', is a simple path connecting vI and v3 , Analogously, W' 2 is a path connecting

v 1 and v3- -

Proof: We will prove Claire, for W, only, since W', and W'2 are symmetric. There is always a

path between v1 and v 3 through W, formed by the vertices of W1 . Assume there is vertex

vE W, which is not on that path. Then there is a path through W'1-[v} between vI and v3 . So l.

there is a path through G', between vI and v 3. Hence, either G is not triconnected or there is no

separating triplet of the third type which involves v. .

0 Claim 4.3.

The combinations of these paths W', and W' 2 create a cycle. Rename the vertices v I, the

vertices in W 2 , v3 and the vertices in WI into a sequence <y ,Y2 ,yl>, such that y v , Y 2



33

is w 2E W 2 closest to v1 on W' 2 and so on following this cycle clockwise starting from v1 (see

Figure 4.6). Note that yt is wIe W1 closest to v 1 on W'1 . Lety 0 = v0 .

Lemma 4.2. For all i and j with i <j, either the vertices Yi, Yj and Yo form a separating triplet of

G, or j =i +1 and there is an edge (yi,yj)G E.

Proof: If yj G 1 and yje G 2 then {Yi,Yj,Yo } is a separating triplet of G, since yj is an articulation

point in G 1 , and yj is an articulation point in G 2 . If yi and yjeG 1 then either {YiYj,Yo} is a

separating triplet of G or j=i+1 and there is an edge (yi,yj)eE, since yi and yj are articulation

points in G 1. Analogously, either {YiYjY o is a separating triplet of G or j =i +1 and there is an

edge (yi,yj)eE, if yi and yjrG2.

r Lemma 4.2.

The set of Yi's together with each Gj replaced by an edge connecting the two yi's adjacent to it

forms a cycle. Any two nonadjacent vertices on the cycle of this wheel form a separating triplet

together with yo. The subgraph between yi and Yi+1 is denoted with Gi for each i, and some of

them may be empty. Now, the graph G looks like a wheel with Yo in a center, with yi's and Gi's

(i =1, ,1) on a cycle (see Figure 4.6).

Every pair of venices on the cycle of the wheel forms a separating triplet with y0 unless

they are adjacent (Yi and yi+1) and the subgraph (Gi) between them is empty. Hence, we can
I,

represent these separating triplets by the following structure (wheel):

1) {Yo,YI, " Yk} with edges of G between them,

2) a vertex for every Gi with a flag to specify if Gi is empty,

3) the edges between Gi and yi, Yi +1 i =1, - 1. The edge between y 0 and Gi,i =1, ,1 with

the flag to specify if the edge is in G.

Let us see where the rest of separating triplets of G lie.

,.

' 'j ' V ' . "'. " . '.. ' -. - ". , _ d -A .-' . - ( -- ,r . % . 5 5- % • % V*% " , - %" ,V -S , ' . . % S .. ' 2 ./- _*_ '" ..



IYl 34

41

%0.

II

y 
It•

GG 3

-1- 
-.

Gi. G
44

Figure 4.6.
Representation for k=3

Lemma 4.3. Each remaining separating triplet of G belong to Gity.,oy Lj yi+Ij (the neighbor

of yi in Gi- if such a neighbor is unique) u (the neighbor of yj 1 in G+j if such a neighbor is p

unique) for some i. ,. I

Proof: This is true for Type 1 and Type 2 separating triplets. All separating triplet of Type 3 are

on the wheel so the Lemma is true for them. Also Type 6 separating triplet is on the wheel.

Hence, we need to prove this Lemma for Types 4 and 5 only. Since these two Types are sym-

metric we will consider only Type 4. .

Let IW1,W2 ,W3 ) be a separating triplet with w1 GGI andw 2 ,w3 e G 2 . The separating tri-

plet {w1 ,w 2 ,w3 ) separates GI into LI and L 2 , and separates G 2 into L 3 and L 4 (Figure 4.7). :- .

Let us see how the original separating triplet (v 1 ,v 2,v 3) is separated by the separating triplet

{w1,w 2 ,w3 ).

p.,

:.' .



35.

w1  w

I

Figure 4.7.
illustrating the proof of the Lemma 4.3.

,, , The vertices {v1 ,v2 ,v3 } cannot belong to the same connected component of G with respect

to the separating triplet {w1 w 2,w3 }. Otherwise either w 1 would be an articulation point, or I

., - {W 2,W3 } would be a separating pair, or both. W.L.O.G. assume that v t belongs to one con-

,, nected component and v2 ,v3 to the other with respect to the separating triplet {w1 ,w 2,w 3 }.

' ' Subgraph L 1 must be empty, otherwise {w 1 ,v1 } becomes a separating pair separating L1

p.. from the rest of the graph. Since the graph is triconnected, we have

•2) There exist vertices x, yeL 3u{w2 ,w 3 } such that (X,v V) E, and (y,v 1 )eE; and

," 3) For every zeL2 L 4ulv2 ,v 3 )} there is no edge in G of the form (z,v i).
i ';Hence, vertex w 1 is the unique neighbor of vertex v 1 in G1 . Moreover, if there are any

i separating triplets of G with one vertex in G 1 and two vertices in G 2 which separate v 1 from v 2

. and v 3, then w1z is one of the vertices of this separating triplet.

w
-v2

L2 L4

* ~~ w,.~~.p.~'~JY.PN'N'~vN.. ~ ~ %N ~



36

A separating triplet of G cannot have all of its three vertices in three different Gj 's, for oth-

erwise two of these vertices would form a separating pair. From the proof of the Lemma 4.2 and

the fact that the set {Y1 ,Y2, ,Y1) is maximal, we know that if there is a separating triplet

which involves a vertex from Gi, then the other two vertices belong to {yi u{Yi+l })u(y0 1Gi

and the neighbor of yi in Gi_ 1, if such a neighbor is unique, and, symmetrically, the unique

neighbor of yj+l in Gi+2, if such a neighbor exists. This proves the Lemma 4.3.

0 Lemma 4.3.

Let g (n) be the size of a compact representation of the separating triplets in a graph on n

II
vertices, and let the number of vertices in Gi be ni. Then _(ni + 1) + 1 = n, and by Lemma 4.3. '

we can write the following recurrence

1

g (n) max(Eg (i + 5) + (51+ 1)),
I i=1

where (51 + 1) stands for the size of the representation of the wheel. The solution to this .' --.

recurrence is clearly linear (see Appendix 4.2.3). This proves that there is a succinct 0 (n) size

representation of the separating triplets.

Analogously, the recurrence for the upper bound on the number of separating triplets

becomes,

1(1-1)
f (n)< max (,f (ni+ 5)+ ),

1:51:5n-4 i=1 2

where f (n) is the upper bound on the number of separating triplets of a triconnected graph on n

vertices. The solution to this recurrence is clearly 0 (n 2).

Using the above representation we can list all separating triplets in 0 (M) time, where M is .

the number of separating triplets, using the procedure similar to the one for separating pairs. '..4



4.2.2. Tight (n-1)(n-4) Upper Bound
2

As mentioned in Chapter 3, the wheel W,, is triconnected and has (n -1)(n-4) separating' 2

triplets. In the following theorem we prove that this is the worst-case for the number of separat- 0

ing triplets in an n-node triconnected graph.

Theorem 4.2. The number of separating triplets in an undirected triconnected graph is

(n-1)(n-4) for any n.,

2

Proof: Assume there exists a separating triplet {VI,v 2,V3 } in G, which separates G into

nonempty G 1 and G 2 (see Figure 4.4).

Then all separating triplets of G can be divided into six types as in Section 4.2.1.

Let the number of vertices in G 1 be I. Then the number of vertices in G 2 is n-l-3. Let

g (n) be the maximum number of separating triplets in a graph on n vertices, h (1, n -1) be the

maximum number of separating triplets of the third type with respect to a separating triplet

which divides the graph into subgraphs of cardinality I and n-1-3 andf (1,n -1) andf (n-1,1) be

the maximum number of separating triplets of the fourth and fifth types with respect to the

separating triplet which divides the graph into subgraphs of cardinality I and n-1-3, respec-

tively. V

Then any g (n) that satisfies the recurrence

g (n) <max (g (I+3) + g (n-1) + h(l,n-l) +f (I,n-) +f (n-l,) +1) .
I

is an upper bound for the number of separating triplets in G.

Let us now find the upper bounds for the functions h and f.
3 "

Lemma 4.4. f (l,n -I) +f (n-,l) _ -- (3n -14).

Proof: Let {Wl,W 2 ,W3 ) be a separating triplet with wleGl and w 2 ,w 3 EG 2 . The separating



38

triplet {Wl,W 2 ,W 3 ) separates G, into LI and L 2 , and separates G 2 into L 3 and L4 (see Figure

4.7). As stated in the proof of the Lemma 4.3. we know that W.L.O.G. vI belongs to one

separated component and {V2 , V3 } to the other component with respect to separating triplet

{w 1,w 2 ,w 3 ), that L, is empty, and that (w,v)eE, x,yeL 3u w 2uw 3 : (x,v1 )eE, (y,vl)eE

and V zeL 2 uL 4 UV2Uv 3 : (z,v 1 )oE. Hence, vertex w, is unique up to a division of the original

separating triplet {vl,v 2 ,v3) into v, and {v2 ,v 3 ). As a consequence we have the following

useful observation.

Observation 4.1. If there is a separating triplet of the fourth type which separates v1 from v 2

and v 3 then there is no separating triplet of the fifth type which separates v I from v 2 and v 3.
4,.

0 Observation 4.1.

Let us see how many separating triplets of the fourth type separate the original separating

triplet {v1,v 2 ,v 3) into vI and (v 2 ,v3 }. The vertex w1 must belong to all of them. Let us see

the choices for (w2 ,w 3 ) e G 2 , such that {W1 ,W2 ,w 3 ) is a separating triplet of the fourth type.

Assume there is a separating triplet of the fourth type { w 1, uI,u 2 }, where uIe L 3 , u 2E L 4 .

The separating triplet {w ,U1 ,u 2 } separates L 3 into L'3 and L 3 , and separates L 4 into L'4 and

L 4 (see Figure 4.8), such that L'3uL'4 is separated from L 3 UL4 by {W1 ,U21 ,u. U 2

The vertex vI is connected by an edge to at most one of the L' 3
U u I) and L 3 , otherwise

{w,u 1 ,u2 ) is not a separating triplet. If v, is not connected to either L' 3 {Ul or L 3 then

(W 2 ,W 3} is a separating pair. W.L.O.G. assume for every xeL 3 : (x,vj)eE. By the symmetry

{v2 , v3 ) is connected to only one of the L'4 and L 4 . Let us see how the separating triplet

{W I ,Ul,U 2 ) separates (w 2 ,w 3}.

If vertices w2 and w3 are not separated by (w1 ,uI,u 2 ) then there are four cases to con- .

sider. P

__,- t.

_~ - -t**'

w

%4. 
4

j4 *4 % p %9%. %2



39

o%
1 £3

2 ge4S LI

-Figure 4.8
Separating L3 into L3 andL 3 andL 4 into L'4 andL4 by {w1,u 1 ,u 2)

5 When w2 and w3 belong to the same component as L'3 and L'4 with respect to the separat-

ing triplet {w,u 1 ,u2 ) and {v2 ,v3 ) is connected by an edge to L 4 then (w1 ,u2 ) is a separating

pair which separates L 2 u{v 2 ,v 3 )uL 4 from {vl )L 3U(w 2 ,w 3 )uL'4.

When w2 and w3 belong to the same component as L'3 and L'4 with respect to the separat-

ing triplet {w1,u 1 ,u2 ) and (v2,v 3 ) is connected by an edge to L'4 then {u 1 ,u2 } is a separating
N: pair which separates L 3UL 4 from the rest of the graph.

When w2 and w3 belong to the same component as L 3 and L 4 with respect to the separat-

ing triplet {w1 ,u 1 ,u 2} and (V 2 ,V 3 } is connected by an edge to L' then {u1,u2 ) is a separating

pair which separates L 3 U(w 2 ,w 3 JUL 4 from the rest of the graph.

When w2 and w 3 belong to the same component as L 3 and L 4 with respect to the separat- F

ing triplet {w 1 ,U 1 ,U 2 } and {V 2 ,V 3 ) is connected by an edge to L 4 then (w 1 ,u 1} is a separating

pair which separates L' 3U{v 1 )} from the rest of the graph.

vS -I & ':



..

40

Hence, w 2 and w 3 belong to different components with respect to the separating triplet

(wI,ul,u 2 ). Subgraph L 3 must be empty; otherwise [ul,w 3 ) becomes a separating pair.

Hence, (u1 ,w 3)e E, otherwise [wj,w 2 ) is a separating pair. If [v2 ,v3} is connected toL'4 then

{u1 ,u 2} is a separating pair or (wl,u 1 ,u2 ) is not a separating triplet. So, for every

xeL' 4 : (xv 2 )eE, (xv 3 )OE, 3y,zeL 4 u(w 2 ,w 3 ): (y,v 2)eE, (z,v 3)eE. Subgraph L'4 must be

empty, otherwise (W2 ,U 2 ) is a separating pair or (Wl,U 1 ,U2 } is not a separating triplet. Hence, -

(u2 ,w 2 )e E, otherwise (wl,w 3 is a separating pair (see Figure 4.9). :.. I

The above means that for each separating triplet {w1 ,w 2,w 3 ) there exists at most one

separating triplet {w1 ,u1 ,u 2} such that uleL3 andu 2eL 4. So, for every xeL'3 , and every

YeL 4 [wlx,w3), (wlx,u2 ), (WwYW2)- {wy,uj) and [wj,y,x) are not separating triplets.

Let the number of vertices in L'3 be 13. Then the number of vertices in L4 is

(n -1 -3-13 -4) = (n-1 -13-7). Then the maximum number of separating triplets that use w is
.

max _[r(n--1 3-5)- 1+r(13+2)- 1+4) =0 O s  Sn-i-L

I

w 1  .-

w2  m

LL
2 U.

44

Figure 4.9.

Illustrating the configuration between separating triplets (w 1 ,w 2,w 3 and 1w1 ,u 1 ,u2)

,,"I44'



41

max_ r(n -1-1,-5) +r (1,+2)] + 2, r (2) =1, r(1)=,

where r (n-i -13-5) - 1 counts all separating triplets which use w and two vertices from

L 4u{u 2 ,w 3), r(13 +2)- 1 counts all separating triplets which use w1 and two vertices from

L'3 U {u 1,w 2 ) and 4 counts {w1 ,u 1 ,u2 ), {[W,W 2 ,W3), fWj,uI,w 2 } and {wI,u 2,w 3 ).

The solution for this recurrence is r (n -1-3) = -(n- -3) - 2. We note that this analysis
2

leads to the following observation, which we will need later.

Observation 4.2. The maximum number of separating triplets of the fourth type which separate

,. {vi} from {V1 ,V 2 ,V 3 )-{Vi) is < -(n-1-3)- 2, and the maximum number of separating triplets
2

3of the fifth type which separate {vi) from {v1,v 2 ,v 3 }-{vi} is at most -.1 - 2.
2

0 Observation 4.2.

Since there exists a unique w, for every separation of vi i=1,2,3 from the other two vi's,

the upper bound for the separating triplets of the fourth and fifth types together is:

f(1,n-1)+f(n-1,1)33-.( max (n-1-3),)-2):5 • 3(n-4)- =-(3n-14).
2 1:51!5n-4 2 2

0 Lemma 4.4.

Lemma 4.5. h(1,n-1) _l(n-1-3).

Proof. From Lemma 4.1 we know that only one of {v1 ,v2 ,w2} can participate in the third type

.,, inG. Since IG1 I =Iand IG 2 1 =n-l-3,h(1,n-l)<l(n-1-3).

C Lemma 4.5.

Let us now tighten the upper bound for the number of separating triplets in the triconnected

' IV(Gl)I
graph G. Assume that (v1 ,v2 ,v3 ) divides G such that the ratio IV(G) is as close to one as

(G is so

.'~ .'a%|



42

possible over all separating triplets in G. From Lemma 4.5 we know that there is a unique vertex

among (V 1, V2 , V3 ) that participates in the separating triplets of the third type. W.L.O.G., let this

vertex be v 2.

Lemma 4.6. If there is a separating triplet of the fourth type or the fifth type that separates V2

from v 1 and V3 then there are no separating triplets of the third type.

Proof : W.L.O.G., assume there exists a separating triplet of the fourth type (W 1, ,W2 , W3 ), With

wIe G 1 and W2 , W3 =G 2 , which separates V2 fromv I andyV3.- It separatesG I intoK I and K2 ,

and separates G 2 into K 3 and K4 . From the proof of Lemma 4.3, K 1 is empty, (w 1, v2 )e E and

KK

.33

2N

Figure 4.l1Oa.
Illustrating the proof of Lemma 4.6.]

wil ,x10 11 - --- - - - - -.



43

Assume there is a separating triplet of the third type {u14V2 ,U2 ), where u1 EG1 and

u2eG2. It separates G 2 into L 3 and L 4 . Let L 4 rK 4 =L 4 . By Claim 4.1 v2 must be con-

nected by an edge to every nonempty component of G1 ,G 2 which is created by separator

{U 1,V 2 ,U 2 ). But since w1 is the only vertex in G1 that is connected to v 2 , we must have either

u I = w 1 , or u 1 is the unique neighbor of v 1 in G1 , or u 1 is the unique neighbor of v 3 in G 1.

However, if u 1 = w I then K2 must be empty, otherwise {w ,,v 3 } is a separating pair or { w 1 ,v }

is a separating pair or both. Hence in the case when u1 = w1 , G 1 consists of the single vertex

w1 =u1 , which is connected to V1 , V2 , and v3. Since the cases when uI is the unique neighbor

.10of v1 in G1 and when u 1 is the unique neighbor of v 3 in GI are symmetric we can W.L.O.G.

analyze only for the case when u I is the unique neighbor of v 1 in G 1.

.4. If v 1 , v 2 and v 3 are separated by {w 1 , w 2 , w 3 ) from each other then we have the following

analysis. In this case i: 4 consists of two disjoint parts: one L 4 which has all of the paths

between L"4 and u2 passing through w2 , and the other L"4 which has all of the paths between

L' and u2 passing through w3 (see Figure 4.10a). One of w 2 and w3 must be in the same com-

ponent as v1 in G - {u1 ,v 2,u2 }, and the other must be in the same component as v3 . This is

the case because if both w 2 and w3 are not in the component of v, in G - {U1 ,v2,u 2), then

{w1 ,u 2} separates v, from w2 and w3 , since {w1,w 2 ,w 31 separates v1, v 2 , and v3 from each

other and every path between v, and {w2 ,w 3) must pass through u2 . W.L.O.G. assume that
- -.

w 2 and v I belong to the same connected component in G - {u , v 2 ,u 2 }, and w3 and v 3 belong

to another component (see Figure 4.10a). Hence, edges (vl,w 3) and (v3 ,w 2) cannot be present

in G. Moreover by the same argument, there are no edges (l,w 3),1eL'4 and (,w 2 ),IEL"4 . Also

there are no edges (U2 , V1 ) and (U2 , V3 ) in G, since {W 1,W 2 ,W 3 ) is a separating triplet which

- separates v 1 , v 2 , and v 3 from each other. Moreover by the same argument, there are no edges

* (,u 2 ),leL4 . As noted above, we assume W.L.O.G. that uI is the unique neighbor of v, in K 2 .

Hence {u1,w 2 } separates {v1 I )L' 4 from the rest of G2 , which contradicts the fact that G is

. .



44 -

triconnected.

If v, and v3 are not separated from each other by {wI,w 2 ,w3) then we have the following

analysis. Recall that G2 is separated into K 3 and K4 by (w1 ,w 2 ,w3 ) (see Figure 4.10b). Since

u 1 is the unique neighbor of vI in K 2 and (u1 ,v 2 ,u 2} is a separating triplet, u2 must break all 0

paths either between v2 and (V 1 ,V 3 ) through G2 , or between v, and {v2 ,v 3} through G 2. If

u2 EK 3 then (W1 ,U2) separates V2 from v1 , since (Ul,V 2 ,U2 ) is a separating triplet. Ifu 2eK 4 O

then in order for {Ul,V 2 ,U 2 ) to be a separating triplet, either {ul,u 2 } separates v, from v3 , or . ,.-

{v2,u 2 } separates W2 and W3 from v 3. If u2 6 (W 2 ,W 3 ) then {U 1,V 2 ,U 2 ) is not a separating

triplet, since there is a path from w, toK 3 through K2 -(Ul),V 3 ,K 4 .dvl,and {w2 ,w 3}-{u 2)

in G - (ul,v 2 ,u 2 ). -:

These two contradictions prove the lemma. 4.

0 Lemma 4.6.

Wl 3  " .'

w2  3 :

N'V4

K0

Figure 4. 1Ob. .

Illustrating the proof of Lemma 4.6. .

W.T

K2 0'-'W.%



45

Now we will do a case by case analysis of trade-offs between separating triplets of the third

type and the separating triplets of the fourth type and the fifth type.

If there exists a separating triplet of the fourth type that separates v 1 from v 2 and v 3, then

no separating triplet of the fifth type exists which separates v I from v 2 and . (Observation 4.1).

Since the separating triplets of the fourth type and the fifth type are analogous, we need to con-

sider only one of them in the case analysis.

If there is a separating triplet of fourth type {w1,w 2 ,w3 } with wIeGI and w 2 ,w 3e G 2 ,

that separates v, from v2 and v3 , then we have the following analysis. G2 is separated by

(w 1 ,w 2 ,w 3} into G'2 and G2 and G 1 = (wl})uG 1 (see Figure 4.11). Choose (w 1 ,w 2 ,w 3 } to

maximize I V(G' 2 )1. Let I V(G' 2 )M{w 2 ,w3 ) ="2. Now we will consider two cases

"'2a

. t1

X Xa

22
3i- G N

Figure 4.11.
Illustrating Case A in trade-off analysis.

J ---



46

depending on whether or not a separating triplet of the fifth type exists, which separate v 3 from

{v 1,v 2 ). We do not restrict separating triplets of the third type (recall that such a triplet always

includes v2 ), or separating triplets of the fourth or fifth types which separate v2 from {v 1 ,v 3 ,

Case A: There is no separating triplet of the fifth type that separates {v3 ) from {v 1,v2 ) with T 1
x1 EG1 and x 2,x 3EG 2. If there is a separating triplet of the fourth type (Xl ,X2 ,X3) that

separates {v3 } from {V1,V2 } withxleG 1 andx 2 ,x3eG 2 (see Figure 4.11), then it separates G 2

into G 2 and the rest of G2. Since it separates v 3 from {v1,v2 ), we must have for every

xG G2 :(x,v 2)e E. Vertices x 2 and x 3 r G 2 U {w2,w 3 ) (recall that G 2 =G2 -G'2 - {w2 ,w3 }),

otherwise there is no vertex of G2 which has an edge to v2.

Let 2 = 2- G 2. Furthermore, suppose {Xl,X 2 ,X 3 } maximizes I V(G 2 ) 1. Let

I V(G 2)Utx 2 ,x3 ) I =12. Note that if there is no separating triplet of the fourth type which "

separates v3 from (vI,v 2 ) then 12 =0.-

Assume there is a separating triplet {U 1,V 2 ,U 2 }, of the third type where ujeG1 and

u 2 eG 2 . Since {w 1,w 2 ,w 3 ) separates v1 from v2 and v 3, and since IG'2 I is maximum among

all separating triplets of the fourth type which separate v, from v2 and v3, we must have for

every xEG'2:(X, V2)eE. From Claim 4.1 we know that there must be edges between v2 and

every nonempty component of G with respect to the two separating triplets {Vl,V 2 ,V3) and

{UI ,V2 ,U 2 }. If u 2 eG'2U{W 2 ,W3) then {WI,U 2 ) would be a separating pair. Hence, u2Ea 2. -,

Analogously, using the above analysis for the separating triplet {Xl,X 2 ,X3 }, we get that u2e 2 .

Hence, using Lemma 4.5 we get that the number of separating triplets of the third type is at most "-

IV(G)I.IV(G 2)I =1(n-1-1'2-12-3).
o %

By the proof of Lemma 4.4 and the fact that I G'2I is maximum we know that for all

separating triplets {y ,Y 2,Y3 ) of the fourth type which separate v, from v2 and v3 , vertices Y2 -. .,,i

and Y3 are inside G'2 Uw 2 ,w 3}. By the proof of Lemma 4.4 and the fact that IG2 1 is max-

imum we know that for all separating triplets (XlX 2 ,X3 } of the fourth type which separate V3



/.

47

from v 2 and v 1, x 2 and x 3 are inside G2 U {w 2,w 3 }. Hence, the number of separating triplets of 1
fourth type which separate vertex v3 from v2 and from vI or v1 from v 2 and v3 is at most

I V(G' 2 ) I + I V(G 2 ) I = 3(1'2+2) (Observation 4.2).

2

We can have separating triplets of the fourth or fifth types which separate v 2 from {V 1 ,v3

if we do not have any separating triplets of the third type (Lemma 4.6). We cannot have separat-

ing triplets of both the fourth and fifth types which separate v 2 from Iv 1 ,v 3 ) by Observation
4.1. If we have separating triplets of the fourth type which separate V 2 from I v 1, v 3 } then by the

analysis above the maximum number of separating triplets of the fourth type which separate one

32
of three vertices tvl,v 2,v 3} from the other two is upper bounded by (n-1-3). If we have

2

separating triplets of the fifth type which separate v 2 from {v . v3 ) then by the analysis of Case

B below (i.e. there is a separating triplet of the fifth type {x1 ,x2,x 3 } which separates (V 3 ) from

{V 2 ,V 1 } with xIeG 2 and x 2 ,x 3eG 1) for separating triplets of the fifth type the maximum

number of separating triplets of the fourth or fifth types which separate one of three vertices A

{v 1 ,v 2,v 3 } from the remaining two is at most 3(1'2+12 + I-1). Note that
2

33;4
-(1'2+12 + 1-0l) -(n-4), because 0<12 5 n-l-l'2 --4, 0:5I' 2 -n-l-4 and 1 _1 n-4. Hence,

we obtain that the upper bound on the number of cross separating triplets of Case A is

3I
fa = max( max (I(n-1-1'2-1 2 -3) + (1'2+2)), !(n-4)).

O51' 2!<n-1-4 2 2;.,.. O 1_ n-I-' 2 --4

Case B. There is a separating triplet of the fifth type {x 1 ,x 2 ,x 3 } which separates {v 3 from

{V2 ,V1 } with xe G 2 and x 2,x 3E G 1 (see Figure 4.12). It separates G I into G',u (w1  and G 1 .

Choose {x 1 ,x 2 ,x 3 ) to maximize I V(G 1 )1. Let 1 = IV(G I)U{X 2 1U{X 3 } I.

,15,"-'p... ' /- . % . . . ¢ 
'

v ",'-""-.", ,"..."'"-.."-.",".- ."- ,"." . .". - "-:,'"' i



48 ',

vP

"I

G'r

p

X V
G1

v~ 3

Figure 4.12.,.

~~Illustrating Case B in trade-off analysis.

?If there is a separating triplet of the third type I{U ,V 2,U2), whereu 1EG I andu2e G 2, then ' :

} ~by analysis of Case A u 2 e G 2 { x 1 }). Analogously, by the same analysis for the separating tri-'..,."

plet xI,x2,x3 , ulrG'I wl. Hence, using Lemma 4.5 the number of separating triplets of
the third type is at most (n -1412-3)(/ -11 ). "

The number of separating triplets of the fourth and the fifth types except the ones which ""

separate v 2 from {VI, v3 }) is at most 2(l'2+11) by the analysis of Case A and the above analysis. !

. We can have separating triplets of the fourth or fifth types which separate v 2 from {v V , v3 ) if we i'

• don't have any separating triplets of the third type (Lemma 4.6). We cannot have separating tri-
plets of both the fourth and fifth types which separate v 2 from v 1, v 3} by Observation 4. 1. If -"

'N



49

we have separating triplets of the fourth type then number of separating triplets of the fourth type

is at most 3(n -1-3) by the analysis of Case A. If we have separating triplets of the fifth type
2

then number of separating triplets of the fifth types is at most -1 by the above analysis. Hence
2

in this case the upper bound on the number of cross separating triplets is

fb=max( max ((n-1-l'2-3)(1-1 1 )+ -(12+11)), 1(n-4))
O- r2 5n--4 2

a. 051:5-1

Combining the results from Cases A and B we obtain the following recurrence for g (n):

g (n) - max (g (1+3) + g (n-1) + max(fa,fb) + 1)
isli~n-4

Note that the first term in each of fa and fb is bilinear in '2, 12 and 11, hence the maximum

is reached at the endpoints of the intervals for l'2, 12, and I,. The recurrences we get at the end

points of the intervals for12 and ll are identical up to the symmetry with respect to I and n -1-3. a'.

Hence, we will analyze the recurrence for 1'2, 12 only.
-se.

The maximum is reached at 1'2 =72 = 0 when n-4>I >1 and the recurrence become

g(n)< max (g(1+3)+g(n-1)+l(n-l-3)+ l)
. ". l1l~n--4

12 5n .Nt ht ihtiThe largest function satisfying this recurrence is g (n) =-n - 2. Note that, with this

2 2

solution, equality holds since this recurrence is the recurrence for the wheel and the wheel W, -:

has this number of separating triplets. .'

If 1 = 1 or if I =n-4 then maximum is reached only when 11 I'= 0 and 12 =n -4 or

12 = 11 = 0 and 1'2 = n-4. But then either {V l ,w 2 ,w 3 } or (v 3 ,x 2 ,x 3 }, or the separating triplet

of the fourth or fifth type which separate v2 from Iv ,v 3 } would be chosen instead of
1 V(G 1) 1'

{v I,v 2 ,v 3 }to get the ratio V(G 2 ) I closer to one. Hence, I cannot be equal to 1 or n -4.

-r I



50

Hence the maximum number of separating triplets for an undirected triconnected graph on

n vertices is exactly 1 n2_n+2.5 n
2

0 Theorem 4.2.

4.2.3. Appendix

Solution to the recurrence g (n) < max(yg (ni + 5) + 51 + 1) for the representation of

separating triplets with constrains '
1 4... .4.

X(ni+ l)+ 1 n 2:51 n-1 ni >O 
i=l "

Let g (n) =5n - 46,

g(n)<_max(yg(ni+5)+51+1)=max(y(5ni-21)+51l+ 1)
l i=1 1 i=1 )

max(5( (n +) +1) -261 +5l -4) =max(5n - 21- 4) _<5n -46
1 i=1 1

4.--

I



CHAPTER 5

UPPER BOUND AND REPRESENTATION

FOR THE SEPARATING K-SETS: GENERAL K

5.1.0 (2 k !-) Upper Bound and O(k 2 n) Representation for General k

k

Let G =(VE) be an undirected k-connected graph with n vertices and m edges. We denote

with g (n) and f (n) the upper bounds on the size of representation and the number of a separat-

ing k-sets for k-connected graph on n vertices. Let V"= (vl,v 2," ,vk) be a separating k-set,

whose removal separates G into nonempty G, and G 2 (see Figure 5.1). A separating k-set

{w 1,w 2 , "" ,wk) of G is a cross separating k-set with respect to V if for some i and j, wir G1  -

and wje G 2 . Let the cardinalities of G, and G 2 be I and n-I-k, respectively. Let the upper

bound on the size of the representation of the cross separating k-sets be h (1,n -1), and the max-

imum number of cross separating k-sets be r(l, n-1). Then maximal g (n) and f (n) that satisfy

the recurrences

g (n)S5m Ixj1g(l+k)+g(n-1)+h(,n-1i
lt

i ~Figure 5. 1. ,."

Dividing G into G 1 and G 2 by separating k-set {v 1, - • vk }

-0



52

f(n): axf (+k) +f (n-) +r (1,n-,1 +

I' . 1

are upper bounds on the size of representation and the number of separating k-sets in G. Now

we will derive upper bounds for the functions h and r and solve the recurrences.

Let (Wl,W2,''',wk} be a cross separating k-set with (wl,"',w,} cG, c.,

{w,+t+i,"',w) cG 2 and (w,+1,"',w,+t} c {vl,-",vk}. The separating k-set

{w 1,w 2 ,... ,Wk) separates GI into G3 and G 4 , separates G 2 into G5 and G 6 , and divides

(V1, ,V) into [V1 , {V,, Vr+t+, ,Vk) and Vr+i =ws+i, i = 1,....,. (see Figure 5.2)

Case 1 None of Gi, i -3,4,5,6 are empty. (see Figure 5.2) -4

The sets {w1 ,w 2 , - *,ws+t,vl, " ,v,), {W1 ,W2 , .. ,Ws+t,Vr+t+ , " ,v , ' .

{vl,"+ ,Wk) and (Vr+i, ,vk,ws+t+1, ,wk) are separating sets of G that
v

G A G ,","

v r

w I  Www
S. ss+t+l k

v
r+t+l

B -

+vk .
Figure 5.2.

Dividing G into nonempty components by separating k-sets
v1 , •••,Vk} and (wl, ... ,wk}.

-S *S



53

separate G 3, G4 , G 5 and G 6 respectively, so their cardinalities are greater than or equal to k.

Then,

s+t+r'_k r+s+t2k
r+t+k-s-t>-k r s r =s
s+t+k-r-t2k s>r = r+s+t=k
k-r+k-s-t>_k k r+s+t

From now on we replace the subscript r by s. Let A = {v 1 , ,v},B = {Vs +t+1, vk

C= {wl, ' ",ws), D = (ws+t+,'",wk}, and T = {vs+l,'",v,+t) =ws+," ws+t}. For
CaseI 1A I = 1B I = I=CI =ID I = k-t

2

Claim 5.1. For all i, i = s+l....t and for each j = 3,4,5,6, there is xj Gj, j=3,4,5,6 such that %

(vi,xj)e E.

Proof: W.L.O.G. assume there is vi such that for all xEG 3:(xvi)tE. Then S

V 1, " Vs+t, Iw 1, , WS { vi} is a separating (k- 1)-set.

[] Claim 5.1.

Claim 5.2. For every xeA there are ye G 3 and ze G5 , such that (x,y)e E and (x,z)e E. Analo-

gously, for every vertex x of B, C and D there are vertices vi in those Gi, i=3,4,5,6, which are

adjacent to x, such that (x, vi)e E.

Proof: W.L.O.G. assume there is xeA such that for every ye G 3 (x,y)e E. Then AuCUT-{x}

is a separating (k- l)-set.

12 Claim 5.2.

Lemma 5.1. All cross separating k-sets containing CuT and at least one fixed vertex of D can be

represented in 0 (( __L)2) space, and their number is 0 (2 )

Proof. Assume we have a separating k-set 0

R= {W 1 , ,Ws+t+a,Xs+t+a+l, "'" ,Xs+t+a+bYs+t+a+b+l, ,Yk), where

1 R



54

{xs+t.a, ,xs+t+a+b)r=G5 , (Yst+ao+I, "'" ,ykG}G6, a 1, and either b or k-s-t-a-b is

greater or equal to 1 (the new cross separating k-set is different from the old one) (see Figure

5.3). #.2

LetH = (xs+t+a+i, "'" ,xsa+ and! = {Ys+t+a+b+l, ),} and letD be divided into

D', E, and F, where: D'= (ws+t+l, • " ww+t+,}; E is in the same connected component of G

with respect to the separating k-set R as G 3, A, arid part of G5; and F is in the same connected

component of G with respect to the separating k-set R as G 4, B and part of G 6. Also let H

divide G 5 into G'5 and G"5, and let I divide G 6 into G'6 and G"6 (see Figure 5.3). V

Separating sets TuD'uEuH and TuD'uFuI separate G"5 and G"6 , respectively. The

cardinalities of these separating sets are less than k. Hence, G"5 and G"6 are empty. Moreover,

since CuTuD'uHuF and CuTuD'uEuI are separating sets and CuT)D and N 2

C uTuD'QHuI are separating k-sets, IE I = IH I, and I I = IlF . Note that the argument still

G A 6
3 5

D 5~

.

T 
r

H

B
6 6

Figure 5.3.
Illustrating the proof of Lemma 5.1.Figue 53.

Illustrating thKe%'S . 'pro of Lema .. 'SPV



55

S holds if either H or I is empty.

Next, we will show that if we replace part of E and/or part of F we will necessarily use only

vertices of H and/or I for it, regardless of whether we replace part of D' or not. In other words,

H and I are unique for E and F. The proof is by contradiction.

Assume that there exists II uH s IuH, such that CuTuD'uH 1 ul I is a separating k-set.

Let H 1 cG 5 and I I 1 G 6. Also, let I1 +H 1 divide E into E I and E 2 , and divide F into F 1 and F 2

S (see Figure 5.4).

Let H I be separated into two parts, H'I adjacent to E and E", adjacent to F. By the above

arguments H'1 is adjacent to E1, H" is adjacent to F 2 , and! 1 is adjacent to E2 uF 1. Since all

C neighbors of E in G6 are also inI, and all neighbors ofF in G5 are also in H, H"1 c H and!I is

divided into!'1 =Iul and "= I-I'. Let H' = H-H", and let =- 1-1-1.

G A 5

o E

L2A

°''

%

Figure 5.4.
Illustrating the uniqueness of a replacement for a part of cross separating k-set.



56 '

The separating set T uD' H' UH separates E I from the rest of the graph and has cardinal- -

ity less than k. Hence, E 1 is empty and we have I =I',, E = E 2 and H 1 = H"I. Analogously,

the separating set TuD'UI I H separates F I from the rest of the graph and has cardinality less

than k. Hence, FI is empty and we have F =F 2 , E =E 1 , H =H 1 andI =I,. This contradicts

the assumptions.

Note that the arguments still hold if either H or I is empty, or if we replace only parts of E ,

and F. If part of D' is replaced as well, then we will not replace it, so that we will look only at

the replacements for E and F. Also, if there exists a separating k-set that replaces F by H, then

there is no I I rG 6 that replaces any part of F for any cross separating k-set described in Lemma . ,

5.1.

Thus, any replacement of any part of F for any cross separating k-set specified by Lemma

5.1 lies in H. The fringe of D is the set of vertices which is used for all possible replacement of

any part of D for a cross separating k-set specified by Lemma 5.1. H is the fringe of F and I is

the fringe of E. Note that there could be parts of D which do not have any replacements. The

cardinality of the fringe of D is less than ID I. Hence, the representation of all cross
2

k -t2separating k-sets with CUT fixed along with at least one vertex from D takes 0 (( )2) space,
2

kt 2where 0 ((__ )2) space is needed to specify all edges between D and its fringe. This proves the
2

space complexity for the representation.

IDI-

The number of different subsets of D is 2t. Since for every subset EuF of D there is a -

unique replacement (if it exists), the number of separating k-sets of G with CUT and at least one

k-t

vertex from D fixed is upper bounded by 0 (2 2 ). This proves the second part of the Lemma.

0 Lemma 5.1.

Corollary 5.1. All cross separating k-sets containing TuD and at least one vertex from C can
::,

*5



1I

57

be represented in 0 ((K-L)2) space, and their number is 0(2 -

2 1 

Take a maximal set X={C1 C2 , ,Ca) of disjoint CieGI such that CiUTuD is a

separating k-set and that for each Ci there are no vertex of Cj,j # i in the fringe of Ci. Analo-

gously, take a maximal set Y={D 1,D 2 , ,Db} of disjoint DieG2 such that CuTUD i is a

separating k-set and that for each Di there are no vertex of Dj,j * i in the fringe of Di . For T

fixed, all cross separating k-sets are upper bounded by i
~k-t k-t

0(2 2 IX 122 IY I)= 0 (2k- t IXI I Y I), and are represented in 0 (( )2(IX I + IY I))

space. Next we will see how many different T's we need to consider.

Take the smallest T=TI such that a cross separating k-set will have nonempty Gi

i=3,4,5,6, if it exists. If there is a separating k-set with different T = T 2 , T I *T2 , then it can be of

four different types:

Type 1). T 2r)A- 0 and T 2 riB*0,

Type 2). T 2 rA=0 or T 2rB--- and TtriT2 *0,

Type3). T2(_A=OorT2nB--O andTlnT2=0,

Type 4). T 2  =--0 and T 2 r¢B=0. rA %

Let us first consider type 4 cross separating k-sets. Since r2 must lie completely inside T, I

and T1 has the smallest cardinality, then T 2 = T1 . Let the cardinality of X, the maximal disjoint

set of C's, be 11, and let the cardinality of Y, the maximal disjoint set of D's be 12, where ,,
k-t

11 + 12 = 1. Recall that the set X is the maximal disjoint set of separating -- sets in G 1, and

"" k -t..
the set Y is the maximal disjoint set of separating -- sets in G 2 . Let C be the separating

k-t
-sets in G 1 such that all other C's eX are on one side of it (C I separate G I into G' and G",2

.CiE G" or .Cie G".) and all paths from them to B in GI uB must pass through it. Let Ci be

LAO '1 .1,._



rVWMk-IPRPMnt P.MM5 ' xX".w WWV% "MM 7MM

the separating ----- sets in G such that all Cj j < i are on one side of it (analogous to the one .

above). Note that by Lemma 5.1 such an ordering of Ci's must exist. By Lemma 5.1 and the ,.

fact that the Ci's themselves are disjoint, note that such an ordering of Ci's must exist. Analo-

k -t-.- .6
gously, let D I be the separating --- sets in G2 such that all other D's c- Y are on one side of it '-

and all paths from them to A in G,2uA must pass through it. And let D i be the separating -- t- .-

sets in G 2 such that all Dj j <i are on one side of it. Let us relabel A, the set of elements of X, B '

and the set of elements of Y. So A becomes A 1, the D I becomes A4 2 ... Db becomes Ab+I, B

3"I

becomes Ab+2, C, becomes Ab+3 ... C a becomes Ab+a,+2 (see Figure 5.5). 'Me cardinality of "

this set is I + 2. From -- proof of Lemma 5.1 we know that all cross separating k-sets of type 4

consist of three parts: T 1, C which is inside G I and is inside some C's from set X and its fringe,

and D which is inside G2 and is inside some D's from set Y and its fringe. Note that TU any

two Ai,i=l," +2 are also separating k-sets if the parts of the graph between them are

nonempty. We can also replace parts of Ai by its fringe as long the above condition will be true. 2

Let the part of the graph G between Ai and A i+,i=, a +2 be Gi, i =, o +2 (i in this case

taken rood/1+2). Let Gi - the fringe of Ai in Gi - the fringe of Ai+I in Gi be G'i,i=l, 1 ,+2. " .

The only case when TAiuA j (or parts of the fringe of A i and Ai+ 1 ) i <j is not a separating k-set

when i =j -I and G'i = 0.•

Based upon above observations the structure (structure 1) which covers all cross separating '",

k-sets of type 4 will be the following (see Figure 5.5): ar

) Ai with its fringes for all i=1, J ms pa+2, t-i

2) For every nonempty G'all D , •i a on o+2 we fill all nonexistent edges of the complete graph

on the neighbors of G'i as real edges. If G'i,i= 1, J e +2 is empty for some i then we fill

these edges as virtual edges. All of the edges of G between A and Gi+,i=1, - o+2 are

in the structure as real edges.

";- .1" .-



59 "

A 0

0

1 G

Ai+ 3 i (D

'A 4- G
4~41

S42

Figure 5.5.
Mustrating the representation of the separating k-sets

of Case I Types 3 and 4
(Structure 1).

Let us see where the rest of the separating k-sets lie assuming there are no cross separating

k-sets of type I and type 2. Note that we allow separating k-sets of type 3. Let us first define

. exceptional separating k-sets. A separating k-set is exceptional if it separates only part of Ai and

nothing else for some i=1, - ,I+2.

Lemma 5.2. All separating k-sets which are not covered by the structure 2 and not of type 1

and 2 and not exceptions are inside GiuAi and its fringes inside Gi-I uA+j and its fringes inside

Proof: Since there are no type 1 and type 2 and no exceptions in separating k-sets, no separating

k-set uses T. There are also no cross separating k-sets which are not covered by the structure 1.

Let us see what happens if a separating k-set crosses some Ai,i=l, ,+2 (see Figure 5.6).

(Separating k-set divide G into G" and G" and it is such that there is xeA i and xe G' and there is ,,

yeAi and ye G".)



60

W.L.O.G. let EuaFuH is this separating k-set, which crosses Ai, where EcG5 , FcG6 and

HcAi. It divides Ai into A'-, A"i and H. It also divides G5 into G'i and G"i, and it divides G 6

into G'6 and G" 6 . Both A"- and A'- are nonempty, otherwise the set Y is not maximal, or there is

no cross separating k-set. If G"5 and G"6 are nonempty then EuHuA"i and FuHQA"6 are

separating sets with cardinalities bigger or equal to k. But both of them can not have cardinality i

bigger or equal to k, hence, one of G"5 or G" 6 must be empty. W.L.O.G. let G"6 be empty.

Since A1+1 ufTAi and A1+1 UTuA'iuHuF are separating k-set and separating set, respectively 0

IF I IA"i 1. Since EuHuA". is a separating set, and since both G"5 and G" 6 cannot be
,I.

empty (exception), we must have I A"i 1 I_ IF I. Hence, A"i I = IF 1, and F is part of the fringe ;
of Ai. •

Let us see what happens if a cross separating k-set crosses (as defined above) two adjacent

Ai 's, W.L.O.G. EtH I .FQH2 uJ is a separating k-set, which divides A1 into A'i , H 1, and A'"i,

0
1 A2

0 A@G"

G' E7

4G H . ,,

- - , N,,. N

Figue 5.. ;( "2
l~lutraing he roofof emma5.2

A" "X"
43 +

£ .:.4" :,,'':~t'~d:.~p,.,:,:,~d,:,':.....::..,.. .. ,-.-. ... ,..-.,. ,W'..r.-.-.,... -. 'G"'



F a 6 1

and divides Ai+ 1 into A'i+1 , H 2 , and A"i+1 . It separates Gi- 1 into G'i_ 1 and G"i- 1, it separates

Gi into G'i and G"i, it separates Gi+1 into G'i~l and G"i+1 . By the above argument, G"i-1 and

G"i~l are empty, and E belongs to the fringe of Ai, and I belongs to the fringe of Ai=I. Note that

we don't need to use the assumption that there are no exceptions. A cross separating k-set can-

not cross three adjacent A i 's, since with respect to the middle Ai neither of G" 5 and G" 6 can be

empty. Hence, all other separating k-sets, except exceptions, belong to GiuAi. its fringes in

.- Gi-.1 4 L'Ai+ 1 . { its fringes in Gi+ 1 }.

0 Lemma 5.2.

Let us now consider exceptions. W.L.O.G. let there exist an exceptional separating k-set,
I

which separates part of Ai. In othei words, there is a separating k-set which separates part of Ai

(A'i), such that all of the vertices not in AiuT are neighbors of A'i. The number of the neighbors -\

of A'i in Gi-I uAi- uGiLuAi+I is less than k. Consider the minimal set of subsets of Ai that coy-

ers all vertices of Ai which can be separated by some exceptional separating k-set. The number a

" " k - t
of subsets in th's set is less than or equal to the cardinality of Ai, hence is at most -- The

number of neighbors of Ai that are used for separating these subsets is less than or equal to k ver-

k2  2

tices per subsets, so their total is ac most -. Note that -- k such vertices can be inside either
-:2 2

GiluAi_1 or GiuAi,,. Moreover, if vEAi participates in some subset of Ai, that can be

separated by an exceptional separating k-set, then v has less than k vertices in

Gi-1 Ai-lt...)GiAi+l. Hence, if we take the union of the following sets

I) GiuALLuAi+I
.;,

". 2) the neighbors of A, in Gi_ 1 uA i , that are used for exceptional separating k-sets

3) the fringe of A,

4) the neighbors ofAi 1 in Gi, 1 UA, 2 , that are used for exceptional separating k-sel



62 "

5) the fringe of Ai-.,1

for all i's we will obtain all separating k-sets which are not covered by the structure. %

The number of exceptional separating k-set for Ai is bounded by the number of different

k-i

subsets of AL. Hence, it is less than or equal to 2 Thus, the number of exceptional separat- .

k-i

ing k-sets is at most (1+2)2 2

Based upon Lemma 5.1 and the above observation about exceptions, and using structure 1, -

we can write the following recurrence, which is valid if there are no type 1 or type 2 separating

k-sets:

1+2 k -t
g (n) < max( g (ni+k (k-t)+t) + (1+2)(-)k + t),

2

i-t -
where every term inside the sum covers one of the Gi's, and (1+2)(- ) + t is the upper bound

2

1+2 ( kt)
on the size of the structure 1. Note that 1+ h "+2)(k-_) +t = n. Note also that for some of the . ,i=1 - ,

g (ni+k (k-t)+t) we might not be in Case 1 anymore, then we will use the recurrences for Cases

2 and 3. Once we enter Case 2 or 3 we can never return to Case 1. The solution to this

recurrence is 0 (kn + k 3) (see Appendix 5.2). Note that each (ni + k (k -t)+t) is less than n itself.

We will show later that solutions for Case 2 and 3 are lower than above solution.

Analogously, the recurrence for the upper bound on the number of separating k-sets become

k-t
1+2 1+2 -

f (n) max( Ef (ni+k (k-t)+t) + 2-'1- + 2 2 (1+2)). -
2

2
The solution to this recurrence is 0 (2 k---). Note that all cross separating k-set of type 3 are

k

also covered by these recurrences.

p%

................................



I--

63

Now we will look at type 1. Let T 2r'u4=T 2 , T 2rB=T"2 , and TnrT 2 =T2 . With respect to

a new cross separating k-set which uses T 2 some Gi i=3,4,5,6 could be empty. Let us first look

at a harder case when none of Gi i=3,4,5,6 are empty with respect to a new cross separating k-

set.

A new cross separating k-set must cross C and D of the old cross separating k-set which

uses TI, otherwise the Claim 5.1 with respect to the new cross separating k-set will be violated

(see Figure 5.7).

Second, T 2=T1 , otherwise Claim 5.1 will be contradicted for the old cross separating k-set.

Third, C'j uC'2 uH 1 tTjTu" 2 , C"juC"2 H u uTj u 2 , D'juD'2  H 2 -T jr "2 , and

D"juD"2tuH 2uTT T"2 are separating sets with cardinalities less than k, which separate G" 4 ,

G"3 , G" 6, and G" 5 , respectively. Hence, G" 3 , G" 4 , G" 5 , and G" 6 are empty.

GA 2 G

c '.'?,. 02

I.'

Tp

IllustratugstheiFig ren .c u bw t ca

whc3 s ifeetTs

.p '~. P~ . ~ ? ~ .> ~ . ~ ~ ~~ N <' ~ ~ *5 ~ **4'55R
4  

(4."T5

D"'



64

P1%

Fourth, C'1 H l uC"2 uT2.D' 2 UH 2 uD"2 , C' 2 uH I UC"2 uT 2 uD'2 L")H 2UD"1 ,
Ir'

C'2 uH 1 uC"1 QT2uD'2uH 2UD"2 , and C'2UHIUT2 uD'IuH2 uD"2 are separating sets.

Hence, IC'1 I > IC'2 1, I D'I I I D'2 1, IC" 1 I_ IC"2 1, and ID"l I ID" 2 1. Also,

C'I UH UC"2 UT'2uT ID'IuH 2UD"I, C'2 uT"2uHlIuC" uT 1 D'IuH2uD"I, . %

C' 1 uH 1 ,uC" uT 1 uT' 2 uD'2 )H 2 u.)D" 1 , and C'I uH uC"I uT UT 2 UD'1 uH 2UD"2  are

separating sets. Hence, -

IC'2 I + IT 2 1 IC'1 1 2 IC'2 I >0

IC"21 + IT 21 1C"1 I- IC"21 >0

ID'2 I + iT"2 1> ID'1 > ID'2 I>0 . "

I D" 2 1 + 172 12 I D"I > ID" 2 1 > 0

Also since we are still in Case 1 with respect to both old and new cross separating k-sets, we "

have the following equalities

{7'TI = 17T21

IA2 I = IB2 I = ID' 2 1 + IH 2 I + ID" 2 I = IC'2 I + IH 1 I + IC"2 1

Note that the set T 2 has edges to the set D"l, the set T"2 has edges to the set D'1 , the set 7 2 has S

edges to the set C'I, and the set 7 2 has edges to the set C"I, because of Claim 5.1 with respect

to the new cross scparating k-set. Hence, the maximal disjoint sets for C's and D's (X and Y)

will have cardinalities equal to 1. - 5

Let us take a maximal T 2 , and let us take the fringes of A 2, B 2 , C and D (see Figure 5.8).

C' does not have the fringe in G 4 , otherwise part of C', which has a fringe becomes a part _ "

of I',. If C', has the fringe in G 3 then the part of C', which has the fringe can be separated from '"

the rest of the graph by a separating set C'2 Ur'2 uTIu {the fringe of C' in G 3 }, whose cardi-

nality is less than k. Hence, C'1 does not have the fringe. Analogously, C"I, D'1 , and D", do

not have the fringes. Symmetrically, T 2 and T"2 do not have the fnnges.

. . .. ; .= 11- d. - I % " • _ ,-, . . . .. s ... " -- .



I"I
65

0 3 A2  G3 5

•, ,

22 1

T 3
2 2

Figure 5.8.
Illustrating the representation of separating k-sets of Case 1

if two or more different intersecting T's exist.
(Structure 2).

Let T 2 be the union of vertices which are used for all possible T2 which create a cross

separating k-sets with nonempty G i i=3,4,5,6. Let D'1 be the union of all possible D'I, D"' be

the union of all possiole D"1, C', be the union of all possible C'1 , C", be the union of all possi-

ble C" 1, C'2 be the union of all possible C'2, C"2 be the union of all possible C"2 , D' 2 be the

union of all possible D'2 , and L"2 be the union of all possible D" 2. Let us show that all of these
.4.

sets are disjoint.

Since all of them are symmetric we will prove it only for C'1 and C" 1. Assume there are

T 3 and T4 such that C", for T3 is not disjoint from C', for T4 . Then C", nC', is nonempty and

is separated from the rest of the graph by a separating set C"2 for T 3 U 7'3 TIU 7"u 4 U C'2

for T4 , whose cardinality is less than k. This contradiction proves the statement.
!4



66

The cardinality of the union l'2Ul"2Ik -t is less than and analogously, the car-

tk- Let us calldinality of C"2 C'2 I'1 )I"2 is less than C2 , C"2 , D'2 , and D"2 the pseu-

dofringe. Note that A and B might have fringes, but by the symmetry T 2-T 1 does not have any

fringes.

The structure which represents all separating k-sets for all possible T's will be the following

(structure 2) (see Figure 5.8):

1) the original separating k-set with its fringes,
2) the cross separating k-set with minimum cardinality T 1 with its fringes and pseudofringes, -

Ov

3) for every nonempty G'i i=3,4,5,6 we will fill all nonexistent edges of the complete graph on

the neighbors of G'i. If G'i is empty for any i=3,4,5,6 we will all these nonexistent edges

of this complete graph by the virtual edges. (For G'3 we fill the edges between the vertices

of the fringe of A in G 3 , T1 , 7 2, part of A2 which does not have any fringes, C'1 , '1, H 1 , .,

1r2 and C" 2 ).

From the construction of the structure it is easy to see that this structure covers all cross .- .

separating k-sets for all possible T's, of type 1. Let us see now where the rest of the separating .. 5%

k-sets lie, if we have separating k-sets of type 1.

If there exists T 2 with at least one of the Gi empty i=3,4,5,6, assuming it is not exception,

such that there is another T 2 with T 2nT 1 nonempty along with nonempty T 2r)B and T 2r"A, .5.

then all cross separating k-sets of this T 2 are covered by the above structure. (They belong to

the fringes of A and/or B in GI or G 2 and the rest belong to the original cross separating k-set '-' '-

with its fringes or pseudofringes). So all cross separating k-sets are covered by this structure,

assuming there are no exceptions, hence, all separating k-sets are either inside G 1 uA uB uT I u

the fringes of A and B in G 2, or G 2uA uB uT u the fringes of A and B in G I, or cross separat-
ing k-sets covered by the structure. Since the structure is symmetric, we can look at the cross

- .-'I



67

separating k-sets where the original separating k-set is CuDUT 1. Then the pseudofringes of C 0

and D become the pseudofringes of A and B. With respect to this separation of G all separating

k-sets are either inside G 3 uG 5uCuDuT Iu the fringe of C in G4 and the fringe of D in G6 , or

inside G 4 uG 6 uCuDuTju the fringe of C in G3 and the fringe of D in G5 , or separating k- •

sets covered by the structure. But since in both cases they are the same separating k-sets, all

separating k-sets are either inside G3 uAuT1 uCu the fringe of C in G4 U the fringe of A in G5,

or inside G4uBuCuTIu the fringe of B in G6, or inside G 5 uA uDuT I u the fri:-.ge of A in 0

G 3 u the fringe of D in G6, or inside G 6 uBuDuT1u the fringe of B in G4 U the fringe of D in

G5 , or the separating k-sets covered by the structure. To cover all exceptions we will do what

we did for types 3 and 4 separating k-sets, we will add k (k-t) neighbors of A, B, C and D to

each of G3, G 4, G5 and of G6 which can participate in exceptional separating k-sets. Hence,

the size of representation is

4S

g (n)= g (ni + k(k-t)-t) + 8 - k + t,
i=1 2

where every term inside the sum covers one of Gi i=3,4,5,6 along with its appropriate neighbors

and fringes, and 8 k +t is the upper bound on the size of the structure. Note that
2

.,," 4 , ,.

ni + 2k - t = n, hence the solution to the above recurrence is 0 (nk + k3 ) (see Appendix 5.2).
i=1 S

(Note also that the above recurrence and the recurrence for Types 3 and 4 are basically the same

up to a constant factor, hence we can modify the recurrence for Types 3 and 4 to incorporate all

k-'

three types). The number of exceptional separating k-sets is upper bounded by 42 2 The

upper bound on the number of separating k-sets becomes

V.4 k-i "

f(n) = f(ni +k(k-t)+t) + 2 k'-t +42 2 S

i=1 ,,A n

S The solution to it is O (2kn + 2k'k2) (see Appendix 5.2). ,-

...--- ~*



68 *

Let us now see what happens if we are in type 2 and no separating k-sets of type 1 exist.

W.L.O.G. assume there is a separating k-set which uses T 2=r 2uT 2 , where 2r2 eA and T 2 e T 1 ,

and no separating k-set of type 1 exist (see Figure 5.9). If Ge's i=3,4,5,6 are nonempty with "

respect to a new cross separating k-set then we revert to Case 1 with respect to a new cross S

separating k-set, hence IA21 = I B I which is impossible. Hence, one of the Gi i=3,4,5,6 with

respect to a new cross separating k-set must be empty. W.L.O.G. let the empty Gi be either G 3

or G4 with respect to the new cross separating k-set. If G 4 is empty then G5 with respect to the

new cross separating k-set must be empty, otherwise T I u/ 2uA 2uD 2 of the new cross separat-

ing k-set becomes a separating set with cardinality less than k. Hence, if G4 is empty then all

cross separating k-sets of type 2 belong to the original separating k-set with its fringes. Then all

separating k-sets are inside G 1 A uB uT u the fringe of A in G 5  ( the fringe of B in G 6, or

inside G2 uAuBuT. u (the fringe of A in G 3 ) u the fringe of B in G4 , or they belong to the

union of A B uT u {the fringes of A and B}. Note that in the third case the separating k-sets V

A

2 G

3y H

4B 2  G'.-.

6

Figure 5.9. '''
Illustrating type 2 separating k-set when no type 1 separating k-set exist. '-



69

are covered by structure 2. We can write the recurrences similar to the above ones except for the

sum which will be up to 2 instead of up to 4. The solution will be still of the same order. If G 3

is empty then IC2 I > IA2 1, otherwise C2 uT'2uT uB is a separating set with cardinality less

than k. If D 2 crosses D, (see Figure 5.6) then A 2 uT'72 uTuD 2 is a separating set, so

IC2 1 = IA2 I. CuT1 uD'1uHuD"2  is a separating set, so ID"21 > ID", 1 . Also

C2 uT 2 UD'2uHuD"1 is a separating set, so ID", I - ID" 2 I. Combining these two we get

ID", I = ID" 2 I. Since, CuT1UT 2 uD'2uH.D"1 and C2U7 2UT 1jD'UHUjD"2  are

separating sets, so 172uD'2 I 2! ID'1 I 2! ID"2 I. Since T 1uD'1UH uD'2 separates G" 6 from the

rest of the graph, and since the cardinality of this separating set is less than k, G"6 is empty.

Hence, D"2 belongs to the fringe of D in G 6 . T2 = T, in order for the Claim 5.1 with respect to

the old cross separating k-set to be true. And since IC2 1+172 = IA I and since the cardinality

of the new cross separating k-set is k, I D 2 I I D', I. So, all cross separating k-sets of this type

belong to G 5 .uA uDT 1 u the fringe of A in Gu the fringe of D in G 6 , if there are no excep-

tional separating k-sets. Also in the maximal set of disjoint D's (Y) all of D's except D 1 belong

to G 6. If G 5 with respect to the new cross separating k-set is nonempty, then by the above argu-

ment C2 will belong to the fringe of A. Hence, all cross separating k-sets belong to the set men-

tioned above, namely, G4 uAuTuD 1u the fringe of A in G1 u the fringes ofDI in G 5.

Let us take the maximal set of C's and D's (X and Y). We know that all cross separating k-

sets of type 2 with nonempty G 5 belong to G5 uAuDuT u the fringe of A in G3 U the fringe

of D in G 6. Since we need to consider all symmetric cases, and since we don't have any cross

separating k-sets of type 1, all cross separating k-sets of the type 2 belong to G 3 UAUCuTIU

the fringe of A in G5 U the fringe of C in G 4, or G4 uBuCuTl u the fringe of B in G 6 U the ,

fringe of C in G 3, or G 5uAuDuTu the fringe of A in G3 U the fringe of D in G 6 , or

G6 uBuDuTlu the fringe of B in G 4 the fringe of D in G5 . Note that C's and D's are not

the same in these sets. In case of G 3 C=CaEX in case of G4 C=C1EX, in case of G 5

Io

-in-d

. .. . .* '



70

D D 1 e Y, and in case of G 6 D = DbG Y. Let us see where the rest of separating k-sets must lie.

First, if there are no cross separating k-sets with G 5 nonempty (or some other appropriate sym-

metric Gi i=3,4,5,6) then it is still possible to have cross separating k-sets.

All cross separating k-sets consist of three parts: part one is in G 1 , part two is in G 2 and N7

part three is T 1 . Part one belongs to some C from the set X or its fringe or the fringe of A in G 3

or the fringe of B in G 4. Part two belongs to some D from the set Y or its fringe or the fringe of .,

A in G5 or the fringe of B in G 6 . That covers all cross separating k-sets which use T1 , otherwise

either set X or set Y is not maximal. We don't have any cross separating k-sets of type 1. All

cross separating k-sets of type 2 with nonempty appropriate Gi with respect to them belong to

the part of the graph between A and the nearest D in G 2 along with A and its fringe and D and its

fringe. Hence, all other separating k-sets belong to G1 uAuB-,Tj with its fringes, or

G 2uAuBuTj with its fringes.

Hence, all cross separating k-sets of type 2, except exceptions are covered by the structure

2 or inside the subgraphs associated by G 1, G11+1, G,+ 2 and G1+2 . As for the exceptions the .-. '

upper bounds we got for types 3 and 4 still hold, since no part of T, can be separated by them p

(otherwise Claim 5.1 is contradicted). So, the recurrence which was written for the type 3 and 4

separating k-sets covers type 2 cross separating k-sets also, including exceptions. .' .

Coiabining all four types we get the following recurrence for representation of separating

k-sets

1+2
g (n) < max(E g (ni+k (k-t)+t) + 2(1+2)(-)k + t) ,

i=1 2

whose solution is the same as the one for Types 3 and 4 up to a constant. The recurrence for the

upper bound on the number of separating k-sets is

%'



71

1+2 +2 -t-
f (n) < max( yf (ni+k (k -t)+t) + 2k-' 1  +2 2 (1+2)),

S iI ,2

whose solution is the same as the one for Types 3 and 4 up to a constant. This concludes Case 1.

[0 Case 1.

Case 2 For any separating k-set every cross separating k-set will have one of the Gi i=3,4,5,6

empty. Not every vertex in both G I and G 2 can be used for cross separating k-sets.

W.L.O.G. let G3 be empty (see Figure 5.10).

Since G 4 is nonempty by assumption, and G5 is nonempty since there are no exceptions,
I

CuTuB and AuT'D are separating sets. So their cardinalities are bigger or equal to k, hence,

IC I = IA I and IB I = ID I. So, C is part of the fringe of A in G1 . Since this is true for every

~ T, all cross separating k-sets belong to GjuAkjTuBu {the fringes of A and B in G 2}, or

, ,G

C 5

44

.

B

Figure 5.10.
Illustrating Cases 2 and 3.

- -w L



72 .44 ...

G 2 t..A u.Tu.B u {the fringes of A and B in G }except for exceptions. Let E be the set of ver-

tices in G I which are used for exceptional separating k-sets which separate parts of A or B. ,, m

Analogously, let F be the set of vertices in G2 which are used for exceptional separating k-sets
which separate parts of A or B. The cardinalities of E and F are at most k 2 . So all separating k- ."

: ~sets including the exceptions are either inside G lt.At..BLTuE or inside G2U..AU.BUTUF.",

7Hence,.

2I

g(n)=g(n, +k(k-1))+g(n2+k(k-1))+4k2 , i i'

where n I and n 2 are the cardinalities of In G e x We still have that n b + n 2 + k = n, and the

solution to this recurrence is O(k + n) (see Appendix 5.2). Note that ni +k(k-1)< n for

i=1,2. Note also that for g v(n t +k(k-)) Or i(n 2 + uk(k-l)) all separating k-sets may be of

hCase 3 only, but once we enter Cas e c t cannot return back to Case 2.pa

For the upper bound on the number of separating k-sets we get the following equality

f(n)=f(n (n1 +2k) +f(n 2 +2k)+ 2 , ,. 2,

where 2 covers all exceptional separating k-sets. And its solution is clearly smaller than

O (2 ts (see Appendix 5.2). This concludes Case 2.t + kf

kC

[] Case 2.-'

Case 3 For every separating k-set all cross separating k-sets are lopsided (onc of the Gi i=3,4,5,6

will be empty). And either G C or G 2 is such that every vertex of them is used for some cross

Frathfseparating k-sets

W.L.O.G. let G3 be empty and let G4U.C correspond to the smallest G, such that every , .
vertex of G is used for some cross separating k-set (see Figure 5.10). There are two subcases:

n2  ..

eihe G2- (se Ape x52.Tis cot rG6isepy fnceites epywwilbinCase 2. Tk slrea

k$

. . ase.. ..-.

possible

Case~~~~~ 3 ovr eaaigkstalcossprtn -esaelpie oco h Li3456I0



73

If G 6 is empty then A uB uC uD uT with all edges between them and filling real edges for

nonempty G 5 and G 4 and virtual otherwise (analogous to the structure 1) will specify all cross

separating k-sets. If G 5 is empty, then CuTuD separates A from the rest of the graph. Hence,

CuTuD is an exceptional separating k-set. So the third structure will be the following:

1) A, B and T - the original separating k-set,

2) All the neighbors of A uBu T that are used for a cross separating k-sets with edges between

N" them and the original separating k-set.

Since there are no other separating k-sets, otherwise we would be in Case 2, we derive the

following upper bound for the size of the representation:

g(n)-k 2 .

Analogously, we have the following upper bound on the number of separating k-sets

f (n) < 2.

[J Case 3.

That concludes the proof of all cases. Our final result is that all separating k-sets have

n2

0 (k 2n) space representation, and their number is 0 (2k ).n-.'
k

From the above representation we can generate all separating k-set in 0 (c kM) time, where

M is the number of separating k-sets. For that we will take every possible subset of every spoke

of the representation and run a matching algorithm to find replacement for this subset. That can

be done in 0 (polylogk) time, since the size of the graph is 0 (k 2). Each replacement generates a

:",; separating k-set of a graph.

%4S%A

: :a



74 " b"

5.2. Appendix

The solution to the recurrence which we get for the representation of Type 3 and 4 separat-

ing k-sets of Case 1:

(k -t
t k-t)t .-

g(n)<5max(_g(ni+(k-t)k +t)+ -- +t) .- '
i=l 2

with initial conditions

(ni + k- ) + t =n 05 t k-2 2 5 1 !5 2n ni > 0
2 k - t

Letg(n) =2nk - 4k3 + 2k 2 + k - 3kt - t,
2

g (n): <max(.g(ni + (k - t)k + t) + k + t)5
2

31 += 2k 2% 1 2

max(X 2k (ni + k (k - t) + t) - 4k 31 + 2k2 +k 21-ktl-tl+kk- +t)=
l =1 22 -)

2 ,2

S k-t k-t
max(2k(_(ni+- )+t) - 2k1- - 2kt + 2k 2 1(k-t) + 2ktl - 4k 31 + ,

i--1 22

2k 2tl + Ik21 - 3kl - i + 1k- + t)

max(2kn + 2k 3( -21)+ 2k 2 t(-l +1) + k2(I + -l) + kt( -2+2- -31) + t(- l + 1)) <
2 2 2

2kn - 4k 3 - 3kt + t s 2kn - 4 3 + 2k 2t + .I-k2 -3kt - t .

2

H e g (.'Hence, g(n) = O(nk + k3 ). '-

.5



75

The solution to the recurrence which we get for the upper bound of Type 3 and 4 separating

k-sets of Case 1:

41 1 k-t

f(n)5 max(_f(ni +k(k -t)+t)+2 k-t l(l - 2) +2 2 1)
2

with initial conditions

Y,(n +i)+= 1: -- t 0:.. n-
2 ,k -2

Let
21 )k 2._ kl 3 -t k

f (n) = 2k-nl - 2k-k 2 1 + 2 -'ktl + 12k- l - 2 ktt + 2  tk +
2 2

k-t

1 2 k-tk -2 2 k-tk2 2k-tkt 2 + -2 2 2 -t

2 2

.,..f n) axX~ikk t) + t) 2 ki - 21k 2A + 2kkl + ±2i1 2 k-i 1 + 2kikd +%
2 2

k-t k-t

3. 1 2k-kl - 2 2 k-tk 2 l - 2 "-dt - 1 2k-i 12 - 2 22 + 1 2k-il2 - 1 2k-il + 2-2 1) = max(2k-ln -
2 2 2 2

12-tk12+ 1 2k -,tl2 - 2k-"td + 2 - k2 12- 2 k-tk+2 + 2 k 1-tt12 2 k-tk 2 12 + 2 k-tl12 + 1 2 k 12

2 2 2

k-t k-t
3 2 k-tt2 + k + 12-tkl- - 2 2 k 2 1 - k-ttj- 1

2 -t 1 2 -22 2 1 + 2 k-t,2 - 2 k-ij + 2 2V
2 2 2 2. 2

k-t

max(2k-tn - 2 2-k 2 1 + 2 k- kl + 2k-kkl - 2 2k-ikl -. 2 2 k-tl -
1

2k- 1 -- 2 2 1)
2 2

max(2k-1n - 2 k A21 + 2k-tktl + 12 k Al - 3 2 -k -k + k At +
1 2 2

-V.t

".'V'



76 .

lk -tk- 2 2k r2 .. k-tt .. !kt.2 2
-k2 - 1-tk2 - 21 t - -2k1 - 2 2 ).

2 2

2
Hence, f (n) 0 0 (2 k n + 2nk).

k

The solution to the recurrence which we get for the representation of Type 1 and 2 separat-

ing k-sets of Case 1:

4 8kk - t "-
g(n)< g(ni+k(k-t)+t)+8k-+t

i=1 2
5%,

with initial conditions

,ni + 2k - t =n O_5t!5k-2

Let g (n) =nnk - l-L6 k3 + -L'6" kt +k2 -L1 k -3 t' .

4
g (n) 5 Ig (ni + k (k - t) + t) + 4(k - t)k + t <5

=

e(4(ni+k(k-t)+t)k- -kA + -Lt)+4(k -t)k + t=-k-

3 3 3 3 3 3

44
ii11.

163 1 2 16k2 16

4k(.nj+2k-t) -8k 2 + 4kt+ 16k 3 - 16k~t + 16kt - k + kt +- -
3 33 3

64 46
64 k - 4-t + 4k2 - 4/t +g t

3 3

4k~3 (6 64 264. 216 64 4
4kn + k3(16 - --- ) + k(-- 16)+ k (-- 8 +4) + kt(4 16- -- 4) 4 t(1

3 3 3 3 '

I



LI.M J6

77

_ 4kn - 1-6 k 3 + -l'" k2t + 3k42 - l'6 kt - It

3 3 3 3 3

FZ Hence, g (n)= 0 (nk + k3 ).

The solution to the recurrence which we get for the upper bound of Type 1 and 2 separating

k-sets of Case 1:

4- + 4 2 k t

f(n)5 < f (ni + k(k - )+t) + 6 2k+42 2
i=1

with initial conditions
4 k -t

-(ni+ 2--)+t=n Ot<_ n -2•"i=l 2

Let f (n) 2k-tn - 4 2"k 2 + 4 2k-tkt - - 2t + 2 2 k-k -2 2 k- - ±22
3 3 3 3 3

k-4 4 2
f(n)5 If(ni+k(k-t)+t)+62k-+422 < (2-(ni+k(k-t)+t)-2 + 3

i3=1 i=3

k-t k-t
5 .2 -t 2 k-ttk + 2 2 k - t 42 2 )+ 6 2 k - +4 2 - n - 2-tk + 22k-tt -2 k-tt +
3 3 3

k-t k -1
2kk 42kt 2 k-t 16 2 _ k 2__ +-2 1 6 2 k-t 2" 4 2k-tk2 - 4 2k- 2kt + 4 2 -L6 kk 2 + L2kAt 2 0

2k-82kt_ - 2 +62 +4
3 3 3 3

k-t

2 k_ n - 2 kA 2 + 4 2 kAt - 5 2 k-tt + 2 2 kA - 2 2 k- - ±42 2
3 3 3 3 3

Hence, f (n) =0 (2kn + 2kk 2 ).



78

The solution to the recurrence for the Case 2 for the representation of separating k-sets

g(n) g(nI+k(k-1))+g(n 2 +k(k-1))+4k 2

with initial conditions

n 1 +n 2 +k=n n1, n2>0 0' ,

Let g (n)= n -9k 2 +3k,

g(n)<_nt +k2-k-9k2+3k+n2 +k 2 - k - 9k2 +3k+4k2 =n - 9k 2 +3k .." .2:

Hence, g (n) =O (n + k 2). : '

The solution to the recurrence for the Case 2 for the upper bound of separating k-sets " "-

f(n) <f(nI + 2k) +f(n 2 + 2k) + 2k .

with initial conditions -o

nI+n 2 +k n n 1 ,n 2  0 "

Letf (n) =2kn - 3 2 k - 2

f(n)<2 kn1 +2k2k-32kk-2k+2kn2+2k2k-32kk - 2k+ 2k=2kn - 3 2kk- 2 k

Hence, f (n)=O(2kn). .. "A.

a all,'u

:.

"- 'oa- 5-



79

CHAPTER 6

ALGORITHMS FOR GRAPH FOUR-CONNECTIVITY

This chapter presents new sequential and parallel algorithms for graph four-connectivity.

The new sequential algorithm for testing graph four-connectivity has time complexity 0 (n2)

and is based upon an ear-decomposition technique. The new efficient parallel algorithm for test-

ing graph four-connectivity runs in 0 (log 2 n) time using 0 (n 2) processors on a CRCW PRAM.

Both algorithms represent improvements over previous algorithms for this problem. The algo-

rithms actually compute the set of all separating triplets of the input graph G, and if G has no

separating triplets, then G is four-connected.

% 6.1. Open Ear Decomposition and Graph Four-Connectivity

A triconnected graph is four-connected if and only if it does not have any separating tri-

.1 -i  ema61
plets.

Lemma 6.1. Let G=(V,E) be a triconnected undirected graph for which t=(x,y,z) forms a

separating triplet. Let D be an open ear decomposition for G. Then there exists an ear Pi in D

that contains two of the three vertices in t, say x and y, such that Vi(x,y) contains a vertex other

.-. than z, and every path from a vertex in Vi(x,y) to a vertex in Vijx,y] in Gi passes through x, y, or

-. z. Further ear Pi uniquely determines a connected component C in the subgraph induced by V-

{x,y,z), in the sense that there is no ear Ps in G such that:

, 1). P, containsx andy

2). P1 contains a vertex in C,
3ia

i '. ' 3). V 1(x,y)- {x,y,z} is nonempty, and '

" l



80

4). every path from a vertex in Vj(x,y) to a vertex in Vj[x,y] in Gj passes through x, y, or z.

Proof: Since t=(x,y,z) forms a separating triplet, the subgraph of G induced by V-{x,y,z) con-

tains at least two connected components. Let C 1 and C2 be two such connected components.

Case I The first ear P0 contains no vertex in C2 (see Figure 6.1): . 0

Consider the lowest-numbered ear, Pi, that passes through a vertex v in C 2 . Since its end-

points are distinct and must be contained in lower-numbered ears, Pi must enter C2 through one

of the three vertices in t, say x, and must leave C2 through one of the remaining two vertices in t,

say y. Thus Pi must contain two of the three vertices in t, and Vi(x,y) contains at least one ver-
tex other than z. Further, all vertices in Vi(x,y) lie in C2 , and none of the vertices in Vi[x,y ] lie

in C2 . Thus the vertices in Vi(xy) are separated from the vertices in Vi[x,y ] by t.

To prove the second claim of the lemma for this case, suppose Pj is an ear that contains x

and y and also a vertex, say u, in C2. Then j >i, since Pi is the lowest-numbered ear to contain a

vertex in C2. Since Pi contains x and y, x and y must be the endpoints of Pj, and all other ver-

rices on Pj lie in C 2 . Further, since i <j and vertex v is contained in Pi, the vertices in the bridge ,. I.-..

C2

P..

0S
-.

Figure 6. 1.
Case I in the proof of Lemma 6.1.



81

of Pj containing v (call it B') are in Vj [x,y, and since C2 is a connected component in the sub-

:Y graph induced by V-(x,y,z), there is a path from B' to the vertex u in Vj(x,y) that avoids x, y,

and z. This establishes the second claim of the lemma for this case.

Case 2 P 0 contains a vertex in C2 :

If P 0 contains no vertex in C 1 , then case 1 applies to C 1. Otherwise P 0 contains at least

one vertex in C1 and one vertex in C2 . But then, since P 0 is a simple cycle, it must contain two

of the three vertices in t, say x and y, such that (by the argument of case 1), every path from a

vertex in Vo(x,y) to a vertex in Vo[x,y] contains x, y or z, and P0 is the unique ear with this pro-

perty, which has a vertex in C2. ,

E Lemma 6. 1.

We will say that a separating triplet t =(x,y,z) separates ear Pi if Pi contains two of the ver-

tices in t, say x and y, with Vi(x,y) not a subset of (z}, and the vertices in Vi(x,y) are discon- *J

nected from the vertices in Vi[x,y ] in the subgraph of G induced by V- {x,y,z}. We will denote .N

. this by writing t as i ([xy ]Jz) to indicate that Pi contains x and y, and Vi(xy), which contains a

vertex other than z, is separated from Vi[x,y] by {x,y,z). By Lemma 6.1, every separating triplet

in G separates some ear, and hence can be written in the above form. We will write i ([x,y ],z) as

simply ([x,y ,z), if the ear number is obvious from the context. .9-

Analogously, for a star graph G (P), a triplet of vertices t =([x,y ],z) in G separates P if P

contains x and y, V(x,y)- {z) and V[x,yl-{z} are non-empty, and the vertices in V(x,y) are

separated from the vertices in V [x,y ] when x, y and z are deleted from G (P). a,.

Lemma 6.2. Let G=(VE) be a triconnected graph with an open ear decomposition 9

D=[P ,,P-,]. Let i([x,y],z) separate Pi. If Pi does not contain zthen p,

i) z is an articulation point in one of the bridges of Pi, and p

ii) if Pj is the largest-numbered ear that contains z, then j >i.

Proof. Let B be the bridge of Pi containing z. Then B has an attachment in both Vi(x,y) and

U P . 1 .j. ~ .



82 J

Vi[x,y ] , since otherwise, x,y would be a separating pair. Let a be an attachment of B in Vi(x,y)

and let b be an attachment of B in Vi[x,y ]. Suppose there is a path p between a and b in B that

avoids z. Then, if x,y, and z are removed from G, the vertices of Vi(x,y) will remain connected '. ,'

to the vertices of Vi[x,y] by the path p. But this is not possible since ([x,y],z) separates Pi.

Hence, every path between a and b in B must pass through z, i.e., z is an a.p. of B.

Let C be the connected component containing Vi(x,y) in G -{x,y,z}. To prove the second .

claim of the lemma, we note that, by Lemma 6.1, Pi is the lowest numbered ear containing a ver-

tex in C. Hence every edge (wz) with w in C must belong to an ear numbered greater than i. By

the first part of this proof, we know that there is at least one such edge (w,z). This proves the

second part of the lemma. .

El Lemma 6.2. .

Using Lemma 6.2, we can classify triplets separating ear Pi into two types: Type 1 separat- .

ing triplets are those for which Pi contains all three vertices; type 2 separating triplets are those

for which Pi contains two vertices, and the third is an articulation point in one of the bridges of -

Pi. Let ni be the number of vertices contained in a nontrivial Pi. Let us number the vertices on

Pi from I to ni. Vertex a is to the left of b and vertex b is to the right of a if a <b. Type 1 ' '.

separating triplets can be further classified into three types (see Figure 6.2): Type la, in which z ' ,

is to the right ofx andy on Pi, type lb, in which z is to the left ofx andy, and type Ic, in which z

is between x and y on Pi. The same definitions apply to a star graph G (P); in this case the center

of every star is its unique a.p.

Let ([x,y],z) be a type 2 triplet separating Pi By Lemma 6.2, z is an a.p. in a bridge, B, of

Pi, and z lies on an ear P.,j >i. We shall refer to such a.p.'s as high a.p.'s. Let B 1, • ,Bk be the .1

connected components of B - (z), and let C be the set of remaining bridges of Pi. Then

k
CU.(B) ) are the bridgesof Pi in G- {z). Let Ji(z) be the ear graph of P, in G - (z}.

a=1 P

Lemma 6.3. Let G be a triconnected graph, and let Gi(Pi) be the ear graph of P5 . Then,

. . ... . - "



83

c1

p P

Type la triplet

4,'P C 2

be C

• P'P

'4

Type Ib triplet

14.
- C2

, " C1

.. Type Ic triplet

Figure 6.2.
-.. , Classification of type 1 separating triplets

i a) ([x,y],z) is a type 1 triplet separating Pi in G if and only if it is a type I triplet separating Pi in

: it4



rwAF-J- -. -i -WUWUApr -A VF -UN7.I. %y -WI%

84 .
N

Gi. W

b) ([x,y],z) is a type 2 triplet separating Pi in G if and only if (x,y) is a pair separating Pi in

Ji(z).

Proof: We note that, since G is triconnected, every anchor bridge of Pi in G has attach-

ments to the two endpoints of Pi, and to at least one internal vertex of Pi; we shall call this Fact

1. We prove parts a) and b) of the lemma separately.
I

a) First we note that if ([x,y ],z) is a type 1 triplet separating Pi in the ear graph Gi then it cer-

tainly separates Pi in G.

For the reverse, two cases arise: I

i) If x andy are the endpoints of Pi, then by Fact 1, ([x,y ],z) is a type 1 triplet separating Pi if

and only if every anchor bridge of Pi has exactly one internal attachment on Pi, and that attach-

ment is at z. If this holds in G then it continues to hold in the ear graph Gi, since by coalescing "" "'

such anchor bridges, we do not create any new attachments.

ii) If either x or y is not an endpoint of Pi, then no anchor bridge of Pi can have an attachment in "

Vi(x,y)- {z}. Once again, this condition will continue to hold if all anchor bridges are coalesced,

and hence will be true in Gi if it was true in G.

b) As in case a), if (x,y) is a pair separating Pi in Ji(z) then clearly ([x,y ],z) is a type 2 triplet

separating Pi in G. For the reverse, once again, two cases arise.

i) z is a high a.p. in an anchor bridge B. Hence z lies on an ear numbered higher than i. Every

attachment of an anchor bridge on a vertex in Vi(x,y) must be adjacent to z (since otherwise ,..

([x,y1,z) would not separate Pi from vertices on lower-numbered ears). Hence in G-{z), no

anchor bridge has an attachment in Vi(x,y), and so, in the ear graph Gi, the anchoring star has -"

not attachment in Vi(x,y). The non-anchor bridges cannot have an attachment in both V,(x,y)

and Vi[x,y], since each of them is a bridge of G and ([x,yIz) is a triplet separating Pi in G. Thus

x,y must separate Pi in Ji(z).

.,



85

If one of x or y is not an endpoint of Pi, then every anchor bridge B' other than B has no

attachment in Vi(x,y). This continues to hold in Gi as well.

ii) z is an a.p. in a non-anchor bridge: In this case no anchor bridge of G can have an attachment

in Vi(x,y), and the result follows by an argument as in case i.

l0 Lemma 6.3.

Based on the characterization in Lemmas 6.1,6.2 and 6.3, we obtain the following high-

level algorithm to find all separating triplets in a triconnected graph.

Algorithm 6.1: Finding All Separating Triplets in a Triconnected Graph G =(V, E)

1) Find an open ear decomposition D =[P 0 , - - ,Pr- ] for G.

"% 2) For i =r-1,r-2, ,0 do

ifPi is a nontrivial ear then

A) Construct the ear graph Gi(Pi).

B) Use G(P) to find all type 1 triplets separating Pi.

C) In the bridges of Pi, find the a.p.'s that lie on ears numbered higher than i, and use them

to find all type 2 triplets separating Pi.

Let IV I =n and I E I=m. Step 1 has a linear-time sequential algorithm and an 0 (logn) time

parallel algorithm with 0 (m) processors on a CRCW PRAM [33, 35]. Step 2A has a linear-

time sequential algorithm and an 0 (logn)-time parallel algorithm with 0 (mlogn) processors on

an ARBITRARY CRCW PRAM [36,41].

Let ni be the number of vertices contained in a nontrivial Pi, and let mi be the number of

, edges incident on vertices contained in Pi. Since G is triconnected, it is not difficult to see that
,fni=O (m + n 2) and Xni=O(n) when the summation is over nontrivial ears. In section 6.2.1,

£ i
, we present algorithms to find type 1 triplets separating Pi in 0 (n2+mi) sequential time, and in

1~e~4 4~~* ~ , . : - - ,?,~~ I4



86

0 (logn) parallel time with n 2 processors on an EREW PRAM. In section 6.2.2, we show how to

find all high a.p.'s in the modified bridges of each ear, organized in a forest of block-trees, in

O (n+mD)=O(n 2) time plus some additional time for processing trivial ears, which is 0(m)..

over the execution of the entire algorithm. This parallelizes into an 0 (log2 n) time algorithm to

find a.p.'s in bridges of all nontrivial ears on an ARBITRARY CRCW PRAM with n 2 proces-

sors. We use this to develop an algorithm to find all type 2 triplets in FO (n ni+mi)=O (n2 )
i

sequential time, and in 0 (log2n) parallel time using/n2 processors on an ARBITRARY CRCW

PRAM. Thus we obtain an 0 (n 2 ) time sequential implementation of Algorithm 6.1, as well as
2

an 0 (log2n) time parallel implementation on an ARBITRARY CRCW PRAM with n proces-

sors.

6.2. Finding All Triplets that Separate an Ear

6.2.1. Finding Type 1 Separating Triplets

In this section we give algorithms to find type la, lb and lc separating triplets on an ear Pi.

Recall that ([x,y ],z) is a type I triplet separating Pi, if x,y and z lie on Pi, and the vertices in

Vi(x,y) are separated from the vertices in Vifx,y I when xy and z are removed from Pi. -!
Ai

As shown in Lemma 6.3, if x and y are the endpoints of ear Pi then ([x,y ],z) form a type 1

triplet separating Pi if and only if the anchoring star in G(P) has exactly one internal attach-

ment on Pi, and that attachment is z. This is a simple condition that can be checked in constant

time, For finding any other type 1 triplet separating Pi, it suffices to view the ear graph G(P9) as

the path Pi together with a collection of stars, and to identify all type 1 triplets separating P, in

Gi. For this we can work with a star graph G (P) without any reference to the fact that it is the

ear graph of an ear.
A.' 'w



87

Let G (P) be a star graph with k vertices on P, I stars, and a total ofp edges on the stars. We 0

present an 0 (k2 +p) time sequential algorithm and an 0 (logk) time parallel algorithm with k 2+p

processors on an EREW PRAM to find all type 1 triplets separating P in G (P). Assume that the

vertices on P are numbered in order as 1, -,k from left to right as specified before.

For a closed interval [x,y] on P, let

L [xy,] be the leftmost attachment among all stars that have an attachment in [xy]

S [x,y ] be the second leftmost attachment among all stars that have an attachment in [x,yl, and 0

R [x,y I and M x,y ] be the rightmost and second rightmost attachments, respectively, of stars

that have an attachment in [x,y ]. ., ',

The following lemma is straightforward.

Y. Lemma 6.4. Let x,y,z be three vertices on P. Then

a) ([x,y],z) is a type la triplet separating P if and only if L[x+l,y-1]=z,S[x+l,y-l]>_x and

R [x + l,y-1]<y; and

.4- b) ([x,y],z) is a type lb triplet separating P if and only if R [x+l,y-1]=z,M [x+l,y-1]<y and

L [x+l,y -1] >x.

-" [ Lemma 6.4.

We compute L [x,y ],S [x,y ],R [x,y I and M [x,y I for every interval [x,y] with x <y by a dou-

bling technique that first computes these values incrementally for intervals whose size is a power 0

-" of 2, and then computes the values for all remaining intervals as follows. This algorithm rurs in

0 (k 2 +p) time sequentially, and in 0 (logk) time on an EREW PRAM with n2 processors.

1) Initialize: For i=1, ,k compute L[i,i], S[i,i], R [i,i], and M[i,i]. These values can be S

,4. computed in 0 (k+p) sequential time and 0 (logn) parallel time on an EREW PRAM with

,% k+p processors by using bucket sort to order the star edges in increasing order of attach-

ment, with ties broken in decreasing order of the leftmost (rightmost) attachment of the star

the edge belongs to for L [i,i ]and S [i,i] (for R [i,i and M [i,i 1).

FI,-. .



88 . J

2) For j=l,-,[log/ compute, for each i, L[i,i+2j-l] from L[i,i+2-l-] and I

L [i+2j - ,i + 2j - 1]. Similarly compute S [i,i+2Jl,R [i,i+2JJ and M [i,i+2J]. Each of these

values can be computed in constant time in parallel, and hence sequentially as well. Thus, I
this total step takes 0 (klogk) time sequentially and 0 (logk) parallel time on an EREW

PRAM with k processors.

3) For each pair [x,y ],x <y, let i., be the integer satisfying x +2'-"5y <x+2 .Compute 7
L [x,yI from the pre-computed values L[x,x+2 21-11 and L[y-2"'+l,yI in constant time.".

Similarly compute S [x,y ],R [x,y ] and M [x,y 1. As in step 2, each of these values can be

computed in constant time, and hence this step requires 0 (n2) sequential time; it is

straightforward to implement this in 0 (logn) para -l time on an EREW PRAM with n 2

processors. -

For complete parallel algorithm for type la separating triplets separating ear Pi see appen-

dix 6.3.

An analogous procedure identifies type lc separating triplets. Let L [x,y I and R [x,y] be as

bwt
before. Let z r be a vertex in [x,y I which is an attachment of a star with an attachment at L [x,yanalogously let z,. be a vertex in [x,y I which is an attachment of a star with an attachment at-. !

R [x,y 1. Let S'[x,y I be the leftmost attachment of stars with an attachment in [x,y J - { z1) and let **

M'[x,y be the rightmost attachment among stars with an attachment in [x,y] - Zr). Then the

following lemma is again straightforward.

Lemma 6.5. the triplet ([x,y j,z) is a type Ic triplet separating P if and only if "

S'[x+l,y-ll_x,M'[x+l,y-lI:y and one of the following three conditions hold:

a) zI~zr=z; or

b) L [x+l,y-lI_x and Z=r; or '"

c) R [x+l ,y-1 _1 y and z=z1 .

0 Lemma 6.5.

W



89

Using Lemma 6.5 we can compute the type Ic triplets separating P in a manner analogous

to the method used for finding type la and lb triplets separating P. For complete parallel algo-

rithm for type Ic separating triplets separating ear Pi see appendix 6.3.

6.2.2. Finding Type 2 Separating Triplets

There are many implementation details in this algorithm. We give a high-level description
first, and then elaborate on each of the steps. We use the result in Lemma 6.2 that if ([x,y ],z) is a

.P

type 2 triplet separating Pi, then z is a high a.p., i.e., z is an a.p. in one of the bridges of Pi, and z

belongs to a higher-numbered ear than Pi. Observe that the number of blocks (biconnected com-

ponents) and the number of articulation points in the bridges of an ear Pi is no more than n. As a

matter of notation, we will denote the star(s) in Gi corresponding to a bridge or a collection of

bridges B of Pi by s (B), and similarly, the bridge(s) of Pi corresponding to a star or a collection

of stars S of Gi by b (S). We now present the high-level algorithm for finding type 2 triplets

separating Pi. For convenience we assume that the vertices of G are numbered so that any vertex

contained in Pi has a smaller number than a vertex in the interior of any Pjj >i.

1) For each star s of Gi, we construct a list L (s) of those pairs of vertices x,y on Pi for which s

-' is the only star that has attachments in both Vi(x,y) and Vi[x,y]. Note that there can be no

more than ni2 entries in the lists for all of the stars of G, since each pair can appear on at

most one list. The list for each star is in lexicographically increasing order on (x,y). -.

2) For each ear Pi, we determine the high a.p.'s in each of its bridges.

3) For each bridge B of Pi, for each high a.p. a in B, we find all pairs of vertices separating Pi I

in PiU(B- (a)) (note that we do not include the remaining bridges of Pi in this graph),

using the triconnectivity algorithm in [36,41]. These separating pairs can be specified as -

regions in the star embedding of the coalesced graph of Pi.js (B -(a]) [361. We maintain

these regions over all articulation points for a given bridge B in a properly sorted manner,"" iS



90

I,S

we call this the region representation for B. S "

4) We compare the entries in L (s) for each s with pairs of vertices in a common region in the

region representation for b (s), and each match gives a type 2 separating triplet for Pi.

We need the following observation.

Observation 6.1. Let z be a high a.p. of a bridge B of Pi, and x,y, a pair of vertices on Pi. Then

([x,y ],z) is a type 2 triplet separating Pi if and only if
I

a) (x,y) is a pair separating Pi in the graph Piv(B-{z}), and

b) s (B) is the only star of Gi that has an attachment in both Vi (x,y) and in Vi [x,y ]. "

Proof: If ([x,y],z) is a type 2 triplet separating Pi, then by Lemma 6.2 we know that z must be

an a.p. of the bridge B of Pi to which it belongs. Deleting z renders x,y a pair separating Pi in G - -

{z}, and thus certainly in the graph PjU(B-{z}). Further if any other bridge B' of Pi has an

attachment in both Vi (x,y) and Vi [x,y ], then removal of x,y, and z leaves Vi (x,y) connected with. "

Vi[x,y], which is not possible since ([x,y],z) separates Pi by assumption. Hence part b) of the

observation must hold as well. "

For the converse, assume that parts a) and b) hold. Then it follows that x,y is a pair separat-

ing Pi in G - Iz), since by b), no bridge other than B can connect Vi(x,y) with Vi[x,y] in G -
X'- *N

{x,y,z}. Hence ([x,y ,z) must be a type 2 triplet separating Pi. N

0 Observation 6.1.

All pairs of vertices on Pi satisfying property b) appear on the list L (s (B)), which we con-

struct in step 1. The pairs satisfying property a) are those that lie in a common region in the

region representation for B, which we construct in step 2. In step 3 we scan these two sets of

pairs of vertices, and identify matches between the two sets; each such match gives a type 2 tri -" "

plet separating Pi, and every type 2 triplet separating Pi appears as such a match. This estab-

lishes the correctness of the above algorithm.



91

We now explain how to implement steps 1 through 4 to obtain the stated time and proces-

sor bounds. A

STEP 1

The algorithm for step 1 is similar to the algorithm for finding type 1 separating triplets. By

Lemma 6.3, if x and y are the endpoints of ear Pi, then the anchoring star of Gi is the unique star

with attachments in both Vi(x,y) and Vi[x,y]. For any other pair x,y we can work with a star

graph G (P) without any reference to the fact that it is the ear graph of an ear.

rAs in section 6.2.1, given a star graph G (P) we compute certain values for each interval of

vertices on P. The values computed are L [x,y ],S"[x,y ],R [x,y ] and M"[x,y ], where L [x,y ] and

R [x,y ] are, as before, the leftmost and rightmost attachments, respectively, among all stars that

have an attachment in the closed interval [x,y ]. Let s1 be a star with attachments at L [x,y ] and in

[x,y ], and similarly, let sr be a star with attachments at R [x,y ] and in [x,y ]. S"[x,y ] is the left-

most attachment among all stars with an attachment in [x,y ] except star st; similarly, M"[x,y ] is

the rightmost attachment among all stars with an attachment in [x,y] except sr. From these

definitions, the following lemma is straightforward.

Lemma 6.6. Star s is the only star that has an attachment in V(x,y) and V [x,y] if and only if one

of the following three hold:

a) S"[x,y ]_x,R [x,y ]<_y and s =st; or

b) L [x,y ] .x,M"[x,y I<y and S =sr; or

c) S"[x,y 12x,M"[x,y ]<y and s=s =s,..

0 Lemma 6.6.

Using Lemma 6.6 and the method of section 6.1, we can form the lists L (s) for all stars of S

all nontrivial ears in 0 (n 2) sequential time and in 0 (logn) parallel time on an EREW PRAM

with n 2 processors.

' -- - .
nontivial ears in- 0- 

-(n seq en ia tim e and in 0 .- parallel tim e on an- .- - P-RA-M-''.



92

STEP 2

Sequential Algorithm

Let Hi=.P j.Let A 1, " " ,Ak be the bridges of Hi. Let Bj be Aj with its attachment edges

and vertices deleted. A split of P, is an articulation point in one of the B. An ex-node of Pi is a

vertex in one of the Bj adjacent to an attachment on Hi. An adj-node of Pi is an ex-node, which

is adjacent to an vertex on Pi. For example in Figure 6.3, H 1 has four nontrivial bridges and one

trivial bridge; vertices a, b, and c are some of the split nodes of P 1; vertices a, b, d, and e are

some of the ex-nodes of P 1; of which a, b, and d are adj-nodes as well. We observe that by

Lemma 6.2, if ([x,y ],z) is a type 2 triplet separating Pi then z is a split or ex-node of Pi or z is an S

attachment of one of the Ai on Hi_.1.

We organize the splits and ex-nodes of Pi in a forest of split-trees analogous to the tree of

biconnected components. There is one split-tree for each B, whose vertices are the splits, ex- -

nodes and blocks of B. There is an edge between a split and each block it lies in, as well as an

edge between each ex-node (that is not also a split) and the unique block it lies in (see Figure

6.3). For u an ex-node, let A (u,j) be the jth smallest vertex adjacent to u and belonging to H-.1,

if it exists, null otherwise, for j=1,2,3,4. By our numbering scheme for vertices, .,

A (u,j),j=l, .- ,4 (when defined) represent four distinct vertices on lowest numbered ears adja- "'

cent to u. For example, in Figure 6.3 vertex a has A (a, 1) = 1, A (a, 2) = 5, A (a, 3) = 0,

A (a, 4) = 0. The number of entries in A (u,j), over all ex-nodes u, is 0 (n).

Let Fi- 1 be Hi-1 with the two endpoints of Pi deleted. Let A (u) be the set of two smallest

non-null vertices in Fi-I (' (A (u, 1),A (u, 2),A (u, 3),A (u, 4)}. By construction, A (u) contains

the two smallest numbered vertices in Fi_ 1 adjacent to u (when they exist), and can be obtained

in constant time per ex-node, since we have the A (u,j). Note that if we did not have the A (u,j),

then finding the A (u) would take time proportional to the number of edges incident on the ex- ,

nodes and that could be as large as 0(m).

SI



93

6 13

5.
6S

"w7.

Illstrating 2 oftlgr fr T e earg trip r ear .,it

adj-node adj-node

.',

d.p.

4 6 7

Figure 6.3. P
llustrating Step 2 of the algorithm for Type 2 separating triplets for ear 1.

Vertices on ear I are labeled from I to 7.



* a,, i I *.i., " -

I

From the forest of split-trees we derive the forest of trees of biconnected components (or

block-trees ) of the bridges of Pi by first constructing the augmented graph as follows: We aug-

ment the vertex set of the forest of split-trees by adding in vertex v to represent Hi-1, - a poten-

tial 'high-block' (i.e., a connected component that contains no high a.p.'s), and we add in the set

of vertices U= k, A (u), - potential high a.p.'s. We put in an edge between v and each ver- -:

ex-nodes u-

tex in U as well as edges between u and vertices in A (u), for each ex-node u.

Observe that a vertex w in Hi-1 is a high a.p. in a bridge of Pi if and only if, for some

split-tree T of Pi, w is the only vertex in Fi_ 1 that is adjacent to a vertex in T. Since by construc-

tion A (u) includes the two smallest vertices adjacent to u, if they lie in Fi_ 1, it follows that w is

a high a.p. in a bridge of Pi if and only if it is an a.p. in the augmented graph. Similarly, an ex- ':,

node u in a split-tree T is an a.p. separating vertices in T from the rest of the bridge of Pi if and

only if u has an attachment in Fi_ 1 and no other ex-node in T has an attachment in Fi_ 1.This

again holds if and only if u is an a.p. in the augmented graph. Hence the blocks and articulation
*%

points in this augmented graph are precisely the blocks and articulation points in the bridges of

Pi. We find these in 0 (n) sequential time, using a linear-time algorithm for biconnectivity [481.

At this point we have the forest of block-trees for the bridges of Pi. In additional 0 (mi) time, we

can obtain all of the adj-nodes by scanning all edges incident on the internal vertices of Pi.

All that remains is to incrementally obtain the split-trees for P and the A (u,j) for the new ,. . .

ex-nodes of P, in an efficient way, where P is the next nontrivial ear. To update information for

P1, we first process the forest of split-trees for Pi to eliminate those splits and blocks that disap-"'- .

pear and the new ones that appear when Pi,Pi-1,'",PI+I are added. This is done in " ,

0 (n+mi+l-i) time by finding blocks, a.p.'s and ex-nodes in the graph i.jBj k.. (attach-
j k=1+1

ment edges of each Bj in the interior of Pi). This gives us the split-trees for PI. The new ex-

nodes for P are the nodes in the interior of Pi adjacent to a vertex in H1; in particular, this

I,



95

I includes the nodes in the interior of Pi adjacent to its endpoints. We compute the A (u,j) values

for these new ex-nodes. This computation takes 0 (m) time over the entire execution of the algo-

rithm. Now we are ready to find type 2 triplets separating P1.

IParallel Implementation of Step 2:

This step is similar to the algorithms in [36,41] that find the ear graphs of all nontrivial

ears. The only difference is that we now find the forest of block-trees instead of connected com-

ponents. For this we can use any efficient parallel block finding algorithm [33,35,50]. By not-

ing that the total size of the graphs present at each stage of the algorithm is 0 (n2), we obtain an

0 (log2 n) time parallel algorithm on an ARBITRARY CRCW PRAM with n2 processors.

STEP 3

i Sequential Algorithm

We number the vertices in the forest of block-trees in post-order with respect to a dfs. We

label each attachment edge to Pi in the bridges of Pi by the number of the block it belongs to

(since each such edge is incident on an adj-node, this is done in constant time per edge). We

remove any multiple occurrences of edges with the same block number and attachment. Since
* *-: the number of blocks and the number of articulation points is 0 (n) (over all bridges of Pi) this

step can be done in 0 (n +mi) time for all of the bridges.

We now sort (using bucket sort) the labeled attachment edges in increasing order of the

• .attachments, with edges having the same attachment sorted in increasing order of their label, and

we leave the sorted edges in stacks corresponding to their attachment number. Now, with

'K: another post-order traversal of the block-trees, we can determine, for each a.p. s of each bridge B

of ear Pi, the stars formed from B when s is deleted from B, in 0 (n+mi) time.

At this point, for each high a.p. x of bridge B, we have s (B -{x)), the collection of stars

formed from B when x is removed from B. Each of these stars has no more than ni attachments.

ii~; - .d - v.p . ...~ ~ qW * W~ 
JA



96$

Using the algorithm in [36] we can find the separating pairs on Pi corresponding to these stars 5

in 0 (k'ni) time, where k is the number of stars. These are organized as the vertices on the faces

of the planar embedding of the coalesced graph [36]; this has an 0 (k'ni) size representation.

We find such a representation for each a.p.

Parallel Implementation of Step 3:

This step can be implemented on ear Pi in 0 (logn) time with 0 (n'ni) processors using .

efficient parallel algorithms for computing post-order numbering on trees [50], for sorting [9]

and for finding separating pairs in a star graph [41].

STEP 4

Sequential Algorithm:

In order to execute step 4 efficiently, we store the representation obtained in step 3 in a spe-

cial way. Let us confine our attention to a specific bridge B (note that we execute step 3 bridge

by bridge). Let B have I a.p.'s s , ,sj, and let the ith a.p. have ti children in the block-tree

(each of which is a block of B). Thus t=l+ tj is the number of blocks in B. The total number

of regions for B is no more than t, and further, none of these regions interlace. We represent

these regions as follows: We have ni stacks, one for each vertex on Pi, and in the stack for ver-
I

tex v, we place pointers to all regions that contain v. These pointers are arranged in increasing . :-

order of the first vertex in the region, with ties broken in decreasing order of the last vertex in the

region (the topmost pointer points to the region with the lowest numbered vertex). For each "

region we maintain a pointer to the current leftmost position in the region; initially the pointer

for each region points to its leftmost vertex. 1%

We now scan the entries in L (s)) in order. If the current entry is (x,y), we look at the .

topmost region R in the stack for vertex y and check its current leftmost vertex z. If z >x then we "- ,-

proceed to the next entry in L (s (B)). If z =x then we have found a match, and hence a type 2

I



97

I triplet separating Pi. If z <x, we move the leftmost pointer for R right until it points to a vertex

u ->x. If u =x, then we have located a type 2 triplet and we leave the leftmost pointer at u. If u =y

then we pop the pointer to R off the stack; otherwise we leave the leftmost pointer at u. It is easy

to see that this scan locates all type 2 triplets ([x,yl,z) with z in B, and the time it takes is pro-

portional to the sizes of L (s (B)) and the regions representation for B. Hence, over all bridges of

Pi this procedure takes time 0 (n2+n'ni)=O (n'ni).

Parallel Implementation of Step 4: ,

To implement step 4 in parallel we allow ourselves 0 (logn) time per entry (x,y) on

L (s (B)) to determine if x lies in the same region as y for some entry in stack y; this is accom-

plished by binary search on the entries in stack y followed by a binary search on the vertices in

the relevant region R. Hence this step takes 0 (logn) time with n2 processors on a CREW

PRAM.

6.3. Appendix

Let L(x,y) =L[x,y], which is defined in section 6.2.1. Analogously, R(x,y) stands for

R [x,y], S (x,y) stands for S [x,y 1, and M (x,y) stands for M [x,y ]. Let L (x) stands for the left

most attachments among all stars that have an attachment at x. Analogously, S (x), R (x), and "p

M(x) denote the second leftmost, rightmost, and the second rightmost attachments among all

stars that have an attachment at x, respectively.

6.3.1. Algorithm for Type la Separating Triplets for an Ear

C''

, STEP 1: For every vertex v on ear Pi do

L (v,v+2) = min (v,L (v +1))

R (v,v+2) =max(v+2,R (v+l))

W-------------? %



98

S (v,v +2) = rin (S (v+1),v)

For k=1 to logni do

find L (v, v +2k), R (v, v +2k), and S (v, v +2k)

(L (v,v +2k)= min (L (v, v+2k- 1 ),L(v+2k- I,v+2k),L(v+2 k- 1)))

(R (v,v +2k)= max (R (v,v+2k- 1),R (v+ 2 k"- ,v +2k),R (v+2k 1

(S (v,v +2 k)= second smallest

(L (v, v +2 k-i ), L (v +2 k- 1 , v +2k), S (v, v +2 k- I ), S (v +2 k- 1, v+ 2k),

L (V +2 k- I ),S (V +2 -1 )))

If R(v,v+2 )v+2 and S (v,v +2 )v then

(x,y,z) is a separating triplet for ear Pi, where xv--, y=v+2k and z=L(v,v+2k).

End If

End For

STEP 2: For every other interval (v,w) of ear Pi do

find kI such that v + 2 k2 +i >w and v+2 <W,

find k2 such that w-2 k2+1 <v and w-2k2 >v,

(k1=k2=log(w-vA)

IfR (w-22 w)--v+ 2 k and R (vv+2 1 )v+2k and S(v, v+ 2 )=v and S(w- 2k2, w)v

and (S (v,v +2k2 )_v or S (v, v +2t )-S (w-2k2, w)

then (v,w,S (w- 2k2 ,w)) is a separating triplet for ear Pi,

otherwise no.

End If
E FEnd For

4.%

- - .



99

6.3.2. Algorithm for Type 1c Separating Triplets for an Ear

STEP 1: For every vertex v on ear Pi do

If R (v+1) > R (v+2) then R (v,v +3) = max(R (v+l),v +3)

zr(v,v+ 3 ) = v+1

else R (v,v+3) = max(R (v+2),v+3)

•' z,(v,v +3) = v +2

End If

If L (v+1) < L (v+2) then L (v,v+3) = min(L (v+1),v)

zt(v,v+3) = v+1

else L (v,v+3) = min(R (v+2),v)

zt(vv+3) = v+2 '.di I

End If

M (v, v +3) = max(v +3, min(R (v + 1),R (v +2))

S (v, v +3) = min(v, max(L (v + 1),L (v +2)) All

"5
if

(S(v,v+3)=v & M(v,v+3)=v+3 & (R(v,v+3)=v+3 I L(v,v+3)=v I z,(v,v+3)=zr(v,v+ 3))

then

,. IfL (v,v+3) = v then z = z,(v,v+3)

else z= zi(v,v+3)

[(v,v+3),z] is a separating triplet

End If

End If

For (v, v +4) use STEP 2.

For k=3 to logni do

find L(v,v+2), S (v,v+2k), M(v,v+2 M +(v,v+2k), z +(v,v+2 and z,(vv+2k)
I At4-

' ," * %** *'i ' %'. " J " *."* ,,U W"€. % , ' 'v,' r- ' ",, L-'fl-. .r + *-.- . "," "" " - "* '* ". % " . " .'



.... ,d= - t V 4. . .- ,: , , , . , . 4. . A_ ,- ,. - . : P,- a, - -.,_=.,

100

If L (v,v +2 k - 1 ) < L (v +2k- 1 ,v+ 2 k) then L (v, v +2k) =L (v,v+2k- 1 )

zl(v, v +2k) = zi(v,v + 2 k
- 1)

else L (v, v +2k) = L (v +2
k - 1,v +2 k)

zl(v,v+2) = zl(v +2 k- 1, v+2 k)

End If

IfR (v,v +2 2t R) (v_+2 v+2 ) thenR(v,v+2) =R(v,v+2 -1 )

Z, (v, v +2k) = z, (v, v +2 1)

else R (v, v +2 k) = R (v +2k-1 ,v +2)

zr (v,v+2 ) = Zr(v+2 - , v+2k)

End If

S(v,v+2 k) = second

smallest (S (v,v + 2 k
- 1), S (v + 2 k

-1 ,v 2 ), L (v,v + 2 k- 1), L (v+ 2 k
-1 ,v+ 2 k)

M(v,v+2k) = second

largest (M(v,v+2k-1 ), M (v+2 k 1 ,v 2k), R (v,v +2k-1 ), R (v+2 k-1 ,v+2 k)

If R (v+ 2 1) > R (v,v+2k) then R (v, v+ 2 ) -R (v+21)

z,(v,v+2) = v+ 2

M(v,v+2 k) = max(R (v,v+2k),M(v+2k- 1 ))

k) ,.k-
else M(v,v+2k) = max(M(v,v+2 ),R (v+ 2 k - )

End If

If L(v+2 1 ) < L(v,v+2k) then L(v,v+2k) =L(v+2k - )

z(v,v+2) = v +2k - 1

S(v,v+2k) = min(S(v,v+2 ),S(v+2k-))

else S(v,v+2) =min(S(v,v+2 ),S(v+2k - )

End If "

If (S(v,v+2)=v &M(v,v+2k)=v+2k&

R(v,v+2 =--v+2k I L(v,v+2k)=v I zl(v,v+2) =-Zr(v,v+ 2L )then



If L (v, v +2k) =v) then z zr(v, v +2k) 0

else z = zi(v,v +2k)

End If

[(v,v+2k),z] is a separating triplet 0

E n d I f W%

End For

End For 0

STEP 2: for every other interval (vw) of ear Pi do

k =L og2(w - vA

If L (v,v +2k) L (w-2k,w) then L (v,w) = L (v,v+2k)

z, (v, w) = z1 (v, v +2k)

If zi(v,v +2k) Zl(w--2k,w)

then S (v,w) = min(L (w-2k,w),S (v,v +2k))

else S (v,w) = min(S (v,v+2k),S (w%2k,w))

End If 0

else L (v, w) = L (w -2k, w) .

zj(v,w) = zi(w-2k,w)

If z(v,v +2 k) * z(w-2k,w) "

then S (v, w) = min(S (w-2k, w),L (v, v +2k))

else S (v,w) = min(S (v,v+2k),S (w-2k,w)) e

".-' E n d If 0

End If

If R (v,v+2 k) R (w -2k,w) then R (v, w)= R (v,v +2 k)

z,(v,w) = z,(v,v +2k)

If z,(v,v+2k) z Cw-2k, W)

then M (v,w) = max(R (w -2k,w), M (v,v +2k))

0



102

else M (v,w) =max(M(v,v+2k),M (w-2k, w))

End If

else R(v, w) = R(w -2k,W)

Zr (V, W) = Zr (w-2k, w)

If zr (v, v +2 ) t- Zr (W-2k, w)

then M (v, w) = max(M (w-2 k w),R (v, v+2 k))

else M (v, w) =max(M (v, v+2 k),M (w-2 k, W))

End If

End If P.

If (S (v,w) v & M (v,w)=w & (R (v,w)=w I L (v,w) v I ZA,vW)=Zr(V,W))) then

If L(v, w) =v then z = zr(v,w) -

else z = zl(v,w)S

End If

[(v,w),z] is a separating triplet ~

bie

.......... .....



103

CHAPTER 7

ALGORITHMS FOR FINDING ALL SEPARATING K-SETS OF A GRAPH

7.1. Sequential Algorithm

In this section we describe a sequential algorithm for finding all minimum size separating

vertex sets in an undirected graph G = (VE). Note that the number of separating k-sets in an

undirected k-connected graph is 0 (2k ) [261.

First, we find the connectivity k of G using network flows [13, 18, 19]. The time complex-

ity of this algorithm is 0 (max(k, n 'A)kmn 1). Next, we take a subset of vertices X of G of size k

and find all minimum size separating vertex sets (of size k) between pairs of the form (x,v),

where xeX and ve V. Note the following simple observation.

Observation 7.1: Let xeX and w V. Assume that we have found all k-sets separating x and v
in G. Then we can add edge (x,v) to E without changing (adding or deleting) any other separat-

ing k-sets of G.

Proof: This is because for any other separating k-set Y, which does not separate x and v, x and v
p

can not belong to two different components of the graph induced by V-Y.

0 Observation 7.1.

We repeat this process for every xeX and every ve V. During this process we add at most

kn edges to E. At the end of this process every vertex xeX is connected by an edge to every ver-

tex ve V. Now, if there is separating k-set Y in this graph, then Y=X. So, we check if X is a

separating k-set of G. Every minimum size separating vertex set of G is obtained by this compu-

tation.

4' P('s 4 ', . ,.- 44



0

104

We note that for a given xeX we only need to conduct this procedure for these vertices

vy V which are not adjacent to x. Hence, for our algorithm we choose X to be a set of k vertices

of G of maximum degrees.

Algorithm 7.1.

1. Find the connectivity k of G. (vertices of G are numbered from v1 , • ,v,). N

2. Find k vertices with the largest degrees (x 1, • - ,xk).

Check if these k vertices form a separating k-set of G

(Let G be the directed graph which we get from G by applying the Even-Tajan reduction

(see Section 2.3)

Doi=1 ".. k -

Doj1 = - n

3. If v*x and vj is not adjacent to xi then

4. Compute a maximum flow f in G from xi to vj

If IfI =k then

(Find all k-sets separating xi and vj as follows:)

5. Construct the residual graph Gf of G with respect to the maximum flow f

6. Shrink the strongly connected components of G.

7. Find all closed sets of the resulting acyclic network

(The subset C of nodes of network is a closed set iff for every vertex of C all ", %
,.

of its predecessors are also members of C).

For each closed sets find the corresponding separating k-set of G 0

s,3



105

End If

8. Add edge (xi, vj) to G.

End If
ed

enddo
; " enddo

The results in Picard and Queyranne [381 establish the correctness of steps 5-7 for finding B

all separating k-sets. Let f be any maximum flow in a network N. The subset C of vertices of N

is a closed set if and only if for every vertex ye C all of its predecessors are also members of C

in N. •

Lemma 7.1: [381 A cut (S,S) separating s from t in N is a minimum cut if and only if S is a

closed set of N containing s but not t.

Let R be the residual graph of N with respect to the maximum flow f. Let C be a strongly

connected component of R and ve C. Then based upon this Lemma if ve S then C is also subset

of S.

_

Observation 7.2: There is one-to-one correspondence between the mincuts of G and the closed

sets of N.

Definitions 7.1: Let N be the residual network of G with respect to a maximum flow. Shrink its

strongly connected components into single vertices. Let L be the resulting acyclic network. (We

will use Lst to emphasize the fact the maximum flow is taken between s" and t').

Theorem 7.1: [4,38] The resulting acyclic network L is the same for any maximum flow.



106

Based upon the above Theorem 7.1 and Lemma 7.1 the problem of finding all s-t mincuts

in L is reduced to the problem of finding all closed sets in L which we get after shrinking all

strongly connected components of N. This justifies Step 6 of the algorithm. Hence, this estab-

lishes the correctness of the algorithm by our discussion preceding the algorithm.

Let us state time complexities of all steps of the above algorithm. We establish the bounds

for Steps 1 and 7 below. Step 1 takes 0 (max(k,n")kmn'6) time [18, 19]. Step 2 takes 0 (m+n)

time. Steps 3-8 are repeated kn times. Step 4 takes 0 (min(k, 4nf)(m+n)) time and step 5 takes

0 (m+n) time. Step 6 also takes 0 (m+n) time. Step 7 takes 0 (min(Mijn + kn 2 ,Mijkn + n))

time, where Mij is the number of separating k-sets between vj and xi. Step 7 takes

0 (min(Mn + k 2 n3 ,Mkn + kn 2)) time over the execution of both loops, where M is the number

of separating k-sets in G. Step 8 takes constant time. The total time for the algorithm is "

8(min(Mn+k 2 n 3,Mkn + knm ain(k, 4n'))) = 0 (2 n 3).

Steps 4-7 show how to find all separating k-sets between a pair of vertices s and t of G. Let

us see in detail how we actually do this. First, we construct a digraph G = (V,E) as stated in

Chapter 2.3.

Lemma 7.2: [14,34] If (s,t)9E then the least cardinality (s,t) vertex separator is equal to the

maximum number of vertex disjoint paths between s and t. -

There are two ways to find a maximum flow from s" to t' in G. The first method is faster

for small values of k, and works as follows. We find k directed paths in G from s" to t', one path

at a time. Call the resulting flow F. There are no k-sets separating s and t in G if and only if we

can find a path from s" to t' in the residual graph G with respect to F. This entire algorithm runs

in 0(k(m+n)) time.

The second algorithm is faster then the first for large values of k. In this algorithm we sim-

ply find a maximum flow in 0 (m,'f) time using Dinic's algorithm in a unit network [49, 131.



!,q t " . . ...

107

Hence we implement step 4 using one of these algorithms depending on the value of k. Hence 0

the time complexity of this step is 0 (min(k, a'Fn)(m +n)).

There are several different algorithms which find all closed sets of an acyclic directed net-

work [4,471. We will present one of them after the following lemma. Let us see know how

many edges the directed acyclic network L can have.

Observation 7.3: Take any two adjacent vertices of G. There are four vertices in G correspond-

ing to them. If the vertices of G corresponding to them were not used in a maximum flow from

s" to t' then in the residual network they will form a directed cycle of length 4 (see figure 2.2).

Let f be a flow from s" to t in G, which we create by using shortest augmenting paths only.

That is, we always choose a shortest augmenting path of the current residual graph to increase a'"

the flow. Let us call this flow a shortest path flow [11].

Lemma 7.3: Let f be a shortest path flow from s" to t' in G. Let N' be the residual graph of G

with respect to f. Let L' be the acyclic graph which we get after shrinking the strongly con-

nected components of N'. Then the number of edges in L' is 0 (If I n), where n = I V I. (Note

that there is one path from s" to t in G for every unit of flow f. These paths are vertex disjoint).

Proof: We will prove that the number of edges of L' is at most 71n by induction on 1, where I is .

the number of paths in G for flow f (If I =/).

Let 1 = 1. Take a shortest path P from s to t in G. There are no edges between vertices of the

path P except the edges E(P) (edges of the path itself), because the path is the shortest. A shor-

test path P in G corresponds to a shortest path P in G. Every edge in P corresponds to two edges

in G, one forward edge which is part of P, and one backward edge which connects two vertices I

of P. Also every vertex of P corresponds to an edge in P. Hence, the number of edges in G
S.



108 ,N

corresponding to P is 3p, where p is the length of P in G.

All vertices of V-P which are not on P have at most 3 edges incident on the path. Hence,

the number of edges E' between vertices of P and the vertices in V-P is at most 3(n -p), where p

is the length of P. All edges of G which correspond to E -E'-E (P) in G will be shrunk in N' by

Observation 7.3. There are 2 edges in G corresponding to each edge of E', and there is one edge

in G corresponding to each vertex of G. So, the number of edges in L' is at most 7n. '

I

Assume the claim is true for 1 5 r, and let 1 = r+l. That means that there are at most 7rn

edges in L' for flow f when If I = r. Let Pr=(P1 , ,P,) be the r vertex disjoint paths in G

which form the flow f. Consider the edges E in G, which neither belong to paths P r from s" to ' A

nor are adjacent to (one of the endpoints belongs to the paths and the other one does not) them. ,.", .

By the assumption there are at most 7rn edges in E - E adjacent to paths Pr from s" to t' or on

them. Let NI be the residual graph of G with respect to the flow f. Find the shortest augmenting

path P in the residual graph N I of G with respect to f from s" to t. Let N2 be the residual graph

of G with respect to the new flow fuP. An edge er E will be shrunk in N 2 unless e belongs to P

or is adjacent to P. Note that all of the neighboring edges of all previous r paths P r were already

counted by the assumption. We claim that there are at most 7n edges adjacent to P or on P

which are in E. -. *

Case 1. Let e = (V1 ,V2)XP such that v1 and v 2 are not vertices ofP r (v 1 and v 2 do not belong a".

to any of the paths P"). Let E be the set of all edges of this type on P. Then there are at most 3

edges between each vertex of V and the endpoints of E I which are in E, because P is the shortest

augmenting path.

Case 2. Let e =(v1 ,v 2 ),P such that viPr and v 2 ePr. Then all of the edges adjacent to e

were already counted by the assumption. '

a, m



109

Case 3. Let e = (v1,v 2)rP such that either viGP" or v 2 ePr but not both. Note that the only

edges of G which were reversed in N 1 are the edges of Pr. There are two subcases

Case A. v 1 P ". Then there is only one edge outgoing from v 2, which is the edge of Case 1.

Hence, all of the edges adjacent to v2 were already counted in Case 1, and all of the edges adja-

cent to v 1 were counted in Case 2.

Case B. v 26P'. Then there is only one edge incoming to v, which is the edge of Case 1.

Hence, all of the edges adjacent to vI were already counted in Case 1, and all of the edges adja-

cent i v 2 were counted by Case 2.

That conclude the proof of the induction step. Hence, the number of edges in the network L

is at most 7(r+l)n.

This concludes the proof of the lemma.

0 Lemma 7.3.

Corollary 7.1: The number of edges in network L is O (kn). (Follows from Theorem 7.1 and

Lemma 7.3).

An antichain in an acyclic network is a subset of nodes R such that for all pairs of nodes i

and j in R, i is neither a predecessor nor a successor of j. The algorithm Antichain below finds

all closed subsets of a directed acyclic network L, and runs in a linear time per subset [4].

Observation 7.4: [4,38] There is one-to-one correspondence between antichains of L (together

with all of their predecessors) and closed sets of L.

Let V(L) be the set of vertices of L, and E(L) be the set of edges of L. We now give an

algorithm by Ball and Provan that finds all antichains in a single-source acyclic graph. The algo-

rithm constructs the antichains in a set C, which is initially empty. The algorithm constructs

successive antichains by adding a vertex to C at each step.

.. ~



]MVIE"

110

Antichain (V (L),E (L),C M) I

Step 1: Choose an ie V(L) of in-degree 0 and output Cu(i); set M = 1; if V(L)-{i} = 0, then

stop. -

Step 2: Delete i from V(L) to obtain L E and Call Antichain (V (L),E (L),C;M);

setM =M +M'.

Step 3: Find all successors of i, denoted by SC(i). If V (L)-SC (i)-[i} = 0, then stop; otherwise ,

delete SC(i)u{i} from V(L) to obtain L-(V(L),E(L)) and Call Antichain (V(L),E(L),Cu

{i};M'); setM =M +M'. 

The correctness of this algorithm can be found in [4]. The time complexity of this algo-

rithm is 0 (Mtm), where m is the number of edges in L and Mt is the number of k-sets separat-

ing s and t in G. Note that all antichains are unique. '"

But it can be improved. Let us find all successors of each vertex of L before calling algo-

rithm Antichain. That can be done in 0 (inn) time, where m is the number of edges in L and n is
.

the number of vertices in L. We build a depth first search tree T. of successors of x for each ver-

tex x of L. Each DFS takes 0(m) time per vertex, hence total time is O(mn). Since L is an acy-

clic graph we can find all successors of x in linear time from T,. Then all substeps of Step 3 of

the algorithm Antichain take only 0 (n) time, since we only need to read and merge lists of max- ,

imum size n. Step 2 clearly takes 0 (n) time. Hence, the entire algorithm takes 0 (Mstn + inn)

time instead of 0 (Mtm). -

Recall that m = 0 (kn) for L. The time spent by the algorithm to find all k-sets separating s

2Iand t in G is O (rmin(Mtkn + min(k, fn1)knn),(Mtn + k2 n3 )).

.r



Each antichain together with all of the predecessors for all of the vertices of the antichain

creates a closed set S. The edges between set S and S = V - S give a mincut in G. All of these

edges are internal edges of G, and hence each edge corresponds to a vertex in G. The cardinality

of a mincut in G is k, hence the edges of each mincut of G correspond to a separating k-set of G.

Since no antichain is repeated, all separating k-sets are distinct.

Since we add edge (xi,vj) to G after processing the network with source xi and sink vj, the

separating k-sets which we find from network L,.,, cannot be found again for any other pair of

vertices in the updated G. Hence,
~i=k J'=n

I I:Mij = M ,

where M is the total number of separating k-sets in G. Since M =0 (2 k-2- ) [26], we conclude

that the total time complexity of the algorithm is

8(min(Mnk + kmnmin(k, 4n),Mn + k2 n3 )) = O (2kn3). Note that for finding all minimum size

edge separators we need to find all minimum separating edge sets between at most n -1 pairs of

vertices [4]. In contrast our algorithm needs to consider kn pairs in order to find all minimum

size separating vertex sets.

7.2. Parallel Algorithm

In this section we present a parallel algorithm for finding all minimum size separating ver-

tex sets of G. Note that if k is bigger than polylog (n), then the time complexity of the sequential p

, algorithm from the previous section might be greater than polynomial in n. The parallel algo-

rithm is very similar to the sequential one, but every step of it will use a parallel version.

%
N

;.4.



112

Algorithm 7.2.

1. Find connectivity k of a graph G

2. a). Take a set K of k vertices of G. Check if the set K is a separating k-set of G.

b). Form all pairs of vertices (x,v), where xeK and ve G. There are kn pairs. Number

these pairs (arbitrarily).

3. For every pair (x,v) make a copy of the graph G and add an edge (y,z) for every pair (y,z)

whose number is smaller than the number of the pair (x,v). Call this graph G,.
iV

4. For every pair (x,v) create a directed graph G;, by using the Even-Tarjan reduction. Find

the maximum flow fx, from x" to v' in G,.

5. Iff =kthen

6. Shrink all strongly connected components of the residual graph of G, with respect to

fr,. Let Lxv be the resulting acyclic directed graph.

7. Find all closed sets of L,.

End If

'C.

Now, we will show how to implement each step efficiently in parallel. For step I we will

use ideas from the sequential algorithm. We will take a subset K of k vertices of G and find the

maximum flow between every vertex in K and every vertex of G. Note that since we can run all

of these kn maximum flows in parallel, we can stop as soon as we find the maximum flow for

one of the pairs.

For maximum flow we can use two different algorithms. The first algorithm is determinis-

tic and is better for small values of k. It uses the straightforward implementation of the first

sa
sequential algorithm for this problem. It takes 0 (klogn) parallel time using 0 (kn N

logn



113

processors on a EREW PRAM, where Na is the number of processors needed for matrix multi- S

"V plication [ 28]. We use matrix multiplication for finding the shortest path in G." for each pair

(x,v) in parallel. We need to repeat this at most k times.

The second algorithm is a randomized algorithm, but runs faster for large k. We find a

maximum flow for every pair in a unit network using randomized parallel algorithm for match-

ing [37,28]. That takes 0 (log2 n) parallel time using 0 (kn 2 N) processors on a CRCW PRAM

S and gives an RNC algorithm.

The first part of Step 2 takes 0 (logn) parallel time using 0 (n+m) processors on a CRCW

PRAM [45]. The second part of Step 2 takes 0(lognk/loglognk) parallel time using

0 (nk/logkn) processors on a CREW PRAM using a parallel prefix computation [28]. Step 3

takes 0(1) parallel time using 0(nk(m+n)) processors on a EREW PRAM. Step 4 is essentially

the same as step 1. Step 6 takes 0 (logn) parallel time with 0 (ZinN) processors on a CRCW

PRAM [21]. Step 7 takes O(logn) parallel time using 0(M~n2 ) processors on a CRCW ",

N" PRAM. We will show the implementation of this step below. .

Let L,, be the residual graph of G with respect to a maximum flow from x" to v' with P.

shrunk strongly connected components. Recall that there is one-to-one correspondence between
the k-sets separating x and v in G and the antichains in L.. If we add to all edges between

every vertex y and all of its successors, then we get a transitive closure L'. Then every

antichain in L' still gives an (S,S) cut in Nx. The network L' is still acyclic and directed. We

will use the adjacency matrix of L' to determine whether two vertices are incomparable.

For the problem of finding all antichains in a transitive closure of an acyclic network we %

%will use well-known doubling technique. We will first find all antichains of sizes of powers of 2,

and then use them to find all other antichains of all other sizes. Take every single vertex as an

antichain. Take all antichains of the current size and take all possible unions between them.

Now, check all created sets and remove all sets which are not antichains of the double size or

Z'w



114

repetitions. Repeat that procedure logn times. This creates all antichains of the sizes of powers

of 2. Now we can use these antichains and get antichains of all others sizes using at most logn

antichains of the sizes powers of 2. %

Algorithm 7.3.

1. Form the transitive closure L' of an input network L. .

2. Take every vertex as antichain
3. Repeat logn times '.,.N

Find all antichains of the double size using antichains of the current size

4. Find all other antichains of all other sizes using at most logn independent sets of sizes of

powers of 2.

5. Find all separating k-sets in the network using antichains. ., .-

Let us state the time complexities and processor bounds for each step of the above algo- ..

rithm. We establish the bounds for Steps 3 and 4 below. Step 1 of the above algorithm runs in

0 (logn) time using 0 (Na) processors on a EREW PRAM, where N' is the number of proces-

sors used for matrix multiplication [28]. Step 2 runs in 0 (1) parallel time using 0 (n) proces-

sors on a EREW PRAM. Step 3 runs in 0 (logn) parallel time using 0 (M2 n 2 ) processors on a

CRCW PRAM as shown below. Step 4 runs in 0 (logn) parallel time using 0 (M2 n 2) proces-

sors on a CRCW PRAM [501. Step 5 runs in 0(1) parallel time using O(Msm) processors on a .' "

CREW PRAM. Hence, total parallel time spent is O (logn) using E(M 2 n2) n 0 (4  2) proces-

sors on a CRCW PRAM. ..e

•5
_ *.

0-i_



-0

P
Let us see in detail the implementation of Step 3. Note that the number of antichains in LS'T

is equal to the number of k-sets which separate s and t in G (Mt). First of all, we take all S I and

S2 which are two different antichains of current size i, to create at most M 2 sets of size 2i. In

order to check if a created set is an antichain of size 2i we need to check two properties: first,

that the created set is an antichain, and second, that its cardinality of a set is 2i. For the first pro-

perty we will check the nxn adjacency matrix of L' . For the second property we check if a~b

for every pair of elements (a,b), where arS1 and be S 2. So we can check each set in 0(1) 0

parallel time using 0 (n2 ) processors on a CRCW PRAM. Hence, on a CRCW PRAM Step 3

runs in 0 (logn) parallel time using 0 (M2n 2 ) processors and Step 4 runs in 0 (logn) parallel

time using 0 (Msn 2 ) processors.

We have to run the above algorithm for kn Lx, graphs, one for each pair (x,v). But
i=k " n i=kj=n 6

25(n2 <( _M)2n2=M2n2 k2

i=1 j=1 i=1 j=1 k

since no separating k-set is created twice.

Hence, step 7 of the parallel Algorithm 7.2 for finding all minimum size separating vertex

6
sets runs in 0 (logn) times using 0 (-1kn) CRCW PRAM processers for all kn pairs of vertices

(xv) xr K and yr V.

The entire parallel algorithm runs in 0 (klogn) deterministic time using

+ kn2 2 -0 CRCW PRAM processors, or runs in 0 ) random-%
k2

ized parallel time using e(M 2 n2 + kn 2N a) - 0 (4 + kfl2N)CRWPA prcso,

k2  B

where N' is t number of processors needed for matrix multiplication.

rM -1-, ^2 % !



116

CHAPTER 8

CONCLUSION AND OPEN PROBLEMS

8.1. Summary of Results
In this dissertation we have studied various algorithms and bounds which arise in graph

connectivity. We have presented bounds on the number of separating k-sets and algorithms for

finding all separating k-sets for k > 3.

In Chapter 3 we presented lower bounds on the worst-case number of separating k-sets for

an undirected k-connected graph. For k = 2 the graph that achieves the lower bound is the cycle.

The lower bound is n (n - 3) For k = 3 the graph that achieves the lower bound is the wheel. .. ; ,
2

The lower bound is (n-1)(n-4 For general k the generalized cycle and generalized wheel

2

give an f( 2 -2 ) lower bounds on the number of separating k-sets for an undirected k-
k

connected graph on n vertices for even and odd k, respectively.

In Chapter 4 we presented the upper bounds on the number of separating k-sets as well as

representations for an undirected k-connected graph on n vertices for small k's. For k = 2 the

upper bound is the same as the lower bound, namely 2(n3) For k = 3 the upper bound once
2 .

again matches the lower bound of (n-1)(n--4) The representation for k = 2 is based upon the
2 ".

decomposition of an biconnected graph into a collection of cycles, where every pair of vertices , "

on a cycle is either a separating pair of the graph or a pair that separates an edge from the graph.

The size of the representation is 0 (n). The representation for k = 3 is based upon the decompo-

sition of an triconnected graph into a collection of wheels, where every pair of vertices on the "

cycle of the wheel together with the center of the wheel is either a separating triplet of the graph :%

or a triplet that separates an edge from the graph. The size of the representation is also 0 (n). .5

4. - V



%

117

In Chapter 5 we advanced the ideas of the previous chapter for general k. We achieved an
2

0(2k-1--) upper bound on the number of separating k-sets in an undirected k-connected graph on

n vertices. The representation for general k is based upon the decomposition of an undirected k-

connected graph into a collection of generalized wheels (or cycles). The size of this representa-

tion is O (k2n).

In Chapter 6 we presented improved algorithms for testing graph four-connectivity. Conse-

quently, these algorithms find all separating triplets of an triconnected graph if it is not four-

connected. The algorithms are based upon the ear decomposition technique. The sequential

algorithm runs in 0 (n2) time which is an improvement over 0 (min) time sequential algorithm S

which was the previous best. The parallel algorithm runs in 0 (og 2 n) time using 0 (n 2 ) CRCW

PRAM processors. That is an improvement over a previous 0 (logn) time algorithm which uses

~ 0 (mnlogn) CRCW PRAM processors.

In Chapter 7 we presented algorithms for finding all separating k-sets in an undirected k-

connected graph on n vertices and m edges for general k. The sequential implementation runs in "

e(min(max(Mnk,knmmin(k, -Fn)),max(Mn,k2 n3 ))) = 0(2kn3) time, where M is the number of

minimum size separating vertex sets in the graph. The parallel implementation runs either in

0 (klogn) deterministic time using O(M 2n 2 + knNa) = 0 (4k n 6) processors on a CRCW
2Ik

6PRAM or in 0 (log2 n) randomized time using O(M 2n 2 +kn 2Na) =0( 4 kff) processors, 

where n is the number of vertices in the graph and k is the connectivity of the graph, and N' is

the number of processors needed for parallel matrix multiplication of nxn matrices in 0 (logn)

time.
4Fe

...



118

8.2. Open Problems

As we have seen there are linear time algorithms for testing whether a graph is connected,

biconnected and triconnected. For testing four-connectivity the best algorithm runs in 0 (n2 )

time. There are linear space representations for all separating k-sets of a k-connected undirected

graph for any fixed k.

1). Is there a linear time sequential algorithm for testing graph k-conneCtivity for all fixed k? ,
I

Closely related is the question of finding the representation for all separating k-sets of a

graph efficiently. Another question is finding the connectivity of a graph. The best deterministic

algorithm uses network flows.

2). Is there another algorithm for finding the connectivity of a graph without use of network

flows?

There are 0 (logn) time parallel algorithms for testing graph k-connectivity for any fixed k.

But the number of processors is increasing by the factor of n for each k.

3). Is there an 0 (logn) time parallel algorithm for testing graph k-connectivity for any fixed k "-'.

which uses 0 (n2 ) processors?

As we mention in Chapter 4 there are fast procedures to list all separating pairs and triplets V

in a biconnected and triconnected graphs, respectively. The procedure for listing all separating .. ,

k-sets runs in 0 (ckM), where M is the number of separating k-sets in a graph. We are currently

investigating better algorithms for this procedure. Also we plan to design efficient procedures

for answering the following queries:
I

A) Decide if a set of k vertices is a separating k-set, .

B) Decide if two vertices are in the same connected component with respect to all separating

k-sets, and

C). Decide if two vertices are in the same component with respect to a separating k-set. ,- ,,

,'I.



ve 119

As we can easily see from Table 1 there is a gap between lower and upper bounds on the

number of separating k-sets of an undirected k-connected graph. We conjecture that the real

upper bound is the same as the current lower bound, and moreover, the graph that achieves it is

the generalized cycle for even k and the generalized wheel for odd k.

The number of minimum size separating edge sets of an undirected graph is 0 (n2 ) as was

stated before. But it was proved for general multigraphs.

4). Is there a better upper bound on the number of minimum size separating edge sets of an

undirected simple graphs?

We have some preliminary results which indicate that the upper bound for k edge con-

nected graphs for odd k is actually linear.

V%

Co .

5! -I
- " * . . . ..Na .C *q ~ R



120

REFERENCES

be

[1] A. Agrawal and R. Barlow, "A Survey of Network Reliability and Domination Theory,"
Operation Research, vol. 32, pp. 478-492, 1984.

rS

[2] M. Ball, R. M. Van Slyke, I. Gitman, and H. Frank, "Reliability of Packet Switching .v
Broadcast Radio Networks," IEEE Transactions on Circuits and Systems, vol. CAS-23, , -

pp. 806-813, 1976.

[3] M. 0. Ball, "Computing Network Reliability," Operation Research, vol. 27, pp. 823-838,
1979.

[4] M. 0. Ball and J. S. Provan, "Calculating Bounds on Reachability and Connectedness in
Stochastic Networks," Networks, vol. 13, pp. 253-278, 1983. :.

[5] M. Becker, W. Degenhardt, J. Doenhardt, S. Hertel, G. Kaninke, W. Keber, K. Mehlhom, .'.

S. Naher, H. Rohnert, and T. Winter, "A Probabilistic Algorithm for Vertex Connectivity
of Graphs," Inform. Proc. Letters, vol. 15, pp. 135-136, 1982.

[6] R. E. Bixby, "The Minimum Number of Edges and Vertices in a Graph with Edge Connec-
tivity n and m n-Bonds," Networks, vol. 5, pp. 253-298, 1975. ; N

[7] J. A. Buzacott, "A Recursive Algorithm for Finding Reliability Measures Related to the "'- ,

Connection of Nodes in a Graph," Networks, vol. 10, pp. 311-327, 1980. .

[8] C. J. Colbourn, "The Reliability Polynomial," ARS Combinatorica, vol. 21-A, pp. 31-58,
1986. .

[9] R. Cole, "Parallel Merge Sort," in Proc. 27th IEEE Ann. Symp. on Foundations of Com-
puter Science, pp. 511-516, 1986. "



,.J

p

121

[10] E. A. Dinic, "Algorithm for Solution of a Problem of Maximum Flow in Networks with

Power Estimation," Soviet Math. Dokl., vol. 11, pp. 1277-1280, 1970.

[11] J. Edmonds and R. M. Karp, "Theoretical Improvements in Algorithmic Efficiency for

Network Flow problems," J. ACM, vol. 19, pp. 248-264, 1972.

[121 S. Even, "An Algorithm for Determining Whether the Connectivity of a Graph is at Least

k," SIAM J. Computing, vol. 4, pp. 393-396, 1975.

[13] S. Even and R. E. Tarjan, "Network Flow and Testing Graph Connectivity," SIAM J.

Computing, vol. 4, pp. 507-518, 1975.

[14] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[15] L.R. Ford and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, N.J.,

S1962.

[16] H. Frank and W. Chou, "Topological Optimization of Computer Networks," Proceedings

of the IEEE, vol. 60, pp. 1385-1397, 1972.

[17] H. Frank, R. E. Kahn, and L. Kleinrock, "Computer Communication Network Design -

Experience with Theory and Practice," in Proc. Spring Joint Computer Conference, pp.

255-270, 1972.

V* [18] Z. Galil, "Finding the Vertex Connectivity of Graphs," SIAM J. Computing, vol. 9, pp.

197-199, 1980.

[19] M. Girkar and M. Sohoni, "On Finding the Vertex Connectivity of Graphs," Tech. Report

ACT-77, Coordinated Science Laboratory, University of Illinois, Urbana, ill, May 1987.

[201 A. V. Goldberg and R. E. Tarjan, "Solving Minimum-Cost Flow Problems by Successive
Approximation," in Proc. 19th ACM Symp. on Theory of Computing, pp. 7-18, 1987.

%W'

[21] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, "Computing Connected Components
on Parallel Computers," in Communications of ACM, pp. 461-464, 1979.

All .



122

[22] J. E. Hopcroft and R. E. Tarjan, "Dividing Graph into Triconnected Components," SIAM
J. Computing, pp. 135-158, 1973.

[23] A. Kanevsky, "On the Number of Minimum Size Separating Vertex Sets in a Graph,"
Tech Report ACT-80, Coordinated Science Laboratory, University of Illinois, Urbana, Ill,
July 1987. Preliminary version was presented at Chicago Conference on Combinatorics
and Complexity, June 1987.

[24] A. Kanevsky and V. Ramachandran, "Improved Algorithms for Graph Four-
Connectivity," in Proc. 28th IEEE Ann. Symp. on Foundations of Computer Science, pp.
252-259, October 1987. ,

[25] A. Kanevsky and V. Ramachandran, "A Characterization of Separating Pairs and Triplets
in a Graph," Tech Report ACT-79, Coordinated Science Laboratory, University of Illinois,
Urbana, 111, July 1987. Preliminary version was presented at Chicago Conference on Com-
binatorics and Complexity, June 1987 "

[26] A. Kanevsky, "Compact Representation of the Separating k-sets of a Graph," Tech Report
ACT-88 , Coordinated Science Laboratory, University of Illinois, Urbana, Ill , January
1988.

[27] A. Kanevsky, "Finding All Minimum Size Separating Vertex Sets in a Graph," Tech
Report ACT-93, Coordinated Science Laboratory, University of Illinois, Urbana, Ill, June
1988.

[28] R. M. Karp and V. Ramachandran, "A Survey of Parallel Algorithms for Shared Memory
Machines," in Handbook of Theoretical Computer Science, North Holland, 1989. to
appear

[29] N. Linial, L. Lovasz, and A. Wigderson, "A Physical Interpretation of Graph Connectivity,
and Its Algorithmic Applications," in Proc. 27th IEEE Ann. Symp. on Foundations of

Com,)uter Science, 1986.

[30] M. V. Lomonosov and V. P. Polesskii, "Lower Bounds of Network Reliability," Problems
of Information Transmission, vol. 8, pp. 118-123, 1972. ,

[31] L. Lovasz, "Computing Ears and Branchings in Parallel," in Proc. 26th IEEE Ann. Symp.
on Foundations of Computer Science, pp. 464-467, 1985.



123

~ [32] V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari, "An 0 (1 V 1 3) Algorithm for Find-
ing Maximum Flows in Networks," Information Processing Letters, vol. 7, pp. 277-278,
1978.

[33] Y. Maon, B. Schieber, and U. Vishkin, "Parallel Ear Decomposition Search (EDS) and st-
numbering in Graphs," in VLSI Algorithms and Architectures, pp. 34-45, 1986.

[34] K. Menger, "Zur Allgemeinen Kurventheorie," Fund. Math, vol. 10, pp. 96-115, 1927.

[35] G. L. Miller and V. Ramachandran, Efficient Parallel Ear Decomposition with Applica-
tions, unpublished manuscript January 1986.

[36] G. L. Miller and V. Rarnachandran, "A New Graph Triconnectivity Algorithm and its
Parallelization," in Proc. 19th ACM Ann. Symp. on Theory of Computing, pp. 335-344,
1987.

[371 K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, "Matching is as Easy as Matrix Inver-
sion," Combinatorica, vol. 7, pp. 105-114, 1988.

[38] J. C. Picard and M. Queyranne, "On the Structure of All Minimum Cuts in a Network and t-

Applications," Mathematical Programming Study, vol. 13, pp. 8-16, 1980.

[39] J. S. Provan and M. 0. Ball, "The Complexity of Counting Cuts and of Computing the Pro-
bability That a Graph is Connected," SIAM J. Computing, vol. 12, pp. 777-788, 1983.

[40] J. S. Provan and M. 0. Ball, "Computing Network Reliability in Time Polynomial in the
Number of Cuts," Operation Research, vol. 32, pp. 516-526, 1984.

[41] V. Ramachandran and U. Vishkin, "Efficient Parallel Triconnectivity in Logarithmic
Time," in Aegean Workshop on Computing, Springer-Verlag LNCS 319, pp. 33-42, 1988.

[42] A. Ramanathan and C. J. Colbourn, "Counting Almost Minimum Cutsets with Reliability
Applications," Mathematical Programming, vol. 39, pp. 253-261, 1987.

[431 A. Rosenthal, "Computing the Reliability of Complex Networks," SIAM J. of Appl. Math.,
vol. 32, pp. 384-393, 1977.



124

[44] J. G. Shanthikumar, "Bounding Network-Reliability Using Consecutive Minimal Cutsets,"
IEEE Transactions on Reliability, vol. 37, pp. 45-49, 1988.

[45] Y. Shiloach and U. Vishkin, "An O( log n) Parallel Connectivity Algorithm," J. of Algo-
rithms, vol. 3, pp. 57-63, 1982.

[46] A. W. Shogan, "Sequential Bounds of the Reliability of a Stochastic Network," Opera-
tions Research, vol. 34, pp. 1027-1044, 1976.

$

[47] L. Shrage and K. R. Baker, "Dynamic Programming solution of Sequencing problems with
Precedence Constrains," Operations Research, vol. 26, pp. 444-449, 1978.

[48] R. E. Taijan, "Depth-First Search and Linear Graph Algorithms," SIAM J. Computing,
vol. 1, pp. 146-160, 1972.

[49] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, 1983.

[50] R. E. Tarjan and U. Vishkin, "An Efficient Parallel Biconnectivity Algorithm," SIAM J. S

Computing, vol. 14, pp. 862-874, 1985.

[51] Y. H. Tsin and F. Y. Chin, "Efficient Parallel Algorithms for a Class of Graph Theoretic ' '4

Problems," SIAM J. Computing, vol. 13, pp. 580-599, 1984,

[52] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966. .

[53] R. Van Slyke and H. Frank, "Network Reliability Analysis: Part I," Networks, vol. 1, pp.
279-290, 1972.

[54] R. Van Slyke, H. Frank, and A. Kershenbaum, "Network Reliability Analysis: Part II," in
Reliability and Fault Tree Analysis, R. E. Barlow, J. B. Fussell, N. D. Sigpurwalla, pp.
619-650, 1975.

[55] H. Whitney, "Non-Separable and Planar Graphs," Trans. Amer. Math. Soc., vol. 34, pp. " 4

339-362, 1932. , "

".,'',.I

0~% 

. . - . .,t P

11)15S VN 110' ..



125

VITA

Arkady Kanevsky was born on He studied at the Mos-

Civil Engineering from 1978 to 1981; and in the University of Illinois, Chiczgo,

from 1981 to 1983, where he received the Bachelor of Science degree in Mathematics and Com-

puter Science in 1983. He then attended the University of Illinois at Urbana-Champaign, where

he received the Master of Science degree in Mathematics, in August 1985. He continued his

education at the University of Illinois at Urbana-Champaign from September 1985 to August

1988, where he was a Research Assistant in the Coordinated Science Laboratory. He received

the Doctor of Philosophy degree in Computer Science in 1988.

NI

I1


