‘oY .

'?7;{: f“!;‘;’t .‘"..r ;o

foEe

AVF Control Number: AVF-VSR-017
SIT1-AVF-017

AD-A199 426

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 88022911.09044
SYSTEAM KG
SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/05-9
Version 1.61
VAX 8530, KVS M6BK

Cempletica of On-Site Testing:
BB-02-29

Prepared By:
1ABG m.b.H., Dept SZT
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

DTIC

Prepared for: ELECTE

Ada Joint Program Office
United States Department of Defense . AUG 3 11988

Washington, D.C. 20301-3081 'Tp
:7ET Ada is a registered trademark of the United States Guvernment
(Ada Joint Program Office).
DIBSTRIBUTION STATEMENT A | . -~
- e
' g 3t

Approved for public relenwe; S
Distribution Unlirmited

> ——— v e —r————

23 Ffer 1:. % <0 29 fep 1353

X/VMS x - _
AX 8530 (Host) and |6. PERFORMING DRG REPQR™ NLwi:d =

~_ UNCLASSIFIED

55::;9;:.:5_&@5:Fx(nnuu Of THIS PAGE (WhenDgtaénteres) e . -

| REPORT DOCUMENTATION PAGE ‘

Do REPORT NLMA:R {2, GOVT ACCESSION NO. |3 RiCIPIEN: ‘5 “ATaiis NoMa.- |

' o

c4. TITLE (and Subutie) §. TypE QFf PEOQRT 8 DIRI(QD [y IR.D i
i
1

i Ada Compiler Validation Summary ngort:

i SYSTEAM KG, SYSTEAM Ada Comgiler
¢ MC68020/0S-9 Version l.61,
| KWS EB 68/20 (Target).

i
'
i
;
;
;

©7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBEZR(s

| IABG, ,

| Ottobrunn, Federal Republic of Germany

‘5. PERFIRMING ORGANIZATION AND ADDRESS 10, DROGRT™ ECEMINT. SROUECT. TALn

i AREA 8 WOEK UNIT WUMBL-3 !

i LABG,

! Ottobrunn, Federal Republic of Germany

<11, CONTROLLING OFFICE NAME AND ADDPESS 12. REPORT DATE

i Ada Joint Program Office 29 Februury 1983
United States Department of Defense T NOMBIR OF PAGES T ———— —
Washington, DC 20301-3081 52 o

.13, MONITORING AGENCY NAME & ADDRESS(Idifferent from Controlling Office) 15, SECURITY CLASS (of this report) !

’ UNCLASSIFIED

. IABG, 15a. "S)E”ASSéFICATION'DWNGR&DE‘-}

| . \ . CREDUT

. Ottobrunn, Federal Republic of Ge.many N/A

|

\

16. DISTRIBUTION STATEMENT (of this Report;

Approved for public release; distribution unlimited.

]
i

DISTRIBUTION STATEMENT (of the abstractentered in Block 20 if different from Report)

UNCLASSIFIED

3. SUPSLEMENTARY NOTES

13, <2 aGRDS (Continue on reverse side if necessary and identify by biock number)

AcCa Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
8157, Ada Joint Program Office, AJPO

an

20, ABSTRALT (Continue onreverse side :f necessary and dentify by block aumber)

SYSTEAM Ada Compiler VAX/VMS x MC6A8020:05-9 Version 1.61, SYSTEAM KG. TABG, VAX 8330 under
VMS, Version 4.6 (Host) and KWS EB 68.°0 CPU3 under 0S-9, Version 2.0:Target), ACVC 1.9.

DD rukm 1473 :=orvion oF : Nov 65 IS QBSQLETE o
1 JAN 73 S/N Q102-F-014-5601 UNCLASSIFIED

kéa Compiler Vaiidation Summary Report:

Comp:ler Name: SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/0S-9
Compiler Version: Version 1,61

Certificate Number: 88022911.09044

Host:
VAX BS3C under
VKS,
Version 4.6
Target:
KWS ER 68/20 CPU3 under
05-9,

Version 2.0

Testing Completed 88-02-29 Using ACVC 1.9

This report has been reviewed and is approved.

- ———— — —— - — -

1ABG m.b.H., Dept SZ7T

Dr. H. Hummel
Einsteinstrasse 20

8012 Ottobrunn

Federal Republic of Germany

da Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

T rgimicar oo

Ada JoAnt Program Qffice
Virginia L. Castor
Director

Department of Defense
Washington DC 20301!

CHAPTER 1

— e h

CHAPTER 2
2.
2

(48]

CHAPTER

Gl Q) G LW W W WL Wt

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

LT IR <3 % B AN RS

(oS By

Bt A B - AN I R O B e

L NI »—

CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORI
REFERENCES - .
DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATICN INFORMATION

CONFIGURATION TESTED
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS
SUMMARY OF TEST RESULTS BY CLASS ..
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS |
INAPPLICABLE TESTS .
TEST,
ADDITIONAL TESTING INFORMATION .
Prevalidation e
Test Method
Test Site

DECLARATION OF CONFORMANCE
APPENDIY F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

PROCESSING, AND'EOALUATloN MODIFICATIONS :

1]

L L ey
4
[TN S &% B N I 0N)

1

[} [i

Q) W W G G L W)W W
]
T LA B B PN R —

] Accessiol For

NTIS GRA&I
[DIIC TAR 0O
i Unannocuneed]

} Justification

—— e}

i

P BY- ..
| Distribution/.
Availability CcAdes
|Avatl and/or)
Special

Dist

Y

‘O .

* =

CHAPTER 1t

INTRODUCTION

This Validation Summary Report -(VSR) describes the extent +to which a
specific Ada compiler <conforms to the Ada Standard, ANSI/MIL-STD-1B815A.
This report explains all technical terms wused within it and thoroughly
reports the results of testing this compiler wusing the Ada Compiler
Validation Capability (ACV(). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.)

The information in this report is derived from the test results produced
during wvalidation testing. The validation process includes submitting a
suite cf standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language <constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that s
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, 3t link time, and during execution,

1-1

INTRODUC™ 1ON

1.1 PURPQSE QF THIS VALIDATION SUMMARY REPORT

This VSR documents ine results of the validatior testing performed on an
Ada compiler, Testing was carried out for the following purposes:

Tc attempt to identify any language constructs supported by the
compiter thet do not conform to the Ada Standard

To attempt to identify any language constructs not supprrted by
the compiier but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Starcerd

Testing of this compiler was conducted wunder the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered bv the Ada Validation Organization (AVO). On-site testing was
compieied B88-02-29 at SYSTEAM KG at Karlsruhe.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, tne AVD may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #S552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Stireet)
Washington DC 20301-3081

or from:
IABG m.b.H., Dept S27
Einsteinstrasse 20

8012 Ottobrunn
Federal Republic of Germany

1-2

INTRODUCTION

Questions regarding this report or the validation test results should obe
directed to the AVF listed above or to:

Ada Validation QOrganization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

ANSI/MIL-STD-1815A, February 1983 and 1S0 B8652-1987.

Procedures and Guidelines, Ada Joint
ry 1987.

rd

Ada (ompiler Valid

igatioen
Program Office, 1 Janus

i
n

J—-

3. Ads Compiler Vglidalion Capgbil
Inc., December 1986,

4, Ada Compiler Velidation Capability User!s Guide, December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

Failed test
Host
Inapplicable
test

Passed test

Target

Test

Withdrawn
test

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given & unique identification number having the
form Al-ddddd.

ANSI/MIL-STD-1815A, February 1983 and 150 B8652-1987.
The agency requesting validation.

The Ada Validation Facility, The AVF is responsible for
conducting compiler wvalidations according to procedures
contained in the Ada Compiler Validgtion Procedyres ang
Guidelines.

The Ada Validation OQrganization. The AV0 has oversight
authority over all AVF practices for the opurpose of
maintaining a wuniform process for validation of hda
compilers, The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the <context of this
report, a compiter is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity {o the Ada Standard.

The computer on which the compiler resides.

An ACVC test that wuses features of the language that a
compiler is not reguired to support or may legitimately
support in a way other than the one expected by the test.

An ACVC test for which & compiler generates the expected
result.

The computer for whith a compiler generates code.

A program that checks a compiler’s conformity regarding @
particular feature or 3 combination of fcatures to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one OP more
files.

An ACVC test found to be incorrect and not wused to check
conformity to the Ada CStandard. A test may be incorrect

1-4

INTRODUCTION

recause it has an inrvalid test objective, fails to meet its
test objective, or contains illegal or erronecus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard s measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program wunits are wused to report their results during
execution, Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors,

Class A tests check that legal Ada programs can be successfully compiled
and executed, There are no expiicit program components in a Class A test
to check semantics. For example, @ Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A (lass A test s
passed if no errors are detected at compile time and the program executes
to produce a8 PASSED message.

Class B tests check that a compiler detects it1legal language usage. Llass
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains s detected by the compiler.

Class C tests check that lega! Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacitiies oi & Compiier.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--fpr example, the number of identifiers
permitted in a compilation or the number of units in 3 library--a compiler
may refuse to compile a Class D test and still be a <conforming compiler.

Therefore, 1f a (lass D test fails to compile because the capacity of the
compiier is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or

FAILED message during execution,

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation 1o reject programs containing some
features addressed by Class £ tests during compilation, Therefore, 3 Class
E test is passed by a compiler if it is compiled successfully and executes
to produce & PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that inComplete or illegal Ada programs involying
multiple, separately compiled wunits are detected ard not allcwed 10
execute. Class L tests are compiled separately and execution 15 attempted.
A Class L test passes if it is rejected at link time--that is, an attemrt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the matn
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, suprort
the self-checking features of 1he executable tests. The packege REFORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class { tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by 2 set of executable tests. These tests produce messages that
are examined to wverify that the units are operating correctiy. If these
units are not operating correctly, then the validation s not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the testis are reascnably portable without modification. Ffor
example, the tests make use of only the basic set of 55 characters, coatain
lines with @ maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the wvalues used for this validation is

.provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ade Starncdard by either meeting the pass
erit.ria given for the test or by showing that the test is inapplicable 1o
the implementation. The applicability of a test to an implementation is
considered each {ime the implementation is validated. A test that s
inapplicable {for one wvalidation s not necessartly inapplicabie for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-5

e ——— T T

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested wunder
fellowing configuration:
Compiler: SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/0S-9,
Version 1.61
ACVC Vversion: 1.9
Certificate Number: 8B022¢11.09044
Host Computer:

Machine: VAX 8530

Operating System: VMS
Version 4.¢

Memory Size: 32 MB

Target Computer:

Machine: ¥WS EE 6B/20 CPU3
Operating System: 05-9
version 2.0
Memory Size: 2.0 MB
Communications Network: VZ4 connection

2-1

the

[

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARAITERISTI(S

One of the purposes of vaiildating compilers is to determine the behavior of
a . compiler in those areas c¢f the Ada Standard that permit implementations
to differ. (lass D and E tests svecificatly check for such implementation
differences. However, tests 1n other <classes also characterize an
implementation. The tests demonstrate the fcllowing characteristics:

(apacities.

The compiler correctly processes tests containing loop Statements
nested t¢ 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests DS5A03A..H (8
tests!, [SEOCIE, DR4QOSE. .G (3 tests), and D29002kK.)

Universal integer calculations.
An implementation is aliowed 1o reject universal integer
calculations having wvalues that exceed SYSTEM.MAX_INT. This

imrlementaticn processes 64 tit integer calculations. (See tests
DA&OOZA, D4ADO2B, [4A004A, and D4R0D4B.)

Predefined types.

This implementation supports the additional predefined types
CHORT_INTEGER, SHORT FLOAT, and LONG_FLOAT in the package
STANDARD. (See tests BB60OCIC and EB6001D.)

Based literals.

An oimciementation is aliowed to reject a3 basec litergl with a
value exceeding SYSTEM.MAX_INT during compilation, or it may raise

NUMERIC_ERRQR or CONSTRAINT _ERROR during execution. This
implementaticn raises NUMERIC_ERROR during execution. (See test
E2410ie))

Expression evsluation,

Apparertly no default initializaticn expressions for record
components are evaluated before any value is checked te belong to
& component's subtype. (See test (32117A.)

Assianments for subiypes are performed with the same precision as
the base type. (Gee test (35712B.)

e

ARG X meae o0

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation wuses all extra bits for extra range. (5ee test

" £35903A.)

Apparentiy NUMERIC_ERRQOR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232R.)

Aprarently NUMERIC_ERROR is raised when a 1liter~l operand in @&
fixed-point comparison or membership test is outside the range of
the base type. (See test (45252A.)

Apparently underflow is gradual. (See tests C45524A..7.)

Rounding.

The method used for rounding to integer is apparently round 1o
even. (See tests C46012A..7.) !

The method used for rounding .0 longest integer is apparently
round to even. (See tests C46012A..7.)

The method used for rounding to integer in static wuniversal real
expressions is apparently round away from zero. (See test

C4A014A)

T ———— — ———— -

CONFIGURATION INFORMATIGN

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. for this
implementation:

Dectaration of an array type or subtype dectaration with more than
SYSTEM.MAX_INT components raises no exception. (See test
C36003A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC_ERROR s raised when "LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test (C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
£52103%.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC_ERROR when the array type is declared.
(See test C52104Y.)

A naull array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR either

when declared or assigned. Alternatively, an implementation may

accept the declaration. However, lengths must match in array

1 slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test ES2103Y.)

In assigning one-dimensional array types, the expression appears
* to be evaluated in its entirety before CONSTRAINT_ERROR is raised
E when checking whether the expression’s subtype is compatible with
L the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

! . Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
£38104A.)

‘-ir—l-—

i In assigning record types with discriminants, the expression
1 appears to be evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’s subtype is

2-4

[R e e - o

JR A — - -

CONFIGURATION INFORMATION

compatible with the target’s subtype. (See test CS2013A.)

fggregates.

In the evaluation of a multi-dimensional aggregate, all <choices
appear to be evaltuated before checking against the index type.
(See tests C43207A and C432078.)

In the evaluation of an aggregaete containing subaggregates, all
choices are evaluated before being checked for identical bounds.
{See test £432128.)

All choices are evaluated before CONSTRAINT_ERROR is raised if a
pound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some o0f the tests. If s
representation clause 1S used by a test in a way that wviolates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See *tests €355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses conteining noncontiguous values
for character types are supported. (See tests (355071..J,
C33507M, .N, and CSSB16A.)

Enumeration representation clauses for boolean types containing
representational wvalues other than (FALSE => @, TRUE => 1} are
supported. (See tests C355081..J and (33508%..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A29005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87862D.)

Length clauses with SMALL specifications are supported. {See
tests A39005E and C87B62C.)

There are recstrictions for alignment <clauses within record
representation ctauses. (S5ee test A39005G.)

N
[}
wn

CONFIGURATION INFORMATION

Length clauses with SIZE specifications for derived integer types
are supported. (See test CB7B62A.)

Pragmas.

The pragma INLINE is not supported {for procedures. The pragma
INLINE is not supported for functions. (See tests LA30044,
LA30048, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_IO can be instantiated with wunconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE22010, and EEZCOIE.)

The package DIRECT_IO can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE2101H, EE2401D, and EE24016.)

Modes IN_FILE and QUT_FILE are supported for SEQUENTIAL_I0. (See
tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CEZ2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL_IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
GEQUENTIAL_IO and DIRECT_I0. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in QUT_FILE mode, cannot be
created in OUT_FILE mode, and cannot be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each externsl
file for text I/0 for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each
non-temporary external file for sequential 1/0 for both reading
and writing. (See tests CE2107A..D (4 tests), CE2110B, and
CE2111D.)

More than one interneal file <can be associated with each

non-temporary external 4file for direct I/0 for both reading and
writing. (See tests CE2107F..1 (5 tests), CE2110B, and CE2111H.)

2-6

CONFIGURATION INFORMATION

An jnternal sequential access file and an internal direct access
file «can be associated with a single external file for writing.
{See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted but <closed for SEQUENTIAL_IC, DIRECTY_IO, and
TEXT_IC. (See test CE2110B.)

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic .package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

T

I A

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 24 tests had been withdrawn because of test errors. The AVF
determined that 213 tests were inapplicable to this impiementation. All
inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 13 tests were required to successfully demonstrate the test objective.
(See section 2.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_____________ S DU . S | S S,

Passed 109 1048 1651 17 16 44 2885

Inapplicable 1 3 205 0 2 2 213

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1093 1874 17 19 46 3122
3-1

v s o — — T —— —

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
............. SR SR - TSN SN S - RS 0 § | S § D VA0 ¥< IR0 € S
Passed ‘ 182 516 564 245 166 98 141 326 131 36 234 3 243 12885

Inapplicable 22 s7 111 3 o0 O 2 t 6 0 O O 11 213
24

r—_
—

Vithdrawn 2 13 2 0 0 1 2 ¢ 0 0 2
TOTAL 206 5B6 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 VWITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A £28005¢C C340044 £35502p A35%02C
C35904A C35A03E C35A03R C37213H €372134

€37215¢ C37215¢E £372156 C37215H £38102¢
414024 C45614¢ A74106C €85018B (878048
CC1311B BC31054 ADIAD1A CE2401H

See Appendix D for the reason that each of these tests was withdrawn,

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that @ compiler is not required by the Ada Standard to support. Others may
depend on the result of ancther test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1is not necessarily inapplicabtle <for & subsequent
attempt. For this validation attempt, 213 tests were inapplicable for the
reasons indicated:

Tests C24113D..N (11 tests) contain lines of lengihs greater than
BO characters which is not supported by this compiler,

A39005G uses an alionment clause with an alignment of 8 within a
record representation clause.

-~ -y

TEST INFORMATION

The following tests use LONG_INTEGER, which is nol supported by
this compiler:

£45231C €45304(C £45502¢ €45503¢C (45504¢
£45504¢ €45611C €45613C €45631¢C €45632C
B520040 CS5E07A B35B09(

C45231D requires a macro substitution for any predefined numeric
types other tran INTEGER, CHORT_INTEFER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

£45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

455310, C45531P, (455320, and (45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

[86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_10.

960058 requires the range of type DURATION to be different {from
those of its base type; in this implementation they are the same.

CA3004E, EA3004C, and LA3004A wuse the INLINE pragma for
procedures, which is not supported by this compiler,

{A3004F, EA3D04D, and LA3004B use the INLINE pragms for functions,
which is not scvpported by this compiler.

CE2108A, TE2108C, CE3112A are inapplicable because temporary files
(sequential, direct, text) do no! have names.

(E2107C, CE2107D, CE2107H, and CE21071 are inapplicable because
multiple internal files c¢annot be eaessociated with the same
temporary external file. The proper exception is raised when
multiple access is attempted.

Tests CE21108B and CE3114B contain attempts to DELETE one .of two
files that access the same external file. In this implementation,
such an attempt closes the internal file, but fails to delete the
external file, raising USE_ERROR. The tests' subsequent attempt
to egain DELETE the internal file raises STATUS_ERROR, since that
file is no longer open. The AVDO accepts this behavior while tne
1ssue is reviewed further.

3-3

TEST INFGRMATION

Test CE31118 assumes that & PUT - operation writes data to an
external file immediateiy. fFor this implementation data are
written to a buffer first, thus this test's attempt <0 immediately
GET data raises END_ERROR. The AvO ruled that this behavior is
acceptable.

Test CE3202A requires that the name function returns strings which
identify the standard input and output files. The underlying
operating system does not support this regquirement. The AVO ruled
that this behavior is acceptable.

The following 159 tests require a floating-point accuracy that
cxceeds the maximum of 18 digits supported by this implementation:

€241130..Y (11 tests) £357050..Y (11 tests)
£357060..Y (11 tests) £357070..Y (11 tests)
€357080..Y (11 tests) €358020..7 (12 tests)
€452410..Y (11 tests) £453210..Y (11 tests)
£454210..Y (11 tests) €455210..2 (12 tests)
£455240..7 (12 tests) €456210..7 (12 tests)
C456410..Y (11 tests) C460120..7 (12 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior preventc the successful completion of an
(otherwise) applicablie test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages oproduced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 Class B tests.

The following Class B tests were split because syntax errors 2t one point
resulted in the compiler not detecting other errors in the test:

B22003A B240094A B29001A BE38003A B38009A
B38009B B51001A B91001H EC2001D BC2001E
BC32048B BC32058B BC3205D

3.7 ADDITIONAL TESTING INFORMATION

3-4

TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SYSTEAM Ada (ross Compiler VAX/VMS x MC68020/05-9 was submitted to the
AVF by the applicant for review. Analvsis of these resulis demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/05-9 using ACVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a VAX B530 host operating wunder VMS, \Version
4.6, and a KWS EB 68/20 CPU3 target operating under 0S-9, Version 2.0. The
host and iarget computers were linked via V24 connection.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported <floating-point oprecisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer,

After the test fites were loaded to disk, the full set of tests was
compiled on the VAX 8530. Object files were linked and executed on the
target. Results were printed from the host computer, with results being
transferred to the host computer via V24 connection.

The compiler was tested using command scripts provided by SYSTEAM KG and
reviewed by the validation team. The compiler was tested using all default
settings.

Tests were compiled, linked, and executed {(as appropriate) using a single
host computer and 2 single target computer. Test output, compilation
listings of Class B tests and tests that raised an error during
compilation, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at SYSTEAM KG at Karlsruhe and was completed on
88-02-29.

3-5

‘_ - ey e—— -

— - _

e -

e —— e - R i i — . " w——= -

APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the foliowing Declaration cof
Conformance concerning the SYSTEAM Ada Cross Compiler

VAX/VMS x MC68020/05-9.

A-1

- ——————— — - _
y———— y—

T

DECLARATION OF CONFORMANCE

Compiler Implementor: SYSTEAM KG
Ada Validatton Facility: IABG m.b.H., Dept SI7T
Ada Corpiler Validation Capability (ACV() Versieon: 1.9

Base Configuration

Base Compiler Name: SYSTEAM Ada Cross Compiler VAX/VMS x MC6B020/0S-9
Base Compiler Version: Version 1.61

Host Architecture ISA: VAX 8530 VNS 4.6

Target Architecture ISA: KWS EB 68/20 CPU3 05-9 2.0

Implementor’'s Declaration

I, the undersigned, representing SYSTEAM KG, have implemented no deliberate
extensions 1o the Ada Language Standard ANSI/MIL-STR-1815A in the
compiler(s) listed in this declaration.] dectare that SYSTEAM KG is the
owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1B15A. A}l certificates and registrations for Ada tanguage
compiler(s) listed in this declaration shall be made only in ihe owner's
corporateﬂname.
/H,

Or. Vigterstein,

Owner's Declaration

1, the undersigned, representing SYSTEAM KG, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. 1
further agree to continue to comply with the Adez trademark policy, as
defined by the Ada Joinrt Program Qffice. 1 declare that all of the Ada
language compilers listed, and their iiost/taraget performarnce, are in
complianc; Wi

- - . e e - v -~ — - e—

APPENDIL 8

APPENDIX F OF THE Ada 5TANDARD

The only allowed implementation dependencies correspond ¢ inplementatlon-
dependent pragmas, to certain macnine-depend2nt convent:ions as mgntyoned in
chapter 13 of the Ada Standard, and to «certain allowec restrlcttons on
representation clauses. The implementation-dependent characteristics of
the SYSTEAM Ada Cross Compiler VAX/VMS x M(C68020/05-9, Verstion 1.61, arg
described in the following sections, which discuss toeizs in Appendix F of
the Ada Standard. They &re taken from he wvendor's User Manual.
Implementation-specific portions of the wnackage STANDARD are defined as
follows,

PACKAGE standard IS
TYPE boolean IS (false, true);
TYPE short_integer IS RANGE - 32.768 .. 32.767;
TYPE integer IS RANGE - 2.147_483.648 .. 2.147 _.483.647;
TYPE short_float IS DIGITS 8 RANGE - 16#0 .FFFFFF#E32 .. 16#0 FFFFFFAE32:
TYPE float IS _DICITS 15 RANGE
- 16#0.FFFFFFFFFFFFFBAER56 . . 1680 . FFFFFFFFFFFFFB#ER56;

TYPE long_float IS DIGITS 18 RANGE
- 16#0.FFFFFFFFFFFFFFFFAEQ096 .. 1880 . FFFFFFFFFFFFFFFF#E4096;

== TYPE character IS ... as in [ADA,Appendix C)
== FOR character USE ... as in [ADA,ippendix C]
== PACKAGE ascii IS ... as in [ADA,Appendix C)
== Predefined subtypes and string types ... as in [ADA,Appendix C}

TYPE duration IS DELTA 2#1.0#E-14 RANGE
= 131.072.0 .. 131.071.999_938_964_843.76;

=~ The predefined exceptions are as in [ADA,.Appendix C)

END standard;

RN I S

Representation clauses and implementation-dependent features Chapter 13

13 Representation clauses and implementation-dependent fea-
tures

In this chapter we follow the section numbering of Chapter 13 of |[ADA]| and provide
notes for the use of the features described in each section.

13.1 Representation clauses

Pragma PACK : as stipulated in [ADA,§13.1], this pragma may be given for a record
or array type. It causes the cross compiler to select a representation for this type
such that gaps between the storage areas allocated to consecutive components are
minimized, but it does not affect the mapping of each component onto storage. An
even greater saving in storage space can be achieved by using the implementation-
defined pragma SQUEEZE (see below).

Pragma SQUEEZE : this is an implementation-defined pragma which takes the same
argument as the predefined language pragma PACK and is allowed at the same po-
sitions. It causes the cross compiler to select a representation for the argument type
that needs minimal storage space. By contrast, pragma PACK (see above) only leads
to representations which cause components of objects of its argument-types to start on
storage-unit-bounds.

13.2 Length clauses

SIZE

for all integer, fixed point and enumeration types the value must be <= 32;

for SHORT _FLOAT types the value must be = 32 (this is the amount of storage
which is associated with these types anyway);

for FLOAT types the value must be = 64 (this is the amount of storage which is
associated with these types anyway).

for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway);

The implementation does support size specification for record and array types,
but if a size specification is given for type which is a derived type of a record or
array type, then the value of the expression in the size specification must be equal
to the number of bits to be allocated to objects of the parent type (in other words,
size specification for records or arrays cannot be used to make "SIZE of a derived
type differ from that of its parent type).

Chapter 13 Representation clauses and implementation-dependent fcatures

The implementation does not support size specification for task types.
If any of the above restrictions are violated, the cross compiler responds with a
RESTRICTION error message in the cross compiler listing.

STORAGE SIZE

Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the iength clause
is reserved, and no dynamic extension at runtime occurs.

Storage for Tasks: The memory space reserved for a task is 4K bytes if no length
clause is given. If the task is to be allotted either more or less space, a length
clause must be given for its task type, and then all tasks of this type will be
allotted the amount of space stipulated in the length clause (the activation of a
small task requires about 1.4K bytes). Whether a length clause is given or not,
the space allotted is not extended dynamically at runtime.

SMALL
the value given in a specification of small for a fixed point type must be a power of
two. If this restriction is violated, the cross compiler responds with = RESTRIC-
TION error message in the compiler listing.

13.3 Enumeration representation clauses

The implementation places no restrictions on enumeration representation clauses.

13.4 Record representation clauses

The value of the expression given in an alignment clause must be 0, 1, 2 or 4. If
this restriction is violated, the cross compiler responds with a RESTRICTION error
message in the compiler listing.

The implementation places no restrictions on component clauses other than those in
the language (|[ADA,§13.4(6,7)}).

There are no implementation-generated names denoting implementation-dependent
components (cf. [ADA,§13.4(8)]).

Representation clauses and implementation-dependent features Chapter 13

13.5 Address clauses

Address clauses are supported only for objects declared by an object declaration whose
type is not a task type. If an address clause is given for a subprogram, package, task
unit or single entry, the cross compiler responds with a RESTRICTION error message
in the compiler listing.

Since the type ADDRESS in the package SYSTEM is declared as a private type, the
simple_expression in any address clause must be a function call of one of the functions
convert_address declared in the package SYSTEM.

Ezample:
FOR my record USE AT system.convert_address("012Z34EFO");

When an address is given as a hexadecimal string as in this example, a string of length
8 should be given (if a shorter string is given, the cross compiler adjoins an appropriate
number of ’0’ to the right-hand end of the string; and giving a longer string caures
CONSTRAINT_ERROR to be raised at run-time when convert_address is called).

An object for which an address clause is given must not require initialization (whether
explicit or implicit); if it does, the program is erroneous, the cross compiler issues a
warning message and the effect at runtime is unpredictable. It follows from this that
address clauses must not be given for objects whose type has a discriminant part (cf.
[ADA,§3.7.2(8)]) or for objects whose type is an access type (cf. {ADA,§3.2.1(10)])
because these always require initialization.

b

13.6 Change of representation

The implementation places no restrictions on changes of representation, except that,if
a size specification is given for a record type which is a der;ved type, then the value
of the expression in the size specification must be equal to the number of bits to be
allocated to objects of the parent type (in other words, size specification for records
cannot be used to make 'SIZE of a derived record type differ from that of its parent
type).

e e e it

Chapter 13 Representation clauses and implementation-dependent features

13.7 The package SYSTEM

See §F.3.

The pragmas SYSTEM NAME, STORAGE_UNIT and MEMORY SIZE have no ef-
fect.

18.7.1 System-dependent named numbers

See Chapter 15, §F.3.

18.7.2 Representation attributes

These are all implemented.

13.7.8 Representation attributes of real types

These are all implemented.

13.8 Machine code insertions

A package MACHINE _CODE is not provided and machine code insertions are not
supported.

Representation clauses and implementation-dependent features Chapter 13

13.9 Interface to other languages

This is provided for assembly language subprograms. For each Ada subprogram for
which

PRAGMA interface (assembler, <Ada_Name>};
is specified, an assembly language program implementing the body of the Ada subpro-

gram must be provided.

Some conventions must be obeyed when writing the assembly source. To this end four
macros (PARAMS, LOCALS, ROUTINE and RETURN) are provided for use with the
R68020. The source file must be written in the following form:

PSECT psect.name,0,0,0,0,0

USE /ada/external.defs (1)
3
PARAMS size_of paramterblock ©))
pl EQU offsetl (3)
p2 EQU offset2
LOCALS (4)
11 LO.W 1 (8)
12 La.L 2
* entry_label: ROUTIKE (6)
\ MOVE.W (p1.A4).DO (7)
‘ CLR.L (12,A8) (8)
RETURN (9)
*
PARAMS
) *
ENDS

of one subprogram starts with a call of macro PARAMS (2) and ends with the next

A Within one psect the bodies for more than one subprogram may be given. The body
call of marco RETURN (9).

The parameter definitions are started by the call of the macro PARAMS (2). The
size of the parameter block must be given as argument. The names of the parameters

— - — - v~ = - - - - ..

Chapter 13 Representation clauses and implementation-dependent features

are introduced by EQU-directives (3). The offsets of the parameters «nd the size of
the parameter block are determined by the compiler when compiling the subprogram
specification but must be included here by the user. This is a source of inconsistencies.
Therefore it is recommended to have just one record parameter. In this case, the
address of the parameter is passed (i.e. size of parameter block is 4 and the offset of
the only parameter is 0). The layout of the record can be controlled in the Ada source
by a representation clause. Another way to get the correct offsets is to compile a call
of the external subprogram with option SYMBOLIC_CODE and look at the code of
the call.

The call of macro PARAMS must be present even if the external subprogram does not
have any parameters.

In the code of the external subprogram the actual parameters are accessed in the form
(parameter_name,A4) (7).

The call of the macro LOCALS (4) introduces the definitions of local variables. These
variables are allocaied on the runtime stack of the Ada program. Each variable is
defined using the LO-directive (5).

The call of macro LOCALS must be present even if the external subprogram does not
have any local variables.

In the code of the external subprogram, the local variables are accessed in the form
(variable_name,AS) (8).

After the call of the macro ROUTINE (6) the code of the external subprogram follows.
It is terminated by the next call of the macro RETURN (9), which completes the
subprogram and performs the RTS-instruction. Immediately before the RETURN is
executed, the registers A4, A5 and A6 must have the same contents as at the beginning
of the external subprogram. All others registers may have values different to those they
had on entry.

The entry point of the external subprogram is indicated by the label on the line con-
taining the call of the macro ROUTINE (6). As entry label the Ada subprogram name
truncated to 8 characters must be used. It must be followed by a colon.

The macro definitions for PARAMS, LOCALS, ROUTINE and RETURN are con-
tained in the file /ada/external.defs. It must be included with a USE-directive (1).

‘—'" *. .- M -

Representation clauses and implementation-dependent features Chapter 13

Process the assembly source with the R68020 by calling the command file

0S9$ make -f=/ada/external source=<source file> -
list=<listing file> -
name=<name> -
[library=<directory>|

<scurce file> gives the name of the source file. <listing file> names the file containing
the assembly listing. The object module generated is stored in the target library on
file <directory>/EXT.<name>. Therefore <name> must be determined so that no name
clashes occur with the object files of other external subprograms. All object files <direc-
tory>/EXT.* are included in an executable program during linking if required. To this
end they are merged into the object module library <directory>/EXTERNAL.OML
which is specified as library (i.e. -l=<directory>/EXTERNAL.OML) in the call of the
L68.

The default for <directory> is ALB.

13.10 Unchecked programming

18.10.1 Unchecked storage deallocation

The implementation does not support unchecked storage deallocation. (The generic
procedure UNCHECKED DEALLOCATION is provided, but the only effect of calling
an instantiation of this procedure with an object X as actual parameter is

X := NULL;

i.e. no storage is reclaimed.)

However, the implementation does provide an implementation-defined package COL-
LECTION MANAGER which fulfils a similar function (cf. Chapter 12).

Chapter 13 Representation clauses and implementation-dependent features

18.10.2 Unchecked type conversions

The implementation does support unchecked type conversions. Note that if
target_type’size > source_type’size,

the result value of the unchecked conversion is unpredictable.

&

Input-output Chapter 14

14 Input-output

In this chapter we follow the section numbering of Chapter 14 of [ADA| and provide
notes for the use of the features described in each section.

14.1 External files and file objects

The total number of open text files (including the two standard files), sequential files

and direct files must not exceed 10 for each class. Any attempt to exceed this limit
raises the exception USE_ERROR.

File sharing is allowed for reading and writing without any restriction.
The following restrictions apply to the generic actual parameter for ELEMENT_TYPE:

« input/output of access types is not defined.

e input/output is not possible for an object whose (sub)type has a size which is not
a multiple of SYSTEM.STORAGE_UNIT. Such objects may only exist for types
for which a representation clause or pragma SQUEEZE is given. USE_ERROR
will be raised by any attempt to read or write such an object or to open or create
a file for such a (sub)type.

14.2 Sequential and direct files

Sequential and direct files are represented by OS9 RBF files with fixed-length or
variable-length records. Each element of the file is stored in one record.

14.2.1 File management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do net exist in [ADA].

hadd

—~———— - ——

Chapter 14 Input-output

14.2.1.1 The NAME and FORM parameters

The NAME parameter string must be an OS9 file name. The function NAME will
return a file name string which is the file name of the file opened or created.

The Syntax of the FORM parameter string is defined by:

forn_parameter ::= [form_specification { . form.specification }]
form_specification ::= keyword [=> value)

keyword ::= identifier

value ::= identifier | string.literal | numeric_literal

For identifier, numeric_literal, string_literal see [ADA,Appendix E|. Only an integer
literal is allowed as numeric literal (see [ADA,§2.4]).

In the following, the form specifications which are allowed for all files are described.
ALLOCATION => numeric_literal

This value specifies the number of blocks which are allocated initially; it is only used in
a create operation and ignored in an open operation. The default value for the initial
file size is 0.

RECORD _SIZE => numeric_literal

This value specifies the record size in bytes. This form specification is only allowed for
files with fixed record format. If the value is specified for an existing file, it must agree
with the value of the external file.

By default, ELEMENT.TYPE'SIZE / SYSTEM.STORAGE_UNIT will be chosen as
record size if the evaluation of this expression does not raise an exception. Otherwise
256 is used as default. In this case, the attempt to write or read a larger record will

raise USE_ERROR.

If a fixed record format is used, all objects written to a file which are shorter than
the record size are filled up with zeros (ASCIL.LNUL). An attempt to write an element

tW o <

— ~——g C e - W v = e ——— —~— ———————

Input-output Chapter 14

which is larger than the specified record size wil} result in the exception USE_ERROR
being raised. This can only occur if the record size is specified explici:iy or if the
evaluation of the expression ELEMENT TYPE'SIZE / SYSTEM.STORAGE_UNIT

raises an exception.

14.2.1.2 Sequential files

A sequential file is represented by an RBF file with either fixed-length or variable-length
records which may be specified by the form parameter.

If a fixed record format is used, all objects written to a file which are shorter than the
maximum record size are filled up with zeros (ASCII.NUL).

RECORD_FORMAT => VARIABLE | FIXED
This form specification is used to specify the record format. If the format is specified
for an existing file, it must agree with the format of the external file.

Fixed record size is used as default. It means that every record is written with the size
specified as record size.

Variable record size means that each record is written with its actual length. A read
operation transfers as many bytes as are allocated for the receiving object, i.e. the

object supplied as out-parameter to the read procedure. Since the record length is not
stored on the external file, care has to be taken if the file is read again.

14.2.1.8 Direct files

The implementation dependent type COUNT defined in the package specification of
DIRECT IO has an upper bound of :

COUNT'LAST = 2.147.483.647 (= INTEGER'LAST)

Direct files are represented by OS9 RBF files with fixed-length records.

e 2 .. ol

Chapter 14 Input-output

14.3 Text input/output

Additionally to the packages defined in Chapter 14 of the LRM, the package MINI_IO
is provided. It provides only a procedure PUT _LINE, which can be used to write a
single line onto standard output. Its Ada specification is given in §14.8. It provides
an alternative to TEXT JIO.PUT_LINE in applications which do not require the full
power of TEXT_10 and do not want to include a lot of code which is not required.

Text files are represented as RBF or SCF files depending on whether the file name

denotes a disk file or a terminal device. Each line consists of a sequence of characters
terminated by an ASCIL.CR.

A page terminator is represented as a line consisting of a single ASCILFF. A page
terminator is always preceded by a line terminator (i.e. ASCIL.CR).

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last record of the file.

14.8.1 File management

In the following, the form specifications which are only allowed for text files or have a
special meaning for text files are described.

CHARACTER.IO

The predefined package TEXT IO was designed for sequential text files; moreover, this
implementation always uses sequential files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the terminal {as opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line

terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons,in addition to the input/output facilities with record structured ex-
ternal £les, another form of input/output *; provided for text files: It is possible to

T ——_——

L Ae T Zam et

Input-output Clapter 14

transfer single characters from/to a terminal device. This form of input/cutput is spec-
ified by the keyword CHARACTER_O in the form string. If character i:0 is specified,
no other form specification is allowed and the file name must denote a terminal device.

For an infile, the external file (associated with a terminal) is considered to contain

a single line. Arbitrary characters (including all control characters) may be read; a
character read is not echoed to the terminal.

For an outfile, arbitrary characters (including all control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCIL.CR followed by ASCIIL.LF, a page terminator is represented as
ASCILFF and a file terminator is not represented on the external file.

14.8.2 Default snput and output files

The Ada standard input and output files are associated with the corresponding stan-
dard files in O<0.

14.8.10 Implcmcntation-dcﬁned types

The implementation dependent types COUNT and FIELD defined in the package
specification of TEXT 10 have the following upper bounds :

COUNT*LAST

2.147 483.647 (= INTEGER'LAST)

FIELD'LAST 255

e e

Chapter 14 Input-output

14.4 Exceptions in input-output

For each of NAME _ERROR, USE_ERROR, DEVICE ERROR and DATA _ERROR we
list the conditions under which that exception can be raised. The conditions under
which the other exceptions declared in the package IO _EXCEPTIONS can be raised
are as described in [ADA,§14.4].

NAME_ERROR

e« in an OPEN operation, if the specified file does not exist;
e ina CREATE operation, if the specified file already exists;

o if the name parameter in a call of the CREATE or OPEN procedure is not a legal
0S9 file specification string; for example, if it contuins illegal characters, is too
long or is syntactically incorrect; and also if it contains wild cards. even if that
would specify a unique file.

USE_ERROR

e if an attempt is made to increase the total number of open files (including the two
standard files) so that there are more than 10 in one of the three file classes text,
sequential and direct;

« whenever an error occurred during an operation of the underlying 059 system.
This may happen if an internal error was detected, an operation is not possible
for reasons depending on the file or device characteristics, a size restriction is
violated, a capacity limit is exceeded or for similar reasons; in general it is only
guaranteed that a file which is created by an Ada program may be reopened and
read successfully by another program if the file types and the form strings are the
same;

e if the function NAME is applied to a temporary file;
o ifagiven FORM parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§14.2-3 is not fulfilieq,

e if an attempt is made to open or create a sequential or direct file for an element
type whose size is not a multiple of SYSTEM.STORAGE_UNIT; or if an attempt
is made to read or write an object whose (sub)type has a size which is not a
multiple of SYSTEM.STORAGE_UNIT (such situations can only arise for types
for which a representation clause or pragma SQUEEZE is given);

e if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size laid down when the file was opened (cf.
§14.2.1.1);

DEVICE_ERROR
is never raised. Instead of this exception the exception USE_ERROR is raised
whenever an error occurred during an operation of the underlying OS9 system.

Input-output Chapter 14

DATA_ ERROR

« the conditions under which DATA _ERROR is raised in the package TEXT IO are
laid down in [ADAJ; the following notes apply to the packages SEQUENTIAL_IO
and DIRECT 10:

o by the procedure READ if the size of a variable-length record in the external file
to be read exceeds the storage size of the given variable or else the size of a fixed-
length record in the external file to be read exceeds the storage size of the given
variable which has exactly the size ELEMENT_TYPE’size.

o In general, the exception DATA_ERROR is not raised by the procedure READ if
the element read is not a legal value of the element type.

o by the procedure READ if an element with the specified position in a direct file
does not exist; this is only possible if the file is associated with a relative or an
indexed file.

14.6 Low level input-output

We give here the specification of the package LOW_LEVEL_10:

PACKAGE low_level_io IS
TYPE device_type IS (null_device);

TYPE data_type IS
RECORD
NULL;
END RECORD;

PROCEDURE send_control (device : device_type;
data : IN OUT data_-type);

PROCEDURE receive_control (device : device_type;
data : IN OUT data_type):

END low_level _io:

Note that the enumeration type DEVICE_TYPE has only one enumeration value,
NULL_DEVICE; thus the procedures SEND_CONTROL and RECEIVE_.CONTROL
can be called, but SEND_CONTROL will have no effect on any physical device and the
value of the actual parameter DATA after a call of RECEIVE_.CONTROL will have
no physical significance.

Chapter 14

14.8 Specification of the package MINI_IO

PACKAGE nini_io IS
PROCEDURE put._line (item : string);

END mini_io:

Input-output

Appendix F Chapter 15

15 Appendix F

This is the Appendix F required in [ADA], in which all implementation-dependent
characteristics of an Ada implementation are described.

F.1 Implementation-dependent pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

F.1.1 Predefined language pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here. All the
other pragmas listed in Appendix B of [ADA] are implemented and have the effect
described there.

CONTROLLED
has no effect.

INLINE
has no effect; inline inclusion is never done.

INTERFACE
is implemented for Assembly language; see §13.9 of this manual for details.

MEMORY SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §13.1,

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of
the subtype PRIORITY, and second, the effect on scheduling of not giving this
pragma for a task or main program. The range of subtype PRIORITY is 0 .. 255,
as declared in the predefined library package SYSTEM (see §F.3); and the effect
on scheduling of leaving the priority of a task or main program undefined by not
giving pragma PRIORITY for it is the same as if pragma PRIORITY 0 had been
given (i.e. the task has the lowest priority). Moreover, in this implementatior. the

Chepter 13 Appendix F

package SYSTEM must be named by a with clause of a com; ‘lation unit if the
predefined pragma PRIORITY is used within that unit.

SHARED
has no effect. Note, however, that the implementation of tasking is such that every
variable is treated as if pragma SHARED had been given for it.

STORAGE _UNIT
has no effect.

SUPPRESS

has no effect, but see §F.1.2 for the implementation-defined pragma SUP-
PRESS_ALL.

SYSTEM_NAME
has no effect.

F.1.2 Implementation-defined pragmas

SQUEEZE
see §13.1.

SUPPRESS_ALL
causes all the run.time checks described in [ADA,§11.7] except ELABORA-
TION_CHECK to be suppressed; this pragma is only allowed at the start of a
compilation before the first compilation unit; it applies to the whole compilation.

F.2 Implementation-dependent attributes

The name, type and implementation-dependent aspects of every implementation-dependent
attribute is stated in this chapter.

=

T Ty T

MRS 2 M o

Appendix F Chapter 15

F.2.1 Language-defined attributes

The name and type of all the language-defined attributes are as given in [ADA]|. We
note here only the implementation-dependent aspects.

STORAGE SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE SIZE, see §13.2) has been given for that type
(static collection}), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE SIZE
given for the access type, the attribute delivers the number of storage units cur-
rently allocated for the collection. Note that dynamic collections are extended if
needed.
If the collection manager (cf. Chapter 12) is used for a dynamic collection the
attribute delivers the number of storage units currently allocated for the collection.
Note that in this case the number of storage units currently allocated may be
decreased by release operations.

F.2.2 Implementation-defined attributes

There are no implementation-defined attributes.

PO

Chapter 15

Appendix F

F.3 Specification of the package SYSTEM

The package

SYSTEM of ([ADA,§13.7]) is reprintc< here with all implementation-

dependent characteristics and extensions filled in.

PACKAGE sys

TYPE

tem IS

address IS PRIVATE;

TYPE name IS (motorola_68020);

system_name : CONSTANT name := motorola_68020;
storage_unit : CONSTANT := 8;
memory-size : CONSTANT := 2.147._483_648;

min_int : CONSTANT := - 2_.147_483.648;
max_int : CONSTANT := 2.147.483.647;
max. digits : CONSTANT := 18;
max mantissa : CONSTANT := 31%;
fine_delta : CONSTANT := 2#1.0#E-30;
tick : CONSTANT := 0.2E-6;
SUBTYPE priority IS integer RANGE O .. 2b5;
TYPE universal_integer IS RANGE min_int .. max.int;
SUBTYPE external_address IS string;
SUBTYPE byte IS integer RANGE 0..255;
TYPE long.word IS ARRAY (0..3) OF byte:
PRAGMA PACK (long.word);
FUNCTION convert_address (addr : external_address) RETURN address;
FUNCTION convert_address (addr : address) RETURN external_address;
FUNCTION convert_address (addr : long.word) RETURN address;
FUNCTION convert.address (addr : address) RETURN long.word:
FUNCTION "+" (addr : address; offset : integer) RETURN address;
PRIVATE
-- private declarations
END system;

r'_..————'vv —— ——— — — T T nad

Appendix F Chapter 15

F.4 Restrictions on representation clauses

See §§13.2-13.5 of this manual.

F.5 Conventions for implementation-generated names

There are no implementation-generated names denoting implementation-dependent
components ([ADA,§13.4]).

F.6 Expressions in address clauses

Address clauses (|[ADA,§13.5))are supported only for objects. The object starts at the
given address.

F.7 Restrictions on unchecked conversions

See §13.10.2 of this manual.

F.8 Characteristics of the input-output packages

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [ADA] are reported in Chapter 14 of this manual.

=

T S

——— T T e ——— —

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .T5T in its file
name. Actual values to be substituted are represented by names that begin
with a dotlar sign. A value must be substituted for each of these names

before the test is run.
below.

R e R il b L T T P S I P

$81G_1D1
ldentifier the size of the
maximum input line length with
varying last character.

$BIG_1D2
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_1D4
ldentifier the size of the
maximum input line length with
varying middle character.

$BIG_INT_LIT
An integer literal of value 298
with enough 1leading zeroes so
that i1t is the size of the
maximum line length.

The values used for this validation are given

. R R m e e - ———— - ——— - -

(1..79 => "A*, 80 => '1")

(1..79 => A", 80 => '2")

{1..40=>"A",41=>"3",42. .80=>"A")

(1..40=>"7A" ,41=>"4" 42, .80=>"4")

(1..77=>"0")8"298"

TEST PARAMETERS

$BIG_REAL_LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of tne
maximum line length.

$BIG_STRING1

A string literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.
$BI1G_STRING2
A string literal which when
tatenated to the end of
BIG_STRINGI vyields the image of
BIG_ID1.
$ BLANKS
A sequence of ©blanks twenty
characters less than the size
of the maximum line length.
$COUNT_LAST
A universal integer
literal whose value 15
TEXT_IO.COUNT'LAST,
$FIELD_LAST
A universal integer
ltiteral whose value is
TEXT_IO.FIELD'LAST.
$FILE_NAME _WITH_BAD_CHARS
An external file name that
either contains invalid
characters or is too long.
$FTILE_NAME _WITH_WILD_CARD_CHAR
An externsal file name that
gither contains a wild card

character or is too long.

$GREATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE’LAST
and DURATION'LAST or any value
in the range of DURATION.

(1..75=>70"18"690.0"

(12", 2..41=>"R",42=5""")

(15>'%7,2..805>7A" 412717 42> ")

(1..60 => " ")

2147483647

abct@def.dat

abcrdef.dat

0.0

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL _CATERNAL_FILE_NAMEL
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ

An external file name which
is too long.
$ INTEGER_FIRST .
A universal integer literal
whose wvalue is INTEGER'FIRST.
SINTEGER_LAST
A universal integer literal
whose wvalue is INTEGER'LAST.
$ INTEGER_LAST_PLUS_1
A universal integer literal

whose value is INTEGER®LAST + 1.

$LESS_THAN_DURATION
A wuniversal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATIQN.

$LESS_THAN_DURATION_BASE_FIRST

A universal real literal that is

less than DURATION’BASE’FIRST.
SMAX_DIGITS

Maximum digits supported for

floating-point types.
$MAX_IN_LEN

Maximum input line length

permitted by the implementation.

$MAX _INT
A universal
whese value

integer literal
is SYSTEM.MAX_INT.
$MAX_INT_PLUS_1

A universal integer literal

whose value is SYSTEM MAX_INT+1.

e e S~ "~

€-3

TEST PARAMETERS

Ve e e -

200_000.0

x$'yz.det

{(1..40 => "A")

-2147483648

2147483647

2147483648

-0.0

-200_000.0

18

80

2147483647

2147483648

T

TEST PARAMETERS

$MAX_LEN_INT_BASED _LITERAL
A universal integer based
1iteral whove wvalue it 28114
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN_REAL _BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX_IN_LEN, including the quote
' characters.

$MIN_INT
f uriversal integer literal
whose value is SYSTEM.MIN_INT,

$NAME
A name of & predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

C-4

B e Gy P g Sy g gy

M2iU8(3..77=570) 81

"16:"&(4..76=>"0")& F.E:"

(1=2""7,2..79=>"A" 80 =>'"")

-2147483648

$NAME

I6HFFFFFFFEM

w"vwﬁww -y -

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following Z4 tests had been withdrawn at the time of
validation testing for the reasons indicated. & reference of the form
"Al-ddddd" is to an Ada Commentary. '

B2B003A: A basic declaration (line 36) incorrectly follows a
later dectaration.

E2800SC: This test requires that “"PRAGMA LIST (ON);" not appear
in a listing that has been suspended by 2 previcus “PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPQ.

C34004A: The expression in line 168 yields a8 value outside the
range of the target type T, but there is no handler 4or

CONSTRAINT_ERROR.

C35502P: The equality operators in line 62 and 69 should be
inequality operators.

A33902C: The assigrment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT_ERROR, for that
value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINT_ERROR, because its upper bound exceeds
that of the type.

C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

C37213H: The subtype declaration of SLONS irn line 100 s
incorrectly expected to raise an exception when elaborated.

D-1

WITHDRAWN TEZTS

(372134 The aggregate T InE IS InCCTrectly raises
CONSTRAINT_ERROR.

$£37215C, (C37215E, C372156 and (3721%H: Various discriminant
conrctrginte -ep dnseomrectiy pypecteg (e be incompatibie with type
CONS .

C38102C: The fixed-point conversion or line 23 wrongly raises

CONSTRAINT_ERROR.

C41402A: The attribute 'STORAGE_SIZE is incorrectiy applied to an
object of an access type.

C45614C: The function call of IDENT_INT in line 15 wuses an
argument ¢of the wrong type.

A74106C, C85018B, Ct7B04B and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT_ERROR. Errors of this sort
pccur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

BC31054: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

AD1AC1A: The declaration of subtype SINT3 raises CONSTRAINT_ERROR
for implementations which select INT'SIZE to be 16 or greater.

CEZ2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

