
CD AVF Control Number: AVF-VSR-017
N SZI-AVF-017

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 88022911.09044
SYSTEAM KG

SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/OS-9
Version 1.61

VAX 8530, KVS M68K

Cempletizn of On-Site Testing:
88-02-29

Prepared By:
IABG m.b.H., Dept SZT
Einsteinstrasse 20

8012 Ottobrunn
Federal Republic of Germany

DTIC
Prepared For: ELECTE

Ada Joint Program Office AUG 3 19
United States Department of Defense

IJashington, D.C. 20301-3081 S D

2r Ada is a registered trademark of the United States Guvernment
(Ada Joint Program Office).

I MDRIUTION STATE A ENT

Diubilmdon Unlim-ited

U UNCLASSIFIED
CL ASS:FICAT~JN OF THIS PAGE (Whien Dara Ererej)

REPORT DOCUMENTATION PAGE
1. REPORT N -N i2. Go' ACiSSION NO. 3. R;C:PIEN7 S A'~ NjM 1

4. TITLE (and Subtitle) 5. 7vPE OF PEDOR7 & oIR:0nCOP~

Ada Comoiler Validation Summa ry Report: e :.*? e :s
SYSTEA!MEKG, SYSTEAM Ada Corn iler VAX/VMS x _________ ---

M1C68020/OS-9 Version 1.61, AX 8530 (Host) and E. PFP~ ORZ REDCP' I

7 . AUTHOR(s) 3. CONTRACT OR GRAN7, NJMBE, u.

Ottorunn, Federal Republic of Germany

9PERFJRMING ORGANIZATION AND ADDRESS 1Q. -R03R,^ ELEME7 . RCJLOT. T
ARE A & WJV K UN7' NjM6i. S

1AEG,
Ottobrunn, Federal Republic of Germany

it. CONTROLLING OFFICE NAME AND ADDPESS 12. REPORT DATE
Ada Joint Program Office 2-9 Februir~ 1968
United States Department of Defense ___S

Washington, DC 20301-3081 4jF,7DF7TT

14. MONI TURING AGENCY NAYE & ADORE SS~i dftrent trom C ontroling Oft ce) 5. SECURI TY CLASS (ofthis report)

IABG , 15a. RVASSiFICATiON'DowNGRAC%.
Ottobrunn, Federal Republic of Ge-many N/A

16. DISTRIBUTION STATEMENT (ofths eport)

Approved for public release; distribution unlimited.

1-. DISTRIBU1LT'ON STATEMENT (of the abstract entered in Block20 if different frm Report) --

UNC7ASSIFIFD

j: SL;PDEME4TARY NOTES

K: <.-o.CjS !Continue on reverse side if necessary and identify by block numbtr)

Atda Programming language, Ada Compiler Validation Summrary Report, Ada
ComcoLer Validation Capability, ACVC, Validati.on Testling, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/M!h-STD-
18l5A, Ada Joint Program Office, AJPO

-1B S PArT (Continue on reverse side 'f necessar, an dnrif by block i)umbcr)

YS TEAN Ada Compiler VAXA-VMS x NIC6S0210S-9 V'ersion 1.61, SYSTEAM KG. IABG, VAX 85.30 tnd-ur
VMS. V'ersion 4.6 (Host) and KWVS EB 6S&"Q CPU:3 Linder OS-9, Version 2.0 Targe- 1. ACVC 1 9 9.

DD tu" 1473 EIONOF ' NOV 6- : OBSOLETE
1 JAN 73 SN 0i02-F-01~-560i UNCLASSIFIED

Ada Compiler Validation Summary Report:

Compiler Name: SYSIEAM Ada Cross Compiler VAX/VMS x MC68020/0S-9
Compiler Version: Version 1.61

Certificate Number: 88022911.09044

Host:
VAX 8530 Lnder
VMS,
Version 4.6

Target:
KWS EB 68/20 CPU3 under
OS-9,
Version 2.0

Testing Completed 88-02-29 Using ACVC 1.9

This report has been reviewed and is approved.

IABG m.b./H., Dept SZT
Dr. H. Hummel
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

;da kalidation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Jo~n Program~ Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT I-
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-4
1.5 ACVC TEST CLASSES1-5

CHAPTER 2 CONFiGURATiON iNFORMAiION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 VITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIY F OF THE Ada STANDARD
0 61

APPENDIX C TEST PARAMETERS

APPENDIX D 'ITHDRAWN TESTS Accessstoa For

NTIS GRA&I
DTIC TAB -
Unannouneed

Di stributlon/

Avallebllity Ccles

Avall and/or
Dist SDeclalL'\ i

CHAPTER 1

INTRODUCTION

This Validation Summary Report -IVSR) describes the extent to which a
specific Ada compiIer conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUC ION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents *he results of the validatior testing performed on an
Ada compiler. Testirg was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not suppcted by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Starcard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site testing was
completed 88-02-9 at SYSTEAM KG at Karlsruhe.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (S
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
0USDFE
The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:
r fIABG

m.b.H., Dept SZT
Einsteinstrasse 20
8012 Ottobrunn
Federal Republic of Germany

1-2

1NTRODUC ION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Rgftrgn~ Mingil fpr thg Ada P2~qgrjn~ning Ligm
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ad Com2i1 r Y1!i gjn p CUr ind juifiinti, Ada Joint
Program Office, 1 January 1987.

3. Aji gonpiltr Va.!iLjin CR~bijii.y I 1Uinr t SofTech,
Inc., December 1986.

4. 8 rnpiIg Y iUnion J1bility 5r juidk, December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Fac'l1ty. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada C2Ljpl Vrj1Q P[o& n

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

. Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

1-4

INTRODUC TION

tecause it has an inval id test objective, fail s to meet its
test object ie, or contains illegal or erronerus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standardi is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, E, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than thost already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities V; a compli r.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCTION

Class L tests check that incomplete or illegal Ada programs invol inr
multiple, separately compiled units are detected ard not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attew.t
to execute the main program must generate an error message before an
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizdtions allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
crit ria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily indppiicabie for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/CS-9,

Version 1.61

ACVC Version: 1.9

Certificate Number: 88022911.09044

Host Computer:

Machine: VAX 8530

Operating System: VMS
Version 4.6

Memory Size: 32 MB

Target Computer:

Machine: KVS EH 68/0 CPU3

Operating System: 0S-9
Version 2.0

Memory Size: 2.0 MB

Communications Network: V24 connection

2-1

CONFI URAT ION 'VORM,"IN

2 .2 IM PLEMENTATION ChAFAATE;ST rLS

One of, tne purposes ci validating Compilers is to determine the behavior of
a. compiler in tnose areas -f the Ada Standar-d that permit implementations
to differ. C lass D and E tests spe cific ally check for Such implIement at ion
d if fe r enc e s. Howce v Er, t es ts inr ot r Er clIa s ses a Is o c h a ract e r ize a n
implementation. The tests demonstrate the following characteristics:

Capacities.

Tl.e compiler correctly processes tests containing loop statements
nested tc 65 levels, block statements nested to 65 levels, and
recursive prccedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723.
variables in the same declarative part. (See tests D55A03A. .H (8
tests) , P56001E, D)64005E. .G (3 tests), and D29002K.)

*Universal inteqer calculations.

An imp, lementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
mcr-lement~ticn processes 64 Lit integer calculations. (See tests
044002A, rI4AOO2B, ID4AO04A, and D4A004B.)

*Predefined types.

This implemEntalon suppurts the additional predefined types
SHORT _INVrGER SHORTF FLOAT, and LONG FLOAT in the package
STANDARD. (See tests B860010 and F86001D.l

1 ased l iterals.

A~n Iciemnentator is allocwEd to reject a base6 literal with a
;,alue e>ceedinc SYSIEM.MAX INT during compilation, or it may raise
NUMERIC -ERROR or CONSTRAINT -ERROR during execution. This
irnzlemercaticr- raises NUMEFIC-ERROR curing execution. (See test
E2O4ICIA. I

Expressior evaluation.

Apparently no default initialization expressions for record
components a~e evaluated before any value is checked to belong to
a component's suntype. (See test C32117A.)

Ass ionments f or sut-types are performed with the same preci1s ion a s
"he base typ,,. iSee test 035712B.)

2 -2

CONTIGURATION INF RMVIION

This implementation uses no extra bits for extra precision, lhis

implementation uses all extra bits for extra range. (See test

C35903A.)

Apparently NUMERICERROR is raised when an integer literal operand

in a comparison or membership test is outside the range of the

base type. (See test C45232A.)

Apparently NUMERICERROR is raised when a liter-l operand in a

fixed-point comparison or membership test is outside the range of

the base type. (See test C45252A.)

Apparently underflow is gradual, (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to

even. (See tests C46012A..Z.)

The method used for rounding o longest integer is apparently

round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real

expressions is apparently round away from zero. (See test

C4AO14A.)

2-3

CONFIGURATION INFORMATION

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

NUMERIC-ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC-ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT-ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is

2-4

CONFIGURA!ION INFORMAI:ON

compatible it the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT-ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C355021..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE :> 1) are
supported. (See tests C355081..J and C35508 ..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87162B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

There are restrictions for alignment clauses within record
representation clauses. (See test A39005G.)

2-5

CONFIGURATION INFORMATION

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

* Pragmas.

The pragma INLINE is not supported for procedures. The pragma
INLINE is not supported for functions. (See tests LA3004A,
LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 1O can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE210tC, EE2201D, and EE2201E.)

The package DIRECT_10 can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE21OIH, EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for SEQUENTIALIO. (See
tests CE2102D and CE2102E.)

Modes INFILE, OUT_FILE, and INOUTIFILE are supported for
DIRECTIO. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECT_10. (See tests CE21O6A and CE21O6B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUTFILE mode, cannot be
created in OUT-FILE mode, and cannot be created in IN-FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each
non-temporary external file for sequential I/O for both reading
and writing. (See tests CE2107A..D (4 tests), CE211OB, and
CE2111D.)

More than one internal file can be associated with each
non-temporary external file for direct I/O for both reading and
writing. (See tests CE21O7F..I (5 tests), CE211OB, and CE2111H.)

2-6

CONFIGURAIION INFORMATION

An internal sequential access file and an internal direct access
file can be associated with a s.ingle external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file
cannot be deleted but closed for SEQUENTIAL-tO, DIRECTIO, and
TEXT_10. (See test CE2110B.)

Temporary sequential files are not given names. Temporary direct
files are not given names. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1O12A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and EC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 24 tests had been withdrawn because of test errors. The AVF
determined that 213 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 13 tests were required to successfully demonstrate the test objective.
(See section 2.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
--___----- L ..

Passed 109 1048 1651 17 16 44 2885
inapplicable 1 3 205 0 2 2 213

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

3-I

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

--------.---- -A __ A _ 5 __6 - 2 --8 __2 _I -11 _12 _12 _14 -----

Passed 182 516 564 245 166 98 141 326 131 36 234 3 243 2885

Inapplicable 22 57 111 3 0 0 2 1 6 0 0 0 11 213

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Versio. 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35AO3E C35AO3R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C41402A C45614C A74106C C85018B C87B048
CC1311B BC3105A ADIADIA CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 213 tests were inapplicable for the
reasons indicated:

Tests C24113D..N (11 tests) contain lines of lengths greater than
80 characters which is not supported by this compiler.

A39005G uses an alignment clause with an alignment of 8 within a
record representation clause.

3-2

TEST INFORMATION

The following tests use LONGINTEGER, which is not supported by

this compiler:

C45231C C45304C C45502C C45503C C45504C

C45504F C45611C C45613C C45631C C45632C

0520040 C55BO7A B55B09C

C45231D requires a macro substitution for any predefined numeric

types other tran INTEGER, SHORT_- INTErER, LONG_INTEGER, FLOAT,

SHORT-FLOAT, and LONG-FLOAT. This compiler does not support any
such types.

* C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

1C86001F redefines package SYSTEM, but TEXT_1O is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTTO.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

CE2108A, ^E2108C, CE3112A are inapplicable because temporary files
(sequential, direct, text) do not have names.

CE2107C, CE2107D, CE2107H, and CE21071 are inapplicable because
multiple internal files cannot be associated with the same
temporary external file. The proper exception is raised when
multiple access is attempted.

Tests CE211OB and CE3114B contain attempts to DELETE one of two
files that access the same external file. In this implementation,
such an attempt closes, the internal file, but fails to delete the
external file, raising USEERROR. The tests' subsequent attempt
to again DELETE the internal file raises STATUS ERROR, since that
file is no longer open. The AVO accepts this behavior while the
issue is reviewed further.

3-3

TEST INFORMATION

Test CE3111B assumes that a PUT - operation writes data to an
external file immediately. For this implementation data are
written to a buffer first, thus this test's attempt o immediately
GET data raises END-ERROR. The AVO ruled that this behavior is
acceptable.

Test CE3202A requires that the name function returns strings which
identify the standard input and output files. The underlying
operating system does not support this requirement. The AVO ruled
that this behavior is acceptable.

The following 159 tests require a floating-point accuracy that
-xceeds the maximum of 18 digits supported by this implementation:

C241130. .Y (11 tests) C357050. .Y (11 tests)
C357060. .Y (11 tests) C357070. .Y (11 tests)
C357080. .Y (11 tests) C358020. .Z (12 tests)
C452410 .Y (11 tests) C453210. .Y (11 tests)
C454210. .Y (11 tests) C455210. .Z (12 tests)
C455240 .Z (12 tests) C456210. .Z (12 tests)
C456410 .Y (11 tests) C460120. .Z (12 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24009A B29001A B38003A B38009A
B38009B B51001A B91001H BC2001D BC2001E
BC3204B BC3205B BC3205D

3.7 ADDITIONAL TESTING INFORMATION

3-4

IEST INFORMAlION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/OS-9 was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/O5-9 using ACVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a VAX 8530 host operating under VMS, Version
4.6, and a KWS EB 68/20 CPU3 target operating under OS-9, Version 2.0. The
host and iarget computers were linked via V24 connection.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.
After the test files were loaded to disk, the full set of tests was
compiled on the VAX 8530. Object files were linked and executed on the
target. Results were printed from the host computer, with rFsults being
transferred to the host computer via V24 connection.

The compiler was tested using command scripts provided by SYSTEAM KG and
reviewed by the validatior, team. The compiler was tested using all default
settings.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and a single target computer. Test output, compilation
listings of Class B tests and tests that raised an error during
compilation, and job logs were captured on magnetic tape and archived at
the AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at SYSTEAM KG at Karlsruhe and was completed on
88-02-29.

3-5

APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration of
Conformance concerning the SYSTEAM Ada Cross Compiler
VAX/VMS x MC68020/OS-9.

A-I

DECLARATION OF CONFORMANCE

Compiler Implementor: SYSTEAM KG
Ada Validation Facility: IABG m.b.H., Dept SZT
Ada Cor-piler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/05-9
Base Compiler Version: Version 1.61
Host Architecture ISA: VAX 8530 VMS 4.6
Target Architecture ISA: KWS EB 68/20 CPU3 05-9 2.0

Implementor's Declaration

I, the undersigned, representing S STEAM KG, have implemented no deliberate
extensions to the Ada Language Standard ANSI/M]L-STD-1815A in the
compiler(s) listed in this declaration. I declare that 5YSIEAM KG is the
owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSIIMIL-SID-1BISA. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate name.

Dr. Wi rstein,

Owner's Declaration

I, the undersigned, representing SYSTEAM KG, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the publ ic disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their iost/target performarn e, are in
compliance wi WaLnggeStandard ANSI/XIL-STD-1815A.

SYSTEAM
Dr. Win/ rstein,

APPEND!,(9

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain macnine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowec restrictions on
representation clauses. The implementation-dependent characteristics of
the SYSTEAM Ada Cross Compiler VAX/VMS x MC68020/OS-9, Version 1.61, are
described in the following sections, which discuss tocics in Appendix F of
the Ada Standard. They are taken from tne vendor's User Manual.
Implementation-specific portions of the package STA ARD are defined as
follows.

PACKAGE standard IS

TYPE boolean IS (false. true);

TYPE short-integer IS RANGE - 32-768 .. 32-767;

TYPE integer IS RANGE - 2-147-483-648 .. 2-147483647;

TYPE shortfloat IS DIGITS 6 RANGE - 1610.FFFFFFSE32 .. 1600.FFFFFF#E32;

TYPE float IS DIGITS 15 RANGE
- 16#O.FFFFFFFFFFFFF8#E256 .. 16#O.FFFFFFFFFFFFF8#E256;

TYPE long-loat IS DIGITS 18 RANGE
- 16#O.FFFFFFFFFFFFFFFF#E4096 .. 16#O.FFFFFFFFFFpFFFF#E4096:

-- TYPE character IS ... as in [ADA.Appendix C)

-- FOR character USE ... as in [ADA.Appendix C3

-- PACKAGE ascii IS ... as in IADA.Appsndix C)

-- Predefined subtypes and string types ... as in [ADA.Appendix C]

TYPE duration IS DELTA 2#1.OE-14 RANGE
- 13107'2.0 .. 131-071.999-938-964-843-75;

-- The predefined exceptions are as in [ADA.Appendix C]

END standard;

B-i

Representation clauses and implementation-dependent features Chapter 13

13 Representation clauses and implementation-dependent fea-
tures

In this chapter we follow the section numbering of Chapter 13 of IADA] and provide
notes for the use of the features described in each section.

13.1 Representation clauses

Pragma PACK : as stipulated in [ADA,§13.11, this pragma may be given for a record
or array type. It causes the cross compiler to select a representation for this type
such that gaps between the storage areas allocated to consecutive components are

minimized, but it does not affect the mapping of each component onto storage. An
even greater saving in storage space can be achieved by using the implementation-
defined pragma SQUEEZE (see below).

Pragma SQUEEZE : this is an implementation-defined pragma which takes the same

argument as the predefined language pragma PACK and is allowed at the same po-

sitions. It causes the cross compiler to select a representation for the argument type

that needs minimal storage space. By contrast, pragma PACK (see above) only leads
to representations which cause components of objects of its argument-types to start on
storage-unit-bounds.

13.2 Length clauses

SIZE
for all integer, fixed point and enumeration types the value must be <= 32;

for SHORT-FLOAT types the value must be = 32 (this is the amount of storage

which is associated with these types anyway);
for FLOAT types the value must be = 64 (this is the amount of storage which is

associated with these types anyway).
for access types the value must be = 32 (this is the amount of storage which is

associated with these types anyway);
The implementation does support size specification for record and array types,
but if a size specification is given for type which is a derived type of a record or

array type, then the value of the expression in the size specification must be equal
to the number of bits to be allocated to objects of the parent type (in other words,
size specification for records or arrays cannot be used to make 'SIZE of a derived
type differ from that of its parent type).

Chapter 13 Representation clauses and implementation-dependent features

The implementation does not support size specification for task types.

If any of the above restrictions are violated, the cross compiler responds with a

RESTRICTION error message in the cross compiler listing.

STORAGE-SIZE
Collection size: If no length clause is given, the storage space needed to contain

objects designated by values of the access type and by values of other types derived

from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.
Storage for Tasks: The memory space reserved for a task is 4K bytes if no length

clause is given. If the task is to be allotted either more or less space, a length
clause must be given for its task type, and then all tasks of this type will be
allotted the amount of space stipulated in the length clause (the activation of a
small task requires about 1.4K bytes). Whether a length clause is given or not,
the space allotted is not extended dynamically at runtime.

SMALL
the value given in a specification of small for a fixed point type must be a power of
two. If this restriction is violated, the cross compiler responds with a RESTRIC-
TION error message in the compiler listing.

13.3 Enumeration representation clauses

The implementation places no restrictions on enumeration representation clauses.

13.4 Record representation clauses

The value of the expression given in an alignment clause must be 0, 1, 2 or 4. If
this restriction is violated, the cross compiler responds with a RESTRICTION error
message in the compiler listing.

The implementation places no restrictions on component clauses other than those in
the language ([ADA,§13.4(6,7)1).

There are no implementation-generated names denoting implementation-dependent
components (cf. [ADA,§13.4(8)]).

B-3

Representation clauses and implementation-dependent features Chapter 13

13.5 Address clauses

Address clauses are supported only for objects declared by an object declaration whose
type is not a task type. If an address clause is given for a subprogram, package, task
unit or single entry, the cross compiler responds with a RESTRICTION error message
in the compiler listing.

Since the type ADDRESS in the package SYSTEM is declared as a private type, the
simple-expression in any address clause must be a function call of one of the functions
convert-address declared in the package SYSTEM.

Example:

FOR my-record USE AT system.convert-address("O1234EFO");

When an address is given as a hexadecimal string as in this example, a string of length
8 should be given (if a shorter string is given, the cross compiler adjoins an appropriate
number of '0' to the right-hand end of the string; and giving a longer string cau*-es
CONSTRAINT-ERROR to be raised at run-time when convert-address is called).

An object for which an address clause is given must not require initialization (whether
explicit or implicit); if it does, the program is erroneous, the cross compiler issues a
warning message and the effect at runtime is unpredictable. It follows from this that
address clauses must not be given for objects whose type has a discriminant part (cf.
[ADA,§3.7.2(8)J) or for objects whose type is an access type (cf. IADA,§3.2.1(10)]),
because these always require initialization.

13.6 Change of representation

The implementation places no restrictions on changes of representation, except that,if
a size specification is given for a record type which is a derved type, then the value
of the expression in the size specification must be equal to the number of bits to be
allocated to objects of the parent type (in other words, size specification for records
cannot be used to make 'SIZE of a derived record type differ from that of its parent
type).

B-4

Chapter 13 Representation clauses and implementation-dependent features

13.7 The package SYSTEM

See §F.3.

The pragmas SYSTEM_NAME, STORAGE-UNIT and MEMORYSIZE have no ef-
fect.

13.7.1 System-dependent named numbers

See Chapter 15, §F.3.

13.7.2 Representation attributes

These are all implemented.

13.7.3 Representation attributes of real types

These are all implemented.

13.8 Machine code insertions

A package MACHINE-CODE is not provided and machine code insertions are not
supported.

B-5

Representation clauses and implementation-dependent features Chapter 13

13.9 Interface to other languages

This is provided for assembly language subprograms. For each Ada subprogram for

which

PRAGMA interface (assembler, <AdaiName>);

is specified, an assembly language program implementing the body of the Ada subpro-

gram must be provided.

Some conventions must be obeyed when writing the assembly source. To this end four
macros (PARAMS, LOCALS, ROUTINE and RETURN) are provided for use with the
R68020. The source file must be written in the following form:

PSECT psect-name.O.O.O.O.O
USE /ada/external.defs (1)

PARAMS size-ofiparamterblock (2)
p1 EQU offsetl (3)
p2 EQU offset2

LOCALS (4)
11 LO.W 1 (5)
12 LO.L 2

entry-label: ROUTINE (6)

MOVE.W (pl.A4).DO (7)
CLR.L (12.A5) (8)

RETURN (9)

PARAMS

ENDS

Within one psect the bodies for more than one subprogram may be given. The body
of one subprogram starts with a call of macro PARAMS (2) and ends with the next
call of marco RETURN (9).

The parameter definitions are started by the call of the macro PARAMS (2). The
size of the parameter block must be given as argument. The names of the parameters

Chapter 13 Representation clauses and implementation-dependent features

are introduced by EQU-directives (3). The offsets of the parameters i.nd the size of
the parameter block are determined by the compiler when compiling the subprogram
specification but must be included here by the user. This is a source of inconsistencies.

Therefore it is recommended to have just one record parameter. In this case, the
address of the parameter is passed (i.e. size of parameter block is 4 and the offset of
the only parameter is 0). The layout of the record can be controlled in the Ada source
by a representation clause. Another way to get the correct offsets is to compile a call
of the external subprogram with option SYMBOLIC-CODE and look at the code of
the call.

The call of macro PARAMS must be present even if the external subprogram does not
have any parameters.

In the code of the external subprogram the actual parameters are accessed in the form
(parameter-name,A4) (7).

The call of the macro LOCALS (4) introduces the definitions of local variables. These
variables are allocated on the runtime stack of the Ada program. Each variable is
defined using the LO-directive (5).

The call of macro LOCALS must be present even if the external subprogram does not
have any local variables.

In the code of the external subprogram, the local variables are accessed in the form
(variable..name,A5) (8).

After the call of the macro ROUTINE (6) the code of the external subprogram follows.
It is terminated by the next call of the macro RETURN (9), which completes the
subprogram and performs the RTS-instruction. Immediately before the RETURN is
executed, the registers A4, A5 and A6 must have the same contents as at the beginning
of the external subprogram. All others registers may have values different to those they
had on entry.

The entry point of the external subprogram is indicated by the label on the line con-
taining the call of the macro ROUTINE (6). As entry label the Ada subprogram name
truncated to 8 characters must be used. It must be followed by a colon.

The macro definitions for PARAMS, LOCALS, ROUTINE and RETURN are con-
tained in the file /ada/external.defs. It must be included with a USE-directive (1).

B-7

Representation clauses and implementation-dependent features Chapter 13

Process the assembly source with the R68020 by calling the command file

OS9$ make -f=/ada/external source=<source file> -
list=<Iisting file> -
name=<name> -

tlibrary= <directory>]

<source file> gives the name of the source file. <listing file> names the file containing
the assembly listing. The object module generated is stored in the target library on
file <directory>/EXT.<name>. Therefore <name> must be determined so that no name
clashes occur with the object files of other external subprograms. All object files <direc-
tory>/EXT.* are included in an executable program during linking if required. To this
end they are merged into the object module library <directory>/EXTERNAL.OML
which is specified as library (i.e. -l=<directory>/EXTERNAL.OML) in the call of the
L68.

The default for <directory> is ALB.

13.10 Unchecked programming

13.10.1 Unchecked storage deallocation

The implementation does not support unchecked storage deallocation. (The generic
procedure UNCHECKED _DEALLOCATION is provided, but the only effect of calling
an instantiation of this procedure with an object X as actual parameter is

X NULL;

i.e. no storage is reclaimed.)

However, the implementation does provide an implementation-defined package COL-
LECTIONMANAGER which fulfils a similar function (cf. Chapter 12).

B-8

Chapter 13 Representation clauses and implementation-dependent features

15.10.2 Unchecked type conversions

The implementation does support unchecked type conversions. Note that if
target type'size > source-type'size,

the result value of the unchecked conversion is unpredictable.

4W

Input-output Chapter 14

14 Input-output

In this chapter we follow the section numbering of Chapter 14 of [ADA and provide
notes for the use of the features described in each section.

14.1 External files and file objects

The total number of open text files (including the two standard files), sequential files
and direct files must not exceed 10 for each class. Any attempt to exceed this limit
raises the exception USE-ERROR.

File sharing is allowed for reading and writing without any restriction.

The following restrictions apply to the generic actual parameter for ELEMENTTYPE:

• input/output of access types is not defined.
* input/output is not possible for an object whose (sub)type has a size which is not

a multiple of SYSTEM.STORAGE_-UNIT. Such objects may only exist for types
for which a representation clause or pragma SQUEEZE is given. USE-ERROR
will be raised by any attempt to read or write such an object or to open or create
a file for such a (sub)type.

14.2 Sequential and direct files

Sequential and direct files are represented by OS9 RBF files with fixed-length or
variable-length records. Each element of the file is stored in one record.

14.2.1 File management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in [ADA!.

Chapter 14 Input-output

14.2.1.1 The NAME and FORM parameters

The NAME parameter string must be an OS9 file name. The function NAME will
return a file name string which is the file name of the file opened or created.

The Syntax of the FORM parameter string is defined by:

f ormparameter ::= [form-specification { . form-specification }]

f orm-specif icaccion : : =keyword [=> value

keyword ::= identifier

value identifier I string-literal I numeric-literal

For identifier, numeric-literal, string-literal see [ADA,Appendix El. Only an integer
literal is allowed as numeric-literal (see [ADA,§2.4]).

In the following, the form specifications which are allowed for all files are descr'bed.

ALLOCATION => numeric-literal

This value specifies the number of blocks which are allocated initially; it is only used in
a create operation and ignored in an open operation. The default value for the initial
file size is 0.

RECORD-SIZE => numeric-literal

This value specifies the record size in bytes. This form specification is only allowed for
files with fixed record format. If the value is specified for an existing file, it must agree
with the value of the external file.

By default, ELEMENT-TYPE'SIZE / SYSTEM.STORAGE-UNIT will be chosen as
record size if the evaluation of this expression does not raise an exception. Otherwise
256 is used as default. In this case, the attempt to write or read a larger record will
raise USE-ERROR.

If a fixed record format is used, all objects written to a file which are shorter than
the record size are filled up with zeros (ASCII.NUL). An attempt to write an element

Input-output Chapter 14

which is larger than the specified record size will result in the exception USE-ERROR
being raised. This can only occur if the record size is specified exp1ici-y or if the
evaluation of the expression ELEMENTTYPE'SIZE / SYSTEM.STO RAGE _UNIT
raises an exception.

14.2.1.2 Sequential files

A sequential file is represented by an RBF file with either fixed-length or variable-length
records which may be specified by the form parameter.

If a fixed record format is used, all objects written to a file which are shorter than the
maximum record size are filled up with zeros (ASCII.NUL).

RECORD-FORMAT => VARIABLE I FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file, it must agree with the format of the external file.

Fixed record size is used as default. It means that every record is written with the size
specified as record size.

Variable record size means that each record is written with its actual length. A read
operation transfers as many bytes as are allocated for the receiving object, i.e. the
object supplied as out-parameter to the read procedure. Since the record length is not
stored on the external file, care has to be taken if the file is read again.

14.2.1.3 Direct files

The implementation dependent type COUNT defined in the package specification of
DIRECTIO has an upper bound of:

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

Direct files are represented by OS9 RBF files with fixed-length records.

B-12

Chapter 14 Input-output

14.3 Text input/output

Additionally to the packages defined in Chapter 14 of the LRM, the package MINIIO
is provided. It provides only a procedure PUT-LINE, which can be used to write a
single line onto standard output. Its Ada specification is given in §14.8. It provides
an alternative to TEXTIO.PUT-LINE in applications which do not require the full
power of TEXT-O and do not want to include a lot of code which is not required.

Text files are represented as RBF or SCF files depending on whether the file name
denotes a disk file or a terminal device. Each line consists of a sequence of characters
terminated by an ASCII.CR.

A page terminator is represented as a line consisting of a single ASCII.FF. A page
terminator is always preceded by a line terminator (i.e. ASCII.CR).

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last record of the file.

14.3.1 File management

In the following, the form specifications which are only allowed for text files or have a
special meaning for text files are described.

CHARACTERIO

The predefined package TEXT-IO was designed for sequential text files; moreover, this
implementation always uses sequential files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the terminal (as opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line
terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons,in addition to the input/output facilities with record structured ex-
ternal . s, another form of input/output j provided for text files: It is possible to

Input-output C,'apter 14

transfer single characters from/to a terminal device. This form of input/,mitpu: is spec-
ified by the keyword CHARACTER-O in the form string. If character i,,o is specified,
no other form specification is allowed and the file name must denote a terminal dcvice.

For an infile, the external file (associated with a terminal) is considered to contain
a single line. Arbitrary characters (including all control characters) may be read; a
character read is not echoed to the terminal.

For an outfile, arbitrary characters (including all control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCII.CR followed by ASCII.LF, a page terminator is represented as
ASCII.FF and a file terminator is not represented on the external file.

14-3.2 Default input and output files

The Ada standard input and output files are associated with the corresponding stan-
dard files in Oc9.

14.3.10 Implementation-defined types

The implementation dependent types COUNT and FIELD defined in the package
specification of TEXT_IO have the following upper bounds

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

FIELD'LAST = 255

Chapter 14 Input-output

14.4 Exceptions in input-output

For each of NAME-ERROR, USE-ERROR, DEVICELERROR and DATAERROR we
list the conditions under which that exception can be raised. The conditions under
which the other exceptions declared in the package IOEXCEPTIONS can be raised
are as described in [ADA,§14.4J.

NAME-ERROR

* in an OPEN operation, if the specified file does not exist;

* in a CREATE operation, if the specified file already exists;

* if the name parameter in a call of the CREATE or OPEN procedure is not a legal
OS9 file specification string; for example, if it conti.ins illegal characters, is too
long or is syntactically incorrect; and also if it contains wild cards, even if that
would specify a unique file.

USE-ERROR

0 if an attempt is made to increase the total number of open files (including the two
standard files) so that there are more than 10 in one of the three file classes text,
sequential and direct;

0 whenever an error occurred during an operation of the underlying 039 system.
This may happen if an internal error was detected, an operation is not possible
for reasons depending on the file or device characteristics, a size restriction is
violated, a capacity limit is exceeded or for similar reasons; in general it is only
guaranteed that a file which is created by an Ada program may be reopened and
read successfully by another program if the file types and the form strings are the
same;

* if the function NAME is applied to a temporary file;

* if a given FORM parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§14.2-3 is not fulfilleu,

* if an attempt is made to open or create a sequential or direct file for an element
type whose size is not a multiple of SYSTEM.STORAGEUNIT; or if an attempt
is made to read or write an object whose (sub)type has a size which is not a
multiple of SYSTEM.STORAGEUNIT (such situations can only arise for types
for which a representation clause or pragma SQUEEZE is given);

• if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size laid down when the file was opened (cf.
§14.2.1.1);

DEVICE-ERROR
is never raised. Instead of this exception the exception USE-ERROR is raised
whenever an error occurred during an operation of the underlying OS9 system.

B-1 5

Input-output Chapter 14

DATAERROR

the conditions under which DATA-ERROR is raised in the package TEXTIO are

laid down in [ADA); the following notes apply to the packages SEQUENTIAL-O

and DIRECT-1O:

by the procedure READ if the size of a variable-length record in the external file

to be read exceeds the storage size of the given variable or else the size of a fixed-

length record in the external file to be read exceeds the storage size of the given

variable which has exactly the size ELEMENTTYPE'size.

In general, the exception DATA-ERROR is not raised by the procedure READ if

the element read is not a legal value of the element type.

by the procedure READ if an element with the specified position in a direct file

does not exist; this is only possible if the file is associated with a relative or an

indexed file.

14.6 Low level input-output

We give here the specification of the package LOWLEVELAIO:

PACKAGE lowjevel-io IS

TYPE device-type IS (null-device)

TYPE data-type IS
RECORD

NULL;
END RECORD:

PROCEDURE send-control (device device-type;
data IN OUT data-type);

PROCEDURE receive-control (device : device-type;
data IN OUT data-type);

END low-level-io;

Note that the enumeration type DEVICETYPE has only one enumeration value,
NULL-DEVICE; thus the procedures SEND-CONTROL and RECEIVE-CONTROL
can be called, but SEND-CONTROL will have no effect on any physical device and th-,
value of the actual parameter DATA after a call of RECEIVECONTROL will have
no physical significance.

Chapter 14 Iii put-out put

14.8 Specification of the Package MINI-JO

PACKAGE minl4-o IS

PROCEDURE put-ine (item string);

END mini-io;

Appendix F Chapter 15

15 Appendix F

This is the Appendix F required in [ADAI, in which all implementation-dependent
characteristics of an Ada implementation are described.

F.1 Implementation-dependent pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

F.1.1 Predefined language pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here. All the
other pragmas listed in Appendix B of [ADA] are implemented and have the effect
described there.

CONTROLLED
has no effect.

INLINE
has no effect; inline inclusion is never done.

INTERFACE
is implemented for Assembly language; see §13.9 of this manual for details.

MEMORY-SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §13.1.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of
the subtype PRIORITY, and second, the effect on scheduling of not giving this
pragma for a task or main program. The range of subtype PRIORITY is 0 .. 255,
as declared in the predefined library package SYSTEM (see §F.3); and the effect
on scheduling of leaving the priority of a task or main program undefined by not
giving pragma PRIORITY for it is the same as if pragma PRIORITY 0 had been
given (i.e. the task has the lowest priority). Moreover, in this implementation the

Ch.pter 15 Appendix F

package SYSTEM must be named by a with clause of a comi "!ation unit if the
predefined pragma PRIORITY is used within that unit.

SHARED
has no effect. Note, however, that the implementation of tasking is such that every
variable is treated as if pragma SHARED had been given for it.

STORAGE-UNIT
has no effect.

SUPPRESS
has no effect, but see §F.1.2 for the implementation-defined pragma SUP-
PRESS-ALL.

SYSTEM-NAME

has no effect.

F.1.2 Implementation-defined pragrnas

SQUEEZE
see §13.1.

SUPPRESS-ALL
causes all the run-time checks described in [ADA,§11.71 except ELABORA-
TION-CHECK to be suppressed; this pragma is only allowed at the start of a
compilation before the first compilation unit; it applies to the whole compilation.

F.2 Implementation-dependent attributes

The name, type and implementation-dependent aspects of e-ery implementation-dependent
attribute is stated in this chapter.

Appendix F Chapter 17

F.2.1 Language-defined attributes

The name and type of all the language-defined attributes are as given in [ADAI. We
note here only the implementation-dependent aspects.

STORAGE-SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE-SIZE, see §13.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE-SIZE
given for the access type, the attribute delivers the number of storage units cur-
rently allocated for the collection. Note that dynamic collections are extended if
needed.
If the collection manager (cf. Chapter 12) is used for a dynamic collection the
attribute delivers the number of storage units currently allocated for the collection.
Note that in this case the number of storage units currently allocated may be
decreased by release operations.

F.2.2 Implementation-defined attributes

There are no implementation-defined attributes.

Chapter 15 Appendix F

F.3 Specification of the package SYSTEMI

The package SYSTEM of ([ADA,§13.7]) is reprintt, here with all implementation-
dependent characteristics and extensions filled in.

PACKAGE system IS

TYPE address IS PRIVATE;

TYPE name IS (motorola_68020);

system-name CONSTANT name := motorola_68020;
storage-unit CONSTANT 8:
memory-size CONSTANT 2-147-483-648;
min-int CONSTANT - 2-147-483-648;
maxjint CONSTANT 2-147-483-647;
max-digits CONSTANT 18;
max-mantissa : CONSTANT 31;
fine-delta : CONSTANT 2#1.0#E-30;
tick CONSTANT 0.2E-6:

SUBTYPE priority IS integer RANGE 0 .. 255;
TYPE universal-integer IS RANGE min-int .. max-int;
SUBTYPE external-address IS string;
SUBTYPE byte IS integer RANGE 0..255;
TYPE long-word IS ARRAY (0..3) OF byte;
PRAGMA PACK (long-word);

FUNCTION convert.address (addr external-address) RETURN address;
FUNCTION convert-address (addr address) RETURN external-address;
FUNCTION convert-address (addr long-word) RETURN address;
FUNCTION convert-address (addr address) RETURN long-word;

FUNCTION "+" (addr : address; offset : integer) RETURN address;

PRIVATE

-- private declarations

END system;

- - - -M - - -- -

Appe.dix F Chapter 15

F.4 Restrictions on representation clauses

See §§13.2-13.5 of this manual.

F.5 Conventions for implementation-generated names

There are no implementation-generated names denoting implementation-dependent
components ([ADA,§13.41).

F.6 Expressions in address clauses

Address clauses ([ADA,§13.51)are supported only for objects. The object starts at the
given address.

F.7 Restrictions on unchecked conversions

See §13.10.2 of this manual.

F.8 Characteristics of the input-output packiges

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [ADA] are reported in Chapter 14 of this manual.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are giver
below.

NameandMaing_ Value

SBIGIDI (1.79 :> 'A', 80 :) '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 (1..79 => 'A', 80 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..40:>'A',41:>'3',42..80): 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..40:>'A',41:>'4',42..8O:>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (I..77:>'0')&"298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Mean ng__ Value

$BIGREALLIT (l..75:>'0')&"690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIGSTRING1 (l=>'"1,2..41=>'A' 42=>. .)

A string literal which when
catenated with BIGSTRING2
yields the image of BIGID1.

$BIGSTRING2 (1:>'"' ,2 .40=>'A' 41=>'I',42:>'"')
A string literal which when
catenated to the end of
BIG STRINGI yields the image of
BIGG.ID I.

$BLANKS (1..60 :> '
A sequence of Dlanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$FIELDLAST 255
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBAD CHARS abc'@def.dat
An external file name that
either contains invalid
characters or is too lona.

$FILE _ NAME_WITH WILDCARD_CHAR abc*def.dat
An external file name that
either contains a wild card
character or is too long.

$GREATERTHAN DURATION 0.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

7EST PARAM.ETERS

$GREATER TTHAN -DURATION-BASEJ-AST 20000D0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL-ZAILRNAL -FILL tNAME1 x$'yz.dat
An external file name which
contains invalid characters.

$ILLEGAL-EXTERNAL-FILE -NAME2 (1- 40 => 'A')
An external file name which
is too long.

SINTEGERFIRST -2147483648
A universal integer literal
woevalue is INTEGER'FIRST.

$INTEGER..LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLAST -PLUS _ 1 21471483648
A universal integer literal
whose value is INTEGER'LAST * 1.

$LESS-jHAN -DURATION -0.0
A universal real literal that
lies between DURATI0N'HASE'FIRSI
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN-.DURATNBASE-FIRST -200000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

tMAX-DIGITS 18
Maximum digits supported for
f Ioat ing-point types.

$MAXIN-LEN 80
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whcse value is SYSTEM.MAX-INT.

SMAXINI-PLUSI1 2147483648
A universal integer literal
whose value is SYSTEM.MAX-INT~1.

C-3

TEST PARAMETERS

-- -- -- -- -- -- -Mean n -- - -- - --l- -- - --e- -

$MAX-LEN -INIBASED-LITERAL
A universal integer based

with enough leading zeroes in
the mantissa to be MAX...N LEN

$MAX-LEN -REALBASED _LITERAL 1:&4.6>0&FE"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING-LITERAL (1=>"'",2.,.79=>'A',~80)'
A string literal of size
MAXANLEN, including the quote
characters.

$MIN-INT -2147483648
A universal integer literal
whose value is SYSTEM.MIN-INT.

$NAME $NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT TFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$ NE GBASEDINT 16NFFFF FFFEU
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX-INT.

C-4

- -v

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
'AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPO.

C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handier for
CONSTRAIN1 ERROR.

C35502P: The equality operators in line 62 and 69 should be
inequality operators.

A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT-ERROR, for that
value lies outside of the actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINT-ERROR, because its upper bound exceeds
that of the type.

C35AO3E and C35A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

D-I

ITHDRAVN TEETS

C37213J: Tte aggregae ' r ie ,r:cr ectiy raises
CONSTRAINTERROR.

" va i . : a ous s r in t

C37215C, C37215E, C37215G and C3, IcH:d
cor~tra't :-e rTc'reztly eypected tc be incompat be with type
CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT-ERROR.

C41402A: The attribute 'STORAGESIZE is incorrectly apl ied to an
object of an access type.

C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C67B04B and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT_.ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

BC31O5A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

ADIACIA: The declaration of subtype SINT3 raises CONSTRAINT ERROR
for implementations which select INT'S1ZE to be 16 or greater.

CE24OIH: The record aggregates in lines 105 and 117 contain the
wrong values.

D-2

