T e

UNCLASSIFIED F/G 1272 NL
.

S

m 1O e iz

= - ¥

-
izs s pe

g ——————

AD-A199 425

RADC-TR-87-261
Final Toshnical Report
December 1987

A MATHEMATICAL THEORY OF
ASYMPTOTIC COMPUTATION

@ELECTE
T2~ AUB 3 1 1988

—T T
-—

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releassble to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationa.

RADC-TR-87-261 has been reviewed and is approved for publication.

AOTD: () QTP Syt

DONALD M. ELEFANTE
Project Engineer

ol VU35

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

78
FOR THE COMMANDER: >

? JAMES W, HYDE, III.
\ . Directorate of Plans & Programs

|

If your sddress has changed or if you wish to be removed from the RADC mailing

J 1ist, or if the addressee is no longer employed by your organization, please
notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notice

! on a specific document requires that it be returned.

Lot

A MATHEMATICAL THEORY OF ASYMPTOTIC COMPUTATION

David Sutherland

Contractor: Odyssey Research Associates

Contract Number: F30602-86-C-0116

Effective Date of Contract: 1 May 86

Contract Expiration Date: 30 Apr 89

Short Title of Work: Formal Verification of SDI
Mathematical Software

Period of Work Covered: May 86 - Oct 87

Principal Investigator: David Sutherland
Phone: (607) 277-2020

Project Engineer: Donald M. Elefante
Phone: (315) 330-3241

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was
monitored by Donald M. Elefante (COTC), Griffiss AFB
NY, 13441-5700, under Contract F30602-86-C-0116.

> ol

A e, £ e g

U DR o

.

— v — —~—TTT v

Ty

UNCLASSIFIED
| LASSIFICATION MIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMS No. 0704-0188
e ——————— —————
Ya. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

L e R — A
ilD]KECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCH
YA GRADING SCHEDULE unlimited.

—————————————
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-87-261
6a. NAME OF PERFORMING ORGANIZATION Bb. OFFICE SYMBOL | 7. NAME OF MONITORING ORGANIZATION
. (If applicable)
Odyssey Research Associates Rome Alr Development Center (COTC)
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, state, and ZIP Code)
301A Harris B. Dates Drive Criffiss AFB NY 13441-5700
Ithaca NY 14850-1313
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL] 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defense (1f applicable)
Initiative Office S-BM F30602-86-0-0116
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Office of the Secretary of Defense PROGRAM PROJECT TASK WORK UNIT
wash DC 20301-7100 ELEMENT NO NO. NO ACCESSION NO.
63223C B413 03 03
11 TITLE (Include Securrty Classification)
A MATHEMATICAL THEORY OF ASYMPTOTIC COMPUTATION
12. PERSONAL AUTHOR(S)
David Sutherland
_:‘
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final fRom May 86 ro Oct 87 December 1987 80
16. SUPPLEMENTARY NOTATION
N/A
17. COSATI CODES | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Formal Verification Verification of Mathematical
12 02 Verification Programs
Verification Over The Reals (See Reverse)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

One of the major problems encountered in trying to formally verify the correctness of
computer programs that use real arithmetic (hereinafter referred to as “mathematical
programs”) is that the mathematical properties of real arithmetic operations in computers
are much more complicated and much harder to work with than the mathematical properties

of the corresponding ideal mathematical operations. This occurs because the real number
type implemented on a finite computer is not the same as the ideal, mathematical real number
type. A finite machine can only represent finitely many different real numbers, whereas
there are infinitely many ideal real numbers.

The idea behind the theory of asymptotic computing is to develop techniques to prove that
the accuracy of a mathematical program goes to infinity (e.g., larger and larger numbers
of representation bits for mantissas and exponents used in binary floating point arithmetic).

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
3 UNCLASSIHED/AUNUMITED (] SAME AS RPT {J oTiCc usERs UNCLASSIFIED
——— = T ————
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Donald M. Elefante (315) 330-3241 RADC (COTC)
DO Form 1473, !''N 86 Previous editions are obsolete SECURTY CLASSIFICATION OF TW!S PAGE

rw——.._.ﬁk ———— — d =

UNCLASSIFIED

7 The theory of asymptotic computing, then, is essentially a general formalization of
the notions of “accuracy™ and **accuracy going to infinity") but without having to
show how fast convergence happens (a major source of difficulty in numerical analysis).

18. SUBJECT TERMS (Continued)

Formal Verification Theory
Reals Verification
Software Verification

»

rogs .
‘*

‘ ‘ UNCLASSIFIL:
-~ IEDSNENSSSSSRRRSSRESE S S

. ———

e

Accession Por

NTIS GRAkIL

DTIC TAB

Unannounced 1
; Justification . |

By.
_gjstribution/
Avatlability Codes
;Avazi and/or_
Special

Contents

i ,
; {
A<l |
[) i J

e -

1 Introduction

2 A Mathematical Theory of Asymptotic Computation

2.1 A Motivating Example . . . 00 0000

[RV]
(V)

Geuneralized Asyviptotic Computation

(W]

2.1 Programs
222 Semantics oL
223 Asymptotic Specifications

224 Asymptotic Axloms ... L

3 Nonstandard Formulation of the Theory
3.1 Nonstandard Mathematies . . . 0 0 . . 0 .

3.2 Axiomatizing Nonstandard Mathematies . . .

3.3 Nonstandard Formulation of the Theory

4 A Sample Verification

33

33

43

Appendix A

Notation

Bibliography

ii

49

50

——

Chapter 1

Introduction

We wish to formally verify the correctness of computer programs that use
real arthmetic (heremafter referred to as “mathematical programs™). The
real number type nnplemented on a finite computer is not the same as the
ideal. mathematical real number type because a finite machine can only
vepresent tintely many different real numbers, whereas there are infinitely
many ideal real numbers,

One of the major problems encountered in trying to verify mathematical
programs is that the mathematical properties of real arithmetic operations
in computers are mnich more complicated and much harder to work with
than the mathematical properties of the corresponding ideal mathematical
operations. For example, ideal real addition is associative: floating point
real addition is not. How can we handle this difficulty?

One way thiat mieght come to mind is to “pretend” that the machine reals
are the same as the ddeal reals. Strietly speaking. this is not true. However.
this 15 what 1v done for programs which use integer arithmetic. Why is it
OK for iuteger programs? If we verify a statement about an integer program
like o any input . the program will terminate and return 1?7 based on
the assiumption that the machine integers are the same as the ideal integers.
we will actually have established that on any input n that is representable
m the machine the program is running on, the program will either cause an

overflow or will terminate and return 24 This is because integer arithmetie
in finite machines is identical to ideal integer anthmetic when overflow does
not occur. Unfortunately. the same 1s not true of machine real arithimetic,
Machine real arithmetic can also deviate from ideal arithmetic by underflow
or roundoff. Thus, if we verify a statement like “on any input ¢ # 0, the
program will terminate and return 1/07 based on the assumption that
the machine reals are the same as the ideal reals. we will actually have
established that on any wput » that is representable in the machine the
program is running on, the program will terminate and return 1/c if no
overflow, underflow or roundoff occurs. Since roundoff occurs much more
frequently in real arithmetic than overflow occurs in integer arithmetic, we
have established a much weaker statement. In fact. the statement we have
actually established is so weak that 1t 1s useless. Thus. whatever axioms
we assume about machine real numbers. our assumptions must recognize
at least some of the differences between machine reals and ideal reals.

We could formulate a collection of axioms which are satisfied by all inple-
mentations of real numbers on finite machines, or at least all implemen-
tations in a certain general class, like machines that vse binary floating
point arithmetic. Such an axiom syvstem would have to incorporate some
unspecified constants (e.g. the number of bits of mantissa and exponent
in the case of binary floating point arithinetic) in order to be valid on ma-
chines of various sizes. One could then verify properties like “on any input
r representable on the machine. the program will terminate and return the
square root of r correct to t decimal places™ where t would be some expres-
sion involving the unspecified constants. Having done such a verification.
given a machine, we could determine the vilues of the constants for that
particular machine, and get a lower bound on the number of decimal places
of accuracy (by plugging the values of the constants into f and evaluating
it). This is the kind of verification one would really ke to do. but it is
very difficult. The difficulty comes primarily from the fact that one must
perform complicated numerical analyses to get such a hard bound on the
number of decimal places of aceuracy.

What we have attempted to do wirh the Theory of Asymptotie Computa-
tion is to “factor out” the hard numerical details. Let’s return for a moement
to the case of stating axioms in terms of unspecified constants about the

machine’s accuraey. We'd like 11 10 be the case that if we plug i values of
these constants corresponding to more and more accurate machines (e.g.
larger and larger mumbers of bits for the mantissa and expouent in the case
of binary Hoating point arithinetic), the valne of the term t goes to ~c. In
other words, running the program on more and more aceurate machines
cives better and better accuracy in the result computed by the program.
The idea of the theory of asvinptotic computation is to develop techniques
to prove that the accuracy of the program goes to oo as the accuracy of
the mnderlying machine goes to x without having to show how fast this
convergenee happens. which iz where most of the messy numerical analysis

COLLeS 1.

The theory of Lavmptotic carnputation is essentially a general formalization

of the notions of “acenraey” and of accuracy “going to ~x™.

I Chapter 2 we deserihe the Theory of Asvinprotic Computation. This
clhiprer e bades

o the provianmnine inenane we are nsing for specifving algorithims
e i semnanties for the nvnnee

e the definition of what it means for a program to satisfv a certan

imput /ontput specification asyvinptotically.

In Chapter 3 we aive a fornmlation of the Theory in Nonstandard Mathe
maries. This formulation makes the definitions less complicated and more
mtuitive,

In Chapter 4 we apply the formualation of Chaprer 3 to venfy a proeram to

Hnd roots of o real vahied tnenon.

m e e menc o0 - ———— - —ye

Chapter 2

A Mathematical Theory of
Asymptotic Computation

2.1 A Motivating Example

We will explain the Theory oy first considering a very simple program. We
will give a semantics for the program. state what it means for the program
to be asymptotically correct, and prove it asvmptotically correct. We will
then obtain the Theory of Asymptotic Computation as a generalization of
this example.

The program we will consider is a program to sum 3 real numbe.<. The
3 numbers to be summed will be given to the program as the values of 3
variables, A, B and C. The output will bhe stored 1n a variable RESULL.
Here is the program:

10 RESULT = A + B:
20 RESULT := RESULT + (:
30 EXND;

I

What do we mean by “asyinptotic correctness” for this program. and Low

-

vould we prove inoacvmptotically correet” First of alll 1 order 1o prove
nythine about o program we nmst epresent 11 as a matiematical object,

Ay point during a possible “run” of the program. either:

Focontrol is at oue of the three statements in the program. with some
<ubset of the vanehles assigned real number values, or
2 cone kind of execption e e overflow) has oceurred and the program

b tereynated ahoormaliv,

P the conre istony of arun ean be expressed by giving the {finired
sapaence of Tsiates” rlee progrann has passed thirough, where by state”
weoneat o staoctienn nmber and an assignment of some variables to real
nuraberss and telbng wiiether an exeeption hias occurred or not. We vl
tied it convenient to incorpornte hoth of these pieces of information inro
roszle Hutre segaence cach of whose entries 15 either a state or s distin
cotshod clements T v il stands for the occurrence of an exception. We
st of the enizes sl @ sequence as events, with a state s hetue
thonehr Of o the “evert” of gotne nto state soand Y being thought of as
covent of abescepaot occurting. Tlie events ocenr in the sequence iy
seoorder wmowineh they ocenrred. We will eall such a sequence a trace of
“hie proaran. The colleetion of atl traces which could occur during any ran
S proerimn detines the senaaties of the program’s execution. Ve wilj
cive sieh o colleenion of traces an ceent system over the set of states, We

Lo

tepresent the progrant as an event system, Note that such an ovens
svoem s elways nonempty fif contams at least (). the sequence of events
which have aecured Tefore amyvtling at all has happened). and it s adwiyvs

domed nuder nanad ceeienr e ae T i 7 < then 7e T Sets of Hnne

Seerenees 1:;!\'i‘.1‘4 flu e Two [Ht)pl‘l‘?i«’.\' are (‘2\“1‘(1 trecs ()f fl"rl.ﬂ'(' SCQUETLCES,

What are the possible rraces of the above program? Let's first answer this
apiestion for the case owhich the machine real number type is exaerly
the smue as the adeal veal nmnber type. We will denote a state by an o

tple consisiing of & stitement munber and a sequence of variable bindinags
to deserthe the assigmaent of variables. A variable binding will just be
vartable nione followed by anrarrow and the value that the variable s boud

ve

e o ——

to. If a variable does not appear in the list of bindings, it is not assigned a
value by the state,

As noted above, the empty sequence, (), is a trace. We assume that A, B
and C are defined whenever the program is started up, but their values can
Le anything. and RESULT may or may not be defined. Also, control must
mitially be at statement 10. Thus, all sequences of the form

((10’\ = J'U.B = .I'l.C = I2)>
or
({(10.A = 0. B = r.C = 2,, RESULT = w))

will be traces, and no other sequences of length 1 will be traces. From
statenient 10 the program must go to statement 20, with the new value of
RESULT being the suin of the old values of A and B (values of A, B, and C
nnchanged). In terms of traces, this means that all sequences of the form

/110..\ = .To.B = .F|,C = .'l'z).
(20.A = 10.B = r,C = r,. RESULT = 20 + 7,))

o1

({100 > rg.B = 0,.C = r;, RESULT = w),
(20.A > 0. B = 0. C = 0 RESULT = 24 + 14))

Al be traces, and no other sequences of length 2 will be traces. Similarly.
all =equences of the form

GI00A = o B = . C = x,).
(0N e . B o C = 0 RESULT = 29 + 14),
(30,4 2> g B = 0. C = 0 RESULT = rg+ 7, + 13))

or

((10,A = r(,B = 1,.C = r,,RESULT = w).
(200A = vg.B= 21.C = r,, RESULT = 2¢ + 4y},
(30, A= Ig, B> Iy, C= .l'),RESLTLT = Yo+ Iy + J"z)>

will be traces, and no other sequences of length 3 will be traces. Since
the program halts at statement 30, the set of state sequences will contain
no sequences of length > 3. Also, if the machine addition is ideal. no
exceptions can occur, so no trace of the ideal system will contain !.

Now we examine what the traces for the program running on a finite ma-
chine could look like. First of all. what can we reasonably assume about
the traces that will be true on any finite machine? We can presumably at
least assume the following:

o Control always starts at statement 10 with A. B and C assigned val-
ues. Formally, this means that if () is a trace. then s must either be
of the form

(10,A = 10, B= 0;.C = 1))
or

(100A = ry.B= 0,.C = r,. RESULT = w)

Note that we do not assume the converse. that for all states s of this
form. (s} is a trace. Thix would requive that there he mfinitely many
different states that the program can start in. which is not possible
on a finite machine.

o If control is at statement 10, then either an exception will oceur. or
the program will go to a state in which control is at statement 20
and the values of A, B and C will be unchanged and RESULT will
be assigned a value. Formally, this means that if o (. ¢) is a trace.
and e is a state of the form

v

. =l A

<10.A = €Iy B = AI'I.C = .I':)

or
(100A = ry.B = 0. C = r,, RESUILT =)
then either ¢/ = ! or (c. ") 15 of one of the following two forms:

{(10,A = 20.B = #,.C = 1,).
(20,A = 74,B = 1,.C = r,, RESULT = w'))

((10,A = 29,B = #,.C = rp. RESULT = «).
(20,A = 29,B = 2,.C = r;, RESULT = u))

Note that we do not make any assumptions about the relationship
between zg + r; and w’. This is because just about any relationship
we might state (c.g. |w’' — (1o +)| < ¢ for some small ¢ will be
false on a sufficiently inaccurate machine.

The corresponding assumption for statement 20, 1.e. if no exception
occurs, control goes to statement 30, the values of A. B and C don't
change and RESULT will be assigned some value. The formal state-

ment is the same as the above, with “10” replaced by “20" and 207
by “30".

If control is at statement 30 or an exception has occurred. then noth-
ing further happens. Formally, this means that if a trace o end< in !
or in a state s of the form

(30. [some variable assigniment])
then o is maximal. i.c. there is no trace that extends o and is strictly

longer. We also want to assume the converse. t.e. that if o is maximal
then it either ends in ! or in a state with control at statement 30,

The above conditions do not ensure that an event system corresponds to
an implementation of the program on a finite machine. They are merely
a weakening of the conditions we wrote down for the ideal machine which

S

allow event systems corresponding to finite implementations. In fact. the
above conditions are met by the ideal implementation. Since we want to
verify the program asswming that it 25 running on a finite machine, we need
an additional condition which not only allows finite implementations. but
actually rules out infinite implementations. The additional condition we
will impose is that the set of all events appearing in any sequence in the
event system is finite. This will rule out the infinite implementations.

We will refer to the above conditions on event systems as the absolute
artoms of the program. We call them “absolute” because they are assumed
to hold for all implementations of the program.

We have not yet said what it means for the program to asymptotically
compute the 3-ary addition function. Before we do. let’s stop and think
about what we could possibly verify about how the prograni runs on an
arbitrary finite machine. On the basis of the absolute axioms. we can verify
that the program does not go into an infinite loop, 1.e. there is no infinite
sequence of events such that every finite initial segment is in the event
system. (From now on we will refer to such infinite sequences of events as
nfinte paths through the event system). We can verify that if the program
does not terminate with an exception. it terminates with RESULT assigned
a value. and with A, B and C having the same values they did iitially.
We cannot verify too much more than that about the program from the
assumptions we've made. In fact. it is easy to prove that for any values
of ro.r;. 1, and w. there is some event system T satisfving the absolute
axioms such that there is some trace in T which starts with inputs rq.0,y
and r; and terminates with output w. Thus we can’t prove anything about
how well the program computes the 3 -ary addition function. The reason
for this 1s that we don’t have any conditions on how machine addition is
related to ideal addition.

What we want to be able to venify is that if we require that machine addition
match ideal addition more and more closely, that we will be able to prove
that the input/output hehavior of the program matchs the 3-ary addition
function more and more closely. I other words. we want to be able to prove
that for any desired degree d of accuracy of the 3-ary addition function,
there exists a degree of accuracy ' of 2-ary addition such that for any event

S — - -

system T satisfving the absolute axioms and . the mput/output behavior
of T will satisfy d.

What do we mean by a “degree of accuracy”™ The intuitive idea is that
a degree of accuracy is some condition on implementations of the program
which will be met by all sufficiently accurate implementations. Some de-
grees of accuracy will correspond to the accuracy of the 2-ary addition
used by the program; we will refer to these as the asymptotic azioms of the
program, because they are assumed true of all sufficiently large implemen-
tations. Other degrees of accuracy will correspond to the accuracy of the
3-ary addition the program is attempting to compute; we will refer to these
as the asymptotic spectfications of the program, because we want to prove
them about all sufficiently accurate implementations. Formally. a degree of
accuracy will be a set of event svstems.

What kind of degrees of accuracy do we want to achieve in computing 3-ary
addition? What we’d like is for every event system T meeting the above
conditions to satisfy the following conditions:

1. We can give any input to T. 1e. Vrg.xr;,r, ¢ R.3 a state of the
program s such that (s) ¢ T and s assigns A to rg. B to x; and C to
;.

2. If (s) €T assigns A to zo. B to r; and C to x,. then any run of T
must eventually terminate normally with RESULT assigned to value
Zo + 11 + 2. Put more formally, there is no infinite path through
T whose first element is s. and for every maximal o ¢ T whose first
element is s, the last element of o is a state in which control is at
statement 30 and RESULT 1s assigned the value rg + 0y + 25,

Of course, the above conditions can’t possibly be satistied by any such T
if only for the reason that we can’t start up a finite implementation of the
program with an arbitrary input. We do expect. however. that if we take
larger and larger machines. we will bhe able to approximate fixed inputs
with more and more accuracy.

Definition 2.1.1: for any ro.rp 0.8 > 0e R, we define the degree of

10

s e

accuracy inputs(.orgr,..r2.¢) to be the set of all event systems T such that 3
a state s such that (s) € T and s assigus A, B and C to numbers yo.y, and
y2 respectively and |y, — x| < 6 for 1 =0,1,2.

]

In general, we won't even be able to get accurate sums of numbers we can
mput to an implementation. due to roundoff. underflow and overflow. To
figure out what we can reasonably specify about the program. we must first
consider our picture of how such a program is used.

We imagine a “caller” has some inputs zg,.r; and r; it wishes to submit to
the program. Ideally, the caller would like to be able to hand the program
ro.ry and r; and have it hand it back ro+ 2y +1;,. In general. the caller will
not be able to hand the program . &y and r,. but will have to hand it some
approrimations to these numbers, say yo. y; and y,. such that 3= such that
(s) €T and s assigns A, B and C the values yo,y; and y,. The program then
“assumes’ that yo. y; and y, are the inputs the caller is actually interested
m. It is the “responsibility™ of the program to try and halt with an output
which is an “approximation™ to yo + y1 + y2. It is the responsibility of the
caller to supply the program with sufficiently “good™ approximations to
justify the program’s “assumption™. Note that the caller's responsibility is
only to give the program inputs which are sufficiently close to rq. r; and 25;
1t is not required to give the program particular inputs which are sufficiently
close.

Fix ro.r1.r; € R and ¢ > 0. Suppose the caller would be satisfied if the
program returned it some number w such that [— (xg + 1, + 12)| < =.
How close approximations to g, 2y and ¢y does the caller have to supply
i order the get an output in (wg+ 0y + 25 — .09 + 07 + 22 + 2)? First of
all. it must at least supply approximations yo,y; and y, such that |(yo +
i +y2) = (fo + &y + 02)| < e, because if it did not. the program wonld
be “justified” in handing it back a number close to yo + yi + y,. possibly
5o close that it would be more than ¢ from rg + r; + 1. Suppose 8 is
sutficiently small that for any yy. y;. y2 such that |y, — »,| < & for7 = 0.1.2.
Hyo+yi+y2) —(xo+a1+0) < = (any & < /3 will do). If the caller limited
itself to inputing approximations in which |y, — x,] < & for/ = 0,1.2, would
some sufficiently accurate machine ensure that the answer returned to the

11

caller isin (rg+ &y + 1y — c.owy + &y + 1y 4+ 237 We canmot really mive a
firm “yes” or "no” to this question because we do not vet have a formal
definition of what “sufficiently accurate” means. The “intuitive” answer,
however, secmms to be "no”. To see why, consider the following example.
Suppose we had rqg = vy = ¢, = 1. ¢ = 1.5, and & = 5. Suppose we
were running our prograin ol a iachine i which addition was allowed to
introduce an absolute error of up to some small number £ > 0. and .5+ &/2
was representable in the machine. Suppose the caller approximated g, 1y
and r; by .5 + £/2. Since the machine is allowed to introduce up to &
much error when performing an addition. it could assien RESULT to 1
in statement 10. It could then assign RESULT to a number as small as
1.5—¢/2 in statement 20, which is not in (ro+ 2, +1,— . 1o+ 0 +o4+2). We
can make the machine we're running the program on arbitrarily accurate
by making £ very small. but by the above argument. there will always be
some approximations in the (&, — é.r, + 4} intervals which will cause the
program to return a value more that ¢ from the correet answer.

The reason this can happen = that the caller can choose 1= oy, and y,
just slightly less that é from the ~orresponding r;’s. When 1t does this,
[(yo + y1 + y2) — (rq + Iy + ;)| 1s just shightly less than . Thus. even a
small error in the two m:chine additions can make RESULT more than =
from the exact answer.

Suppose it were actually the case that for any yo. 5 and y: such that [r, — y,|
is less than or equal to 6, l(yo+ yi + y2) — (1o + 0 +02) < 2. Again we pose
the informal question: if the caller limited itself to inputing approximations
y; n (z; — 6, 1; + é). would some sufficiently accurate machine ensure that
the answer returned to tlie caller s in (ry + 1y + 0y — s ra+ry +r,4)7
The “intuitive” answer now scems to be “ves”. Supporting evidence for
this answer 1s the fact that the answer returned to the caller wnll be within
¢ of the number we want if we run our program on a machine which uses
floating point arithmetic with a sufficiently large number of bits in the
mantissa and exponent. (We prove this below.) We can therefore define a
degree of accuracy corresponding to all event systems large enough to meet
the abave condition.

Definition 2.1.2: for every ry. .06 R and .6 > 0 we define the degree

(v .

of accuracy accuracy(.rg. oy, 5. 2. 8) to be the set of all event systems T such
that if

Yyo,y1.y2 € Rlly, — o, <8 for 1 =0.1.2 —
(Yo + 1 + y2) = (ro + 0y + 12)] < ¢]

then Vs such that (s) e T and ~ assigns A. B and C to numbers yq. y; and y,
respectively and |y, — x,| < & for ¢ = 0.1.2, T must terminate and return
a value in (xg + ry + 79 — s.0g + &y + 75 + €) (i.e. there are no infinite
paths through T which start with s. and if ¢ is a maximal element of T
which starts with s then the last element of o must be a state which assigns
RESULT a value w such that [— (1o + 1y + 13)| < €).

O

The inputs and accuracy degrees of acenracy coustitute the asymptotic spec-
ifications of our program. The inputs degrees will also be asyvmptotic ax-
ioms. This may scem peculiar, hut it just reflects the fact that the ability
to approximate fixed inputs more and more closely on bigger and bigger
machines is both necessary to asymptotically compute 3-ary addition, and
something we can assumne is truc.

What kind of asymptotic axioms can we assume about the machine’s 2-ary
addition? We want to assume conditions like the accuracy requirements
above, only on 2-ary addition in the middle of the program’s execution.

Definition 2.1.3: for any »rg.. ¢ R and 2,0 > 0. we define the degree of
accuracy primacc(ro.ry.<.0) to be the set of all event svstems T such that
if Yyo.y1 such that [y, — | <& for/ = 0.1, |(yy + 1) = (20 +)| <=

1. if 0"(e.¢’) ¢ T and ¢ is a state in which control is at statement 10
and A is assigned a value in (v — 6.0y + 6) and B is assigned a value
in (r; — &0 + &), then ¢ i~ a state in which RESULT is assigned a
number in (rg 4+ .1y — .0y 40y + 7).

o

if 0" (c. ') e T and ¢ is & state in which control is at statement 20 and
RESULT is assigned a value in (ry — &g + 8) and C is assigned a

13

value mn (o) — &, 4 0) then ¢ sastare inwhich RESULT s assigned

\

anumber i (rg+ 0y — coxg t oy 4 7

a

There is a condition that must hold of the asvmptotic axioms in order for
them to make sense. namely, for any finite set B of asymptotic axioms there
must exist an event system satisfving the absolute axioms which satisfies
every B € B. If this 1s not true. then our asymptotic axionis are too strong.
When a set of conditions has the property that any finite collection can be
satisfied, we will say that the set of couditions is finitely satisfiable.

Prcposition 2.1.1: The collection of absolute and asymptotic axioms for
the program is finitely sarisfiable.

Proof: We will show that any degree of accuracy is met by @ finite machine
which uses binary floating point arithmetic with 7 bits in the mantissa and
n bits in the exponent if n 15 sufficiently large. Since such machines meet
all the absohite axioms. this will establish the proposition.

Suppose the degree in question s inputsi.rg. ry. 5. 00 27 will be machine-
representable. If we take 1 large cuough that 27 is bigger than the absolute
values of all the ;4 ¢'s. and big enough that the minimuin spacing between
numbers whose absolute values are < 2" is < o, then there will necessarily
be a machine- representable real in every (r;—¢. r,+ &) interval becanse there
will be machine-representable numbers hoth above and below the interval,
and the spacing between machine representable numbers 15 too small for
the interval to be between 2 adjacent machine representable munbers.

Suppose the degree in question s primacct .. oy, <. 8. The dearee is satis-
fied vacuonsly unless 26« e suppose this i~ the case. If we let n be suf
ficiently large that the mmimmm spacing between machine representable
numbers in the interval 7 = (ry ¢ 1y raaoryp 4) s less than @ - 264,
and |y, — .} < &0 then yy + 4 will Le i the interval 7o so the machine
computation of the sum will he off by less than = — 260 Thus. the difference

between the 1 shine <simm and the actanl <nm ean be at most the sum of
the differences Hhovween the s and the »%s (8 cach) and the maximum

machiue error. - 200 [other words, the maximum error is . as desired.

1}

Y

Now we are ready to state formally what we wish to mean by asymprotic
correctness of the program. We say the program is asymptoticaily correet
iff for every finite set 4 of asymptotic specifications. there exists a finite set
B of asymptotic axioms such that if T is an event system which satisfies
the absolute axioms and is in every J e B, then T is in every a e A.

Proposition 2.1.2: The program is asymptotically correct.

Proof: We need only show that for any degree accuracy(rg. ry.x2.2.¢).
there is a finite set of primacc degrees such that if we assume the program
satisfies the finite set of primacc degrees then we can prove it satisfies the
accuracy degree. There is a finite set of primace degrees which ensure that
the errors in statements 10 and 20 is less than (¢ — 38)/2. The difference
between the actual sun rg + 2, + 15 and the final value of RESULT is at
most the sum of the differences between the y;'s and the r;’s (¢ each) and
the sum of the the two computation errors ((¢ — 38)/2 each). This adds up
to at most ¢, as desired.

2.2 Generalized Asymptotic Computation

In this section we generalize the example given in the last section to a
general model of asymptotic computation.

2.2.1 Programs

We will first generalize the notion of a program. We define a limegnage
of flow chart programs called SRNL for Sinple Real Numiber Language.
Before we deseribe SRNL. we will make the following comment: it’s heen
our experience that in order to write asymptotically correct programs to
do nontrivial tasks. it is necessary that we be able to deteet exeeptional

15

hial

conditions such as overflow ad speeify what the program does when such
exceptional conditions ocenr, W have accommodated thjs NOCeSSITY in
SRNL by Incorporating exception-handling. This is discussed further be.
low,

A program consists of:

1. a finite collection of variables
2. an assignment of types to the variables

3. a flow chart

We allow variables of types integer {including both positive and negative
mtegers) and real,

A flow chart. as we define it. is a certain kind of directed graph. witl,
the nodes corresponding to points of controf within the program and tlu.
arrows corresponding to possible flows of control. We will first descrilye
what we mean by a flow chart informally (although the only thing that will
be informal about the definition is that it will be m English rather than
first-order logic). and then give a formal definition. A flow chart is a finite
directed graph in which some of the nodes and arrows may be labeled. Each
node is assigned to exactly one of the following categories:

¢ start nodes (these are the podes where control can be when the pro-
Bram starts executing)

o halt nodes (these nodes correspond to normal program termination)

® assiolnent nodes {these wre the nodes where varidides sre assioried
new values)

¢ test nodes (these ure the podes where control hranele aceordine to

SOHIe cotitjon

Some categories may have no nodes in them, but there must be at least one
start node.

Arrows can be unlabeled, or they can be labeled with one of the following
labels: “truc”, “false” or “exception”™. (Unlabeled arrows correspond to un-
conditional control flows; arrows labeled with “true” or “false” correspond
to conditional control lows; arrows labeled with “exception” correspond to
control flows associated with exception handling.)

Start nodes arve unlabeled. They may have only unlabeled arrows coming
from them, and each start node must have at least one arrow coming from
it. Start nodes can have no arrows going to them.

Halt nodes are uulabeled. They may not have any arrows coming from
thenn.

Each assignment node is labeled with an assignment statement. An assign-
ment statement is a statement of the form

vi=1t

where v is a variable of the program and ¢ is a term whose output type is
the same as the type of v. A term is just a program variable, a constant
symbol or a function symbol applied to a collection of program variables.
We will list the constant and function symbols and their types below. An
assignment node must have at least one unlabeled arrow coming from it, and
every arrow coming from an assignment node must either be an unlabeled
arrow or must be labeled with “exception™.

Each test node is labeled with a boolean expression. We will define the
boolean expressions below. A test node must have at least one arrow la-
beled “true” and one arrow labeled “false™ coming from it. and every arrow
coming from a test node must be labeled.

Terms are built up from program variables and constant symbols by apply-

ing function symbols. The constant and function symbols (listed by type
signature) that we will be using are:

17

-y

1. constant symbols of type integer: Oz and 154
2. constant symbols of type real: Og and 1

3. binary function symbols which take integers and return integers: +7,
~2 *Z

4. binary function symbols which take integers and return integer: +R,
R *R./

Note: in actual examples, we will “cheat” in a couple of ways to make
our programs more readable. For example, technically, we need subscripts
on symbols like “1” and “+4” to distinguish between integer constants and
functions and real constants and functions which are usually denoted by
the same symbol. In our examples, we will drop the subscripts, and it will
always be clear from context whether we mean the integer symbols or the
real ones. Also, we will use other symbols besides those above, e.g. other
numerals, like “2”, and the unary — function. These symbols should be
regarded as abbreviations for terms written using only the symbols above,
so “2” is an abbreviation for “1+1” and “~z” is an abbreviation for “0—z".
Finally, we will use more complex terms in our assignment statements than
just the simple terms allowed by SRNL. These terms are abbreviations for
pieces of code which evaluate the complex expression one subterm at a time,
storing the intermediate results in temporary variables. The restriction to
simple terms will eventually be removed from SRNL, but for the time being
we have placed this limitation on the programs to make the semantics easier
to state. The principal difficulty in stating semantics for complex terms is
that an exception may occur in the middle of evaluating a term, which can’t
happen with the simple terms we’re restricting oirselves to at the moment.

Boolean expressions are built up from atomic boolean expressions by ap-
plying boolean connections. We allow all the usual boolean connectives
(e.g. A,V,n,—). Atomic boolean expressions are of the form

P(U(),...,l'n_])

18

v e, A A

where 2 1s a predicate svmbol and oo . are program variables whose
tvpes mareh the input type siguature of 27 The predicate symbols we will

nse, sted by type signature, ave:

1. by predicate symbols which take integer arguments: =z. <z

2. binars predicate symbols whicl rake real arguments: =R

fAenin in actuad exaraples we will drop the subseripts, and will nse abbre-

Gations Lae e T T v s v b <y

We wili now give e forne b detinrion of o flow chiart, A low chirt 1= 12
fgne AN S TART HALT ASSIGN . TEST. UA TAFA EA AL TL L) snely

that:

T N o nolietnht sy or e rodesd

20 START. HALT. ASSIGN and TEST arve disjoint subsets of N owhose

mnien 1= allof NOSTART 15 nonempry.

3 UAD AL YA and EA are bonary relotions on N (UA is the anlahelid

bre " arrow relofion, VA W i clelod

arrore relatian, TA s the

creae e lbon and A I the terception” arrow relation),

foL is o funertion foan ASSIGN U TEST futo the st comsiaring of
Lo wmdoninent stateinent< and boolean expressicns of the provram
vthee feodd fuactrony 20 ASSIGN D L(a) 1s an assignniens statement.

oo TEST oo 1+ a hoolean (‘.(I)I'(‘.\.\'i()ll.

ool N r VA A A or TAtaL) or FAfe) o EAva T e
e HANL D sl 1o START.

t) .”n. i \ II‘\‘M b T].l(‘H) f’ lI:S’I‘
Voova e Nt v Svor FAG G 9 then oo e TEST.
N './H. e \]f ',\‘ b i Yli"f! 8] %S'["\RI

Voo s START v ASSION e N e that UAGa. 1)

10, Voo TEST w0 -0 N e thar TA L) ond FAta =

1

v ——

2.2.2 Semantics

Vo v o e wosenpanties to the programs defined in the previous suli-
sectior b vacinne cach program with o class of event systems. The

vattons event svstenis it the class correspond to nuplementations of the

progrias oo ackines of varions sizes. We will now fix a program P and
deseribe rbewoof event systems associated with it. The members of this

i vt

bereteried to as the models of the prograns. We will denote the
st of podess caegones of nodes. arrow relations and label function using
woonree vetntjon as e the previous subsection.

Earstowe needd so say what a ote of 27 s ¢ state consiste of

v coor il How chiaet (Chis recceoor e e place where conrre! e

o

Dooan assloiooaent of some snubset of the variables to elements of ther

vl Tyoe

Phorpallys thiens a state s a pair (a. 1) where o is a node and 17 i< a

Fanetion from vome subset of the program variables into the disjoint union
of 7 and R winel takes integer variables to integers and real variables to

AN S SR TR

vyt
IS

Bt ano ot oo varniable which s assigned a value he oo we will denaote

coraned to e by s by ste), s o term all of whose variables

e e nooabe by v ee denote the ideal value of the rerm under <his

A todet s event vstemn over the set of states deserihed above which
meers et conditions. As in the previons section. these conditions will
Beagcfertan ta as the absohite axioms of P We will Hrst Jiseniss cortain
ot taanons which mdlneneed the conditions we mmpose. then we will

Y v |

state the conditions informally, and then give their formal equvalents,

Fotonmnbatine the conditions for an event svstem being a model of 2. the
- bl

follovn o conaderations were taken into aceount:

2()

Nothing was assumed about the accuracy of real-valued functions.
This was because the conditions we give below are intended to de-
fine what we felt we could assume about P running on any machine,
whether large or small. Almost any assumptiou about accuracy of
real-valued functions would be invalid on a sufficiently small machine.

Integer-valued functions, by contrast, were assumed to be perfectly
accurate when they did not cause an exception to be raised. We felt
this was a reasonable assumption on both large and small machines.

We did not assume that there were any circumstances in which the
evaluation of a real- or integer-valued function would not raise an
exception. In other words, we allow “maximum flakiness™ from the
real- and integer-valued functions. This was. again. because just
about any assumption about functions not raising exceptions would
be invalid on a sufficiently simall machine.

Comparisons of numbers (i.e. for equality or <} were assumed to be
accurate, and furthermore were assumed not to raise exceptions.

Assignments of the form v := w where w is a program variable were
assumed to be perfectly accurate. In other words. it was assumed
that error only arises from evaluating arithmetic functions, and not
from copying values of variables into other variables.

Other things assumed to be carried out accurately were evaluation of
boolean connectives, detection of undefined variables. low of control.
and holding constant the values of variables not assigned to.

The informal statenients of the conditions are as follows:

o

Initially, control is always at some start node in the low chart.

If control is at a start node o, control flows alone some arrow frowm
a, and the values of the variables do not change.

Exceptions can only oceur at assignmient nodes and test nodes.

- w v b T — T T W T T vy —v——— - y——

4. An exception will occur at an assignment or test node if the node’s
label contains a variable which is not defined.

5. An exception will not occur at an assignment node if the nodes label
is v := w and w is a program variable which i1s defined.

6. An exception will not occur at a test node if all variables in the node’s
boolean expression are defined.

=1

If control i1s at a node a and an exception occurs. aud there are no
exception arrows coming from a, then P terminates abnormally.

8. If control is at a node «. and an exception occurs, and there are
exception arrows coming from a, then control flows along one of the
exception arrows, and the assignment of variables i1s unchanged.

9. If control is at an assignment node a labeled with assignment state-

ment v := t and no exception occurs. control flows along one of the
1 unlabeled arrows from a. v is assigned a value. and the values of vari-
ables other than v do not change. In addition. if t 15 an integer term
and no exception occurs, v is assigned the value s(t). If t is a program
i variable then v is assigned the value s(t).

i 10. If control is at a test node and no exception occurs, control flows
along an arrow labeled “true” if a’s boolean expression is true. and
along an arrow labeled “false™ if n’s boolean expression is false.

11. If control is at a halt node. no further state transitions can ocenr. If
control is not at a halt node and P has not terminated abhnormally,
then further state transitions must oceur.

J We now state the formalization of the conditions for an event svstem 7' to
be a model of P:

1 1. Vo e T. ! does not accur twice consccutively in o,

H 2. Ve, if {¢) € T then ¢ = (a V) for some a e START.
22

4

{

3. Vo.aeN and V' an assigmment of programn variables if 0" {(a V7). 1) eT
then all of the following are true:

(a) a e ASSIGN UTEST

{b) It is not the case that a € ASSIGN, L{a) = “v := w” where v s
a program variable. ad 17 assigns a value to w.

(¢) It is not the case that a e TEST. and 17 assigns a value to every
variable in L{a).

4 Yo.a.peN and V.V assignments of program variables. if

H o ({a. V)3 VN eT
then EA{a.3) and V7' = 17,
5. Vo.a. e N and V.V assignments of program variables, if
) - . e
1 i &(ll.\)('f\))(I
then all of the followine are trie:
? {a) If a e START then UA{a. 3y and V7' =17,
h (b) If a e ASSIGN and Lia) = = := ¢+ then:
1. Voassigns a value to all variables occurring in 7.
. UA(a. 7)), V(e)l and V program varables o # o0 V0" ~
Ve,
ni. If # 15 an integer ternn, Ve o Vot
\ v, If s a program variable, Ve =0 Vi,
(¢) If a e TEST then:
J 1. 17 assigns a value to all varables ocearrine m Lia).
. V=¥
m. TA(a.) f L) s trme and FA{aL 910 Lia) is false.

G. Yo e T, if the last element of 7 is {a. V) then @ is maximal i T iff
o e HALT.

7. Vo € I', if 0 15 maxunal and the last element of o s Y then 3n e N
and V' an assignment of program variables such that (o, V) is the
next-to-last entry of @ and A3 ¢ N such that EA(a, 3).

8. The set of all events which appear in some o € T is finite.

2.2.3 Asymptotic Specifications

In this subsection we generalize the notion of asymptotic specifications from
the previous section. As in the previous section, the asvmptotic specifica-
tions will be a set of degrees of accuracy. but we're going to want to be
able to specify something slightly more general about our pregramm P than
simply that it asymptotically compute a function. In general, we're going
to want to specify that a certain relation hold between the assignment of
the variables when P starts and when it ends. We call such a relation a
specification relation for P.

If R is the binary relation we would like to have hold between the vanable
assignments at start and termination. we’d like to require the following:

1. We can start up 2 with any assignment of variables.

2. If we start up P with an assignment of variables V', and there exists
an assigmment of variables 117 such that R(1.117), then P eventually
terminates with an assignment of variables 11" (possibly # 1) such

that R(V, T17).

3. If we start up P with an assignment of variables 17 and there 1s no
assignment of variables 117 such that R(V.117). then P either doesn't
terminate. or terminates abnormally (e, with an exception).

Of course, as in the previous section. we can’t in general meet the above
requirements on a finite machine. What we will try to verifv instead is that
for any degree of accuracy d of satisfyving R (in the sense described above).
there exists a degree of accuracy d' of computing the primitive functions

24

.

PN . S

of SRINL such that for auy event system T satisfying the absobite axioms
and d’', the input/output behavior of T will satisfy d. The remainder of
this subsection is devoted to deciding what we want to mean by “degrees
of accuracy of satisfying R”, and what kinds of R’s we will allow ourselves
to use in specifications. As before. a degree of accuracy is formally a set of
event systems.

Suppose that the real variables of P are Xy....,X,. and the integer vari-
ables are I,,....I,,. First of all. we can’t start up P with an arbitrary
assignment of variables on a finite machine. If. however, we have a fixed
assignment of variables V', then on a sufficiently accurate machine we want
to be able to start up P with a variable assigninent V7' which is “close to”
V. In order to make precise what we mean by “close”™. we need some no-
tion of “the distance between two variable assignments™. If 17 and V7 are
two variable assignments, we define the distance between them (denoted
by p(1. V")) as follows:

o If V and V'’ make the same variables defined and wndefined. then
p(V, V") is the largest element of the set

{IV(e)=V7(e)} | v is a variable defined by both 17 and 17}

o p{V, V') =1 otherwise.

The first clause says that if two variable assignments assign the same set of
variables then their distance apart depends on how far apart their assign-
ments of the variables are. The second clause of the definition says essen-
tially that variable assignments which do not assign values to the same set
of variables are not “close to” cacl other.

If V" is a fixed vanable assignment and & > 0. then on a sufficiently aceurate
machine we want to be able to start up P with an assienment of variables V7
such that p(V V') < 4. For ecach assignment U and & > 0 we ean therefore
define a degree of accuracy consisting of those event svstemns whieh are
accurate enough to weet the above condition,

Q]
(o1

e

Definition 2.2.1: for any assigmment of program variables 17 and ¢ > 0
we define the degree of accuracy startup(V.é) to be the set of all event
systems T for P such that 3 an assignment of program variables V'’ such

that p(V/, V') < 6.
O

The startup degrees are analogous to the inputs degrees of the previous
section.

Again, we imagine P being used by a caller which wants to run the program
with an initial assignment of variables V" and have it terminate with an
assignment of variables W such that R(V,W"). What can we reasonably
specify about how accurately P meets R? Our answer to this question will
be complicated somewhat by the fact that there may be no W such that
R(V,W). We will put off dealing with this complication unti] later, and for
the moment we will assume that there exists 1 suel that ROV, 1) We will
refer to such 7's as good variable assignments (“good™ in the sense thiat
they are the vanable assignments the caller would like to get close tor. We
will refer to the set of 17°s such that 311" such that R(V. W) as the domain
of R. denoted by dom(R).

In the example, the caller had to run P on a sufficiently large machine and
give the program an input sufficiently close to the desired input that it
would get an output less than a certain error from the value of the 3 ary
addition function. In the more general case we're dealing with here. there
may be a number of different good 1's. and the caller just wants P to
terminate with some assignment of variables which is close to one of the
good W's. Suppose the caller would be satisfied if the program terminates
with variable assignment 177’ that is within ¢ of some good 117, How good
an approximation "’ to 17 does the caller need to start up P with in order
to get such a 1177 We claim the caller must at least start up P with a
variable assignment 17 such that:

1. V"edom(R?)

2. YU such that R(V'.U7). there exists a good 117 within = of U

26

DY .

Why must these conditions be met? First of all, suppose the caller started
up P with a V' ¢ dom(R). P “assumes” that V" is the variable assignment
the caller is actually interested in. Since there is no way it can terminate
with a U such that R(V',U), the program would be “justified” in terminat-
ing with an exception or not terminating at all. Suppose the caller started
up P with a V’/edom(R) but there is some U such that R(V' U) and there
1s no good 1V within ¢ of U. The program would be justified in terminat-
ing with a variable assignment very close to U7, possibly so close that it is
not within ¢ of any good . Thus, the caller must pick some § > 0 such
that V1" such that p(1, V") < 4. the above two conditions are met, and
restrict itself to starting up with variable assignments < é away from V.
(We require that the two conditions hold for all V' less than or equal to é
away from 1" because otherwise there may exist V' which is just slightly less
than ¢ away from V' such that slight errors in the program’s arithmetic are
Just cnough to allow the program to terminate with a variable assignment
shightly more that ¢ away from the nearest good W. This situation was
Hlustrated concretely in the Motivating Example).

What if there is no such ¢?7 Consider the following example: suppose our
specification is that if we start up the program with X; = r we want it
to terminate with I; = 0 if + < v/2 and with I; = 1 otherwise. In other
words, we want the program to tell us if + < /2 or not. Suppose the z the
caller is interested in is actually v/2: then the “good” W's are the ones in
which I} = 1. No matter how small we take §, however, there will be some
y within 6 of V2 such that y < v/2. Even if weran P on a very accurate
machine. if we gave it an input y e (V2 — 8.v/2). the program would be
justified in terminating with I, = 0. (In fact. for such a y, this is the right
answer).

There is another way the desired é can fail to exist. Suppose our specifica-
tion is that if we start up the program with the valuc of Xy = r and r is a
real number which Las only 0's after the decimal point, then we want the
program to terminate with I} = the integer corresponding to r; otherwise,
we want P to either raise an exception or fail to terminate. In terms of
binary relations on variable assignments, we want the starting and ending
assignments of variables to satisfv R where R(V,TV) iff V(X,) has only 0’s
after the decimal place and T(I}) is the integer corresponding to V'(X;).

[SV]
-1

Supposc the » the caller is interested in is 10 then the specification says P
should terminate with I; = 1. No matter how small we take 6. there wil
be some y within é of 1 such that y does not correspond to an integer. and
so the program would be justified is terminating with an exception or not
terminating.

We didn’t encounter this problem in the Motivating Example because 3
ary addition is a continuous. total function. so the & we need always exists.
In the first example above, we are asking I’ to compute a discontinuous
function. In the second example, we are asking P to compute a function
for which there are points r in the domain such that there are points y not
in the domain arbitrarily close to ». In topology. a set O which has the
property that if x € O then 36 > 0 such that every y within é of 2 15 1n O
is called an open set: in the second example. we are asking P to compute a
function whose domain is not open.

What all this adds up to is that we can only expect to asymptotically
compute functions which have open domains and which are continuous on
their domains. We must therefore restrict ourselves to specifying that P
asymptotically compute a function F only if F is continuous on an open
domain. We can express this in the. more general setting of specification
relations by restricting ourselves to relations @ such that

Vi edom(R).c > 0,30 > 0.V [p(V V7)< 8 - V' edom(RR) A
VU[R(V.U) — IIW[R(V.IT) A p(W.0) < <]

Given that we restrict ourselves to such It's. we define the following degrees
of accuracy:

Definition 2.2.2: for any variable assigunment Voand =06 > 0. we define
. o
the degree of accuracy accuracy (17 :.4) to he the set of all event systems

T for P such that if Ve dom(R} and

VIV V) <o = VVedoml)AVU RV L) — W RIVIT)A
pU. W) < <]]]

2 BT

then Ve such that (¢) ¢ T and the variable assignment associated with ¢
is V7 and p(ViV7) < o, if T is started up with e then it must eventually
terminate normally in a state €’ with associated variable assignment U such
that IW[R(V. W) A p(U, W) < <] (i.e. there is no infinite path through T
which starts with e, and any maximal o € T which starts with ¢ ends with
an ¢’ meeting the above condition).

a

We now return to the question of what we can reasonably specify about
how accurately P meets R in the case where the caller is interested in
starting up P with an input 1" ¢ dom(R). Unfortunately, we don’t have
a good answer to this question at this point. We'd ke it to be the case
that if we take a sufficiently accurate implementation and start it up with
a V7 sufficiently close to V7, that the program will terminate abnormally
(1.c. with an unhandled exception) or at least go into an infinite loop. This
specification is unfortunately too strict. Consider the following: suppose
our specification is that if we start up 2 with X; = r # 0 then the program
terminates with X; = 1/r. In other words. P computes the reciprocal
function. Suppose the r the caller is interested in is 0. Suppose that
this expression is being evaluated on a very accurate machine which uses
some sort of floating -point representation of reals such that for anyv y # 0
representable in the machine. 1/y is between two numbers representable
in the machine. The caller could mput a number very close to 0 and still
not get an exception or go into an infinite loop. In fact. one can imagine
arbitrarily accurate machines of this sort and inputs arbitrarily close to 0
which would not raise an exception or fail to terminate. Thus. even ou a
very accurate machine. the caller caunot choose a number sufficiently close
to 0 that will cause the program to indicate that the expression the caller
15 actually trying to evaluate (i.c. 1/0) 15 undefined.

Our “solution” to this problem at the present time 1s to define asvinprotie
computation solely in terms of what P does when started up with a van-
able assignment U7 which s “near”™ a 17 e dom(R). In other words. we
use the degrees of accuracy defined above, which only concern accuracy of
computation on Vs in dom(R). Thus. with our present definition. proving
asymptotic correctness of a program does not tell us anvthing about what

L pa 2 e g

kind of behavior we can expect if we run the program on larger and larger
machines with starting varable assignments closer and closer to V¢dom(R).
This is not really an acceptable solution: we are still working on the prob-
lem.

The asymptotic specifications are therefore the degrees startup(V,6) and
accuracy(V,£.0).

2.2.4 Asymptotic Axioms

Our asymptotic axioms will be statements of the same form as the accuracyp
degrees about the execution of the programn’s primitive functions. We can
simplify the definition somewhat since the asymptotic axioms are just spec-
ifying that certain functions are computed accurately (rather than some
more complicated specification in terms of a binary relation on vanable
assignments).

Definition 2.2.3: for any assignment node a with label v := F(v..... vr)
and variable assignment 17 and .6 > 0. we define the degree of accuracy
primacc,(V,e,6) to be the set of all event systems T such that if 17 assigns
a value to vy,...,v; and F(V(vy),....V(v,))!| and

YV p(V,V') <6 — F(V/(vy).... .V (u))] A
|F(V/(v1)e. .V (0) = F(V(ey) V()] < <]

then Vo.e,e’. if 0™ (e.c’) e T and ¢ = (a.17) and p(V. V") < & then e’ #!
and e’ assigns v a value w such that

Q

The asymptotic axioms are the degrees startup(V, o) and primace, (V.. 6é)
(as in the Motivating Example. the degrees which say we can approximate

30

inputs closely are both part of the specification and something we can
assume).

Note that the primacc, degrees don’t merely restrict how bad roundoff error.
etc. can be; they also restrict the circumstances under which exceptions
can occur. The absolute axioms place almost no restrictions on when excep-
tions can occur. In fact. an event system may raise an exception on every
assignment statement and still satisfy the absolute axioms. If we require
that more and more asymptotic axioms are met, however. we find that the
circumstances in which an event system is allowed to raise an exception are
more and more restricted.

We need to check that the asymptotic axioms are finitely satisfiable. It is
easy to see that for any finite collection A of asymptotic axioms there exists
an event system for P which meets the absolute axioms and every axiom
in A, just by taking:

1. a sufficiently large initial segment of the integers as the machine’s
integer type

o

real numbers expressible in binary floating—point notation with a suf-
ficiently large exponent and mantissa (this only one of many choices
one could make) as the machine’s real number type

3. integer arithmetic 1s exact unless it takes us outside the integer type
{in which case raisc an exception)

4. real arithmetic rounds to the ncarest number in the real number type
unless it takes us above the largest positive machine-representable
number or below the largest negative machine-representable number
(in which case raise an exception).

The proof of the last statement is completely analogous to the proof of
finite satisfiability i the Motivating Example. so we omit it.

Having stated the asyvmptotic specifications and axioms, we can now make
the following definition:

Definition 2.2.4: A program P asymptotically satisfies a specification
relation R iff for every finite set A of asymptotic specifications for R. there
exists a finite set of asymptotic axioms B such that for cvery model T of
P, if T is satisfies every axiom in B then T satisfies every specification in

A.

Chapter 3

Nonstandard Formulation of
the Theory

The Theory of the previous chapter was entirely formulated in the language
of classical analysis. In this Chapter we give a forinulation of the Theory
in Nonstandard Analysis.

3.1 Nonstandard Mathematics

Nonstandard analysis 1s an alternate approach to doing real analysis. It uses
formalizations of intuitive concepts like “infinitesimal” in place of classical
uethods usig limits (the so called ¢ —~ é approach).

When calculus was first developed by Newton and Leibniz, the proofs were
presented i terms of “mnfinitesimal” quantities. For instance, the derivative
of 2% was computed by forming the difference quotient

(¢ +dr)? — 22
dr

with dr belug an infinitesimal quantity. This sunplifies by simple algebra

33

Lae & B

to 22 + dr. Disregarding the infHuitesimal. the derivative, 2o, is obtained.
An infinitesimal was a number which was positive, but less than any given
positive number. On the face of it, this is inconsistent. since if do 1s positive,
it must be less than itself. Attempts to make this approach rigorous failed,
and methods involving limits were developed. To compute the derivative
of r? using limits, instead of using a single infinitesimal dx, one examines
what happens to the quantity

(r + Ar)? — r?
Ar

as smaller and smaller values of A are plugged in. One can show that
the Ar difference quotient can be made as close as one wants to 2x by
constraining Ar to be less than a certain size.

In the 1960’s logicians developed a way to make the methods of Newton and
Leibniz rigorous, and the resulting alternate approach to analysis is called
Nonstandard Analysis. (We prefer the termi “Nonstandard Mathematics™,
since the methods used are applicable in other arcas of mathematics be-
sides analysis, and will use this term hereinafter). The essential feature
of Nonstandard Analysis is the addition of “nonstandard elements”™ of the
domain of discourse which are then used to prove results about the origi-
nal, standard domain. In this way it 1s similar to the construction of the
complex numbers from the reals. To get the complex numbers. one simply
adds a new number denoted by 7. assumes that it obevs the axiom ¢ = —1
plus the algebraic laws of the reals (e.g. commutativity of addition), and
computes with it formally. The resulting extended number system. the
complex numbers, can then be used to obtain casier proofs of results about
the reals, like the Fundamental Theorem of Algebra.

Let's consider what it would mean to add an infinitesiunal to the standard

real numbers in a purcly formal way. Let L he the fisst- order language
with the following symbols:

o For each n-ary predicate I7 over R we Lave an nary predicate svmn-
bol P whose interpretiation is .

34

[—

e For each n-ary function f over R, we have an n-ary predicate symbol
f whose interpretation is f.

e for each real number r we have a constant symbol r whose interpre-
tation is 7.

Let T be the set of all first-order statements in the language L which are
true. T is what is called the complete theory of R over L. Intuitively, it
contains all the first-order facts about R.

Next, we add a new symbol ¢ to our language. This is intended to be the
name of the infinitesimal we’re adding. We also add to T the axiom £ > 0.
We'd like the add an axiom which says that ¢ is less than any given positive
real number. If we add the axiom Vx > 0,e < r we get an inconsistent
system, because ¢ itself is positive. We don’t really want this axiom though;
what we really want to assume is that ¢ < « for all of the standard z’s,
l.e. the real numbers that we started with. We can do this in a formal way
by adding a separate axiom ¢ < r for every standard positive r. Call the
resulting system 1"

Lemma 3.1.1: 7’ is consistent.

Proof: This follows essentially from the fact that first-order logic is a
finitary logic, i.e. every proof is a finite derivation from a finite set of
axioms. Therefore, if there’s a proof of a contradiction from a set of axioms.
there must be a proof of a contradiction from some finite subset of the
axioms. Suppose T’ were inconsistent. There must then be a certain finite
set To € T and a finite set of positive reals ry,...,r, such that there is a
proof of contradiction from the axioms of Ty plus ¢ > 0 plus the axioms
e < r;fori: =1,...,n. Since first-order logic is sound, this means that
there is no model for this finite sct of axioms. Suppose, however. that we
interpret the symbol € to be the real number obtained by taking the smallest
of the r; and dividing it by 2. This interpretation makes all the axioms of
the finite subset true. Therefore, no finite subset of T is inconsistent, so
T' as a whole is not inconsistent.

—reert

e o o B . SR o caeni Shess hessiNi JeuE

By the completeness of first- order logic, any consistent theory has a model.
Thus, there exists some model of T7. Call this model M. Smee our language
has a constant symbol r for every r e R. and since every such constant
symbol has an interpretation M(#) in Af. we can embed R into M by the
mapping r + M (7): without loss of generality, we can identify R with 1ts
image in M and just assume that R € Af. We know that there is at least
one element of Al whicl is not in R, namely the interpretation of . Also.
since A is a model of T” we know that = is a positive number which is less
than every positive number in R. Thus. we have added an imfinitesimal.
Also. our new number system Al has all the same first order properties
that R does, because M is a model of T, the complete first - order theory of
R. Also, every predicate and function on R has an extension to M. Such
extensions of one model by another that preserve all first -order properties
are called elementary ertensions.

The construction of a nonstandard extension of the reals is actually slightly
more complicated. The thing that made the above construction work is
that we had an infinite collection of “requirements” on ¢ that were finitely
satisfiable in the original, standard reals. In other words. we wanted ¢ less
than every standard positive real number. and for any finite set of positive
real numbers there is a standard real that is less than evervthing in the
finite set. This finite satisfiability allowed us to show that any finite subset
of the theory T’ had a model. and was therefore consistent. and so T' was
consistent. In fact, we could do the above construction for any collection of
requirements which was finitely satisfiable. If the requirements cannot all
be satisfied in the standard reals. as was the case in the above construction,
the Al we get is a proper elementary extension of R i whieh the collection
of requireinents 1s satisfiable by a single. nonstandard number.

In the actual construction of a nonstandard extension of R we do the above
construction for all finitely satistiable collections of reguirements ar once.
Before giving the construction. we =av precisely what we mean by a Huitely
satisfiable collection of requirements.

Definition 3.1.1: If r.... .. 1, are vartables i the anenaee oF 1o collee-
tion of requirements over ..o, is a set Foof formulas i the Innonnee
L such that for every o6 Foothe free variables of o are smone o000 - F
306
o FNNUNNNDNBISSSS S S

is finitely satwsfiable iff for every finite set

{Ol(.l'l I'").....01:1(‘1‘]....,1'")}
of formulas of F., there exists r,...,r, € R such that for 1 = 1,...,m,
odr,,....7,) 1s true.

D

Let L and T be as before. For every finitely satisfiable collection of re-
quirements F on variables r,.....r,, we add distinct constant symbols
Crie.... crn to the language. We then add to T the axioms ¢(cr1,...,CFn)
for every ¢ € F. Call the resulting theory T'. Every finite set To C T in-
volves at most finitely many F's. and for each such F, there are only finitely
many o's from F in the subset. By the finite satisfiability of the F's, we
can interpret all the new constants in Ty in R so as to make all the axioms
of Ty true. Thus. T is consistent, and so has a model M. As before, R can
be considered to be a subser of M. M is an elementary extension of R, and
every collection of requirements which is finitely satisfiable in R is actually
satisfiable in A (1.e. there exist elements of M making all the formulas in
the collection true).

We can apply this construction to other sets besides R. In fact, we can
apply it to any set.

3.2 Axiomatizing Nonstandard Mathemat-
ics

Nonstandard methods can be applied by reasoning about nonstandard mod-
cls. It 1s desirable, however. to have an axiomatic system for nonstandard
mathematics. Such a system is developed in [2]. We have been using the
system in [2] as the basis for onr verifications. We now describe it.

Zermelo-Fraenkel set theory with the axiom of choice (usually abbreviated

37

ZFC) is an axiomatic system in which all srandard mathematics can be
done. The language of ZFC has only two symbols: a binary predicate
symbol for equality and a binary predicate symbol € for set membership
(i.e “r e y” means “r is an element of y). We can therefore think of a
model of ZFC as a “universe” for standard mathematics. A nonstandard
extension of such a model should then be a "universe” for nonstandard
mathematics. In [2], an axiom system for these nonstandard universes
called IST is formulated. IST is obtained as follows: starting with a given
model M of ZFC, one constructs a nonstandard extension of M’ In AL,
there is an interpretation of ¢ which satisfies all of the axioms of ZEC. We
then add a unary predicate “st” to the language. and interpret it in M’ as
the set of all elements in M. Finally, we examine what useful axioms in
the language of =, ¢ and st hold in an arbitrary such M’ IST consists
of all the axioms of ZFC plus the additional axioms covering nonstandard
mathematics. These additional axioms are presented in 3 schemas. They
are:

Vi ah]o e 0%

where ¢ is an arbitrary formula with no occurrences of the predicate
st, T1,....Zy, includes all the free variables of ¢. and ¢ means o with
every quantifier Vy replaced by V*'y and every quantifier 3y replaced
by 3%y. What this schema is expressing axiomatically 1s the fact
that M’ is an elementary extension of /. It says that if we have any
formula in the language of standard mathematics containing standard
parameters, then it holds in the nonstandard universe (i.e. o holds)
iff it holds in the standard universe (1.e. o™ holds). This schema is
called the transfer principle. (Formulas which contain no occurrences
of the st predicate are called internal formulas).

§)

yetfinite s 35 Wy ez d(r.y) « Jr.Vy (0. y)
where ¢ is an internal formula in which z does not occur free. What

this schema is expressing is the fact that every finitely satisfiable col-
lection of requirements from the standard universe on a single variable

38

O .

r is satisfied in the nonstandard umverse. We think of the formula
d(r,y) as defining an infinite collection of requirements on x, indexed
by standard elements y. The left hand side of the schema says the this
collection 1s finitely satisfiable in the standard universe, i.e. for all fi-
nite sets z of standard elements, there 1s a single © which satisfies the
requirements {@(x,y) | yez}. The right hand side says there is a sin-
gle r which satisfies all of the requirements {é(x.y) | y is standard}.
The schema states that the two are logically equivalent. This schema
is called the principle of 1dcalization.

Vi Py Vi zey o zex A o(2)]

where o is any formula in which y does not occur free (but st can occur
im o. This axiom essentially expresses the fact that any collection
of standard clements that we can define (even using nonstandard
methods) has a st dard “extension” in the nonstandard universe.
This schema s called the prineiple of standardization.

In [2] an important theorem is proved. namely that IST is conservative over
ZFC. What this means is that any statement in the language of ZFC (i.c.
no occurrences of “st”) which we can prove in IST can be proved from ZFC
alone. This tells us that the use of nonstandard methods doesn’t change
thie underlyving standard universe. Since the standard world is what we're
really mterested in. this result is essential,

3.3 Nonstandard Formulation of the Theory

One of the most attractive features of nonstandard mathematics 1s that
definitions bhecome simpler and more intuitive. For example. the classical
definition of a sequence of reals {o, | 7 = 0.1....} converging to a real
number r is: Ve > 0.3V such that Vi > N |r, — 2| < . In other words, we
can make the difference between o and the terms of the sequence as small
as possible by looking sutticiently far out in the sequence. The nonstandard

39

definition of convergence is that V infinite 7, |, — x| is infinitesimal. (We can
take “infinite” to mean “1/7 is infinitesimal™). The nonstandard definition
has many fewer quantifiers than the standard definition. Also. it is more
intuitive (z; for “large” 7 are “close to” z.). In fact. this is the major reason
for formulating our Theory in terms of nonstandard mathematics: all the
definitions become simpler when formulated in nonstandard terms.

In this section we give nonstandard equivalents of asymptotic satisfaction
for standard programs P and standard specifications R. The nonstan-
dard versions are actually logically equivalent to the standard ones in IST.
Because IST is conservative over ZFC, any statement in the language of
ordinary mathematics (e.g. statements about error magnitudes) which we
prove using nonstandard methods and the nonstandard definition of asymp-
totic satisfaction will be provable using standard methods and the standard
definition. In general, however, the nonstandard proofs are much more -
tuitive and much easicr to construct and read.

For the remainder of the discussion we fix a standard program P and a
standard specification R for P.

Definition 3.3.1: If T is a model for P. T is hyperaccurate iff T satis-
fies all standard asymptotic axioms, i.e. iff V'V, e,6.a[T € startup(V.48) A
T e primacc,(V, e, §)]

]
Definition 3.3.2: If T is a model for P, T hypersatisfies R iff T satisfies all
standard asymptotic specifications for R, i.e. iff V'V e, 8[T estartup(1.8) A
T e accuracy(V. ¢, 6)].

]

[n IST we have the following equivalence: P asyinptotically satisfies R iff
every hyperaccurate model of P hypersatisfies R.

We will next obtain more useful characterizations of a model being hyvper-
accurate and a model hypersatisfying a specification.

40

)

Definition 3.3.3: If r,y ¢ R. + = y (read “z is infinitely close to y”) iff
| — y| is infinitesumal. If 1, V'’ are variable assignments, V' = V" iff p(V. V')
1s infinitesimal.

0

Vx V/iff V' and V' make the same variables defined and undefined, and
assign the same values to the integer variables, and for all real variables X.

1(X) = V(X).

In IST we have the following equivalence: a model T of P satisfles all
standard startup axioms iff V"'V, 3a. V'[{{a, V")) eTAV' = V]. In particular.
if T' is hyperaccurate then any standard 1" can be approximated infinitely
closely by a V' that T can start up with.

In IST we have the following equivalence: a model T of P satisfies all
standard accuracyp axioms iff V"'V edom(R).a V' if ({a,V'))eT and V' =
V" then:

1. There are no infinite paths through T whose first element is {a. V).

2. For every ¢ maximal in T, if o’s first element is (a, V') then the last

clement of ¢ is (3.U) and 3W[R(V. V) A W = U}

In particular, if T hypersatisfies R then if we start up T with an infinitely
close approximation to V e dom{R), T will eventually terminate with a
variable assignment which is infinitely close to some assignment 117 such

that R(V,1T"). .

Definition 3.3.4: A rcal nmuber ¢ is finite iff there exists a standard y
such that |¢| < y. An integer is finite iff the corresponding real is finite. A
variable assigninent 17 s finite iff every variable V assigns is assigned a finite
value (whether integer or real): equivalently, iff 3V’ such that V' =~ 17",

O

In IST we have the following equivalence: if o is an assigninent node with

41

o

R 2 Jha.

label v := F(vy,...,v) and F # /7, then a model T of P satisfies all
primacc, axioms iff Vo,e, €', if:

e 07(e,e)eT

e=(a,V)

o V is finite

V assigns values to vy,...,v; and F(V(uvy)..... Viend

then e’ # ! and e’ assigns v a value w such that w ~ F(V(v;).... . V(¢)).
For division, we have the following equivalence: If a is an assignment node

with label a := b/c then a model T of P satisfies all standard primacc,
axioms iff Vo, e, €', if:

e o'(e,e)eT

e=(a,V)

V is finite

V assigns values to b and ¢ and V/(¢) is not infinitesimal

then €' # ! and e’ assigns a a value w such that w ~ V(5)/V(c).
g

In particular, if T is hypcraccurate then computations of operations other
than division on finite inputs introduce only infinitesimal error. and compu-
tations of division on finite inputs only introduce infinitesimal error when
not dividing by an infinitesimal.

By the above facts, if we want to prove that a standard program asyvmptot-
ically satisfies a standard relation R. it is sufficient to let T be an arbitrary
hyperaccurate model. and prove that it hypersatisfies R.

V- .

b Baadie el

Chapter 4

A Sample Verification

In this chapter we apply the Theory to verify (informally) the asymptotic
correctness of a program P to find roots of a standard continuous function
f R — R. We will freely use elementary facts from nonstandard analysis
without proving them; the details can be found in, e.g. {1]. In particular.
we will need to use the nonstandard definition of continuity of f in the
verification. In nonstandard analysis. a standard function is continuous if.
for every standard . if y = r then f(y) =~ f(z).

The flow chart for the program is pictured on the next page. It has 3 real-
valued variables, A. B, X and Y. What we will verify about the program
15 that it asymptotically satisfies the following condition: if it is started
up with A and B defined and A < B and f(A) < 0 < f(B) then it will
eventually terminate with X defined and f(X) = 0. We know from the
Intermediate Value Theorem of real analysis that such a root must exist.

Let’s recall what it means for a program to meet such a specification asymp-
totically. It means that if we have fixed numbers .« and y. and » < y and
fle) < 0 < f(y). and a ¢ > 0, then on a sufficiently large machine. if
we run the program with A and B sufficiently close to » and y. then the
program will terminate with a value for X that is within ¢ of a root of f.
We will have verified this statement if, assuming the program is started up
with A and B infinitely close to standard » and y such that r < y and

43

T T vy —

e —— —

b

~

D

=(A+B)/2

o
)]

STAR

L

HA

X

N
7

flo) <0 flgdand assuming thar the program’s arithietic operations
ouly mtroduce nfinttesinal error on tinite values, we can prove that the
program termmuates with X defined and mfnitely close to a standard root
zof fo (We must also assume that f is computed with only infinitesimal
error on finite elements. This would presumably be done by some other
program wihich 17 would eall which had been verified to compute f asymp-
totically. We will assine for sunplicity that there is some function f,, such
thit the machine computed value of f(r) 1s fo,(r). In general, of course.
P need not compute the same valiue for f(r) twice in a row. The program
can be ventied withont this assumption. hut the proof in that case mvolves
detuils whicl wonld he counterproductive heres,

The prograin artempts to fnd a root by the method of bisection. It execites
a loop m which, in each pass through. it Jdoes the rollowing: 1t first takes
the midpomt of 1= cvurrent 2 endpoints, aud computes the value of f there.
H it as 00 the program hale< If it ix negative. the midpoint becomes the
"new’” Jower endpomt. and the loop continnes, I it 1= positive, the midpoint
beconies thie “new” upper endpoint, and the loop contiunes.

How do we moke sure dhat the program terminates” I 1t wore ranuing
on a machine wirh ideal artthmetic, 1t would be entizely possible that the
program waould never actually find a root. but would just get values of A
and B tuat were eloser and closer to a root. We know thy can t happen on
a finate naebine however, beeanse to do <o would reguire that A and B pass
througn an infinite wuber of distinet real vialues in the course of runmng
the program. What wonld happen on a finite machine. On a very accurate
but finite vaciine. eveention would look very much like exeeution on an
ideal machine for o while, As the values of A and B got very close to each
ather, howevers theve wonld come a pont where the distance between A and
B was less thine the ronndotl error in computing, the widpoint of the fwo.
This wounld result i the prooramn computing o valne for the niidnoint which
wonld round to one of the endpointe. or possibly even to a number ontside
the endpoimts. Sinee haolean test<are exaet. we can deteet this condition
P check after cach computation of the midpoint to sce if the computed

value 1 between the endpoints: if it s not. the program terminate

The argnment we liave post vivon proves that the program alwayvs terminates

i

normally if there are no unhandled exceptions. Notice that there are no
“exception” arrows in our flow chart, so we had better be able to prove
that no unhandled exceptions occur. It’s easy to show that there are no
exception due to referencing undefined variables, since we assume that A
and B are defined initially and every other variable is assigned to hefore
the first time it is referenced. The only other kinds of exception that
can occur are exceptions due to attempting to evaluate an expression on
arguments that are not finite, and attempting to divide by an infinitesimal.
The latter kind can’t happen because the only division in the program is
division by 2, which is not infinitesimal. To show that the former sort can’t
happen it would suffice to show that whenever control reachs an assignment
statement, the values of A, B and X are finite (when defined), since these
are the only variables which appear on the right hand side of an assignment
statement. We will argue something stronger, namely that whenever control
reachs an assignment statement, the values of A, B and X (when defined)
are all between the initial two values of A and B. Call these initial values a
and b respectively. We prove this statement by induction on the number of
steps the program has executed. Suppose that there is some integer n such
that after n steps, control comes to an assignment statement and one of A,
B or X is defined and not between a and b. Choose n as small as possible.
We consider each assignment statement separately, and show for each one
that control cannot be at the statement at time n.

X := (A+B)/2. The first time control reachs this statement X is undefined
aid A =« ana B = b. Thus, n cannot correspond to the first time control
reachs this point. Any other time control reachs this point, it must have
been at B := X or A := X after n — 1 steps. By minimality of n, A, B and
X must all have been between a and b at step n — 1, and since at step n — 1
we are only assigning one variable the value of another, the values of the
three variables must be between a and b after executing step n — 1 and so
also before executing step n.

Y := f(X). If control is at this statement at time n then it was at X :=
(A+DB)/2 at time n— 2. By minimality of n. this means that A and B must
have been between a and b before executing step n — 2, and therefore after,
since step n — 2 only assigns to X. At step n — 1 control must have been
at the test statement A < X < B. If control passed to Y := f(X) rather

45

than HALT, it must be that the value of X at time n — 1 was between the
values of A and B, and therefore between ¢ and 4. Test do not affect the
values of variables, so all threc variables would have to have been between
a and b at time n.

A = X. If control is at this statement at time n then it must have been
at statement Y := f(X) at time n — 3. By minimality of n, the values of A.
B and X must have been between a and b at time n — 3, and none of the
statements executed at times n — 3,n — 2 and n — 1 affect the values of A.
B or X, so they must still be between a and b at time n.

B := X. The argument here is identical to that for the previous case.

This establishes that no exception occurs in the program, so it terminates
normally. It obviously terminates with X defined, because this happens at
the first assignment statement. It is also easy to prove by induction that
at all points in the execution of P, A < B and the values of A and B are
such that the machine-computed value of f(A) is < 0 and the machine
computed value of f(B)is < 0. This is ensured by the Y = 0 and Y « 0
test. We emphasize that the actual values may not have the same sign as
the machine-computed values, but we don’t need them to be the same sign
to verify our program. We will now prove directly that X is infinitely close
to a root of f at termination. There are two cases, corresponding to the
two HALT statements.

If P halts after the A < X < B test, we claim it must be the casc that
A, B and X are all infinitely close to cach other. Prior to the test, X was
assigned to (A + B)/2. The computation of this expression can introduce
infinitesimally much error, so all we really know is that after the assignment
statement,

A+DB

12

Since control passes to HALT after the test. it must be the case that either
X € A or X £ B. Consider the first case. Since A < B.

46

o
4
os)

[V

Therefore. A is hetween N aud (A + B)/2. and the last two numibers are
infinitely close. A. X and (A + Bi,/2 ave all infinitely close to cacl other.
Also. this means that

i< infinitesimal. so B — A is infinitesimal. so A &= B By elementary nonstan-
Jdard analysis. all three of A0 B and N must therefore be close to a single
~tandard real number =0 Also. e the assumption that Poasvmptoticaily
computes fand f 15 contimons,

£

A (Y

u
[=

But the tirst wd Lost snnnbers are of opposite sign. The only way two
snnbers can be tinirely close 1o cach other and of oppostite sign is if they
are intinitesimal. Therefore i s dinitesimal, But f and = ave standaud.
Foonr standard, oD rie oy < rndard munber which is infintesimat -

oo Theretores s o staneiond rend coan of Foand the program rerminaies

Sunpose [0 Ll anver vl Y s There exises some standard 0o

fi‘,J':"'::i close 1o N o

iy

so again, we have f(z) infinitesimal, which implies that = must be a staudard

root of f, and the program terminates with X = =,

-

PIRUNE Py VRPN

R

(.

Appendix A

Notation

In this Appendix we list some notations that we've used in the preceding
chapters.

e re X means “r is an element of (set) X.” X C Y means “.X is a
subset of Y.

(xy....,2,) is the finite sequence with entries ry,.... 2, (in that or-
der). (} is the unique sequence of length 0, or the empty sequence.

e o0 < 7 means the sequence 7 extends the sequence ¢ to the right.

¢ o7 stands for the concatenation of the sequences o and 7.

lr] is the absolute value of o,

f:D — R means “f is a function from D into R.”

e #| means “t is defined”. #7 means t is undefined.” s >~ t mean s ix
defined Hf ¢ is. and if s and # are defined. they are equal™.”

e YV'r. o wmeans “for all standard r. o holds.” 3%r. o0 means “there
exists standard o such that o holdw.”

49

Bibliography

[1] A.Hurd and P.A. Loeb (1985). Introduction to Nonstandard Real Anal-
ysis. Academic Press, New York.

[2] E. Nelson (1977). Internal Set Theory. Bull. Amer. Math. Soc. 83.

DISTRIBUTION LIST

adcres ses

Donald M, Elefante
RADC/COTC

RADC/DOVL
GRIFFISS AFB NY 13441

RADC/DAP
SGRIFFISS AFB NY 13441

ADMINISTRATOR

DEF TECH INF CTR

ATTN: DOTIC-DDA

CAMERCN STA RG 5
ALEXANDRIA VA ?22304-6145

RADC/COTH
8LDG 3, RCOM 14
GRIFFISS AFB NY 1346641-5700

Director

DYAAC (At en: RED

3200 S. Second St.

St Louis MO A311R-3399

AFCSA/SAM]

Attn: Miss Gritfin
13%43 2entagon

Wash DC 2C33N-5425

nr 1

Number
of copies

~d

12

seoncgfiigryet.

R . N

HQ USAF/SCTT
Pentagon
Wash 0C 2C330-5190

SAF/AQSC
Pentagon 40-267
wash dC 2C330-1000

DIRECTOR

DMAHTC

ATTN: SODSIM

Wash DC 20315-0030

Director, Info Systenms
OASO (C3I)

Rm 3E187

Pentagn

Wash 0C 20301-3040

Fleet Analysis Center

Attn: GIDEP Operations Center
Code 30G1 (tE. Richards)

Corona Ca 9172C

HQ AFSC/DLAE
ANDREWS AF8 DC 2N334-5000

HQ AFSC/XRT
Andrews AFB ™D 20334-5000

H@ AFSC/XRK
ANDREWS AFB PD 20334-520

DL-2

~——— ————— -

e~ ——————— — -

HQ SAC/NRI
CFFUTT AFB NE 68113-5001

HQ SAC/SCPT
NF FUTT AFB NE 63113-5009

HQ ESD/D00A
Attn: Fred Laduiy
San Antonio TX 78243-50)1N

PTESA/RQEE

AT TN: LARRY G.FMCMANUS
2501 YALE STREET SE
Arrport Plaza, Suite 102
ALBUAUERGUF NM 387126

HQ TAC/ORILY

Attn: Mr., Westerman
Largley AF3 VA 23665-5101

g HG TAC/DCA
LANGLEY AF3 VA 23665-5)01

HG TAC/DRCC
L LANGLEY AF3 VA 23665-50C1

H3 TAC/DRCA
LANGLEY AF3 VA 23565-5301

DL-3

HQ AFOTEC (0OAWD) 1
Attn: Capt. Novack)
KIRTLAND AFB NM 87117-7001

ASD/ ENEMS ?
Wright-Pat terson AF3 OH 45433-46503

ASD-AFALC/AXP 1
WRIGHT-PATTERSON AFB OH 45433

ASD/AFALC/AXAE 1
Attn: W, H. Dungey
Wwriight-Patterson AF® OH 45433-6533

ASD/ENAMY 1
Wright-Patterson AFB OH 45433-6503

ASD/ENAMA 1
Wrygnt-ravteregn AFB OH 45433

AFIT/LOEE 1

BUILOING 640, AREA B
WRIGHT-PATTERSON AFB OH 45433-6583

AFWAL/MLPO
Attn: G. H. Griffith
Wright-Patterson AF8 ON 45433-6533

nr.-4

e ud

————T———

I oy S D
AFWAL/YLPO
ARIGHT-PATTERSON AF3 OM 4543 3-6533
AFWAL/MWLTE
WRIGHT~PATTERSON AFS CH 45433
AFWALSTIES/SULRVIAC
WRIGHT-PATTERSCN AF3 04 45433
AAMRL/HE
ARIGHT-2ATTERSON AFB CH 45433-6573
Arr Force Hymar Kesources Laboratory
Techrical Documents fenter
AFHRL/LRS-TOC
Wrijht-Patterson AF3 OH 45433
2750 ARW/SSLT
Blig ZA2
Post 11§
Wright-Patterson AF3 0OH 454433
AFHRL/OTS
WILLIAMS AFB AZ 85240-6457
.

1TR843EIG/ECIEM
HICKAM AFB HI 94854

DL-5

-~ —

v

AUL/LSE
VAXWELL AFR AL 36112-5564

HQ AFSPACECOM/XPYS
ATTN: DJR”, WILLIAM R, ~ATOYSH
PETERSON AFB €O ®0914-50M

3280TY5/791SS
Attn: TSgt Kirk
Lackland AFQ TX 78736

HQ@ Air Training Comman
TT01
kandoloh AFS TX 78(50=-5901

5 HQ ATC/T TOX
! Rardoleoh AFB TX 7383157-5711

? vefense Communications Erjineering Ctr
9 Technical titrary

1850 aiohie Ayenue

Restcn VA 2209NM=-551()

COVMAND CONTPOL AND COMMUNTCATIONS Oy
DEVELOPMENT CEMNTER

MARINE CCRPS DEVFLOPNMENT s ERUCATION COMMAND
AT TN: CODE DICA

QUANTICO VA ?22134-598n

AFL™C/LSY
ATTN: CH, SYS eMNGR NIV
GUNTER AFS AL 26114

Nr.-A

TP

y.S. Army Strategic Defense
Attn: DASO=H-MPL

P.N. Box 1500

Huntsvil le AL 35807-3301

COMMANDING OFFICER

NAVAL AVIONICS CENTER
LIBRARY =~ D/765
INDIANAPOLIS IN 46216-2189

COMMANDING OFFICER

Command

NAVAL TRAINING SYSTEMS CENTER

TECHNICAL INFORMATION CENTER

BUILDING 2068
ORLANDO FL 3?813-71)0

COMMANDER
NAVAL OCEAN SYSTEMS CENTER

ATTN: TECHNICAL LIBFARY, CODE 96428

SAN DIEGC CA §2152-5000

COMMANDER (CODE 3433)
ATTN: TECHNICAL LIBRARY
NAVAL WEAPONS CENTER

CHINA LAKE, CALIFORNIA 93555-6001

SUPERINTENDENT (CODE 1424)
NAVLA POST GRADUATE SCHOOL
MONTEREY CA §3943-5300

COMMANDING OFFICER

NAVAL RESEARCH LABORATORY
AT TN: CODE 2627
WASHINGTON DC 20375-5000

SPACE 8 NAVAL WARFARE SYSTEMS COMMAND

PmMy 153-30P
ATTN: R. SAVARESE
WASHINGTON DC 20363-5100

DL-7

e .

hamn s e 2 Yaens g

CDR» U.S. ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CENTER
ATTN: AWSMI-RC~-CS-R (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5241

Advisory Group on Electron Devices
Hammond John/Technical Info Coordinator
201 Varick Streets, Suite 1140

New York NY 10014

UNIVERSITY OF CALIFCRNIA/LOS ALAMOS
NATIONAL LABCRATORY

ATTN: DAN BACA/REPORT LIBRARIAN
P.0. BOX 1563, MS5-P364

LOS ALAMCS NM 87545

RAND CORPORATICN THE/LIBRARY
HELFER DOQRIS S/HEAD TECH SVCS
P.0. BOX 213%

SANTA MONICA CA 90406-2138

AEDC LIBRARY (TECH REPORTS FILE)
MS-100
ARNOLD AFS TN 37389-9998

USAG
At tn: ASH-PCA-CRT
Ft Huachuca AZ 85613-6000

DOT LIBRARY/I10A SECTICN
ATTN: M693,2

8OO INDEPENDENCE AVE. S.W.
WASH DC 20591

1839 EIG/EIET (KENNETH W. IRBY) .
KEESLER AF3 MS 39574-6348%

DL-8

VYT

JaR R 2 N g

JTYFPNMO

Attn: Technical Director
1570 Flanning Research Drive
MmclLean VA 22162

AW3 TECHNICAL LIBRARY
FLG GG
SCOTT AFB 1L 62225-545%

HQ ESC/CwPP
San Artonio TX 78243-5000

AFESC/ESRI
SAN ANTONIO TX 782643-500C

LBS FIG/FIFR (DMO)
ARIFFISS AFR NY 13641-4343

ESD/XRS
ATTN: ADV SYS OF
9

v
HANSCOM AFB A 21731-500)1

FSO/ICP
HANSCO™ AFR A 21731-570"

FSN/XRSE
BLDG 1704
HANSCOM AFS ™A 01731-5700

HR ESD SYS-2
HANSCOM AFA8 A 01731-500°C

DL-9

]

—— —

——r——— - ——

— o — P——— ~y— ~— . ————

ESD/TCOD-?
ATTN: CAPTAIN J. MEYER
HANSCOM AFB ™A 01731-5000

The Software Engineering Institute
Attn: Major Dan Burton, USAF

580 South Aiken Avenue

Pittsburgh PA 15232-1502

DIRECTOR

NSA/CSS

ATTN: TS13/7T0L (DAVID MARJARUM)
FORT GEORGE G MEADE MD 20755-6030

DIRECTOR

NSA/CSS

ATTN: W166

FORT GEORGE G MEADE ¥Dp 2(C755-6020

DIRECTOR

NSA/CSS

ATTN: R-8316 (MR, ALLEY)

FORT GEORGE G MEADE ¥D 20755-6030

DIRECTOR

NSA/CSS

ATTN: R24

FORT GEORGE G FMEADE ¥D 20755-6010

DIRECTOR

NSA/CSS

ATTN: R21

9800 SAVAGE ROAD

FORT GEORGE G “EASDE MD 20755-6000

DIRECTOR

NSA/CSS

ATTN: DEFSMAC (JAMES E. HILLMAN)
FORT GEORGE G MEADE »D 20755-6000

DL-10

DIRECTAR
NMSA/CSS
AT TN:
FORT

R 31
GEORGE

NIREFCTOR
NSA/CSS
ATTN: RS
FORT GFORGE

PIRECTOR
NSA/CSS

AT TN R?
FORT GEODORGEF

PIRECTOR
NSA/CSS

AT TN RS
FORT GEODRGF

FIPECTOR
NSA/ LSS

AT TN: SN31
FORT GFORGE

YTRECTOR
NSA/ESS

AT TN: $21
FORT GFIRCGE

NIRECTOR
*SA/(CSS
AT TN
FORT

v3io?
GENFGE

NIRECTAR
NSA/7SS

AT TN wn?
FORT GEORGE

D

]

G

G MFADE MD 20755-4070

MEADE

NEADE

VEADE

VYEADE

VEADE

MVEADE

VEADE

VO

D

¥ D

¥ D

vD

v

vp

21755-6M31

21755-6030

27755-6230

20755=401"

2N755-6mN

22755-6")C

20755-5710

DL-11

TR

PPN . S

DIRECTOR

NSA/CSS

ATTN: w3

FORT GEORGE G ¥EADE ¥D 27755-6010

DIRECTOR

NSA/CSS

ATTN: RS23

FOR™ GEORGF G YEADE ¥D 20755-60900

DIRECTOR

NSA/CSS

ATTN: RS3 (JOHN C, DAVIS)

9830 SAVAGE ROAD

FORT GEORGE 6 NEADE ¥p 20755-60)0

DoD COMPUTER SECURITY CENTFR
ATTN: C4/TIC

9810 SAVAGE ROAD

FORT GEORGE G MEADE ¥p 20755-6000

Odyssey Research Associates
310A Harris E. Dates Drive
Ithacar, NY 1485(0-131"

SDIO/S~-3m

ATTN: Lt Cot Sowa

The Pentagon

Washinjton, bC 20301-710n0

S0I0/S-8W

ATTN: Capt Hart

The Pentagon

washington, NC 2C3N1-713n

SDIO/S-BW™

ATTN: Cdr Newton

The Pentagon

Wahsinjyton, 0C 20301-7139

DL-12

S0I0/5-93¥N

ATTN: Lt Cot Rindt

Tne Pentagan

wasninqton, DC 2C3M1-71CC

SDIO Library
I0A 18J1 N, “eauregara Street
Alexandrra, vaA 22311

SAF/LGSD

AT TN: Lt Col Bben Greenway
The Pentagon

Washinjyton, DC 2C330

AfFSC/CY-D
ATTIN: Lt Col Flyrn
Andrews AF8, MD 203%334-509))

HQ SO/XR

ATTN: Tol Heymach

PL.N. Hox 9794(0

Worl~way Postal fenter

Los 2n3yeles, (4 90176=-294(0

SD/CN

ATTN: Tol Wilkenson

P.0. Box 92940

“o0rl w3y Postal (Center
Lo3 Angeles (A 90309-2960

SD/CN]

ATTN: Col Hohman

PL% zox ¥?9A0

Jortiuay Postal Center

Los Ingeles, CA §3336-2%540

SOD/CNIS

AT TN: Lt Col Pennel t

P.0. Box 2960

wortdway Postal Center

Los Angeles, LA 90006-294D

DL-13

%

SD/CNW

P.0, Box 2960

Worldway Postal Center

Los Angeles, CA 90006-2950

SD/CWX

P.0. Box 2960

worldway Postal Center

tLos Angeles, CA $50005-2940

SD/CNB

P.0. Box 2960

Worldwdy Postal Center

Los Angetes, CA SDN0DS-2940

ESD/AT
ATTN: Col 2a3ul
Hanscom AFA, MA C1731-5000

ESD/ATS
ATTN: Lt Col Olaenbery
Hanscom AfR, WA N1731-501N)

ESOD/ATN
ATTN: Lt Col (et
Hanscom AfF3, MA NN1731-50"D

AFSTC/XLX
ATTN: Lt Lol Detyucc
Kirtland AFR, AN 27117

USA SCC/CASD-H-S§”2
ATTN: Larry Tudbons
P.Ns Box 1508
Huntsvil Lle, AL 35807

DL-14

ANSER Corg
Sutte /)N

Crystal Cateway 3
1215 Jefterson Cavis Highuay
Arlington, vA ?22(?

IDA

ATTN: Albert Perroalla
1871 N, Beauregard Stroeet
Alexardria, YA 22311

AFOTEC/ XPP
ATTN: Capt wrotel
Kirrtlaru AFd, NM £7117

AF Space Command/XPXIS
Peterson A3, €O RAN914-50111

Nirector NSA

ATTN: fenrge Hoover, V43

%30 Savage Road

Ft Jeorge 5, *eade, ¥p 20785-6730

At 2

-l

MISSION
of
Rome Air Development Center
RADC plans and executes neseanch, development, test
and selected acquisition programs in suppont o4
Command, Controf, Communications and Intelligence

+C3T) activities. Technical and engineening

dupport within aneas of competence <& provided to S
ESD Program Offices (POs) and othen ESD efements

to pengjonm effective acquisition of C31 systems.

The areas of technical competence include
communications, command and control, battle

management, Linformation processing, surveillance
densons, intelfigence data collection and handling,
sclid state sciences, electromagnetics, and
propagation, and efectronic, maintainability,

and compatibility.

A oA SCAF S S SLAF LA S A A IS S X RSAF)

