
AD-AI99 425 AAHA M A Ti~iHEORY O C;F AS NPO C COMPTATI?"I(Ut 11,
~ A OCA U INAAN DUTHRNr

uf4CLUSSIFIED 87-261 F36662---06 F/G 12/2 HL

11111_L IIJ 2~ 8 ~I

.2

1111.25 II .

M ~ ~ C NL)F E

q AD-A 199 425LIiFLECp

RADC-TR-67-261
V"~ Teebmis no""u

A MATHEMATICAL THEORY OF
ASYMPTOTIC COMPUTATION

Odyssey Reerch assnciateas

Spono~red by
Wao Defmm W~f OMfle

DTIc
~ELECTE

'~AU 3198 U

sheeNr EW !go ~splrms w mome"s oprieeg be @Mde poisles, le
espresed orft sie, ft Skabog DeselEe fle WkwMorfbeU.S. evsuinee

ROkMl AIR DkEELOPM9 CENTER
Gra i A1r ForceW =Sm. NY 13441 -6700

This report haa been reviewed by the RADC Public Affairs Office (PA) and
Is releasable-to the National Technical Information Service (NTIS). At NTIS
It will be releasable to the general public, Including foreign nations.

RADC-TR-87-261 has been reviewed and in approved for publication.

APPROVED: " 4

DONALD M. ELEFAhNTE
Project Engineer

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE CCOMADER:

JAMES W. HYDE, III.
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

A MATHEMATICAL THEORY OF ASYMPTOTIC COMPUTATION

David Sutherland

Contractor: Odyssey Research Associates
Contract Number: F30602-86-C-0116
Effective Date of Contract: 1 May 86
Contract Expiration Date: 30 Apr 89
Short Title of Work: Formal Verification of SDI

Mathematical Software
Period of Work Covered: May 86 - Oct 87

Principal Investigator: David Sutherland
Phone: (607) 277-2020

Project Engineer: Donald M. Elefante
Phone: (315) 330-3241

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was
monitored by Donald M. Elefante (COTC), Griffiss AFB
NY, 13441-5700, under Contract F30602-86-C-0116.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE oPNood

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NIA
2,. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A
2b. DECLASStFICATION/OOWNGRADiNG SCHEDULE unprmved.
N/A unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-87-261

6,. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7*. NAME OF MONITORING ORGANIZATION
(If applicable)

Odyssey Research Associates O Rome Air Development Center (COTC)

kc. ADDRESS (City, State, and ZIPCod.) 7b. ADDRESS (City, State, and ZIP Code)

301A Harris B. Dates Drive Griffiss AFB NY 13441-5700
Ithaca NY 14850-1313

Ba. NAME OF FUNDING iSPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defense (If applicable)

Initiative Office eS-BM F30602-86-C-0116

1k. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Office of the Secretary of Defense PROGRAM PROJECT TASK WORK UNIT
IJash DC 20301-7100 ELEMENT NO NO. NO ACCESSION NO.

63223C B413 03 03

11 TITLE (Include Security Classification)

A MATHEMATICAL THEORY OF ASYMPTOTIC COMPUTATION

12 PERSONAL AUTHOR(S)
David Sutherland

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year,MonthDa,) 15. PAGE COUNT
Final FROM May 86 TO Oct 87 December 1987 80

16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identfly by block number)
FIELD GROUP SUB-GROUP Formal Verification Verification of Mathematical

12 02 Verification Programs
Verification Over The Reals (See Reverse)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
One of the major problems encountered in trying to formally verify the correctness of
computer programs that use real arithmetic (hereinafter referred to as "mathematical
programs") is that the mathematical properties of real arithmetic operations in computers
are much more complicated and much harder to work with than the mathematical properties
of the corresponding ideal mathematical operations. This occurs because the real number
type implemented on a finite computer is not the same as the ideal, mathematical real number

type. A finite machine can only represent finitely many different real numbers, whereasthere are infinitely many ideal real numbers.
The idea behind the theory of asymptotic computing is to develop techniques to prove that

the accuracy of a mathematical program goes to infinity (e.g., larger and larger numbers
14 of representation bits for mantissas and exponents used in binary floating point arithmetic).

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT
21 ABSTRACT SECURITY CLASSIFICATION

;rd
E'BUNCLASSIFIED/ UNL|MITIEO C3 SAME AS RPT ,[I OTIC USERS UNCLASSFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (ilude Area Code) 22c. OFFICE SYMBOL
Donald M. Elefante (315) 330-3241 RADC (COTC)

DO Form 1473, VI N 36 Previous editions are obsolete HECUZY CLAe lTIION 0'Ti5 PAGEUNCLAS IFtED

UNCLASSIFIED

The theory of asymptotic computing, then, is essentially a general formalization of
the notions of "accuracy' and 'accuracy going to infinity"' but without having to
show how fast convergence happens (a major source of difficulty in numerical analysis).

18. SUBJECT TERMS (Continued)

Formal Verification Theory
Reals Verification
Software Verification

LNCLASSIFIEE

Accession For

NTIS GRA&I
DTIC TA B
Unannuounced [

Justi1ficat ion_

By_

Contents Distrlbution/
Avai1nbillty Codes

Avan and/or-
Dist specl

I Introduction 6 __,.

2 A Mathematical Theory of Asymptotic Computation 4

2.1 A Motiva ting Fxamiiiple 4

2.2 Giieraniizd As y totic Coiilputatioi 15

2.2.1 Prograiii s. 15

2.2.2 Semantics 20

2.2.3 Asymptotic Specifications 24

2.2.4 Asymptotic Axioins 30

3 Nonstandard Formulation of the Theory 33

3.1 Nonist a ndiard Mathem .a tics..... 33

3.2 Axioniatizing Nonstandard latheniatiCs 37

3.3 Nonstanidarl Foymulation of the Theory 39

•4 A Sample Verification 43

Appendix A

Notation 49

Bibliography 50

ii

Chapter 1

Introduction

\'c wiil to f riallv vorify thi,, 'rrer tness of computer programs that use
rea1 a ltIiIt i (I IereinIfter rt'f.rr11(I to as "inat Iematical programs"). The
0, niii tN(, \yj,. iiipl'lient'd oil a finite computer is not the same as the
ila . mini thel ati al eal I1niniberi type because a finite machine can only

tq)res,01t tinitely zIianry differczlt r-al numznb"rs. whereas there are infinitely

()mw (,f the major problemns encountered in trying to verify mathematical
(,i)Lra1s is that the imiatliemmatical properties of real arithmetic operations

ill oil'ult crs are imlilch lmoe ii,'oliplicated and much harder to work with
han t i, alti hi t ira 1)ropcrt its of the corresponding ideal mathematical
It'1i(t ,,ni>. 1(Fr examp)le. ideal real addition is associative: floating point

real atldit i ,i is ht.flow can we', liamlle this difficulty?

Vil)1 \%-;I% '1;1T (1i11t tt 111111 d is to "-pretend" that the machine reals
;,rt, ih,. -; as the j(tal reals. Strictly z leaking. this is not true. However.
this is wlt is. dne for pro-ra ins which use integer arithmetic. WVhy is it
0E, for it t't.r 1ii Ill. If w, verify a stateineilt about an integer program
lik. " ;1 amiN iipit ?. tle 111<t ',r1;m will terminate and return 72"' based on
the :isstlii 1)tion tlat the mliaclinie' integers are the same as the ideal integers.
we, will actially have (stal)lishcd that on any inpmt n that is representable
ill the iiachline th,' l)ro.rami is ruliniig foi. the program will either cause an

overflow or wll termine I ~ i t t I- -t li I ~ l)('Ci I Is jutc 'el ;1ant11 Jiet I C

in finite machines is ident ical to ideal inlteger(anl'i Ii all' ICfh C70V 7-1. u U;lo t(0 c.

not occur. Unfortunately. the saine is u(t t trule ()f uiao-hine1 real ar-itlinet iC.

Machine real arithmietic can also (leviate fromn joea 1 alit liniot ic by Ulierfl iw

or roundoff. Thus, if wve veiIfy a statemient lke '-oil alliv input xr 0. thec

programn will terminate and ret urn 1/x- b~asedl oil thle assunuipt ion that
the machine reals are the sameo as tHie idleal reals. w\e will actually hiave

establishe d that on any In put x t 1 at is represent able inl themhie t lie
program is running on, the progri will terminate and return 1 /x If no(

overflow, underfiow or rouridloff occurs. Since rouno-loff occur,- inucI inoire

frequently in real arithmetic than overflow o)ccurs in integer arithmnetic, We
have established a much weaker statement. InI fact. the statement we hiave
actually established is so weak that it is useless. Thuis. , whatev-er axiomAS
we assume about machine real numbers. our assulnttlolls niust recognlIte/
at least some of the differences bet weel i nuacliline reals anld Ideal reals.

We could formulate a collection (If axiolis wich-1 are satis;fiedl by all iin1ple-
rnentations of real niumbers onl finite mnacines. or ait least all inliplellen)-
tations in a certain general cla.s, like niachinies that uise binary floatinig
point arithmetic. Such anl axiouii system wouldI hiave to incorporate sonic
unspecified constants (e.g. tHie iilinbl.r (If bits of iuiantisa anid exp)onenlt

in the case of binary floating point aritliiet ic) inl order to b~e valid on mia-
chines of various sizes. One could thien verify properties like "on anly inlit

x representable on the machine. thle programi will terminate andl returni thie
square root of x correct to t dlecimial places" where f would he some expres-
sion involving the un~specified coinstaiits. Having (It Inc suchi a veriticationl.

given a machine, we could deteriine the valhues of tHie constants fur that
particular machine, and get a lower bounid on thei(niiibeir of dec-imial places
of accuracy (by plugginig thel(values, (If the constanits into t and~ evaluatinig
it). This is the kind of verificatli one(woulol really lukc to do(. but It is

very difficult. The (lificuiltv coiiies]Iri 1arIlly froil tiit, fact that onel(mulst

per-form complicated numiierical analyses tol get suchi a hard-(boundi(onl thle

number of (leo-inial places of awccuracy\.

What we have attemiptedl to) do, withi the Theo(ry of As,-yiiuptot ic Comnputa -

tion is to "~factor out'* thie iar 1(1iii in eric;iI (let ail.". Let's, ret urn for a miomient
to the case oif stating axioms- inl tcills, (f un1specified con.st;a uts a boult t lie

lml~lli iwc ilir;wIv. \Xt'd like it to I, the';>w thiat if we pidmA, Ill xallues of

(ot l)IlltlVtoa t jIngt po it ar Iit Ilit I(' I l i 1al1e o f t Ie t (rI I I t goe's t o C.Ili

otl words.; rlili]i~I Jo' jproluyrnin iiim~ 811(1 ii accurat e liiachiiiies

?21ve hetter anid be(tter accutracy' ii thle result comipuited lI~v the progrila.

'-lit, Iea of thle thleory oif ;Is\ ilpt')te eolil)ti (111 is to develop teclli(ue5

to piove thatoi th~e aeclraev of ilho' pr (gralin poes to I as t he accuxlacv of

thill(lI~~i, ll ia('Iiilie i?,O It> to without liav'iiig to show how fa.qt thlis

c'oii\('rg4'iiv'(hlahpiwe11. w\hicOhi I'l ('w 1lO()t (of tile ilies iiiiiiierical ailal\'5is

t111'oI If :..>silpo Ic '(:Ill)1tio *111 1> S5Ciltially it IT(elO'lil forilializatilo

.f ti1(' 1l(0ti~l' 011 f 1) il('tii8('IiV at ifaera\ 'ourig to ~

]1i1 T1h1u I, x T I~ 11 Y If A-\vy iI tot I(e (oIi pu)t ait lu. Iii>

h - I' II .Il , .

0 the ltiiiof lit \'li~t I! iiiIIlil for at proTrill to satisfv a eertalIn

l11 3'ijr' %\,' it f(IIuaI~tjoll (I,' t11' 'Ihem'y1 Ii Noll~titiil(ld NMatl('

ltiw11 -I I(I I(I I coliii;1o' ;11'd 111181(1(11

Chapter 2

A Mathematical Theory of
Asymptotic Computation

2.1 A Motivating Example

We will explain the Theory .y first considering, a very simple lrograin. \We
will give a semantics for Lhe program, state what it means for the lro;i;ii1
to be asymptotically correct, and prove it asymptotically correct. We will
then obtain the Theory of Asymptotic Computation as a generalization of

this example.

The program we will consider is a pro ra in to SU1 3 real lnil(.. The
3 numbers to be suninied will 1b)Q given to tle programi as the 'aluc' , ,f :3
variables, A, B and C. The ouitput will he stor,(l iII a varial)ie RESIUL I
Here is the progran1:

10 RESULT:= A + B:
20 RESULT := PESULT + C:
30 END;

WVThat do we inean ly "asby1l)ttia c,,rrctllss for this progKrami. ;and how

.4

\'i11 Wti\O jl, ii :I: \1111 1ti 1111lV((t Fiis-t of' all. in oldel to plwuvi

-\ i, fin t po IH li2 a i il (' 11111l iif th pl'jrogrami. e'it her:

1i -' ;it otlw .)t tilt' tliic(statteiieits ill the program. Nvith so mw

'-e),' *-i aldf> asinJreal nmmiibler valuies. ori

li>,t~, 16 aY4a mini caun Qi tyiyotrsme hyivin tilfIle tjilit'

w, -~taltu rt p' otiranl has passed through. where byst

a lill a iii1 wlll~ii~ id ani as:siiiielt (if someW variab~les to ioil

I'i~.~ tiillL ':. l.W1m, ;Il Oxc(hit inl has occurr or n1ot0. We~ v:ill

ti 1 'l:2tt t')inioi'jTiVtt 1liirll of the(se' piece-, (of ilifornllauioll into0
, t il.e -(l 19 1 C (d eniii\:lt'f'(ltlit'S is either a State ow aI dljtli

1 :ol:W ' 1.-1.1 fir thc oii-r2Clic(of ain (eetion. Vt

~ ~ ~ T :etj.i'eito i'11 iato state ,s. a11nd ! being thltiiuiit olf l

,cni iii ('('i'4iciiriing. The events iicclir ill thle eji'Il~l

i . ll tavLlll thi (oi'1inv'(l. WVe will Call suich a scquu'niCc': a trace of

lie 11' _n: -I' iuon oif ;ill trlaces which cold occur (Ilrilig (1.71! 11iii

ah aii li lll f t rac' al qy'.~,0(t:T?1 over ihe se(t (if ,taitt'. W

I 4' 4oea as ii e~l~t V'teil. ote that 's aIc anll in

-".ill V Fs flI 'II lily it ciiijaile, at least the sequenice' of cvcat>

'hi hlaN (,Il I U 1 fir11,'1 au-it hlini, at all hias hiappiened't. andl it is a;tl-vav

i-I tii ,It n l 'I an llC t. I.C. '1 T. '. .If 7 '- 7 thIo"u 7 7'. Set,~ of HK1
i

h;!11 lv :a, '1h, . \A iw,,l oiwrt is "11r1 called l 17r.' ,t f fiTrl' ,(plt(71.>f

an'1 ;l till. jio Silil 4ae Tfilw alleve piroiraiii? Lets first ani.wer tlli-
fii' io for th Ci(e il~ l"i~'h ili miille real 11iutuhier typie .,

Iw a' lllf- a> iliido 1; 11aJ) I 1w 1\ni c' w 'a. Y'ill dhenote at S 4ato Irv ali i

T iipl' eulii ili,_ of a statlllili iilii11llhi' alm1 a sequeile of variale binldiil;,
tri (Ihsciite tilt ;issigiiniIt if ',i'(lls A variahh(hinmdiig wvill just he a

Va vial tie la ie fol11 eyd hY a ii ;i ri and thle 'aille that t llc varial tle is- hiotini

!f a vaia!)he I(es not appear in the list, of bindings, it is not assigned a
value hy the state.

As noted above, the enipty sequence, (), is a trace. We assume that A, B
and C are defined whenever the program is started up, but their values can
bi, anything. and RESULT may or may not be defined. Also, control must
initially e at statement 10. Thus, all sequences of the form

((10. A - 0 . B --- t,,. C X 2))

(I I), A B1.I, => X1 ,C = r 2 , RESULT => tw))

will be traces, and no other sequences of length 1 will be traces. From
siateiient 10 the program must go to statement 20, with the new value of
RESULT being the sun of the old values of A and B (values of A, B, and C
Iln(Changed). In terms of traces, this means that all sequences of the form

/I!0 A , \ => x o. B => r , C =x 2').
(20. A xx, B xi, C ,r2. RESULT = xO + .l))

{(CI. A --> ., 1. -, C -r 2 , RESULT = ?),
(20. A -r4,', B z> X].C . 2.RESULT => xO + x'))

,ill !>, t ;aCe',s, and 110 ot hier sequ ences of length 2 will be traces. Similarly,
1l S(f' 1'f',5 Of the" f()l'

1. l{..\ -:> .rw, 13 --> .i 1. (C =: xr2).

') .\ U .,. 13 a- .r, . C -> .12. RESULT x r + .l)l

(3(1. A r:> .r,,. II . C x 2. RESULT r or + x, + X2))

6

(30, A =>xo, B x 1,C =>x 2 , R ES ULT => x,0 + x I + x,2))

wvill be traces, and no other sequences of length 3 will be traces. Since
the program hialts at statement 30. the set of state sequence,, will contain
no sequences of length > 3. Also, if the nmaclhine addition is ideal. no
exceptions can occur, so no trace of the ideal system wvill contain !

Now we examine whlat the traces for the prograin runin1 gonafitm-
chine could look like. First of all, what can wve reasonably assume about
the traces that wvill be truie oiny11 finite miachline* We can presumnably at
leasI, assume the followingf:e

" Control alxxvays starts at statemnt 10 with A. B and C assigined val-
ues. Formally, this mneanis that if ()is a trace, then s, must either he
of the form

or

(10. A => .r,4 .B x x1 .C x-.2. RESULT ')

N\ote t hat Nve (10 not assumel thle coniverse, thait fo ;Iall stat es .;of thIiis

form. 1, i a trace. Tisl would reqire tha;t the 'iifillit cly iiai
different states that thle progrini can st art Inl. which is ilo po1 a ssibl
oil a finite m1-achinle.

* If conitrol is aIt stat ('mucht 10. theniei 't her mli except ion wvil cc ii!. oI
th prograin will go to ;t state inI whlich coni t rol is. ait statemena 't 20
and~ the values of A. B mid C will he miuchigedl and RESULT will
be assiginedl a value. Formnally, this mneanis that if,7(' (') is a trace.
aiid C is a state of the foruml

or

(10, A >xo, B =>x 1,C .1 2 ,RESITI,T =:> w

then either e' -or (c.,' is of onie of the followinig two forijji:

(0 0, A xO, B =-x I ,C =>1 2).
(20, A x o, B => x1 C z ' - 2 R ES ULT =

((10, A => xO, B => xi. C =~x 2 , RESULT if.).

(20, A *xo, B=: XI-C .r2 , RESULT tri))

Note that we (10 not make any assump~tions about the relationiship
between xO + x, and ie'. This is because Just about ;ny relait joislil)

we might state (e.g. 1wc' - (.ro + .r1)l < for- somle smnall bil e
false on a sufficiently inaccurate iitCliie.

"The corresponding aissumiptioni for statement 20. i.e. if nio exceptionl
occurs, control goes to statement 30, the values of A. B and C (louit
change and RESULT will be assigniel some value. The formial state-

ment is the samne as the ab~ove, with -10" replacedl by "20" and "20"
by "30".

" Tf rontrol is at statement 30 or an exceptioni hasi occurred, then niotli-
ing further happens. Formally, this means that if a trace aT elid< inI
or in a state .9 of the form

(30. [some \-arlible ;issigiilnewlt)

then a is maximal. iLe. there is no trace thiat extenlds (T anid I. strnctlv,

longer. We also wanit to assume11 the coniverse. I.e. thait if 7 I's Imaximlal
then it either ends inI ! or InI aI staIte wvitdi control at stat ('Illeit 30.

The above conditions do not cnstrc that aii event svstei ii correspoi ls to
an implementation of the programn on a finite machine. They are mierely
a weakening of the conditions we wrote downi for the idea,;l nmliine wich

allow event systems c,('respoIa uig to finite imilementations. In fact, the
above conditions are met bV the ideal implementation. Since we want to

verify the program assuminig that it is running on a finite machine, we need
an additional condition which not only allows finite implementations. but
actually rule, out infinite implpmnentations. The additional condition we
will impose is that the set of all events appearing in any sequence in the
event system is finite. This will rule out the infinite implementations.

We will refer to the above conditions on event systems as the absolute
axzioms of the program. We call them "absolute" because they are assumed
to hold for all implementations of the program.

We have not yet said what it means for the program to asymptotically
compute the 3-ary addition function. Before we do. let's stop and think
about what we could possibly verify about how the program runs on an
arbitrary finite machine. On the basis of the absolute axioms. we can verify
that the program does not go iito an infinite loop, i.e. there is no infinite
sequenlce of events such that every finite Initial segment is iII the event
svtemn. (From now on we will refer to such infinite sequences of event.- as
tnfinztc paths through the evelit system). We call verify that if the program

does not terminate with an exception. it terminates with RESULT assigned
a value. and with A. B and C having the same values they did initially.
We cannot verify too much more than that about the program from the
assumptions we've made. In fact. it is easy to prove that for any values
of xo. ri. X2 and w. there is some event system T satisfying the absolute
axioms such that there is some trace in T which starts with inputs .ro..r
and .r, and terminates with output w,. Thus we can't prove anything about

how well the program computes the 3 arv addition function. The reason
for this is that ve dolt have aiN conditions oil how machine addition is
related to ideal addition.

What we want to be able to verify is that if we require that machine addition
match ideal addition more and inore closely, that we will be able to prove
that the inl)ut./oulmtpt 1ehavior of the program matchs tie 3-arv addition

function more and niore closely. III other words. we want to)e able to prove
that for any desired degree d f acciunmcv ,,f the 3 ary adlition function.
there exists a degree of accuracy ,' of 2 ary addition such that for any event

9

system T satisfying the alsolite axioiIls and d'. the injmut/olIt]l)t behlavior
of T will satisfy d.

What do we mean by a "degree of accuracy"? The intuitive idea is that
a degree of accuracy is some condition on implementations of the program
which will be met by all sufficiently accurate implementations. Some de-
grees of accuracy will correspond to the accuracy of the 2-ary addition
used by the program; we will refer to these as the asymptotic axioms of the
program, because they are assumed true of all sufficiently large implemen-
tations. Other degrees of accuracy will correspond to the accuracy of the
3-ary addition the program is attempting to compute; we will refer to these
as the asymptotic specificationse of the program, because we want to prove

them about all sufficiently accurate implcinentations. Formally, a degree of
accuracy will be a set of event syst ems.

What kind of degrees of accuracy do we want to achieve in computing 3-ary
addition? What we'd like is for every event systein T meeting the above
conditions to satisfy the following conditions:

1. We can give any input to T. i.e. VX0 . rXx 2 e R, 3 a state of the

program s such that (s) e T and , assigns A to r0 . B to .r and C to
X2.

2. If (s) f T assigns A to x0. B to r, and C to x 2. then any run of T
must eventually terminate normally with RESULT assigned to value
X0 + X1 + X2, Put more formally, there is no infinite path through
T whose first element is s. and for every maximal (7 e T whose first
element is s, the last element of a is a state in which control is at
statement 30 and RESULT is assig'ned the value ro + .rj + x,2.

Of course, the above conditions can't possibl)y be satisfied by any such T.
if only for the reason that we camnt start up a finite implementation of the
program with an arbitrary input. \\W (1o expect. however, that if we take
larger and larger machines. we will be able to al)proximate fixed inputs
with more and more accuracy.

Definition 2.1.1: for any .xi. x .. 1, h > 0 f R. ,e define the degree of

I 0i

accuracy inputs(.rox.r,.r, (S) to be the set of all event systems T such that 3
a state s such that (s) e T and ., assigns A, B and C to numbers yo. Yi and

Y2 respectively and Iy, - x, I < 6 for 1 = 0, 1,2.

In general, we won't even be able to get accurate sums of niumbers we can
input to an implementation, due to roundoff. underflow and overflow. To
figure out what we can reasonably specify about the program. we must first
consider our picture of how such a program is used.

We imagine a "caller" has some inputs xro,.rl and X2 it, wishes to submit to
the program. Ideally, the caller would like to be able to hand the program
.ro.. l and X2 and have it hand it back .ro+,Xl +2. In general. the caller will
not be able to hand the program x, x, and 'a2, but will have to hand it some
a pproxiration to these numbers, say !o, jh and Y2. such tlhat 3., such that
(s) cT and s assigns A, B and C the values yo, Ym and Y2. The program then
assumes" that yo, yi and 12 are the inputs the caller is actually interested

in. It is the -'responsibility" of the program to try and halt with an output
which is an "'approximation" to YO + yl + Y2. It is the responsibility of the
caller to supply the program with sufficiently "good" approximations to
justify the program's "'assuniption". Note that the caller's responsibility is
only to give the prograimm inputs which are sufficiently close to ,r..l and x2;
it is not required to give the program particular inputs which are sufficiently

close.

Fix r0,.ri, 2 R and f > 0. Suppose the caller would be satisfied if the

program returned it some number u' such that lw - (.O + rl + r2)1 < I r.
How close approximations to .ro0 .Il anl r2 does the caller have to supply
in order the get an 0,utput iin (-.r + -r + -r.2 - .. 0 + -?' + X2 +)? First of
all. it must at least supply apl)roximations Y/o,.yl and y2 such that 1(y0 +

yl + Y2) - (.o + xr1 + < <) -.ecause if it (lid not. the program vo l]
be "justified" in handing it back a number close to yo + yj + Y2. possibly
so close that it. would be more than from .ro + .Il + -r2. Suppose 6 is

sufficiently small that foir any Y , YU- 12 such that I, - .r, < 6 for i = 0. 1. 2.
(o + ly + Y2) - (.r0 +. l +.1 2)1 < (any 6 < _ /3 will 1do). If the caller limited

itself to inlputing approxilia t ions in which ly, -.r, < for i = 0, 1.2, would
some sufficiently accurate inmachine eiistire that the answer returned to the

11

caller is in (i- + x + x, + , + .r12 + J!'f We ronfot realy g-ve a

firm "yes" or "no" to this question becaise Nve (1to not vet have a foinnia]

definition of what "sufficiently accurate" means. The "intnitive" answer,

however, seems to be "'no'". To see why, consider the following example.
Suppose we had x0 = x, = J, = 1. s 1.5, and = .5. Suppose w(2
were running our programi oin a machine ivi which addition was allowed to

introduce an absolute error of up to some sniall number 1 > 0. and .5 + /2

was representable in the inachine. Suppose thlle caller appr)xiiiiated .rl,.r1

and X2 by .5 + /2. Since the imachine is allowed to introduce il) to

much error when perf nming an addition. it could assign RESULT to 1

in statement 10. It could then assign RESULT to a inml)ber as small as
1.5- /2 in statement 20, wlich is not in (j-'+X 1'±l+i2---..r (-+ aj --. 2 +:). We

can make the machine we're running the program on arbitrarily accurate

by making very small, but by the above argument. there will always be

some approximations in the (.x -- .. r, + ,) intervals which %\ill cause the

program to return a value nin, that s froIn the coriecl tIISNWVO.

The reason this can happen is tha the caler" can choose s ?,,. ,/ and !J2

just slightly less that 6 from tIhe -orre(sponding r's. Wh,-n it ,1oes this.

1(Yo + Yi + Y2) - (x 0 + x, + -))l is just slightly less than s. Thus, even a

small error in the two m;.cline ad(ditions can make RESULT more than F

from the exact answer.

Suppose it were actually the case that for any ij,. !/i and 112 such that [', -0

is less than or equal to 6, 1(y, + yi + Yk) - (.,, + .ri + r,)I <
5. Again we pose

the informal question: if the caller linited itself to iriputing approximations
yi in (xi - 6, xi + 6). would some sufficient ly accurate machine ensure that

the answer returned to the caller is in (.3, + -1- + r.2 - ... r0 + x+ .r2 + -)?

The "intuitive" answer 1o0w seemrs to be --yes". Supportiii g evidence for

this answer is the fact that the answer rettirned to tle caller tijll be withit

s of the number we want if we run our prograin oil a inachirre which uses
floating point arithnmetic witI a sufhicientl y large number of bits in the

mantissa and expoiient. (We prove this below.) We cain therefore define a
degree of accuracy corresponding to all event svStems large enough to meet

the above condition.

Definition 2.1.2: for every r .r, , f R and F. b > 0 we define the degree

12

of accuracy accuracy(x. Il a 1 x 2. ., to Iw the set of all event systemrs T such
that if

VYO,YI, Y2 cR[y - xj <~ for i =0,1. 2

IKYO+ Y1 + Y2) - (-Z* -+- - +r) < s]

then Vs such that (s) e T and .,signs A, B and C to numbers yo, y1 and y-2
respectively and I y - x, I for i=0. 1. 2, T must terminate and return
a value in (xO + x,1 + X2 - E, -1() + 1*1 + Xr2 + 0) (I.e. there are no infinite
paths through T which start witli s. and if a is a maximal element of T
which starts with s then the last elemient of a must be a state which assigns
RESULT a value wt such that lu, - (x + xi + .r2)1 < 0).

0

The inputs and accuracy dlegree., of accuriacy constitute the asymilptotic spec-
fications of our program.* The dnus(egrees will also be asymptotic ax-

ionis. This mlay seemi pecliar. 1bult it jus t reflects the fact that the abilit v
to approximate fixed iniput-, mior in iH ore closely on bigger andl bigger
machines is both necessary to asymplltotically' comrpute 3-arv additi on, and
someth-ing we canl assume is true.

XNhat kind of asymptotic axioms can we assumie about the machiine's 2-ary
addition? We want to assumne conditions like the accuracy requirements
above, only on 2--arv addition Ii the middle of the program's execution.

Definition 2.1.3: for aiiy (7.1 R amnd s , > 0, we define the degree of
accuracy primacc(.r'0. . . ,) to he th li >t of all event stesT such that
if VY0 . 'J such that ih, - I., I <f for' I .. + !/I-(x + x') <

1. if a or.c' T and (Is a state Ili which conit rol is at statemenvit 10
and A is assig-iied a valhie iii (x - (. I, + 0 andl B is assigned a v-alue
in (xi + x ±~). theni i> 1 a staite Ii which RESULT is assigned a
number in (a ±.r + .I,~ + .rI +

2. if a7 (c,) T anid cis a state iii which coiitrol is at statement 20 and
RESULT is, assigmned a value iii ()0 -~ ' + h I and C is assigned a

value inl (. 1 - 1. 1 -46'). thel ('i it state in which RE:LSVI_ isassignied

a niumber(ill (x +' r4 I - .1

There is a condition that ililit Odd 1(9 thle asviptotA' axioms in order for

themn to make senls(-. namely, for any fiiiite set B of asymlptotic a Xi(is there
mnust exist aii event systeini satisfyinlg the absolute a-xiolnis which satisfies

every 3 f B. If this is not true. thieni our asymi ptot ic aXiollis are too stroiig".

W~heni a set of conditions has t li pnjprt t hat any finite collection Cali he
satisfied, we will say that the set of "oiilit ionls is finitcy .satkoahle.

Prc positon 2. 1. 1: The ('ollet n of Al iote and as;iupt ot ic a xionnl for

the program is finitely satjsh:fahle.

Proof: We will show that inv degree of acurlacy is itiet hy ;Iv finlite inlaclii

which uses binary floating pinnt ait htneric wit h n 1ts Ini thle lant issa aiid

n bits in the exponent if nt is sifeeitlv are Since such miaclhines mecet

A the absolue a nuXI si. tAs 0ill o-stahlisli Ow lie yrooim.

Suppose the dhegree iii qulest ion is inputs(x .?.I -12, 2' will he machine-
representable. If we take n lIrgpi nimgh that T' is i gger t hani the absolute
values of all the xj ± &s. atid big eli itgh t ha t th liniinnii spcing bet weii

numbers whose absolute values are < 2' is < o. thl there will necessarily

be a machinle- representable real iii every (,-~x, +&~ interval becaise there
will be nmchine-representa bN nuri irs boh a hov andl below the iantevl.
and the spacing b~etweenl niacliine t' 'presc lt a dte litit uhers, is to() siia I for
the interval to be between 2 adjijaentt m achinue represet tade iiuuers.

Suppose thle degree i (guest ioni is prn accl .xi. .. r) "Fli TI hemrv is sat is-

fled vacaiorsy unless.- 2,1 -c: suippos, this i> t1w ease. If 'xe let ?t be sliff-

ficiently large that the iiiniiiiii sa-u hctwcfeti tiiaeliti representahie

numblers in the interval [, 4 I -, r I + -*- Ii 5 less uau 11 - 2(.

and Im, - .' <' o then q, + !/, will 1w iii the iuitervail L. '() the iiaelue

comolatioii ()f the s1iiii WIll he ilh ls thii- 2K. T1hus, the (difference

between the in, -hjiti suit ii a 1(t e ;1,t w] ill]) (.;)I) he ;I-o1s)t the sum1 o

the (hiffcelic '!-'Aeco thle 1/q ;11A thi- ris (each) atid thle in1axinlinn

machinie ('1101. '2, lIn)t lit, wVouls the iiailiitieroti v--, as desired.

-NowN we are readyv to state formally what we wish to meani I),, asym1Iptotic

correctness of the programn. W\e say the programn Is asynipltoticaily ('orivet

iff for every finite set .4 of asymp~totic specifications. there exists a finite set

B of asymptotic axioms such that if T is an eve-nt systeml which satisfies

the absolute axioms and is Ii e3r F B, then T is In every oI f:A

Proposition 2.1.2: Thle program is asymptotically correct.

Proof: We need only show that for any degree accuracy(xo.x1 . .t 2.E.)

thmere is a finite set of primacc degrees such that if we assumne the prog-rami
satisfies the finite set of primacc dlegrees then we call prove it satisfies the

accuracy dlegree. There is a finite set of primacc degrees which ensure that
the errors Ii statements 10 and 20 is less than (f - 36)12. The difference
bet ween the actual sumi .ro + x, + x2 and the final value of RESULT is at
most the si of time dlifferences betweeni the yj's and the xi's (each) and
the sumn of the the two computation errors ((- 36)/2 each). This ;Adds up
to at inos t E. as dlesired.

2.2 Generalized Asymptotic Computation

hii t his sect ion we (TVmmralize the example given In the last sect ion to a
ffene(ra I imiodel of asy-mpitot ic coilputa tion.

2.2.1 Programs

We wvill first g mieraliz t he not ion of a programl. W\e definle a languagean
of flow cha rt progfra iii., called SRNL for Simple Real Niumber Language.
Becfore wve (describe SR.NL. we will inake the followimif coimmimen~t: It*-- bwe

our exiperieilce that III order to write asymptotically correct pro)2ra ills to0

(to iiOlitr lm tasks. it is lie1Cessa mw that w'e be a ble to dletect eXre)t iomia I

conidition,, -such as over-flov ;111l seiyWhat the pr)gralnl doe", whli suichexceptionial CodItio11S ooCcuw. ehv accomlnu1)(lated(thIS TWr'r-Ss itv illSRNL by incorpora tin excep)tiln -hanrd ling. This I-, di-scussed further .be-lowx.

A programl conisists' o)f,

1. a finite colle'Ct ion of varia bles

2. anl assignment of types to the variab.les

3. a flowy chart

WVe allow variables Of typeIS integer (including both posi1tive"(anld nega'tIVeintegers) and real.

A flow chart, as we define it. is a certain kind of directed graph)J. wi-thjthe nod s c rr spo~ li r t p Ints of control w ithin the(pro gr1a m, a1r d thi,arrows correspondijngf to p)ossible flows of control. NN, will first de' wrlbvwhat we mean by a flow chartI i.oal (although the only lungil that willbe informal abouit the de-finition is that it will be in English rather thanfirst-order logic), and then give a formal definition. A flow chart is a hnlite,directed graph inl which some of the nodes and arrows may be labeled. Eachinlode is assigned to exactly' one of the following categories1:

e start ods(these, are the niod'.S where control call be Nh'x1e the pro-graml start,,'el tii

* halt n2ode(s (tse niode, '01.1sPoIld to liolrIlial)irI1'uiiatio

* aslgll~l(.lt i~e, these ac e hl?(dsWeeV Nvil ;(11" (- are ladnew ale-

* test Uodes itlie" 11*4' tw uJyfl' wI1ur" ront rol ;,r uicht.)III,_to I

Some categories may have no nodes in them, but there must be at least one
start node.

Arrows can be unlabeled, or they can be labeled with one of the following
labels: "true", "false" or "exception". (Unlabeled arrows correspond to un-
conditional control flows; arrows labeled with -'true" or "false" correspond
to conditional control flows; arrows labeled with "exception" correspond to
control flows associated with exception handling.)

Start nodes are unlabeled. They may have only unlabeled arrows coming
from them, and each start node must, have at least one arrow coming from
it. Start nodes can have no arrows going to them.

Halt nodes are unlabeled. They may not have any arrows coming from
them.

Each assignment node is labeled with an assignment statcment. An assign-
ment statement is a statement of the form

Z7 := t

where v is a variable of the program and t is a term whose output type is

the same as the type of v. A term is just a program variable, a constant
symbol or a function symbol applied to a collection of program variables.
We will list the constant and function symbols and their types below. An
assignment node must have at least one unlabeled arrow coming from it, and
every arrow coming from an assignment node must either be an unlabeled
arrow or must be labelod with "exception".

Each test node is labeled withi a boolean expresszon. We will define the
boolean expressions below. A test node must have at least one arrow la-
beled "true" and one arrow labeled "false" coining from it. and every arrow
coming from a test node imust be labeled.

Terms are built up from prograim1 variables and constant symbols by apply-
ing function symbols. The constant and function symbols (listed by type
signatire) that we will Ie usig are:

17

1 . c o nst a nt ss of t e i

1. constant symbols of type integer: O and 1z

2. constant symbols of type real: OR and 1

3. binary function symbols which take integers and return integers: +Z,
-Z, *Z

4. binary function symbols which take integers and return integer: +R,

-R' *R, /

Note: in actual examples, we will "cheat" in a couple of ways to make
our programs more readable. For example, technically, we need subscripts
on symbols like "1" and "+" to distinguish between integer constants and
functions and real constants and functions which are usually denoted by
the same symbol. In our examples, we will drop the subscripts, and it will
always be clear from context whether we mean the integer symbols or the
real ones. Also, we will use other symbols besides those above, e.g. other
numerals, like "2", and the unary - function. These symbols should be
regarded as abbreviations for terms written using only the symbols above,
so "2" is an abbreviation for "1+1" and "-x" is an abbreviation for "O-x"
Finally, we will use more complex terms in our assignment statements than
just the simple terms allowed by SRNL. These terms are abbreviations for
pieces of code which evaluate the complex expression one subterm at a time,
storing the intermediate results in temporary variables. The restriction to
simple terms will eventually be removed from SRNL, but for the time being
we have placed this limitation on the pr.igrams to make the semantics easier
to state. The principal difficulty in stating semantics for complex terms is
that an exception may occur in the middle of evaluating a term, which can't
happen with the simple terms we're restricting oirselves to at the moment.

Boolean expressions are built up from atomic boolean expressions by ap-
plying boolean connections. We allow all the usual boolean connectives
(e.g. A , V, -, -). Atomic boolean expressions are of the form

P(..-)

18

h ilirv lwIedli. I e svilil l Nvhich take intteger arguments Z <Z

2,1i:il1: 1p,(micait yln1)t !s x~lilli take real arglli(Iits: RI

iAg:£211.i ;,I w111'l~ i '~ A- Nill (1191) the~ sl .cripts. and Nviii 'I,('~ r

Wt~ Xwll :t Ii (1';:; lill'i1 if a Ho/w char~t, A tlow, ('Irlt i>- aiL I"

t-ip> I' FA R! . il\ LT. ASSI(, . TEST. VA, TA. FA. MA AL. I L-. Qf s2011

2. START.(HL.\1i .\SiY A ;::IIG aiTEST ;it, (i~joint -11),t, (If V xl'

: l li,11i\ ;11o V. IX t It AX PT' i-n'11.I,211 91iV i A ty' 11,1

VvI , TIA lt !'A A :1 t a t i ' Iiu orr i l VlW UAa 1>- T!, (I.'0ir

TA !!w/ I i ~- -h >tirw~rr ~ii VA -1>9

i. 1" 1 t i, l f;-:!! ASS IGN ,- EST inito tii sit-

I X 1. 1 1i 5 1 ' A I I

A if V 'tt~il 1 EST.

'a V. it' 'I o- FA i i)t hen i I(TEST.

A .A i f FA. : t h I: S TA RT.

'5.~~ '; I \Si;N V ici that IA(n. 3).

II ~a 1 ,1 n A o

2.-. .2 Soma ni,

;i.de to tihe progttiitis dehuled in t Ie(previolus Sill)-
"achl prtogramfl withi a class elf evenIt tyst ens. The

1 t I~ '1!~ \.t011.A!t th cl eam correspond to ilijiltlefltai-is of tie(

'i P.aiciitim s 4 at lus sizes. Wve will iiow hx\ a prtrn P anud
dcczl AI I4 0\t syteins vasocate(1 mith Aii. The mnembers of this

vv 111 1(a's th iTWinOe of tWh pr(n n. "Ie Oil deiiote tie(
-,)d-. r~iit ums of mjdes. arrom relations and lainl AlitlOn unig

Q, Nn. -(viwj i> ill the previous subs)ectti.

~ is. 1 '' i II >il% what a t"t- 0~A stalel)0117A

cti ill ct >oiii subset of til',- rab~ to chl jt f their

LIItlLII'. tleti, ;I 5!ate' is, a pair (a, Q' where n is a We)((awll V 1 a
RuD-bii ii i'i >iih'ect 4t the prograil variables ito tite disjoint uion~

,,f Z. It' i t;i k(': integier variables to integers and1(rea1l variai~es to

j S -,;I tlaiii' wXiiiCh is, aiSSigi(C' a vall, ' I- .~ 'Will dlrtte

til Lv.~ v .I () If t is it termn ;il 0' \Xli-e vari:ihlvs

P": dei ott' tin'- ideal value, 4 ti(~'('Till 11iier .Ij<

A 1 ;,1 %Xl I X, tI'ti mcl. tle set oft stat~c esc(l tlwe' ;1la -ve %vil'ell

IIi? ~l>As in the pni(\j"Is semm111. thwse "W~ltho. uill

tI'~~''i:I Th iatn;lsott'xioilws of P. We will first hSi'hscls I'l'titi

3;i i,1 iviicllti'1ei The conitionis NvI impose. thlen %%I' wjhll
T c I i I t,)iI Itt ttotti tally'. andi thieni give their foril I qI Ivalei Its.

I'lii ii jWIIIt(lit jolts for ant veit system Wi a titI 4 eti 1'. lie

20i

1. Nothing was assumed about the accuracy of real--valued functions.
This was because the conditions we give below are intended to de-
fine what we felt we could assume about P running on ani machine,
whether large or small. Almost any assumption a bout accuracy of
real-valued functions would be invalid on a sufficiently small machine.

2. Integer-valued functions, by contrast, were assumed to be perfectly
accurate when they did not cause an exception to be raised. We felt
this was a reasonable assumlption on both large and small machines.

3. We did not assume that there were any circumstances in which the
evaluation of a real- or integer-valued function would not raise an
exception. In other words, we allow "maximun flakiness" from the
real- and integer-valued functions. This was. again, because just
about any assumption about functions not raising exceptions would
be invalid on a sufficiently small machine.

4. Comparisons of numbers (i.e. for equality or <) were' assumed to he
accurate, and furthermore were assui'cd not to raise, txceJptioins.

5. Assignments of the form ,, := w where u' is a program variable were
assumed to be perfectly accurate. In other words, it was assumed
that error only arises from evaluating arithmetic functions, and not
from copying values of variables into other variables.

6. Other things assumed to be carried out accurately were evaluation of
boolean connectives, detection of undefined variables. flow of cointrol.
and holding constant the values of variables not assigned to.

The informal statements of the conditions ;ire as follows:

1. Initially, control is always at s(onec sta rt n,<le in thl, flow chart.

2. If control is at a start node n . control ftows al n m, s(one marow ft' ,n
a, and the values of the varial des do not hrig,,.

3. Exceptions can only o a, iat ssignlle lt i(i(les ;1ii test i1iil s.'-

21

4. An exception will occur at aii assignnent or test niode if the 1iode's
label contains a variable which is not defined.

5. An exception will not occur at an assignment node if the nodes label
is v := i, and it, is a prograin variable which is defined.

6. An exception will not occur at a test node if all variables in the node's
boolean expression are defined.

7. If control is at a node a and an exception occurs. and there are no
exception arrows coming from a, then P terminates abnormally.

8. If control is at a node a, and an exception occurs, and there are
exception arrows coming from a, then control flows along one of the
exception arrows, and the assignment of variables is unchanged.

9. If control is at an assignment node a labeled with assignment state-
ment v := t and no exception occurs, control flows along one of the
unlabeled arrows from a. ?, is assigned a value. ,nd the values of vari-
ables other than z, do not change. In addition, if t is an integer term
and no exception occurs, t, is assigned the value s(t). If t is a p)rogram
variable then v is assigned the value s(t).

10. If control is at a test node and no exception occurs, control flows
along an arrow labeled "true" if a's bool'-an expression is true. and
along an arrow labeled "false" if cv', boolean expression is fillse.

11. If control is at a h!t node. no further state transitions Call Occur. If

control is not at a halt node and P has not termit nae, I a ,:,,inally.
then further state transitions mulot occur.

We now state the formalization of the col idit ions for an ,'i,lt s\>t,, 111 t
be a model of P:

1. Va f T. ! does not occur twice consecutively in (r.

2. Vc, if (c) f T then = (o , V) for some o (START.

)2

3. V7. ck f A' andl V an ass Ig iieiit of p rograin vairiables, ifa((.I'

then all of the following an, true:

(a) a ASSIGN U TEST

(b) It is not the case thatt n c ASSIGN, L(o) = -v:= u," wher-e w' is
a programn vaiaVble. ad V assigns, at value to w.

(c) It is not the case, that oi t TEST. iiid V assigns at valuec to every
v-arialel in L(o().

4 V7, o , E N and V. V' assignmnents of program variables. if

a(.V).h(3, ') eT

thlen E A(c, . 3) a nd I' " V.

35. Var, o, 3 e A' andi I '. I' "assiguinieiits of p)ro.,r-An iAril es. if

then all of the foil nviilo an'c tru e:

(a) If ct (START then UAk o. 3) and~ 1 ' .

b) If o f: ASSIGN mid L a) = -- theni:

i. V aissnigns a value to all vra ~ ~nii nI

ill. If t is mlii mt 'gr term. "(r,. 1)

i v. I f t I 11 P a I'g ; I II I -ia11). 1I l I t

(c) If (i TEST tlicii.

i. I asign a;h to aill ai:ie oculimig in JLa).

iiiU

iiil TA(o. 1) i) Is ti'I1lFAoI)iL. is false

G. Va -F T, if the last eoiieit of a is ((1. V') theni a is nuiixiial]it T ill'
H ALT.

23

7. Va c 1', if a ib maxiinil and lihle h.zt euinct of 7 is !, tj!eo, NT

and V an assignment of program variables such that (o, V) is the

next-to-last entry of j and A3 c N such that EA(a, 3).

8. The set of all events which appear in some a e T is finite.

2.2.3 Asymptotic Specifications

In this subsection we generalize the notion of asymptotic specifications from
the previous section. As in the preCvious section, the asymptotic specifica-
tions will be a set of degrees of accuracy, but we're going to want to be
able to specify something slightly more general about our program P than
simply that it asymptotically compute a function. In general, we're going
to want to specify that. a certain relation hold between the assignment of
the variables when P starts and when it ends. We call such a relation a
specification relationI for P.

If R is the binary relation we would like to have hold between the variable
assignments at start and termination. we'd likc to require the following:

1. We can start up P with any assignment of variables.

2. If we start up P with an assignment of variables 1'. and there exists
an assignment of variables II" such that R(l" V1), then P eventually
terminates with an assignent of variables IV" (possibly € TV) such

that R(V, 11").

3. If we start up P) with an assignment of variables V and there is no
assignment of variables TI such that (l . TV). then P either Cdo.I't
terminate, or teriminates abnormallv (i.e. with an exception).

Of course, as in the 1)rvious section, we can't in general meet the above
requirements on a finite machine. What we will try t.o verify instead is that
for any degree of accuracy (of satisfying I (in the sense described above).
there exists a degr e of accuracy ' of computing the primitive function's

2-1

Of SPUN". IUCh thlat for anIY event sy-stemr T ,,atisfyin- the abul-te ax](oms
and d,. the input/output behavior of T will1 satisfy, d. The remnainder of
this subsection is devoted to deciding wvhat we want to mnean by "(legrees
of accuracy of satisfying R",. and what kinds of Rt's we wvill allow ourselves
to use in specifications. As before, a degree of accuracy is formially a set of
event systems.

Suppose that the real variables of P arc Xj-. ., X,. an(I the in N-e vai-
ables are I,_., I First of all, we can't start up P with an arbitrary
assignment of variables on a finite machine. If, however, we have a fixed
assignment of variables V7, then oii a sufficiently accurate machine wve wanit
to be able to start up P with a variable assignment V' which is "close to"
V". In order to make precise what wve mean byv "close". wve need some no-
tion of "the distance between two variable ass'ignments". If V and~ V' are
two variable assignments. we (lehule the distance betw'eenl theml (dcnot('(

byp(I 1V')) as followvs:

e If V and V7' mnake the samne variables (lefinedl and undefinied. thlen

p(V I") is the largest elcement of the set

{ V(c) - 1 "'(Oj I' is1 a varilable dlefined by both V and I }

* p(V1, 1") =1 ot ierwisel.

The first clause says that if two variable assxgllilits a.ssigin the Same Set of
variables then their (istanice apart (depends on how-,% far apart their assign1-
menits of the variables aire. The second clause;(of the (leinit i(sy ese

tia-11v that variable assigunient 5 whiich do (1no~t asin va hues to tiit' sa 11I(met

of variables are not "close to" e'ach othecr.

If V is a fivr'd1v' 'able assigil ent ;11d 6 > 0. theni onl a sIfflicienitlv curt
machine we want to be(al le to start up1 P with '111 assignlillielit of v ajl'

such thiat p(V1, V7') < 6. For eachi as.ignmiient V1 n 71(> 01 we cani t 1lent fI Ir

define a degree of accrancy (oiIsistig (If those ('vent svste('1 s wich :1n,
accurate enough to ineet th libo1tve' ct lllit ionl.

Definition 2.2.1: for any assignment of prograin vViales " and 6 > 0
we define the degree of accuracy startup(V. 6) to be the set of all event
systems T for P such that 3 an assignment of prograin variables I" such
that p(V', V) < 6.

The startup degrees are analogous to the inputs degrees of the previous
section.

Again, we imagine P being used by a caller which wants to run the prograin
with an initial assignment of variables V and have it terminate with an
assignment of variables H' such that R(V. T'). \Vhat can we reasonablv
specify about how accurately P meets R? Our answer to this question will
be complicated somewhat by the fact that there may be ?,o 11' such that
R(1, W). We will put off dealing with this complication untii later. and for
the moment we will assume that there exists 11 such that R(V). 1) \\ will
refer to such I"s as 9ood variable assignments ("good" in the sense tht
they are the variable assignments the caller would like to get dl,,>,'to I. W

will refer to the set of I "s such that 311' such that R(I '. 11) aV the do o17
of R. denoted by dom(R).

In the example, the caller had to run P on a sufficiently large nachii, ;iid
give the program an input sufficiently close to the desired input. th;t it
would get an output less than a certain error from the value ,,f the 3 arv
addition function. In the more general case we're dealing with i here. tlher,
may be a number of different good 11's, and the caller just wants P to
terminate with some assignment of variables which is close tol onc of the

good W's. Suppose the caller would be satisfied if the proirll termina te
with variable assignment IV' that is within 5 of some good IV. how g (od
an approximation I" to V' does the caller need to start ul, P with iII order
to get such a II"? We claim til caller must at leaIvt start IlI P with a
variable assignment I" such t hat:

I. -' 11 dora(R)

2. VU such that ROI". U). there exists a good 11' within (,f U

26

WVhv must these conditions be met? First of all, suppose tile caller started
up P with a V' dom(R). P "assumes" that V' is the variable assignment
the caller is actually interested in. Since there is no way it can terminate
with a U such that R(V', U), the program would be "justified" in terminat-
ing with an exception or not terminating at all. Suppose the caller started
up P with a V' e dom(R) but there is some U such that R(V', U) and there
is no good IV within E of U. The program would be justified in terminat-
ing with a variable assignment very close to U, possibly so close that it is
not within - of any good It'. Thus, the caller must pick some 6 > 0 such
that VV' such that p(V, V') < 6. the above two conditions are met, and
restrict itself to starting up with variable assignments < 6 away from V.
(We require that the two conditions hold for all V' less than or equal to 6
away from I" because otherwise there may exist V' which is just slightly less
than 6 away from iV such that slight errors in the program's arithmetic are
just enouli to allow the progran to terminate with a variable assignment
slightly more that c away from the nearest good I'. This situation was
illustrated concretely in the .Motivating Example).

What if there is no such 6? Consider the following example: suppose our
s)ecification is that if we start up the program with X1 = x we want it
to terminate with I1 0 if x < vf2 and with I, = 1 otherwise. In other
words, we want the program to tell us if x < \/2 or not. Suppose the x the
caller is interested in is actually v'r2 then the "good" I's are the ones in
which I1 = 1. No matter how small we take 6, however, there will be some
y within 6 of -F such that y < \/2. Even if we ran P on a very accurate
machine, if we gave it an input y c (v/ - , '2), the program would be
justified in terminating with 11 = 0. (In fact. for such a y, this is the right
answer).

There is another way the desired 6 can fail to exist. Suppose our specifica.-
tion is that if we start up the program with the value of X, = x and xr is a
real number which has only 0's after the decimal point, then we want the
program to terminate with I = the integer corresponding to X; otherwise.
we want P to either raise an exception or fail to terminate. In terms of
binary relations on variable assignments, we want the starting and ending
assignments of variables to satisfy R where R(", 11) iff V(XI) has only O's
after the decimal place and II'(It) is the integer corres)onding to V(X,).

27

SupposC the r the caller is interested iII is 1: t1wn the specifica t ion says P

should terminate with I = 1. No mnatter how small we take o. there will

be some y within 6 of 1 such that y does not correspond to an integer. and
so the program would be justified is terminating with an exception or not
terminating.

Ve didn't encounter this problem in the Motivating Example because 3
ary addition is a continuous, total function. so the we nleed alwavs exists.
In the first example above, we are asking P to conipute a discontinliolls
function. In the second example, we are asking P to compute a function
for which there are points T in the donain such that there are points Yi nof

in the domain arbitrarily close to .x. In topology. a set 0 which has the
property that if x c 0 then 36 > 0 such that every y within 6 of x is in 0
is called an open set; in the second example. we are asking P to compute a
function whose domain is not open.

What all this adds up to is that we caxn only expect to asyml)totically
compute functions which have o)en domains and which are contitilious oil
their domains. We must therefore restrict ourselves to specifying that P
asymptotically compute a function F only if F is continuous oil an open
domain. Ve can express this in the. more general setting of specification
relations by restricting ourselves to relations I? such that

V1" e dom(R).- > 0, 3h > 0.V1"[,l', V") <6 --+ I'c dom(ft) A

VU[T(, U) - BIIJR(1V. 1W) A p(11-1 U) < jffl]

Given that we restrict ourselves to such R's. we de'fin(, tle followvinmg (lcIve('

of accuracy:

Definition 2.2.2: for anv variab"l ;,ssignillit V '11(l -. (, > 0. we' d1eile
the degree of accuracy accuracy/;(1'. -. ,) to 1be the set of all event systelli
T for P such that if V F doi (ft) a1d

Vl"[p(171 I,") < a -1 P, '(l1,11 /')AV,'[[?(V'. U) 111'(u (V, 1 ')A

p(U. lIT) < Ell]

28

then Vc such that (c) f T and the variable assignment associated with
is V' and p(V. V') < b. if T is started up with c then it llulst eventually
terminate normally in a state c' with associated variable assignment U such
that 311[R(V. 1V) A p(U, I') <] (i.e. there is no infinite path through T
which starts with e, and any maximal 7 c T which starts with c ends with
an t' meeting the above condition).

El

We now return to the question of what we can reasonably specify about

how accurately P meets R in the case where the caller is interested in

starting up P with an input V ' dor(R). Unfortunately, we don't have

a good answer to this question at this point. We'd like it to be the case
that if we take a sufficiently accurate implementation and start it up with
a I" sufficiently close to V, that the program will terminate abnormally

(i.e. with an unhandled exception) or at least go into an infinite loop. This
specification is unfortunately too strict. Consider the following: Sup)l)ose

our specification is that if we start u1, P with X= .r $ 0 then the program

terminates with X2 = 1/x. Ill other words. P computes the reciprocal
function. Suppose the x" the caller is interested in is 0. Suppose that
this expression is being evaluated on a very accurate machine which uses
some sort of floating -point representation of reals such that for any y :q 0
representable in the machine. 1/y is between two numbers representable
in the machine. The caller could input a number very close to 0 and still
not get an exception or go into an infinite loo). In fact, one can imagine
arbitrarily accurate machines of this sort and inputs arbitrarily close to ()

which would not raise an exception or fail to terminate. Thus. even oii a
very accurate machine, the caller cannot choose a number sufficientlv clo.s,
to 0 that will cause the prograiil to indicate that the expression the call1r

is actually trying to evaluate (i.e. 1/0) is undefined.

Our "'soliitioif" to this prolblem at the present tie is to defie asvlit (Ii B

computation solely ill t ernis f what P does when :,tarted ul) with i xa N;ii-
able assignlment I" which is "near" a i V doma(R). III (ther w()(s. -

use the degrees of accuracy defined above, which only concern accurawcv of
comptation oil Is in (doi(R). Thus. with our present definition, provill
asympt(tic correct ness of a program does not tell us anything about what

29

kind of behavior we call expect if we run the programn oi larger and larger
machines with starting vaijable assiginments closer and closer to VI'dom(R).
This is not really an acceptable solution: we are still working on the prob-
lem.

The asymptotic specifications are therefore the degrees startup(VI 6) and
accuracy(V, s, 6).

2.2.4 Asymptotic Axioms

Our asymptotic axioms will be statements of the same form as the accuracyl
degrees about the execution of the program's primitive functions. We call
simplify the definition somewhat since the asymptotic axioms are just spec-
ifying that certain functions are computed accurately (rather than son
more complicated specification in trt'tms O a 1binary relatio, n o)n variabl
assignments).

Definition 2.2.3: for any assigmlnent node a with label v := F(c, r,1
and variable assignment V and f. 6 > 0. we define the degree of accuracy

pr~macc%(V, c, 6) to be the set of all event systems T such that if V assigns
a value to v1 ,...,v, and F(V(l) . V.. V(v,))j and

VV'[p(V, V') 6 --, F(V'(v1). IV'(v,))j A
IF(V'(,,,) (v)) - F('(c, V(.cj))j < d

then Va. e, c', if a- (. c') e T and f (,-, I ") and p(V, I") < 6 then e' $
and c' assigns , a value i' such that

H-F(V e) F(c, <

The asymptotic axioms a e the d(egrees startup(V, 6) and primacc0 (V, 6

(as in the Motivating Examiil)l(. th le degr(es which say w(can al)proximate

3

inputs closely are both part of the specification and something we can
assume).

Note that the primacco degrees don't merely restrict how bad roundoff error.
etc. can be; they also restrict the circumstances under which exceptions
can occur. The absolute axioms place almost no restrictions on when excep-
tions can occur. In fact, an event system may raise an exception on every
assignment statement and still satisfy the absolute axioms. If we require
that more and more asymptotic axioms are met, however, we find that the

circumstances in which an event system is allowed to raise an exception are
more and more restricted.

We need to check that the asymptotic axioms are finitely satisfiable. It i

easy to see that for any finite collection A of asymptotic axioms there exists
an event system for P which meets the absolute axioms and every axiom
in A, just by taking:

1. a sufficiently large initial segment of the integers as the machine's
integer type

2. real numbers expressible in binary floating-point notation with a suf-
ficiently large exponent and mantissa (this only one of many choices
one could make) as the machine's real number type

3. integer arithmetic is exact unless it takes us outside the integer type

(in which case raise an exception)

4. real arithmetic rounds to the nearest number in the real number type
unless it takes us above the largest positive machine-representable
number or below the largest negative machine-representable numl)er

(in which case raise anl exceptioi,).

The proof of the last statement is completely analogous to the proof of
finite satisfiability in the Motivating Example. so we omit it.

Having stated the asymlptotic sp)ecifications and axioms, we can now make
the following definiti,,n:

31

Definition 2.2.4: A program P asymptotically satz. ic. a specificatiOn
relation R iff for every finite set A of asymptotic specifications for R. there
exists a finite set of asymptotic axioms B such that for every model T of
P, if T is satisfies every axiom in B then T satisfies every specification ill
A.

32

Chapter 3

Nonstandard Formulation of
the Theory

The Theory of the previous chapter was entirely formulated in the language
of classical analysis. Iii this Chapter we give a for.aulation of the Theory
in Nonstandard Analysis.

3.1 Nonstandard Mathematics

Nonstandard analysis is an alternate approach to doing real analysis. It uses
formalizations of intuitive concepts like "infinitesimal" in place of classical
iiethods using limits (the so called - 6 approach).

When calculus was first developed by Newton and Leibniz, the proofs were
presented in terls of "infinitesimal" quantities. For instance, the derivative
of x 2 was computed by forming the difference quotient

(.r + di)2 _r .2

d.r

with dx being an infinitesimal quantity. This simplifies by simple algebra

33

to 2x + dr. Disregarding the infitesiil,1. the derivative. 2x., is obtained.
An infinitesimal was a number which \vas pOsitiVeO, but lesS than any given
positive number. On the face of it, this is inconsistent, since if dx is positive,
it must be less than itself. Attempts to make this approach rigorous failed,
and methods involving limits were developed. To compute the derivative
of x 2 using limits, instead of using a single infinitesimal dx, one examines
what happens to the quantity

(x + A.r)
2
-r

2

as smaller and smaller values of Ax are plugged in. One can show that
the A.r difference quotient can he made as close as one wants to 2x by
constraining Ax to be less than a certain size.

In the 1960's logicians developed a way to make the methods of Newton and
Leibniz rigorous, and the resulting alternate approach to analysis is called
Nonstandard Analysis. (We prefer the term "Nonstandard Mathematics".
since the methods used are applicable in other areas of mathematics be-
sides analysis, and will use this term hereinafter). The essential feature
of Nonstandard Analysis is the addition of "nonstandard elements" of the
domain of discourse which are then used to prove results about the origi-
nal, standard domain. In this way it is similar to the construction of the
complex numbers from the reals. To get the complex numbers. one simply
adds a new number denoted by 7. assumes that it obeys the axiom 12 = -1
plus the algebraic laws of the reals (e.g. conimutativity of addition), and
computes with it formally. The resulting extended number system. the
complex numbers, can then he used to obtain eaLsier proofs of results about
the reals, like the Fundamental Thor,'in of Algebra.

Let's consider what it would incaii to add (an imfihiitesiiiial to the standard
real min)ers in a purely formal wax. Let L 1w lie ftist- order language
with the following syiul)(is:

9 For each n -ary)Ireli(atc Rx H. we lhaxe am ii ary predicate syin-
bol P whose iiterlre'tatilm i. P.

3 I

* For each n-ary function f over R, we have an n-ary predicate symbol
f whose interpretation is f.

e for each real number r we have a constant symbol r whose interpre-
tation is 7-.

Let T be the set of all first--order statements in the language L which are
true. T is what is called the complete theory of R over L. Intuitively, it
contains all the first-order facts about R.

Next, we add a new symbol e to our language. This is intended to be the
name of the infinitesimal we're adding. We also add to T the axiom e > 0.
We'd like the add an axiom which says that 6 is less than any given positive
real number. If we add the axiom Vx > 0,,- < x we get an inconsistent
system, because e itself is l)ositive. We don't really want this axiom though;
what we really want to assume is that e < x for all of the standard x's,
i.e. the real numbers that we started with. We can do this in a formal way
by adding a separate axiom E < r for every standard positive r. Call the
resulting system T'.

Leni-ia 3.1.1: T' is consistent.

Proof: This follows essentially from the fact that first-order logic is a
finitary logic, i.e. every proof is a finite derivation from a finite set of
axioms. Therefore, if there's a proof of a contradiction from a set of axioms.
there must be a proof of a contradiction from some finite subset of the
axioms. Suppose T' were inconsistent. There must then be a certain finite
set TO 9 T and a finite set of positive reals ri,. . ,r, such that there is a
proof of contradiction from the axioms of To plus E > 0 l)hus the axioms
E < ri for i = 1.... ,n. Since first-order logic is sound, this means that
there is no model for this finite set of axioms. Suppose, however, that we
interl)ret the symbol E to be the real number obtained by taking the smallest
of the ri and dividing it by 2. This interpretation makes all the axioms of
the finite subset true. Therefore, no finite subset of T' is inconsistent, so
T' as a whole is not inconsistent.

35

By the comp~leteness of first -order l1(;iaiiy cols5i t tiit t luiy hias a mlodel.
Thus, there exists somec model of T'. Call thils iodcl -Al. Slince(0111 laniguage
has a constant symblol r for every r (R. miidI'IC(C eWery sl('h1 conlstanit
symbol has anl interpretation -1I(r) ill M. wve c-anl emrled RI into Ml by the
mapping r - VI(r): without loss of generality, we callijden~tify R. with its,

image in Ml and Just assumne that R. C -Al. W\e know that there is at least
one element of Al1 which is not inl R, niiaiiehv the jUte rpretation of 6 Also.

since Al1 is a model of T' we know that is a positive iumllber which is less
than every positive number ill R.. Thus, wve have added anl infinitesimal.
Also, our new numbler system MAlhas all the samne first. order Ipr(pertieIs
that R. does, because ill is a miodel of T. the complete first or(ler theory of
R. Also, every predicate and function onl R hias anl extenslin to .11. Such
extensions of one model by another tha t preserve all first - ordher properties
are called elementary exten.mons'.

The construction of a nonstand~ardh extensioni of the(reals is; actually Slightly
more complicated. The thing that inade the above (construct ion work is
that wve had an infinite collect ion of --requliremnciits- onl E that were finitely
satisfiable in the original, stanidardi reals. Ill other words, we wanltedI le's
than every standard positive real numb~er, andl(for any finite set of positiveP
real numbers there is a standard real that is less than everythling Ii the
finite set. This finite satisfiabilitv allowedl us to Show that alny finlite sbe
of the theory T' had a model. an(l was therefore conisistenit, anld so w,-,as

consistent. In fact, we could (ho the above construct ion for any collection of
requirements wNhich was finitely satisfiable. If the requirements cannot all
be satisfied inl the standard reals. as was thle case Ill thle above cons'true1, t ion1.

the -AL we get is a proper elemnit;Ary ext elsioni of R Ii whichi thecoetin
of reqjluieents 7*.q satisfiable by a sinleJ. malust aildlar 1 ili imber.

Ill the actual conist ruc t ioll of a ma i 'i'-daid;1idm ext (lisH tii of It, we (1(o tila1 bo

construction for all finit ely sat sfil1 clia > itqir'i1', af oi11CC.

Before giving) thle const ruio (n wc , sav pcc ol xvi;lt %%-(milca 1i1 vN ;I -iiii tely

stsfiable collect iou of req ii r' wl'a

Definition 3.1.1: If Y'1 a, v vaia l ie -fmuL.ar(t r! 1.
tion of requir?7rnv.q myrr x, ,, is a -,(t F of f)ruiimhais Ii ill,

L11 such that. for exvery -F. thit filo ar, I' of c a' ;11,,l .1 F'

is finitelyI sat~isfiable if for- every finite set

of formulas of F, there exists r1 ., r,~ f R such that for i = 1, . m.,
or.... r,) is true.

0

Let L and T be as before. For every finitely satisfiable collection of re-
quireiner Ls F onl variables r1 . x,, we add distinct constant symbols

._i ...- CFn to the language. We then add to T the axioms O(cF,,..., ,p,)
for every 6 c F. Call the resulting theory T'. Every finite set To g T' in-
v-olves at mnost finiitely inny F'.. , nd for each such F, there are only finitely
inny o's fromn F i the(su'bset. By the finite satisfiabilitv of the F's, we

Canl) interlpret all the newv constanxts in To in R so as to make all the axioms
of TO~ trute. Thus. T' is conistenit, and so has a model Al. As before, R can
be, considered to be a sublset of -31. .11 is an elementary extension of R. and
every collection of requirements which is finitely satisfiable in R is actually
satisfiable in .11(~e there exist elements of Al making all the formulas in
the collection true).

Wecan apply this construction to other sets besides R. In fact, we can
apply it to alny set.

3.2 Axiomatizing Nonstandard Mathemat-
ics

Noistandlard mjethod0(s cant be applied by reasoning atbout nonstandard mod-
elI,. It is desirable, however, to have anl axiomiatic system for nonstandard
mjathemiatics. Suich A systemil Is developed in [21. We have been using the
System in [21 as the bwais for our verifications. We now describe it.

Zermnelo -Fraenkel set, theory wvithi the axiom of choice (usually abbreviated

3 7

ZFC) is an axiomatic system in which all standard mathematics can be
done. The language of ZFC has only two symol)s: ; binary predicate
symbol for equality and a binary predicate symlbol F for set memblership
(i.e "- e y" means "x is an element of y-). We can therefore think of a
model of ZFC as a "universe" for standard mathematics. A nonstandard
extension of such a model should then be a -universe" for nonstandard
mathematics. In [2], an axiom system for these nonstandard universes
called IST is formulated. IST is obtained as follows: starting with a given
model M of ZFC, one constructs a nonstandard extension of -I'. Il 1l',
there is an interpretation of e which satisfies all of the axioms of ZFC. We
then add a unary predicate "st" to the language, and interpret it ill -f' as
the set of all elements in Al. Finally, we examine what useful axiomls in
the language of =, E and st hold in an arbitrary such 31'. IST consists
of all the axioms of ZFC plus the additional axioms covering nonstandard
mathematics. These additional axioms are presented in 3 scheiias. They
are:

1.

vst l, ... X,,[o , 6 1]

where 0 is an arbitrary formula with no occurrences of the predicate
st, xl ... r, includes all the free variables of 0. and 0' means o with
every quantifier Vy replaced by Vty and every quantifier 3y replaced
by 3sy. What this schema is expressing axiomatically is the filct
that Al' is an elementary exten.ion of .l. It says that if we have any
formula in the language of standard mathematics colntaining stadar
parameters, then it holds in the nonstandard universe (i.e. o holds)
iff it holds in the standard universe (i.e o' holds). This schema is
called the transfer principle. (Formulas which contain no occurrences
of the st predicate are called intcr al formulas).

2.

~VtFinie zr.Vy e z.l x 3x. V" y. 6(-r. Y

where 0 is an internal formula in which : does not occur free. Vhat

this schema is expressing is the fact that every finitely satisfiable col-

lection of requirements from the standard universe on a single va riahle

3S

r' is satisfied in the nonstandard universe. 'We think of the formutla
((x, y) as defining an infinite collection of requirements on x, indexed
by standard elements y. The left hand side of the scheina says the this
Collection is finitely satisfiable in the standard universe. i.e. for all fi-
nite sets z of standard elements, there is a single x wvhich satisfies the
re(1 uiremflents { q(a, y) Iy Ez }. The right hand side says there is a sin-
gle xr which satisfies all of the requirements {6(x .rV) I y is standard}.
The schiema states that the two are logically equivalent. This schemna
is called the principle of idcalzzatzonl.

3.

v~tx.]sty. V ~Z. [s FY F x A (()

where o is any- formula in which q does not occur free (but st can occur
in o. This axiomn essentially expresses the fact that any collection
of standard elemients that wve cam define (e-ven using nonstandard
iuetliods;) has a st- lard etesl in the nonstandard universe.
This schiema is, calledl the p-rrincpic of s tandardizato.

In [2] an important theorem is p~rovedl. namely that 1ST is conservative over
ZFC. WhIat this mieans is. that any statement in the language of ZFC (i.e.
no occurrences of *'St') wich wve caplrove in 1ST can be proved from- ZEC
alone. This tells us that the uise of nonstandard methods doesn't chang,,e
the undlerlying standard universe. Since the standard world is what wr
rca lly interested in. tis result. is esseniit l.

3.3 Nonstandard Formulation of the Theory

O ne of the mlost attractive feat ures of nonstandard mnatheinat ics is that
defiitioins beconme simipIlcr and mnore intuitive. For exa mple. the cla~ssiral

dlefinition of a Sequence of revals Jx 1 = 0. 1. .* converging to a real

num11ber xr is: VE > 0. 1V S11ci(t hat V1 > N. I.I., - .7i < F. In other word"s we
ca;n mnake the (difference b etweeni x anid thle term-s of the sequence as small

aspsible bylokinlg simffhccn t ly fiir 01 t ini lie sequence. The nonst a nda md

39

definition of convergence is that V infinite i Ir, -rI is infinitesimal. (We can
take "infinite" to mean "1/i is infinitesinal"). The nonstandard definition
has many fewer quantifiers than the standard definition. Also, it is miiore
intuitive (a'i for "large" i are "close to" r.). In fact, this is the major reason
for formulating our Theory in terms of nonstandard mathematics: all the
definitions become simpler when formulated in nonstandard terms.

In this section we give nonstandard equivalents of asymptotic satisfaction
for standard programs P and standard specifications R. The nonstan-
dard versions are actually logically equivalent to the standard ones in IST.
Because IST is conservative over ZFC, any statement in the language of
ordinary mathematics (e.g. statements about error magnitudes) which we
prove using nonstandard methods and the nonstandard definition of asymp-
totic satisfaction will be provable using standard methods and the standard
definition. In general, however, the nonstandard proofs are much more ill-
tuitive and much easier to construct and read.

For the remainder of the discussion we fix a standard program P and a
standard specification R for P.

Definition 3.3.1: If T is a model for P, T is hypcraccurate iff T satis-
fies all standard asymptotic axioms, i.e. iff WV V,e6,a[T Estartup(IV 6) A

T c primaccj(V, e, 6)]

Definition 3.3.2: If T is a model for P, T hypersatisfies R iff T satisfies all
standard asymptotic specifications for R, i.e. iff Vstl, 6, 6[T f startup(V, 6) A
T e accuracy(V. -, 6)].

In IST we have the following equivalence: P asymptotically satisfies R iff
every hyperaccurate model of P hypersatisfies R.

We will next obtain iiiorc useful characterizations of a model being hyper-
accurate and a model hypersatisfying a specification.

40

Definition 3.3.3: If r, y E R. x 'z y (read "'x is infinitely close to y") iff
1X - YI is infinitesimal. If V, V' are variable assignments, V rz- V' iff p(V. VI)

V ;z- I" iff V an I" in ake the~ samne variables defined and undefined, and
assign the same valuaes to the integler variables, and for all real variables X.
V NX) ;tV'(X).

In 1ST we have the following equivalence: a model T of P satisfies all
stnadstartup axioms iff V"I' ' 3a V'[((n, I")) ETA V' ; V]. In particular.

if T is hyperaccurate then any standard V can be approximated infinitely
rlosely by a V'' that T can start up with.

In 1ST we have the following equivalence: a model T of P satisfies all
standard accuracyF? axioms iff V Vedonii(R). a, I,", if ((Q, V')) fT and V'
V then:

1. There -are 110 infinite paths through T whose first element is (ak. V').

2. For every c maximal in T, if (7's first element is (a, V') then the last
element of (7 Is (3. [7) and IT[(V V) A TV z: U).

In particular, if T hypersatisfies [R then if we start uI) T with an infinitely
close approximation to V r doni) 1), T w'ill eventually terminate with al
variable assignmnent which is infinitely close t~o some assignment IV suich

Definition 3.3.4- A real iniher x' is finite iff there exists a standard 'I/
such that 1.1-I < .q. A ii initeger is finite iff the corresponding real is finite. A
variab~le assignment Vis finite ill every variable V assigns is assigned a finite
value (whether integeor or real1): eq~uivalently, iff 3 17' such that V V I'.

El

In IST Nve have the(follo wuint, (equivalhence: if a is an assignment node with1

41

label v := F(v,,...,vi) and F 3 "", then a model T of P satisfies all
primacc% axioms iff Va,e,e', if:

e= (a,17)

* V is finite

• V assigns values to vl,..., v, and F(V(z'1),.... (vf))j

then e' $! and e' assigns v a value w such that u, t F(;I(v1)....(c)).

For division, we have the following equivalence: If a is an assignment miode
with label a := b/c then a model T of P satisfies all standard primacc,
axioms iff Va, e, e', if:

* a'(e,e')fT

Se= (a, V)

e V is finite

e V assigns values to b and c and V(c) is not infinitesimal

then e' 5 ! and e' assigns a a value , such that it ; V(b)/I'(c).

In particular, if T is hyperaccurate then computations of operations other
than division on finite inputs introduce only infinitesimal error, and comnpu-
tations of division on finite inputs only introduce infinitesimal error when
not dividing by an infinitesimal.

By the above facts, if we want to prove that a standard program asyilptot-
ically satisfies a standard relation /. it is sufficient to let T be an arbitrary
hyperaccurate model. and prove that it hypersatisfies R?.

42

Chapter 4

A Sample Verification

In this chapter wve apply the Theory to verify (informally) the asymptotic
correctness of a program P to find roots of a standard continuous function
f : R - R. We will freely use elementary facts from nonstandard analysis
without proving them the details can be found in, e.g. [1]. In particular.
we will need to use the nonstandard definition of continuity of f in the
verification. In nonstandard analysis, a standard function is continuous if.
for every standard x, if y ; x then f(y) :, f(.).

The flow chart for the program is pictured on the next page. It has 3 real-
valued variables, A. B, X and Y. What we will verify about the program
is that it asymptotically satisfies the following condition: if it is started
up with A and B defined and A < B and f(A) < 0 < f(B) then it vill
eventually terminate with X defined and f(X) = 0. We know from the
Intermediate Value Theorem of real analysis that such a root must exist.

Let's recall what it means for a t)rogramn to meet such a specification asymp-
toticallv. It ineans that if we have fixed iumb ers x and y. and .x < YJ and
.x) < 0 < f(y). and a F > 0, then on a sufficiently large machine, if
we run the prograin witi A and B sufficiently close to .x and y,. then the

program will terminate with a value for X that is within 6 of a root of f.
We will have verified this statement if, assuming the program is started up
with A and B infinitely close to standard .x and y such that x < Y and

43

STTART

V- (A + B)/ 2

<A<X <B H A LT

Y: F(X)

A F

43a

oiv iliti-o litre it ililt enlltl I ir-or oil fillt e weles W('('ll)WOW A'0imhi lie,
plogin fcriij11111 h's with Xi dl 'hll((atii iiihiiiteiv close to at stanida ro root
z of f. (1 \Vetutlt aI1m) asn5li(hat *f is roInlimlte(I Withi nlv i~fitiiteSjillal
t'lror onl 1tlrii" elellllliis Thuis wouldt Inestimabih'ly (10110l by some other

prograni iiv1i P wouda k-h1 callhich had I ochi verifiedl to complIpte *f asylj -

tot !cally. %\c -will a'ss llip foi- simnplici ty that there is some fune ctioti f'm sati h

that th le raie o m111 ilcd value of f(.r) is f,(x Inl ienera 1 of course.

P needi iot ci tlilte theli samte valti e fOr W(') t wice ill a row. Tie p)rogram

call be veriid xithwit this, assilnption., hUt tille proof in that case(inivolves
details wvhichk wi dd~ 1),' t*)iiit eirlnc ,,I iv-, eere).

The pogmu~ti arttplinIts to hi!itia root byv the imttlil of bisnetimt. It exenttes
a loop ill whichill eA~'xhi tiroitebl. it 'locs the toilolvilb2: i! first takes
the midli iipt ,fit- (i rent 2 c'ilo-pltit, 5. 111 comfliV c(' tl'e valil1 of f thIere.

If it is T, 0-i ~prurh Malt. if it is itegative. the liiijuoiit heroilie>1 the
''new" lover ''rlipoitit anld thic loop ClltitIle1S. if it in l1iMtv. tWi llii(1ili

becoles -1ip' ,'i' lIppet etitjoiiit, alp"1 te lop il!tillueK

How do1w iih i lljk nii tPit t ll.' prot gri~teiia e' If it were1Tk ruimtti1g

oil a laclita' ".i I id al an-tlllietie. it ivolild be e1 i: clv possib~le I h'at ta'it

prograin woutld iev('t actiiltll finid at root. lbut w'ould~ julst l-t x'alies ot A
anp]l B that werie Iloect a 11(closer to a root. W~e kniow tlit ca t Itappcti oil
at finlitl' lwlct1 locx . b~caluse to doso 50xxotild I'ejliir, that A anld 13B
tliroitui'.l ;itl 1Ifilit, 1111w to ta.ti c Illl %Itl ill th cjtp't o

the ptogramtt. 'i~i w ce od l1;htpll l It a fitite hlltilte. ()It i v \ery' accilrateI

huit tittito' teIiai' K,'l th m"\Iil look v'ery' Iiici like (xci'i'tiotl il ;1Ilt

ideal iPahitl'" fol ;I xhih'. A ,till' valules of A atld 13 got x'erv c-lose to lIcit

other, hiowexv'x'. tarwv omt, iiI a julm \\'ll re thle Iista itce hetx'emt At antd

13 was 1155 t1 iWI till I loulld'Iff ('tO '1 ill collllt illl' the uaidplit (If the two.

'('0111(toid to11 I (Ill' (It ihe'' 1I -Tiiitl or posllsibly' c'l'tl t1 I uil"tt let' olutside

vaille is helt \c''o'I till' I~i l illf it i t is hlt. till' jlll'Oiti' 1 e~llit

'ill, ri lllcl w'.1 I' i'- i4~ l i II (' tkat till, pr'ogramri always, tcrmiiil'5

normally if there are no unhandled exceptions. Notice that there are no
,exception" arrows in our flow chart, so we had better be able to prove
that no unhandled exceptions occur. It's easy to show that there are no
exception due to referencing undefined variables, since we assume that A
and B are defined initially and every other variable is assigned to before
the first time it is referenced. The only other kinds of exception that
can occur are exceptions due to attempting to evaluate an expression on
arguments that are not finite, and attempting to divide by an infinitesimal.
The latter kind can't happen because the only division in the program is
division by 2, which is not infinitesimal. To show that the former sort can't
happen it would suffice to show that whenever control reachs an assignment
statement, the values of A, B and X are finite (when defined), since these
are the only variables which appear on the right hand side of an assignment
statement. We will argue something stronger, namely that whenever control
reachs an assignment statement, the values of A, B and X (when defined)
are all between the initial two values of A and B. Call these initial values a
and b respectively. We prove this statement by induction on the number of
steps the program has executed. Suppose that there is some integer n such
that after n steps, control comes to an assignment statement and one of A,
B or X is defined and not between a and b. Choose n as small as possible.
We consider each assignment statement separately, and show for each one
that control cannot be at the statement at time n.

X := (A+B)/2. The first time control reachs this statement X is undefined
tiiu A =a ana B = b. Thus, n cannot correspond to the first time control
rearhs this point. Any other time control reachs this point, it must have
been at B := X or A := X after n - 1 steps. By minimality of n, A, B and
X must all have been between a and b at step n - 1, and since at step it - 1
we are only assigning one variable the value of another, the values of the
three variables must be between a and b after executing step n - 1 and so
also before executing step n.

Y := f(X). If control is at this statement at time n then it was at X
(A + B)/2 at time n - 2. By nminimality of n, this means that A and B must
have been between a and b before executing step r? - 2, and therefore after,
since step n - 2 only assigns to X. At step it - 1 control must have been
at the test statement A < X < B. If control passed to Y := f(X) rather

45

_ _ I l II

than HALT, it must be that the value of X at time n - 1 was between the
values of A and B, and therefore between a and b. Test do not affect the
values of variables, so all threc variables would have to have been between
a and b at time 72.

A := X. If control is at this statement at time n then it must have beeni
at statement Y := f(X) at time n - 3. By minimality of n, the values of A,
B and X must have been between a and b at time n - 3, and none ,f the
statements executed at times n - 3, n - 2 and n - 1 affect the values of A.
B or X, so they must still be between a and b at time 71.

B := X. The argument here is identical to that for the previous case.

This establishes that no exception occurs in the program, so it terminates
normally. It obviously terminates with X defined, because this happens at
the first assignment statement. It is also easy to prove by induction that
at all points in the execution of P, A < B and the values of A and B are
such that the machine-computed value of f(A) is < 0 and the machin e
computed value of f(B) is < 0. This is ensured by the Y = 0 and Y -, 0
test. We emphasize that the actual values may not have the sane sign as
the machine-computed values, but we don't need them to be the same sign
to verify our program. We will now prove directly that X is infinitely close
to a root of f at termination. There are two cases, corresponding to the
two HALT statements.

If P halts after the A < X < B test, we claim it must be the casc that
A, B and X are all infinitely close to each other. Prior to the test, X v. as
assigned to (A + B)/2. The computation of this expression can introduce
infinitesimally much error, so all we really know is that after the assignment
statement,

X ;: A + B
9

Since control passes to HALT after the test. it nmst he the case that eithier
X < A or X < B. Consider the first case. Since A < B.

46

A +B

Therefore, A Vis between X Biii A i B)II/2. ind the(last two winiber- art

ininitely close. A.X anid (A + B ,'mav all infinitely close to each other.

AlIso. this Iica us that

Is ilntel siiflil. so B - A i , lnfinlt t' jinl 1 so A :tB. By v leetary lionstna i-

tIiarti anialysis. all thy' , ot' A. B :iiA, N nmo-st thero-fore he (.lose to B silhIde

-'minlardo reail mibol -. Al-t',.,-: tile c hlllih that P asylhIltotic~th

f-B)

u)I!th tll't aid Il'- ;1!"ii Of t'ttstcsio The only way twot

Ci! tt*1 l 1) 1t :ii , I "i c1 ') I T'- r t her(, "Il o11 f ()p)1 osittP sloun is if t lIV\

;il It Illi tcl iilit It l ' I. / 111 ' ll But f and -- ane stanii l~d.

t, .

t .'

so again, we have f(z) infinitesiial, which implies that z mt 1w a -t f(Iurd

root of f, and the program terminates with X -z:.

4S

Appendix A

Notation

In this Appendix we list so"ic liotations that we've used in the precedin.g

* x (7 X means ".r is an element of (set) X." X C Y means -X is a
subset of 1."

* (xI ,,) is the finite sequence with entries ,, (in that or-
der). () is the unique sequence of length 0, or the empty sequence.

* (7 -< r means the sequence 7- extends the sequence a to the right.

* a7 stands for the concatenation of the sequences or and r.

* I.- is the al)sollite value of .i*.

* f D - R minans "'f is ai functioin from D into R.'"

* t jians "t 1 defille(l", t Tiealis "t is undefined." t xiiean "', is
defilled iff t is. amI if . tn(1 t are defined. they are equal*.-

* V".. 6 miieans "for all st anmidard x. 0 holds.- 35'.. 0 mnamis "*thre

exists standard .r such th;lt o hold-,.

49

Bibliography

[I] A. Hurd and P.A. Loeb (1985). Introduction to Nonstandard Real Anal-
ysis. Academic Press, New York.

[2] E. Nelson (1977). Internal Set Theory. Bull. Amer. Math. Soc. 83.

50

DISTRIBUTION LIST

adcres s's number

of copies

Dona(d M. ELefante 7
QADC/COTC

RADC/DOVL
GRIF FISS AF8 NY 13441

RADC/DAP
2

GRIF FISS AF8 NY 13441

ADMI NIS rPATOR 12
OEF TECH INF CTR
ATTN: DTIC-DDA
CAMERCN STA RG 5
ALEXANDRIA VA 72104-6145

RADC/COTrI
I

BLDG 3v ROOM 16
GRIF FISS AFB NY 13441-57(30

Director
1)MAAC (Attn: RE)
3210 S. Second St.
St Louis MO 531IR-3399

AF CSA/SA,*I

At tn: Miss Griffin
10 i, lent 3gon
Wash DC 2C3 3n-5425

f"T 1

HQ USAF/SCTT
Pentagon
Wash DC ?C330-5190

S AF/AQSC

Pentagon 4D-267
Wash DC 2C330-1000

DIRECTOR

DMANTC
ATTN: SDSIM
Wash DC 20315-0030

Director, Info Systems
OASO (C31)
Rm 3E187
Pentagn

Wash DC 20301-3040

Fleet AnaLysis Center
Attn: GIDEP Operations Center
Code 30G1 (E. Richards)

Corona CA 9172C

HQ AFSC/DLAE
ANDREW/S AF9 DC 2n334-5000

HQ AFSC/XRT
Andrews AFB MD 20334-5000

HQ AFSCIXRK
ANDREWS AFB WD 20334-530

DL-2

H(Q SAC/NRI
OF FUT T A FS NF 681 13- 5001

111 SAC/SCPT
OF FUT T A Fe NF 681 1 3- 50 01

HQ ESD/DOOA
At tn: Fred Ladwig
San Anto,!it TX 7 243-50)O

nTFSA/RQE E
AT TN: LAIERY G.I*CMANUS
'501 YALE STREET SE
Airp~ort PjaZ3, Suite 102
AL-i4J()UFRGUF NYM 87136

HQ TAC/DR1Y

At tn: M1r. WeSterman
1.argtey AF~3 VA ?3665-5301

HG TAC/ DCA
LANGLEY AV9 VA 23665-5)(1h

HG TAC/DRCC
LA'JGLEY A~ VA 23665-5fICI

HI TACfORCA
LANGLEY AF9 VA 235 65-5301

DL-3

HQ AFOTEC (OAWO)
Attn: Capt. Novack)
KIRTLAND AFB N1 87117-7001

A SD/ENEMS
Wright-Patterson AFB OH 45453-6503

ASD-AFALC/AXP
WRIGHT-PATTERSON AF8 OH 45433

ASD/AFALC/AXAE

Attn: W. H. Dungey
Wriight-Patterson AFP OH 45433-6533

A SD/ ENA14W
Wright-Patterson AFB OH 45433-6503

ASD/ENAMA
Wrwgr, c.-flAte r on, ,AF13 OH 45433

A F IT/LDE E
BUILDING 640, AREA 8
WRIGHT-PATTERSON AF8 OH 45433-6583

AFWAL/MLPO
At tn: G. H. Griffith
Wright-PatterSon AF8 OH 45433-6533

T.-4

A FWAL/*ALPO
J R[IGHT- PAT TESON AF;3 OH 4543-6533

A FWAL/"LTE1
-4 RI CHT-P AT TERSON AFr3 014 6543 3

AFWAL! IESURVQIAC1
WR 1"HT-IAT TERSCN AvI3 OH 4,553

A AMRL/HE
4RIGHT--ATTERSON AF,3 C'4 45433-6573

Air Force Huivar IKesources Laboritory
Techricat llocuments Center
A FHRL/LRS-Toc
Wri iht-Pat terson AF43 OH 45633

P75S, AlPi/SSLT1

A kIq 2'6?
Post 1 I S
*.r ighIt-Pit ferson AF93 OH 454643

A FHRL/OTS
WILLIAO-S AFB AZ 05?40-6457

I 9 43FiEG IF
H ICK AM AF8 HT 71R5

DL-5

A UL/LSE
"!AXWELL AVR 3~L 361 12-556t,

HQ AcSPACECOm/XPyS
Ar T N: 3P. WILLIAM~ R. "ATOtUS'
PETERSONi AFB CO U0914-50n1

329OTTG/1IsSS
At tn: TSgt lei rk
Lacktand APR TX 79?36

HQ Ai r rra ining -6ommn.l
T TOI
handotoh AF!3 TX 78t5f--,ql

HO ATC/T TOK
Ra, dotph AFH TX 7 91 5r-S')-It

IUefervse COmmumi cat ion~s Erpnerer 1-1, Ct r

I S (j* a'eh j A V pnUe
R Ps t c-,V 1J ?2 Q90-5 5)

C 0* MAN D CO NT POL A - C O'A"'! 41C %T(INS I I y
D EVELO 0 'MENT CEKTFR
MARINE CORPS DEVFLOPNENT EPUCATION r 014 AN
AT TN~: CflDF flICA

Q~UkNT IC0 VA ')21 14-,fFf

A F L -r /L Sy Y
ATTN: CHO Sys NGq 'fly
GUNYTFR A rS AL 161 1 4

U.S. Army Strategic Defense Command

At tn: DASD-H-MPL
P.O. Box 1500
Huntsvil le AL 35807-3801

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY - D/765
INDIANAPOLIS IN 4621;-2189

C0MMANDING OFFICER

NAVAL TRAINING SYSTEMS CENTER
TECHNICAL INFORMATION CENTER
BUILDING 2068
ORLANDO FL 3781 3-71)0

C0MMANDER
NAVAL OCEAN SYSTEMS CENTER
ATTN: TECHNICAL LIBRARY, CODE 96429
SAN DIEGO CA 92152-5000

COMMANDER (CODE 3433)
AT TN: TECHNICAL LIBRARY
NAVAL WEAPONS CENTER
CHINA LAKE, CALIFORNIA 93555-6001

SUPERINTENDENT (CODE 1424)
NAVLA POST GRADUATE SCHOOL
MONTEREY CA ;3943-5000

COMMANDING OFFICER
NAVAL RESEARCH LABORATORY
AT TN: CODE 2627
WASHINGTON DC 20375-5000

SPACE & NAVAL WARFARE SYSTEMS COMMAND
P4W 153-0P
AT TN: R. SAVARESE

WASHINGTON DC 20363-5100

DL-7

CDRP U.S. ARPY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CENTER
ATTN: APSMI-RD-CS-R (DOCUMENTS)
REDSTONE ARSENAL AL 15898-5241

Advisory Group on Electron Devices
Hammond John/Technical Info Coordinator
201 Varick Street, Suite 1140
New York NY 10014

UNIVERSITY OF CALIFCRNIA/LOS ALAMOS
NATIONAL LABCRATORY
ATTN: DAN BACA/REPORT LIBRARIAN
P.O. BOX 1563, MS-P364
LOS ALAMOS NM 87545

RAND CORPORATION THE/LIBRARY
HELFER DORIS S/HEAD TECH SVCS
P.O. BOX 213A
SANTA MONICA CA 90406-2138

AEDC LIBRARY (TECH REPORTS FILE)
MS-100
ARNOLD AFS TN 37389-9998

U S AG
Attn: ASH-PCA-CRT
Ft Huachuca AZ 85613-6000

DOT LIBRARY/10A SECTION
ATTN: M493.2
800 INDEPENDENCE AVE. S.W.
WASH DC 20591

1839 EIG/EIET (KENNETH W. 1F3Y)
KEESLER AF9 MS 39534-6149

DL-8

J T FPMO
At tn: TechnicaL Director
1590 Ft anninq Research Drive
McLean VA ?210?

AWS TECHNICAL LIBRARY I

F L4 414
SCOTT AFB IL 6 2225-$4SR

HQ ESC/CWPP

San Artonio TX 71243-500('

AFE',C/ESRI
SAN APTONIO TX 7243-500C

485 FIG/FIFR ('MC)

rRIF FISS AFe NY 1 5441-,4S 8

FSD/XRS
ATTN: Ar)V SYS DEV

HANSCOM AF8 "A *113I-5n)"

F SD/ICP

L4ANSCOm AF . IA 111751-59r

FSF)/XRSE
HLDG 1704
HANSCOM AFR mA 01731-5100

HQ ESO SYS-?
HANSCOM AFR NA 01731-5QO

DL-9

E SD/TCD-?
ATTN: CAPTAIN J. MEYER
HANSCOM AF8 *A 01731-5030

The Software Engineering Institute

Attn: Major Dan Burton# USAF
580 South Aiken Avenue
Pittsburgh PA 15232-1502

DIRECTOR
NSA/CSS
ATTN: T513/TDL (DAVID MARJARUN)
FORT GEORGE G NEADE JvD 20755-6030

DIRECTOR
NSA/CSS
ATTN: W166
FORT GEORGE G NEADE WD 2C755-6030

DIRECTOR
NSA/CSS
ATTN: R-8316 (MR. ALLEY)
FORT GEORGE G MEADE tOD 20755-b030

DIRECTOR
NSA/CSS
ATTN: R24
FORT GEORGE G VEADE I'D 20755-6030

DIRECTOR

NSA/CSS
ATTN: R21
9800 SAVAGE ROAD
FORT GEORGE G "EASDE V.D 20755-6000

DIRECTOR
NSA/CSS
ATTN: DEFSMAC (JAMES E. HLLMAN)
FORT GEORGE G NEADF D 20755-6000

DL-1O

r) IPECTOR

S A / CS S
A TN: R31

0 RT GORGE G MrADE MO ??5 5- f.'

I IRErTOR
N S A/ CS S

F)RT 6PORGE G !EADE "0 2?7r5-69)9

. IRECTOR
N S A / CS S
AI TN: R R

FORT GE ORGE C wEADE vO 2,'175 5- 603 ,)

P IRECTOR
N S A CS

T T!4 : P9
FO RT GEORGE E EADE P'D ? 755-e13 (I

r I PEC TOR
S1S A/ CS S

AT TN: Sfq31
F0PT GC'OR C 'EADE SD 2 ' 5-60)'

; I PErTOR
NS /rss

AT TN: S71
FO T GFOIR(E W. EaD E vO r ?55-6(1_I n

r IpFrT)R

NS Al/ C SS
AT T N: Vi307

FOOT GEOFPGF (' "EADE vD 2,7i5-6l3C

) IPErT)R

N S) A/ - S S
ATTN: W07

FO T GEORGE G YEADF %D 2.755-5010

DL-11

DIRECTOR
N S A/CS S
ATTN: W3
FORT GEORGE G WEADE WD 2)755-603)

DIRECTOR
NSA/CS S
AT TN: R523
FOR: GEORGF G *EADE PD 2C755-6000

OIRECTOR

NSA/CSS
ATTN: R53 (JOHN C. DAVIS)
9830 SAVAGE ROAD
FORT GEORGE G PEADE wD 2('755-60)0

DoD COMPUTER SECURITY CENTFR
ATTN: C4/TIC
9810 SAVAGE ROAD
FORT GEORGE G PEADE mO 20755-690)0

Odyssey Research Associates
310A Harris F. Dates Drive
Ithaca, NY 14850-131'

SD IO/S- M
ATTN: Lt Cot Sowa
The cent agon
Washinlton, DC 2C301-710n

S D I o f S-B,
ATTN: Cad t Hart
The Pentagon
washington* DC 2C30l-71Jf

SDIOiS-B m,

ATTN: Cdr Newton
The Pentagon
W~hsinlton. DC 20301-71j)

DL-12

q

5 L) 10 7)- 13 ly
AT FN: Lt Cot Riridt
Tne Oentaqon

wasninqton, D C MS1-710P

SDIO Library

IDA 183j1 N. "eauregara Street
Ata xindria, V A _ 31 1

S AF/ SD
T TN: Lt Cot ben Greenway

Th- "entagon
Washington, DC 2C330

A F SCfCV-r,

A TTN: Lt Co I Flyrn

4ndrews AFR, MO ?1? 34-S3M,

HQ S IX Q
A T T : .ot (eimach

"I . X 9?9 0
W j rt w,-y Poster1 renter

Los r),Le,, CA Q] ' 9AO

SO IC N

ATTN: Cot WitKenson

rLor w i iy Postal Center
Lo -An-etes CA 9,1309-2960

AT TN: Cot Hohman
F,. '). ;-ox ;; 60

4ortlway Postak Centpr
Los lrqetes. CA gj1) -?960

SDICNIS7

At TN: Lt Cot Pennet t
P.O. Box 2060

Wortdway Postal Center

Los Angeles, CA QOO-2960

DL-13

S D/CNW

P.O. Box 2960
Worldway Postal Center
Los Angeles. CA 9009;-?960

~SD/ CWX

P.O. Box 2960
Worldway Postal Center
Los Angeles, CA 1;090;-2960

SD/CNB

P.O. Box 2960
Worldway Postal Center
Los Angetes, CA qDfQ-)950

ES D/ AT
ATTN: Cot DauL
Hanscom AFRo MA C1731-5000

ES D/ A TS
ATTN: Lt Cot O(enbery
Hanscom AFA, mA]1731-50n'

E SD/ATN
AT TN: Lt Cot LPi;
Harscom AFR. P.A r1?731-S0n

A,:STC/XLX

AT TN: Lt C. Dtcci
Kirttand AFRO, ! .r, 71 17

USA SCC/CASD-H-S9
AT TN: Larry Tub"s
P.O. 8ox 15,C
HuntsvilLe, AL 398l7

DL-14

A.NSER Corp
S u ite q 0

1215 Jefferson Davis Higjhway
A rt :ngtono dj A~ 71

8T TN: A Lb e rt P ,r reL I a
1 91 p ea u r -- a r d S t ra Pt

A e x a P r r i A ? 31 1

A FOTEC/XPP
A TTN: Cdot 'mrotek
K. i r A Fr d ~ f! . 1 17

A F S a c Compeard/Xn'XIS

l ire ctor NSA
AI TN : Ge'rqe Ho over, V4 3

F t cPory4 Y~ a a e 1 2 " 795 - 6 J

MISSION
Of

Rom Air Development Center
RAVC ptan4 and executea Aeaeth, devetopinent, te~t
and 4e.Zected acquiL6ition p4ogitan in 4ppo/4* o6

*Command, Conttot, Communication4 and Intettigence
,C31) activZite4. Technic.at and engineeti.ng
4uppott wiuthin a~ea.6 o6 competence 46 p'ioviLded to
ESV P/rog~am 066icea (P0-6) and othe4% ESD etement.
~to pe4JoAm eidective acquiaition o6 C31 .6q6tem4.
The atea6 o6 tezhnicat competence Lnctude
communication, command and contkot., battte
management, in~o~tmation p'Locee6.6ng, 46wveittance
6en60Ju4, -ntetgence data cottection and handting,
s otid .6tate 4cience.6, etecttomagnetic4, and
pt4opagation, and etecttonic, maintainabitity,
and cornpatibitty.

