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SUMMARY

The goal of this 6.1 research was to develop methods for predicting

the location of cognitively driven eye movements during a difficult visual

monitoring task. If eye movements can be accurately predicted in such

situations, then methods might eventually be developed for diagnosing and

training optimal allocation of attention during visual monitoring tasks.

This report is a brief summary of the development and evaluation of one C.

promising prediction method, two-dimensional cluster generalization

(2DCG). The data to be predicted were changes in the eye position of

observers viewing a display of four rapidly changing numbers representing k

aircraft instrument values during level flight. The monitoring task was

to detect the first number to fall outside a window of tolerable values.

Each change in eye position from one number to another was recorded,

together with the most recent value of the observed number, the amount by S

which that value had changed during observation, and the time (in

milliseconds) that the number had been observed. These variables formed

the axes of a set of two-dimensional spaces into which the data were

plotted. An algorithm was developed for partitioning these spaces into

regions that predicted a change in eye position to a particular next
II II

instrument." The resulting model correctly predicted about 75% of the

changes in eye position in the data on which it was developed and about

50% uf eye position changes in new cross-validation data. S
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I .

I. INTRODUCTION

Conceptual clustering systems, such as CLUSTER/2 (Michalski & Stepp, .
1983), RUMMAGE (Fisher, 1984), and COBWEB (Fisher, 1987), group together S

similar objects, each described by values for a fixed set of attributes,
(e.g., for soybean classification: precipitation = low, root-condition =
rotted). The degree of similarity of th2se objects is determined by an
evaluatior function which examines appropriate discrete attribute values.
Conceptual clustering systems effectively categorize the input objects
into distinct classes based on their attribute values. Input objects with S
similar attribute values are grouped into the same class.

The systems cited above all work with attributes having a small
number of discrete values. When attributes have continuous (or real)
values, clustering becomes difficult because two values which are
numerically close may be placed in two different clusters. Clustering of S

continuous data is possible by creating discrete categories from ranges of
numeric values based on the best distribution of the data. Lebowitz's
(1985) UNIMEM system handles such continuous numeric data.

In our project, a conceptual clustering system that operates on
continuous numeric attributes was implemented. The system's name, 2DCG,
stands for "two-dimensional cluster generalization." 2DCG operates in a
two-dimensional space, creating clusters from discrete ranges of values
which are determined by the data rather than given to the system. The
input data are generalized in the sense that two or more non-adjacent real
values can form a cluster if there are no intervening clusters. 2DCG is a
non-incremental learning system that operates on data about the locations
of eye movements made by human observers trying to monitor four
simultaneously displayed numbers with rapidly changing values. The system
must extract a set of rules (described below) which predict these changes
in eye position. Each change in eye position is predicted from the
information available on the instrument on which the observer is currently
fixated. (Several attempts to use the previous instruments that the 0

observer had fixated were unsuccessful because the resulting rules were
too specific.)

A rule tells the system what to do next (in this system, which
instrumnent to fixate next) based on the current data available (the
information contained at the currently viewed instrument location). These
rules are in the standard IF-THEN format. The IF part of a rule contains
tests for the instrument that is being fixated. Along with the
instrument's name, the IF part contains the value of the instrument when
it is first fixated, the change in the instrument value while it is
fixated, and the duration for which the instrument is fixated. The THEN
part of a rule contains the name of the instrument that will be fixated
next if the information in the IF part is true.

The first value displayed by an instrument that is being fiiatrd and
the size of the change in this instrument's value for the duration of the
glance (if the change is not zero) form the axes of a two-dimensional
space of predictive conditions. The conceptual clustering techniques,
which are described later, partition this space into the smallest possible



clusters with the most evidence to support each cluster. There are no
overlapping rules; if two (or more) clusters overlap, the cluster with the
most evidence remains as a cluster and eventually becomes a rule, and the
other clusters are deleted. This process guarantees that the rule base is
consistent. It is also nonredundant because only one rule remains at any
single position in the two-dimensional space. Finally, similar adjacent
clusters are combined, and then built up or "grown" so that all possible
combinations of attribute values are accounted for. This step guarantees
that the rule base is complete. These rules are presented to a production
system which executes the appropriate rule given each scenario. Section
II discusses some of the background that motivated this research. Section
III describes the conceptual clustering techniques involved in the 2DCG
system. Section IV presents the algorithm used in the 20CG system.
Section V examines the performance of this system using three human
observers. Finally, Section VI provides some conclusions.

II. BACKGROUND ON THE VISUAL MONITORING TASK

The goal of this research is to develop and test a model which
predicts changes in the eye positions of human observers monitoring
multiple sources of information. Each change in eye position from one
information source to another is called a glance transition. The
information sources are numbers representing" the values of four aircraft
instruments. These numbers are driven by flight equations from a T-38
aircraft and are presented in the four corners of a display controlled by
an IBM XT. The observer's task is to monitor the four "instruments" and
respond when any one of them exceeds particular critical values. S

The current research deviates significantly from past models of eye
fixations in monitoring tasks, such as models by Ellis and Stark (1981)
and Senders (1983). The model presented here predicts individual glance
transitions between instruments, whereas most previous models have
predicted the aggregate frequency with which an instrument would be
monitored or the average duration of a glance at a particular instrument.
All of these models were probabilistic, whereas the system presented here
creates a deterministic model.

Ill. DEVELOPMENT OF THE 2DCG SYSTEM 5

In order to create a computer model of glance transition patterns,
several tasks were performed. First, a computer simulation of a T-38
aircraft, which presented the instrument values to the human observers,
was implemented. Second, eye position data were collected and initial
data smoothing was performed to reduce noise. Finally, rule generation
and generalization algorithms were implemented to analyze the data
collected from the experiment above. These algorithms form the 2DCG
system. A more detailed description of these tasks is presented in
Belofsky (1987) or Belofsky and Lyon (1988).

The data collected from this experiment are (a) the eye positions of 5
the observer at discrete sample times and (b) the corresponding instrument
values. Each adjacent pair of data points is then converted to glance
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transitions, which are the input data to the 2DCG system. The 2DCG system
utilizes one-quarter of the transition data for each observer to create a
rule-based model of eye movement sequences. This model is cross-validated
on the other three-quarters of the transition data.

Two attributes of the instrument data are used in the clustering
algorithm of the 2DCG system. The first attribute is always the
instrument's value when the observer initiates the glance at that
instrument. The second attribute is sometimes the amount of change in the
instrument's value, the delta value, for the duration of the glance. 0

However, if the instrument's value is stationary for the duration of the
glance, a third attribute, the glance duration, is used rather than the
delta value. This third attribute was found empirically to provide more
information when the delta value was zero.

Conceptually, either of these pairs of attributes forms a
two-dimensional space in which the continuous numeric data are
distributed. Forming clusters in this space is a problem similar to image
processing problems, in which pixels with similar values are combined to
form larger regions. In this analogy, the regions (clusters) into which
the pairs of attributes (pixels) are divided form different "pixel A
values." These regions eventually become rules in the two-dimensional -

space. I- V

The system presented here operates in a two-dimensional space because V
information required to model the observers effectively could be '--,

represented in this way. There is no reason why this system cannot be
extended to operate in a three-dimensional space or more. The techniques
developed for this system are capable of operating in an N-dimensional
space; however, complexity will naturally increase with larger spaces.

as: A typical transition entered into the 2DCG system can be paraphrased

If indicated airspeed is 701 and changed by I during the 625
milliseconds it was fixated, then pitch was looked at next.

Table I presents some sample data for the indicated airspeed
instrument, with delta values. For this system, there are eight
two-dimensional spaces that are addressed separately: each instrument with
delta values and each instrument with time values (when the delta values
are 7ero). Indicated airspeed was chosen t, illustrate the clustering
techniques because it encompasses a smalle: inge of values.

In earlier versions of this system, the clusters found were the ones
that covered the largest possible contiguous area and encompassed the most er
transitions. This caused a major problem. In some cases, clusters grew
to cover all instrument and/or delta (time) values. This created a model
which was too general in its predictions and thereby misclassified the
data. Smaller clusters within the larger clusters, which were often
better predictors in their localized area, were not identified. That is,
local maxima were ignored in favor of larger clusters. Therefore, an -
algorithm was developed to find small clusters and gradually build them up S
to cover the entire data space.

3
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In this system, all clusters initially consist of one instrument
value and one delta (or time) value. At each instrument value and delta
(or time) value, the instrument that is transitioned to most often is
selected as the output of that cluster. This output is assigned a weight
equal to the number of transitions that occur to the selected instrument.
From any instrument value and delta (or time) value, a transition can
occur to one of the three other instruments. If several instrument
transitions have the same maximum weight, one is arbitrarily chosen.
Therefore, at each position in the two-dimensional space, the data
presented in Table I are converted to the information in Table 2. Table 2
contains the smallest clusters at each coordinate where transitions occur
in the data. Each cluster consists of one transition with its
corresponding weight.

This process guarantees that the model created by the 2DCG system
predicts the maximum number of transitions on which this model is
created. This model does not require conflict resolution techniques while
it is executing because it is created such that no conflicts ever occur.
The model is, therefore, deterministic; whenever a specific instrument
value and delta (or time) value occur, the same transition is predicted.

The clusters as presented in Table 2 show that there are many empty
regions which have to be filled in, in order to guarantee complete
coverage. The empty regions are filled in by comparing the weights of all
clusters in the immediate vicinity. The weights of the clusters
immediately surrounding an empty region are totaled. The instrument that
is transitioned to most is placed in the empty region. For example, in
Table 2 at instrument value 701 and delta value -2, the pitch (P)
instrument will be transitioned to next because the weight for the
transitions to the pitch instrument in clusters immediately surrounding
the above empty region totals to 16, while the weight for the altitude (A)
instrument totals only to 6. Adjacent clusters which have the same
transition instrument are then combined together to form larger clusters.
Table 3 shows what the data look like for the indicated airspeed
instrument using delta values after this step is completed.

The clustering procedure described thus far is very sensitive to
(random) noise in the data. All transitions from the input data are used
to create the model; therefore, clusters with low weights become rules
when they may really be noise. The data are collected from human
observers (subjects) and contain noise because the observer either blinks
or moves out of the recording area momentarily. In order to reduce the
amount of noise incorporated into the rule base, all clusters with weights
less than 5 are removed before any processing is done to the clusters.
This minimum number was found empirically by creating several different
models with different minimum-sized clusters and examining the prediction
percentages. The prediction rate reached asymptote when the minimum size
of a cluster was 5.

The noise that is in the system before the above technique is
employed is amplified by the cluster-growing techniques because if a
cluster is really noise and is surrounded by empty regions, these empty
regions will be filled by this erroneous cluster. This lowers the
prediction rates on the cross-validation data. There is still noise in
the data, but much of the noise has been removed by filtering out clusters
with lower supporting weights.

4



IV. THE ALGORITHM

The previous section presented a description of how the 2DCG system
creates rules which model the observers for the aircraft instrument S

domain. Figure 1 presents the general algorithm to cluster data in an
N-dimensional space.

* Distribute the data that will be used to cluster, into the
appropriate positions in the N-diiensional space.

* At each position in the N-dimensional space: S

* If there is more than one action to take, choose the
one with the most weight.

* If two actions have the same weight, arbitrarily
choose one.

* If there is some minimum weight, K, that each individual
position in the N-dimensional space must be greater than, remove •
each data point whose weight is less than K.

* Until there are no empty pcsitions in the N-dimensional space:
* Total weights for each different action for the immediately

surrounding positions (two in a one-dimensional space,
eight in a two-dimensional space, 26 in a three-dimensional
space, etc.) 0

" The adjacent position that has the most weight absorbs the
empty position. If two or more actions have the same
weight, arbitrarily choose one. This newly absorbed
region's weight will be zero.

* If there are no non-empty positions immediately surrounding,
the empty region in question, compare the number of newly
absorbed positions for each action immediately surrounding
the empty position. The action that has the most
supporting positions is placed into the empty region.

* Combine adjacent positions which have the same action to form
larger clusters.

* Convert above clusters into rules based on the area in the N-
dimensional space they occupy.

Figure 1. General Algorithm to Cluster Data in an N-Dimensional Space.

V. THE PERFORMANCE OF THE 2DCG SYSTEM

Three observers were modeled to test the performance of the 2DCG
system. One was a T-38 pilot; the other two were non-pilots. The pilot
was expected to be much more consistent than the non-pilots and he was,
but not as much as expected. On the average, the model is capable of
predicting 65% of the dominant transitions. The dominant transition is
the iiistrument which is tranT'Ttioned to most frequently in a given
situation. That is, at any one position in the two-dimensional space,
there can be a transition to one, two, or all three of the other
instruments. For example, for the in.icated airspeed instrument at
instrument value 699 and delta value -2, if there are five transitions to 0

50



pitch (P), four transitions to verticai velocity (V), and eight "..
transitions to altitude (A), the dominant transition is from the indicated V
airspeed instrument to the altitude instrument. The weight of this
dominant transition is eight.

The model created by the 2DCG system is, by definition, capable of
predicting 100% of the dominant transitions on the data used to create it,
when clusters of all sizes are incorporated into the model. When the
smaller clusters are filtered out, the prediction rate falls below 100%
for the creation data set because the model is no l.ger recognizing
regions of lower weight.

Table 4 presents the prediction percentages for the three observers A
using rules created with clusters of any size. For non-pilot observer SN,
there are 949 transitions in the data used to create the model (the DATA
data set). The model is created using these data, and 733 of these
transitions are predicted, which is 77% of the data. Because the model is
created on these data, 733 is al-) the maximum number of dominant
transitions; therefore, the model predicts 100% of the dominant
transitions.

The transition set labeled "ODST" is one of the three
cross-validation data sets. Using the model created on the DATA data set,
396 transitions are predicted. This accounts for 51% of the total
transitions. In the ODST data set, 622 transitions (80%) are dom'nant.
Therefore, the model p-edicts 64% (396/622) of the dominant transiions
for this data set.

Table 4 also presents the prediction percentages using the 2DCG V
system with rules created for clusters having a minimum weight of 5.
Notice that while the prediction percentages drop a little for the data on
which the model is created, the cross-validation prediction percentages
increase. This suggests that low-weighted clusters are likely to be
noise. By removing these low-weight clusters, the prediction percentage
falls on the data used to create the model, but this indicates that the
model is becoming less specific to these data and more capable of
predicting transitions that it has never seen before.

I'N

VI. CONCLUSION

A conceptual clustering system which learns to model human eye
positions in a simulated aircraft instrument monitoring task was
presented. This system, TDCG, operated on continuous numeric attributes
with random noise. The attribute values were clustered in a
two-dimensional space, although the system could be extended to work in an
N-dimensional space.

Evaluating the performance of the model created by the 2DCG system in
this context is difficult, because the number of glance transitions

6



predicted is dependent upon the consistency of the data that are being .
modeled. However, it may be a promising candidate for evaluation using
artificial continuous numeric data generated using predefined clusters
plus varying amounts of random noise. Advances in the technology of
predicting glance transitions will require learning techniques that are
very robust when given noisy data.

.

7S

L.V
I ILI



Table 1. Transition Data for the Indicated Airspeed Instrument

Graphical Representation:

' . Instrument Value

I695 I 696 I697 I698 I 699 I 700 I 701 I 702 I 703 1 704 I 705I
---------- + ---- ----- -- --- -- - -------- --- ---

I A 4 AI I A7 I A A 6 A 4 1 1
-21 I I I PP41 P4 IIPSI I I4P 1 1

o I I I IV4 I I I I IV 4 I
e -------4.- ---- + .- --------- - -4.--------..----+---

1 A 5A4 A 5 1A614I -IA51 I I "
t-11P4I I I IPIP6I 14P 5 I I
a I I I I I I I IV 3I I I V5 l

- ----- --+-4- + -4- +- -- 4- .+-+

V IASIA 6IA 4IA5IA 5IA AIA 51 IA 6 1
aIl I IPI IP 4 IP3IP P3I I I I
1 I I V4 I I I I IV Iv4 IV 5I
U ---- - ---------- -----------. . -..-----------.- ----.------- + .

S IA2 IA4I I IA4 1 I I 1 I I I --4.

I I v 5 1 v 3 1 IV V
--- .---- -*-9------ -+--- -----. - ------ 4.------ -----

Interpretation:
When the indicated airspeed's instrument value is 699 knots and its

delta value is -2, there are eight transitions to altitude, five
transitions to pitch, and four transitions to vertical velocity.

Table 2. Clusters for the Indicated Airspeed :nstrument

Instrument Value 'A.

I 695 I 696 I 697 I 698 I 699 1 700 I 701 1 702 I 703 1 704 I 705 t %-
-" 4- 4. - "-4.-------4- 4"-----4.-+-

I I I I I I I I I I I I

-2I I I A 7 A1A6 I P 6 P 5 V 41D I I I I I I I I I I I

e------------------------- --- ------------------- -+
1 I I I I I I I I I I I I" i

t-1IAIAI I ASIA6I1 I IPI I V 5 I .P
a I I I I I I I I I I I I ..x

------------------ +4 - 4- .- 4.--------------+- 4.--

V I I I I I I I I I I I I
a lIA5IA6IA4IA5IA5 IA4 IASI P3IV7 IV4 IV5I

e I I I I I I I I I 1 I I -
U ------------- -------- --------- -------- ---------- 4- ----

2 I A 2 I I I A 4 1P 5 1P 6I I 1 I I %

I I I I I I I I I 1 I I , -

Table 3. Final Clusters for the inuicated Airspeed instrument 0

------------ ------------------------------------------------

Instrument Value

695 I 696 I 697 1 69I I 699 I 700 I 70. I 702 1 703 I 704 I 70 I

--- .- 4.-------------------4. - 4.--------4 - 4 ---- - +-+-

I I I I I I I I I I I I
-2 A I A IA IA IA A P P P PP V I

o I I I I I I I I I I I I
---... +... .......4. 4. ------- - .-.----

v I I I I I I I I I I I ISi-I A IA IA IA IA I P1 P PI v VI V I

a I I I I I I I I I I I I-------------- ----------4. - .- 4 - 4. + - 4--------- - +- 4.-- .

V I I I I I I I I I I

S 1 I I I I I I
S-- ----------+---- - 4- --- +--- -- ------ - 4------

* I I I I I I I I I I I I ,
21 Al A AI Al Al P1 P1 P V VI V I

-------------------4.---------4.-----4. 4 -------- 4- 4.--

-------------------------------------------
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Table 4. Two-Dimensional Cluster Generalization
Model Prediction Percentages

I DATA I ODST I SDOT I ODOT

Non-Pilot Observer SN:

TRANSITIONS 1 949 I 776 826 711

PREDICTED I 733 77% 1 396 51% 1 403 49% 352 50%
1*682 72% 1*411 53% 1*421 51% 1*362 51%

--- - +-----------+------------+---------------+----------------

DOMINANT I 733 77% I 622 80% 1 650 79% 571 80%
- -------------- +---- ---------------------------------

DOMINANT I 733/733 I 396/622 403/650 352/571
TRANSITIONS I 100% 1 64% 62% 62%
PREDICTED 1*692/733 1*411/622 1*421/650 1*362/571

1* 93% (* 66% * 65% * 63%

Non-Pilot Observer TN: V..

-- --- --------------------
TRANSITIONS 1 1073 I 1080 1 1008 1 1134

--------------------------------------------
PREDICTED I 811 76% I 493 46% 1 450 45% 1 505 45%

1*747 70% 1*509 47% 1*467 46% 1*512 45%
- +---------------------------------------------

DOMINANT i 811 76% i 826 76% 1 783 78% 1 856 75%
-+------------+---------------+-----------------+-----------------

DOMINANT I 811/811 I 493/826 450/783 505/856 S
TRANSITIONS I 100% I 60% 57% 60%

PREDICTED 1*747/811 1*509/826 1*467/783 1*512/856
1* 92% 1* 62% * 60% * 60%

Pilot Observer PL:

II II < .
--------------------------- --------------- +--------------

TRANSITIONS I 1104 I 1134 j 1221 I 1261 "
-+--------------+-------------+------------------------------

PREDICTED 1 856 78% 1 584 52% 1 589 48% 1 665 53%
1*799 72% 1*619 55% 1*617 51% 1*709 56%

-+--------------+-------------+------------------------------
DOMINANT I 856 78% I 858 76% I 894 73% I 945 -75%

-+--------------+-------------+---------------+---------------
DOMINANT 1 856/856 I 584/858 1 589/894 I 665/945
TRANSITIONS 1 100% I 68% I 66% I 70%
PREDICTED 1*799/856 1*619/858 1*617/894 1*709/945 5

j* 93% 1* 72% I* 69% (* 75%

-----------------------------

*Minimum Cluster Size 5
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