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I.  INTRODUCTION 

The combustion of liquid propellants (LP) in gun environment occurs 
at pressures above 10 MPa.  To aid the engineers in scaling up present 
gun combustion chambers for larger and higher performance guns it is 
beneficial to establish the following: a) breakup and penetration 
distances of thick jets (round solid, or annular) in high density gas, 
b) ignition delays and combustion times, and c) type of combustion 
(e.g., whether supercritical).  The information gained may also aid in 
designs to avoid combustion instabilities.  Also, modelers can benefit 
from more relevant test data.  The current knowledge of LP jet breakup 
and combustion in gun chambers is speculative.  Low pressure spray tests 
or strand burner tests (even at high pressures) have only limited 
utility.  Clearly, tests have to be conducted with sprays at high 
pressures in a facility which will enable visualization of sprays. 
Visualization entails diverse means of detection such as cinematography, 
spectroscopy, and particle sizing by optical techniques. 

Facilities to test spray combustion at pressures above 10 MPa are 
virtually nonexistent.  Only a few facilities, allowing good 
visualization, exist for lower pressures.  The closed circuit tunnel of 
Ref. 1 (4.5 MPa, 400 C for diesel sprays) is a distinct example.  In 
that tunnel clear inert gas is used.  Such a system, however, cannot be 
engineered for the temperatures and pressures of interest in LP sprays. 
High pressure and temperature can be achieved rather easily by igniting 
a combustible mixture of gases such as oxygen, hydrogen and a diluent 
gas (e.g., Ref. 2).  However, the test times are short (less than 50 
msec); there is the risk of detonation in larger chambers; and most 
importantly, above 10 MPa, the high temperature of the gas results in 
intense radiation from the flame and various contaminants in the 
chamber.  Such radiation prevents any visualization. (In actual gun 
chambers this problem is exacerbated).  Water condensation on the 
windows (present in most flames) is another drawback.  For high 
pressures, a facility employing nonvitiated clear gas is required.  Such 
a facility has been conceived with the following specifications: 

1. Optically clear large rectangular windows (4 in x 1.4 in) to allow 
for compactness and yet allow a long stretch of spray view. 

2. Provide nonvitiated gas at 800 C, 69 MPa; pressures and 
temperatures well above the supercritical values for water which 
is a major constituent of the LP's. 

3. Long test time (4 sec) for proper data, collection. 

In addition, a variable geometry injector for LP injection has been 
designed with the following features: 

1,    Injection velocities to 300 m/sec (gun velocities). 



2. Annular (gun geometries) as well as solid round jets up to 3 mm 
thick. 

3. Fast response times (msec-gun times). 

The various components of the facility are currently under construction. 
Some components have been assembled into a lower pressure abridged 
system and underwent performance tests.  The facility and, in 
particular, its most unique components are described next.  Also 
described are the performance tests with the abridged system. 

II.  FACILITY DESCRIPTION 

The outline of the facility is shown in Figure 1.  It is an open 
loop flow system.  The mode of operation is as follows.  Room 
temperature inert gas is stored in a high pressure gas reservoir (138 
MPa, 10,000 cc).  Meanwhile, a particle bed heater is heated up 
electrically at atmospheric pressure.  The bed, which is encased in a 
high pressure vessel, consists of submillimeter ceramic particles packed 
between two coaxial concentric porous frits.  The bed stores a large 
amount of heat which can be extracted rapidly due to the large combined 
surface area of the particles.  When the bed reaches the desired 
temperature, the test can be started by dumping gas from the reservoir 
through the bed and into the test chamber.  A dome pressure regulator 
regulates the pressure.  The duration of the test is determined by 
means of the pneumatically controlled ball valve downstream of the 
regulator.  There is only a small pressure drop through the bed and with 
the proper gas, the gas attains the bed temperature.  For a more 
complete discussion of the properties of high pressure particle beds, 
the reader is referred to Reference 3.  The transmission line between 
the bed and the test chamber is kept hot by means of a cylindrical 
radiation oven.  In this manner heat losses are minimized.  The inlet of 
the chamber is nozzle shaped and the outlet flow of gas is controlled by 
an orifice downstream of the chamber.  The gas is cooled to room 
temperature prior to exiting through the orifice.  This allows for a 
constant and predetermined gas mass flow rate through the system.  A 
steady low velocity flow of gas is established in the chamber.  The 
temperature and pressure in the chamber ate measured by a fast response 
thermocouple and a fast response pressure transducer.  The flow of gas 
in the chamber results in uniform temperature throughout the chamber. 
In the absence of gas flow, heat losses to the walls and free convective 
eddies would shorten test time to less than half a second.  When steady 
state conditions are achieved LP injection is initiated.  The particle 
bed and injector are described next in more detail. 
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Figure 1.  Facility Outline 

The particle bed is illustrated and shown to scale in Figure 2.  It 
was designed and fabricated under contract at Brookhaven National 
Laboratory.  The pressure vessel is a standard Autoclave vessel.  The 
bed is suspended from the vessel's plug.  This allows for thermal 
expansion.  The bed is insulated from the chamber walls by a gas gap. 
Heat losses from the bed are due to conduction to the plug, and 
radiation and free convection to the walls.  The bed is heated to 1000 C 



while the pressure vessel walls are kept below 315 C (by free convection 
to its surroundings).  The gas enters at the bottom and exits through a 
passage drilled through the plug.  The vessel volume is 2000 cc while 
the volume of the bed is 1000 cc; most of the latter is taken up by 900 
micron diameter spherical alumina particles.  The frits are made from 
stainless steel with 20 and 40 micron porosities of the outer and inner 
frits respectively.  Power consumption of the bed is typically 1.5 KW at 
50 amperes.  The heating element is a braided Kanthal coil.  The bed 
stores 666 Kcal at 1000 C and can deliver 2 KW/cc.  For example, 1000 cc 
nitrogen at 69 MPa (to fill the test chamber) can be heated up to 1000 C 
(50 Kcal) in 100 msec.  The bed is currently undergoing testing to 
establish its actual performance.  It has already been determined that 
it needs refinements. 
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PRESSURE VESSEL 

316 SS 

69 MPa AT 315° C 

GAS INLET 

Figure 2.  Particle Bed Heater 
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2.  INJECTOR 

A patented injector has been developed and fabricated.  It is 
illustrated in Figure 3. The injector's injection port is variable; 
annular geometries as well as round orifices can be used. It can inject 
liquid at pressures approaching 138 MPa and it has 138 cc liquid 
capacity. It can be activated solely by the pressure of the gas in the 
test chamber or by auxiliary gas. The injection arresting gas prevents 
the piston from retreating under the test chamber pressure and injecting 
the liquid.  The stem valve, besides preventing injection, also protects 
the LP from the hot chamber gas above it.  When the arresting gas is 
discharged, the stem valve retreats thus opening the injection port. 
Just as in the regenerative liquid propellant gun, the differential 
areas of the retreating piston result promptly in high injection 
pressure.  The injection pressure can be further augmented by spacing 
injection augmentation gas between the control rod base and the piston. 
The pressure is measured via transmission rod and fluid.  The annular 
injection port configuration is intended to be used mostly with inert 
liquid as the liquid in the injector is exposed to the hot gas and may 
ignite prematurely before injection.  The injector still awaits testing. 

INJECTION 
AUGUMENTATIOil 
GAS 

• CONTROL ROD 

FILL 

Figure 3.  Injector Layout 



III.  OPERATING CONSIDERATIONS 

The operating considerations discussed here will relate to the heat 
losses in the transmission line and test chamber and to the choices of 
gas.  The heat transfer processes in the particle bed and its pressure 
vessel are too complex to be discussed here. 

1.  THERMAL EFFICIENCY 

As mentioned, the flow of gas is controlled by an orifice 
downstream of the test chamber.  The mass flow rate is: 

M « CiPA^(M7)V2 ^^j 

The gas temperature does not appear in Equation 1 because the gas is 
cooled to room temperature prior to passing through the orifice. 

The thermal energy carried by the gas is: 

Qp = MCpT (2) 

The heat loss to walls (for cylindrical geometries) is: 

QL « C2Re"'-|-AAT;  m = 0.5 to 0.8 (3) 

Equation 3 is a general form for heat transfer and omits the Prandtl 
number which is virtually constant and the same for most gases.  The 
exponent m will tend to be close to 0.8 for the turbulent flow of our 
case.  Writing Re in terms of M one obtains: 

QL« C3KLAT(^'" (4) 

As evidenced from Equation 4, in order to keep heat losses low, one 
needs to design short transmission lines with large diameters. 
Preheating the transmission line to decrease AT is highly beneficial. 

Higher chamber gas temperatures are achieved when Qj/Qp is minimized. 
From Equations 1, 2 and A we obtain: 

*^L      AT       ,1^"™ 
—k«C,L^^i 1^  (5) 
Qp      T D"(PA^)^-™(M7)(1-'")/2 



As Equation 5 demonstrates, higher efficiency (higher gas temperature) 
is obtained at higher pressures, higher mass flow rates, and denser gas. 

2.  CHOICE OF GAS 

In order not to burn the high temperature stainless steel frits of 
the bed, the current system is limited to inert gases.  Two obvious 
choices are nitrogen and helium.  Helium has lower volumetric heat 
capacity than nitrogen.  It is much lighter and has higher heat 
conductivity and diffusivity.  These qualitative differences between 
helium and nitrogen affect the overall performance of the facility.  The 
effects are summarized in the following table.  The * in Table 1 denotes 
advantageous effect. 

TABLE 1. Choice of Gas 

Nitrogen Helium 

Volumetric Heat Capacity * Less 

Heat Loss * Less 

Jet Breakup * Better 

Spray Heatup * Faster 

Visual Clarity * Better 

Sealability * Easier 

Cost * Cheaper 

In conclusion, there is no clear cut advantage to either nitrogen or 
helium.  To simulate the high densities of gun environments for jet 
breakup tests, nitrogen is the choice due to its high density. 

IV.  PRELIMINARY TESTS 

As only the particle bed heater was completed on time, a lower 
pressure system had been tested to affirm the operational principle of 
the facility.  In particular, the test chamber and injector (modified) 
used in Reference 2, were used again.  A 14.3 mm diameter (9/16 inch) 
tube, 30 cm long, heated to approximately 300 C was used as a 
transmission line.  Both helium and nitrogen gases were employed.  The 
first series of tests are depicted in Figures 4 to 6.  As can be seen 
from Figure 4, steady state conditions are achieved after 1 second.  In 
tests with helium, steady conditions were achieved after 0.3 seconds 
(because the chamber fills faster with the higher sonic velocity 



helium).  The temperature peaks well before the pressure (Figure 4).  A 
complex turbulent convective heat transfer mechanism is involved. 
Theoretically, with the absence of heat losses, a temperature 7 * Tv J 

can be obtained.  The thermocouples used had a millisecond response 
time.  Despite the disparate locations of the thermocouples, their 
readings almost overlap.  This was achieved only when low velocity gas 
flow was established in the chamber on the order shown in Figure 5.  The 
velocities in Figure 5 are estimated based on A^ (larger A^^ results in 
higher V) and the measured chamber pressure and temperature.  Higher 
pressure resulted in higher temperature as is evident from Figure 6. 
Both Figures 5 and 6 conform with the trend predicted by Equation 5 
regarding the thermal efficiency.  Tests with helium revealed similar 
trends. 
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Figure 4.  The Temperatures in the Chamber Are Rather Uniform 



Figure 5.  Higher Chamber Gas Velocities Result in Higher Temperatures 
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Figure 6.  Higher Chamber Pressures Resulf in Higher Temperatures 
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To find out whether the conditions depicted in Figures 4 and 5 are 
already sufficient for LP ignition, LGP 1846 was injected into both 
helium and nitrogen at 9.5 MPa and 400 C.  The jets were injected from a 
1 mm diameter round orifice with 76 m/sec velocity for 50 msec duration. 
High speed cinematography revealed that in both cases, ignition and 
transition to flame were observed after approximately 20 msec delay. 
These results are very encouraging considering the propensity of LP's to 
ignite and burn promptly at higher pressures. 

In the future, as the facility becomes fully operational, spray 
tests will be extended to 69 MPa.  Various diagnostics methods are 
intended for use.  In particular:  a) high speed cinematography with 
copper vapor laser strobing, b) holography, c) two dimensional 
spectroscopy, and d) particle sizing (for dilute sprays). 

V.  CONCLUSIONS 

A compact facility to research LP sprays in a 10 to 69 MPa, 400 to 
800 C (estimated) nonvitiated gas environment is feasible. 

In addition: 

A. The gas environment can be established in less than 1 second. 

B. Uniform temperatures are sustained by allowing the gas to flow 
at less than 50 cm/sec. 

Preliminary experiments indicate better performance at the higher 
pressures. 

Based on the tests, the gas temperatures obtained in the facility 
are sufficient for LP jet ignition, thus enabling spray combustion 
research. 
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NOMENCLATURE 

A - Area 

A^ -  Orifice area 

Ci - Dimensional constants appearing in Eqs. 1, 3, 4, and 5 

H 

C -  Specific heat 

D -  Diameter 

K - Thermal conductivity 

L -  Length 

M - Mass flow rate 

M - Molecular weight 

P - Pressure in chamber 

Qp -  Rate of thermal energy flow 

Qj^ - Rate of heat loss 

Re - Reynolds number 

t -  time 

T -  Chamber temperature 

V -  Chamber gas velocity 

AT - Difference between wall and gas temperatures 

7   -  Specific heat ratio 

fi -    Viscosity 
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