
-4 ~~n ofTIUT Ycnial Report

End of Year Report for
Parallel Vision Algorithm Design and Implementation

January 15, 1987 - January 14, 1988

Takeo Kanade and Jon A Webb
11 August 1988

CMU-RI-TR-88-1 1

DTIC
SEP 1 4 1988

H

The research wa supported by the Defense Advanced Research Projects Agency (DOD), monitored by the US
Army Engineer Topographic Laboraoes under Conuact DACA76-85-C-0002.

bifo-TON STA X

Approved foz public reld O.

D~t~m~vn 1:imlW.

%*'5'*~' -U'-~'.9

Unclassified
SECURITY CLASSIFICATION OF THISA

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION I/DOWNGRADING SCHEDULE "Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-RI-TR-83-11 DACA76-86-C-0002

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Robotics Institute (if applicable) U.S. Army Engineer Topographic Laboratories
Carnegie Mellon University ,I,

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Pittsburgh, PA 15213

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. IACCESSION NO

11 TITLE (Include Security Classification)

End of Year Report for Parallel Vision Algorithm Design and Implementation

12.. PERSONAL AUTHOR(S) _Takeo Kanade and Jon A. ','ebb

13 TYPE PF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
ecnncal FROM1/15/87 TO 1/14/8i 11 August 1933 77

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP parallel vision, Apply languaqe4 WEB library, Warp

19- ABSTRACT (Continue on reverse if necessary and identify by block number)

Progress on the Parallel Vision project is reported. Three major accomplishments are
noted: the developmen- of the Apply language, the WEB library, and benchmarks of Warp
for the DARPA image understanding architecture comparisons. The Apply language development
includes a descrirtion of the lanquage and its implementation on Warp, the Sun, and the
Hughes HBA, toqether with benchmark comparisons of these very different architectures.
The WEB library includes over 100 routines. included i this report are performance
numbers of these routines on the CMU Warp machine. Finally, a detailed analysis of the
Warp routines iniemenLed for the DARPA Image Understanding benchmarks is given.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

IMUNCLASSIFIED/UNLIMITED 0- SAME AS RPT. 0' DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Table of Contents
1. Introduction 2

1.1 Overview 2 V,
1.2 Warp Vision Software 2
1.3 The Apply Language and WEB 2
1.4 Support for Other Programs 2
1.5 Acknowledgments 3

2. An Architecture Independent Programming Language for Low-Level Vision 4
2.1 Introduction 4
2.2 Introduction to Apply 5

2.2.1 The Apply Language 5
2.2.2 An Implementation of Sobel Edge Detection 6
2.3 Border Handling7

2.2.4 Image Reduction and Magnification 7
2.2.5 Multi-function Apply Modules 8

2.2.5.1 An Efficient Sobel Operator 9
2.2.5.2 An Efficient Median Filter 9

2.3 Apply on Warp and Warp-like Architectures 11
2.3.1 Low-level vision on Warp 12
2.3.2 Apply on FT Warp 13.%
2.3.3 Apply on iWarp 14

2.4 Apply on Uni-processor Machines 14
2.5 Apply on the Hughes HBA 15
2.6 Apply on Other Machines 16

2.6.1 Apply on bit-serial processor arrays 16
2.6.2 Apply on distributed memory general purpose machines 16

2.7 Summary 17
2.8 Grammar of the Apply Language 17

3. Architecture-Independent Image Processing: Performance of Apply on Diverse 20
Architectures
3.1 Introduction 20
3.2 The WEB Library 20
3.3 Apply Code Compared with Hand-written Code 21

3.3.1 Apply code compared with SPIDER code 21
3.3.2 Apply code compared with W2 code 23

3.4 Comparison of Diverse Architectures 24 1-
3.4.1 Warp Compared with Sun 24
3.4.2 Warp Compared with Hughes HBA 26

3.5 Conclusions 27
4. The WEB Library 30

4.1 Introduction 30
4.2 Calling Programs in WEB 30 S
4.3 Classification by Area 31

5. Performance of Warp on the DARPA Image Understanding Architecture 32
Benchmarks

5.1 Introduction 32
5.2 Warp Status Accession For 33
5.3 Vision Programming On Warp NTTS GRA&I 34

S.3.1 Input Partitioning DTIC TAB 0 34
5.3.2 Output Partitioning Unannounced 0 34
S3.3 Pipelining Justtrication . 34

5.4 Laplacian 34
5.5 Zero Crossings Detection By - 36
.6 Border following Dis5ribatton/ 37

5.7 Connected components labelling . - 38
5.7.1 Sketch of the Algorithm Avatlabili y Codes * 3R

Dist 3F1F2 4%.

[A

5.7.1.1 Vocabulary and Notation 38
S.7.1.2 The Algorithm 38

5.7.2 Asymptotic Running Time 42
S.7.2.1 Parailel-Sequential-Systolic Algorithm 42
5.7.2.2 Paraflel-Sequential-Parallel Algorithm 42

5.73 Implementation Details 42
S.7.311 Warp Architectural Constraints 42
5.73.2 Vax Implementation 4
S.7.3.3 Warp Implementations 44

5.8 Hough transform 45
5.9 Convex Hull. 47
5.10 Voronoi Diagram 47
5.11 Minimum spanning tree 48
S.12 Visibility 49
5.13 Graph Matching 49
5.14 Minimum-cost Path so
5.15 Warp Benchmarks Summary 51
5.16 Evaluation of the Warp Architecture 51

5.16.1 Memory 51
S.16.2 Number of processing elements 52
5.163 External host 53

6. References 54
L WEB Listing 57

List of Figures
Figure 2-1: The Sobel Convolution Masks. 6
Figure 2-2: An Apply Implementation of Thresholded Sobel Edge Detection. 7
Figure 2-3: A More Efficient Sobel Operator 9
Figure 2-4: Input Partitioning Method on Warp 12
Figure 2-5: Processing the first row by the cyclic-scroll buffering 15
Figure 2-6: Processing the second row by the cyclic-scroll buffering 15
Figure 3-1: Ratio of execution times of hand-generated SPIDER FORTRAN to Apply 21

code. Vertical line indicates a ratio of one.
Figure 3-2: Scatter diagram of execution times of hand-generated SPIDER FORTRAN 22

and Apply code. Diagonal line indicates equality.
Figure 3-3: Ratio of execution times of hand-generated W2 code to Apply code. Vertical 24

fine indicates a ratio of one.
Figure 3-4: Scatter diagram of execution times of hand-generated W2 code and Apply 25

code. Diagonal line indicates equality.
Figure 3-5: Ratio of execution times of Sun Apply code to Warp Apply code. 26
Figure 3-6: Scatter diagram of execution times of Sun Apply code and Warp Apply code. 27
Figure 3-7: Ratio of execution times of Hughes HBA Apply code to Warp Apply code. 28

Vertical line indicates a ratio of one.
Figure 3-8: Scatter diagram of execution times of Hughes HBA Apply code and Warp 29

Apply code. Diagonal line indicates equality.
Figure S-1: Folding columns 35
Figure 5-2: Using results from previous steps 35
Figure 5-3: Convolving and storing column sums 36
Figure S-4: Adding appropriate column sums 36
Figure 5-5: Input 40
Figure 5-6: Labels after parallel phase 40
Figure S-7: Labels after sequential phase 41

- - - I

A R A M n ~ j 7,j K A 7J -K w w w wl. v w l' v li ,VL VN %- v v ,i~q I y - ,

iv

List of Tables
Table S-1: Optimized Symmetric Convolution 36
Table 5-2: Final maps 41
Table S-3: Label Computation 41
Table 5-4: Vax implementation tin-dngs 44
Table 5-5: Estimated WW Warp timings 45
Table 5-6: Estimated PC Warp timings 46
Table S-7: Estimated IWarp timings 46
Table S-8: Operation counts for Voronoi diagram 48
Table S-9: Warp Benchmark Summary 51

IN"

Io

Abstract

Progress on the Parallel Vision project is reported. Three major accomplishments are noted: the development of the
Apply language, the WEB library, and benchmarks of Warp for the DARPA image understanding architecture
comparisons. The Apply language development includes a description of the language and its implementation on
Warp, the Sun, and the Hughes HBA, together with benchmark comparisons of these very different architectures.
The WEB library includes over 100 routines; included in this report are performance numbers of these routines on
the CMU Warp machine. Finally, a detailed analysis of the Warp routines implemented for the DARPA Image
Understanding benchmarks is given.

,g

-p.

0p

V'-s

-. - p.

2

1. Introduction
This report reviews progress at Carnegie Mellon from January 15, 1987 to January 14, 1988 on research

supported by the Defense Advanced Research Project Agency (DOD), monitored by the US Army Engineer
Topographic Laboratories under Contract DACA76-85-C-0002, titled "Research on Parallel Vision Algorithm
Design and Implementation." The report consists of an introduction and four detailed reports on specific areas of r

research. 4

1.1 Overview
During this contract year our research has had three main themes:

" Support, development, and evaluation of Warp-related vision software.

" Development of the Apply programming language and WEB library of low- and mid-level vision
algorithms.

" Support for the use of parallel vision software in related DARPA-sponsored programs.

Warp gives us a powerful, existing parallel computer on which to develop parallel vision software; with this basis,
we are able to evaluate our work and see it applied to important problems in related programs that use Warp. But
we have not limited ourselves strictly to Warp software development. The Apply programming language has proved
to be a useful tool for parallel vision algorithm development on many parallel computers, especially since a
substantial portion of the WEB library of low- and mid-level vision algorithms is implemented using it. These two
efforts have led to significant application of our work in several DARPA-sponsored programs.

1.2 Warp Vision Software
We have implemented Warp software that allows the use of the Warp computer in the Carnegie Mellon vision

environment, including remote access to the Warp computer from any Sun computer in the environment. This
software has been used to develop parallel vision algorithms at Carnegie Mellon throughout the year.

Our implementation of Warp vision algorithms led to the evaluation of the Warp computer in the DARPA Image
Understanding Architectures Benchmark Workshop. Several programs were implemented in order to compare
Warp with other parallel vision architectures, including The Connection Machine and Butterfly. The results of this
study are described in Section 5.

1.3 The Apply Language and WEB
In the summer of 1987, Apply was reimplemented to generate efficient code for Warp, the Sun/3, and FT Warp, a

2-dimensional Warp array. This reimplementation used a common front-end for all Apply programs, and different
back-ends for the different target architectures and languages. Section 2 describes Apply and its implementations on
Sun, Warp, and the Hughes HBA. It proved possible to directly compare the performance of Apply programs on
Warp with Apply on the Sun and Apply in a previous implementation on the Hughes HBA. Results are reported in
Section 3.

WEB was also reimplemented in the summer of 1987. This implementation used Apply for about 80% of the
programs, and W2 code for the remainder, most of which are global image processing operations not suited for
Apply. Section 4 describes WEB, and Appendix I lists the current status of each WEB routine. Comparison with
last year's report shows enormous progress in making the routines implemented, validated, and made available.

1.4 Support for Other Programs
The Warp computer is used in several DARPA-sponsored programs: SC Vision, ALV, ADRIES, and SCORPIUS.

In many of these programs, image processing and related functions are a primary concern. Work on parallel vision
algorithms on the Warp machine at Carnegie Mellon has often been directly transferable to these other programs,
often by using Apply and WEB.

3

For example, this software was used in the demonstration of the NAVLAB autonomous land vehicle of May 7,
1987 at the Warp/Butterfly User's Group, which demonstrated a 5-to-I speedup over the previous NAVLAB
demonstration of November 1986.

1.5 Acknowledgments
Several people contributed significantly to the parallel vision effort, and deserve special mention for their work.

" Leonard Hamey developed the original Apply concept and language, based on discussions with Steve
Shafer. He also implemented the Generalized Image Library.

" I-Chen Wu implemented the current Apply compiler. -

" Hudson Ribas wrote most of the current WEB library.

* Richard Wallace and Mike Howard implemented Apply on the Hughes Hierarchical Bus Architecture
(HBA).

" Ravi Mosur implemented Warp Generalized Images and the Warp User Package. 1

" Francois Bitz installed and supported the Warp computer on the NAVLAB robot vehicle. e',

In addition, the parallel vision effort benefitted from its association with the Warp group at Carnegie Mellon and
General Electric Corporation, and the Image Understanding Systems and Road Following groups at Carnegie
Mellon.

- IIG

.

- - -• u nn

4

2. An Architecture Independent Programming Language for Low-Level Vision

2.1 Introduction
In computer vision, the first, and often most time-consuming, step in image processing is image to image

operations. In this step, an input image is mapped into an output image through some local operation that applies to
a window around each pixel of the input image. Algorithms that fall into this class include: edge detection,
smoothing, convolutions in general, contrast enhancement, color transformations, and thresholding. Collectively,
we call these operations low-level vision. Low-level vision is often time consuming simply because images are
quite large- a typical size is 512x512 pixels, so the operation must be applied 262,144 times.

Fortunately, this step in image processing is easy to speed up, through the use of parallelism. The operation
applied at every point in the image is often independent from point to point, and also does not vary much in
execution time at different points in the image. This is because at this stage of image processing, nothing has been
done to differentiate one area of the image from another, so that all areas are processed in the same way. Because of
these two characteristics, many parallel computers achieve good efficiency in these algorithms, through the use of
input partitioning (24].

We define a language, called Apply, which is designed for implementing these algorithms. Apply runs on the
Warp machine, which has been developed for image and signal processing. We discuss Warp, and describe its use
at this level of vision. The same Apply program can be compiled either to run on the Warp machine, or under UNIX,
and it runs with good efficiency in both cases. Therefore, the programmer is not limited to developing his programs
just on Warp, although they run much faster (typically 100 times faster) there; he can do development under the
more generally available UNIX system.

We consider Apply and its implementation on Warp to be a significant development for image processing ca
parallel computers in general. The most critical problem in developing new parallel computer architectures is a lack
of software which efficiently uses parallelism. While building powerful new computer architectures is becoming
easier because of the availability of custom VLSI and powerful off-the-shelf components, programming these
architectures is difficult.

Paraller architectures are difficult to program because it is not yet understood how to "cover" parallelism (hide it 10
from the programmer) and get good performance. Therefore, the programmer either programs the computer in a

specialized language which exploits features of the particular computer, and which can run on no other computer
(except in simulation), or he uses a general purpose language, such as FORTRAN, which runs on many computers
but which has additions that make it possible to program the computer efficiently. In either case, using these special
features is necessary to get good performance from the computer. However, exploiting these features requires
training, limits the programs to run on one or at most a limited class of computers, and limits the lifetime of a
program, since eventually it must be modified to take advantage of new features provided in a new architecture.
Therefore, the programmer faces a dilemma: he must either ignore (if possible) the special features of his computer,
limiting performance, or he must reduce the understandability, generality, and lifetime of his program.

It is the thesis of Apply that application dependence, in particular programming model dependence, can be
exploited to cover this parallelism while getting good performance from a parallel machine. Moreover, because of
the application dependence of the language, it is possible to provide facilities that make it easier for the programmer
to write his program, even as compared with a general-purpose language. Apply was originally developed as a tool
for writing image processing programs on UNIX systems; it now runs on UNIX systems, Warp, and the Hughes HBA.
Since we include a definition of Apply as it runs on Warp, and because most parallel computers support input
partitioning, it should be possible to implement it on other supercomputers and parallel computers as well.

Apply also has implications for benchmarking of new image processing computers. Currently, it is hard to
compare these computers, because they all run different, incompatible languages and operating systems, so the same
program cannot be tested on different computers. Once Apply is implemented on a computer, it is pos.,' le to fairly
test its performance on an important class of image operations, namely low-level vision.

VwJ

5

Apply is not a panacea for these problems; it is an application-specific, machine-independent, language. Since it
is based on input partitioning, it cannot generate programs which use pipelining, and it cannot be used for global
vision algorithms [23] such as connected components, Hough transform, FF1', and histogram. However, Apply is in
daily use at Carnegie Mellon and elsewhere, and has been used to implement a significant library (100 programs) of
algorithms covering most of low-level vision. A companion paper [33] describes this library and evaluates Apply's
performance.

We begin by describing the Apply language, and its utility for programming low-level vision algorithms.
Examples of Apply programs and Apply's syntax are presented. Finally, we discuss implementations of Apply on
various architectures: Warp and Warp-like architectures, uni-processors, the Hughes HBA, bit-serial processor
arrays, and distributed memory machines.

2.2 Introduction to Apply
The Apply programming model is a special-purpose programming approach which simplifies the programming

task by making explicit the parallelism of low-level vision algorithms. We have developed a special-purpose
programming language called the Apply language which embodies this parallel programming approach. When
using the Apply language, the programmer writes a procedure which defines the operation to be applied at a
particular pixel location. The procedure conforms to the following programming model:

It accepts a window or a pixel from each input image.

* It performs arbitrary computation, usually without side-effects.

" It returns a pixel value for each output image.

The Apply compiler converts the simple procedure into an implementation which can be run efficiently on Warp,
or on a uni-processor machine in C under uNIX.

The idea of the Apply programming model grew out of a desire for efficiency combined with ease of
programming for a useful class of low-level vision operations. In our environment, image data is usually stored in
disk files and accessed through a library interface. This introduces considerable overhead in accessing individual
pixels so algorithms are often written to process an entire row at a time. While buffering rows improves the speed
of algorithms, it also increases their complexity. A C language subroutine implementation of Apply was developed
as a way to hide the complexities of data buffering from the programmer while still providing the efficiency
benefits. In fact, the buffering methods which we developed were more efficient than those which would otherwise
be used, with the result that apply implementations of algorithms were faster than previous implementations.

After implementing Apply, the following additional advantages became evident.
* The Apply programming model concentrates programming effort on the actual computation to be '-

performed instead of the looping in which it is embedded. This encourages programmers to use more
efficient implementations of their algorithms. For example, a Sobel program gained a factor of four in
speed when it was reimplemented with Apply. This speedup primarily resulted from explicitly coding
the convolutions. The resulting code is more comprehensible than the earlier implementation.

" Apply programs are easier to write, easier to debug, more comprehensible and more likely to work
correctly the first time. A major benefit of Apply is that it greatly reduces programming time and effort
for a very useful class of vision algorithms. The resulting programs are also faster than the programmer
would probably otherwise achieve.

2.2.1 The Apply Language
The Apply language is designed for programming image to image computations where the pixels of the output

images can be computed from corresponding rectangular windows of the input images. The essential feature of the
language is that each operation is written as a procedure for a single pixel position. The Apply compiler generates a
program which executes the procedure over an entire image. No ordering constraints are provided for in the
language, allowing the compiler complete freedom in dividing the computation among processors.

%,*'/

'''

6

Each procedure has a parameter list containing parameters of any of the following types: in, out or constant.
Input parameters are either scalar variables or two-dimensional arrays. A scalar input variable represents the pixel
value of an input image at the current processing co-ordinates. A two-dimensional array input variable represents a
window of an input image. Element (0,0) of the array corresponds to the current processing co-ordinates.

Output parameters are scalar variables. Each output variable represents the pixel value of an output image. The
final value of an output variable is stored in the output image at the current processing co-ordinates.

Constant parameters may be scalars, vectors or two-dimensional arrays. They represent precomputed constants
which are made available for use by the procedure. For example, a convolution program would use a constant array
for the convolution mask.

The reserved variables ROW and COL are defined to contain the image co-ordinates of the current processing
location. This is useful for algorithms which are dependent in a limited way on the image co-ordinates.

Section 2.8 gives a grammar of the Apply language. The syntax of Apply is based on Ada [1]; we chose this
syntax because it is familiar and adequate. However, as should be clear, the application dependence of Apply means
that it is not an Ada subset, nor is it intended to evolve into such a subset.

The operators -, I, &, and ! refer to the exclusive or, or, and, and not operations, respectively. Variable and
function names are alpha-numeric strings of arbitrary length, commencing with an alphabetic character. The
INTEGER and REAL pseudo-functions convert from real to integer, and from integer (or byte) to real types. Case is
not significant, except in the preprocessing stage which is implemented by the m4 macro processor [22].

BYTE, INTEGER, and REAL refer to (at least) 8-bit integers, 16-bit integers, and 32-bit floating point numbers.
BYTE values are converted implicitly to INTEGER within computations. The actual size of the type may be larger,
at the discretion of the implementor.

2.2.2 An Implementation of Sobel Edge Detection
As a si, 'e example of the use of Apply, let us consider the implementation of Sobel edge detection. Sobel edge

detection s performed by convolving the input image with two 3 x 3 masks. The horizontal mask measures the
gradient of horizontal edges, and the vertical mask measures the gradient of vertical edges. Diagonal edges produce
some response from each mask, allowing the edge orientation and strength to be measured for all edges. Both masks
are shown in Figure 2-1.

I 1 2 1 I I 1 0 -1 I
I 0 0 0 I I 2 0 -2 I

-1 -2 -1 I I 1 0 -1 I

Horizontal Vertical

Figure 2-1: The Sobel Convolution Masks.

An Apply implementation of Sobel edge detection is shown in Figure 2-2. The lines have been numbered for the
purposes of explanation, using the comment convention. Line numbers are not a part of the language.

Line I defines the input, output and constant parameters to the function. The input parameter inimg is a window
of the input image. The constant parameter thresh is a threshold. Edges which are weaker than this threshold are
suppressed in the output magnitude image, mag. Line 3 defines horiz and vert which are internal variables used to
hold the results of the horizontal and vertical Sobel edge operator.

Line I also defines the input image window. It is a 3 x 3 window centered about the current pixel processing
position, which is filled with the value 0 when the window lies outside the image. This same line declares the
constant and output parameters to be floating-point scalar variables.

7

procedure sobel (inimg : in array (-1..1, -1..1) of byte -- 1
border 0,

thresh : const real,
mag : out real)

is -- 2
horiz, vert : integer; -- 3

begin -- 4
horiz :- inimg(-l,-l) + 2 * inimg(-1,0) + inimg(-1,1) - -- 5

inimg(l,-l) - 2 * inimg(1,0) - inimg(l,l);
vert inimg(-l,-l) + 2 * inimg(0,-l) + inimg(l,-l) 6

ini (-1,1) - 2 * inimg(0,1) - inimg(1,);
mag :- sqrt(horiz*horiz + vert*vert); -- 7
if mag < thresh then -- a

mag 0.0; 9
end if; -- 10

end sobel; -- 11

Figure 2-2: An Apply Implementation of Thresholded Sobel Edge Detection.

The computation of the Sobel convolutions is implemented by the straight-forward expressions on lines 5 through
7. These expressions are readily seen to be a direct implementation of the convolutions in Figure 2-1.

2.2.3 Border Handling
Border handling is always a difficult and messy process in programming kernel operations such as Sobel edge

detection. In practice, this is usually left up to the programmer, with varying results-sometimes borders are
handled in one way, sometimes another. Apply provides a uniform way of resolving the difficulty. It supports
border handling by extending the input images with a constant value. The constant value is specified as an
assignment. Line I of Figure 2-2 indicates that the input image inimg is to be extended by filling with the constant 0
value 0.

If the programmer does not specify how an input variable is to be extended as the window crosses the edge of the
input image, Apply handles this case by not calculating the corresponding output pixel.

2.2.4 Image Reduction and Magnification
Apply allows the programmer to process images of different sizes, for example to reduce a 512x512 image to a

256x256 image, or to magnify images. This is implemented via the SAMPLE parameter, which can be applied to
input images, and by using output image variables which are arrays instead of scalars. The SAMPLE parameter
specifies that the apply operation is to be applied not at every pixel, but regularly across the image, skipping pixels
as specified in the integer list after SAMPLE. The window around each pixel still refers to the underlying input 0
image. For example, the following program performs image reduction, using overlapping 4 x4 windows, to reduce
a nxn image to an n/2x n/2 image:

S,"

- , " % . .- 7 i.. '. .,°t, . .,''...-,'.'..''.;.;°..' ,,.' -;';' .' ,"",",

8

procedure reduce(inim : in array (0..3, 0..3) of byte sample (2, 2),
outing out byte)

is
sum : integer;
i,j : integer;

begin
sum :- 0;
for i in 0..3 loop

for j i.n 0. .3 loop
sum : - sum + inirng(i,j);

end loop;
end loop;
outing :- sum / 16;

end reduce;

Magnification can be done by using an output image variable which is an array. The result is that, instead of a
single pixel being output for each input pixel, several pixels are output, making the output image larger than the
input The following program uses this to perform a simple image magnification, using linear interpolation:

procedure magnify(inimg : in array(-l..1, -I..1) of byte border 0,
outimg: out array(0..l, 0..I) of byte)

is
begin

outimage(0,0) (inimg(-l,-1) + ining(-1,0)
+ inimg(o,-1)+ inizng(o,0)) 1 4;

outimage(0,1) (inimg(-1,0) + inimg(-1,l)
+ inimg(0,0) + ining(0,1)) / 4;

outimage(1,0) := (inimg(0,-1) + inimg(0,0)
+ inimg(l,-l)+ inim(1,0)) / 4;

outimage(l,l) (inimg(0,0) + ining(0,1)
+ inimg(l,0) + inim(l,l)) 1 4;

end magnify;

The semantics of SAMPLE (si, s2) are as follows: the input window is placed so that pixel (0, 0) falls on
image pixel (0,),(Os2), .. ,(Oaxs2),....(mxslnxs2). Thus, SAMPLE (1, 1) is equivalent to omitting the
SAMPLE option entirely.

Output image arrays work by expanding the output image in either the horizontal or vertical direction, or both,
and placing the resulting output windows so that they tile the output image without overlapping.

2.2.5 Multi-function Apply Modules
In many low-level image processing algorithms, results from an adjacent pixel are saved in order to be used to

calculate the results at an adjacent pixel; this results in a more efficient algorithm. Because Apply programs do not
share results from adjacent pixels (doing so would violate Apply's order-independence, which is what makes it easy
to implement in parallel), Apply programmers cannot take advantage of this trick. However, many of these
algorithms can be factored into multiple passes in a way that results in an efficient program without needing to
introduce order dependence.

These multiple functions can be efficiently implemented in Apply. Where memory use is not a concern, the
intermediate results can be saved, and used by the next Apply program. In cases where memory is limited, multiple
Apply functions can be compiled together into a single pass.

9

2.M.1 An Efficient Sobel Operator
A simple example is the Scbel operator. In the program shown in Figure 2-2, at each pixel the row and column

sums must be recalculated. But at every pixel, one of the row and column sums are shared with pixels two to the
left, right, top, and bottom. This is inefficient.

Figure 2-3 shows the same Sobel operator implemented as multiple functions. In the ROWCOL procedure, the row
and column sums are calculated-each is calculated only once per pixel. In the SOBEL procedure, the row and
column differences are summed, and the result is computed just as before. This program does 6 fewer additions and
2 fewer multiplications than the program in Figure 2-2.

procedure rowcol (ini g : in array (-1..1, -1..1) of byte
border 0,

rowsum : out integer,
colsum : out integer)

is
begin

rowsum :- inimg(O,-l) + 2 * inimg(0,0) + inimg(0,l);
colsum := inimg(-l,0) + 2 * inimg(0,0) + inimq(1,0);

end rowcol;

procedure sobel (rowsum : in array(-l..1, 0..0) of integer,
colsum : in array(O..0, -1..I) of integer,
thresh : const real,
mag : out real)

in
horiz, vert : integer;

begin
horiz : rowsum(-1,0) - rowsum(1, 0);
vert : colsum(O,-1) - colsum(0,1);
mag :s qrt(horiz*horiz + vert*vert);
if mag < thresh then

mag := 0.0;
end if;

end sobel;

Figure 2-3: A More Efficient Sobel Operator

2.2.5.2 An Efficient Median Filter
Another example is median filter. Many median filter algorithms use results from an adjacent calculation of the

median filter to compute a new median filter, when processing the image in raster order. Apply multiple functions
lead to the following 3 x 3 median filter.

The algorithm works in two steps. The first step (MEDIANI) produces, for each pixel, a sort of the pixel and the
pixels above and below that pixel. The result from this step is an image three times higher than the original, with the
same width. The second step (MEDIAN2) sorts, based on the middle element in the column, the three elements
produced by the first step. Note the use of the SAMPLE clause in this step to place MEDIAN2 at every third row
produced by MEDIANI-this causes MEDIAN2 to produce an image the same size as the input to MEDIAN1.
MEDIAN2 produces the following relationships among the nine pixels at and surrounding a pixel:

a d g

V V V

b < e < h

V V V

C f i

I

U'

U.-,
,

U'. w,

10

From this diagram, it is easy to see that none of pixels g, h, b, or c can be the median, because they are all greater
or less than at least five other pixels in the neighborhood. The only candidates for median are a, d, ejf, and i. Now
we observe that f< fe, h.d, g), so that if f< a, f cannot be the median since it will be less than f ive pixels in the
neighborhood. Similarly, if a <f, a cannot be the median. We therefore compare a andf, and keep the larger. By a
similar argument, we compare i and d and keep the smaller. This leaves three pixels: e, and the two pixels we chose
from (ajf), and Id, i). All of these are median candidates. We therefore sort them and choose the middle element;
this is the median.

This algorihm computes a 3 x 3 median filter with only eleven comparisons, comparable to many techniques for
optimizing median filter in raster-order processing algorithms.

-- Sort the three elements at, above, and below each pixel
procedure aediani (image :in array(-l. .1, 0. .0) of byte,

ci : out array(-1. .1, 0. .0) of byte)
is

byte a, b, c;
begin

if imaqe(-1,0) > image(0,0)
then if imaqe(0,0) > image(l,0)

then si(l,0) :=image(-1,0); -

si(0,0) :=image(0,0);
si(-1,0) :=image(1,0); end if;

else if image(-1,0) > image(1,0)
then si(l,0) :=iiaqe(-, 0):

else si(1,O) :imaqe(1,p);
si(0,O) :image(1, 0);
si(-l,0) =iinaqe'(6,0);

end if;
end if;

else if iinage(0,0) > image(1,0)
then if image(-l,0) > image(1,0)

then 3i(1,0) imuage(0,0);
si(0,0) i mage(-1,0);
si(-l,0) . image(l,0);

else si(1,0) :=image(0,0);
si(0,0) :=image(1,0);
si(-l,0) =iinaqe(-l, 0);

end if;
else si(1,0) :=image(1,0);

si(0,0) :=image(0, 0);
si(-l,0) =iinaqe(-1,0);

end if;
end if;

end medianl;

4.,

pzocedure median2(si : in array(-1..1, -i..1) of byte
saMple (3, 1),

median : out byte)
-- Combine the sorted columns from the first step to give the median.

int 1, m, h;
byte A B;

begin
if si(-1, 0) > si(0, 0)

then if si(0, 0) > si(1, 0)
then h :- -1; a :- 0; 1 := 1; end if;
else if ai(-l,0) > si(1,0)

then h :- -2; a :1 1; 1 := 0;
else h : 1; i n -1; 1 :- 0; end if; end if;

else if si(0, 0) > si(l, 0)
then if si(-,O) > si(1,0)

then h : 0; a -1; 1 1;
else h : 0; m :1 2; 1 -1; end if;

else h : ,l; m :- 0; 1 := -1; end if; end if;

if si(l, -1) > si(m, 1)
then A : si(l, -1);
else A :- si(m, 1); end if;

if si(m, -1) < si(h, 1)
then B :- si(m, -1);
else B : si(h, 1); end if;

if A > si(m, 0)
then if si(m, 0) > B

then median :- si(m, 0); end if;
else if A > B

then median := B;
else median := A; end if; end if; a'

else if si(M, 0) > B
then if A > B

then median := A;
else median := B; end if; .-

else median : si(m, 0); end if; end if;

end median2;

2.3 Apply on Warp and Warp-like Architectures
The Warp-like architectures have in common that they are systolic arrays, in which each processor is a powerful

(10 MFLOPS or more) computer with high word-by-word 1/0 bandwidth with adjacent processors, arranged in a
simple topology. Apply is implemented on these processors in similar ways, so we first describe the basic model of
low-level image processing on Warp, and then sketch the implementations on FT Warp and i Warp.

We briefly describe each of the Warp-like architectures; a complete description of Warp is available
elsewhere [3]. Warp is a short linear array, typically consisting of ten cells, each of which is a 10 MFLOPS
computer. The array has high internal bandwidth, consistent with its use as a systolic processor. Each cell has a
local program and data memory, and can be programmed in a Pascal-level language called W2, which supports
communication between cells using asynchronous word-by-word send and receive statements. The systolic
array is attached to an external host, which sends and receives data from the array from a separate memory. The .0
external host in turn is attached to a Sun computer, which provides the user interface.

%

12

Fault-tolerant (FT) Warp is a two-dimensional array, typically a five-by-five array, being designed by Carnegie
Mellon. Each cell is a Warp cell. Each row and column can be fed data independently, providing for a very high
bandwidth. As the name suggests, this array has as a primary goal fault-tolerance, which is supported by a virtual
channel mechanism mediated by a separate hardware component called a switch.

I

iWarp is an integrated version of Warp being designed by Carnegie Mellon and Intel. In i Warp each Warp cell is
implemented by a single chip, plus memory chips. The baseline i Warp machine is a 72 cell linear array, although
two-dimensional designs are also being considered. i Warp includes support for distant cells to communicate as if
they were adjacent, while passing their data through intermediate cells.

2.3.1 Low-level vision on Warp
We map low-level vision algorithms onto Warp by the input partitioning method. On a Warp array of ten cells,

the image is divided into ten regions, by column, as shown in Figure 2-4. This gives each cell a tall, narrow region
to process; for 512x 512 image processing, the region size is 52 columns by 512 rows. To use technical terms from
weaving, the Warp cells are the "warp" of the processing; the "weft" is the rows of the image as it passes through
the Warp array.

C Cc Cc c c C C
e e e e e e e e e e
1 1 1 1 1 1 1 1 1

987 615 4 3 2 1 0 1

522

52

Figure 2-4: Input Partitioning Method on Warp

The image is divided in this way using a series of macros called GETROW, PUTROW, and COMPUTEROW.
GETROW generates code that takes a row of an image from the external host, and distributes one-tenth of it to each
of ten cells. The programmer includes a GETROW macro at the point in his program where he wants to obtain a row
of the image; after the execution of the macro, a buffer in the internal cell memory has the data from the image row.

The GETROW macro works as follows. The external host sends in the image rows as a packed array of bytes- for
a 512-byte wide image, this array consists of 128 32-bit words. These words are unpacked and converted to floating
point numbers in the interface unit. -The 512 32-bit floating point numbers resulting from this operation are fed in
sequence to the first cell of the Warp array. This cell takes one-tenth of the numbers, removing them from the
stream, and passes through the rest to the next cell. The first cell then adds a number of zeroes to replace the data it
has removed, so that the number of data received and sent are equal.

This process is repeated in each cell. In this way, each cell obtains one-tenth of the data from a row of the image.
As the program is executed, and the process is repeated for all rows of the image, each cell sees an adjacent set of
columns of the image, as shown in Figure 2-4.

We have omitted certain details of GETROW- for example, usually the image row size is not an exact multiple of
ten. In this case, the GETROW macro pads the row equally on both sides by having the interface unit generate an
appropriate number of zeroes on either side of the image row. Also, usually the area of the image each cell must see
to generate its outputs overlaps with the next cell's area. In this case, the cell copies some of the data it receives to

13

the next cA. All this code is automatically generated by GETROW.

PUTROW, the corresponding macro for output, takes a buffer of one-tenth of the row length from each cell and
combines them by concatenation. The output row starts as a buffer of 512 zeroes generated by the interface unit. 141

The first cell discards the irSt one-tenth of these and adds its own data to the end. The second cell does the same,
adding its data after the first. When the buffer leaves the last cell, all the zeroes have been discarded and the first
cell's data has reached the beginning of the buffer. The interface unit then converts the floating point numbers in the
buffer to zoes and outputs it to the external host, which receives an array of 512 bytes packed into 128 32-bit
words. As with GETROW, PUTROW handles image buffers that are not multiples of ten, this time by discarding data
on both sides of the buffer before the buffer is sent to the interface unit by the last cell.

During GETROW, no computation is performed, the same applies to PUTROW Warp's horizontal microword,
however, allows input, computation, and output at the same time. COMPUTEROW implements this. Ignoring the
complications mentioned above, COMPUTEROW consists of three loops. In the first loop, the data for the cell is read
into a memory buffer from the previos cell, as in GETROW, and at the same time the first one-tenth of the output
buffer is discarded, as in PUTROW. In the second loop, nine-tenths of the input row is passed through to the next
cell, as in GETROW; at the same time, nine-tenths of the output buffer is passed through, as in PUTROW. This loop is
unwound by COMPUTEROW so that for every 9 inputs and outputs passed through, one output of this cell is
computed. In the third loop, the outputs computed in the second loop are passed on to the next cell, as in PUTROW.

There are several advantages to this approach to input partitioning.
" Work on the external host is kept to a minimum. In the Warp machine, the external host tends to be a

bottleneck in many algorithms; in the prototype machines, the external host's actual data rate to the
army is only about 1/4m of the maximum rate the Warp machine can handle, even if the interface unit
unpacks data as it arrives. Using this input partitioning model, the external host need not unpack and
repack bytes, which it would have to if the data was requested in another order. On the production
Warp machine, the same concern applies; these machines have DMA, wich also requires a regular
addressing pattern.

" Each cell sees a connected set of columns of the image, which are one-tenth of the total columns in a
row. Processing adjacent columns is an advantage since many vision algorithms (e.g., median
filter [17]) can use the result from a previous set of columns to speed up the computation at the next set
of columns to the righL

• Memory requirements at a cell are minimized, since each cell must store only 1110 1h of a row. This was
important in the prototype Warp machines, since they had only 4K words memory on each cell. On PC
Warp, with 32K words of memory per cell, this approach makes it possible to implement very large
window operations.

" An unexpected side effect of this programming model was that it made it easier to debug the hardware
in the Warp machine. If some portion of a Warp cell is not working, but the communication and
microsequencing portions are, then the output from a given cell will be wrong, but it will keep its proper
position in the image. This means that the error will be extremely evident-typically a black stripe is
generated in the corresponding position in the image. It is quite easy to infer from such an image which
cell is broken

2.3.2 Apply on FT Warp
The 2-dimensional Fr Warp array can be viewed as several 1-dimensional arrays. An image is usually divided

into several swaths (adjacent groups of rows) on FT Warp. The data of each swath are fed into the corresponding
row of these 2-dimensional processors, as an image is fed into a 1-dimensional array. This results in each cell of FT
Warp in seeing a rectangular portion of the image.

To make the bandwidth as high as possible and to use the COMPUTEROW model, we input the data along the
horizontal path and output data along the vertical path.

The typical Fr Warp array is a five-by-five array, as opposed to ten cells in Warp, and each cell is as powerful as

14
a Warp CelU. FT Warp, however, has much higher bandwidth than Warp. Therefore, for complex image processing

operations where I/O bandwidth is not a factor, we expect FT Warp Apply programs to be 2.5 times faster than
Warp Programs, and even faster in simple image processing operations where I/O bandwidth limits Warp
perfornance.

2.3.3 Apply on iWarp
The iWarp implementation of Apply uses a virtual pathway mechanism to allow each cell to process only data

intended for that cell. This eliminates much of the complication of Apply on Warp; there is no need for a cell to
explicitly pass data on to other cells, instead it can simply direct the rest of the data to pass on to later cells without
further intervention.

Our description of Apply on iWarp will be clear if we describe the action of GETROW and PUTROW on this
machine. In GETROW, each cell accepts data intended for that cell, and then releases control of the data to be
passed on to the next cell automatically, until the arrival of the start of the next row. After releasing control, it goes
on to process the data it has just received. In the meantime, it is allowing data to pass by on the output channel until
the end of the output row arrives. It then tacks on its computed output to the end of this output row, completing
PUTROW.

We expect this method of implementing Apply to be at least as efficient as the COMPUTEROW model on Warp.
Since the baseline iWarp machine has 72 cells, each of which is 1.6 to 2 times as powerful as a Warp cell, total
performance should be from about 10 to 14 times greater than Warp. iWarp's [/O bandwidth is much higher than
Warp's, so this performance should be achievable for all but the most simple image processing operations.

2.4 Apply on Uni-processor Machines
The same Apply compiler that generates Warp code also generates C code to be run under UNIX. We have found

that an Apply implementation is usually at least as efficient as any alternative implementation on the same machine.
The computation time of the Apply-generated code is usually faster than that of hand coded programs. This
efficiency results from the expert knowledge which is built into the Apply implementation but which is too complex
for the programmer to work with explicitly. In addition, Apply focuses the programmer's attention on the details of
the computation, which often results in improved design of the basic computation.

The Apply implementation for uni-processor machines employs a technique, called cyclic-scroll buffering here,
which efficiently uses small space and time to buffer the rows of the image. The technique allows the kernel to be
shifted and scrolled over the buffer with low cost.

The cyclic-scroll buffering technique which we developed for Apply on uni-processor machines is described as
follows. For an NxN input image which will be processed with an MxM kernel, a buffer with (N+M-I)xM+ (N-1)
elements is required.

Figure 2-5 and 2-6 display the column-major arrangement for processing a 3 x 3 kernel. The pointers represent
successive positions in memory. In addition, we keep two base pointers for the buffer. One, called row base, points

to the first pixel of the three rows of the image and the other, called kernel base, points to the first pixel of the
kernel. C language subscripting can be used to directly access the elements of the kernel except that the indices of
row and column must be exchanged because the rows of the images are stored in column-major order.

Initially, we put the first M rows of the image, including the border, into the buffer in column-major order. When
the first kernel is processed, row base points to the first element of the buffer, and kernel base points to the center
element of the window to be processed. After the first kernel has been processed, the kernel base is incremented by
M to point to the first pixel of the next kernel. It is thus possible to shift the kernel across the entire buffer of data
with a cost of only one addition. P

When processing an entire row is completed, the first row in the buffer from the row base is discarded and the
next row of the image is input into the discarded row with a column displacement of one (i.e. beginning at the

.I

15

------------ -----

0 RB KB

1

2

0 1 2 3 4 513
Kernel

KB: The element pointed by kernel base.
RB: The element pointed by row base. Spare S

Figure 2-5: Processing the first row by the cyclic-scroll buffering

second element). Then the row base is incremented by one. The purpose of column displacement 1 is that the input
row can be considered to be the Mth row of the buffer starting from the new row base. Effectively, the rolling is
done at the same time. After the kernel base is reset to point to the center element of the new window, we can do
another row operation in the same way as the first until all the rows are processed. Figure 2-5 and 2-6 show the
processing of the first and second row.

0II

I I

1 RB IKB

2 S

0 1i 2 3 4 513
Kernel

KB: The element pointed by kernel base.RB: The element pointed by row base.

RB: he eemet pontedby ow bse.Spare

Figure 2-6: Processing the second row by the cyclic-scroll buffering

For each row operation, one more memory element is needed in the buffer. Therefore. the total number of the
elements in the buffer is Mx (N+M- 1) + (N-1).

2.5 Apply on the Hughes HBA
Apply has been implemented on the Hughes HBA computer [32] by Richard Walace of Carnegie Mellon and

Hughes. In this computer, several MC68000 processors are connected on a high-speed video bus, with an interface
between each processor and the bus that allows it to select a subwindow of the image to be stored into its memory.
The input image is sent over the bus and windows are stored in each processor automatically using DMA. A similar

16

interface exists for outputting the image from each processor. This allows flexible real-time image processing.

The Hughes HBA Apply implementation is straightforward and similar to the Warp implementation. The image
is divided in "swaths", which are adjacent sets of rows, and each processor takes one swath. (In the Warp
implementation, the swaths are adjacent sets of columns, instead of rows). Swaths overlap to allow each processor
to compute on a window around each pixel. The processors independently compute the result for each swath, which
is fed back onto the video bus for display.

The HBA implementation of Apply includes a facility for image reduction, which was not included in earlier
versions of Apply. The HBA implementation subsamples the input images, so that the input image window refers to
the subsampled image, not the original image as in our definition. We prefer the approach here because it has more
general senmantics. For example, using image reduction as we have defined it, it is possible to define image
reduction using overlapping windows as in Section 2.2.4.

2.6 Apply on Other Machines
Here we briefly outline how Apply could be implemented on other parallel machine types, specifically bit-serial

processor arrays, and distributed memory general purpose processor machines. These two types of parallel
machines are very common; many parallel architectures include them as a subset, or can simulate them efficiently.

2.6.1 Apply on bit-serial processor arrays
Bit-serial processor arrays [6] include a great many parallel machines. They are arrays of large numbers of very

simple processors which are able to perform a single bit operation in every machine cycle. We assume only that it is
possible to load images into the array such that each processor can be assigned to a single pixel of the input image,
and that different processors can exchange information locally, that is, processors for adjacent pixels can exchange
information efficiently. Specific machines may also have other features that may make Apply more efficient than
the implementation outlined here.

In this implementation of Apply, each processor computes the result of one pixel window. Because there may be
more pixels than processors, we allow a single processor to implement the action of several different processors over
a period of time, that is, we adopt the Connection Machine's idea of virtual processors [16].

The Apply program works as follows:
" Initialize: For n x n image processing, use a virtual processor network of n x n virtual processors.

" Input For each variable of type IN, send a pixel to the corresponding vir essor.

" Constant Broadcast all variables of type CONST to all virtual processors.

" Window: For each IN variable, with a window size of mxm, shift it in a spiral,'Tirst one step to the
right, then one step up, then two steps two the left, then two steps down, and so on, storing the pixel
value in each virtual processor the pixel encounters, until a mx m square around each virtual processor
is filled. This will take m2 steps.

e Compute: Each virtual processor now has all the inputs it needs to calculate the output pixels. Perform
this computation in parallel on all processors.

Because memory on these machines is often limited, it may be best to combine the "window" and "compute"
steps above, to avoid the memory cost of prestoring all window elements on each virtual processor.

2.6.2 Apply on distributed memory general purpose machines
Machines in this class consist of a moderate number of general purpose processors, each with its own memory.

Many general-purpose parallel architectures implement this model, such as the Intel iPSC [181 or the Cosmic
Cube [29]. Other parallel architectures, such as the shared-memory BBN Butterfly [7, 25], can efficiently
implement Apply in this way; treating them as distributed memory machines avoids problems with contention for

e F r

17

memory.

This implementation of Apply works as follows:
" Input If there are n processors in use, divide the image-into n regions, and store one region in each of

the n processors' memories. The actual shape of the regions can vary with the particular machine in
use. Note that compact regions have smaller borders than long, thin regions, so that the next step will
be more efficient if the regions are compact.

" Window: For each IN variable, processors exchange rows and columns of their image with processors
holding an adjacent region from the image so that each processor has enough of the image to compute
the corresponding output region.

" Compute: Each processor now has enough data to compute the output region. It does so, iterating over
all pixels in its output region.

2.7 Summary
The Apply language crystallizes our ideas on low-level vision programming on parallel machines. It allows the

programmer to treat certain messy conditions, such as border conditions, uniformly. It also allows the programmer
to get consistently good efficiency in low-level vision programming, by incorporating expert knowledge about how
to implement such operators.

We have defined the Apply language as it is currently implemented, and described its use in low-level vision
programming. Apply is in daily use at Carnegie Mellon and elsewhere for Warp and vision programming in
general; it has proved to be a useful tool for programming under UNIX, as well as an introductory tool for Warp
programming.

We have described our programming techniques for low-level vision on Warp. These techniques began with
simple row-by-row image processing maefos, which are still in use for certain kinds of algorithms, and led to the
development of Apply, which is a specialized programming language for low-level vision on Warp. This language
could then be mapped onto other computers, including both uni-processors and parallel computers.

One of the most exciting characteristics of Apply is that it is possible to implement it on diverse parallel
machines. We have outlined such implementations on bit-serial processor arrays and distributed memory machines.
Implementation of Apply on other machines will make porting of low-level vision programs easier, should extend
the lifetime of programs for such supercomputers, and will make benchmarking easier. Several implementation
efforts are underway at other sites to map Apply onto other parallel machines than those described here.

We have shown that the Apply programming model provides a powerful simplified programming method which
is applicable to a variety of parallel machines. Whereas programming such machines directly is often difficult, the
Apply language provides a level of abstraction in which programs are easier to write, more comprehensible and
more likely to work correctly the first time. Algorithm debugging is supported by a version of the Apply compiler
which generates C code for uni-processor machines.

2.8 Grammar of the Apply Language
procedure : PROCEDURE function-name (function-args

is
variable-declarations

BEGIN
statements

EHD function-name;
I

function-args : function-argument I , function-argument) *

function-argument : : var-list : IN type

18

BORDER Conut-expr
SAMPLE (integer-list)

I var-list :OUT type
I var-list :CONST type

var-list = variable ,variable]*

integer-list = integer [,integer] *

integer := [sign] digit [digit] *
sign +: I + -
digit 0:- 11 2131415 1 61 71 819

variabke-declarations - [var-list type;J*

type - ARRAY (range [,range I +)OF elementary-type
I elementary-type

range = integer-expr .. integer-expr

elementary-type = sign object
I object

sign SIGNED~
I UNSIGNED
I Empty

object = BYTE
I INTEGER

REAL

statements =[statement;]*

statement = assignment-stint

I or-stin

I while-stint

assignment-stint = scalar-var := expr rA

scalar-var - variable
I variable (subscript-list)

subscript-list = integer-expr [,integer-expr 1* 5

expr :- expr + expr
I expr-expr%
I expr *expr

I expr/expr
I expr expr L

I expr Iexpr
I expr expr
S expr
I expr)

I pseudo-function Cexpr)
I variable (subscript-list)

~ ~ P 5 ~ ij~ ~W ~ '~~% W % %. %% '.V % '.

% , V 7% .. 7 r- - 0

19

if-stint IP bool-expr THEN1
statements

END IF
I IF bool-expr THEN

statements
ELSE

statements
END IF

bool-expr = booI-expr AND bool-expr
I bool-expr OR bool-expr
I NOT bool-expr

(bool-expr)
I expr <expr
I r <- cxpr

expr wexpr
I expr >= expr
I expr >expr
I expr /= expr

for-stimt = FOR integer-var IN range LOOP
statements

END LOOP

while-sint WHILE bool-expr LOOP
statements

END LOOP

N.\' J4

20

3. Architecture-Independent Image Processing: Performance of Apply on Diverse
Architectures

3.1 Introduction
Low-level vision is an area of computer science that is ripe for the use of parallel computers. This class of

operations is easily parallelizable. Indeed, many parallel computers are already being developed for use at this level

of vision. These computers offer enormous speedup to the developer of computer vision algorithms, since these
operations are so time-consuming, but software development is necessary before they can be used.

We have developed a language called Apply [14] which can generate efficient programs for a variety of parallel
machines given a single source code. Apply therefore allows machine independent programming, for a limited,
application-specific, set of algorithms.

Apply has been used to develop a library of vision programs called WEB, which includes routines for many
low-level vision operations. Over 130 programs exist in WEB, 80% of which are written in Apply. The Apply
routines include basic image operations, convolution, edge detection, smoothing, binary image processing, color
conversion, pattern generation, and multi-level image processing. This library is therefore a machine-independent
software base for low-level image processing.

Because of the machine independence of the Apply language, programs written in Apply can be ported from one
machine to another simply by recompilation. Moreover, the Apply compiler and the WEB library allow the
comparison of the performance of vision machines, since the same source code will be running on both machine,
which is the strongest possible basis for comparison of twr- 7rnputers.

In this paper, we demonstrate this by studying the performance of Apply on three diverse architectures, by
examining the execution times of programs from WEB. The architectures are the Carnegie Mellon Warp machine, a
100 MFLOPS systolic array machine [4]; a Sun workstation; and the Hughes Aircraft Corporation Hierarchical Bus
Architecture (HBA) [32], a MIMD compater specifically designed for image processing applications. These
architectures differ in the number of processors, in the processor topology, and in the underlying processor, but
Apply generates efficient code for all of them. The implementation of Apply on each of them is described
elsewhere [14].

We discuss the WEB library, which has been the basis of our performance experiments with Apply. Using WEB,
we establish a baseline of Apply's performance by comparing Apply code with code generated by hand for snme of
the computers. Then we use execution time as a basis for evaluating the performance of Apply, and for studying the
suitability of these machines as image processors.

3.2 The WEB Library
Apply has been used to implement a large portion of the WEB library of vision programs, which is a large library

of vision programs implemented for use on the Carnegie Mellon Warp machine. The original purpose of the library
was to facilitate vision programming on the Warp machine.

WEB currently consists of over 130 routines, 80% of which are written in Apply. The rest are written in W2,
which is the standard Warp programming language. All of the local image-to-image vision routines in WEB are

%written in Apply; the W2 routines include non-local routines such as histogram, image warping, and connected
components.

* WEB is based on the SPIDER library of FORTRAN programs [30]. This is a subroutine library, developed in
Japan, for image processing using FORTRAN. Routines from SPIDER will be compared here in performance with
equivalent routines from WEB in order to measure Apply's performance as a code generator for Sun.

21

3.3 Apply Code Compared with Hand-written Code
Our primary purpose in this paper is to develop a comparison of different parallel processing machines for vision

using Apply as a vehicle. In order to base this comparison on solid ground, we must first evaluate Apply's
performance compared with hand-written code for the same machine. If Apply produces code that is comparable to
hand-written code, then our comparison will be solidly based, since the code generated by Apply represents the peak
performance of the machine. On the other hand, if Apply code is not as good, then the comparison will not be
solidly based; it could be argued that the measured performance would not actually be seen, since the user would not
use Apply.

3.3.1 Apply code compared with SPIDER code
We begin by comparing Apply performance on WEB routines with a set of routines of similar function from the

SPIDER FORTRAN library. The SPIDER library is professionally written and distributed, and the code is of high
quality; therefore, this comparison pits Apply's code against the code of expert programmers.

S

We are comparing the actual execution times (user time plus system time) of the FORTRAN programs, called as a
subroutine from C, with execution times of C programs generated by Apply, called in the same way. The time is
measured from the point at which the input images are ready (have been stored in the Sun's memory) to the point at
which the output images are ready, in both cases. This time does not include the I/O time for the images from disk,
or the code download time from disk into the Sun. All times ae for 512x512 images.

aft1b
b&41-
aft1b -

b"I1

pbl
adft1r

Ce

diveir-

I II I 1 I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3-1: Ratio of execution times of hand-generated SPIDER
FORTRAN to Apply code.

Vertical line indicates a ratio of one.

Figure 3-1 gives the ratios of execution times for these programs, and Figure 3-2 shows the distribution of times

for all programs. We can see from these figures the following phenomcna:

% %

22 0

100.

is. +

iN,

++

+. + + +

101 +.

S.

3 *

Figure 3-2: Scatter diagram of execution times of band-generated SPIDER -d
FORTRAN and Apply code.

Diagonal line indicates equality.

" The Apply programs are generally faster. There are four factors that can account for this: (1) Cyclic- %,.
scroll buffering; (2) The superiority of the Sun C compiler to the Sun FORTRAN compiler, (3) The

FORTRAN code is written to be readable, at the expense of efficinented erated by Apply
need not satisfy such a constraint, since the Apply input code is quite readable. Apply can sacrifice
legibility for speed.ic e t

In some cases such as addplr and divclr the Apply code is slower. In these programs the algorithm is
processing a single pixel from the input image to produce a single uneFORtRA output image. The
cyclic-scro buffering technique introduces a significant overhead in this case. (The same does not
apply for addplb sc ad dolb since here the FORTRAN code is processing integer images, while the

Apply program is processing byte images. Thus, these programs are not strictly comparable).

" Apply has some limitations in its programming model that affect performance. In the FORTRAN k
subroutines, it is common to write several different ways of computing the output depending on
switches. There is little overhead for this in FORTRAN since the code can be generated as follows:

"p.

.4,-

,S,

23

IF (SW.EQ.2) GOTO 100
DO 10 I-RMIN, RMAX
DO 10 J-0CIN, COAX
..compute using method 1..

10 CONTINUE
GOTO 200

100 DO 20 I=RMIN, RMAX
DO 20 J=CIN, CMAX
..compute using method 2..

20 CONTINUE
200 CONTINUE

That is, in FORTRAN the switch is tested only once, and different code is used in the different cases.

In Apply, the equivalent code would test the value of the switch once per pixel, since the Apply
procedure is executed in its entirety for every pixel. This can limit performance in some cases, for
example egrsl and slth2.

In general, we see our intuitions about Apply performance compared with hand-written code to be correct. Apply
can generate better code than hand-written, even on an easily programmed machine such as the Sun.

3.3.2 Apply code compared with W2 code
Next we compare performance on the Carnegie Mellon Warp machine. This machine is programmed by hand in

W2, a Pascal-level language in which the user is explicitly aware of the different processors and the communication
between them. (Send and receive statements are used to send words of data between cells).

While many programs have been and continue to be written for Warp in W2, the availability of Apply has
significantly eased the programmer's burden. Apply hides the explicit parallelism of cells, the number of cells in
use, and the communications between cells from the programmer. This has made it possible to develop WEB for
Warp; without Apply, it is doubtful that such a library could have been built.

Figures 3-3 and 3-4 give the performance for hand-written W2 programs compared with WEB programs of
equivalent function. The times are measured from the moment the input data is available for processing in the
external host memory by the Warp array to the moment the output data is stored into the external host memory. All
times are for 512x512 images. There are three main phenomena responsible for the wide distribution of execution
time ratios:

* Some programs, such as egrsl, egpw3, and egpw4, are much slower in W2 than in Apply. This is
because the W2 programmer made less optimizations to the code (such as unrolling innermost loops)
than the Apply programmer. The Apply programs are smaller, and do not include statements for I/O, so
that the programmer's effort is focused on making the heart of his code as efficient as possible.

* The Apply-generated programs consistently overlap I/O with computation on the cell, while the W2
programs do not. This is because, while it is possible to communicate between cells in the same Warp
microinstruction where computation is done, doing so involves some careful placement of I/O
statements which can be hard for the programmer.

* some programs are slightly faster in W2 than in Apply. This is because of the limitation of the Apply
programming model discussed earlier, the W2 programmer can initialize state based on the values of
global variables, and avoid retesting switches, etc., during processing of the images, while the Apply
programmer cannot do this.

Here we see two principal effects of the Apply language on Warp programming: (1) The Apply programs are
simpler and easier to write, so the programmer makes them more efficient, and Apply in turn generates better code
because it can deal with the machine complexity better, (2) The limitation of the Apply programming model for
preprocessing data can lead to some loss of performance.

S, A ~ 111

24

epU!-

epp SIMI

epbl

r* ...* iJ. I i I I I i I I
0 0.7 1.4 2.1 2.2 3.5 4.2 4.9 5.6 6.3

Figure 3-3: Ratio of execution times of hand-generated W2 code
to Apply code.

Vertical line indicates a ratio of one.

3.4 Comparison of Diverse Architectures
It is very rare that widely different computer architectures are compared directly for performance; the best

previous examples have been FORTRAN studies of supercomputer performance (20]. These have depended on the
implementation of a large language designed for use on sequential computers, and so have been limited to those
computers in which significant software development has occurred to bring up FORTRAN, and which are suitable
for implementation of a sequential computer language.

The comparisons presented here differ from these because the Apply language is designed for use on parallel
computers, so that a wider range of computers can be compared, and because Apply is application-specific, so that it
is small and does not require an enormous effort to bring up on a new system. Thus, we are able to directly compare
the Sun 3/75, the Carnegie Mellon Warp machine, and the Hughes HBA.

3.4.1 Warp Compared with Sun
Figures 3-5 and 3-6 give the performance of a large number of programs implemented both on the Sun 3/75

computer (16 MIHz MC68020 with MC68881 coprocessor) and the Warp machine. This allows us to evaluate the
Warp's performance for image processing compared with a high-performance workstation.

Warp execution time was measured from the point at which the arrays of input data were available in Warp's
external host to the point at which the arrays of output data became available. This is consistent with the
measurement method for the Sun 3/75. Code download time was not included. All times are for 512x512 images.

25

Ezecadosu n d= in d Haul-coded W2

+ +

M10.

Figure 3-4: Scatter diagram of execution times of hand-generated W2 code
and Apply code.

Diagonal line indicates equality.

We observe the following from these data:

"There are a few cases where Warp's performance far exceeds expectations: in the case of egfc and
egks2, for example. Based on the comparative floating point rates, we would expect Warp's
performance to be one to two hundred times that of the Sun, but here the execution times is 666 and 304
times less than the Sun. These large factors are due to the internal parallelism of the Warp cell; it%
consists of many independent units, which can be individually controlled with a wide horizontal
microinstruction. In the best case, a Warp cell can do I/0 with other cells, read and write memory,
compute an integer ALU operation, and compute a floating point add and a floating point multiply, all
in the same 200 nanosecond cycle. The success of this design (and of the compiler in packing
instDctions together) is shown in the ratios for egfc and egks2.

" In the majority of cases, the execution time ratio is tens of times the Sun 3-75. (The average ratio is 67,
with a median of 40). This reflects the raw processing powecr of Warp combined with the effects of the
applications mix (which includes a large amount of integer processing) and the efficiency of the Warp
compiler.

" In some cases, the ratio is ten or less. In these cases, the Apply program cannot make use of Warp's
highly pipelined floating point units, because of a large amount of conditional branching within the
program, and also because the computation is mainly additions, so that the separate multiplier cannot be
used. Here we are seeing the effects of using a highly pipelined machine to implement what is
essentially a scalar operation. The multiple independent Warp cells can still be used effectively, since
the computation is independent between each cell; but the pipeining of the computation within the cell
is not successful.nomier. ...

26

ev eg2 p (65
qPWl 304c) (304)
subclr cl

divclrmuiclr ,
addc¢

"cpbl MUlpic ______ebwl maiplcq_ ___

fcpi _c _ "

ia Iaddplc
-2;Lr divplr

t muipib
riby

-up~

divcib
a, w 3 -"

lradt -

(d~b
mabaib ta -

eikvl inddclb -

aalmmbw
maUic b Pimt . - .-

- cidi -p

mbplb COPl
br bdkil

l l i I I I I I I I

0 30 60 90 120 150 180 210 240 270

Figure 3-5: Ratio of execution times of Sun Apply code
to Warp Apply code.

3.4.2 Warp Compared with Hughes HBA
The Hughes 173A and Warp satisfy very different applications requirements. One is a machine specifically

designed for image processing, with a special video interface, and all high-speed I/O through a frame buffer, the
other is a machine interfaced to a general-purpose external host, which is suited for scientific computing and signal
processing as well as image processing. The high-speed floating point in Warp is largely a reflection of the desire to
satisfy all of these applications areas.

The HBA times are measured from the time the image is available for processing in the frame buffer of the HBA
to the time the output image is stored there. At the time of this study, the HBA processed 240x256 images; to be
consistent with the Warp times, the HBA umes have been multiplied by 4.27. The Warp times are for 512x512
images, measured as before.

We have done only preliminary work on the comparison between the Hughes HBA and Warp. Only a few
programs have been tested, and most of those are integer applications, biasing the data against Warp, since it has
higher-speed floating point than the HBA. Taking this into account, we can study the data shown in Figure 3-7 and
3-8:

" The Warp times are, on average, 3.2 times better than the HBA (the median is also 3.2). This reflects
the greater total computational power of the Warp compared with the I-BA, together with the
application bias towards conditional, integer applications-the HBA can execute approximately 25
MFLOPS versus the Warp's 100 MYFLOPS.

" In the fmin and fmax algorithms, which compute the minimum and maximum of a 3x3 window around
each pixel, the HBA time is slightly better than the IBA time. This is because in such a highly
conditional operation, the use of the long pipeline inside the Warp cell is a barrier to good performance.

12N
q

27

.4-

1.51 /

3.6 0.1 31.52 100.00 31W2

+ + ++
++ +1

&is

+. +4 + -+

1 +
~U 0.10.

+44- +
a,=0 +

Figure 3-6 Scatter diagram of execution times of Sun Apply code
and Warp Apply code.

Moreover, the total number of ALU operations in the HBA is greater, since there are 24 processors
instead of 10, of comparabl e integer performance.

3.5 6,enclusions
This is'-the first study which we are aware of in which highly diverse architectures have been compared using the

same sourc4,code. We can make several conclusions based on this study:

Apply and WEB are plearly good tools for comparing these architectures. Quite apart from the utility of
having Apply and WEB available on an architecture, which is considerable, using the same source code
eliminates many factors that significantly affect performance but which are irrelevant to performance
analysis. Apply is easy to implement on a parallel processor, which makes it possible to evaluate the
performance of a large number of parallel machines -with little effort. We look forward to evaluating
other parallel architectures in the future.

* The main performance limitation of the Apply programming model is the inability to manipulate

constant-type parameters once per image rather than once per pixel. This deficiency will have to be 0
corrected in future versions of Apply or its successors.

P

" Most of the performance limitations of one architecture over another arise from intra-processor
characteristics, rather than inter-processor characteristics. This is because this level of vision is easy to
parallelize, so that different processors need to communicate very little. Much more significant is the
ability of the processor to successfully implement the wide range of operations that is required in
low-level vision, including integer, floating point, and conditional operations.

" Parallel processors deliver performance increases even over high-performance workstations at this level %

of vision, and Apply makes them no harder to program. The performance ratios vary from ten- to
hundred-fold increases. This is a significant, cost-effective, performance increase.

L1

28

awli

egkS.

egwL-

WPW3

b*41-

epbI

t....I. I I I I I I I I k''

0 0.6 1.2 1. 2.4 3 3. 4.2 4.8 5.4 6

Figure 3-7: Ratio of execution times of Hughes HBA Apply code
to Warp Apply code.

Vertical line indicates a ratio of one.

0,

1%

29

2.I1I

.. i9 evad N e.4 Wu 1.51a L

4 4-.

+ +A

+

M10

Figure 3-8: Scatter diagram of execution times of Hughes HBA Apply code
and Warp Apply code.

Diagonal line indicates equality.

$

'.

..

I.

30

4. The WEB Library

4.1 Introduction
WEB is a basic library, based on the Spider library, for image processing on Warp. It consists currently of 134

programs, covering the following areas:
* Basic image operations: add, subtract, multiply, divide images by images and images by constants,

assign zeroes, assign constant inside region.

* Conversions: byte to real, real to byte, polar to cartesian.

" Image grayvalue operations: clip, threshold, remap grayvalues, reduce graylevels.

" Image features: measure area of regions, center of gravity, circumscribing rectangle, histogram,
moments, perimeter of regions.

* Edge detection: Roberts, Frei and Chen, Kirsch, Sobel, Laplacian, Prewitt, Robinson, Kasvand.

" Convolution: convolution with a given weight window and by a constant. Convolution and correlation
using FFT.

* Smoothing: adaptive local smoothing, median filtering, local maximum and minimum, iterative
enhancement, texture image processing.

* Orthogonal transformations: FFT, DCT.

" Warping: quadratic, affine.

" Pattern generatio" h ,;kerboard, stripe, bull's eye, diamond, grid.

" Multi-level ;iia- • 'processing: generate pyramid, reduce by half, double.

" Binary image processing: detect borders, compute image of boundary points, connectivity, crossing,
expand or contract, shrink components.

" Color conversion: color to black and white.

Approximately 80% of the routines are written in Apply, and the rest in W2. All of the Apply routines can be
recompiled easily for W2 or C (Sun/Unix) code generation, and for different image sizes and number of cells. The
W2 programs have been written to use macros, in a way that makes it possible to change image sizes and number of
cells easily in most cases. As compiled, the WEB library does 512x512 image processing on a 10-cell Warp array.

4.2 Calling Programs in WEB
Any of the programs in WEB that are written in W2 or Apply can be called from C using warp_call.

Parameters to warpcall are the file name of the program, and the data parameters to be passed in and out of
Warp. The order of the parameters is given in Appendix I.

For any image parameter, a generalized image (type IMAGE *) can be passed to warp_call. The actual type
and size of the generalized image can be of any type whatsoever. However, warpcal1 will process only a
512x512 region of the image, if is larger than that, and will pad the image with zeroes to produce a 512x512 image
if it is smaller than that. Moreover, for reasons of efficiency, the user may want to manage the memory storage class
and type of the image. For example, if a byte image is passed to a program that expects a real image, warpcall
automatically converts it, using a C routine. The user may wish to use the WEB routine byri instead. Also, all
generalized images are converted to Warp generalized images before being passed to warp_call; this results in
the image being copied to Warp's external host memory. For short programs, this can be inefficient, and the user
may wish to create Warp images using iwarpimage or iwarpcreat instead.

warpcall expands environment variables in filenames, so that it is easy to write code that works no matter
where the WEB library is stored. For example, the following code converts a byte image into a real image. The

31

byte image is the generalized image in, and the real image is the generalized image out:

warpcall("$WPgweb/byrl/byrl", GIMAGE, in, GIMAGE, out);

The following call applies two-dimensional convolution to an image. The input is in in, the output is in out, and
the weight matrix is the matrix of floats weights:

warp_call("$WPEweb/flwlO/flwlO", GIMAGE, in, OTHER, weights,
GIMAGE, out);

As documented in the man page, warpcall also takes parameters that are memory pointers or cluster memory
descriptors. Any parameter that is an image can also be passed as an ordinary two-dimensional array of data using
these methods However, this army will not automatically be converted by warpcall, nor will the bounds be
checked.

Programs in WEB that are written in W2 or Apply can also be executed in the Warpshell using w2-execute.
Parameter types are defined as in Appendix I.

4.3 Classification by Area
The programs in the library are distributed among the areas mentioned in the Introduction section as follows:

* Basic Operations: addclb, addclc, addclr, addcls, addplb, addplc, addplr, addpls, divclb, divclr,
divcls, divplb, divplr, divpls,fclib,fclir,flog,fsed, mulclb, mulclc, mulclr, mulcls, mulplb, mulplc,
mulplccj, mulplr, mulpls, rplalb, rplalr, rpla2, subclb, subclc, subclr, subcls, subplb, subplc,
subplr, subpls, iferlb, iferlr.

* Conversions: byrl,fcpi, rby.

" Grayvalue Operations: clip, gmlt, gsft, gtrnl, log, pted, rqnt, scip, sithl, slth2, slth2m, slth3.

" Image Features: areal, cgrvl, cqltl, crcll, ersr3, histl, mmntl, mmnt4, prmt), sizel.

" Edge Detection: egfc, egksl, egks2, eglp, egpr, egpwl, egpw2, egpw3, egpw4, egrb, egrsl, egrs2, egrs3,
egsbl, egsb2, eikvl, eikv2.

" Convolution/Correlation:fcon,fcor,flwlO,flwll, flwl2, xconv, yconv.

" Smoothing: asmt,fmax,fmin, itenl, iten2, medi, temx2, tepa, txav, txav2, txdfl, txd]2, txeg2.

" Transforms: dct,fft.

" Warping: afinl, afro2, afin3, nolnl, noln2, noln3.

" Pattern Generation: pgenl, pgen2, pgen3, pgen4, pgenS.

" Multi-Level Image Processing: expand, pyramid, reduce.

" Binary Image Processing: bdr41, bdr81, bflpl, conc, cros, epct, grassfire, srnkl, srnk2, srnk3.

" Miscellaneous: colortobw, mag, magdir, nonmax, sumrcb, sumrcr.

1%
-a

',N

32

5. Performance of Warp on the DARPA Image Understanding Architecture
Benchmarks

5.1 Introduction
The DARPA Architecture Workshop Benchmark Study was conceived for these reasons:

" To arrive at an initial understanding of the general strengths and weaknesses for image understanding
MIU) of the architectures represented.

* To project needs for futre development of architectures to support IU.

* To promote communication and collaboration between various groups within the CS community which
are expected to contribute to development of real-time IW systems.

The benchmarks chosen represented common image processing operations from low and middle level vision, but
did not include high level image processing operations, such as recognition; these operations were felt to be too ill
defined at present to properly evaluate machine architectures.

Warp was one of the participants in the study. This paper is a summary of our results, which reflect the
performance on Warp on this level of vision, and can also serve as a guide for programming Warp in this area.

The precise definition of the image processing operations as given to the participants was as follows:
1. Laplacian. (Edge detection is done by this and the following two tasks. For edge detection, the input

is a 8-bit digital image of size 512x 512 pixels.) Convolve the image with an 11 x 11 sampled
"Laplacian" operator [15]. (Results within 5 pixels of the image border can be ignored.)

2. Zero-crossings Detection. Detect zero-crossings of the output of the operation, i.e. pixels at which
the output is positive but which have neighbors where the output is negative.

3. Border Following. Such pixels lie on the borders of regions where the Laplacian is positive. Output
sequences of the coordinates of these pixels that lie along the borders. (On border following see (27,
Section 11.2.2].)

4. Connected component labeling. Here the input is a 1-bit digital image of size 512 x 512 pixels. The
output is a 512 x 512 array of nonnegative integers in which

a. pixels that were O's in the input image have value 0.

b. pixels that were l's in the input image have positive values; two such pixels have the same
value if and only if they belong to the same connected component of l's in the input image.
(On connected component labeling see [27, Section 11.3.11.)

5. Hough transform. The input is a 1-bit digital image of size 512x 512. Assume that the origin (0,0)
image is at the lower left-han' comer of the image, with the x-axis along the bottom row. The output
is a 180x 512 array of nonnegative integers constructed as follows: For each pixel (x,y) having value
1 in the input image, and each i, 0<i< 180, add I to the output image in position (ij), where j is the
perpendicular distance (rounded to the nearest integer) from (0,0) to the line through (x,y) making
angle i-degrees with the x-axis (measured counterclockwise). (This output is a type of Hough
transform; if the input image has many collinear l's, they will give rise to a high-valued peak in the
output image. On Hough transforms see [27, Section 10.3.3].)

6. Convex HulL (For this and the following two geometrical constructions tasks the input is a set S of
1000 real coordinate pairs, defining a set of 1000 points in the plane, selected at random, with each
coordinate in the range [(0,1000]. Several outputs are required as follows.) An ordered list of the pairs
that lie on the boundary of the convex hull of S, in sequence around the boundary. (On convex hulls
see [26, Cnapters 3-4].)

7. Voronoi iagram. The Voronoi diagram of S, defined by the set of coordinates of its vertices, the set
of pairs oi vertices that are joined by edges, and the set of rays emanating from vertices and not
terminating at another vertex. (On Voronoi diagrams see [26, Section 5.5].)

8. Minimal Spanning Tree. The minimal spanning tree of S, defined by the set of pairs of points of S

° I

33

that are joined by edges of the tree. (On minimal spanning trees see [26, Section 6.1].)

9. Visibility. The input is a set of 1000 triples of triples of real coordinates ((rst),(u,vw),(x,y,x)),
defining 1000 opaque triangles in three-dimensional space, selected at random with each coordinate in
the range [0,10001. The output is a list of vertices of the triangles that are visible from (0,0,0). .

10. Graph matching. The input is a graph G having 100 vertices, each joined by an edge to 10 other
vertices selected at random, and another graph H having 30 vertices, each joined by an edge to 3 other r
vertices selected at random. The output is a list of the occurrences of (an isomorphic image of) H as a
subgraph of G. As a variation on this task, suppose the vertices (and edges) of G and H have
real-valued labels in some bounded range; then the output is that occurrence (if any) of H as a
subgraph of G for which the sum of the absolute differences between corresponding pairs of labels is a
minimum..

11. Minimum-cost path. The input is a graph G having 1000 vertices, each joined by an edge to 100 other
vertices selected at random, and where each edge has a nonnegative real-valued weight in some
bounded range. Given two vertices P, Q of G, the problem is to find a path from P to Q along which
the sum of the weights is minimum.

In what follows, we first describe the current Warp status, and then describe our work on each of the algorithms.
We do not review the Warp architecture or programming environment here, since complete reviews are available
elsewhere [2, 3, 5, 8, 9].

5.2 Warp Status
At the time this comparison was done, there are three operating Warp machines at Carnegie Mellon. Two of them

were prototypes. One was built by General Electric Radar Systems Department (Syracuse) and the other by
Honeywell Marine Systems Department (Seattle). Both consist of a linear array of ten cells, each giving 10
MFLOPS, for a total of 100 MFLOPS, and operate in an identical software environment. These machines are
referred to as WW Warp, since they are of wirewrap construction. The machines are fed data by MC68020
processors, called the "external host," and the whole system is controlled from a Sun 3/160.

The third machine was a production machine, one of several being constructed by General Electric Corporation.
(Currently, all the Warp computers in existence are of this type; utere are two of The production machines are built
from printed-circuit boards, and are called PC Warp. The baseline power of these machines is also 100 MFLOPS,
although they can easily be expanded to 160 MFLOPS by simply adding more cells. (The array can be expanded
still further, but this requires a special repeater board and a second rack). The PC Warp is changed in several ways
from the WW Warp: cell data and program memories are larger, there is on-cell address generation, and there is a
large register overflow file to provide a second memory for scalars. Some of these improvements imply an
increased speed on some of the benchmarks, as will be noted. For example, because of on-cell address generation,
the cells is able to tolerate an arbitrary skew in computation, which makes it possible to overlap input, computation,
and output in many algorithms. Also, improved processor boards in the external host allow improved I/O rates
between Warp and the host through DMA, removing the host 1/0 bottleneck in many cases. Finally, since each cell
has more local control, it is possible to make Warp computation more data dependent, by allowing data-dependent
1/0 between cells, as well as heterogeneous computation (different programs on different cells).

Carnegie Mellon and Intel Corporation are developing the "integrated" version of Warp, called i Warp. In this
machine, each cell of Warp will be implemented on a single chip. The clock rate will be increased so that each chip
will support at least 16 MFLOPS computation, as opposed to 10 MFLOPS in WW and PC Warp. In the baseline
machine the cells will be organized into a linear array of 72 cells, giving a total computation of 1.152 GFLOPS. In
the following analysis, it has been assumed that each i Warp cell can do everything a PC Warp cell can, with an
increase of 1.6 in speed (this is a design goal). When I/O bottlenecks have led to a maximum performance time on a
benchmark, this has been noted.

All the benchmarks listed below as being implemented on Warp are written in W2, the Warp programming
language. W2 is a procedural language, on about the same level as C or Pascal. Arrays ana calars are supported, as
are for loops, and if statements. The programmers are aware that they are programming a parallel machine, since

W"-

34

each program is duplicated to all cells and then executed locally (with local sequencing) on each cell.

5.3 Vision Programming On Warp
We have studied vision programming at various levels on Warp for some time now, and developed and

documented several different models [12,241. In this section we briefly review the various models of Warp
programming, for reference in later sections.

All the programs in this paper use the cells in a homogeneous programming model: that is, all cells execute the
same program, although the program counters on the different cells can differ, and each has its own local data
memory. This is a restriction imposed by the hardware of WW Warp. Programs on PC Warp need not follow this
restriction.

5.3.1 Input Partitioning
In this model, which is used for local operations like convolutions, the image is divided into a number of portions

by column, and each of the ten cells takes one-tenth of the image. Thus, in 512 x 512 image processing cell 0 takes
columns 0-51 of the image, cell I takes columns 52-103, and so on (a border is added to the image to take care of
images whose width is not a multiple of ten). The image is divided in this way because it makes it possible to
process a row of the image at a time, and because the host need only send the image in raster-order, which is
important because the host tends to be a bottleneck in many algorithms.

5.3.2 Output Partitioning
This model is used for algorithms in which the operation to be performed is global, so that any output can depend

on any input, but can still be computed independently. In this model, each cell sees the complete input image, and
processes it to produce part of the output. Generally, the output data set produced by a ceU is stored in the cell's
local memory until the complete input image is processed. Hough transform is implemented in this way.

5.3.3 Pipelining
In this model, which is the classic type of "systolic" algorithm, the algorithm is divided into regular steps, and

each cell performs one step. This method can be used when the algorithm is regular. (Because the cell code must be
homogeneous, this method is of less use on the wire-wrap Warp machine than it usually is in systolic machines).
When this method can be used, it is generally more efficient in terms of input and output overlap with computation
and local memory use than either of the two models above.

5.4 Laplacian
Laplacian. Convolve the image with an 11 x ll sampled "Laplacian" operator [15]. (Results within 5 pixels of the

image border can be ignored.)
The Laplacian given (151 is symmetric, but not separable. (Separable filters can be computed more efficiently, in

general, than non-separable filters). In this section we describe a series of optimizations we applied to the Laplacian
filter in the Warp implementation, which led to an efficient implementation. These optimizations can be applied to
any symmetric filter, and will lead to efficient implementations on many different computer architectures.

Since most filters use masks with an odd number of rows and columns, the rest of this discussion will deal with
this case. Let the size of the mask be represented by N=2M + 1.

In order to see where the optimizations come from, we first notice that an unoptimized N xN convolution takes N2

multiplies and N2-1 additions per pixel. A separable convolution of the same size would take only 2N
multiplications and 2(N- 1) additions.

One way to compute the Laplacian is to compute it as a series of column convolutions. Each column takes N

SI

35

multiplications and N- 1 additions, and then N- I additions are required to add all of the partial sums. The total
number of multiplications is NxN=N2 , and the number of additions is Nx (N-1) + (N-I)=N2-1.

Due to symmetry, we can add the pairs of corresponding pixels within a column before multiplying them by the
weights, as shown in Figure 5-1. Each of the N columns contains M pixels that can be added in this way, and one
pixel in the middle which is not part of a pair. We call this column of M + 1 pixels a "folded" column. After the
multiplication, the pixels in each folded column must be added, and then all the columns must be added as before.
This saves multiplications, but not additions: the number of multiplications is N(M+ 1)= (N2 +N)/2, while the
additions sum to NXM +NxM +(N-1)=N 2-1.

'.4

Figure 5-1: Folding columns

Now note that calculations for a given pixel can share partial results with neighboring calculations in the same
row. As we shift the convolution window from the left to the right one step, we can retain all but one of the folded
columns from the previous convolution, and sum just one new folded column, as shown in Figure 5-2. The rest of
the algorithm is unchanged. Multiplications are unaffected, but additions are reduced almost by half, to
M+NxM+ (N-l)= (N2 + 3N-3)12.

Drop . .,, I

-Keep

Add

Figure 5-2: Using results from previous steps

Finally, we notice that the column convolutions are not done with N unique column weights, but rather with M + I
unique weights. As we shift the window to the right, we can compute and store the convolution of the new column
with all M+ 1 column weights, as shown in Figure 5-3. Then, as we shift the window up to N pixels to the right, we
will only have to add the appropriate convolved column sums, as shown in Figure 5-4. Thus again, nearly half of
the multiplications and additions can be saved. Thus for each pixel, only M + I partial weighted column sums need
be generated, and then N- I additions are required to add the proper partial sums together. The number of
multiplications is then (M+l)x(M+I)=((N+l)/2)2 , while the additions come to (M+I)xM+M+(N-1)=
M 2+4 x M .

Table 5-1 summarizes our result by comparing the number of multiplications and additions by our method with
N2 , the number required for an unoptimized kernel, and 2N, the number for a separable kernel:

An algorithm based on the above model was implemented using input partitioning on the WW Warp, and gave a

° €" "'r ' " P" EW . {' '/-""- ' '% t . ' a' ' ,. 'o°"%
" ' %

% ."s " € €' ."' "' %' " , . "¢-'" " "%. % , "J - "" -", .,% , ,". "'' % ,. %" ,.". -" -"€' ""-"". " ",""h

.... VWV" W ILIU

36

folded ! stored
convolvedimage cvolvedn

column colun

convolve Ld

Figure 5-3: Convolving and storing column sums

one
convolution
result

VI AY ' stored
convolved
columns

Figure 5-4: Adding appropriate column sums

Mask Size Multiplications Additions N 2 2N

3x3 4 5 9 6 5

5x5 9 12 25 10

7x7 16 21 49 14

9x9 25 32 81 18

lixil 36 45 121 22

15x15 64 77 225 30

25x25 144 192 625 50

Table 5-1: Optimized Symmetric Convolution

runtime of 432 milliseconds. The same algorithm was compiled for the PC Warp, and gave a runtime of 350 5
milliseconds. The change was due to overlap of I/O with computation in PC Warp, which is not possible for this
algorithm on the WW Warp. On i Warp, assuming a straightforward speedup arising from a 72-cell array with a 16
MHz clock, the time will be 30 milliseconds.

5.5 Zero Crossings Detection
Zero-crossings Detection. Detect zero-crossings of the output of the operation, i.e. pixels at which the output is

positive but which have neighbors where the output is negative.

Zero crossing. was implemented using the input partitioning model. A three by three window was taken around
each pixel. If any elements of the window were negative, but the central pixel was positive, a zero crossing was
declared and a "1" was output, otherwise "0" was output. This computation was performed by transforming each
9-element window into a 9-bit integer, with which a table lookup was performed. Input and output were represented
as 8-bit pixels. Execution time on the WW Warp was 172 milliseconds; on the PC Warp the time will be

'. ,2U

37

approximately 92 milliseconds, due to overlap of I/O with computation. On i Warp, the time will be limited by I/O
bandwidth to the array to at least 7.8 milliseconds.

In many cases, it is desirable to perform the Laplacian and zero crossing computations in sequence, without
saving the results of the Laplacian. In this case, on iWarp, the computation can be done more quickly than by
performing each individually. We estimate that such a computation will take 31 milliseconds, fast enough for video
rate image processing.

5.6 Border following
Border Following. Output sequences of the coordinates of pixels that lie on the borders of regions where the

Laplacihn is positive. (On border following see (27, Section 112.2].)
The algorithm is mapped in two steps. First each Warp cell performs the border following technique on part of

the image. Then, these partial results are then combined within the array to produce the complete border trace for
the image. The full algorithm is: - -

Each cell sends its bottom row to its successor.

* Starting with the bottom row, on the left, each cell inspects the pixels on this row. If the pixel is turned
on, the ca!ll begins to tae this connected component. As it traces the component, it builds a list of of
its pixels& to the next cell. As it visits pixels, it turns them off, so they will not be visited on scans of
higher rows.

* Either this component extends to the cell's top row, or it does not. If not, then the list of pixels
eventually terminates within the cell's strip; the cell queues the whole list of pixels for output to the
next cell, marking the component as complete. But if the component extends to the top row, it may join
with a component of the preceding cell. The cell checks its copy of the previous cell's last row to see if
this is a possibility. If not, again the list may be passed to the next cell. But if it is, the cell stacks the
list it has built so far, and begins processing another component, bottom to top.

This completes the parallel phase of the computation. Each cell now has two lists of borders: those ready for
output, and those that must be merged with borders in preceding cells. The cells now run the following merge
phase.

" Each cell tries to do two things: (1) empty its ready-for-output queue, and (2) move all the components
on its stack to this queue. Operation (1) happens asynchronously, depending upon the next cell's input
queue. Operation (2) is performed as follows.

" Eventually, the preceding cell will emit a list of the component touching the stacked component. When
this happens, the component may be unstacked, the stacked pixels attached to the proper end of the list
received from the previous component (note that this may involve attaching lists to both ends), and pass
the now completed list at least, complete in its path through the given cell and its predecessor to the
ready-for-output queue.

This algorithm must terminate, since the first cell never has any stacked components. Hence it will eventually
flush all the components on its output queue to the second cell, giving the second cell all the information it needs to
move all its stacked components to its output queue. By iterating this argument, it follows that each cell must
eventually clear its stack and then its output queue.

Finally, we must provide a time estimate for this algorithm. The first step is essentially a connected components
computation. This will take no longer than the parallel step of a UNION-FIND based connected components
program below. For PC Warp, with 10 cells, this is 73 milliseconds; for i Warp, with 72 cells, this is 6.3
milliseconds. These estimates were obtained by dividing the uniprocessor time of the Hughes HBA [32]
implementation of a pure UNION-FIND algorithm by the number of cells, and again by suitable numbers to correct
for processor speed.

The second step is a serial merge (in the worst case). We estimate this step will take about 1.02 second for PC
Warp, and 690 milliseconds for i Warp. These estimates are based on our experience with similar merge steps for

%I

38

the connected components algorithm, and the i/o bandwidth of each machine. Hence our estimates are:

PC.Warp: 1.1 seconds
i Warp: 690 milliseconds

5.7 Connected components labelling
Connected component labeling. Here the input is a 1-bit digital image of size 512x512 pixels. The output is a

512x512 array of nonnegative integers in which
1. pixels that were O's in the input image have value 0.

2. pixels that were l's in the input image have positive values; two such pixels have the same value if and only if
they belong to the same connected component of l's in the input image. (On connected component labeling
see [27, Section 11.3.1].)

In this section we present our parallel-sequential-systolic algorithm for this computation, our timings of a C
simulation of the algorithm, and our estimates of its execution time on Warp, PC Warp, and i Warp.

Section 5.7.1 gives the algorithm. Section 5.7.2 presents the asymptotic running time of the parallel-
sequential- systolic algorithm. We also show how to modify this work to get a parallel- sequential-parallel
algorithm, and give its running time. Section 5.7.3 discusses the implementation, covering both our existing C
simulation and our planned Warp implementations; here we give the actual execution time of the simulations and the
estimated execution times for the Warp implementation, and discuss the constraints imposed by the Warp
architecture.

5.7.1 Sketch of the Algorithm

5.7.1.1 Vocabulary and Notation
The input to the algorithm is a NxN array (512x512 in this case) of binary pixels. A 1-valued pixel is called

sigmfiwan; all others are insignificant. We label the rows and columns consecutively from 0 to N-I, starting in the
upper-left-hand corner. The 4-neighbors of a pixel are the pixels that lie immediately above, below, left and right of
it its 8-neighbors are the eight pixels that surround it. Two significant pixels x and y lie in the same connected
4-component (connected 8-component) of the image iff there is a sequence of significant pixels P0' . . . p,, with
po=x, p.=y, and piI a 4-neighbor (8-neighbor) of pi for each i=l, ,N. The algorithm we present here computes
connected 4-components. It is straightforward to modify it to compute connected 8-components; the timing
estimates we present later are for the connected 8-component version.

Our algorithm executes on a linear systolic array of K processing cells, numbered consecutively from 0 to K-1.
Each cell processes a set of adjacent rows of the image, called a slice. We assume that K divides N, and that the
slices are of uniform size NIK rows. The 0th cell processes the first N/K rows of the image, called slice 0, and so on.
When data flows from cell i to cell i +1, we will say it crosses the i, i +1 boundary, or simply, an inter-cell boundary.
A cell's label space is the set of all labels that it may assign to any pixel; cell i's label space is denoted Li. We
choose suitable bounds on the label spaces so that they are guaranteed disjoint.

5.7.1.2 The Algorithm
The algorithm proceeds in three phases: parallel, sequential, and systolic.

In the parallel phase, each cell computes labels for its slice of the image.

In the sequential phase, computation proceeds serially over each i-l,i boundary, for i=l, ... K. The ith stage
of this computation effectively passes information about the connectivity of slices 0 through i-I to slice i. The
actual computation consists of scanning the i-l,i boundary to construct two maps, which record connectivity
information, then applying the second of these maps along the bottom row of slice i to propagate this information
downward. Note that after this phase finishes, lower-numbered slices still lack information about higher-numbered

39

slices. We perform this computation in K serial steps because of the limited interconnection topology of Warp.

In the systolic phase, the labels are pumped out of the cell array. As each label crosses into or out of a cell, the
cell applies the maps generated in the sequential phase. Since the labels assigned to slice i must pass through cells
i+1, ... , K, this permits higher-numbered cells to modify the labels assigned by lower-numbered cells, completing
the computation. Each phase of the algorithm is explained in greater detail below.

Parallel Phase. In this phase, each cell computes preliminary labels for its slice of the image. These labels are
drawn from the cell's label space, which are guaranteed not to be used by any other cell. We use a modification of
the Schwatz-Sharir-Siegel algorithm [281, which runs in linear time in the size of the slice.

Sequential Phase. In this phase, processing proceeds sequentially in K-I stages over each of the K-I inter-cell
boundaries. The function of stage i, when we compute along the i-1,i boundary, is to pass information about the
connectivity of slices 0 to i-I, inclusive, to cell i. This information is recorded in the two maps that are built for
each boundary. Cell i builds the maps for the i-l,i boundary. We call the first map ci; it is used by cell i to relabel
pixels when they enter the cell. We call the second map Oi; it is used by cell i to relabel the pixels when they leave
the celL

The maps have intuitive meanings, as follows. Each 4i tells how to relabel the pixels of slice i to make them
consistent with the connections in the i-1 preceding slices. Specifically, suppose x and y are two significant pixels
of slice i such that there is a path from x to y that passes through slices 0 to i, but no path that lies entirely within
slice i. Then after the parallel phase, x and y will bear distinct labels. However, Oi is constructed such that Oi(x) = I

,Oy) iff there is a path from x to y that lies wholly within slices 0 through i. Thus Oi encodes the influence of slices 0
through i-i on slice i.

Similarly, cri contains information about connectivity across the i-,i boundary. Letw and v be significant pixels
on the bottom row of slice i-l, and let x and y be significant pixels on the top row of slice i, such that w and x are
adjacent, and v and y are adjacent. Suppose that x and y are connected by a path that lies wholly within slices 0
through i, but that w and v are not connected by any path that lies wholly within slices 0 through i-1. Then after the
parallel phase, w and v will bear distinct labels. However, ai is constructed such that i
Thus yi encodes the influence of slice i on slices 0 through i-I.

These maps are constructed by the following procedure. We use some special notation. Letf:M--N; thenfis a
subset of M xN. We writef+(m, n) for the function obtained by deleting the pair (m,f(m)) from f and adding the pair
(m,n) to the resulting set. For the purposes of the UNION-FIND portion of the algorithm, we assume that each
le L, lies in a singleton set (l) that bears the name 1. We also assume that each map is initialized to the identity
map.

for i - 1 to K do begin
get B, the bottom row of slice i-I
get T, the top row of slice i
for col - 0 to N-I do

if B[col] and T[col) are significant then
Call Update(Btcol], T[col])

for col = 0 to N-1 do
if T[col] is significant then begin

i - i + <T[col], FIND(T[col])>
end

if i * K then apply *i to the bottom boundary of slice i
end

procedure Update(PrevCell, CurrCell)
begin

if cli(PrevCell) = PrevCell then cri = ai + <PrevCell, CurrCell>
else UNION(CurrCell, ai(PrevCell))

end I!

40

Note that each ofoc. *j may be computed locally by cell i, requiring only the bottom row of slice i-I. This is not
done in practice, because we want to use path-compression for the UNION-FIND computations, and the cells cannot
implement this algorithm efficiently. Because the UNION-FIND operations are performed on the data structures
that embody the 0j, we will refer to these operations, when we are accounting for the algorithm's running time, as 4
lookups and additions, or simply 0 updates.

The correctness proofs for these algorithms are tedious and are omitted here (a correctness proof for a similar
algorithm can be found in Kung and Webb [23]). It remains to show how these maps are used to compute the
connected components of the entire image. This is done in the next section.

Systolic Phase. In this phase, the pixel labels are pumped out of the cells. Each significant pixel receives its final
label through the following systolic labelling procedure. First, as a label enters cell i, crossing the i-I, i boundary, it
is passed through the map oi.Note that labels belonging to slice i do not cross this boundary, so are not mapped this
way within cell i. Second, as a label leaves cell i, crossing the i,i+1 boundary, it is passed through the map 0i. This
happens whether the label was received from cell i-i, or originated within cell i.

It is not difficult to give an inductive proof that this procedure correctly labels the connected components of the
image. However, we believe it is more illuminating to work through an example.

Figure 5-5 depicts the binary input to the algorithm. Here N=9, K=3. Significant pixels are marked "X." Rows
and columns are numbered consecutively from 0, starting in the upper-left-hand comer, we give the coordinates of a
pixel as (row, column). Figure 5-6 shows the labels for the significant pixels after completion of the parallel phase.

X X Slice 0
X X

I' X X Slice 2

d [X X M
X 'X 'X 1 1 Slice 2

XNIX XYM-1

Figure 5-5: Input

1 2
---- - -

1 21211 12113 2 4

211 1 1 2

Fu - L .2 2. l

Figure 5-6: Labels after parallel phase

W' JrMN

41 6
1W

Now we work through the computation of *1 and a,. To begin, each map is initialized to the identity map on its
domain. When we reach column 1, we note that pixels (2,1) and (3,1) are adjacent and significanL This prompts a
call to Update, where we note that (1 fixes 1. Hence we add the pair <1,1 I> to cr,. Likewise, we add <3,12> to ai.
But on the call to Update for the pair of labels <3,13>, we note that a1 is not the identity on 3. Instead we take the
UNION of (13) and 1121; creating the set (12,13) that bears the label 12. At column 7, we add <2,14> to 01.

Finally, we perform FINDs on the labels that appear on the top row of slice I to determine 40, (it is the identity
except for the ordered pair <13, 12>), and apply this map to the bottom row of slice 1. The resulting labels appear in
Figure 5-7.

I1 1 13 14
11l 13 n 14
ill b I 1;! 14._",

.a 122122 -
.2l 1 2. 2 ,

Figure 5-7: Labels after sequential phase
We perform a similar computation for the 2,3 boundary. The final maps appear in Table 5-2. (We do not display

the ordered pairs associated with the identity portion of each map.)

<13,12> <1, 11> <22,21> <11,21>
<3, 12> <12,21>
<2,14> <14, 22>

Table 5-2: Final maps 0

Now we show how the systolic computation works. Consider pixel (2,4), with label 3. As it leaves cell 0, it
passes through 00, which is the identity map. When it enters cell 1, it passes through o, where it is relabeled 12;
when it leaves cell 1, it passes through 01, which fixes 12. When it enters cell 2, it passes through a2, where it is
relabeled 21; when it leaves cell 2, it passes through 02, which fixes 21. Hence the final pixt-i label is 21. Table 5-3
summarizes this computation on each of the labels in the example; note that each significant pixel has the same final'p
label.

Labels Action

1 2 3 enter slice 1, map through o to

11 14 12 13 leave slice l, map through 1 to

11 14 12 12 enter slice 2, map through o2 to

21 22 21 21 leave slice 2, map through 42 to
,

21 21 21 21 final values

Table 5-3: Label Computation

'a ,i
4 ~ -"a ~ %-aa_'5/&

42
p

S.7.2 Asymptotic Running Time

This discussion is divided into two parts. In the first, we give the running time of the parallel-sequential-
systolic algorithm. In the second, we show how to transform this approach into a parallel - sequential - parallel
algorithm, and give its running time.

5.7.2.1 Parallel-Sequential-Systolic Algorithm
The asymptotic running time of this algorithm is 0(N2/K+KNG(N)+N 2)--O(KNG(N)+N 2), where G is the

inverse Ackermann's function. The terms of this expression represent the running times of the parallel phase, the
sequential phase, and the systolic phase respectively.

These expressions are obtained as follows. The parallel phase estimate is immediate, since it runs in linear time in
the slice size, which is N21K.

For the sequential phase, observe that we must perform K-I computations along boundaries. As we process a
boundary, we will perform no more than N12 additions to a a-map, and no more than P1/2-1 updates to a $-map.
Now no 9i or oi will map more than N12 elements of their respective domains away from themselves. If the 0 i maps
are maintained as linear arrays, each ai operation takes constant time. If the 4j maps are maintained as linear arrays
with path compression, a sequence of N lookups and additions takes 0 (NG(N)) time. Hence the total time for this
phase is 0 (KNG(N)).

For the systolic phase, observe that the last cell must perform a constant-time lookup on each pixel in the image,
and all other cells may perform their lookups in parallel. Hence the time for this phase is 0 (N2).

Thus a pure systolic implementation has no asymptotic advantage over a linear-time uniprocessor algorithm. This
statement is deceptive. Ultimately, any machine must run in 0 (N2) time on this problem, since it takes that much
time to pump the data in and out. The advantage of the systolic algorithm is that it performs a useful constant-time
computation step during the output, reducing the time spent in the sequential phase.

5.7.2.2 Paralel-Sequential-Parallel Algorithm
Here we introduce a straightforward modification of the algorithm to obtain an improved asymptotic time bound.

It is based on the following simple observation: the systolic phase consists of computing, for each pixel p of slice i,
the value of the composed function

1'i --- 4 (Y OK O 0"'" 0 Ci+10 1i+l 0i)_

Hence it suffices to compute each Xi for i = K,K-1 0. But since

)i = Xi O (ai 0 k")
it is straightforward to compute the ki sequentially in 0 (KN) time. (In fact, this can be done in parallel in
O(Nlog(K)) time.) Once this is done, cell i can obtain the final labels for slice i by applying Xi to each significant
pixel. Since this step can be performed in parallel among the cells, the running time of this modified algorithm is
0 (N2IK + KNG(N) + N2/K)=O (N2IK + KNG(N)).

5.7.3 Implementation Details
In this section we discuss two implementations of this algorithm: a C-language Vax implementation and a Warp

implementation. We begin with a sketch of the architectural constraints imposed by the various Warp machines;
these constraints motivate some of the design decisions of both the Vax and Warp implementations. Then we
discuss the Vax implementation, which was undertaken to learn about the algorithm in a familiar environment. We
close with a treatment of the Warp implementation on each of Warp, PC Warp, and i Warp.

5.7.3.1 Warp Architectural Constraints
Two key factors determine most of the design decisions in a Warp implementation of this algorithm: the Warp

cell's synchronization requirements and memory size. Let us consider these in turn.

~ ' ~ % ~ - , ~ -~ ~ ~ -.- ~'. .,

43

Synchronization. The WW Warp requires compile-time synchronization. Thus an if - then-else statement
will always take the time required by the slower of the two alternatives, and any loop must run for a fixed (maximal)
number of iterations.

As a consequence, the WW Warp runs poorly on algorithms that exhibit good behavior only in the off-line sense.
To see this, recall that techniques with good off-fine performance -notably path-compression -derive their
advantage by performing a few of the operations in a sequence slowly, so that the remaining operations in the
sequence will be fast. But Warp forces each step of a procedure to take the time of the slowest possible alternative.
Hence an implementation of an off-line algorithm will behave as if the most expensive operation were performed at
each step of the sequence. Thus the algorithm with the best on-line behavior is always preferred.

This means that we must either abandon the path-compression approach to the sequential stage, or perform the
sequential portion of the algorithm on a computation engine that does not have these constraints. Since there is no
inherent advantage to performing the sequential phase on the cells (for there is no parallelism to exploit), and since
the cost of shipping the necessary data to a suitable processor is low, we choose to do this phase on one of the
Warp's MC68020-based cluster processors.

For similar reasons, we cannot improve the execution time by using sophisticated data structures to implement the
ar-maps in the systolic phase. Unfortunately, this problem cannot be avoided. The best we can do here is use a data
structure with good constant-time performance. This is discussed more fully below.

Memory Constraints. Our formulae for the asymptotic running times of these algorithms are based on the
assumption of unit-access time to the data structures that hold the a and maps. If memory is not a consideration,
this speed can be attained by representing each map by a large array. The PC Warp and iWarp machines have
enough cell memory to represent the maps this way. The speed estimates below for these machines are based on this
assumption.

The WW Warp cell does not have enough memory to do this. Instead we must use an approach that gives good
update and access times, with only moderate memory requirements. This is easy to do for the 0-maps. If each cell
begins the assignment of the initial labels on the top boundary of its slice, the labels of this row will be drawn from
the first N12 elements of the slice's label space. Now note that though each Oi is defined on the set Lo u ... uLi,
which contains (i+I(N/21FN/2K elements, 0i will fix all of Lo u ... uLi..1, and also all of Li, except possibly
those elements of Li that appear on the top row of slice i. Thus we can maintain Oi as an array of size N12, indexed
by offset from the first element of Li. To compute 0,(r), we need only check to see if r lies in the range of interest,
then find its offset and look up the value. This approach uses a small amount of memory, with only minor sacrifice
of speed. Also, it is efficient for both the sequential phase of the computation, when the algorithm builds each Oi
using path-compression techniques, and the systolic phase, when the only operations are look-ups.

The situation is not as nice when we consider the a maps. It is true that no ai will map more than N12 elements
away from themselves. This is because only labels that appear on the bottom row of slice i-I may be moved by ai.
However, these labels are no longer guaranteed to be drawn from some small subset of Li_1 . For instance, it is easy
to construct an example so that labels drawn from both the first N12 elements and the last N12 elements of L,_1 will
appear on the bottom row of slice i.

One solution is to maintain each ai as an array of ordered pairs, sorted by the first element of each pair. This
permits lookup in worst-case log (N) time, and is well-suited to the systolic stage of the algorithm. In fact, it is the
approach we use there. However, it does not permit fast addition to the map, and we must do both lookup and
addition operations in the sequential stage. For this reason, we use the self-adjusting binary tree data structure to
implement the ai in this stage. This data structure exhibits only good off-fine performance. However, we use it only
during the sequential phase of the calculation, when we build the map. The efficiency and simplicity of this data
structure is another reason for doing the sequential calculation elsewhere than the Warp cells.

k

44 I

5.7.3.2 Vax Implementation
We have implemented the algorithm in C on a Vax 780, simulating the operation of a 10-cell Warp array. Each

phase of the algorithm is implemented as one or more procedures, parameterized by cell number. A cell's local
memory is represented by several large arrays; systolic communication is simulated by explicit data movement in
and out of these arrays.

Note that the value of the cr maps themselves are never needed directly. We are interested only in the 0 maps, and
in the composition maps Oocr. For this reason we compute these compositions explicitly ahead of time. This way,
each label that traverses a cell is mapped only once, through 0 o o, rather than through cr and * successively.

The simulation program processes a typical 512x512 image in about 4 1/2 minutes of CPU time. Fortunately,
most of this represents the simulation of inter-cell communication.

To learn how the program was spending its time, we used the Unix prof [21] performance-monitoring program.
The results are summarized in Table 5-4. The total is less than 4 1/2 minutes because the time for simulating
communication is not included.

Phase Time (seconds) Time (seconds)

Parallel Phase 33 33

Sequential Phase
Boundary Scan .16
0 Update .10
o Update .53
0o Computation .06
Total .85 .85 "

Systolic Phase
0 Lookups 3.8
* o Lookups 25
Total 28 28

Total 62

Table 5-4: Vax implementation timings
,.

5.733 Warp Implementations
We have not yet completed a Warp implementation. In this section we discuss the partial implementation for the

WW Warp architecture, and give execution time estimates for the planned PC Warp and i Warp implementations.
All our estimates are for the parallel- sequential- parallel version of the algorithm, computing connected 8-
components.

WW Warp Our implementation for the WW Warp divides the computational burden between the linear systolic
array and the cluster processors. The initial and final labellings are done by the systolic array; the sequential step is
done by the cluster processors. This permits us to use algorithms with fast amortized time in the sequential step.

After the initial labelling, we would like to retain the initial results in cell memory, transmitting only each cell's
boundary rows to the external host for generating the necessary maps. Unfortunately, the WW Warp cell memory is
not large enough to hold a labelled slice, and barely large enough to hold the intermediate result required by the
initial marking algorithm. This forces us to send the entire contents of each cell's slice to the external host as the
labels are generated, then pump these slices back through the array for the final labelling.

We have written, but not yet debugged, all the code for the cell array. We have accurate estimates of the running
time of this code, provided by the compiler. We have also estimated the running time of the sequential phase. We

45

derived this estimate from the sequential phase running time of the C implementation, allowing for a slight speed-up
of the cluster processors over the Vax, and also for the extra work (computing the Xj) done in this phase by the
parallel - sequential - parallel version of the algorithm. The resulting estimate appears in Table 5-5.

Phase Time (milliseconds) Time (milliseconds)

Initial Parallel Phase
Pump in Image 50
Initial Labelling 2400
Total 2450 2400

Sequential Phase
Boundary Scan 150
*Update 90
a Update 490
X Computation 110
Total 840 840

Final Parallel Phase
X Lookups 2200
Pump Out Labels 50
Total 2290 2300

Total 5600

Table 5-5: Estimated WW Warp timings

PC Warp and iWarp Architectures. In this section we derive estimated execution times for these architectures.
There are three key differences between the design of these cells and those of the WW Warp. The fust is that each
cell has enough memory to maintain a full slice of labels. This means that we do not need to pump the intermediate
labels to an external memory. The second is that the cells are not bound by the synchronization constraints of the
WW machine. This means that the sequential phase computation can be performed on the cell array. This saves
time because we no longer have to do i/o to the cluster processors for this phase, and because the cells run 2.8 times
faster than the cluster processors. The third is that each of these machines is more powerful than the WW Warp.
Both the PC Warp and the i Warp can do arithmetic directly on integers; this speeds up any integer arithmetic
computation by a factor of 3. Furthermore, the iWarp cells run 1.6 times faster than the Warp and PC Warp cells.

The only other salient difference between PC Warp and i Warp, for our purposes, is that the i Warp contains 72
cells. Thus we can potentially attain more parallelism on i Warp. However, because the time taken in the merge
phase varies linearly with the number of cells, while the time taken in each parallel phase varies inversely with this
number, it is not necessarily best to use the greatest possible number of processors. If the execution time of the
algoritun as a function of the number of cells is T(K)=A/K+BK, then the best time will be obtained with K=qrA'B.
In the case of iWarp, we have A-4.994,B,.00812, so the best K is 25. The estimate below for iWarp execution
time was made using this value.

The resulting estimates appear in Tables 5-6 and 5-7.

5.8 Hough transform
Hough transform. The input is a 1-bit digital image of size 512x512. Assume that the origin (0,0) image is at the

lower left-hand corner of the image, with the x-axis along the bottom row. The output is a 180x512 array of
nonnegative integers constructed as follows: For each pixel (xy) having value I in the input image, and each i,
0</<180, add I to the output image in position (ij), where j is the perpendicular distance (rounded to the nearest
integer) from (0,0) to the line through (xy) making angle i-degrees with the x-axis (measured counterclockwise). (This
output is a type of Hough transform; if the input image has many collinear l's, they will give rise to a high-valued peak
in the output image. On Hough transforms see [27, Section 10.3.31.)

The Hough transform algorithm has been previously described [23]. Briefly, each of the ten cells gets one-tenth

'I%

46

Phase Time (milliseconds) Time (milliseconds)

Initial Parallel Phase
Pump In Image 53
Initial Labelling 710
Total 760 760

Sequential Phase
Boundary Scan 53
*Update 33
a Update 3
X Computation 41
Total 130 130

Final Parallel Phase
X Lookups 36
Pump Out Labels 53
Total 89 89

Total 980
Table 5-6: Estimated PC Warp timings

Phase Time (milliseconds) Time (milliseconds)

Initial Parallel Phase
Pump In Image 33
Initial Labelling 191
Total 224 224

Sequential Phase
Boundary Scan 83
* Update 4.7
a Update 52
X Computation 63
Total 200 200

Final Parallel Phase
.Lookups 9.0

Pump Out Labels 33
Total 42 42

Total 470

Table 5-7: Estimated iWarp timings

of the Hough array, partitioned by angle. T1he input image flows through the Warp array, and each cell increments
its portion of the Hough array for all image pixels which are "1". Once the image has been processed, the Hough
array is concatenated and output to Warp's external host.

For the particular parameters of this benchmark, which uses an array of 180x512 data, this requires each cell
store 18 x 512=9 K words of data. This will not fit on the WW machine, which has a memory of 4K words/cell. But
on PC Warp, each cell will have a memory of 32K words, so that the Hough array fits easily. On i.Warp 60 cells are
used (60 being the largest number less than 72 which evenly divides 180), so that each cell needs to store only
3 x 512=1536 bytes of data.

In order to derive estimates, we implemented a Hough transform program (with a smaller number of angles than
in the benchmark) and ran it on the WW machine. The algorithm does not change for more angles, so the estimates
given by this method are accurate for the PC Warp with the benchmark parameters.

'~V, ."~ ~~d ~% ',(\ N~V '~.V '~~ A<,,,- '*ic.~~'**r

47

By derivation from this program, the time per pixel with value "1" is 13 microseconds. Assuming 10% of the
image is one, on PC Warp the benchmark will execute in 340 milliseconds. On iWarp, the estimated execution time
is 60 milliseconds. These times scale linearly with the number of l."'s in the image.

5.9 Convex Hull.
Convex Hull. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 poius in the plane, selected at

random, with each coordinate in the range [0.1000]. The output is an ordered list of the pairs that lie on the boundary
of te convex hull of S. in sequence around the boundary. (On convex hulls see [26, Chapters 3-4].)

R. A. Jarvis's [19] algorithm was used. This algorithm works as follows:
" Sort the points according to (x,y)-coordinate. The first point is a convex hull point. Call it A0.

" Let i=0. Repeat the following until Ai.I=Ao:
For each point B in the set, do the following:

e Calculate the angle from the vector A -Ai_ to the vector B-A i. (If i=O we take the second '
vector to be (-1,0)).

@ The point with smallest angle is a convex hull point. Call it Ai+ 1 .

This algorithm obviously has time complexity 0 (KN), where K is the number of convex hull points, and N is the
number of points in the set. The time consuming step in the algorithm is the scan through the set of points to find
the next convex hull point.

We implemented the above algorithm on the WW Warp, using C code to program the cluster processors and W2
to program the Warp array. In our implementation, the Warp array performs the inner loop in the algorithm, which
finds a new convex hull point by calculation of the angle with all points. This is done in parallel on all cells, by
partitioning the set of data points across the array and finding the best point in each cell's dataset individually, then
finding the best point of the cell's points. The cluster processors repeatedly accept the new point from the Warp
array and pass in this new convex hull point for the next step of the computation.

To test this algorithm, we generated a 1000 node random graph, which had 13 hull points. The measured time on
the WW machine was 6.76 milliseconds, with the same execution time on PC Warp. The time for this algorithm
scales linearly with the number of hull points.

Assuming a 16 MHz clock time and 72 cells in i Warp, each point location will take 26 microseconds, based on an
operation count from the Warp implementation. Loading the initial array to the cells will take 250 microseconds,
for a total time of 590 microseconds for our sample problem.

5.10 Voronoi Diagram
Geometrical constructions. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the

plane, selected at random, with each coordinate in the range [0,1000]. The output is the Voronoi diagram of S, defined
by the set of coordinates of its vertices, the set of pairs of vertices that are joined by edges, and the set of rays
emanating from vertices and not terminating at another vertex. (On Voronoi diagrams see [26, Section 5.5].)

We consider the computation of the Voronoi diagram of a set of 1000 real points [13]. The algorithm is:
1. The coordinates of the points are sorted divided equally among the cells so that each cell has 100

points. The sorting is done systolically on the Warp array, using a heapsort algorithm in which each
cell builds a heap of 100 points as the data values stream in, passing the rest of the data on to the next
cell.

2. Each cell computes the Delauney triangulation of 100 points using a standard sequential algorithm. Ile:

3. Cells 1, 3, 7, and 9 receive the Delauney triangulation of their left neighbors. The two Delauney
triangulations are then merged to form a single Delauney triangulation in these receiving cells. At the 0
end of this stage we have four Delauney triangulations of 200 points each and two Delauney
triangulations of 100 points each in cells 4 and 5. Six cells will be idle during this step.

7"M

48

4. The 200 point triangulations are merged to form 400 point triangulations. At the end of this step we
have two triangulations of 400 points each and two triangulations of 100 points each. Eight cells are
idle during this step. The mergings are carried out in the in the third and eighth cells.

5. The 400 point and 100 point triangulations are merged to form 500 point triangulations in cells 4 and
6. At the end of this step there are two triangulations of 500 points each. Eight cells are idle during
this step.

6. The two 500 point triangulations are merged to give the Delauney triangulation of 1000 points. This
operation is carried out in the fifth cell. Nine cells are idle.

7. The dual of the Delauney triangulation thus obtained will give the Voronoi diagram.

Table 5-8 gives operation counts for each of the steps in the Voronoi diagram algorithm above. These counts
were obtained through a C program which computed the Voronoi diagram.

Step Assignments Array References Comparisons Arithmetic operations Logical Operations

2 86897 192695 60149 71572 36290

3 89529 198309 60209 74221 36343

4 !91754 202898 60264 76401 36388

5 94504 208420 60326 79030 36441

6 97313 214221 60394 81733 [36502

Table 5-8: Operation counts for Voronoi diagram

iWarp will have 72 cells instead of 10. Since the time for intermediate data transfers is small we ignore any
changes in that and assume linear speedup in the Delauney triangulation computation.

Since the computation of addresses for the array references appears to be the critical path we considered this as
the bottleneck in the computation. (PC Warp and iWarp will have parallel address computation engines in each
cell). Each array reference takes 300ns on PC Warp (lOOns for the address computation and 200ns for the memory
access) and lOOns on the baseline iWarp. The total computation time therefore comes to 64 milliseconds on PC
Warp and 8.9 milliseconds on iWarp. The initial sort step requires 24 milliseconds on PC Warp and 10
milliseconds on i Warp. The number of floating-point data transfers internal to the computation is 3600 (400 in step
3, 800 in step 4, 400 in step 5, and 2000 in step 6). This will take 800 microseconds on PC Warp and 63
microseconds on iWarp.

Since the Voronoi diagram computation is taking the dual of the Delauney triangulation, this can be done in
parallel. This can be done in pipelined mode (concurrent I/O and computation in a cell) so that the total time of
computation will be around the total time for l/O which is around 200 milliseconds on PC Warp, and 120
milliseconds on i Warp. The conversion to Voronoi diagram will be part of a pipeline at the end of which Voronoi
diagram edges will be transmitted to the host. Hence time for transmission to the host will be included in this.

The total times for the computation are, on PC Warp, 64 millisecords + 24 milliseconds + 800 microseconds +
200 milliseconds = 290 milliseconds, while on iWarp the time is 8.9 milliseconds + 10 millis,.,onds + 63
microseconds + 120 milliseconds = 140 milliseconds.

5.11 Minimum spanning tree
Geometrical constructions. The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in the

plane, selected at random, with each coordinate in the range [0,1000]. The output is the minimal spanning tree of S,
defined by the set of pairs of points of S that are joined by edges of the tree. (On minimal spanning trees see [26,
Section 6.11.)

We use Shamos's algorithm [26], in which we have only to examine edges in the Delauney triangulation to find
an incremental edge in the minimum spanning tree. In the worst case 1000 vertices can correspond to 3000 edges,

.',f-.~. 4,. t - -- f. -- t. .- V .,

49

implying an average of 3 edges per vertex. This means that we have to make a maximum of 2 comparisons to find
the edge of minimum length out of a vertex. Since there are 1000 vertices we have to make only 2000 comparisons
per stage of the algorithm and, since there are log (N) stages, we have to make 20000 comparisons in all. Also, as
part of the initialization step we have to compute the lengths of all the 3000 edges, which will involve 6000
floating-point multiplications and 3000 floating-point additions. We also have to prepare a data structure which will
give tht out-degree of a particular vertex. This will involve 2 comparisons per edge, for a maximum of 6000
comparisons in all. We assume that the minimum spanning tree shall be computed. We also assume that a
floating-point multiplication takes 5 microseconds and a floating-point addition takes 2.5 microseconds, and each
comparison takes 1 microsecond. Adding up the respective times the total comes to about 65 milliseconds. This
time is the worst case since the Delauney triangulation of 1000 points will typically contain much less than 3000
edges.

5.12 Visibility
Visibtlty. The input is a set of 1000 triples of triples of real coordinates ((r,s,t),(u,vw),(x,yx)), defining 1000 opaque

triangles in three-dimensional space, selected at random with each coordinate in the range [0,1000]. The output is a list 0
of verticrs of the triangles that are visible from (0,0,0).

An input partitioning method is used. Each vertex is simply tested to see if it is obscured by any of the triangles.
This is done by taking the four planes defined by the triangle vertices and the origin and any two of them, and
testing to see if the vertex point lies in the interior of the region defined by the three planes including the origin, but
on the far side of the triangle. The mapping onto Warp is to broadcast the set of triangle points to all cells, and then
to send to each of the ten cells one-tenth of the vertex set, with each cell testing its portion to see if it is visible. The
execution time on the WW Warp is 825 milliseconds (however, the WW Warp machine cannot hold the entire
dataset due to memory limitations- this time is a compiler estimated execution time). Some improvement (probably
a factor of two to three) is expected on PC Warp, since the algorithm will be able to stop testing a vertex when it is
found that a vertex is definitely not obscured by a particular triangle. On i Warp, we estimate a speedup of about 10,
giving an execution time of 40 milliseconds.

5.13 Graph Matching
Graph matching. The input is a graph G having 100 vertices, each joined by an edge to 10 other vertices selected at

random, and another graph H having 30 vertices, each joined by an edge to 3 other vertices selected at random. The
output is a list of the occurrences of (an isomorphic image of) H as a subgraph of G. As a variation on this task,
suppose the vertices (and edges) of G and H have real-valued labels in some bounded range; then the output is that
occurrence (if any) of H as a subgraph of G for which the sum of the absolute differences between corresponding pairs
of labels is a minimum.

This problem includes two subproblems. The first is to find isomorphic embeddings of one the smaller graph in %
the larger one. Finding one such embedding (or determining the existence of one) is known to be NP-complete [11].
Finding all isomorphisms actually grows exponentially. For example, in one set of randomly generated data, we
found about 1016 solutions. Because there are too many solutions, no presently existing machine can produce all the
solutions in one year.

The second problem is to find the one isomorphism to the graph with the least differences between the
corresponding edge and vertex costs. The complexity of the second problem is obviously between finding one and
finding all. This problem has not been completed because there were too many solutions to the first problem.

Our parallel algorithm is based on Ullmann's refinement procedure [31] which can prune the search tree by
eliminating mappings that are infeasible because of connectivity requirements. The method eliminates mappings as
early as possible. .41

In addition, we developed a more powerful method to cut the search tree as early as possible. The new method r
uses graph analysis and makes use of some special features of the graph.

We implemented the problem on the Warp host, which is a Sun workstation. Running on a set of randomly
generated data for over one hour, we obtained 1188174 solutions, giving 267 solutions/second or about 3.75

- NP

50

milliseconds/solution. At this point, by counting the branching factors of the tree above the portion we had
processed, we estimated we had found only about 1.2x 19% of the solutions, leading to our estimate of 1016
solutions for this example.

In the Warp implementation, we parallelize the exploration of the search tree. This is easy to do because the
search tree is so large that we can easily assign each subtree to a processor. By straightforward extrapolation of
cycle time, we estimate the solution rate in PC Warp to be 2700 solutions/second. Similarly, we estimate the
solution rate in i Warp to be 19000 solutions/second.

5.14 Minimum-cost Path
Minimum-cost path. The input is a graph G having 1000 vertices, each joined by an edge to 100 other vertices

selected at random, and where each edge has a nonnegative realvalued weight in some bounded range. Given two
vertices P. Q of G. the problem is to find a path from P to Q along which the sum of the weights is minimum.
(Dynamic programming may be used, if desired.)

The algorithm used here is the best known sequential algorithm, Dijkstra's Single Source Single Destination [10]
(SSSD). The algorithm works by repeatedly "expanding" nodes (adding all their neighbors to a list) then finding
the next node to expand by choosing the closest unexpanded node to the destination.

The lack of a while loop on the WW Warp results in a significant loss of performance, compared to PC Warp
and i Warp. PC Warp and i Warp have very similar mappings:

" WW Warp. The WW Warp cannot execute a loop a data dependent number of times, so that the outer
loop of SSSD must be mapped into the cluster processors. In this case, the Warp array is used for
expanding nodes, and for calculating which node should be expanded next. Node expansion is done by
feeding from the cluster processor the descendants of the node to be expanded, and by calculating the
distance to the goal of each of these nodes. The computation is extremely simple, and I/O bound on the
Warp array. Each node expansion involves the transfer of 200 words of data, which takes
200x 1.2 microseconds =240 microseconds, since the transfer of a single word takes 1.2 microseconds.

To find the next node to be expanded, the entire set of nodes must be scanned, and the node nearest the
goal is selected. On the WW Warp this means 1000 nodes must be scanned. Again, the computation is
I/O bound, so that the execution time is 1000x 1.2 microseconds =1.2 milliseconds. In the worst case,
1000 nodes must be expanded, fora total time of 1000x (1.2 milliseconds + 240 microseconds = 1.44 s).
This number scales linearly with the number of nodes that must be expanded to find the goal.

" PC Warp. In PC Warp it is possible to map the outer loop of SSSD into the Warp array, giving a much L
better time.

Node expansion is done by prestoring at each cell the costs, giving each cell 100 data. Node expanding
is done in parallel in all cells. In the worst case, the slowest cell will have to expand 100 nodes, so that
the time for one node expansion is 100 x 0.25 microseconds =25 microseconds.

The global minimum is calculated in parallel in all cells, and then the minimum among cells is found in
one pass through the array. Finding the minimum on each cell takes
0.4 microseconds x 100--40 microseconds. Finding the minimum among cells takes
0.4 microseconds x 10=4 microseconds.

The total time for one node expansion is therefore 69 microseconds. In the worst case, when 1000
nodes are expanded, the time is 69 milliseconds. This time scales linearly with the number of nodes
that must be expanded to find the goal.

* i Warp. Following the same algorithm partitioning method as for PC Warp, we use 72 cells instead of ,
10. Now each cell need store only 14 data. The faster cycle time of iWarp gives a 10 microsecond
time for one node expansion, 7 microseconds to find the global minimum in each cell, and 8
microseconds to find the global minimum across cells. (The minimum across cells is done sequentially
from cell to cell, so it takes longer on longer arrays). The total time for one node expansion on i Warp is
25 microseconds. In the worst case, the total time for the solution will be 25 milliseconds. This number
scales linearly with the number of nodes that must be expanded to find the goal.

h ,I.

51

5.15 Warp Benchmarks Summary
In Table 5-9 we summarize Warp's performance on the 1U Architecture benchmarks. With each time, we give its

source-from an actual run of WW Warp, from compiled code, or by an estimate (all i Warp times are estimated).
The times from an actual run are, of course, the most reliable- they are observed times, from an actual run on our
WW Warp at Carnegie Mellon, and include I/O. Times marked "compiled code" are just as reliable; the W2
compiler for Warp produces a time estimate, which gives the actual execution time for the algorithm on Warp (we
have modified these times as appropriate when the Warp array is not the bottleneck in the execution time of the
algorithm). Finally, "estimate" indicates a time which is not based on compiled code, but on some other method,
which may not be as reliable. The source of the time is given in the relevant section. We have tried to be as
accurate as possible in these estimates, and have tried to err on the side of caution.

Algorithm WW Warp PC Warp iWarp

430 ms 350 ms
Laplacian actual run compiled code 7.8 ms

170 ms 50 ms
Zero crossing actual run estimate 7.8 ms

1.1s
Border following N/A estimate 690 ms

5.6s 980 ms
Connected Components compiled code estimate 470 ms I

340 ms
Hough transform N/A compiled code 60 ms

9 ms 9 ms
Convex Hull actual run compiled code 3.2 ms

290 ms
Voronoi diagram N/A estimate 140 ms

160 ms
Minimal spanning tree N/A estimate 43 ms

830 ms 400 ms
Visibility compiled code estimate 40 ms

1800 soln./s
Graph matching N/A estimate 19,000 solnJs

1.4s '69 ms
Minimum-cost path estimate estimate 25 ms

Table 5-9: Warp Benchmark Summary

'.

5.16 Evaluation of the Warp Architecture
In this section we will use the data generated by these benchmarks to evaluate the Warp architecture, by

considering the effect of various reasonable design changes. The intent is to explore the design space around the PC
Warp. We will consider all of the benchmark algorithms except for minimal spanning tree, which is not performed
on the Warp array.

5.16.1 Memory
In PC Warp, each cell has 32K words of memory, for a total memory in the Warp array of 320K. What is the

effect on performance of decreasing the memory size?

Laplacian and zero crossing are input partitioned algorithms. This implies that each cell needs only enough

52

memory to compute the result for the area of the image assigned to that cell-in this case, approximately
11x52+5x52=832 words for the Laplacian, and 3x52+512=668 data for zero crossing. If we decrease the
memory per cell below this point, the computation can still be done, but only by processing a strip of the image at a
time. For example, the Laplacian could process two 512x256 images and need only 11 x26+5x26-416 words of
memory. (The comput~tion would ,ctually process a slightly wider image, because of the need for overlap at the
interior edge. This makes it less effikient.)

Border following and connected components both must store the entire image (distributed through the array) at
once to do their processing. This means the total array storage must be at least 256K, plus whatever is needed to
store their local tables. If less memory is available than this, the computation becomes exceedingly complex- either
the image must be compressed for storage, or several passes must be performed, with a new merge step. This sort of
complexity is frusrating for a programmer to deal with.

Hough transform and visibility display the standard behavior of output partitioned algorithms; as memory is
reduced, the computation grows proportionately less efficient. For example, for Hough transform the current
benchmark requires 180x512=90K words of memory in the array. If only, say, 45K words of memory are
available, the computation can be done in two passes, each building half the Hough array; but each pass takes as
long as the whole thing on a machine with sufficient memory. Similarly, visibility needs 27K; if less is available
than this, multiple passes must be made, each pass deleting some of the points from the visibility set.

The other algorithms (Voronoi diagram, minimal spanning tree, graph matching, and minimum-cost path) all
share the characteristics that they require the entire dataset to be stored in the array at once, their computation is
fairly complex, and they have small datasets. In a well-designed machine, memory is unlikely to be a problem; but
if it is too small to store the complete dataset, programming any of these problems will become very difficult.

5.16.2 Number of processing elements
PC Warp has ten cells in its array, a fairly small number as parallel machines go. What happens if we increase

this number?

The effect on Laplacian, zero crossing, Hough transform, convex hull, and visibility is straightforward; their
speed changes approximately linearly, increasing or decreasing as the number of cells is increased or reduced, as
long as I/O is not a bottleneck. This bottleneck occurs when the data transfer rate between the external host and the
Warp array reaches 12 MB/second, which occurs when the number of Warp cells is 168 for Laplacian, 24 for zero
crossing, 180 for Hough transform (since the partitioning is by angle, this is the bottleneck), 130 for convex hull,
and 530 for visibility. (Actually, due to the effects of rounding, some of these numbers do not actually represent
peaks in performance. For example, we will not observe any change in performance between 128 cells, or -four
pixels per cell, and 171 cells, or three pixels per cell.) By this point, effects we ignored in our initial time estimate,
such as the cost of overlapping data with an adjacent cell, or the buffer sizes in the interface unit, probably dominate.
Except possibly for zero crossing, these limits on the number of cells exceed the practical limits of building and
maintaining such a PC Warp array.

Graph matching is similarly partitioned, and it should display the same sort of behavior as the above algorithms.
We have not done enough analysis to determine the optimal number of cells.

The case of connected components is quite different. This algorithm consists of two parts, one of which is
partitioned like the algorithms above, and the other of which is a merge step. The total time for both steps is
O(AIN+BN), where A and B are constants depending on the algorithm for the partitioned and merge steps,
respectively, and N is the number of cells. This formula has a minimum when N=V i. For connected components,
this occurs when N=25, as shown in Section 5.7.3.3.

Similarly remarks apply to Voronoi diagram and border following. We do not have accurate enough estimates to
give a definite maximal number of cells in these cases.

53 S

5.16.3 External host V
The external host is based on standard MC68020 processors and the VME bus. This is convenient for

programming, but may be undesirable for performance. What is the effect of making the external host more
powerful?

Naturally, as the external host grows more and more powerful, more and more of the computation can be mapped
onto it- in the most extreme case, it can perform the entire computation. We will restrict ourselves to considering
the qualitative effects of making the external host more powerful, but still less powerful than the Warp array.

There is no benchmark in which the external host actually creates an 1/0 bottleneck. However, there are many
ways in which a more powerful external host would significantly affect the program mapping. This is most evident
in Section 5.14. Here, on the WW machine, the external host is used to control the outer-loop of the program, while
on PC Warp and i Warp, the Warp array itself controls this outer loop. In many ways, it is convenient to use the
external host for this computation; there is no reason not to split the computation in this way, and it is in some ways
easier to program. However, the poor computational abilities of the external host make it advantageous to map as
much computation onto the Warp array as possible, even when it is somewhat inconvenient.

Similar remarks apply to border following, connected components, convex hull, and Voronoi diagram. All of
these algorithms could use a more powerful external host in the merge phase of their computation.

However, it is interesting to consider alternatives to a more complex external host. It is unlikely that the ratio of
power between the external host and the Warp array will shift towards the external host in future versions of Warp
or similar systems. Rather, as our ability to build larger Warp arrays grows, it will likely shift in the other direction..,
We must try to find alternatives to mapping important parts of the computation onto a sequential processor if we are
to see further speedup in these algorithms. It seems that a much better alternative to making the external host more
powerful is to make the Warp array more flexible, for example by making the communications between the cells
more powerful (allowing higher dimensional arrays or logically connecting distant cells).

p
f.,q

"f

,I

54

6. References
[11 Reference Manual for the Ada Programming Language

MIL-STD 1815 edition, United States Department of Defense, AdaTEC, SIGPLAN Technical Committe on
Ada, New York, N.Y. AdaTEC, 1982.

Draft revised MIL-STD 1815. Draft proposed ANSI Standard document.

[21 Annaratone, M., Amould, E., Cohn, R., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, 0., Sarocky, K.,
Senko, J., and Webb, J.
Warp Architecture: From Prototype to Production.
In Proceedings of the 1987 National Computer Con'ference. AFMPS, 1987.

[3] Annaratone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, 0., Sarocky, K. and Webb, J A.
Warp Architecture and Implementation.
In Conference Proceedings of the 13th Annual International Symposium on Computer Architecture, pages

346-356. June, 1986.

[1] Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, 0. and Webb, J. A.
The Warp Computer~ Architecture, Implementation and Performance.
IEEE Transactions on Computers C-36(12), December, 1987.

[5] Annaratone, M, Arnould, E., Cohn, R., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, 0., Sarocky, K.,
Senko, J., and Webb, J.
Architecture of Warp.
In COMPCON Spring '87, pages 264-267. IEEE Computer Society, 1987.

[61 Batcher, K. E.
Bit-serial parallel processing systems.
IEEE Trans. Computer C-31(5):377-384, May, 1982.

[7] BBN Laboratories.
The Uniform System Approach to Programming the Butterfly Parallel Processor
I edition, Cambridge, MA, 1985.

[8] Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M., Lieu, P., Noaman, A. and Yam, D.
The Warp Programming Environment.
In Proceedings of the 1987 National Computer Conference. AFIPS, 1987.

[91 Bruegge, B., Chang, C., Cohn, R., Gross, T., Lam, M., Lieu, P., Noaman, A. and Yam, D.
Programming Warp.
In COMPCON Spring '87, pages 268-271. IEEE Computer Society, 1987.

[10] Dijkstra, E.
A note on two problems in connexion with graphs.

* Numerische Mat hematik 1:269-271, 1959.

[11] Garey, M. R., and Johnson, D. S.,%
Computers and Intractiility: A guide to the theory of NP-completeness.
W. H. Freeman, 1979.

(12] Gross, T., Kung, H.T., Lamn, M. and Webb, J.
Warp as a Machine for Low-level Vision.
In Proceedings of 1985 IEEE International Conference on Robotics and Automation, pages 790-800.

March, 1985.

[13] Guibas, L. J., and Stolfi, J.
Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams.
ACM Transactions on Graphics 4, 1985.

[14] Hamey, L. G. H., Webb, J. A., and Wu, I-C.
An Architecture Independent Programming Language for Low-Level Vision.
Submitted to Computer Graphics and Image Processing.

55

[151 Haralick, R. M.
Digital Step Edges from Zero Crossings of Second Directional Derivatives.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6:58-68, 1984.

[161 Hillis, W.D.
The Connection Machine.
The MIT Press, Cambridge, Massachusetts, 1985.

[17] Huang, T. S., Yang, G. J., and Tang, G. Y.
A fast two-dimensional median filtering algorithm.
In International Conference on Pattern Recognition and Image Processing, pages 128-130. IEEE, 1978.

[18] iPSC System Overview
Intel Corporation, 1985.

[19] Jarvis, R. A.
On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters 2:18-21, 1973.

[20] Jordan, K E.
Performance comparison of large-scale scientific computers: Scalar mainframes, mainframes with integrated

vector facilities, and supercomputers.
IEEE Computer 20(3): 10-23, March, 1987.

[21] Joy, W. N., Babaoglu, 0., Fabry, R. S., Sklower, K.
UNIX Programmer's Manual P
4th Berkeley Distribution edition, University of California at Berkeley, 1980.

(22] Kemighan, B. W. and Ritchie, D. M.
The M4 Macro Processor.
In Unix Programmer's Manual. Bell Laboratories, Murray Hill, NJ 07974, 1979.

[23] Kung, H.T. and Webb, J.A.
Global Operations on the CMU Warp Machine.
In Proceedings of 1985 AIAA Computers in Aerospace V Conference, pages 209-218. American Institute of

Aeronautics and Astronautics, October, 1985.

[24] Kung, H. T. and Webb, J. A.
Mapping Image Processing Operations onto a Linear Systolic Machine.
Distributed Computing 1(4):246-257, 1986.

[25] Olson, T. J.
An Image Processing Package for the BBN Butterfly Parallel Processor.
Butterfly Project Report 9, University of Rochester, Department of Computer Science, August, 1985.

(261 Preparata, F. P. and Shamos, M. I.
Computational Geometry - An Introduction.
Springer, New York, 1985.

[27] Rosenfeld, A. and Kak, A. C.
Digital Picture Processing.
Academic Press, New York, 1982.

[28] Schwartz, J., Sharir, M., and Siegel, A.
An efficient algorithm for finding connected components in a binary image.
Technical Report 154, New York University Department of Computer Science, February, 1985.

[291 Seitz, C.
The Cosmic Cube.
Communications of the ACM 28(l):22-33, January, 1985.

[301 Electrotechnical Laboratory.
SPIDER (Subroutine Package for Image Data Enhancement and Recognition). %
Joint System Development Corp., Tokyo, Japan, 1983. %

IL

56

[31] Ullman, J. R.
An algorithm for subgraph isomorphism.
Journal of the ACM 23(1):31-42, January, 1976.

[32] Wallace, R. S. and Howard, M. D.
HBA Vision Architecture: Built and Benchmarked.
In Computer Architecures for Pattern Analysis and Machine Intelligence. IEEE Computer Society, Seattle,

Washington, December, 1987.

(331 Wallace, R. S., Webb, J. A. and Wu, I-C.
Architecture Independent Image Processing: Performance of Apply on Diverse Architectures.
Submitted to Computer Graphics and Image Processing.

4_

----, -, ,,.v. s. , ,. ' ,- .,.ii. i...a~.Lah~h.. .. .I

57

.WEB Listing
In the following, image is a 512x5l2 array of unsigned char and realimage is a 512x512 array of float. (These are

the sizes compiled in the programs; to change these sizes, the programs have to be re-compiled.)
I

The "Status" given below is either coded, compiled, tested, or validated. "Coded" indicates the program is
written (the source code is available in the directory) but not yet compiled. "Compiled" indicates the program has
been written and successfully compiled by W2 and Apply (if necessary) but not necessarily tested. "Tested"
indicates that the program has been written, compiled, and tested. "Validated" indicates that the program has been
written, compiled, tested, and passed validation in this release. Over one-half of the library can now be validated.

For programs that have been compiled or tested but not validated, the execution time given is the time estimated
for execution by the W2 compiler. Actual run times are given for validated programs. The run time of a Warp
program is defined as the time from the start of the execution of Clusterl (used for input) to the end of the execution
of Cluster2 (used for output). This time includes all I/O from the external host to Warp. To distinguish these times
from the estimated times, they are printed in boldface. In general, the actual run time for a program may differ from
the compiler estimated execution time, for two reasons: S

1. The compiler does not take I/O between cells or with the host in its estimate. Since I/O is almost
completely overlapped with execution, this usually gives a very slight underestimate (about 2%)
because of the skew between cells. However, for programs that process real images, and perform a
very simple operation on them, IA) with the host may be a bottleneck. (Currently, using DMA in
compiler-generated code, the host provides about 7 MB/S each of input and output to the Warp array.
In the best case the array can process 20 MB/S each input and output. I/O is not a bottleneck for byte
images because the interface unit unpacks bytes to floats, giving a factor of four increase in data).

2. In computing the estimated times, the compiler makes assumptions about branching in conditionals
that are pessimistic.

Thus, the compiler will tend to overestimate the execution times of programs with greatly unbalanced conditionals,
slightly underestimate the execution time of most other programs, and significantly underestimate the execution
time of programs that perform very simple operations (e.g., add a constant) on real images.

"Size" is size in WI instructions of the compiled code. The Warp machine has space for 7936 WI instructions
(8192 instructions are in the memory, and 256 are used for system purposes).

Program Status Time Size Language
Description

Parameters Access

addclb Validated 109.4 ms 94 Apply
Add a constant to a byte image.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

addclc Validated 328.08 ms 124 Apply
Add a complex constant to a complex image.

Parameters: 1st param: realimage (real part) input
2nd param: realimage (imaginary part) input
3rd param: float constant (real part) input ..,%
4th param: float constant (imaginary part) input
5th param: realimage (real part) output %
6th param: realimage (imaginary part) output

:.'N

58

addclr Validated 146.0 ms 78 Apply
Add a constant to a realimage.

Parameters: 1st param: realimage input
2nd param: float constant input
3rd param: realimage output

addcls Validated 108.4 ms 94 Apply
Add a constant to an signed byte image.

Parameters: 1st param: image input
2nd paran: imt constant input
3rd param: image output

addplb Validated 161.5 ms 99 Apply
Add two byte images.

Parameters: 1st param: image input
2nd param: image input
3rd param: image output

addplc Validated 622.10 Es 165 Apply
Add two complex images.

Parameters: 1st param: realimage (real part) input
2nd param: realimage (imaginary part) input
3rd param: realimage (real part) input
4th param: realimage (imaginary part) input
5th param: realimage (real part) output
6th param: realimage (imaginary part) output

addplr Validated 309.8 ms 99 Apply
Add two realimage's.

Parameters: 1st param: realimage input
2nd param: realimage input
3rd param: realimage output

addpls Validated 161.8 ms 99 Apply
Add two signed byte images.

Parameters: 1st param: image input
2nd param: image input
3rd param: image output

afinl Validated 4396.7 ms 410 W2
Affine image warping using linear interpolation.

Parameters: 1st param: image input
2nd param: float array[2][3] input

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform) input
4th param: image output

afin2 Validated 4530.3 ms 436 W2
Aff-me image warping using quadratic interpolation.

Parameters: 1st param: image input
2nd param: float array[21[3] input

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform) input
4th param: image output

59 S

afro3 Validated 4413.1 ms 827 W2
Affinc image warping using max, min, or nearest neighbor interpolation.

Parameters: 1st param: image input
2nd param: float array[2][31 input

Homogeneous transformation matrix.
3rd param: 1 (inverse) or 0 (direct transform) input
4th param: select type of interpolation input
5th param: image output

andc lb Validated 109.6 ms 99 Apply
Logically and an image with a constanL

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

andplb Validated 160.7 ms 118 Apply
Logically and two images.

Parameters: 1st param: image input
2nd param: image input
3rd param: image output

areal Validated 224.7 ms 317 W2
Measure area of regions in a labeled image. iParameters: 1st para=: image input :

2nd param: int value input
Label of region to be processed; if 0, all regions are processed.

3rd param: int array[256] output
array[i] is the area of region labeled i.

asmt Validated 1201.9 ms 824 Apply
Local selective averaging.

Parameters: 1st param: image input
2nd param: image output

bdr4l Validated 124.7 ms 552 Apply
Detect borders in binary picture (4-connectedness).

Parameters: 1st param: image input
2nd param: I (inner) or 0 (outer borders) input
3rd param: image output

bdr8l Validated 126.5 ms 677 Apply
Detect borders in binary picture (8-connectedness).

Parameters: 1st param: image input
2nd param: 1 (inner) or 0 (outer borders) input
3rd param: image output

bflpl Validated 329.0 ms 728 Apply
Detect borders of regions in a labeled image.

Parameters: 1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: int value input

Label assigned to borders; if 0, keep label of the region.
4th param: 4 or 8 (connectedness) input
5th param: image output

60

byrl Validated 146.9 ms 75 Apply
Byte to real conversion.

Parameters: 1st param: image input
2nd param: realimage output

canny Compiled W2
Canny operator.

Link with $(WPEweb)/IibWEBa.
This subroutine can handle any size input image, by processing 512x512
regions. Uses mag, magdir, nonmax.
C interface: canny(inimg, outimgsize, bounds, xgrad, ygrad,

rgrad, dir, verbose, err)
Parameters: inimg: input image input

outimg: nonmaxima suppressed edges output
size: int size of Canny (<=20) input
bounds: SUBIMAGE bounds to compute Canny input
xgrad: output X gradient output
ygrad: output Y gradient output
rgrad: gradient maxima output
dir: gradient direction output
verbose: int 0 (quiet) or 1 (verbose) input
err: Generalized image library error parameter input

cgrv I Validated 221.9 ms 388 W2
Measure coordinates of center of gravity of regions in a labeled image.

Parameters: 1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: int array[256] input

Array with areas of regions (output of AREAI).
4th param: float array[256] output

arrayfi] is the row coordinate of region labeled i.
5th param: float array[256] output

arrayfi] is the column coordinate of region labeled i.

clip Validated 149.0 ms 198 Apply
Set gray values in a range to zero.

Parameters: 1st param: image input
2nd param: int value (lower bound) input
3rd param: int value (upper bound) input
4th param: image output

colortobw Validated 215.9 ms 185 Apply
Convert (rg,b) image to black and white by averaging.

Parameters: 1st param: image (red) input
2nd param: image (green) input
3rd param: image (blue) input
4th param: image (gray) output

conc Validated 458.0 ms 573 Apply
Compute connectivity number.

Parameters: 1st param: image input
2nd param: 4 or 8 (connectedness) input
3rd param: image output

D

61

connect Validated 2545.4 ms 773 W2
Eight-connected components analysis.
In the input image, pixels with different grayvalues are not considered
to be connected. Grayvalue 0 is "background" and is not labelled.
Output is a realimage where each grayvalue represents a different
connected region.

Parameters: 1st param: image input
2nd param: realimage output

cqltl Validated 943.1 ms 461 W2
Measure coordinates of circumscribing rectangle of regions in a
labeled image.

Parameters: 1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: int value input

When 2nd param = 0, greatest label in the input labeled image.
4th param: int array[256][4] output

array~i][41 contains the coordinates of the circumscribing rectangle
of region labeled i.

crcll Validated 2.7 ms 186 W2
Measure compactness of regions.

Parameters: 1st param: int array[256] input
Array with areas of regions (output of AREAl).

2nd param: int array[256] input
Array with perimeters of regions (output of PRMT1).

3rd param: float array[256] output
arraytil is the compactness of region labeled i.

cros Validated 257.1 ms 427 Apply
Compute crossing number.

Parameters: 1st param: image input
2nd param: 4 or 8 (connectedness) input
3rd param: image output

dct Validated 232.4 ms 583 W2
Two dimensional direct discrete cosine transform.
Takes an input image and performs 8 x 8 discrete
cosine transforms to produce the output image.
Useful for image compression.

Parameters: 1st param: image input
2nd param: realimage output

display Validated 514.7 ms 499 W2
Histogram-equalize and halftone image.
Used by WPE for image display under X.

Parameters: 1 st param: image input
2nd param: image output

divclb Validated 107.5 ms 136 Apply
Divide an image by a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

.4.

'.r , • -a" I ., mr • W W ,r " .r ',./ " ." ' a"." " . ,/s -. s ¢. € 'd" ' ,P . 4 '*'* #'d' P". ' "".*" - -,* "*" .*

62I

divclr Validated 145.7 ms 87 Apply
Divide a realimage by a constant.

Parameters: 1 st param: realimage input
2nd param: float constant input
3rd param: realimage output

divc Is Validated 107.2 ms 136 Apply
Divide a signed byte image by a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

divplb Validated 161.8 ms 144 Apply
Divide 1st input image by 2nd input image.

Parameters: 1st param: 1st image input
2nd param: 2nd image input
3rd param: image output

divplr Validated 310.2 ms 100 Apply
Divide 1st input realimage by 2nd input realiage.

Parameters: 1st param: 1st realimage input
2nd param: 2nd realimage input
3rd param: realimage output

divpls Validated 160.8 is 144 Apply
Divide 1st signed byte image by 2nd signed byte image.

Parameters: 1st param: 1st image input
2nd param: 2nd image input
3rd param: image output

egfc Validated 849.7 ms 593 Apply
Edge detection using orthogonal templates by Frei and Chen.

Parameters: 1st param: image input
2nd param: image output

egksl Validated 730.3 ms 487 Apply
Edge detection using Kirsch operator (outputs magnitude only).

Parameters: 1st param: image input
2nd param: image output

e egks2 Validated 906.47 ms 537 Apply
Edge detection using Kirsch operator (outputs magnitude and
direction of gradient).

Parameters: 1st param: image input
2nd param: image (magnitude) output
3rd param: image (direction) output

eglp Validated 311.1 ms 608 Apply
Edge detection using Laplacian.

Parameters: 1st param: image input
2nd param: 1, 2, or 3 input

Select Laplacian operator.
3rd param: image output

egpr Validated 2080.5 ms 873 Apply
Edge preserving smoothing.

Parameters: 1st param: image input
2nd param: image output

63

egpwl Validated 233.8 ms 868 Apply r
Edge detection using Prewitt operator (differential type)
(outputs magnitude only).

Parameters: 1st param: image input
2nd param: 0 or 1 input

Select computation equation for magnitude.
3rd param: image output

egpw2 Validated 2031.3 ms 1327 Apply
Edge detection using Prewitt operator (differential type)
(outputs magnitude and direction of gradient).

Parameters: Ist param: image input
2nd param: 0 or I input

Select computation equation for magnitude.
3rd param: image (magnitude) output
4th param: image (direction) output

egpw3 Validated 703.5 ms 478 Apply
Edge detection using Prewitt operator (template type).
(outputs magnitude only).

Parameters: 1st param: image input
2nd param: image output

egpw4 Validated 874.80 ms 528 Apply
Edge detection using Prewitt operator (template type).
(outputs magnitude and direction of gradient).

Parameters: 1st param: image input
2nd param: image (magnitude) output
3rd param: image (direction) output

egrb Validated 145.2 ms 378 Apply
Roberts operator.

Parameters: 1st param: image input
2nd param: 0 or 1 input

Select computation equation for magnitude.
3rd param: image output

egrsl Validated 673.3 ms 465 Apply
Robinson operator (outputs magnitude only).

Parameters: 1st param: image input
2nd param: image output

egrs2 Validated 840.67 ms 515 Apply
Robinson operator
(outputs magnitude and direction of gradient).

Parameters: 1st param: image input
2nd param: image (magnitude) output
3rd param: image (direction) output

egrs3 Compiled 0.880992 s 856 Apply
Robinson operator (checks local connectivity of edges and deletes
those that do not meet the conditions).

Parameters: 1st param: image input
Magnitude (output of EGRS2). %

2nd param: image input
Direction (output of EGRS2).

3rd param: image output %

N N

64

egsbl Validated 329.3 ms 961 Apply
Sobel operator (outputs magnitude only).

Parameters: 1st param: image input
2nd param: 0 or 1 input

Select computation equation for magnitude.
3rd param: image output

egsb2 Coded Apply
Sobel operator (outputs magnitude and direction of gradient).

Parameters: 1st param: image input
2nd param: 0 or 1 input

Select computation equation for magnitude.
3rd param: image (magnitude) output
4th param: image (direction) output

eikvl Validated 827.0 ms 705 Apply
Iterative edge detection using Kasvand's method.

Parameters: 1 st param: image input
2nd param: image output

eikv2 Validated 903.08 ms 678 Apply
Iterative line sharpening using Kasvand's method.

Parameters: 1st param: image input
2nd param: image output

epct Validated 456.1 ms 619 Apply
Expand or contract binary pattern.

Parameters: 1st param: image input
2nd param: 4 or 8 (connectedness) input
3rd param: 0 (contract) or I (expand) input
4th param: image output

ersr3 Validated 149.8 ms 122 Apply
Erase small regions in a labeled image. Small regions are those
whose area is less than a given threshold.

Parameters: 1st param: image input
2nd param: int array[2561 input

Array with areas of regions (output of AREAl).
3rd param: int value (threshold) input
4th param: image output

expand Validated 114.7 ms 675 Apply
Image doubling using linear interpolation.

Parameters: 1st param: char array[256][256 input
2nd param: image output

fclib Validated 66.70 ms 71 Apply
Assign zero to an image.

Parameters: 1st param: image output

fclir Validated 145.3 ms 71 Apply
Assign zero to a realimage.

Parameters: 1st param: realimage output

65

fcon Validated 400 ms W2
Two-dimensional convolution using FFT. %
Image2 is replaced by the convolution of imagel with image2.

Imagel will be destroyed if it is a Warp real image.
The execution time reported is the Unix user time for a
complete call.
C Calling sequence: fcon(imagel, image2).
Link with $(WPEweb}/libWEB.a, the libraries needed for
warpcall(3), and -Im.

Parameters: realimage input
realimage inout

fcor Validated 483 ms W2
Two-dimensional correlation using FFT.
Image2 is replaced by the correlation of imagel with image2.
Imagel will be destroyed if it is a Warp real image.
The execution time reported is the Unix user time for a
complete call.
Link with ${WPEweb)/libWEB.a, the libraries needed for
warp.call(3), and -Im.
C calling sequence: fcor(imagel, image2) J,

Parameters: 1st realimage input
2nd realimage inout

fcpl Compiled 1.7909992 s 558 Apply
Convert (real, imaginary) representation to (magnitude, phase)
representation for complex images.

Parameters: 1st param: realimage (real part) input
2nd param: realimage (imaginary part) input
3rd param: realimage (amplitude part) output
4th param: realimage (phase part) output

fft Validated 3485.1 ms 193 W2
In-place two-dimensional fast Fourier transform.
The image is replaced by its Fourier transform, defined so that
the inverse of the forward transform gives the original image.
C calling procedure: fft(real-part, imaginary-part, flag) %
Link with $WPEweb/libWEBa and the libraries needed by warpcall(3). ,.

Parameters: 1st param: realimage (real part) inout
2nd param: realimage (imaginary part) inout •

3rd param: float 1.0 (direct) or -1.0 (inverse) input

flog Compiled 0.1864334 s 232 Apply
Compute logarithms of a realimage.
C Calling sequence: flog(imgin, type, imgout).
Link with $WPEweb/libWEB.a.

Parameters: I st param: realimage input
2nd param: I (natural) or 2 (base- 10 logarithm) input
3rd param: realimage output

flwlO Validated 154.0 ms 532 Apply
Execute linear filtering operation.

Parameters: 1 st param: image input
2nd param: float arraytniln] (weights) input

n is compiled in the program. This one is 3.
3rd param: image output

66

flwli Validated 143.0 nis 523 Apply
Execute linear filtering operation.

Parameters: 1st param: image input
2nd param: float array[n] [n] (weights) input

n is compiled in the program. This one is 3. 0

3rd param: float value (normalization coefficient) input
4th param: image output

flwl2 Validated 280.6 ms 453 W2
Execute linear filtering operation using uniform weighting function.

Parameters: 1st param: image input
2nd param: float value (normalization coefficient) input
3rd param: image output

fmax Coded Apply
Perform local max filtering.

Parameters: 1st param: image input
2nd param: image output

fmin Validated 1038.8 ms 685 Apply
Perform local min filtering.

Parameters: Ist param: image input
2nd param: image output

fsed Validated 333.0 ms 96 Apply
Convert an image to complex image (assigning zero to imaginary part).

Parameters: 1st param: image input
2nd param: realimage (real part) output
3rd param: realimage (imaginary part) output

gmlt Validated 107.5 ms 94 Apply
Multiply gray values (same as MULCIB).

Parameters: 1st param: image input
2nd param: int constant input O,

3rd param: image output

grassfire Coded W2 S

Grassfire transform. ,.
Input is binary image, output is distance from a 0.

Parameters: 1st param: image input
2nd param: image output

gsft Validated 109.3 ms 94 Apply
Shift gray values (same as ADDCIB).

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

gtrnl Validated 129.3 ms 147 Apply
Apply grayvalue translation table.

Parameters: 1st param: image input
2nd param: int array[256J (table) input
3rd param: image output

halftone Compiled 0.4345898s 218 W2

Image halftoning using Heckbert's algorithm
Parameters: 1st param: image input r. .

2nd param: image output

V

67

histl Validated 80.9 ms 159 W2
Obtain histogram.

Parameters: 1st param: image input
2nd param: float array[256] (histogram) output

hyth Compiled W2
Hysteresis thresholding.

Link with $(WPEweb)/libWEBa.
Uses byrl, conneCt.
C interface: canny(in, out, bounds, pbounds, low, high,

percent, verbose, err)
Parameters: in: input image input

out: thresholded output image output
bounds: SUBIMAGE bounds to perform thresholding input
bounds: SUBIMAGE bounds to compute percentages input
low: lower threshold input
high: higher threshold output
percent int 0 (thresholds are absolute) input

or I (thresholds are percentages of range of values of image)
verbose: int 0 (quiet) or I (verbose) input
err Generalized image library error parameter input

idct Validated 206.2 ms 437 W2
Two dimensional inverse discrete cosine transform.
Takes an input image and performs 8 x 8 inverse discrete
cosine transforms to produce the output image. ..

Useful for image compression. (Inverse of dct).
Parameters: 1st param: realimage input -.

2nd param: image output
r.

itenl Compiled 4.598952 s 1348 Apply
Iterative enhancement of noisy image (method 1).

Parameters: 1st param: image input
2nd param: image output

iten2 Compiled 0.8456302 s 731 Apply
Iterative enhancement of noisy image (method 2).
C Calling sequence: iten2(imagein, imageout)
Link with $WPEweb/libWEB.a.

Parameters: 1st param: image input
2nd param: image output

mag Compiled 0.2611432 s 434 Apply
Gradient magnitude computation.

Parameters: 1st param: x gradient realimage input
2nd param: y gradient realimage input
3rd param: gradient magnitude realimage output

magdir Compiled 1.9610856 s 682 Apply
Gradient magnitude and direction computation.

Parameters: 1st param: x gradient realimage input
2nd param: y gradient realimage input
3rd param: gradient magnitude realimage output
4th param: gradient direction realimage output

d-RHR.,RN~n'' 11, .

68

medi Compiled 0.7777158 s 428 W2
Median filter.

Parameters: 1st param: image input
2nd param: image output

mmntl Compiled s 383 W2
Measure moments Mq around center of gravity of regions in a
labeled image. (p and q are the order of x and y components of the
moment and are compiled in the program. This one is M11.)

Parameters: 1st param: image input
2nd param: int array[256] input

Array with row coordinates of centers of gravity (output of CGRV 1).
3rd param: int array[2561 input

Array with column coordinates of centers of gravity (output of CGRV 1).
4th param: int value input

Label of region to be processed; if 0, all regions are processed.
5th param: int array[256] output

Array[i] is the moment of region labeled i.

mmnt4 Validated 135.7 ms 186 W2
Obtain 0th to 2nd moments of an image.

Parameters: 1st param: image input S
2nd param: float array[6] output

Array with moments in the following order 00, 10, 01, 20, 02, and 11.

mulc I b Validated 107.6 ms 94 Apply
Multiply an image by a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

mulc I c Validated 326.67 ms 137 Apply
Multiply a complex image by a complex constant.

Para'neters: 1st param: realiage (real part) input
2nd param: realimage (imaginary part) input
3rd param: float constant (real part) input
4th param: float constant (imaginary part) input
5th param: realimage (real part) output
6th param: realimage (imaginary part) output

mul Ir Validated 145.6 ms 78 Apply
Multiply a real image by a real constant.

Parameters: 1st param: realimage input
2nd param: float constant input
3rd param: realimage output

mulcis Validated 108.5 ms 94 Apply
Multiply a signed byte image by a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

%-
~ 4/ ' ~ %'**. ** *,%* ~; I..%'

69

mulplb Validated 161.7 mns 99 Apply
Multiply two images.

Parameters: I1st, param: image input
2nd param: image input
3rd param: image output

mulpic Compiled 0.3194312 s 175 Apply
Multiply two complex images.

Parameters: 1st param: realimage (real part) input
2nd param: realimage (imaginary part) input
3rd paramn: realimage (real part) input
4th parain: realimage (imaginary part) input
5th param: realimage (real part) output
6th paramn: realimage (imaginary part) output

mulplccj Compiled 0.3194312s 175 Apply
Multiply the 1st complex image by the complex conjugate
of the 2nd complex image.

Parameters: Ist param: 1st realimage (real part) input
2nd param: 1st, realimage (imaginary part) input
3rd paramn: 2nd realimage (real part) input
4th param: 2nd realimage (imaginary part) input
5th param: realimage (real part) output P
6th param: realimage (imaginary part) output

mulpir Validated 308.3 mns 99 Apply
Multiply two realimage's.

Parameters: 1st param: realimage input
2nd param: realimage input
3rd param: realimage output

mulpis Validated 161.0 ins 99 Apply
Multiply two signed byte images.

Parameters: 1st param: image input
2nd param: image input
3rd param: image output

nolnl Validated 6449.1 mns 319 W2
Nonlinear (quadratic) image warping using linear interpolation.

Parameters: 1 st param: image input
2nd param: float array[2] [6] input 5

Homogeneous transformation matrix.
3rd param: image output

noln2 Validated 6928.4 mns 345 W2
Nonlinear (quadratic) image warping using quadratic interpolation.

Parameters: I1st param: image input
2nd param: float arrayi2] [6] input

Homogeneous transformation matrix.
3rd param: image output

70

noln3 Compiled 13.381153 s 727 W2
Nonlinear (quadratic) image warping using max, min, or nearest
neighbor interpolation.

Parameters: 1st param: image input
2nd param: float array[2][61 input

Homogeneous transformation matrix.
3rd param: int value input

Select type of interpolation.
4th param: image output

nonmax Compiled 0.7827166 s 935 Apply
3x3 Canny-style non-maxima suppression.

Parameters: 1st param: x gradient reatimage input
y gradient realimage input
gradient magnitude realimage input
non-maxima suppressed realimage output

notl Validated 109.3 ms 100 Apply
Logical negation of an image.

Parameters: 1st param: image input
2nd param: image output

orclb Validated 107.8 ms 99 Apply
Logically or an image with a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

orplb Validated 160.1 ms 118 Apply
Logically or two images.

Parameters: I st param: image input
2nd param: image input
3rd param: image output

pgenl Validated 80.38 ms 185 W2
Generate binary checkerboard pattern.

Parameters: 1st param: int value input
Width of checkerboard part.

2nd param: int value input
Height of checkerboard part.

3rd param: image output

pgen2 Tested 0.1542298 s 602 W2
Generate binary stripe pattern.

Parameters: I st param: int value input
2nd param: int value input

Slope of stripes given by lst-param/2nd-param.
3rd param: int value input

Width of stripes.
4th param: image output

2Y

71

pgen3 Tested 0.1395828 s 356 W2
Generate binary "bull's-eye" pattern.

Parameters: 1st param: int value input
Center row-coordinate of concentric circles.

2nd param: int value input
Center column-coordinate of concentric circles.

3rd param: int value input
Interval between adjacent concentric circles.

4th param: 0 or 1 input
Value in the innermost circle.

5th param: image output

pgen4 Tested 0.9567508 s 454 W2
Generate binary diamond pattern.

Parameters: 1st param: int value input
2nd param: int value input
3rd param: mt value input
4th param: int value input

(lst-param/2nd-param and 3rd-param/4th-param give
diamond edge slopes.)

5th param: int value input
6th param: int value input

(5th-param and 6th-param give diamond widths.)
7th param: image output

pgen5 Tested 0.1302654 s 389 W2
Generate binary grid pattern.

Parameters: 1 st param: int value input
2nd param: int value input 0

(Ist-param and 2nd-param specify size of rectangles.)
3rd param: image output

prmtl Tested 0.7775946 s 643 W2
Measure perimeter of regions in a labeled image.

Parameters: 1st param: image input
2nd param: int value input

Label of region to be processed; if 0, all regions are processed.
3rd param: 4 or 8 (connectedness) input
4th param: int array[256] output

array(i] is the perimeter of region labeled i.

pted Tested 0.3178648 s 286 Apply
Extract or delete points in an image.

Parameters: 1st param: image input
2nd param: 0 (deletion) or 1 (extraction) input
3rd param: int value (low threshold) input
4th param: int value (high threshold) input
5th param: 0 (within) or 1 (outside range) input
6th param: int value input

Label assigned to extracted points; if 0, keep input value.
7th param: image output

%D

72

pyramid Compiled 0.1137702 s 1099 Apply
Pyramid reduction.

Parameters: 1st param: image input
2nd param: char array[256l[256 output
3rd param: char array[128][1281 output
4th param: char array[64][641 output
5th param: char array[32][32] output
6th param: char array[16)[16] output
7th param: char array[8][81 output

reduce Compiled 0.0907948 s 559 Apply
Image halving using linear interpolation.

Parameters: 1st param: image input
2nd param: char array[256][2561 output

rlby Validated 131.9 ms 75 Apply
Real to byte conversion.

Parameters: 1st param: realimage input
2nd param: image output

rlby I Compiled 0.0709754 s 234 Apply
Real to byte conversion with wraparound at 256.

Parameters: 1st param: realimage input
2nd param: image output

rplalb Tested 0.0658724 s 59 Apply
Assign a constant to an image.

Parameters: 1st param: int constant input
2nd param: image output

rplalr Tested 0.0658702 s 48 Apply
Assign a real constant to a realimage.

Parameters: 1st param: float constant input
2nd param: realimage output

rpla2 Tested 0.248991 s 437 W2
Assign a constant to inside of an irregularly-shaped region in an image.

Parameters: 1st param: image input
2nd param: image output
3rd param: int array[512] (top border) input
4th param: int array(5121 (bottom border) input
5th param: int array[5121 (left border) input
6th param: int array[512] (right border) input
7th param: int constant input
8th param: int value output

Number of points in the region.

rqnt Tested 0.0857254 s 160 Apply
Requantize image by reducing graylevels.

Parameters: 1st param: image input
2nd param: int value input

Degree of reduction in gray levels.
3rd param: image output

scip Tested 0.0669818 s 87 Apply
Binarize image by setting nonzero grayvalues to 1.

Parameters: 1st param: image input
2nd param: image output

73

sizel Tested 8.256E-4 s 125 W2
Measure size of regions.

Parameters: 1st param: int array(256] input
Array with areas of regions (output of AREA 1).

2nd param: int array[256] input
Array with perimeters of regions (output of PRMT I).

3rd param: float array[256] output
arrayfi] is the size of region labeled i.

slthO Compiled 0.0679034 s 106 Apply
Binarize gray-scale image using single threshold.
Output is I if image is greater than the threshold, 0 if less.

Parameters: 1st param: image input
2nd param: int value (threshold) input
3rd param: image output

slthI Validated 180.2 ms 321 Apply
Binarize gray-scale image using single threshold.
Output depends on mode and threshold in the following manner:
Mode = 1: Output = I iff input > threshold
Mode = 2: Output = I iff input >= threshold
Mode = 3: Output = 1 iff input < threshold
Mode = 4: Output = 1 iff input <= threshold

Parameters: 1st param: image input
2nd param: int value (threshold) input
3rd param: int value (binarization mode) input
4th param: image output

slth2 Validated 121.7 ms 221 Apply
Binarize gray scale image using two thresholds.
mode = 0: imageout = 1 iff thdl >= imagein >= thd2
mode = 1: imageout = 1 iff thdl <= imagein or imagein <= thd2

Parameters: 1st param: image input
2nd param: (thdl) int value (threshold) input
3rd param: (thd2) int value (threshold) input
4th param: (mode) int value (binarization mode) input
5th param: image output

sith2m Tested 0.1818864s 215 Apply
Binarize gray scale image using two thresholds and a mask plane.

Parameters: 1st param: image input
2nd param: image (mask plane) input
3rd param: int value (threshold) input
4th param: int value (threshold) input
5th param: int value (binarization mode) input
6th param: image output

* slth3 Tested 0.1892586 s 255 Apply
Binarize gray scale image using reference plane.

Parameters: 1st param: image input
2nd param: image (reference plane) input
3rd param: int value (binarization mode) input
4th param: image output

snns Compiled 592 Apply e

15 x 15 symmetric nearest-neighbor smoothing.
Parameters: 1st param: image input

2nd paran: image output

S

74

srnkl Tested 0.277216s 519 Apply
Shrink using Levialdi's parallel algorithm. p.-

Parameters: Ist param: image input
2nd param: int connectedness (4 or 8) input
3rd param: image output

rnk2 Compiled 3.549949 s 1526 W2

Shrink binary pattern using Rao's algorithn.
Parameters: Ist param: image input 9

2nd param: image output

snk3 Compiled 0.2098556 s 596 Apply
Shrink binary pattern, separating touching blobs.

Parameters: 1st param: image input
2nd param: image output

subclb Validated 109.1 Ms 94 Apply 1
Subtract a constant from an image.

Parameters: Ist param: image input
2nd param: int constant input
3rd param: image output -'a-

subclc Validated 328.04 ins 124 Apply
Subtract a complex constant from a complex image. .2

Parameters: 1st param: realimage (real part) input
2nd param: realimage (imaginary part) input
3rd param: float constant (real part) input
4th param: float constant (imaginary part) input
5th param: realimage (real part) output
6th param: realimage (imaginary part) output

subclr Validated 146.4 ins 78 Apply
Subtract a real constant from a real image.

Parameters: 1st param: realimage input
2nd param: float constant input ,'.
3rd param: realimage output 1

subcls Validated 109.6 ms 94 Apply
Subtract a constant from a signed byte image.

Parameters: 1st param: image input -"

2nd param: int constant input
3rd param: image output

subplb Validated 161.7 ms 99 Apply
Subtract 2nd input image from 1st input image.

Parameters: 1st param: 1st image input
2nd param: 2nd image input
3rd param: image output

subplc Validated 623.19 ins 165 Apply
Subtract 2nd input complex image from 1st input complex image. %,

Parameters: 1st param: Ist realimage (real part) input
2nd param: 1st realimage (imaginary part) input
3rd param: 2nd realimage (real part) input
4th param: 2nd realimage (imaginary part) input
5th param: realimage (real part) output
6th param: realimage (imaginary part) output

- V... *-~~~~ -3'R5 ,- m- %'w-%- -- -.-, V, % .-

75 S

subplr Validated 310.0 ms 99 Apply
Subtract 2nd input realimage from 1st input realimage. ,

Parameters: 1st param: 1st realimage input
2nd param: 2nd realimage input
3rd param: realimage output

subpls Validated 160.8 ms 99 Apply
Subtract 2nd signed byte image from 1st signed byte image.

Parameters: 1st param: 1st image input
2nd param: 2nd image input
3rd param: image output-%

sumrcb Validated 80.83 ms 124 W2
Sum the rows and columns of an image.

Parameters: 1st param: image input
2nd param: float array[512] output

(row sums)
3rd param: float array[5121 output

(column sums)

sumrcr Validated 136.6 ms 124 W2
Sum the rows and columns of an realimage.

Parameters: 1st param: realimage input 5
2nd param: float array[512] output

(row sums)
3rd param: float array[512] output

(column sums)

tex2 Compiled 5.8877583 s 749 Apply s
Thin one-directional texture edges.

Parameters: 1st param: image input
2nd param: float value input -"

Cosine of angle.
3rh param: float value input

Sine of angle.
4th param: image output

tepa Coded Apply
Smooth image preserving texture edges.

Parameters: 1st param: image input
2nd param: int value (threshold) input
3rd param: image output

tferlb Tested 0.0661626 s 75 Apply
Transfer (copy) an image to another.

Parameters: 1st param: image input
2nd param: image output

tferlr Tested 0.0661626s 75 Apply
Transfer (copy) a realimage to another.

Parameters: 1st param: realimage input
2nd param: realimage output

txav Compiled 0.1398848 s 616 Apply
Average grayvalues in square neighborhood. b

Parameters: 1st param: image input
2nd param: image output

76

txav2 Compiled 3.9827297 s 582 W2
Average grayvalues in square neighborhood with a certain angle.

Parameters: 1st param: image input
2nd param: image output
3rd param: float value input

Cosine of angle.
4th param: float value input

Sine of angle.

txdfl Compiled 0.117301 s 430 Apply
Compute edge value of texture edge horizontally or vertically.

Parameters: 1st param: image input
2nd param: 0 (horizontal) or 1 (vertical) input
3rd param: image output

txdf2 Compiled 0.2342448 s 779 Apply
Compute edge value of texture edge of a specified size and direction.

Parameters: Ist param: image input
2nd param: int value (size) input
3rd param: float value input

Cosine of angle.
4th param: float value input

Sine of angle.
5th param: image output

txeg2 Compiled 0.795186s 343 Apply
Compute best-edge size, direction, and value using results of TXDFI
or TXDF2.

Parameters: 1st param: image input
Edge value.

2nd param: image input
Old best edge value.

3rd param: image input
Old best edge size.

4th param: image input
Old best edge direction.

5th parana: int value (edge size) input
6di param: float value (edge direction) input
7th param: float value (lambda) input
8th param: image output

New best edge value.
9th param: image output

New best edge size.
10th param: image output

New best edge direction.

xconv Validated 1251.2 ms 221 Apply
Convolution in the X (row) direction. 41-point convolution.

Parameters: 1 st param: realimage input
2nd param: array [41] of float input
3rd param: realimage output

xorclb Validated 109.1 ms 99 Apply
Exclusive or an image with a constant.

Parameters: 1st param: image input
2nd param: int constant input
3rd param: image output

Z AI I

77

xorplb Validated 161.1 ms 118 Apply
Exclusive or two images.

Parameters: 1st param: image input
2nd param: image input
3rd param: image output

yconv Validated 3086.7 ms 649 Apply
Convolution in the Y (column) direction. 41 -point convolution.

Parameters: 1st param: realimage input
2nd param: array [41] of float input
3rd param: realimage output

e%I %

