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Switchable coatings for windows to be used for controlling daylight or interior lighting,

privacy, cosmetics, solar heat gains, security, etc., provide a totally new applicaition

of liquid crystal materials.
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NMR STUDIES OF SURFACE INDUCED ORDERING IN

POLYMER DISPERSED LIQUID CRYSTALS
J.W. Doane, S. Zumer, and A. Golemme

Liquid Crystal Institute
Kent State University

Kent, OH 44242

Introduction

NMR studies of nematic liquid crystals confined to micron and submicron-size

cavities in a solid polymer are described. The high surface-to-volume ratio imposed

by the cavities and the high density of cavities present in polymer dispersed liquid

crystals (PDLCs) allow for NMR studies of unusual surface phenomena not possible

before by this powerful experimental method. Unique measurements of surface

anchoring energies and angles, and experiments on the surface layer transition

predicted by theory are shown to be accessible by this technique. Nematic director

configurations and modifications of the nematic-isotropic transition induced by the

confinement of a nematic liquid crystal to a small and highly curved cavity are

studied.

These basic studies are guided by applications of PDLCs in light shutters for

displays and other electrooptic devices. When nematic liquid crystals are dispersed

as submicron-size droplets in polymers, electrically switched light shutters with a

wide range of applications extending beyond existing liquid crystal technology are

possible. 1 2 These applications include large-scale flexible displays that do not

require polarizers and are simple and cost effective to fabricate. Switchable coatings

for windows to be used for controlling daylight or interior lighting, privacy,

cosmetics, solar heat gains, security, etc., provide a totally new application of liquid

crystal materials.

Director Configurations

A nematic liquid crystal confined to a small spherical volume exhibits a specific

director configuration resulting from an interplay between elastic forces, a possible

external field, and surface interactions. Using a constant order parameter

approximation valid in larger droplets at temperatures far from the N-I transition, a

rich variety of different configurations are found to be possible by minimization of

the elastic, surface, and field parts of the droplet free energy. 3 In this case, the free

energy of a nematic droplet can be written as:

F=1 K1 1 (V' n )2+K (nVXn)2 +K (nxVxn)2 - -- (B'n) 2 1dV+ Wo(0-0) 2dA
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Here n is the director, and K 1 , K22 , K 33 are the elastic constants associated with
splay, twist, and bend deformations. The relative diamagnetic susceptibility

anisotropy AX is taken as positive. Wo is the anchoring energy and 0 , the preferred
anchoringangle.

In the single elastic constant approximation (KII =K22 =K 33) the minimization
of Eq. (1) results in a partial differential equation which can be solved numerically to

graph the configuration. Figures l(a) and (c) show computer simulations of two of
the most commonly observed director configurations from strong tangential and
perpendicular anchoring (0-0o =0 or n/2), respectively, in the absence of an applied
field.4 The effect of an electric or magnetic field on the bipolar configuration is to
align the symmetry axis parallel to the field but cause little distortion of the director
configuration in the droplet (Fig. 1b). In the case of the radial configuration for
strong anchoring conditions a field strength of B -4(p 0 K/AX)1/R will cause a

* **..... .... .... . .. . . . . . . . . . . .
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Fig. 1.Simulated director configurations illustrati,.g: The bipolar configuration
from strong tangential anchoring in a spherical cavity, (a); bipolar
configurations in the presence of field, (b), radial or star configuration with
a central point defect from strong perpendicular anchoring, (c);
configuration from strong perpendicular anchoring in the presence of an
applied field, (d); 0 configuration resulting from strong tangential anchoring
with a central line defect, (e); 4 configuration (director pointing in and out of
plane of paper) resulting from strong tangential anchoring with a central
line defect, (M; resulting configurations from weak perpendicular anchoring
as the droplet size becomes progressively smaller or strength of anchoring
becomes progressively weaker or applied field is increased, (g) and (h).
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transition to the axial configuration of Fig. 1(d). 5 Figures 1(e) and (f) show other

possible configurations which can result from strong tangential anchoring

depending upon the ratios ofdeformation constants. Even in the absence of a field, a

cross-over between (e), (f), or (a) can occur as a function of the ratio KI1/K33.3 ,6 For

weak perpendicular anchoring (0:#0.), a cross-over between Fig. 1(c) and (g) or

(h) can occur depending upon the anchoring strength, W, the droplet size, R, the

WOR/K

12.5-

O.S (KAx/lpd",2 B/W* o.SO

Fig 2. Calculated estimate of the allowed values of W,, R, and B for a radial
configured droplet (shaded area). Droplets with axial structures similar to
those of Fig. a(g) and (h) are simulated for the unshaded area.

strength of an applied field, B. Figure 2 shows a theoretical estimate of the allowed

values of W,, R, and B for a radial droplet. Using deuterium NMR one can

determine the droplet configuration 5 for specific droplet sizes to determine values for

Wo . Deuterium NMR is one of the most sensitive methods to examine the director

configuration as illustrated in Fig. 3.

Effects on the N-I Transition

A major feature of PDLC materials is that they provide a high surface-to-volume

ratio allowing the use of NMR to study a variety of surface effects not possible before.

The effect of a restricted geometry on a nematic has been a topic of high interest.7

Pioneered by Sheng, 8 theory predicts that a nematic phase confined to a small cavity

will have its N-I transition shifted in temperature. More interestingly, it was

further predicted that there exists a first order surface layer transition at the walls

at a temperature above but near the bulk isotropic-nematic transition. As the

3



Bipolar Radial

Fig3. Simulated 2H-NMR
spectral patterns for
aligned nematic droplets
with the bipolar and C-o.3 ."
radial configurations. The
effect of self-diffusion on
the patterns becomes more low
important as the droplet "
radius, R becomes smaller
and is indicated by the ]6
parameter E=SVBR 2/12D 0'
where D is the diffusion
constant and 6VB the quad- ,

rupolar splitting in a bulk Z
nematic. Spectral pat- w *

terns for droplets of Fig. -
zk

1(d) and (g) are not shown z
but have patterns similar _ _____

to the bipolar structure.
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thickness of the film decreases the surface layer transition is predicted to vanish;
furthermore, the isotropic-nematic coexistence curve is expected to terminate in a
critical point at a critical film thickness. In this case, the isotropic phase is replaced
by a paranematic phase where a small but finite orientational order exists and the
first order I-N transition is replaced by a continuous evolvement of order.

Allender and tumer 9 applied the theory to spherical droplets which is based on
the Landau-de Gennes approach. In the case of droplets where strong normal
anchoring of the molecules enforce the radial configuration, the free energy is
expressed as:9

S,_ B S, + C, + L + E- S + - dV (2)
2' 3 4 2 r r ,- r2

- • . .. .. _ Ld4



where L=3L,/2+L2, E=3L2 , K=9/2 (L1 +L 2/2), S is the orientational order
parameter and the coefficients B and C in the expansion are temperature
independent while A is linear in temperature. The effect of the external field is not
considered.
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Fig 4. 'H-NMR linewidth (directly proportional to the degree of order) versus

temperature for nematic droplets of different diameters in a polymer matrix.
Paranematic order above T, is clearly evident in the inset. A continuous
evolvement from paranematic to nematic order is demonstrated in the
smaller droplets.
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The minimization of Eq. (2) has been performed by Allender and Zumer. For
nominal values of the material constants (typical of the compound 4'-pentyl-4-
cyanobiphenyl, 5CB) it was found that there was a critical droplet radius, R. - 0.16

prm, where the N-I transition becomes second order. Below this radius the transition
completely vanishes and is replaced by a continual evolvement of order.

Using deuterium NMR we have verified that these effects do indeed occur.10

Figure 4 shows a plot of the 2H-NMR linewidth (directly proportional to the spatial
average degree of order S over the droplet) for deuterated 5CB in an epoxy polymer
binder. Paranematic order is clearly evident in small droplets (see inset) and the
first order transition is replaced by a continual evolvement of order as the droplets
become smaller. The value of the order parameter for smaller droplets when
compared with the large droplet or bulk value implies that the configuration in these

droplets is bipolar.
Efforts to search for the surface transition predicted by Sheng will be discussed in

the presentation as will NMR methods to study phase separation methods used to
make PDLC materials. Studies of nematic-nematic phase separation to make new

types of PDLC materials will be described.
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