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SUMMARY

This report describes two new developments in the numerical analysis of linearized
unsteady cascade flows. These have been motivated by the need for an accurate analyt-
ical procedure for predicting the onset of flutter in highly loaded compressor cascades
operating at high subsonic inlet Mach number. In previous work numerical solutions
were determined using a two-step procedure in which a solution was first determined on
a rectilinear-type cascade mesh to determine the unsteady flow over an extended blade-
passage solution domain and then on a polar-type local mesh to resolve the unsteady
flow in high-gradient regions. Unfortunately, with this so-called single-pass approach the
detailed local analysis could not impact the unsteady solution beyond the region covered
by the local mesh. In addition, the polar local mesh did not allow an accurate modeling
of unsteady shock phenomena.

Thus, in the present effort a composite solution procedure has been developed in which
the cascade and local mesh equations are solved simultaneously. This procedure allows
the detailed features of the flow within the local mesh region to impact the unsteady
solution over an entire extended blade passage domain. In addition, a new transfinite
local mesh has been introduced which contains "radial" lines that conform to the shape of
the mean shock locus. Therefore, shock conditions can now be modeled more accurately.
Numerical results are presented to demonstrate the impact of the new composite solution
procedure and shock-conforming local mesh on unsteady flow predictions. We find that
shocks have an unexpectedly strong effect on linearized unsteady transonic solutions. Re-
sults are also presented to illustrate the global unsteady aerodynamic response behavior
of a compressor-type cascade operating at high subsonic inlet Mach numbers and at high
mean incidences.
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1. INTRODUCTION

The development of theoretical analyses to predict unsteady flows in axial-flow tur-
bomachines has been motivated primarily by the need to predict the aeroelastic behavior
of the blading, i.e., blade flutter and forced vibration. For this purpose such analyses
must be capable of predicting the unsteady loads acting on the blades and arising from
various sources of unsteady excitation, i.e., prescribed structural (blade) motions and
external aerodynamic excitations. The latter include variations in total temperature and
total pressure ("entropy and vorticity waves") at inlet and variations in static pressure
(acoustic waves) at inlet and exit. In particular, for blade flutter applications it is only
necessary to predict the unsteady loads due to prescribed blade motions, while for forced
response applications the unsteady loads due to incident entropic, vortical and acoustic
disturbances axe also required.

For the most part, in the unsteady aerodynamic analyses intended for turbomachin-
ery aeroelastic applications the blades of an isolated, usually two-dimensional, cascade
are considered, viscous effects are neglected and unsteady fluctuations are regarded as
sufficiently small so that a linearized treatment of the unsteady flow is justified. Lin-
earizations, which include the effects of realistic design features, such as blade geometry,
mean blade loading and operation at transonic Mach numbers (see Refs. 1 and 2), have
been actively developed over the past decade. Here, the unsteady flow is regarded as
a small-amplitude harmonic (in time) fluctuation about a fully nonuniform isentropic
and irrotational mean or steady flow. The steady flow is determined as a solution of
the full potential boundary-value problem, and the unsteady flow is governed by linear
equations with variable coefficients which depend on the underlying steady flow. Al-
though analyses based on this type of linearization have received considerable attention
in recent years (c.f. Refs. 3-8), significant advances in the associated numerical solution y
procedures are still required before it will be appropriate to consider them for transonic
design applications.

This report describes contributions to the numerical analysis of linearized unsteady
flows around the vibrating bladep of compressor-type cascades operating at high subsonic
inlet Mach number and at high mean incidence. The present work builds upon that re-
ported in Refs. 6 and 8 and is motivated by the need to provide an unsteady aerodynamic
analysis for the prediction of subsonic/transonic positive incidence flutter in compressor
blade rows. Subsonic/transonic positive incidence flutter is the most common type of
flutter encountered in the fan and compressor stages of axial-flow turbomachines. It usu-
ally occurs in blading that is highly loaded and operating at high subsonic inlet Mach
number, and it is characterized by an increase in flutter stress as exit to inlet static."
pressure ratio is increased. It may occur at part speed in a high-speed fan and at or p.

near design speed in a low- or high-pressure compressor. Flutter in bending, torsion and
coupled (bending-torsion) blade vibration modes have been observed over a reduced fre-
quency (based on relative inlet flow speed and blade chord) range extending from 0.4 to
1.6. In an unshrouded rotor the blade motions are generally unphased at low amplitudes



with the possibility of a constant interblade phase angle at larger amplitudes of vibration.
In a shrouded rotor phasing is enforced by part-span mechanical ties (Refs. 9 and 10).

The linearized unsteady aerodynamic analysis developed in Refs. 6 and 8 accounts for
the important effects of blade geometry and mean pressure rise (or fall) across a blade
row (i.e., mean blade loading). Furthermore, this analysis applies to transonic flows and
includes the effects of shocks and their motions in the prediction of unsteady airloads.
The linearized unsteady equations are solved numerically using an implicit least-squares
finite-difference approximation which is applicable on arbitrary grids. Solutions have
been reported for subsonic flows through cascades of NACA 0012 airfoils (Ref. 6) and
for subsonic and transonic flows through vibrating cascades of sharp-edged flat-bottomed
double-circular-arc (DCA) airfoils (Ref. 8). More recently, the analysis has been applied
to representative two-dimensional outer-span sections of an actual fan rotor (Ref. 11), to
a NASA Lewis flutter cascade (Ref. 12) and to four of the nine standard configurations
suggested by T. Fransson and P. Suter (Refs. 13, 14) for theoretical and experimental
investigations on turbomachine cascades (Ref. 15).

Because of the stringent and often conflicting requirements placed on the construction
of a computational mesh for cascade flows, a two-step numerical solution procedure was
adopted in Refs. 6 and 8. Here the basic approach is to first capture large-scale unsteady
phenomena on a rectilinear-type cascade mesh of moderate density and then to determine
detailed phenomena on a polar-type local grid of high density. The cascade mesh covers
an extended blade-passage solution domain, while the local mesh covers and extends well
beyond a region of high velocity gradient, e.g., a region surrounding a rounded blade
leading edge (Ref. 6) or a region containing a shock (Ref. 8). Information determined
by the cascade mesh solution provides the outer boundary-condition information for the
local calcuiatimn, and the solution to the unsteady boundary-value problem is taken to
be the local solution in the region covered by the local mesh and the cascade solution
elsewhere. Thus the local solution is essentially a correction to the cascade solution over
the local mesh region since there is no iteration between the two calculations.

The local mesh of Refs. 6 and 8 consists of radial and circumferential lines normal
and roughly parallel respectively to a blade surface. For a discontinuous transonic flow
two of the radial lines are positioned at the mean location of the shock foot to repre-
sent information on the upstream and downstream sides of a shock. Hence, the mean
shock locus is approximated as being normal to the airfoil surface in the local unsteady
calculation.

In the present effort improvements have been made to the numerical solution methods
of Refs. 6 and 8 so that flows around realistic compressor blades operating at high subsonic
inlet Mach number and high mean incidence can be considered. For such applications the
local solution must provide an accurate description of the flow both in the vicinity of a
rounded blade leading edge as well as in the vicinity of a shock. In addition, the global and
local solutions should be coupled so that local unsteady information is allowed to impact
the flow over an entire blade-passage solution domain. Finally, a local mesh topology in
which mesh lines conform closely to the mean shock locus should be employed. These
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considerations are addressed in the present report and demonstrated through a number
of example calculations. In addition, the results of parametric studies are presented to
partially illustrate the effects of mean flow nonuniformities on the unsteady aerodynamic
response to vibrating compressor blades operating at high subsonic inlet Mach number
and at high mean incidence.
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2. PROBLEM DESCRIPTION

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid
non-heat-conducting perfect gas through a two-dimensional cascade of vibrating blades
(see Fig. 1). In the following discussion all physical quantities are dimensionless. Lengths
have been scaled with respect to blade chord, time with respect to the ratio of blade chord
to the upstream free-stream speed, density and velocity with respect to the upstream free-
stream density and velocity, respectively, and pressure with respect to the product of
the upstream free-stream density and the square of the upstream free-stream speed. The
mean or steady-state positions of the blade chord lines coincide with the line segments 7 =

tanO + mG, 0 < cosO, m = 0, 1,2, .. ,, where and r are Cartesian coordinates
attached to the blade row and pointing in the axial-flow and cascade "circumferential"
directions, respectively, m is a blade number index, e is the cascade stagger angle, and
G is the cascade gap vector which is directed along the ,n-axis with magnitude equal to
the blade spacing.

The blade motions are of small-amplitude, periodic in time and periodic in the r/-
direction. Thus,

fZ(X + md, t) = Re{Yi,,(X + mG)exp(iwt)} = Re{rB(X)exp[i(wt + rna)]}, X c B
(2.1) '

where 1 measures the displacement of a point on a moving blade surface relative to
its mean or steady-state position, X is a position vector relative to the space-fixed , t-
(or x, y-) coordinate axes, t is time, r- is a complex displacement-amplitude vector with
Mr - 0(c), w is the frequency of the blade motion, a is the phase angle between the N,
motions of adjacent blades, Re{ } denotes the real part of { } and B denotes the mean
position of the reference (m = 0) blade surface.

In the absence of blade motion the flows far upstream ( < C-) and far downstream
( > C+) from the blade row are assumed to be at most small irrotational steady pertur-
bations of a uniform free stream. In addition, blade shape and orientation relative to the
inlet free-stream direction, the inlet to exit mean static pressure ratio and the amplitude,
frequency and mode of the blade motion are assumed to be such that the flow remains
attached to the blade surfaces. Thus thin vortex sheets or unsteady wakes emanate from
the blade trailing edges and extend downstream. Finally, any shocks that might occur
are assumed to be of weak to moderate strength, have small curvature and terminate in
a continuous region of the flow, i.e., at a sonic point. Because of the first two of these
shock assumptions, changes in the entropy and vorticity of a fluid particle as it passes
through a shock can be regarded as negligible.

The equations governing the fluid motion follow from the integral forms of the mass,
momentum and energy conservation laws and the thermodynamic relations for a perfect
gas. The former provide a coupled set of corresponding nonlinear differential equations
(the Euler equations) in continuous regions of the flow and jump conditions (Rankine-
Hugoniot conditions) at surfaces across which the inviscid flow variables are discontin-
uous, i.e., vortex-sheet wakes and shocks. In continuous regions the energy equation

4



can be replaced by the requirement that the entropy following a fluid particle must re-
main constant. However, as a consequence of our assumptions regarding shocks and the
steady flow far upstream of the blade row and, since blade motions are the only source
of unsteady excitation, the time dependent flow through the cascade can be regarded as
isentropic and irrotational. In this case, the field equations governing the flow reduce to

80 +V. (Avb) = 0 (2.2)

and

)- M )(' - ' = (M ) = 1 -(-y- l)M {- + - 1)/2]} (2.3)
a9t

where li, 3, P and A are the time-dependent velocity potential, density, pressure and
speed of sound propagation, respectively, M is the Mach number of the undisturbed
or steady flow, -f is the specific heat ratio of the fluid and the subscript -oo refers to
the upstream free-stream condition. The admissible solutions to Equations (2.2) and
(2.3), for the present application, are those in which far-field acoustic disturbances either
attenuate with increasing axial distance from the blade row or propagate away from or
parallel to the blade row.

The foregoing field equations must be supplemented by boundary conditions at mov-
ing blade surfaces, 8 ,, and jump conditions at moving blade wakes, W,,, and at moving
shocks, Sh,,,. Here, the subscript n refers to the nth shock associated with the mth
blade. In particular, the condition of flow tangency at blade surfaces requires that

(Vi- -n-.=0, gonB . (2.4)

Also, the fluid pressure and normal velocity component must be continuous across blade
wakes and therefore

[PI=O and [V4I. a=O , 9on Wn. (2.5)

Finally, mass and tangential momentum must be conserved across shocks, i.e.,

[(V - - n. = 0 and [J = 0, X on Shn,, (2.6)

Here the unit vectors n and ' are normal and tangential, respectively, to a surface and
directed such that i x 9"= , points out from the page. The relative displacement
vector, R, measures the displacement of a point on a moving surface (blade, wake or
shock) relative to its mean position (see Fig. 2). Note that, since we have assumed that
changes in entropy and vorticity across shocks are negligible, the conservation laws, i.e.,
the Rankine-Hugoniot conditions, cannot all be enforced at shock surfaces. Instead, we
have followed the usual practice in potential flow calculations and have required only that
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mass and tangential momentum be conserved. Also, the explicit form given in Equation
(2.6) for the tangential-momentum conservation law follows from the assumption that
shocks terminate at sonic points.

In addition to the foregoing field equations and surface conditions, information on the
uniform inlet and exit flow conditions must be specified. Steady and unsteady departures
from these uniform conditions (e.g., departures due to steady and unsteady pressure
variations) must be determined as part of the time-dependent solution.

The foregoing problem is a formidable one consisting of a nonlinear, time-dependent,
partial differential equation along with conditions imposed on moving blade, shock and
wake surfaces in which the instantaneous locations of shock and wake surfaces must,
in principle, be determined as part of the solution. Although numerical solutions to
this problem are of substantial interest, they would be of limited practical value for
predicting blade flutter because of the substantial expense involved in obtaining the
detailed unsteady response predictions needed. For aeroelastic design applications the
traditional approach has been to examine limiting forms of the foregoing time-dependent
nonlinear equation set with the intention of providing unsteady aerodynamic response
information for small-amplitude unsteady excitations. One such approach, in which the
unsteady flow is regarded as a small perturbation of a fully nonuniform mean flow, is
described below.
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S. THE LINEARIZED UNSTEADY AERODYNAMIC FORMULATION

The equations governing small-amplitude time-dependent departures from a nonuni-
form mean flow are determined by first expanding the unsteady flow variables into asymp-
totic series in c, where JR1 - 0(e) << 1. Thus, for example, the unsteady velocity
potential X (, t) is expressed in the form

t) = () + $(G,t) +... () + Re{0(9)e 0t } +... (3.1)

where t(X) is the potential of the mean or steady background flow, O(', t) -. 0(c) is
the first-order (in c) time-dependent potential and O(X) is its complex amplitude. In
addition, Taylor series expansions, e.g.,

V$ls = V ls + (1Z. V)V Is +... (3.2)

where S and S denote the instantaneous and mean positions, respectively, of a moving
surface, and relations between the unit tangent, ', and normal, n-, vectors at a point on
a moving surface and the corresponding vectors at the location of this point on the mean
surface are applied to refer information at a moving blade, wake or shock surface to the
mean position of this surface.

The equations governing the steady and the first-order unsteady flows are then ob-
tained by substituting the foregoing expansions into the full time-dependent governing
equations, equating terms of like power in e and neglecting terms of higher than first-
order in c. Note that if we assume that 1V01 = V-,. + 0(c) where V is the steady
velocity and the subscript -oo refers to the upstream free-stream condition, the equa-
tions of classical linearized unsteady aerodynamic theory (Ref. 16) are recovered; while
if we assume that IV'1 = V-,, + (z), where c << Z << 1, we recover the equations of
time-linearized transonic flow theory (Ref. 17). Here, we consider a more general case in
which no restrictions are placed on the departures of the mean flow variables from thei
upstream free-stream values.

3.1 The Steady Background Flow

The equations governing the steady background flow follow after replacing the time-
dependent flow properties, t, P, A and A, by their zeroth-order of steady counterparts,
t), P, p, and A, respectively, in Equations (2.2) through (2.6) and setting temporal
derivatives equal to zero. Numerical procedures for determining two-dimensional steady
potential flows through cascades have been developed extensively, particularly for flows
with subsonic inlet and exit Mach numbers (i.e., M:oo < 1) (e.g., see Refs. 18, 19). In
such calculations far-field boundary conditions are imposed at axial stations placed at
finite distances upstream and downstream (i.e., at = 6) from the blade row.

In general, three of the far-field uniform velocity components, or their equivalents
(e.g., Mach number M:(,, flow angle flo, etc. must be prescribed to completely specify
the steady boundary-value problem. The fourth or remaining component can be deter-
mined in terms of the three prescribed using an integral form of the mass conservation
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law. However, conditions are often imposed at blade edges (e.g., a Kutta condition at
sharp trailing edges) in lieu of prescribing an inlet and/or an exit free-strean property. In
addition, the usual practice is to solve the conservative form of the mass-balance equation
throughout the entire fluid domain while allowing for a discontinuity in the velocity po-
tential across arbitrary periodic lines which emanate from the blade trailing-edge points
and extend downstream. Thus, shock-jump conditions are usually not imposed, instead,
shock phenomena are captured through the use of special differencing techniques. Mean
wake, i.e., the downstream stagnation streamlines, and shock locations are determined a
posterioi from the resulting steady solution. t

3.2 The Linearized Unsteady Problem

It follows from the differential form of the mass conservation law, Equation (2.2), the
Bernoulli relations, Equation (2.3), the corresponding steady equations and the asymp-
totic expansions for the flow variables that the linearized unsteady flow is governed by LA

the field equations

Wp + V. (AVO + pV$) = 0 (3.3)

and
p/0 = -Y1p/P = 2a/A = -A-___ (3.4)

7-1 Dt .

where p, p and a are the complex amplitudes of the first harmonic unsteady density,
pressure and speed of sound propagation, respectively, and D/Dt = iw + V. V is a mean
flow convective derivative operator. Equations (3.3) and (3.4) can be combined to obtain
a single differential equation, i.e.,

A2V f= 2t' + DO,
''- " + (7 -1)V 2 -- + V (V -)2 . V O/2 (3.5)

which contains the velocity potential as the only dependent variable.
Conditions on the linearized unsteady perturbation at blade, B,,,, wake, Wm, and

shock, Shm,,, mean positions are obtained in a similar fashion. The resulting first-order
flow tangency condition has the form

V0. -[iwf 8- + (V-. )(9. V)f'm - (f',, V)V$O].n' (3.6)

In addition, since the steady velocity and pressure are continuous and have continuous
derivatives across blade wakes, i.e., the downstream stagnation streamlines, the first-order
wake-jump conditions reduce simply to

[Vol-. n' = 0 and [D-, = o (3.7)
Dt

Finally, the conservation laws for mass and tangential momentum yield the following
linearized shock-jump conditions:

[3pV + pVOl. , = I0!(iw + (V ,. -)'. V)('s.. , ) + ( nm,. , )9. V(I,31V4,. ,-) (3.8a)
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and, for a shock that terminates in the fluid

[o] = 6 nII (3.8b)

where we have assumed that shocks terminate at sonic points. Equations (3.8a) and
(3.8b) provide two relations for determining the jump in the unsteady potential, [01, at
the mean position of a shock and the shock displacement normal to the mean shock locus,
rSh,,. *in. These equations can be combined (see Equation (4.7) below) to provide a single
relation governing the jump in the unsteady potential across a shock. Recall that blade
mean positions and unsteady motions are prescribed, but that wake and shock mean
positions and displacements must be determined as part of the steady and unsteady
solutions, respectively. Wake motions, however, have no direct impact on the solution
to the linearized unsteady problem nor, therefore, on the aerodynamic response at the
blade surfaces. V

We have assumed that the potential mean or steady flow is at most a small (i.e., of 5

0(c)) perturbation from a uniform stream both far upstream ( < _) and far down-
stream ( > C+) from the blade row. Thus, in these regions and to within the first-order
approximation considered here, the unsteady field equation and wake-jump conditions
can be reduced to the constant coefficient equations of classical linearized theory for
which analytical solutions can be determined. These solutions (see Refs. 1, 20) de- 5

scribe the unsteady potential produced by acoustic disturbances in the far field and the
vorticity convected along the blade wakes, and they can be matched to a near field nu-
merical solution. They thus serve to complete the specification of the linearized unsteady
boundary-value problem.

3.3 Aerodynamic Response at a Moving Blade Surface

The foregoing linearized unsteady boundary-value problem accounts for the effects of
mean blade geometry, mean blade loading and transonic phenomena, including moving
shocks, on the unsteady aerodynamic fluctuations arising from small-amplitude harmonic
blade motions. The unsteady equations are linear, time-independent and contain vari-
able coefficients which depend on a fully nonlinear isentropic and irrotational steady
background flow. Numerical resolutions of the nonlinear steady and the linearized un-
steady problems are required to determine the aerodynamic response information needed
for aeroelastic applications, i.e., the unsteady pressures and global unsteady airloads act-
ing on the blade surfaces. Because of the cascade geometry and the assumed form of
the blade motions (i.e., periodic in i?), such resolutions are required only over a single .-

extended blade-passage region. In addition, since analytic far-field solutions can be de-
termined, the numerical solution domain can be further restricted to a single extended
blade-passage region of finite extent as shown in Fig. 3.

The pressures acting along the instantaneous position of the mth blade surface are
given by

P=(t) PB(T) + Re~pe(r)e(Wt+MU) + EPSh.,T 0 +... (3.9)
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where r is a coordinate measuring distance in the counterclockwise (or 9-) direction along
a blade surface, and the subscripts B and B refer to the mean and instantaneous positions
of the reference blade surface. The first two terms on the right-hand-side of Equation
(3.9) are the steady and first-harmonic unsteady, i.e.,

pL- Pj+(B.V)P, X B (3.10)

components of the fluid pressure acting at the mth moving blade surface, Bi. The third
term represents the anharmonic contribution to the unsteady surface pressure caused
by the motions of shocks along the surface of the mth blade, and is determined by
analytically continuing the solutions to the steady and the linearized unsteady boundary-
value problems from the mean to the instantaneous shock locations (see Refs. 8, 21, 22).

Thus, for example,

PSdT't) __!!e U[(T - 'rSh)(rSh - ')]

IRejrSh,~B} I(3.11)

x ([PB]Sh + (T - TSh)[IOPB/Or]Sh + Re{[pBJshe(' t +' )} +...),

where rSh,B (' - rB) " 9' is the complex amplitude of the relative displacement of
the shock foot in the counterclockwise or 9-direction along the moving blade surface,
U is the unit step function and the subscripts h and Sh refer to the instantaneous
and mean shock locations, respectively. It should be noted that although the unsteady
pressure disturbance is not everywhere harmonic, its regions of anharmonicity are small.
Consequently, the first-order global coefficients are harmonic in time (Refs. 23, 24).

If we limit our consideration to the condition usually considered in turbomachinery
aeroelastic calculations wherein each incremental two-dimensional blade section under-
goes a rigid-body motion, i.e.,

r'B(X) = h + xRp, (3.12)

then the unsteady force and moment are the only global response parameters needed to
analyze the aeroelastic behavior of the blading. In Equation (3.12) h defines the ampli-
tude and direction of blade translations, a = ae, defines the amplitude and direction of
blade rotations, and Ap is a position vector extending from the mean position of the ref-
erence blade axis of rotation (i.e., from the point Xp,Yp) to points on the mean position
of the reference blade surface. These rigid two-dimensional motions model bending and
torsional vibrations of actual rotor blades.

The linearized unsteady force and moment acting on the reference (m = 0) blade are
given by e b f=a x - p dOU + E rsh,B([PBI B)sh, (3.13)

n

and
mp, -- PRP d9'- rSh,,B([PB]AP" .B)Sh. (3.14)
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where F is the steady force, the moment is taken about a moving pitching axis located at
9, = 9P + he '*-1, f and mp are the complex amplitudes of the linearized unsteady force
and moment, respectively, and the terms within the summations in Equations (3.13) and
(3.14) account for the concentrated loads due to shock motion and are evaluated at the
shock roots.

-
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4. NUMERICAL ANALYSIS

A numerical resolution of the linear, variable-coefficient, unsteady, boundary-value
problem is required over a single, extended, blade-passage region of finite extent. The
unsteady differential equation, in this case Equation (3.5), must be solved in continuous
regions of the flow subject to boundary or jump conditions imposed at the mean positions
of the blade, wake and shock surfaces. Blade mean positions are prescribed, and the mean
positions of wake (i.e., the downstream stagnation streamlines) and shock surfaces are
determined as part of the steady solution. Finally, the unsteady near-field numerical
solution must be matched to far-field analytical solutions at finite distances (t = t)

upstream and downstream from the blade row. Since the unsteady numerical model,
used herein, has been described in some detail in Refs. 6, 8 and 25, we will provide only
a brief outline here. In this discussion we will consider, for simplicity, flows in which at e
most a single shock occurs in each blade passage. Subsequently, we will describe in some
detail the construction and implementation of a new shock-conforming local mesh and
a new composite solution procedure. These features enhance the accuracy of unsteady
subsonic and transonic flow predictions, particularly the latter, and extend the range of
application of the numerical solution procedure.

Because of the stringent and conflicting requirements placed on a computational mesh
for cascade flows, an embedded mesh solution procedure w.,.s adopted in Refs. 6 and 8
for resolving linearized unsteady cascade flows. In particular a sheared H-type cascade
mesh of moderate density was used to capture large-scale unsteady phenomena over an
extended blade passage solution domain, and a local surface-fitted mesh of high density
was used to resolve high-gradient phenomena such as that which occurs in the vicinity
of a rounded blade leading edge in Ref. 6 or near a shock in Ref. 8. The cascade mesh
covers an extended blade-passage solution domain; the local mesh covers, and extends
well beyond, regions of high velocity gradient. For application to compressor cascades
operating at high mean incidence the local mesh surrounds a blunt blade leading edge,
and for a discontinuous transonic flow, it also contains the shock and the entire supersonic
zone ahead of the shock.

As a result of the present effort two procedures are now available for coupling the
solution obtained on the cascade mesh with that obtained on the local mesh. In the
single-pass approach of Refs. 6 and 8 a solution is obtained first on the cascade mesh
and then on the local mesh. The velocity potential distribution as determined on the
cascade mesh is used to provide outer boundary condition information for the local mesh
calculation. The solution to the unsteady boundary-value problem is then taken to be the
local solution in the region covered by a local mesh and the cascade solution elsewhere.
In this case the local solution is essentially a correction to the cascade solution, and this
local correction does not impact the unsteady solution over the entire extended blade-
passage region. Thus the single-pass approach assumes that errors in the original cascade
mesh solution are confined to the region covered by the local mesh. As we shall see below,
this assumption is a reasonable one for subsonic flow, but leads to erroneous predictions
for a discontinuous transonic flow.
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In the second approach, developed herein, a new composite solution procedure is
employed. Here the discrete equations, written separately for the cascade and local
meshes are coupled implicitly through special interface conditions, resulting in a single
composite system of finite-difference equations that describe the unsteady flow over the
entire solution domain, i.e., the union of the cascade and local-mesh domains. The
resulting composite system of equations is then solved by direct matrix inversion. This
new approach allows the resolution of flow features in one solution domain to influence the
solution outside that domain. A detailed description of this procedure and the associated
mesh-interface coupling conditions will be given below, but first we will review the mesh
nomenclature and the discrete approximations which are common to both the single-pass
and composite solution procedures.

4.1 Calculation Meshes

The cascade mesh (see Fig. 4a) is composed of axial lines (4 = constant) which are
parallel to the blade row and tangential curves which are percentile averages of the upper
and lower boundaries. Downstream of the blade row the tangential mesh lines coincide
with the mean-flow stagnation streamlines. The cascade mesh facilitztes the imposition
of the blade-to-blade conditions, e.g., 0()? + m ) = 0(?)e"'-', and the matching of the
analytic and numerical unsteady solutions at the far upstream (4 = 6.) and downstream
(4 = 4+) boundaries of the extended blade-passage solution domain (Fig. 3). However,
it does not yield an accurate resolution of the flow near rounded blade edges or near
shocks, nor is it well-suited for the accurate implementation of transonic type-dependent
differencing procedures.

Thus, a polar-type local mesh (see Fig. 4b) has been employed in Refs. 6 and 8 to
resolve the flow around a blunt blade leading edge, in the vicinity of a shock and in the %
supersonic region adjacent to a blade surface and upstream of the shock. This mesh is
composed of radial and circumferential lines, normal and roughly parallel, respectively,
to the reference blade surface. The mean shock locus is approximated as a line normal
to the mean blade surface which extends out from the point at which the steady shock
impinges on this surface.

Under the present effort a new non-orthogonal surface-fitted local mesh has been
developed. This mesh is constructed so that for a discontinuous transonic flow one mesh
line is aligned with the mean shock locus over the entire length of the shock, thereby
leading to a more accurate representation of shock effects. The method of construction
of this mesh will be described in detail below. Both local-meshes contain a pair of
"radial" lines, positioned at the mean shock location and referred to as the upstream
and downstream shock mesh lines. These lines serve to represent information on the
upstream and downstream sides of the shock. In the local mesh of Ref. 8 they are placed
at the mean location of the shock foot, while in the new local mesh they coincide with
the mean shock locus. The upstream and downstream skock mesh lines facilitate the
imposition of the unsteady shock-jump conditions.
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4.2 Difference Approximations

Algebraic approximations on both the cascade and local mesh to the various linear
operators, which make up the unsteady boundary-value problem, are obtained using an
implicit, least-squares, interpolation procedure (see Ref. 25). Thus, consider a linear
differential operator £ which operates on a constant by multiplying that constant by qO.
An algebraic approximation, LO,, to £o at the mesh point Qo can be written in terms
of the values of 4, at Q0 and at certain neighboring points, QI, ... , Qm, which together
with Qo are called a neighbor set. This approximation can be expressed as

M

(£O)o f (LO)o - q°o0  + , 6,.(0m - Oo) (4.1)
M=1

where the difference coefficients, fl, are evaluated in terms of a prescribed set of inter-
polating functions and a set of interpolating coefficients. The latter are determined by a
weighted least-squares procedure. The neighbor sets are defined in a "centered" fashion
for interior points and in a one-sided fashion for boundary points as shown in Fig. 4. A
nine point centered or one-sided difference star is usually employed; however, a one-sided
six point star is used at the blade surface in the calculation on the new nonorthogonal
local mesh.

When approximating the unsteady field equation, Equation (3.5), one must distin-
guish between regions of subsonic flow where this equation is elliptic and supersonic flow
where it is hyperbolic, and use a differencing scheme which is sensitive to its local char-
acter (see Refs. 26 and 27). Thus, at each point of the discrete domain the field equation
is expressed in canonical form as

ZO4= (£C + 42), (4.2)

where

'I = A2(1 - M 2 )4,ss = M- 2 (1 - M2 )(4p~of + 2 ,0( , t +,D2n) (4.3a)

and
£24 = A2 ONN + -= M- 2 [020,C - 2-6 +.70 ,,,,] +00 ..] (4.3b)

Here S and N are local canonical coordinates, i.e., the Cartesian coordinates aligned
with and normal to, respectively, the local steady flow direction, and and 77 (see Fig.
1) are used as computational coordinates. The principal part of the unsteady differential
equation is shown explicitly in Equation (4.3), and the dots refer to the remaining terms.
The local character of the unsteady differential equation depends on the local steady
Mach number, and therefore it is a simple matter to construct a suitable type-dependent
differencing scheme.

The linear operator £2 is always approximated by a central difference expression, but
the difference approximation to the operator £ depends upon the local steady Mach
number and hence, on the local type of the unsteady field equation. Thus we set

£ qOiid z L1 ,j,, , Mij < 1 (4.4a)
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and
Olij - L1i4-ij , M, > 1 (4.4b)

where the indices i and j refer to the axial and tangential lines, respectively, of the cascade
mesh or the the radial and circumferential lines, respectively, of the local mesh, and LI is
a central difference operator. Therefore at supersonic points the difference approximation
to £I is retarded along the cascade tangential and the local circumferential mesh lines.
The latter are assumed to align closely with the mean flow direction.

Unsteady shock phenomena are captured in the cascade calculation; i.e., the unsteady
differential equation is approximated, using either Equation (4.4b) or Equation (4.4a) at
the field points immediately upstream or downstream, respectively, of the mean shock
location. Shocks are fitted into the local unsteady solution by imposing the jump condi-
tion

[(iwE + F)¢] + [GO.] + [He,] = 0, (4.5)

which follows after combining Equations (3.8a) and (3.8b), at the shock points on the
downstream shock mesh line. The functions E, F, G and H in Equation (4.5) depend
on the mean flow variables and are given by

E = [ l- M-P(-' ) -,

Fp

F - - (4.6)
G = P[I~~(1 - MoO'i

and
H = 0(p] - M-A(2-y-)$n[I]) =CE

Equation (4.5) is approximated using one-sided difference expressions (first-order accu-
rate on the upstream or supersonic side and second-order accurate on the downstream or
subsonic side) to evaluate the normal derivatives of the unsteady potential at the shock
mean position. At those points on the downstream shock mesh line at which the steady
flow is continuous (i.e., beyond the end of the shock), the condition [0) = 0 is imposed.
To assist in evaluating the numerical solution procedure, a shock capturing option has
also been included in the local Unsteady calculation. In this case, the condition [qb] = 0
is imposed at all mesh points on the downstream shock mesh line.

It is important to note that the unsteady shock-jump condition involves jumps in the
steady or mean-flow derivatives across the shock. In principle, this information should
be available as part of an accurate mean-flow solution, with the jumps in the steady
quantities determined as a result of a shock-fitting. However, in practice steady-flow
solvers, including the one used in the present effort, employ shock capturing techniques
which tend to smear the shock and eliminate the discontinuous changes in the flow
quantities. Therefore, care must be taken to restore the required discontinuous steady
information into such solutions. In the present effort steady shock-jump information is
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determined using a first-order accurate extrapolation of the mean-flow variables from
upstream and downstream of the smeared shock to the upstream and downstream sides,
respectively, of the estimated mean shock position. The latter is defined as the locus
of all points in the smeared shock at which M = 1. The errors associated with this
approximation have been minimized by using a very dense steady calculation mesh in
the vicinity of the shock, thereby reducing the distance over which the shock is smeared.

4.3 Inversion of Cascade and Local Mesh Equations

The systems of linear algebraic equations which approximate the linearized unsteady
boundary-value problem on the cascade and local meshes are constructed as described in
Refs. 6 and 8. Thus, at a supersonic field point (i, j) the unsteady differential equation
is approximated using neighbor sets centered at this point and at the adjacent upstream
mesh point (i-1,j). However, at points on the local upstream shock mesh line derivatives
tangential to the mean shock locus are evaluated only in terms of information provided
along this mesh line to avoid crossing the shock. For points on the downstream shock
mesh line either the shock-jump, Equation (4.5) or the continuity, [0] = 0, condition is
approximated as described above. This treatment leads to a block-pentadiagonal system
of linear algebraic equations of the form

Aifi-2+Bi]i_-+Ci.i +Di4i+1+Ei~i+2 =f , 2 < i < I - 1 (4.7)

Btfoi-i+Ct10 F~

where Oi is a vector of O-values on the ith cascade axial or local radial mesh line, and
the submatrices A., Bi, Ci, Di, and E are sparse being mostly scalar tridiagonal. Note
that, with the exception of the points on the downstream side of a fitted shock, Ai = 0
at subsonic points and E = 0. With this structure the foregoing system of equations
can be solved directly and efficiently using Gaussian elimination.

I.
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5. TRANSFINITE LOCAL MESH

One of the objectives of the present study is to develop a more accurate representation
of unsteady shock phenomena in the local analysis by imposing the shock-jump conditions
at the true predicted mean shock location. There are two possible approaches toward
accomplishing this objective. On a mesh constructed without consideration of the mean
shock location, an accurate discrete approximation in the vicinity of the shock would
require subdividing those mesh cells that contain a segment of the mean shock locus
and applying a discrete approximation to the unsteady shock-jump conditions within
the subdivided cells. This approach would add a great deal of complexity to the local
analysis since it requires tracking the location of the subdivided cells, formulating the
jump conditions for a wide variety of possible cell subdivisions, and finally, inverting a
system of discrete equations that does not possess a banded structure. However, since
the mean shock locus is known from the steady calculation, a much better approach is
to require that a local mesh line coincide with the mean shock locus, and subsequently
replacing this line with upstream and downstream shock mesh lines. The shock jump
relations could then be formulated and imposed along the shock mesh lines resulting in a
system of discrete equations having the same block pentadiagonal structure at the shock
as in the remainder of the flow field. With this an approach the complexity of modeling
the shock in the unsteady analysis is reduced to a problem of mesh generation problem.
Consequently, this second approach has been followed in the present study.

A variety of mesh generation techniques are available. Each involves a trade-off be-
tween the computational effort required to generate the mesh and the amount of control
one has in defining the distribution of mesh points. The following mesh characteristics
are important for achieving an accurate local unsteady solution: mesh lines should be
clustered near the blade and shock surfaces, the mesh should be nearly orthogonal, and
derivatives of the mesh spacings should vary smoothly. For transonic unsteady appli-
cations there is the additional constraint that one mesh line should coincide with the
mean shock location. Unlike the other requirements which primarily deal with the mesh
distribution along the outer boundaries of the local mesh domain, this new requirement
imposes a constraint within the interior of the local mesh.

In view of the foregoing requirements we have employed a direct algebraic mesh
generation scheme using a transfinite or multivariate interpolation to construct the local
mesh. This allows for a great deal of control in distributing mesh points and for a
convenient means of constraining the mesh so that it will conform to one or more internal
boundaries. Further, it has been found to be very efficient in terms of both the storage
requirements and the amount of computation time required to generate the mesh. Finally,
this approach can be easily extended to satisfy additional constraints. A good description
of algebraic mesh generation techniques, including the method of transfinite interpolation,
is given in Ref. 28. In the present effort the generalized transfinite interpolation procedure
described in Ref. 29 has been used.

In the remainder of this section we provide a brief outline of the principles of transfinite
interpolation. This is followed by a detailed description of the application of these princi-
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pies to the generation of local surface-fitted meshes which conform to a single embedded
shock surface. The extension to multiple embedded shock surfaces is straightforward,
but will not be considered here.

5.1 Interpolation Procedure

The theory of transfinite interpolation described by Eriksson (Ref. 29) is based on a
very general form of multivariate interpolation. In two dimensions we consider a function
f (u, v) = [:(u, v), y(u, v)] where the parameters u and v are defined over the rectangular
region ul _5 u < up and v, 5 v vq. The function f is assumed to be known on certain
lines, U = Uk and v = vk, i.e.,

f(uk,v)=ak(v) k=1,2,... ,p
ard (5.1)

f(u, vk)= bk(u) k = 1,2,... , q

Further, if desired, it can be assumed that one or more normal derivatives of f are known
on these lines, i.e.,

an
- f(uk,v) =a(" (v) for k= 1,2,... ,r, n =1,2,... ,pk

and (5.2)
ann

-. f(u,v) =b( )(u) for k= 1,2,... ,s, n= 1,2,... , qk.

To interpolate between the given lines we define a set of univariate blending functions
(n") (U), k =1, 2,... r, n = 0,1, 2.... pA; and fl'n)(u), k =1, 2,... ,s, n -O ,1, 2.... qk

which satisfy the conditions
&m (n), )(I 46.

ak (ut) = bn m and - ] (e) --//nm, (5.3)

where &I = 1 for k = I and bt = 0 for k # 1 Using transfinite interpolation, the function
f(u, v) can be expressed in the form

f(u,v) = fi(,v) + q I)(v)t[bn)(u)- an ( , (5.4)
k--1 nffO

where

f, (u, V) Ph C,(n) (u)a(-)(v) (5.5)
U k=1 n=:O

This function defines a transformation from the rectangular region u < u < up, V, <
V < Vq in (u, v) space to some arbitrarily shaped region in (x, y) space. While this
transformation can be expressed as a single equation, Equations (5.4) and (5.5) are used
to illustrate that it can be viewed as a series of univariate interpolations in the u and
v directions, respectively. Each step in this series can be viewed as the application of a
projection operator which projects the function f between known lines.
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The transfinite interpolation procedure outlined above can be viewed as providing
an efficient mapping from a uniform rectilinear mesh in u, v-space to a curvilinear mesh
spanning a region of arbitrary shape in x, y-space. Control over the distribution of mesh
points is governed by the number of initial data lines (ui = constant or v = constant),
the choice of which normal derivatives of f, if any, are to be specified on these lines,
the specified values of f and its derivatives along these lines, and the choice of blending
functions between the initial data lines. For most applications it is sufficient to limit the
initial data lines to the lines bounding the mesh domain, e.g., the outer mesh boundaries
and the blade surface. In this case control over the mesh distribution is achieved by
defining the distribution of mesh points along the outer boundary (definition of f) and
by specifying any number of normal derivatives at these points. Such an approach can be
applied directly to gene, ate a local mesh for unsteady subsonic flow. For a discontinuous
transonic flow the foregoing procedure must be extended to include an additional interior
line (v = constant) that represents the mean shock locus.

5.2 Mesh Generation Procedure

To generate a shock conforming local mesh we first prescribe the region to be covered.
This domain is then divided into two subregions separated by a line that coincides with
the mean shock locus and is referred to herein as the shock line. Next the mesh point
distributions around the outer boundary of local mesh region and along the shock line are
defined. Finally, the transfinite interpolation procedure is used to determine the mesh
within the local region.

For example, a typical local mesh domain is shown in Fig. 5a. The extent of this
domain is defined in terms of starting (vi) and ending (v3) lines which are constructed
normal to the blade surface (ul). The outer "circumferential" boundary (u2) is defined
as the locus of points at a fixed normal distance from the blade surface and lying between
the radial lines v, and v3 . The "radial" and circumferential extents of the local region are
chosen so that this region contains the mean shock locus, the supersonic region upstream
of the shock and any important flow features due to blade surface geometry. The resulting
local mesh region is then subdivided using a third line (v2) which coincides with the mean
shock locus and extends from the end of the shock to the outer boundary u2 . The mesh
boundary lines v1 , V3 , u1 and u2 are also used as the initial data lines in the transfinite
interpolation procedure. In the (u, v) plane (see Fig. 5b) the blade surface and the outer
circumferential boundary are taken as two u = constant initial data line inote there are
no internal u = constant data lines). In the other coordinate direction the two bounding
data lines, v, and v3, and the internal data line, v2 , are specified. These correspond to
the radial starting line, the shock line, and the radial ending line (defined as v = constant
initial data lines).

A mesh point distribution is defined along each of the data lines as follows. Along
the blade surface (ul) a one-dimensional blending function which is weighted in terms of
blade surface curvature and distance from the foot of the shock is used. This blending
function is tailored to allow a clustering of mesh points in regions of high blade curvature
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and near the shock with a smooth variation in the mesh spacings between these regions.
Along the outer boundary (u 2) a similar blending function provides clustering of mesh
points in the vicinity of the shock line. Along the starting line (vi), shock line (v2)
and ending line (v3 ) the mesh is exponentially clustered toward the blade surface. The
mapping function f(u, v) in Equation (5.1) is then determined by assuming that the mesh
spacing is uniform in the u, v-plane. To allow for more control of the mesh distributions
near and along the blade surface boundary, we also impose approximate expressions for
the first three normal derivatives of f (see Equation (5.2)). It is not possible to provide an
exact specification of these derivatives since the function mapping the u, v-plane onto the
z, y-plane is known only along certain lines within the domain. Thus, following Eriksson
(Ref. 29) the normal derivatives are modeled by assuming that a good approximation to
these derivatives is obtained by representing the blade locally as an ellipse. For an ellipse
defined by the equation X2 + y2/e 2 = a 2 these derivatives are given by

= e_ ±kV'aW
OTs OU

Otu :U 2,4U ±k 2eva - X2 (5.6)

___ - ke e and f = "k3Va - X2

where the scaling factor k determines the concentration of mesh points near the surface.
In practice the constants e and a may be varied smoothly so that a nearly orthogonal
mesh is obtained near the blade. Normal derivatives are not specified along the remaining
boundary lines (u2 , v1 , v2, and v3).

With the appropriate boundary lines specified and initial data defined along these
lines the transfinite interpolation operator of Equations (5.4) and (5.5) takes the form

f(u,v) = f(U,V) +(v)(f(u,vi) - fi(u,vl)) + 12(V)(f(U,V2) - f(u,v2))
(5.7)

+3(v)(f(u, v3)- fl(U, Vs))

and

f(u,) - ai(u)f(ui,v) + o~')(u)--f(ul, V)
(5.8)

(2) 02 (3) 83

+ C11~ M)-fUi, V) + a (U) OU3f (Uj, ,2f(' I) + ct2(U)f(U2 ,v)

At this point a suitable set of blending functions ak and & for the interpolations in the
u and v directions must be defined. Since these functions are only required to satisfy
conditions at certain discrete points, there are an infinite number of possible functions
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from which to choose. In the present study we have found that the following functions
give good mesh distributions I

ao(u) 1G(u), o(1)(u) =u - G(,), o,(,) _ l 2_ 1,,)
2 2

)(u) U - G(u), a 2(U) = G(u) (59)

and

G2- 1 - k 2 u - (k 2 u)2 /2 - (k 2 u)3 /6
f'lt- = ek2- 1 - k2 - k22/2 - H /6

For v V V2
V V2

VV 1  ,2(U) (1 - t)Wka + w(1-(1- ),
V2  V1  5.0

01(v)=l#2(v) and 03(v) 0

For v 2  v < v3

W = V 29 1v) =0 ,
V3 V2

V3 -V 1 v)O (5.11)

fl3(v) = w)w4+ w( - (1 - w)*) and 0(v)- 1-3(v)

After substituting these expressions into Equations (5.7) and (5.8) one obtains the final
expression for the transfinite interpolation operator. The constants k2 , k3 , k4 and ks
in the above expressions allow control of mesh line clustering near the blade and shock
surfaces.

I
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6. COMPOSITE SOLUTION PROCEDURE

In recent years we have seen a rapid development of embedded or composite mesh
solution procedures for the accurate resolution of geometrically complex flow problems.
The basic premise behind such approaches is that current discrete approximations and
solution algorithms have been demonstrated and verified for a wide range of model prob-
lems. Therefore, the application of these prediction methods to realistic flow situations
reduces to a problem of mesh generation. Attempts to generate suitable meshes often
meet with conflicts between desired qualities. Turbomachine cascades provide an excel-
lent example of this conflict since upstream and downstream of the cascade a periodic
mesh is desirable, while near a blade surface a dense nearly orthogonal body-conforming
mesh gives the most accurate results. One solution is to decompose a geometrically
complex flow field into one or more simpler zones. Meshes of different topologies may
then be generated within each zone to satisfy the desired local constraints. The overall
flow solution would then be determined as a composite of the solutions in each of the
one or more zones. The key to obtaining such composite solutions is the development of
procedures for matching solutions across zones.

In general, solution procedures for composite mesh structures can be dassified as one
of two types-multigrid procedures (see Refs. 30-33) or zonal procedures (Refs. 34-36).
In the multigrid approach, the composite mesh is constructed as a series of increasingly
finer meshes usually of a similar topology (i.e., one or more local meshes embedded in
a global mesh structure) with the finest levels existing only in local regions of the flow
field. The coupling of the solutions within the different embedded regions is accomplished
using a multigrid solution algorithm. In the zonal approach, solutions in different mesh
zones are patched together through the application of interface conditions at zonal mesh
boundaries. Different mesh topologies are often used in different zones and adjoining
meshes either butt together or overlap. There may be a global mesh with one or more
embedded local mesh regions or simply a patchwork of different mesh zones.

The mesh structure used in the present unsteady analysis consists of a combina-
tion of a global cascade mesh and a local body fitted mesh. Since these meshes differ
topologically, a zonal solution procedure for overlapping meshes is the favored approach.
Thus, the composite mesh is constructed by overlaying the cascade and local meshes. In
the region of intersection of the two meshes (i.e., the region covered by the local zone)
we eliminate all cascade points except those which fall within a predefined overlap zone
which is adjacent to the outer boundary of the local mesh. The resulting composite mesh
structure is shown schematically in Fig. 6 . The unsteady potential equation, Equation
(3.5), is approximated at each point of the cascade mesh which lies outside the inner
boundary of the overlap zone and at each point of the local mesh. Special coupling con-
ditions are imposed at the cascade mesh points that lie within the overlap zone and at
the local mesh points lying on the outer boundary of the local region.

The majority of the zonal schemes for overlapping meshes presented in the literature
employ iterative or relaxation type solution procedures both within each mesh zone and
as the mechanism for coupling the solutions in the various zones. The coupling is imple-
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mented by interpolating the solution within one zone to the boundary of an adjoining
zone. These boundary values are then frozen during the iterations in the latter zone.
By cycling periodically through all mesh zones a globally converged result is achieved.
The success of such an approach is dependent on the convergence rate of the relaxation
scheme used in each zone, which for classical relaxation methods requires that the dis-
crete equation system for each zone be diagonally dominant. In the present application
the discrete systems for the cascade- and local-mesh zones are, in general, not diagonally
dominant due to the discrete representations of the boundary conditions. For this reason
these systems are solved directly using Gaussian elimination. As noted in the previous
section, the determination of a solution on a single mesh (cascade or local) using this
approach is straightforward and very efficient because of the banded structure of the
difference equations.

The composite cascade/local discrete equation system does not possess a banded
structure because of the coupling conditions required to join the solutions in the different
mesh zones. Although the banded structure is lost, the composite system of equations
is very sparse. Therefore, it is possible to conveniently store and efficiently solve such
a system by adopting a general sparse matrix representation for the coefficient matrix.
Here, only the non-zero elements of the matrix and their corresponding location in the
full matrix are stored. For the present application we use the Yale Sparse Matrix Format
described in Refs. 37 and 38. This format allows us to take advantage of an existing set
of routines for manipulating and inverting large unstructured matrices, and results in a
very efficient solution procedure for the composite-mesh system of unsteady equations.

In the remainder of this section we will describe the formulation and assembly of the
composite equation system including the coupling conditions. This will be followed by a
brief description of the Yale Sparse Matrix Format and Gaussian Elimination routines. In
the following sections of this report we will demonstrate the composite solution procedure
for selected unsteady subsonic and transonic flows. To illustrate the importance of using
the composite solution procedure, which allows the accurate resolution of flow features in
the local mesh region to impact the global cascade solution, we will compare the present
composite solutions with those obtained using the single-pass or local-correction solution
procedure of Refs. 6 and 8.

6.1 Composite-Mesh Equations

To construct the composite system of discrete equations for the linearized unsteady
problem, it is convenient to first identify mesh points as either cascade-mesh solution
points, local-mesh solution points, cascade-mesh coupling points or local-mesh coupling
points. This classification is based upon where the cascade and local mesh points lie
relative to a prescribed overlap zone. The latter is defined conveniently in terms the
local mesh indices by stepping in n cells from the outer boundary of the local mesh,
as shown in Fig. 7a. As presently implemented the width of the overlap zone can be
different along different segments of the outer boundary of the local mesh. Once the
overlap zone is specified, cascade mesh points are classified as being solution points if

23



they lie exterior to the interior boundary of the overlap zone (i.e., the outer boundary of
the local mesh region) or as coupling points if they lie within two mesh points from the
interior boundary of the overlap zone. The two mesh point range on the latter class allows
for an upwind difference approximation to be applied at the cascade solution poi4ts lying
near the outer boundary of the local region. The remaining points of the cascade mesh
are eliminated resulting in the mesh shown in Fig. 7b. Similarly, those local mesh points
lying within the outer boundary of the local mesh are classified as solution points and
those on this outer boundary are called coupling points. Upon combining the cascade
and local solution and coupling points we obtain the composite mesh shown in Fig. 6.

At cascade and local solution points the discrete approximations to the unsteady
equations are determined as described for the cascade and local meshes, respectively,
in §4. Thus the block tri- or pentadiagonal structure of Equation (4.7) is preserved at
cascade mesh and local mesh solution points. The discrete equations at cascade mesh
coupling points are determined as follows. For each coupling point we locate the corre-
sponding local mesh cell which contains this point. This local cell is then triangulated on
the shortest diagonal. Within the triangle containing the cascade mesh coupling point a
bilinear interpolation operator is constructed to define the value of the unsteady potential
at the cascade mesh coupling point in terms of its values at three surrounding local mesh
points making up the triangle. For example, if the cascade coupling point was found to
be located in a triangle defined by points (i,j), (i + 1,j) and (i,j + 1) on the local mesh,
this operator would be expressed as follows:

0, = W1 ,,j + W20,j+l + W30+iJ ,

where

W1 = [(Yi+lj - yij+l)(Xij+l - xij) - (xi+lj - xi,+l)(Yij+l - YIJ)]/A

W 2 = 1 [(Yi+ij - Yij+l)(Xi+i -xlj) - (xi+l - xijl)(ij+l - yi,j)]/A , (6.1)

W= -[(yi - Y,,+1)(X, + - XJ) - (Xj- ,,+1)(ij+, - YI.j)]/A

and
A= (x,+i,j - xj+)(i,,j - y,,+l) - (z,j - Tlj+l)(Y,+lj - Yij+i) •

Here the upper case subscripts, I and J, are cascade mesh indices and lower case sub-
scripts, i and j, are local mesh indices.

A similar interpolation operator is constructed to relate the unsteady potential at
each local mesh coupling point to its values at points which define the cascade mesh
cell enclosing the coupling point. In this case, since one family of cascade mesh lines is
parallel, the following four point bilinear interpolation operator is used:

Oj= WiekI,J + W201,J+1 + W34'I+1,J+l + W44'i+1,J ~

W= (1 - W.)(1 - Wy), W 2  W.)W,, W3 =W.W,, and W4 = W.(1 - W,)
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W.= (, - Tl,J)/(f+i,J - X, )

w= (i,. - YA)/(YB - YA) (6.2)

YA = ( W.)Y, + W=jj+,j

YB = (1 - W.)YI,J+ + W.Yj+,j+i

The inclusion of these coupling equations into the system of discrete equations destroys
the previous block pentadiagonal structure. Although each coupling equation involves
points which are spatially close to the coupling point under consideration, the former are
not necessarily neighbors in the composite equation system. Therefore, the final system
of discrete equations contains a coefficient matrix whose band width is much greater than
five. Consequently special storage and inversion techniques are required to achieve an
efficient solution.

6.2 Inversion of Composite Equation System

There has been a significant amount of research in recent years directed toward devel-
oping efficient storage and solution techniques for linear systems of equations that contain
large unstructured sparse coefficient matrices. The composite set of discrete equations
for the linearized unsteady problem falls into this class. The approach taken to solve
such systems is to first recast the large sparse matrix into a compact vector description
(or sparse matrix format) where only non-zero elements of the original matrix and one or
more pointer vectors are stored. The sparse matrix format is defined so as to minimize
storage requirements while maximizing the computational efficiency of matrix manipula-
tions (e.g., multiplication, transposition, inversion, etc.). General routines for performing
these matrix manipulations are written in terms of the sparse matrix description. For the
present application we have employed a sparse matrix package developed by Eisenstat,
et. al. (Refs. 37, 38) at Yale University. This work has been assembled into a package
of routines call the Yale Sparse Matrix Package, with each routine written in the Yale

Sparse Matrix Format. Its use allows us to take advantage of a vast development effort
and places us in a position to implement future improvements. Since the original Yale
package was written for real equations, it was necessary under the present effort to extend
this package for the solution of complex equation systems.

Once the composite system of unsteady equations is cast into the appropriate format,
it can be solved using the very efficient Gaussian elimination routine contained in the Yale
package. Here the Gaussian elimination is broken down into two steps. First a symbolic
factorization of the original matrix is performed based on its sparsity pattern and then
used to efficiently invert the matrix. If the sparsity pattern is the same from one solution
to the next, the symbolic factorization need only be performed once and stored for future
use. Since the sparsity pattern in the present unsteady analysis is determined by the
composite mesh structure and the steady flow properties, the symbolic factorization must
only be performed one time for parametric studies involving changes only in the frequency,
interblade phase angle or mode of the blade motion. After inversion, the discrete solution
for the unsteady potential is transferred from the Yale sparse matrix representation to
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the corresponding cascade and local mesh points for evaluation of unsteady aerodynamic
response parameters.
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7. DEMONSTRATION OF SOLUTION PROCEDURES

Our purpose in this section is to demonstrate the effects of implementing the transfi-
nite or shock-conforming local mesh and the composite-mesh solution procedure into the
linearized unsteady aerodynamic analysis of Refs. 6 and 8. We will restrict our consider-
ation to unsteady flows, excited by prescribed small-amplitude harmonic blade motions,
through a two-dimensional compressor (M-,o < Mo) cascade operating at subsonic inlet
and exit conditions. The example cascade has a stagger angle, 0, of 450 and a gap/chord
ratio, G, of unity. The blades are constructed by superposing the thickness distribution
of a modified NACA four-digit series airfoil on a circular-arc camber line. The thickness
distribution, T(x), is given by

T(x) = HT[2.969x1 / 2 - 1.26x - 3.516X2 + 2.843z 3 - 1.036X4], 0 < x < 1. (7.1)

where HT is the nominal blade thickness. The coefficient of the x 4 term in Equation (7.1)
differs from that used in the standard airfoil definition (i.e., -1.015) so that the example
blades dose in wedge-shaped trailing edges. The camber distribution is given by

C(z) = Hc - R+ [R2 _ (z _ 0.5)2 ]1/2 , 0 < 1 , (7.2)

where Hc (> 0) is the height at midchord and R = (2Hc)-'(H2 + 0.25)/2 is the radius
of the circular-arc camber line. Thus, the surface coordinates for the reference (m = 0)
blade are given by

[X, Y]B,* = [x: O.5T(x) sin0, C(x) ± 0.5T(x) cos ], 0 < < , (7.3)

where 0 = tan-1 (dC/dx). For the present application we set HT = 0.06 and Hc = 0.05
to study the unsteady aerodynamic response to a vibrating cascade of cambered NACA
0006 airfoils.

We consider two different uniform inlet operating conditions. In one case the inlet
Mach number, M-,,, and flow angle, 0...., are 0.7 and 55 deg, respectively; in the other,
M-o = 0.8 and (_oo = 58 deg. The steady flows through the cascade are assumed to
satisfy a Kutta condition at blade trailing edges and therefore, only inlet uniform-flow
information must be specified. For M.,, = 0.7 and (Lo = 55 deg, the mean or steady
flow through the cascade is entirely subsonic; for M,,o = 0.8 and Q_,, = 58 deg, it is
transonic with a single normal shock occurring in each blade passage. The predicted
blade-surface Mach number distributions, as determined using the full-potential analysis
of Ref. 19 in which shocks are captured in transonic calculations, are shown in Fig. 8.
The subsonic mean flow stagnates on the pressure surface of the blade at : = 0.0005 and
the Mach number reaches a maximum value of 0.916 on the suction surface at x = 0.109.
The exit Mach number and flow angle are 0.446 and 40.2 deg, respectively. The transonic
flow stagnates at x = 0.002 on the pressure surface and the normal shock emanates from
the suction surface at x = 0.258. The Mach numbers at the base of the shock are 1.282
on the upstream side and 0.816 on the downstream side, and the exit Mach number and .5

flow angle are 0.432 and 40.3 deg, respectively.
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Predictions are given below for the unsteady aerodynamic response at the refer-
ence (m = 0) blade surface including first harmonic unsteady pressure differences, i.e.,
Ap(x) = pB(Z, y-) - pB(Z, y+), unsteady aerodynamic moments, mp, and, where ap-
propriate, shock displacements, rshB, for blades undergoing pure pitching (torsional)
oscillations about their midchord points, i.e., Xp,Yp = 0.5,0. These motions are as-
sumed to occur at unit frequency, w = 1, an interblade phase angle a of 180 degrees
and a complex amplitude a of (1,0). Predicted unsteady potential contours will also be
presented to illustrate unsteady solutions over extended blade-passage domains. Note
that if Im{a} = 0, the real and imaginary parts of a reference blade complex response
parameter represent the response components that are in- and out-of-phase, respectively,
with the reference blade displacement.

The linearized unsteady flow solutions were determined on an H-type cascade mesh
and on transfinite and polar local meshes. The H-type mesh consisted of 100 axial lines

= constant which are parallel to the blade row and 30 tangential curves which lie
at percentile averages of the "circumferential" distances between the upper and lower
boundaries of the extended blade-passage solution domain. This mesh extended from
one axial chord upstream to one axial chord downstream from the blade row (i.e., -1 <
4/cos e < 2). For the most part uniform mesh spacings were used with A4 = 0.04 cos e
and An = 4% of the distance along axial lines between the upper and lower boundaries,
but axial mesh lines were concentrated near blade edges and over the first 30 percent of V.

blade chord where axial spacings of A = 0.01 cos 0 were used. Tangential lines were
concentrated near the upper and lower boundaries, i.e., near the blades and their wakes,
of the solution domain. The small axial mesh spacings over the forward 30 percent of the
blades were used in an effort to capture shock phenomena with the H- mesh calculation.

The local meshes consisted of 12 circumferential and 100 "radial" lines. The former
wrapped around the leading edge of the reference blade and extended from radial lines
emanating from the upper and lower surfaces of the blade at f = 0.5 cos O. The radial
lines extended outward from the airfoil to one-half the minimum distance (i.e., the throat)
between adjacent blades. The circumferential lines were concentrated near the blade
surface and the radial lines were concentrated near a shock, if present.

7.1 Single-Pass Solutions

Response predictions based on the single-pass solution procedure are shown in Figs.
9-11. These results were obtained from three different unsteady calculations: (a) a
cascade mesh calculation, (b) a single-pass calculation using the polar-type local mesh
and (c) a single-pass calculation using the transfinite local mesh. Shock phenomena are
captured in the cascade mesh calculation, i.e., the field equation, Equation (3.5), is solved
throughout the interior of the extended blade-passage solution domain. The local-mesh .9

transonic results shown in Fig. 10 have also been determined by shock capture; i.e., by
requiring that the unsteady potential be continuous ([I = 0) at the shock in the local
calculation. The local-mesh transonic results reported in Fig. 11 have been determined
by shock fitting; i.e., by imposing the unsteady shock-jump condition, Equation (4.5), in
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the local mesh calculation.
The response predictions for the subsonic (M-.. = 0.7, 0-,1 = 55 deg) NACA 0006

cascade shown in Fig. 9 reveal that the unsteady flow in the neighborhood of the rounded
blade leading edge cannot be predicted properly using the cascade mesh alone. Indeed,
the cascade-mesh pressure-difference predictions are erroneous over approximately the
first ten percent of blade chord. A local-mesh calculation greatly reduces such errors and
predicts an analytic behavior for Ap in the vicinity of the leading edge in which both
the real and imaginary components of the pressure difference are zero at the leading
edge point and reach local extrema very close (i.e., at approximately x = 0.004) to this
point. The two local solutions yield nearly identical pressure differences, but there are
discrepancies close to the leading edge. The transfinite local-mesh calculation gives the
better solution because it provides the better mesh point distribution in the immediate
vicinity of the blade leading edge. Note, however, that the unsteady moments predicted
by the two single-pass calculations are in close agreement.

Response predictions for the transonic (M-.. = 0.8, fQss = 58 deg) NACA 0006
cascade are shown in Figs. 10 and 11. The local solutions reported in Fig. 10 have been
determined by shock capture. Hence, the velocity potential is continuous across the shock
and the motion of the shock is neglected. Note however, that since we evaluate unsteady
pressures at a shock using one-sided difference approximations, our shock-captured pres-
sure differences will be discontinuous at shocks. For the transonic example the cascade-
mesh calculation fails to provide an accurate resolution of the flow both in the vicinity
of the blade leading edge and in the vicinity of the normal shock which impinges on the
blade suction surface at z = 0.258. Although the cascade mesh used was rather dense
with A = 0.01 cos E over the first thirty percent of blade chord, the unsteady flow in
the vicinity of the shock and in the supersonic region upstream of the shock cannot be
resolved accurately because the axial lines of the cascade mesh are highly skewed relative
to the shock. The local-mesh allows a much more accurate resolution of both unsteady
leading edge and shock phenomena, as is indicated by the results depicted in Figs. 10b
and 10c. Except for small differences near the blade leading edge and near the root of
the shock, both the polar and transfinite local meshes provide very similar single-pass
pressure difference predictions. Thus, although the radial lines of the transfinite local
mesh conform more closely to the mean-shock position, this feature does not seem to
offer an important advantage in a single-pass calculation in which the unsteady potential
is assumed to be continuous across shocks.

Response predictions for the transonic NACA 0006 cascade based on single-pass cal-
culations in which shocks are fitted, i.e., the shock-jump condition is imposed in the local
calculation, are shown in Fig. 11. Here, the cascade mesh result is identical to that shown
in Fig. 10 and has been included only for the reader's convenience. If shocks are fitted,
the unsteady potential will be discontinuous at the mean shock location. The relative
displacement of a shock along a blade surface and hence, the shock induced unsteady
airloads depend upon the jump in the unsteady potential at the shock root. As seen by a
comparison of the first harmonic pressure difference distributions given in Figs. 10 and 11,
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the condition imposed at a shock has a strong impact on the single-pass predictions for
the unsteady surface pressures downstream of the shock. The shock-captured and shock-
fitted unsteady solutions yield pressure differences that are in close agreement upstream
but differ substantially downstream of the mean shock location. This occurs because the
mechanism for allowing physical information downstream of a shock to impact a solution
upstream of a shock is very limited in a single-pass calculation.

Although the pressure differences downstream of the shock differ substantially, the
shock-fitted (Fig. 11) and the shock-captured (Fig. 10) unsteady moment predictions
are in fairly close agreement. Recall that the shock-fitted unsteady solution yields both
harmonic and anharmonic local unsteady responses, but that the anharmonic loads are
neglected in a shock-captured calculation. However, the first-order global unsteady air-
loads predicted by both solutions are harmonic. The results shown in Figs. 10 and
11 indicate that if shock motions are neglected in the unsteady calculation, the first-
harmonic unsteady pressures downstream of the shock will compensate for the missing
anharmonic shock load.

The two local solutions considered in Fig. 11 give slightly different unsteady pressure
differences downstream of the shock and significantly different shock-displacements along
the blade surface. These differences indicate the great sensitivity of a discontinuous
unsteady transonic solution to the numerical modeling of the shock. Since the "radial"
lines of the transfinite local mesh conform to the mean shock locus, it is to be expected
that this mesh should provide the better solution for a discontinuous transonic flow.

Unsteady potential contours for the example subsonic and transonic NACA 0006
cascades are shown in Figs. 12 and 13, respectively. These contours were determined
from single-pass calculations using the transfinite local mesh. The shock-jump condition
(4.5) was imposed in the transonic calculation. In the single-pass procedure the solution
on the cascade mesh fixes the values of 0 on the outer boundary of the local mesh. Thus,
the potential contours will be continuous at this boundary but, in general, their slopes
will be discontinuous. These discontinuities are indicative of errors being present in a
single-pass solution. Slope discontinuities are apparent in the potential contours shown in
Figs. 12 and 13, particularly in the contours shown in Fig. 13 for the unsteady transonic
flow.

At this point we have demonstrated several aspects of the numerical solution proce-
dure. In particular, we have illustrated the improvements in unsteady flow resolution
near rounded blade leading edges and near shocks that can be achieved using a local
mesh calculation. In addition, the effects of imposing the shock-jump condition (4.5)
in the local unsteady calculation have been demonstrated. A comparison of the single-
pass shock fitted and shock captured unsteady solutions shows that the local unsteady
aerodynamic response downstream of a shock is profoundly influenced by the conditions
imposed at the shock. Finally, single-pass solutions obtained using polar and transfinite
local meshes have been presented for subsonic, continuous transonic and discontinuous
transonic flows. The two local meshes yield very similar response predictions for the
subsonic and continuous transonic examples, but somewhat different predictions for the
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discontinuous transonic example. Such differences are to be expected since the transfinite
mesh has been constructed and implemented so that mean shock phenomena could be
modeled more accurately in linearized unsteady calculations.

7.2 Composite Solutions

With the single-pass solution procedure the detailed resolution of the flow in the
local mesh region cannot impact the solution over the remainder of the extended blade
passage solution domain. As we shall see, this places a serious limitation on the accuracy
of single-pass calculations, particularly for transonic flows in which shocks extend well
into the blade passage. In contrast, with the composite solution procedure the cascade-
and local-mesh finite-difference equations are solved simultaneously, thereby allowing the
accurate resolution of the flow in the local region to impact the entire unsteady solution.

Unsteady potential contours determined from composite solutions for the example
subsonic and transonic NACA 0006 cascade are shown in Figs. 14 and 15, respectively.
The transfinite local mesh was used in both calculations and shock jump conditions were
imposed in the transonic calculation. The composite calculations yield potential contours
that have continuous slopes at the outer boundary of the local mesh. This is an indication
that errors inherent to the single-pass procedure are eliminated using the composite-mesh
solution procedure. A comparison of the single-pass (Fig. 12) and composite (Fig. 14)
potential contours for the subsonic cascade indicates that the two procedures yield very
similar unsteady flow fields with the composite procedure predicting a somewhat greater
variation in the potential upstream of the blade row. However, a similar comparison
of the single-pass (Fig. 13) and composite (Fig. 15) potential contours for the transonic
cascade reveals that there are dramatic differences between the results obtained from the
two procedures. In particular, the composite-mesh solution gives much greater variations
in the potential upstream and downstream of the shock and in the region upstream of
the blade row. The latter are caused by a propagating acoustic response disturbance.
The composite solution yields a response disturbance of much greater amplitude than the
single-pass solution. The results in Figs. 13 and 15 indicate that the detailed resolution
of the unsteady flow in the vicinity of a shock can have a profound effect on the flow
throughout the extended blade-passage solution domain.

Unsteady pressure difference distributions for the subsonic NACA 0006 cascade as de-
termined from composite solutions on the polar and transfinite local meshes are shown in
Figs. 16a and 16b, respectively. A comparison of these with the corresponding single-pass
predictions shown in Figs. 9b and 9c reveals that the differences between the single-pass
and composite predictions for the subsonic unsteady pressure difference distributions are
small and occur primarily near the leading edge of the blade. Consequently, the differ-
ences between the single-pass and composite predictions for the unsteady aerodynamic
moment are rather large. The differences between the polar and transfinite local mesh
composite predictions for the unsteady pressure differences and the unsteady moment
are quite small and mirror those betiveen the corresponding single-pass predictions.

Although a composite calculatic-, will provide a more accurate resolution of an un-
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steady subsonic flow than a single-pass calculation, it appears that the two procedures will
predict very similar overall unsteady flow properties. Also, composite subsonic solutions
determined on the polar and transfinite local meshes will show only small quantitative
differences. For a transonic flow, however, composite and single-pass predictions can
differ rather dramatically as indicated by the potential contours shown in Figs. 13 and
15. Substantial differences between composite solutions determined on the polar and
transfinite local mesh will also occur as we shall see below.

Unsteady pressure difference distributions for the transonic NACA 0006 cascade as
determined from composite solutions on the polar and transfinite local meshes are shown
in Figs. 17 and 18. The results in Fig. 17 have been determined by shock capture; those in
Fig. 18, by shock fit. A comparison of the two composite solutions depicted in Fig. 17 with
the corresponding single-pass solutions depicted in Fig. 10 shows that the composite and
single-pass procedures yield qualitatively similar unsteady pressure differences. However,
the influence of the shock is much more pronounced in the composite results. The shock-
captured composite solutions on the polar (Fig. 17a) and transfinite (Fig. 17b) local
meshes give very similar unsteady pressure difference and unsteady aerodynamic moment
predictions.

In contrast, there are dramatic differences between the results of the shock-fitted
composite (Fig. 18) and single-pass (Fig. 11) solutions and between the results of the
shock-fitted polar and transfinite local mesh composite solutions. These occur because
the composite procedure allows the motion of the shock to influence the predicted un-
steady flow field over the entire extended blade passage domain, whereas the single-pass
procedure limits the effect of the shock motion to the local mesh domain. Note that
for the blade motion considered (w = 1, a = 180 deg) the shock displacement excites a
relatively large amplitude acoustic response disturbance far upstream of the blade row
(see Fig. 15).

The single-pass and composite calculations on the polar local mesh provide qualita-
tively similar unsteady pressure difference behaviors along the blade, but the composite
calculation predicts enhanced shock effects. However, the single-pass and composite cal-
culations on the transfinite local mesh yield very different behaviors for the out-of-phase
component of the unsteady pressure difference both upstream and downstream of the
shock. There are also dramatic differences between the single-pass and composite pre-
dictions for the unsteady aerodynamic moments and relative shock displacements.

The shock-fitted (Fig. 18) and shock-captured (Fig. 17) composite unsteady moment
predictions differ to a much greater extent than the corresponding (Figs. 11 and 10,
respectively) single-pass predictions. This suggests that it is important to fit shocks in
a composite solution scheme to properly predict unsteady airloads. Also the differences
between the composite solutions on the polar and transfinite local meshes (Fig. 18) again
suggest the sensitivity of the linearized unsteady solution to the numerical modeling of
shock effects. Since the shock mesh lines of the polar local mesh do not coincide with the
mean shock position, shock phenomena are more accurately modeled using a transfinite
local mesh calculation.
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In this section we have attempted to demonstrate the merits of using a composite
solution procedure and a transfinite local mesh to resolve linearized unsteady subsonic
and transonic cascade flows. For subsonic flow, a comparison of composite solutions on
a transfinite local mesh and single-pass solutions on a polar local mesh, i.e., the new and
the old solution procedures, respectively, indicates that the two procedures predict very
similar overall unsteady flow fields and blade pressure difference distributions, Ap(x).
However, the predicted Ap distributions differ in the vicinity of a blade leading edge,
and therefore give rise to quite different unsteady aerodynamic moment predictions. For
transonic flow, the composite procedure allows the detailed resolution of the flow near a
shock to impact the predicted unsteady field throughout the entire solution domain - a
feature missing from the single-pass procedure. Consequently, a comparison of composite
and single-pass unsteady transonic solutions shows that shock phenomena are much more
important than previously indicated by single-pass solutions.

Transonic composite solutions are quite sensitive to the physical conditions imposed
at a shock and to the numerical modeling of these conditions. Our results indicate
that it is important to fit shocks in unsteady transonic solutions and to represent shock
phenomena as accurately as possible. Thus, the implementation of a transfinite local
mesh in which radial lines conform to the shape of the mean shock locus is a step in
the right direction. Unfortunately, the nonlinear full potential solution (Ref. 19) used to
provide the steady background flow information for our unsteady transonic calculations
was obtained using a single-pass calculation on a polar local mesh in which shocks are
captured. In the future, an effort should be made to develop a cascade full potential
analysis with transfinite local mesh and composite mesh solution capabilities in which
shocks are fitted into steady solutions.
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8. GLOBAL UNSTEADY AERODYNAMIC RESPONSE BEHAVIOR

We proceed to examine the global unsteady aerodynamic response behavior of the
subsonic and transonic NACA 0006 cascades. For purposes of comparison, we will also
consider two flat-plate cascades. These have the same stagger angle (E = 45 deg) and
blade spacing (G = 1) and operate at the same inlet Mach numbers as the subsonic
(M_0 = 0.7) and transonic (M-oo = 0.8)NACA 0006 cascades. However, the mean
positions of the flat-plate blades are aligned with the inlet free stream direction (i.e.,

= 45 deg), and therefore the steady flows through the flat plate cascade are uniform,
i.e, M = M-co, where M is the local steady Mach number.

We will restrict our consideration to unsteady flows excited by prescribed single-
degree-of-freedom, small-amplitude, harmonic blade motions. These include pure trans-
lations (bending) normal to blade chord with h. = (1,0) and pure rotations (torsion) A
about an axis at midchord, i.e., Xp,Yp = 0.5,0 with a = (1,0). The stability of the
translations normal to blade chord depends upon the sign of the out-of-phase component
of the normal or lift force. Thus, for example, if Im{fv} > 0, the airstream supplies
energy to the blade motion and this motion is unstable according to linearized theory.
Similarly, the stability of the rotational blade motions depends upon the sign of the
out-of-phase moment. These motions are unstable if Im{n } > 0 (Ref. 39).

The aerodynamic response at a moving blade surface is tied to the far-field acoustic
response produced by the blade motion. For this reason blade motions are often clas-
sified according to the different types of far-field acoustic response behavior that they
produce (Ref. 20). For example, blade motions are classified as subresonant if all acous-
tic response disturbances attenuate with increasing axial distance from the blade row
and as superresonant (m, n) if m and n such disturbances persist in the far upstream
and far downstream regions, respectively, and carry energy away from the blade row.
A blade motion that produces at least one acoustic response disturbance in either the
far upstream or far downstream region that persists and carries energy parallel to the
blade row is said to be resonant. A resonant blade motion produces a far-field acoustic
response disturbance that travels at circumferential wave number x,, = G-'a1 *, where
the subscripts refer to the far upstream (-oo) or far downstream (+oo) regions of the
flow, and the superscripts indicate that there are two resonance conditions associated
with each of these regions. If the mean flow is uniform, then the upstream and down-
stream resonant interblade phase angles are identical, i.e., orT = o__ = a+o, and the
same number of acoustic response disturbances will persist in both the far upstream and
the far downstream regions, i.e., m = n.

For the example subsonic NACA 0006 cascade the resonant interblade phase angles (in
degrees) are a-. = -26.93w, uo2t = 117.12w, a-. = -31.80w and 4++ = 59.79w. For
the transonic configuration they are a-.o = -28.94w, a+o = 201.7w, ao = -35.92w
and a+0 = 66.2 2w. The NACA 0006 blade motions at interblade phase angles lying
between the lowest (uoo,) and highest (+,o) resonant interblade phase angles, except
those at a = ao and a = a+.0 are superresonant. If the range a+. - a-. exceeds 360
deg, then the blade motions at all interblade phase angles, except a = ±oo 4- 360n deg,
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where n = 0, ±1, ±2, ... , are superresonant. The resonant conditions for the flat-plate
cascade operating at M-.o = 0.7 are a- = - 2 9.41w and a+ = 107.26w; for the flat-plate
cascade operating at M-o. = 0.8 they are a- = -32.97w and or+ = 177.02w.

Global unsteady response predictions are presented below over an interblade phase
angle range extending from -90 deg to 270 deg to minimize the artificial breaks in the
curves that would occur over the superresonant regions of blade vibration. Note that
blade motions at a ± 360n deg produce identical unsteady aerodynamic responses. The
NACA 0006 response predictions were determined from composite mesh solutions to the
linearized unsteady boundary-value problem. These solutions were determined using a
transfinite local mesh and by imposing the shock-jump condition, Equation (4.5), in the
unsteady transonic calculations. The flat-plate predictions were obtained from solutions
on the cascade mesh alone. The meshes used were as described in §7, except that the
cascade mesh contained only 84 axial lines. Since, for our present purposes, we did not
have to resolve shock phenomena in the cascade mesh calculation, there was no need to
pack axial mesh lines over the forward thirty percent of blade chord. Axial mesh lines
were concentrated near blade edges, however, because the cascade mesh was the only
one used for the flat-plate solutions. The uniform spacings between axial and tangential
mesh lines cited in §7 are sufficiently small so that the acoustic response disturbances
produced by unsteady excitations at frequencies up to 2 could be resolved accurately
over the entire range of interblade phase angles.

Unsteady lift and moment predictions for pure bending and pure torsional motions of
the flat-plate and NACA 0006 cascades are shown in Figs. 19 and 20. The out-of-phase
lift responses to pure bending vibrations at M-.. = 0.7 and w = 1.0 and at M-.,- = 0.8
and w = 0.5 are considered in Fig. 19; the out-of-phase moments due to pure torsional
vibrations at M-,, = 0.7 and w = 1.5 and at M-,. = 0.8 and w = 1.0 in Fig. 20. The
vertical lines above and below the curves in these figures indicate the interblade phase
angles at which the NACA 0006 and flat-plate blade motions, respectively, produce a
resonant far-field acoustic response disturbance. Note that abrupt changes in the global
unsteady aerodynamic response behavior occur at the resonant interblade phase angles.

The flat-plate blade motions considered in Figs. 19 and 20 are subresonant for ao[-90
deg, a-) and af(o+,270deg] and superresonant (1,1) for ae(a-,a+). The NACA 0006
motions are subresonant for a[--90 deg, ao.) and ae(a+, 270 deg], superresonant (0, 1)
for af(a+,o), superresonant (1,1) for af(o, a+.), and superresonant (1,0) for
a'(a+o, ao). Both the flat-plate and NACA 0006 motions are stable, i.e., Im{fV} < 0
for the pure bending motions (Fig. 19) and Im{mp} < 0 for the pure torsional motions
(Fig. 20). With the exception of the blade motions at interblade phase angles near the
resonance conditions, the nonuniform mean flow effects associated with the NACA 0006
cascade are generally destabilizing. Note that such effects produce substantial differences
between the NACA 0006 and flat-plate moment responses to the subresonant torsional
motions at M-,, = 0.7 and w = 1.5 and at M-0. = 0.8 and w = 1..

Predictions for the out-of-phase lift due to bending vibrations of the flat-plate and
NACA 0006 blades at frequencies, w, of 0.5, 1.0, 1.5 and 2.0 are shown in Figs. 21 and 22,
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respectively. Results for the out-of-phase moment due to torsional blade vibrations at
these frequencies are shown in Figs. 23 and 24. Although the curves in Figs. 21 through 24
show reasonable trends with increasing vibration frequency, they also reveal the rather
complicated aerodynamic response behavior associated with vibrating cascades. To a
great extent, this results from the different far-field acoustic response behaviors produced
by the different types of blade motion (i.e., subresonant, superresonant (1,0), etc.). Note
that for M = 0.8 the flat-plate blade motions at w = 2 and a = a + - 360 deg =
-5.96 deg produce resonant acoustic response disturbances far upstream and downstream
of the blade row. In this case the flat-plate blade motions are superresonant (2,2) for
ay(a-, a + - 360 deg) and superresonant (1, 1) at the other non-resonant interblade phase
angles. Similarly, the transonic NACA 0006 blade motions at w = 1.5 and a = a+00 -
360 deg = -57.45 deg and at w = 2.0 and a = a+oo - 360 deg = 43.4 deg produce
resonant acoustic response disturbances (with K,1 = a+o) far upstream of the blade
row. At M-o = 0.8 and w = 1.5 the superresonant NACA 0006 blade motions produce
at most one propagating acoustic response disturbance far upstream of the blade row;
however, at w = 2 the superresonant blade motions at a+(o0, a - 360 deg) produce
two propagating acoustic response disturbances in the far upstream region.

The bending motions considered in Figs. 21 and 22 are stable and the stability mar-
gin generally increases with increasing vibration frequency. The non-resonant bending
vibrations of the subsonic NACA 0006 blades at the three lower frequencies usually have
smaller stability margins than the corresponding (i.e., M = 0.7) flat-plate vibrations.
This trend does not apply to the bending motions at w = 2, where there is a range of
interblade phase angles a'(a+o, ao + 360 deg) over which the stability margin for the
NACA 0006 bending motions is much greater than that for the flat plate motions. In
particular, over this range the lift forces opposing the bending motions of the NACA
0006 blades are quite substantial. At the higher Mach number, M-o = 0.8, the bending
motions of the transonic NACA 0006 cascade generally have a greater stability margin
than those of the corresponding flat-plate cascade for a < uoo, and at w = 1.5 and
w = 2.0 for a > a+o. The NACA 0006 blades have a smaller stability margin than
the flat-plate blades for a-oo < a < a+ and at the two lower frequencies, W = 0.5 and
w=1.0, for o+o0 < a < a+. There are substantial differences between the lift responses
of the two cascades when w = 1.5 or w = 2.0 and a+. ;S o < a-.o + 360 deg, where the
NACA 0006 blade motions are superresonant (1, 0) and the flat-plate motions are, for
the most part, superresonant (1,1).

The moment responses to the pure torsional motions of the flat-plate (Fig. 23) and
NACA 0006 (Fig. 24) blade motions also indicate that the stability margin generally
increases with increasing frequency. Or, stated more precisely, the stability margin
generally increases with increasing frequency when the motions at a given interblade
phase angle are of the same type, i.e., subresonant, superresonant (1, 1), etc. The mo-
ment responses to the torsional blade motions of the subsonic (M-.. = 0.7) and tran-
sonic (M_. = 0.8) NACA 0006 cascades generally lie closer to the stability boundary
(Im{mp} = 0) than the moment responses to the motions of the corresponding flat-plate
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cascades. However, a torsional motion of the transonic NACA 0006 cascade at w = 0.5
and an interblade phase angle in the vicinity of aot produces a large moment that op-
poses the blade motion. This somewhat surprising result is due to the large shock loads
that are predicted for the torsional vibrations at w = 0.5 and a near Ot- of the transonic
NACA 0006 cascade.

Recall that for a discontinuous transonic flow there are two contributions to each
global unsteady airload, one arising from the first harmonic unsteady surface pressure
response and the other from the anharmonic unsteady surface pressures associated with
shock motions. The out-of-phase components of the shock loads produced by the motions
of the transonic NACA 0006 cascade are shown in Fig. 25. In particular, the out-of-phase
unsteady lift, i.e., Im{f,sh} = Im~rsh}([PBJn'B) -, is shown in Fig. 25a for pure
bending vibrations at w = 0.5, 1.0, 1.5 and 2.0, and the out-of-phase unsteady moment,
i.e., m{rm,,Sh} -- -Bm{rs},(IPBI}([.Rp.-)s,, in fig. 25b for pure torsional vibrations at
these frequencies. For the example transonic NACA 0006 cascade, the jump in the steady
pressure, [PB], as felt by an observer moving across the shock in the counterclockwise ( or
9-) direction is -0.477 at the foot of the shock, The lift and moment due to the shock
displacement are given by fysh = -0. 4 74 rShB and mvsh = -O.lllrsjs, respectively,
where rshB is the shock displacement along the blade surface in the 9- direction. The
results in Fig. 25 reveal that the shock loads can be quite severe and that they have a
destabilizing effect on pure bending and pure torsional vibrations over a broad range of
frequencies and interblade phase angles.

Curves for the unsteady lift (Fig. 22b) and unsteady lift due to shock motion (Fig. 25a)
show similar behaviors for the bending motions at w = 0.5. At the three higher frequen-
cies such curves show substantially different behaviors, particularly for interblade phase
angles lying between the resonant values a = a+ and a = a+.t. Similarly, the curves for
the unsteady moment (Fig. 24b) and the unsteady moment due to shock displacement
(Fig. 25b) show similar behaviors at w = 0.5 and w = 1.0, but the curves for the two
higher frequencies show very different behaviors, again particularly for o (+,+).
Such trends indicate that shock loads tend to dominate the global unsteady aerodynamic
response at lower vibration frequencies.
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9. CONCLUDING REMARKS

The linearized unsteady aerodynamic analysis described in this report accounts for
the effects of real blade geometry, mean blade loading and operation at transonic Mach
numbers on the unsteady aerodynamic response to the vibrations of an isolated two-
dimensional cascade. Here, the unsteady flow is regarded as a small perturbation of a
fully nonuniform isentropic and irrotational mean or steady flow. Thus, the steady flow
is determined as a solution of a full-potential boundary-value problem and the linearized
unsteady flow as a solution of a time-independent linear variable-coefficient boundary-
value problem in which the coefficients depend on the underlying steady flow. The steady
and unsteady problems can be solved sequentially to determine the mean and fluctuating
components, respectively, of the fluid dynamic properties throughout a required solution
domain, i.e., a single extended blade passage region of finite extent in the axial-flow
direction.

Unsteady linearizations relative to nonuniform steady flows offer great potential for
meeting the needs of aeroelastic designers for efficient unsteady aerodynamic analyses
that contain the essential physics of complex turbomachinery flows. However, it has
been recognized (Refs. 1 and 2) that before this potential can be fully realized, signifi-
cant improvements in numerical solution procedures for both the steady and linearized
unsteady flows are needed, so that reliable response information can be provided for the
wide range of geometric configurations and flow conditions at which blade vibrations
are of practical concern. Some needed capabilities include the ability to predict tran-
sonic flows (i.e., subsonic flows with embedded supersonic regions) through compressor
and fan-type cascades operating at positive or negative mean incidence, supersonic flows
with complex moving shock patterns and the high frequency unsteady flows driven by
incident entropic, vortical and acoustic excitations.

The work described in the present report contributes to the numerical analysis of
linearized unsteady flows around compressor blades operating at high subsonic inlet Mach
number and high mean incidence. In particular, two major advances to the existing
numerical analysis of Refs. 6 and 8 have been provided. One involves the construction
and implementation of a new transfinite local mesh so that unsteady shock phenomena
can be modeled more accurately; the other, the development of a composite mesh solution
procedure so that the detailed resolution of the local flow field can impact the unsteady
solution over an entire extended blade-passage domain.

The transfinite local mesh is constructed so that "radial" lines conform to mean shock
positions, which are determined from a nonlinear steady solution. This feature allows
an accurate imposition of the unsteady shock-jump conditions and therefore an accurate
determination of unsteady shock loads. We also find that because of the mesh control
allowed by the transfinite interpolation procedure, the transfinite local mesh yields a
better resolution of unsteady phenomena in the vicinities of rounded blade leading edges
than the polar local mesh used in previous work.

The composite solution procedure eliminates major weaknesses inherent to the single-
pass solution procedure described in Refs. 6 and 8. In the latter the cascade and local
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mesh equations are solved separately with the cascade mesh solution establishing the
potential distribution on the outer boundary of the local mesh. Thus, the boundary-
condition information employed in the local calculation is inaccurate. Also, there is no
mechanism for the detailed local solution to affect the unsteady solution beyond the
local mesh domain. In contrast, with the composite procedure the cascade and local
mesh equations are solved simultaneously. This allows an accurate resolution of the flow
over the entire extended blade-passage solution domain, and, in particular, the high flow
gradients in the local region to impact the entire unsteady solution. The composite
approach is particularly important for transonic flows in which shocks extend well into
blade passages. An added benefit associated with the composite procedure is that there
is no need to pack cascade mesh lines in the vicinities of blade leading edges or shocks
since the cascade-mesh solution is not used to establish a boundary condition for the local
mesh calculation. Thus, uniform spacings, which are determined based on a knowledge
of the acoustic response in the far field (see Ref. 20), can be prescribed in constructing a
cascade mesh to be used in a composite solution procedure.

The numerical results presented in this report illustrate various features of the lin-
earized unsteady aerodynamic analysis. The results for the NACA 0006 cascade presented
in §7 indicate the improved resolution of unsteady phenomena at blade leading edges and
at shocks that can be achieved using a local mesh calculation. They also demonstrate
the importance of using a composite mesh solution procedure especially for a discontin-
uous transonic flow and the sensitivity of the overall unsteady solution to the physical
and numerical modeling of shock effects. The results for the NACA 0006 and flat-plate
cascades presented in §8 illustrate, to a limited extent, the effects of nonuniform mean
flow phenomena on global unsteady aerodynamic response behavior. In particular, these
results indicate that nonuniform mean flow effects tend to destabilize blade motions that
occur at the frequencies typical of those at which subsonic positive incidence flutter is
encountered. Also, the shock loads produced by single-degree-of-freedom vibrations of
the NACA 0006 blades are destabilizing for a broad range of frequencies and interblade
phase angles.

The development and implementation of the transfinite local mesh and the compos-
ite mesh solution capability are important advances in our ability to predict linearized
unsteady cascade flows. However, additional improvements are still needed. More ro-
bust full potential analyses are required so that nonlinear steady transonic calculations
will converge more rapidly, and so that steady flows through fans operating at non-zero
mean incidence can be predicted (see also Refs. 11 and 13). Also, in view of the relative
importance of unsteady shock loads and the sensitivity of linearized unsteady flow solu-
tions to the numerical modeling of shock effects, procedures for determining nonlinear
steady solutions with fitted shocks should be developed. Finally, it is anticipated that
more realistic predictions for shock locations and shock displacements (Ref. 40) could
be achieved if the nonisentropic effects associated with shocks were incorporated into
cascade nonlinear steady and linearized unsteady potential flow analyses.
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Figure 14. Composite solution for the unsteady potential contours due to torsional blade -

vibrations of the subsonic NACA 0006 cascade; cy = (1, 0), w 1, a 180 deg: (a) and (b)
as in Figure 12.
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Figure 15. Composite solution for the unsteady potential contours due to torsional blade
vibrations of the transonic NACA 0006 cascade; cr = (1,0), w = 1, a = 180 deg: (a) and

(b) as in Figure 12.
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Figure 16. Unsteady pressure difference distributions due to torsional blade vibrations of the
subsonic NACA 0006 cascade: a = (1,0), w = 1, a = 180 deg: (a) composite solution
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Figure 18. Composite solutions for the unsteady pressure difference distributions due to
torsional blade vibrations of the transonic NACA 0006 cascade; ct = (1, 0). w = 1.

a 180 deg: (a), (b), - - - - and - as in Figure 16: shocks are fitted in
unsteady calculation.
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Figure 19. Out-of-phase component of unsteady lift vs interbiade phase angle for pure

bending vibrations of the NACA 0006, -, and fiat-plate, -- , cascades: L(a) M- = 0.7, , = 1; (b) M_9 = 0.8, ,, = 0.5.
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Figure 20. Out-of-phase component of unsteady moment vs interbiade phase angle for pure
torsional blade vibrations of the NACA 0006, -, and flat-plate, - - -,cascades:

(a) M...00  0.7, w =1.5; (b) M-..00  0.8, w=1.0.
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Figure 21. Out-of-phase component of unsteady lift vs interbiade phase angle for pure
bending vibrations of the flat-plate cascade at w = 0.5, 1.0. 1.5 and 2.0: (a) MO = 0.7;

(b) M-00~ = 0.8.
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Figure 22. Out-of-phase component of unsteady lift vs interblade phase angle for pure
bending vibrations of the NACA 0006 cascade at w -- 0.5, 1.0, 1.5 and 2.0:

(a) M-,,. = 0.7; (b) M-00 0.8.
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Figure 23. Out-of-phase component of unsteady moment vs interblade phase angle for pure
torsional vibrations of the fat-plate cascade at w = 0.5, 1.0, 1.5 and 2.0: (a) M-oo = 0.7;

(b) M0o =0.8.
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