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’ SUMMARY

This report describes two new developments in the numerical analysis of linearized
unsteady cascade flows. These have been motivated by the need for an accurate analyt-
ical procedure for predicting the onset of flutter in highly loaded compressor cascades
operating at high subsonic inlet Mach number. In previous work numerical solutions
were determined using a two-step procedure in which a solution was first determined on
a rectilinear-type cascade mesh to determine the unsteady flow over an extended blade-
passage solution domain and then on a polar-type local mesh to resolve the unsteady
flow in high-gradient regions. Unfortunately, with this so-called single-pass approach the
) detailed local analysis could not impact the unsteady solution beyond the region covered
by the local mesh. In addition, the polar local mesh did not allow an accurate modeling
) of unsteady shock phenomena.

Thus, in the present effort a composite solution procedure has been developed in which
the cascade and local mesh equations are solved simultaneously. This procedure allows
the detailed features of the flow within the local mesh region to impact the unsteady

X solution over an entire extended blade passage domain. In addition, a new transfinite
local mesh has been introduced which contains “radial” lines that conform to the shape of
the mean shock locus. Therefore, shock conditions can now be modeled more accurately.
Numerical results are presented to demonstrate the impact of the new composite solution

. procedure and shock-conforming local mesh on unsteady flow predictions. We find that

) shocks have an unexpectedly strong effect on linearized unsteady transonic solutions. Re-

' sults are also presented to illustrate the global unsteady aerodynamic response behavior

of a compressor-type cascade operating at high subsonic inlet Mach numbers and at high
mean incidences.
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1. INTRODUCTION

The development of theoretical analyses to predict unsteady flows in axial-flow tur-
bomachines has been motivated primarily by the need to predict the aeroelastic behavior
of the blading, i.e., blade flutter and forced vibration. For this purpose such analyses
must be capable of predicting the unsteady loads acting on the blades and arising from
various sources of unsteady excitation, i.e., prescribed structural (blade) motions and
external aerodynamic excitations. The latter include variations in total temperature and
total pressure (“entropy and vorticity waves”) at inlet and variations in static pressure
(acoustic waves) at inlet and exit. In particular, for blade flutter applications it is only
necessary to predict the unsteady loads due to prescribed blade motions, while for forced
response applications the unsteady loads due to incident entropic, vortical and acoustic
disturbances are also required.

For the most part, in the unsteady aerodynamic analyses intended for turbomachin-
ery aeroelastic applications the blades of an isolated, usually two-dimensional, cascade
are considered, viscous effects are neglected and unsteady fluctuations are regarded as
sufficiently small so that a linearized treatment of the unsteady flow is justified. Lin-
earizations, which include the effects of realistic design features, such as blade geometry,
mean blade loading and operation at transonic Mach numbers (see Refs. 1 and 2), have
been actively developed over the past decade. Here, the unsteady flow.is regarded as
a small-amplitude harmonic (in time) fluctuation about a fully nonuniform isentropic
and irrotational mean or steady flow. The steady flow is determined as a solution of
the full potential boundary-value problem, and the unsteady flow is governed by linear
equations with variable coefficients which depend on the underlying steady flow. Al-
though analyses based on this type of linearization have received considerable attention
in recent years (c.f. Refs. 3-8), significant advances in the associated numerical solution
procedures are still required before it will be appropriate to consider them for transonic
design applications.

This report describes contributions to the numerical analysis of linearized unsteady
flows around the vibrating blades of compressor-type cascades operating at high subsonic
inlet Mach number and at high mean incidence. The present work builds upon that re-
ported in Refs. 6 and 8 and is motivated by the need to provide an unsteady aerodynamic
analysis for the prediction of subsonic/transonic positive incidence flutter in compressor
blade rows. Subsonic/transonic positive incidence flutter is the most common type of
flutter encountered in the fan and compressor stages of axial-flow turbomachines. It usu-
ally occurs in blading that is highly loaded and operating at high subsonic inlet Mach
number, and it is characterized by an increase in flutter stress as exit to inlet static
pressure ratio is increased. It may occur at part speed in a high-speed fan and at or
near design speed in a low- or high-pressure compressor. Flutter in bending, torsion and
coupled (bending-torsion) blade vibration modes have been observed over a reduced fre-
quency (based on relative inlet flow speed and blade chord) range extending from 0.4 to
1.6. In an unshrouded rotor the blade motions are generally unphased at low amplitudes
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with the possibility of a constant interblade phase angle at larger amplitudes of vibration.
In a shrouded rotor phasing is enforced by part-span mechanical ties (Refs. 9 and 10).

The linearized unsteady aerodynamic analysis developed in Refs. 6 and 8 accounts for
the important effects of blade geometry and mean pressure rise (or fall) across a blade
row (i.e., mean blade loading). Furthermore, this analysis applies to transonic flows and
includes the effects of shocks and their motions in the prediction of unsteady airloads.
The linearized unsteady equations are solved numerically using an implicit least-squares
finite-difference approximation which is applicable on arbitrary grids. Solutions have
been reported for subsonic flows through cascades of NACA 0012 airfoils (Ref. 6) and
for subsonic and transonic flows through vibrating cascades of sharp-edged flat-bottomed
double-circular-arc (DCA) airfoils (Ref. 8). More recently, the analysis has been applied
to representative two-dimensional outer-span sections of an actual fan rotor (Ref. 11), to
a NASA Lewis flutter cascade (Ref. 12) and to four of the nine standard configurations
suggested by T. Fransson and P. Suter (Refs. 13, 14) for theoretical and experimental
investigations on turbomachine cascades (Ref. 15).

Because of the stringent and often conflicting requirements placed on the construction
of a computational mesh for cascade flows, a two-step numerical solution procedure was
adopted in Refs. 6 and 8. Here the basic approach is to first capture large-scale unsteady
phenomena on a rectilinear-type cascade mesh of moderate density and then to determine
detailed phenomena on a polar-type local grid of high density. The cascade mesh covers
an extended blade-passage solution domain, while the local mesh covers and extends well
beyond a region of high velocity gradient, e.g., a region surrounding a rounded blade
leading edge (Ref. 6) or a region containing a shock (Ref. 8). Information determined
by the cascade mesh solution provides the outer boundary-condition information for the
local calculation, and the solution to the unsteady boundary-value problem is taken to
be the local solution in the region covered by the local mesh and the cascade solution
elsewhere. Thus the local solution is essentially a correction to the cascade solution over
the local mesh region since there is no iteration between the two calculations.

The local mesh of Refs. 6 and 8 consists of radial and circumferential lines normal
and roughly parallel respectively to a blade surface. For a discontinuous transonic flow
two of the radial lines are positioned at the mean location of the shock foot to repre-
sent information on the upstream and downstream sides of a shock. Hence, the mean
shock locus is approximated as being normal to the airfoil surface in the local unsteady
calculation.

In the present effort improvements have been made to the numerical solution methods
of Refs. 6 and 8 so that flows around realistic compressor blades operating at high subsonic
inlet Mach number and high mean incidence can be considered. For such applications the
local solution must provide an accurate description of the flow both in the vicinity of a
rounded blade leading edge as well as in the vicinity of a shock. In addition, the global and
local solutions should be coupled so that local unsteady information is allowed to impact
the flow over an entire blade-passage solution domain. Finally, a local mesh topology in
which mesh lines conform closely to the mean shock locus should be employed. These
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considerations are addressed in the present report and demonstrated through a number
of example calculations. In addition, the results of parametric studies are presented to
partially illustrate the effects of mean flow nonuniformities on the unsteady aerodynamic
response to vibrating compressor blades operating at high subsonic inlet Mach number
and at high mean incidence.
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2. PROBLEM DESCRIPTION

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid
non-heat-conducting perfect gas through a two-dimensional cascade of vibrating blades
(see Fig. 1). In the following discussion all physical quantities are dimensionless. Lengths
have been scaled with respect to blade chord, time with respect to the ratio of blade chord
to the upstream free-stream speed, density and velocity with respect to the upstream free-
stream density and velocity, respectively, and pressure with respect to the product of
the upstream free-stream density and the square of the upstream free-stream speed. The
mean or steady-state positions of the blade chord lines coincide with the line segments n =
£tan© + mG, 0 <€ <cos®, m=0,1,2, ..., where { and 1 are Cartesian coordinates
attached to the blade row and pointing in the axial-flow and cascade “circumferential”
directions, respectively, m is a blade number index, © is the cascade stagger angle, and
G is the cascade gap vector which is directed along the n-axis with magnitude equal to
the blade spacing.

The blade motions are of small-amplitude, periodic in time and periodic in the 5-
direction. Thus,

R(X + mG,t) = Re{7s, (X + mG) exp(iwt)} = Re{rs(X)expli(wt + mo))}, X e¢B

(2.1)
where R measures the displacement of a point on a moving blade surface relative to
its mean or steady-state position, X is a position vector relative to the space-fixed £, -
(or z,y-) coordinate axes, { is time, 7 is a complex displacement-amplitude vector with
|7l ~ O(e), w is the frequency of the blade motion, o is the phase angle between the
motions of adjacent blades, Re{ } denotes the real part of { } and B denotes the mean
position of the reference (m = 0) blade surface.

In the absence of blade motion the flows far upstream (§ < £_) and far downstream
(€ > &) from the blade row are assumed to be at most small irrotational steady pertur-
bations of a uniform free stream. In addition, blade shape and orientation relative to the
inlet free-stream direction, the inlet to exit mean static pressure ratio and the amplitude,
frequency and mode of the blade motion are assumed to be such that the flow remains
attached to the blade surfaces. Thus thin vortex sheets or unsteady wakes emanate from
the blade trailing edges and extend downstream. Finally, any shocks that might occur
are assumed to be of weak to moderate strength, have small curvature and terminate in
a continuous region of the flow, i.e., at a sonic point. Because of the first two of these
shock assumptions, changes in the entropy and vorticity of a fluid particle as it passes
through a shock can be regarded as negligible.

The equations governing the fluid motion follow from the integral forms of the mass,
momentum and energy conservation laws and the thermodynamic relations for a perfect
gas. The former provide a coupled set of corresponding nonlinear differential equations
(the Euler equations) in continuous regions of the flow and jump conditions (Rankine-
Hugoniot conditions) at surfaces across which the inviscid flow variables are discontin-
uous, i.e., vortex-sheet wakes and shocks. In continuous regions the energy equation
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can be replaced by the requirement that the entropy following a fluid particle must re-
main constant. However, as a consequence of our assumptions regarding shocks and the
“ steady flow far upstream of the blade row and, since blade motions are the only source
of unsteady excitation, the time dependent flow through the cascade can be regarded as
isentropic and irrotational. In this case, the field equations governing the flow reduce to

.:::0 Py
B
X 2L 4v.(VE) = (2.2)
R I
t’ct
and
e
e P = (M2 PY I = (M A =1~ (= 1M { +((V8)* - 1)/2]} (23)
)
)
) - N -
e where @, p, P and A are the time-dependent velocity potential, density, pressure and
, speed of sound propagation, respectively, M is the Mach number of the undisturbed
'& or steady flow, v is the specific heat ratio of the fluid and the subscript —oo refers to
N the upstream free-stream condition. The admissible solutions to Equations (2.2) and
‘-‘ (2.3), for the present application, are those in which far-field acoustic disturbances either
' attenuate with increasing axial distance from the blade row or propagate away from or
_ parallel to the blade row.
';:',. The foregoing field equations must be supplemented by boundary conditions at mov-
::::: ing blade surfaces, B, and jump conditions at moving blade wakes, W,,, and at moving
.;::: shocks, Sh,,,. Here, the subscript n refers to the nth shock associated with the mth
s blade. In particular, the condition of flow tangency at blade surfaces requires that
i (Vé-=5)-i=0, X on B, . (2.4)
-‘:’:.
o) Also, the fluid pressure and normal velocity component must be continuous across blade
0 wakes and therefore
e [P]=0and [V8]-"=0, XonW,. (2.5)
AR
}i Finally, mass and tangential momentum must be conserved across shocks, i.e.,
’ . R - "
[6(V® — —a—t-)] =0 and [®]=0, X on Shpn (2.6)
: Here the unit vectors i and 7 are normal and tangential, respectively, to a surface and
v directed such that i x ¥ = €, points out from the page. The relative displacement
! vector, R, measures the displacement of a point on a moving surface (blade, wake or
o shock) relative to its mean position (see Fig. 2). Note that, since we have assumed that
- changes in entropy and vorticity across shocks are negligible, the conservation laws, i.e.,
2:' the Rankine-Hugoniot conditions, cannot all be enforced at shock surfaces. Instead, we
::: have followed the usual practice in potential flow calculations and have required only that
)
3
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mass and tangential momentum be conserved. Also, the explicit form given in Equation
(2.6) for the tangential-momentum conservation law follows from the assumption that
shocks terminate at sonic points.

In addition to the foregoing field equations and surface conditions, information on the
uniform inlet and exit flow conditions must be specified. Steady and unsteady departures
from these uniform conditions (e.g., departures due to steady and unsteady pressure
variations) must be determined as part of the time-dependent solution.

The foregoing problem is a formidable one consisting of a nonlinear, time-dependent,
partial differential equation along with conditions imposed on moving blade, shock and
wake surfaces in which the instantaneous locations of shock and wake surfaces must,
in principle, be determined as part of the solution. Although numerical solutions to
this problem are of substantial interest, they would be of limited practical value for
predicting blade flutter because of the substantial expense involved in obtaining the
detailed unsteady response predictions needed. For aeroelastic design applications the
traditional approach has been to examine limiting forms of the foregoing time-dependent
nonlinear equation set with the intention of providing unsteady aerodynamic response
information for small-amplitude unsteady excitations. One such approach, in which the
unsteady flow is regarded as a small perturbation of a fully nonuniform mean flow, is
described below.

Ll Al

]
i

@

2

Yy v
Lol

L% ¢

ey
xIx e

1@

o

AN

2

o

. t b 9 4
T

' s B Pu i ou
J_
X R X

,'.'.‘ ?r‘i‘ﬁyx'- (]
3 xS

:. v N,
[ [N



BRI L vty 30 52 872 ' 4¥2 4% 8%2 8% $%8.8%2 870 0% @' 0V, 0% %5 093 8°9.8%3,0%.8" iR YO X BN R R ORI

3. THE LINEARIZED UNSTEADY AERODYNAMIC FORMULATION

The equations governing small-amplitude time-dependent departures from a nonuni-
form mean flow are determined by first expanding the unsteady flow variables into asymp-
totic series in ¢, where |R| ~ O(€e) << 1. Thus, for example, the unsteady velocity
potential (I>(X ,t) is expressed in the form

&(X,t) =®(X)+ (X, t) +... = 0(X) + Re{p(X)e™'} + ... (3.1)

where &(X ) is the potential of the mean or steady background flow, &()-(‘ 1) ~ O(e) is

the first-order (in €) time-dependent potential and ¢(X ) is its complex amplitude. In
addition, Taylor series expansions, e.g.,

Vé|s = Vd|s+ (R - V)VE|s +... (3.2)

where S and S denote the instantaneous and mean positions, respectively, of a moving
surface, and relations between the unit tangent, 7, and normal, 7, vectors at a point on
a moving surface and the corresponding vectors at the location of this point on the mean
surface are applied to refer information at a moving blade, wake or shock surface to the
mean position of this surface.

The equations governing the steady and the first-order unsteady flows are then ob-
tained by substituting the foregoing expansions into the full time-dependent governing
equations, equating terms of like power in € and neglecting terms of higher than first-
order in e. Note thai if we assume that |V®| = V_, + O(¢) where ‘% is the steady
velocity and the subscript —oo refers to the upstream free-stream condition, the equa-
tions of classical linearized unsteady aerodynamic theory (Ref. 16) are recovered; while
if we assume that |V®| = V_, + O(€), where € << & << 1, we recover the equations of
time-linearized transonic flow theory (Ref. 17). Here, we consider a more general case in
which no restrictions are placed on the departures of the mean flow variables from thei
upstream free-stream values.

3.1 The Steady Background Flow

The equations governing the steady background flow follow after replacing the time-
dependent flow properties, &, P, 5 and A, by their zeroth-order of steady counterparts,
®, P, p, and A, respectively, in Equations (2.2) through (2.6) and setting temporal
detivatives equal to zero. Numerical procedures for determining two-dimensional steady
potential flows through cascades have been developed extensively, particularly for flows
with subsonic inlet and exit Mach numbers (i.e., Mz, < 1) (e.g., see Refs. 18, 19). In
such calculations far-field boundary conditions are imposed at axial stations placed at
finite distances upstream and downstream (i.e., at { = ;) from the blade row.

In general, three of the far-field uniform velocxty components, or their equivalents
(e.g., Mach number Mz, flow angle Q0+, etc. must be prescribed to completely specify
the steady boundary-value problem. The fourth or remaining component can be deter-
mined in terms of the three prescribed using an integral form of the mass conservation
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law. However, conditions are often imposed at blade edges (e.g., a Kutta condition at
sharp trailing edges) in lieu of prescribing an inlet and/or an exit free-stream property. In
addition, the usual practice is to solve the conservative form of the mass-balance equation
throughout the entire fluid domain while allowing for a discontinuity in the velocity po-
tential across arbitrary periodic lines which emanate from the blade trailing-edge points
and extend downstream. Thus, shock-jump conditions are usually not imposed, instead,
shock phenomena are captured through the use of special differencing techniques. Mean
wake, i.e., the downstream stagnation streamlines, and shock locations are determined a
postertori from the resulting steady solution.

3.2 The Linearized Unsteady Problem

It follows from the differential form of the mass conservation law, Equation (2.2), the
Bernoulli relations, Equation (2.3), the corresponding steady equations and the asymp-
totic expansions for the flow variables that the linearized unsteady flow is governed by
the field equations

wp+V-(pVed+pVP) =0 (3.3)
and

D¢

=—-A"? 34
ofd=—4"2E (34)
where p, p and a are the complex amphtudes of the first harmonic unsteady density,
pressure and speed of sound propagation, respectively, and D/Dt = iw + V.V is a mean

flow convective derivative operator. Equations (3.3) and (3.4) can be combined to obtain
a single differential equation, i.e.,

o 2
plp=7 ‘p/P=7

D? D¢
22,4 _
AVe= Dtz Dt
which contains the velocity potential as the only dependent variable.
Conditions on the linearized unsteady perturbation at blade, B,,, wake, W,,, and

shock, Sh,, ,, mean positions are obtained in a similar fagshion. The resulting first-order
flow tangency condition has the form

V4. ii = [iwfs, + (V® - 7)(7- V)5, — (8, - V)VI] - 7 (3.6)

In addition, since the steady velocity and pressure are continuous and have continuous
derivatives across blade wakes, i.e., the downstream stagnation streamlines, the first-order
wake-jump conditions reduce simply to

+ (7= 1)VO=2 + V(VE) . V4/2 (3.5)

[Vé] =0 and [PI% -0 (3.7)

Finally, the conservation laws for mass and tangential momentum yield the following
linearized shock-jump conditions:

(596 + pV8] -7 = [p)(iw+ (V& T)7- V) (Fopn n - 7) + (Fonm - D)7+ V([FIVE - 7) (3.8)




\ ]

and, for a shock that terminates in the fluid X
"

!

4] = —Tshmn - A[VE] - 7 (3.8b) :;;

where we have assumed that shocks terminate at sonic points. Equations (3.8a) and
(3.8b) provide two relations for determining the jump in the unsteady potential, [¢}, at F :
the mean position of a shock and the shock displacement normal to the mean shock locus,

N
She - 1i- These equations can be combined (see Equation (4.7) below) to provide a single b
relation governing the jump in the unsteady potential across a shock. Recall that blade s
mean positions and unsteady motions are prescribed, but that wake and shock mean R
positions and displacements must be determined as part of the steady and unsteady n i
solutions, respectively. Wake motions, however, have no direct impact on the solution F
to the linearized unsteady problem nor, therefore, on the aerodynamic response at the :"’
blade surfaces. )

We have assumed that the potential mean or steady flow is at most a small (i.e., of ..
O(e)) perturbation from a uniform stream both far upstream (¢ < £.) and far down- !::
stream (¢ > £,) from the blade row. Thus, in these regions and to within the first-order 'r::
approximation considered here, the unsteady field equation and wake-jump conditions ,:.l{
can be reduced to the constant coefficient equations of classical linearized theory for st
which analytical solutions can be determined. These solutions (see Refs. 1, 20) de- .,‘
scribe the unsteady potential produced by acoustic disturbances in the far field and the \
vorticity convected along the blade wakes, and they can be matched to a near field nu- :'.:,‘
merical solution. They thus serve to complete the specification of the linearized unsteady )
boundary-value problem. , o
3.3 Aerodynamic Response at a Moving Blade Surface )

The foregoing linearized unsteady boundary-value problem accounts for the effects of
mean blade geometry, mean blade loading and transonic phenomena, including moving ;},
shocks, on the unsteady aerodynamic fluctuations arising from small-amplitude harmonic r&
blade motions. The unsteady equations are linear, time-independent and contain vari-
able coeflicients which depend on a fully nonlinear isentropic and irrotational steady
background flow. Numerical resolutions of the nonlinear steady and the linearized un-
steady problems are required to determine the aerodynamic response information needed T
for aeroelastic applications, i.e., the unsteady pressures and global unsteady airloads act-

ing on the blade surfaces. Because of the cascade geometry and the assumed form of ®
the blade motions (i.e., periodic in n), such resolutions are required only over a single :::
extended blade-passage region. In addition, since analytic far-field solutions can be de- \;
termined, the numerical solution domain can be further restricted to a single extended R
blade-passage region of finite extent as shown in Fig. 3. e
The pressures acting along the instantaneous position of the mth blade surface are ‘,
given by :
N . A
Pg,,(7,t) = Pp(7) + Re{ps(7)e'“*™ )} + 3 psppn(rst) + ... (3.9) ~
n RN,
®
Rt
3
9 ;‘i::
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where 7 is a coordinate measuring distance in the counterclockwise (or 7-) direction along
a blade surface, and the subscripts B and B refer to the mean and instantaneous positions
of the reference blade surface. The first two terms on the right-hand-side of Equation
(3.9) are the steady and first-harmonic unsteady, i.e.,

P8 = —pD¢ +(Fa-V)P, XeB (3.10)

components of the fluid pressure acting at the mth moving blade surface, B,,. The third
term represents the anharmonic contribution to the unsteady surface pressure caused
by the motions of shocks along the surface of the mth blade, and is determined by
analytically continuing the solutions to the steady and the linearized unsteady boundary-
value problems from the mean to the instantaneous shock locations (see Refs. 8, 21, 22).
Thus, for example,
poa(ryt) = — kb p (e _ 1) (rg, — )]
| Re{rsn,}| (3.11)

x ([Ps)sn + (7 — 7su)[0Ps/O7)sn + Re{[pslsne’“*™)} +...) ,

where rgpp = (fsn — 7g) « 7 is the complex amplitude of the relative displacement of
the shock foot in the counterclockwise or 7-direction along the moving blade surface,
U is the unit step function and the subscripts Sh and Sh refer to the instantaneous
and mean shock locations, respectively. It should be noted that although the unsteady
pressure disturbance is not everywhere harmonic, its regions of anharmonicity are small.
Consequently, the first-order global coefficients are harmonic in time (Refs. 23, 24).

If we limit our consideration to the condition usually considered in turbomachinery
aeroelastic calculations wherein each incremental two-dimensional blade section under-
goes a rigid-body motion, i.e.,

fa(X)=h+dx Rp, (3.12)

then the unsteady force and moment are the only global response parameters needed to
analyze the aeroelastic behavior of the bla.dmg In Equation (3.12) A defines the ampli-
tude and direction of blade translations, & = a¢, defines the amplitude and direction of
blade rotations, and Rp is a position vector extending from the mean position of the ref-
erence blade axis of rotation (i.e., from the point Xp,Yp) to points on the mean position
of the reference blade surface. These rigid two-dimensional motions model bending and
torsional vibrations of actual rotor blades.

The linearized unsteady force and moment acting on the reference (m = 0) blade are
given by

F=axF -gé peiidr + 3 ron, 5([Pslis)sn, (3.13)
n
and . .
mp =QPBRP - d7 = Y ren, s(IpB Rp - 78)sha (3.14)
10
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where Fis the steady force, the moment is taken about a moving pitching axis located at
Xp=Xp+ he“"‘ f and mp are the complex amplitudes of the linearized unsteady force
and moment, respectively, and the terms within the summations in Equations (3.13) and

(3.14) account for the concentrated loads due to shock motion and are evaluated at the
shock roots.
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4. NUMERICAL ANALYSIS

A numerical resolution of the linear, variable-coefficient, unsteady, boundary-value
problem is required over a single, extended, blade-passage region of finite extent. The
unsteady differential equation, in this case Equation (3.5), must be solved in continuous
regions of the flow subject to boundary or jump conditions imposed at the mean positions
of the blade, wake and shock surfaces. Blade mean positions are prescribed, and the mean
positions of wake (i.e., the downstream stagnation streamlines) and shock surfaces are
determined as part of the steady solution. Finally, the unsteady near-field numerical
solution must be matched to far-field analytical solutions at finite distances (¢ = £5)
upstream and downstream from the blade row. Since the unsteady numerical model,
used herein, has been described in some detail in Refs. 6, 8 and 25, we will provide only
a brief outline here. In this discussion we will consider, for simplicity, flows in which at
most a single shock occurs in each blade passage. Subsequently, we will describe in some
detail the construction and implementation of a new shock-conforming local mesh and
a new composite solution procedure. These features enhance the accuracy of unsteady
subsonic and transonic flow predictions, particularly the latter, and extend the range of
application of the numerical solution procedure.

Because of the stringent and conflicting requirements placed on a computational mesh
for cascade flows, an embedded mesh solution procedure wes adopted in Refs. 6 and 8
for resolving linearized unsteady cascade flows. In particular a sheared H-type cascade
mesh of moderate density was used to capture large-scale unsteady phenomena over an
extended blade passage solution domain, and a local surface-fitted mesh of high density
was used to resolve high-gradient phenomena such as that which occurs in the vicinity
of a rounded blade leading edge in Ref. 6 or near a shock in Ref. 8. The cascade mesh
covers an extended blade-passage solution domain; the local mesh covers, and extends
well beyond, regions of high velocity gradient. For application to compressor cascades
operating at high mean incidence the local mesh surrounds a blunt blade leading edge,
and for a discontinuous transonic flow, it also contains the shock and the entire supersonic
zone ahead of the shock.

As a result of the present effort two procedures are now available for coupling the
solution obtained on the cascade mesh with that obtained on the local mesh. In the
single-pass approach of Refs. 6 and 8 a solution is obtained first on the cascade mesh
and then on the local mesh. The velocity potential distribution as determined on the
cascade mesh is used to provide outer boundary condition information for the local mesh
calculation. The solution to the unsteady boundary-value problem is then taken to be the
local solution in the region covered by a local mesh and the cascade solution elsewhere.
In this case the local solution is essentially a correction to the cascade solution, and this
local correction does not impact the unsteady solution over the entire extended blade-
passage region. Thus the single-pass approach assumes that errors in the original cascade
mesh solution are confined to the region covered by the local mesh. As we shall see below,
this assumption is a reasonable one for subsonic flow, but leads to erroneous predictions
for a discontinuous transonic flow.
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In the second approach, developed herein, a new composite solution procedure is
employed. Here the discrete equations, written separately for the cascade and local
meshes are coupled implicitly through special interface conditions, resulting in a single
composite system of finite-difference equations that describe the unsteady flow over the
entire solution domain, i.e., the union of the cascade and local-mesh domains. The
resulting composite system of equations is then solved by direct matrix inversion. This
new approach allows the resolution of flow features in one solution domain to influence the
solution outside that domain. A detailed description of this procedure and the associated
mesh-interface coupling conditions will be given below, but first we will review the mesh
nomenclature and the discrete approximations which are common to both the single-pass
and composite solution procedures.

4.1 Calculation Meshes

The cascade mesh (see Fig. 4a) is composed of axial lines ({ = constant) which are
parallel to the blade row and tangential curves which are percentile averages of the upper
and lower boundaries. Downstream of the blade row the tangential mesh lines coincide
with the mean-flow stagnation streamlines. The cascade mesh facilitztes the imposition
of the blade-to-blade conditions, e.g., ¢(X + mG) = ¢(X)e™?, and the matching of the
analytic and numerical unsteady solutions at the far upstream (¢ = £_) and downstream
(¢ = ¢,) boundaries of the extended blade-passage solution domain (Fig. 3). However,
it does not yield an accurate resolution of the flow near rounded blade edges or near
shocks, nor is it well-suited for the accurate implementation of transonic type-dependent
differencing procedures.

Thus, a polar-type local mesh (see Fig. 4b) has been employed in Refs. 6 and 8 to
resolve the flow around a blunt blade leading edge, in the vicinity of a shock and in the
supersonic region adjacent to a blade surface and upstream of the shock. This mesh is
composed of radial and circumferential lines, normal and roughly parallel, respectively,
to the reference blade surface. The mean shock locus is approximated as a line normal
to the mean blade surface which extends out from the point at which the steady shock
impinges on this surface.

Under the present effort a new non-orthogonal surface-fitted local mesh has been
developed. This mesh is constructed so that for a discontinuous transonic flow one mesh
line is aligned with the mean shock locus over the entire length of the shock, thereby
leading to a more accurate representation of shock effects. The metkod of construction
of this mesh will be described in detail below. Both local-meshes contain a pair of
“radial” lines, positioned at the mean shock location and referred to as the upstream
and dowpstream shock mesh lines. These lines serve to represent information on the
upstream and downstream sides of the shock. In the local mesh of Ref. 8 they are placed
at the mean location of the shock foot, while in the new local mesh they coincide with
the mean shock locus. The upstream and downstream shock mesh lines facilitate the
imposition of the unsteady shock-jump conditions.
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4.2 Difference Approximations

Algebraic approximations on both the cascade and local mesh to the various linear
operators, which make up the unsteady boundary-value problem, are obtained using an
implicit, least-squares, interpolation procedure (see Ref. 25). Thus, consider a linear
differential operator £ which operates on a constant by multiplying that constant by ¢°.
An algebraic approximation, L¢, to L¢ at the mesh point Qo can be written in terms
of the values of ¢ at @y and at certain neighboring points, Q,, ... ,Q,,, which together
with o are called a neighbor set. This approximation can be expressed as

M
(£8)o = (L8)o = o+ 3 (6 — ) (4.1)

m=l
where the difference coefficients, 8., are evaluated in terms of a prescribed set of inter-
polating functions and a set of interpolating coefficients. The latter are determined by a
weighted least-squares procedure. The neighbor sets are defined in a “centered” fashion
for interior points and in a one-sided fashion for boundary points as shown in Fig. 4. A
nine point centered or one-sided difference star is usually employed; however, a one-sided
8ix point star is used at the blade surface in the calculation on the new nonorthogonal

local mesh.

When approximating the unsteady field equation, Equation (3.5), one must distin-
guish between regions of subsonic flow where this equation is elliptic and supersonic flow
where it is hyperbolic, and use a differencing scheme which is sensitive to its local char-
acter (see Refs. 26 and 27). Thus, at each point of the discrete domain the field equation
is expressed in canonical form as

Lo¢ = (L1 + L2)¢ (4.2)
where
L1 = A (1 — M¥)pss = M~ (1 — M?)(®}d¢e + 28¢Pyden + 276m) (4.3a)
and
L2¢ = Ann + ... = M7 [D2bge — 20D, 8¢n + Didyy) + ... (4.3b)

Here S and N are local canonical coordinates, i.e., the Cartesian coordinates aligned
with and normal to, respectively, the local steady flow direction, and ¢ and 7 (see Fig.
1) are used as computational coordinates. The principal part of the unsteady differential
equation is shown explicitly in Equation (4.3), and the dots refer to the remaining terms.
The local character of the unsteady differential equation depends on the local steady
Mach number, and therefore it is a simple matter to construct a suitable type-dependent
differencing scheme.

The linear operator £; is always approximated by a central difference expression, but
the difference approximation to the operator £, depends upon the local steady Mach
number and hence, on the local type of the unsteady field equation. Thus we set

£l¢|i.j ~ L1¢|."j ’ M."j <1 (4.4&)
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and
L1dli; = Lidli-r;, Mij>1 (4.4b)

where the indices i and j refer to the axial and tangential lines, respectively, of the cascade
mesh or the the radial and circumferential lines, respectively, of the local mesh, and L, is
a central difference operator. Therefore at supersonic points the difference approximation
to L4 is retarded along the cascade tangential and the local circumferential mesh lines.
The latter are assumed to align closely with the mean flow direction.

Unsteady shock phenomena are captured in the cascade calculation; i.e., the unsteady
differential equation is approximated, using either Equation (4.4b) or Equation (4.4a) at
the field points immediately upstream or downstream, respectively, of the mean shock
location. Shocks are fitted into the local unsteady solution by imposing the jump condi-
tion

[GwE + F)¢] + [Géa]l + [Heé ) =0, (4.5)

which follows after combining Equations (3.8a) and (3.8b), at the shock points on the
downstream shock mesh line. The functions E, F, G and H in Equation (4.5) depend
on the mean flow variables and are given by

E = [p]- M2 p*7e,[0.],

0 . - -
F = =(19.) - B1o.[2.] "2,
T (4.6)
G = pl2.J(1 - M2 51"19])
and
H = o.([p]- Mzoo‘p(z"'ﬂ@"[@n]) =9.E

Equation (4.5) is approximated using one-sided difference expressions (first-order accu-
rate on the upstream or supersonic side and second-order accurate on the downstream or
subsonic side) to evaluate the normal derivatives of the unsteady potential at the shock
mean position. At those points on the downstream shock mesh line at which the steady
flow is continuous (i.e., beyond the end of the shock), the condition [#] = 0 is imposed.
To assist in evaluating the numerical solution procedure, a shock captuting option has
also been included in the local ynsteady calculation. In this case, the condition [¢] =0
is imposed at all mesh points on the downstream shock mesh line.

It is important to note that the unsteady shock-jump condition involves jumps in the
steady or mean-flow derivatives across the shock. In principle, this information should
be available as part of an accurate mean-low solution, with the jumps in the steady
quantities determined as a result of a shock-fitting. However, in practice steady-flow
solvers, including the one used in the present effort, employ shock capturing techniques
which tend to smear the shock and eliminate the discontinuous changes in the flow
quantities. Therefore, care must be taken to restore the required discontinuous steady
information into such solutions. In the present effort steady shock-jump information is