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SECTION 1
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3

! INTRODUCTION

D)
¢

B

-;: This project seeks to apply recently developed parallel Kalman filter o
-, (PKF) methods to actual flight test data obtainable from White Sands Missile

ﬂﬁ Range (WSMR). In this Phase 1 feasibility study, we show that the PKF

HY

methods offer excellent speed up, reliable convergence characteristics and

i; good accuracy compared with the standard Kalman filter (SKF). Parallel
\l
: computing architectures are presented that enable the PKF methods to be d

5 y
~3 implemented at 15 KHz sample rates at 64-bit floating-point precision. y
'Y

2 This project is innovative in that the PKF architectures utilize both
o !

" horizontal and vertical parallelism., A balance of nonlinear (e.g., trigono- )
_:: metric functions, exponentials, squares, square-roots) and linear (e.g., add,

,: subtract, multiply, divide) computing resources rated at nearly 25 double-
= precision MFLOPs (million floating-point operations per second) each is
g recommended. Coupling this with an industry-standard, Vme bus chassis

A

i; provides an open architecture to permit other WSMR contractors to add to the

Sﬁ system.

”: 1.1 BACKGROUND h
‘ :
:: To illustrate the need to develop Kalman filter parallel processing :

architectures, the total number of arithmetic operations that must be

{ computed in the Kalman filter algorithm can be counted and multiplied by
ﬁ. different multiplier and adder speeds. For the Kalman filter algorithm J
j given in Table 1-1, the total number of multiplications, additions and \
1 divisions are given by: (n2 + 2n - 1) additions, (2n2 + 4n + 1) multi-

2 plications, and 1 division. Therefore, the overall executior time needed |
‘ A
: to update the Kalman filter algorithm in Table 1-1 {is: !
b, “
¢ 2 2
‘ t=(n"+20-1)t + (2n" +4n+1)t_ +t (1.

a8 m d )
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TABLE 1-1: STANDARD KALMAN FILTER ALGORITHM* R
oy
-_
|
Kalman* - T,,T T -1 ]
GCain Kk Pk(+)Hk‘HkPk(+)Hk + 1) ?t
?i
Filter ~ - .o 3o ."‘."
Update X () =% () + Ky - Hex () e
= (I - KA x (=) + Ky, -
IO,
Covariance A
Update Pk(+) (1 - Kka) Pk(-) o
®
Measurement - 7
Update Y41 Hk+1 xk(+) g,
L
]
* Note that when scalar measurements are processed, the inverse o
operation reduces to a division operation. NEL
where t, is the addition time, tm is the multiplication time, aund ty :ﬁn
is the division time. For example, if t, = 200 nsec, t, = 200 nsec and Sﬁ,
ty = 10 usec, one pass through the Kalman filter with n = 9 states ng
theoretically requires only 69 usec. This corresponds to 1/69 u-ec = 14.5 N
KHz update rate using state-of-the-art 32-bit floating-point VLSI chips. f‘i
Since most systems deliver about 20% of theoretical peak performance, to ? ﬁ
v
keep up with real-time requirements the theoretical speed needs to be 1/20% a'
= 5x faster than real time. Thus, the Kalman filter equations must be Qf
computed theoretically at Sx 15 KHz = 75 KHz rate to deliver real-time :ij
performance at 15 KHz, Since it is well known that the Kalman filtering ::;
must be performed using floating-point arithmetic, the only viable method ;E
to increase the throughput of the Kalman filter by say 5 to 10 1s with E{‘
.
parallel processing. Optical processing is fast but optical fixed-point :»;
can cause stability problems with the Kalman filter. Nonlinear or extended ;‘t
4
i Kalman filtering is even more computationally demanding. To perform non- i;’
linear filtering in real time at 15 KHz, a 10 to 100 speed up is needed. <oy
o
AN
Note that although much progess has been made in floating-point adders SRR
"
and multipliers, the real problem is fast hardware divide (matrix inversion) :::
is needed Iin the Kalman filter. Performing division in parallel on vector/ ‘
matrix elements is, therefore, required to speed up Kalman filter -i‘:
g
computations. KN
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i 1.2 RESULTS OF THE PHASE I WORK =
"~

Missile Math Model Based on Actual Flight Test Data :f

Unclassified flight test data was provided by White Sands Missile Range u

representative of modern radar tracking systems., The radar data provided g

measurements of six missile trajectories. Using the data, a math model :(

could be developed taking into account the physics of the problem and .

parallel Kalman filter math model requirements. The math model form was h*

4 defined in the Phase I study although the actual model parameters were ) g‘

. not identified. Developing nonlinear models for the data and nonlinear ;?

(or extended) parallel Kalman filtering should be considered under Phase ;;

b 11. The state variables in the math model were range, range rate, altitude .

g and elevation angle. A

Paralle! Kalman Filter Algorithm and Architecture Selection b

s For our Phase I feasibility study, a dual-oprocessor (2) and quad-proces- 4:

sor (4) PKFwereused for the parallel architecture trade-off study on a non- 'x

linear target tracking application. The parallel Kalman filter architecture E;

trade-off parameters included integer versus floating-point arithmetic, E:

memory sizing requirements, data bus speed and input/output subsystem E:<

requirements. :ﬁ,

, g
: It was concluded that (1) at least 32-bit and preferalbe 64~bit floating- '

point arithmetic is needed for accurate tracking, (2) at least 36 (prefera- {:

. bly 48) parallel processing elements capable of 25 MFLOP 32/64~bit linear i‘

| processing speed and 24 MFLOPs at 64-bit nonlinear compute speed, (3) at ﬁf
' least 2 Mbytes of fast RAM is needed to store the trajectory data with :
access times of less than 45 nsec (15 Mbytes of bulk memory with access t,

speeds of 120 nsec was also recommended based on the PKF program code size) k?

and (4) data bus speed of at least 20 Mbytes per second to move data in/out 3;

of the processors, ~

The basis for our conclusions is discussed later in this report. }5

:

Two-Processor Parallel Kalman Filter ‘i

The standard Kalman filter (SKF) and two-processor parallel Kalman ..

filter have been coded and executed for a noisy, time-varying scalar ;:

example. Although this is a simple example, it illustrates that the PKF 31

provides excellent estimates. 2-
3 )

~ "'"" W W LI S Y 2 3% ] ’)‘-’-‘)(‘-
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Nonlinear Extended Two/Four-Processor Parallel Kalman Filter

The nonlinear EKF and two- and four-processor EPKF have been coded for
a realistic example involving gravity, drag and measurement noise, The
two-processor and four-processor EPKF estimates agree quite well with the
original EKF estimates. The EPKF utilized a parallel trapezoidal rule for

integrating the state and covariance updates in the EPKF,

Two/Four-Processor Parallel Trapezoidal Rule

The two- and four-processor parallel trapezoidal rule, ode solver
generally provided the same solution in a given number of iterations

compared with the sequential trapezoidal-rule ode solver, Because each

iteration of the parallel trapezoidal rule can run on two or four
processors simultaneously, the time to solution was reduced almost

linearly with the number of processors.

The floating-point primitives and macros for the PKF have been coded on
the 481. Specifically, quad adds (i.e., four additions), multiplies,
subtracts, divides, etc., have been written and put into PROMs on the 481
cards. The linking of these primitives into macros for say the Kalman

gain update is feasible,

Accuracy, Speed and Implementation Considerations

The accuracy of the parallel Kalman filter degrades somewhat as more
processors are utilized, It is recommended that no more than four to
eight processors be used per target state but distribute the computations
over each state variable, Specifically, a nine-state target model may
use 36 processors (four per state variable) with excellent accuracy and

speed up.

To meet the WSMR target data processing requirements, 25 double-preci-~
sion MFLOPs speed are needed on linear (and nonlinear) computations,
Thus, a balanced system architecture capable of 50 MFLOPs in total is
recommended. A 20 slot Vme bus based tracking system based on a Motorola
68030 master, twelve Systolic-482 cards (using Motorola 68882), one array
processor based on the new Tl SN74ACT8847 and a SCSI disk/streaming tape

subsystem is recommended,
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Benefits Assessment

Our Phase 1 study determined that without parallel processing it is

not possible to process radar data in real time with a Kalman filter based

on today's data sample rates.

cessing (more specifically parallel Kalman filtering) is that it enables

Hence, the major benefit of parallel pro-

real-time radar data processing that could not be performed otherwise.

This translates to guick-look and improved down range safety during missile
flight testing.

More specifically, the major benefits of the proposed Phase I and 11

research include:

[}

A target tracking test facility that can be used in the lab
or in the field for "quick-look" analysis of flight data
improving safety and flight data quality

A parallel processing test facility that provides advanced
state-of-the-art computing resources to solve WSMR target
tracting problems that could not be solved otherwise.

An industry-standard parallel computing environment that
can enable the validation of new parallel Kalman filter
algorithms and architectures as they become available,

1.3 TECHNICAL OBJECTIVES

The major objectives of the proposed Phase I & II research include:

(o]

Ability to track multiple targets at sample rates approaching
15 KHz for real-time applications

Realize between two and three orders of magnitude improvement
(100 to 1000x) in computational speed over existing Kalman-
filter-based tracking systems

Design and optimize application-specific, parallel processing
hardware for real-time target tracking

Fabricate, test and deliver a parallel computing system that
is well suited for implementing parallel Kalman filter
tracking algorithms, FFT computations and target motion
resolution algorithms

Validate the proposed hardware and software by thoroughly
exercising the system with actual missile flight test data
available from WSMR

Deliver the parallel computing test facility and demonstrate
the accuracy and speed benefits of the parallel Kalman filter
methods by solving 2 realistic target tracking application of
strategic interest to WSMR
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The remainder of this report is divided into four sections, Section 2

L4

L 4

.z
"2
P
At

provides an overview of our technical approach including math modeling.and

v
%

5

the parallel Kalman filter algorithms. Section 3 derives parallel computing

A

g

="

architectures which are well suited for fast implementation of the PKF

methods, Section 4 illustrates the performance of the PKF methods by solving

Y

PSS

two realistic test cases with the PKF methods. Cocnclusions and recommenda-

et

'l .I s .I

‘\

tions are given in Section 5.

42§ﬁ{3.'ﬁ.

-
U

”

-
=5

" ". "' .,‘.' " —‘,
<@ » ’:}

‘
2

[ I )

v
L]
>

PR %
Yy
".l

LY
Jﬁb‘ﬂ
o

Ay A
L

o 1)
l*. v

YV ¥
T- ﬁ ﬁ
PV

o

;'ll‘ J)
} LS

T A T ST )
P
L PCPLPES M "‘
> e £ 0 = |
P Tk S PSP .
o O e te Tr B e :

e

a
" 4@

>

bl

e
L

')
% s

J]”l u,
ok

-
.

¢




SECTION 2

TECHNICAL APPROACH

2.1 OVERVIEW OF PHASE 1 & I1 TECHNICAL APPROACH

Our technical approach is shown in Figure 2-1. Our approach is based on
(1) our in-depth understanding of the computational requirements associated
with Kalman filtering and (2) two meetings with Foo Lam, Elwin Nunn and Bob
Green to discuss WSMR missile data processing requirements. Our technical
approach involves the design of new hardware as well as system integration of

off-the-shelf components,

64-Bit Array Processor Design

The new design activity focusses mainly on next generation array
processor technology for 64~bit floating-point FFTs (useful {n precise TMR),
11l-conditioncd linear equation solvers and other linear algebra (matrix/
vector operations) needed by the parallel Kalman filter. Our plan is to
survey newly announced floating-point processors, fast memorv and address
generators from several vendors prior to design in. Since the project is
three years In duration, the technology selected must provide significant

performance gains to be state-cf-the-art three years from now.

Off-the-Shelf Components

As indicated later in this report, twelve Systolic-48] parallel
numeric processors are well matched for the WSMR target tracker. To
ensure maximum performance the 16 MHz 6888ls in the Systolic-481 shall be
upgraded teo 25 MHz 68882s to increase performance by nearly 10x (an order
of magnitude) per 481 board. With twelve Systolic-48]1 cards in the test-
bed, this upgrade represents 12 x 10 = 120x improvement in computational
performance (i1.e., over two orders of magnitude over a single 16 MHz
Motorola 68020/68881 32-bit microprocessor pair. These off-the-shelf
components shall be purchased along with fast memory cards, host inter-

face, Vme bus chassis, etc. Our strategy shall be to delay the purchase
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of components as long as possible (perhaps until the end of the secaond
year) to reduce cost and provide maximum performance within the budget.
Hence, much of the first year effort will be on the 64-bit array processor

design and fitting math models to the WSMR test data.

Math Modeling

Parallel algorithms, such as the parallel maximum likelihood methed,
shall be investigated for fitting math models to the WSMR test data. Like
the PKF methods utilized in Phase 1, parallel trapezoidal rule can be
incorporated into the parallel maximum likelihood method for missile model
parameter identification. Code development for this activity can be
initially done on a Systolic~48l-based parallel computer. Later in the
contract the 68881 chips can be replaced with fast 25 MHz 68882 chips

prior to delivery.

. Parallel Kalman Filtering

The parallel Kalman filter methods shall be employed to process actual
missile flight test data under Phase I1II. The two- and four-processor parallel
Kalman filter methods shall be used to estimate each missile state variable
simultaneously in parallel, 1If a nine-state model is utilized, 9x4 =236

processors shall be employed in the parallel Kalman filter,

The speed of the parallel Kalman filter formulation and parallel
computing testbed shall be compared to a single M68020/68881 in a SUN 3/260
workstation, Micro VAX II and Intel 386/387 in an IBM PS/2 Model 80,

System Validation and Performance Enhancements

The integrity of the WSMR math model, the parallel Kalman filter
algorithms, the parallel architectures, and the parallel computing testbed
shall all be validated under the Phase II work plan. This can be accom-
plished by comparing the numerical results of the parallel formulation
with the numerical results of the standcrd Kalman filter on a sequential
computer. In the limit as the step size approaches zero, the parallel and
sequential methods should give the same results, This shall be confirmed

under Phase I1I.
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2.2 MATH MODEL DEVELOPMENT FROM ACTUAL FLIGHT TEST DATA

2.2.1 Analysis of the Flight Data

Our objective is to determine a math model and its associated
parameters from flgiht test data. The flight data provided by White
Sands Missile Range (WSMR) was unclassified. The flight data covered a
ten minute mission of six missiles launched in December 1987, Although

over three Mbytes of data was provided, it is likely that only a small

portion of the data is required for modeling purposes,

Detrending the Data

The mean (i.e., average) and covariance associated with the flight

REAERLY

data shall be computed. The data can then be detrended by subtracting

t

the mean from the data., The resulting data, although still noisy, can

then be used for modeling.
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Modeliqgggonsiderations

i

The data shall be divided into two parts - a training set and test

Y

:'t.f%

o

»
-

set, The training set data can be selected by computing the information

e
matrix (inverse covariance matrix) along the data. The objective is to Y
N
find a data set that has maximum information (i.e., when the norm of the i:t

information matrix is maximum). The max norm data set is then used to

v
A1

compute a math model of the data. The test set (all data other than the ;:
training set) is used to test the "goodness of fit" of the model to the iy
NIy
training set, e
..
2.2,2 Math Modeling With Neural Networks 'i?J
-, e
._‘_'- 3
Neural-network-based modeling algorithms are self-organizing (or o
adaptive learning) methods, in that the "best" model is constructed from T;?
all possible combinations of sensor measurement data. Thus, no data event o
4
is overlooked. This feature of neural-network-type modeling algorithms b,
BS
along with the fact that all math models can be generated simultaneously -;:f
A,
(in parallel) makes neural-network-type algorithms particularly well '."
suited for real-time missile modeling applications. ~
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To illustrate how a parallel neural-network-type algorithm is used

for math modeling, consider the following example:

In the parallel neural net algorithm, let

Yy = 8g +ax; +ax, + noise i=1,2, ..., n (2.1)
i i

where y, are dependent sensor measurement values which depend

on the independent state values X, and x

i 21
The objective is to find the "best" estimate of ay, &) and a, 1in a
least square sense, To estimate 8y, 8, and 83, the classical "normal"

equations can be solved as follows:

N txl £x2 a, Ly

Ix, Zx; Ix X, a; | = | =¥ (2.2)
- z zxz a :x y

hxz x-lxz 2 2 2

Note that the terms in the normal equations can be solved rapidly using an

array processor to compute the sum-of-products and sum-of-squares operations.

In addition, due to the independence of the data, multiple array processors

can be run in parallel to construct all possible model forms (see Figure 5-1).

The resulting model forms can be compared and the "best" model selected based

on prediction error of F-ratio statistics.,

In Figure 2-2 suppose that

2, = a, + 8%, + a,%, and zy = ¢ + 1%, + €%y (2.3)
Then it can be shown that

y = do + dlz1 + d223 - Alxl + A2x2 + A3x3 (2.4)
where

AO - d0 + aod1 + C0d2 (2.5)

A = ald1 (2.6)
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A, = a,d, + ¢c.d

2 = 84 + 6 d (2.7)

and

Ay = c3d3 (2.8)

Thus, given the least square values of AO’ Al, A2, A,, y can be esti-

mated from the original independent variables X12 %oy and Xq. Note that

using polynomials is ideal for constructing math models in terms of known

physical variables. Also, note that the least squares curve fit can be

performed simultaneously with multiple array processors., The availability

of high performance board-level array processors makes large neural-net-

based estimators feasible.

Note that the neural-network-based modelingﬁalgprithm is not limited

to linear polynomials and in fact can be generalized for quadratic and cubic

polynomials among others. Thus, the neural-net method can be used to con-

struct nonlinear models from test data. These models, however, mav not be

related back to the original measurement variables as easily and, as such,

may have less physical meaning.

= 5 5 Yz
) ! [ ' ] 1
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| 2 | = | 2
h 2 b, 4 —
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|-
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¢ y = Final Mocel

Figure 2-2: Neural Network for Least Squares Estimation of Model Parameters

The information flow in the generalized neural net modeling approach

is {llustrated in Figure 2-3.
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Figure 2-3: Generalized Neural Network for Model Determination

2.2.3 Real-Time Estimation of the Target Measurement Matrix Using Neural
Nets

Now that the neural network technology has been discussed, we shall
see how it can be applied to real-time estimation of the target measure-

ment matrix, H. A bank of neural nets are employed to estimate several

Srfe S Sa O N Y

candidate values of H (the target measurement matrix) im Figure 2-4,
Each neural net is given a precomputed trajectory corresponding to a

candidate target type and measurement values of the actual target.
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i) Each neural net computes a least squares estimate for H, )
P !
" For example, if H 1is a 2x] matrix, then the elements of the H :
v matrix can be found by solving the following set of "normal" equations: r
1S f
f 2 2x2 2x 2x!} ;
b 3 h 4
" 2:- 1k ZL: ‘e 2| | "1 ; 1k 1k :
R = 2.9
2

L < X t

; 2‘: *1k *2k Ek: *2k 12 Zk: *2x 1k

i

Then the least squares estimate of H for the 1th neural net is given by:

o v
b By = OBy By (2.10) ]
‘W ’ &
; ]
This process 1s performed simultaneously (in parallel) by each neural '
3 net. The innovations for each neural network are: .
e :
: z -y, - .11 ’
N e By =y - By %y (2.11) >
b
Taking the norm of each inmnovation e, = szlHiII°° provides a measure }
- of the size of the accumulated estimation error for each neural net. The
o network with the smallest error, e in = min ey provides the best esti- .
& i t
o * *
mate of Hi = H , Once Hi is known, the class of target is classified
K, immediately since it corresponds to one of the precomputed candidate ﬁ
1 *
‘: target trajectories kuHi' Now that H  is known, the actual target )
) trajectory can be determined by solving the following system of linear
y .
’ equations at every time step k.
Y )
\ AT % *T % 3
b (H'H) %X = HHYy (2.12) :
X k k \
r. Estimated Actual \
+ Target Target
Y Trajector Measurements N
* * ~
Thus, the neural net learns H on-line and we use H to estimate the .
‘ ~ )
! target trajectory, Xx,, for the missile.
3 P
) ~
" ;
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2.2.4 Parallel Maximum Likelihood Parameter Identification for Nonlinear
Missile Math Models

The least square parameter estimates obtained with the parallel neural-
net method are biased estimates of the true missile parameters. To remove
the bias and ensure that the parameters are consistent over the full dynamic
range of the missile model, the parallel maximum likelihood (PML) method
and/or the parallel maximum a priori (PMAP) method can be used. The refine-
ment of the nonlinear model parameters can be handled directly or cast as a
nonlinear two-point boundary value problem (NTPBVP). The NTPBVP can be
solved using the parallel shooting method. 1In addition, any unknown states
of the missile model can be reconstructed simultaneously with the aerodyna-
mic parameters using the PML and/or PMAP method. 1In the remainder of this
section, the parallel maximum likelihood (PML) and parallel maximum a
posteriori (PMAP) methods are described in detail.

Parallel Maximum Likelihood Method

The waximum likelihood method of parameter identification has been
proven to be highly successful over the years in aerospace application.
Parallel processing technology can be embedded into the standard maximum
l1ikelihood method to speed up computations. In particular, the parallel
maximum likelihood (PML) method uses (1) parallel numerical methods for
integrating the missile's equations of motion, (2) a parallel Kalman filter
to construct the innovations and (3) parallel optimization methods to select
the best parameter values which minimize the ML performance index, Mathe-
matically, the maximum likelihood method for missile parameter identifica-
tion can be stated as follows:

Consider the following nonlinear missile state and measurement

model:
x(t) = £(x(t),8(t),t) + 6w(t) (2.13)
z(t) = h(z(t),6(t),t) + v(t) (2.14)

where x(t) 1s an n-dimensional state vector, 6(t) {is an r-dimen-
sional vector of unknown parameters, w(t) 1is a p-dimensional process
noise, 2z(t) 1s an m-dimensional measurement vector which has been

corrupted by the measurement noise, v(t).
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D The maximum likelihood parameter estimates are obtained by minimizing P
X the following negative log likelihood function: -~
: o
v & 1 ;
. 3(0) =%y {vB v+ log [B] } (2.15) N
] 1=1
where :.
Y
; v= 2z -h [x(t), e(t), t] (2.16) N
: and h;
B = E[va] is the covariance of the innovations v . f
\ The innovations (v) and the covariance of the innovations (B) are f
: obtained from an extended Kalman filter. The Kalman filter equations can ‘q
{ ,
! be reformulated for parallel processing and the parameter estimates »
can then be updated using the following rule: b
‘ o
} "
; TS UL S X 1Y (2.17) P
o
where Xk is a scalar stepsize parameter chosen to ensure that i
~ a . . s ‘:F
J(vk+1) < J(-k) > B is a vector of gradients of the negative log _&
likelihood function ‘5
3 )
. B T oele=g, (2.18) I
el
and R.k is an approximation to the Hessian of J $
2 ]
a_g ) (2.19) X
i 36 6=6k :ﬂ
+ ‘-
b ~A
Furthermore, it can be shown that -
N 4
- - - - e
=3V - N N S NI (2.20) N,
By 36 36 26 N2
k k k Y
i=1 ]
e
NS
I )
3
N
o
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The major computational savings due to parallel processing is in evaluating o )
. " /
g» V and B in the Kalman filter. Clearly, the complexity of this 252'
5‘
technique requires parallel processing for real-time missile applicatious. [
‘.{'-‘
The stability of the Kalman filter computations also needs to be closely i
monitored (say via an expert system) so that the innovations are proper. \ sk
U0
X
An alternative to the parallel maximum likelihood (PML) method is the .d,“‘
parallel maximum-a-posteriori (FMAP) method. The PMAP method is based on f‘-a
solving nonlinear two-point boundary value problems via the parallel :ii ;
* )
shooting method. Although this method is batch-processing oriented (the ﬁ;ﬁ‘
PML method is recursive and as such, is well suited fc - real-time applica- Lty
tion), the PMAP method can be useful in flight if the batch processing can g& 1§
i)
be performed within the sample time of the measurements, The PMAP method, ﬁfﬁ\
however, will provide superior smoothed parameter estimates compared with ﬁx‘-%
*'N
the PML method. Thus, it may be appropriate to consider the PMAP approach ANty
for off—line, ground-based missile data reduction. EQ.L
"]
]
o
Parallel Maximum-a Posteriori Method Sy
T ‘:l:.:
Consider the nonlinear aircraft state and measurement model represented )i:'
Py
by: N
y . 'J'ﬂ::: ,
x(t) = £(x(t),t) + I(x(t),t) w(t) (2.21) :_.:._,:
N
:&a’-‘
2(t) = h(x(t),t) + v(t) (2.22) ‘e
-'{:\
\J“'d‘ N
where x(t) 1s an n-dimensional augmented state vector which includes the Fyﬁi
DTN
unknown parameters, w(t) is a p-dimensional process noise, and z(t) is -}}f‘
NS
the m-dimensional measurement vector which has been corrupted by the °
measurement noise v(t). f:is
-'\“-'r-
LA
Now let m = the mean of x(t,.) and E{x(t.) xT(t )) = P = the Tt
xo 0 0 O XO v'_--._‘-\.
s,
covariance of x(to). Similarly, let E(wa) = Q = the process noise PN
covariant and e(va) = R= the measurement noise covariance. In addition, JQ*Q'
P oy
suppose z and v have a zero mean in this analysis (if not, a bias term WA
t ). V)
can be idén ified) 3?3?&
Now let 2 = (z(1) ty 212 t) define the accumulated noisy state h:‘
measurements up to and including time t. The problem is to obtain an Y
:-‘J:‘J‘ )
s
l\‘(‘* y
s
e
4;‘;\;[-);{.",:;‘_; ;}:/ " : s '.' Vg -, 5._1 \f..'r\.'-'-;. A ,‘ o \ -. . \,;‘\. ) . . ~ 1_' - } ;r'.r'\:lf'-f ",. ('. ™ " ".ﬂ. '. '-._‘- SOOI



estimate of the augmented state vector x(t) at time t on the basis of
the observations represented by ZS. Our interest will be restricted to

the case when s > t 1in which case x is referred to as a 'smoothed"

t|s
estimate of x(t).

By defining p(x;tlzt) as the a posteriori probability that the
state vector assumes the value % at time t conditioned upon the
measurement data represented by 2,, the maximum-a-posteriori (MAP)

estimate of ; (denoted as ;tlz) is defined by

t]s
~MAP
P(xtls;tlzt) = max p(x;tIZt)

n
X€R

It has been shown that the maximization indicated in Eq. (5.24) is
equivalent to finding the deterministic signal, w(t) tc(to,tf) which

minimizes the functional

senlbiey —o 12 +u (Tl - nam,oll2
0 X5 ox 2 ’ -1

0 to R “(t)

+ e 12
)

)y dt

subject to the dynamic-equality constraint given by
x(t) = £(R(t),t) + T(x(t),t) w(t) Vroe (tg,t) . (2.25)

Note that the SAP estimation problem has been converted to a determi-
nistic optimization problem and that once w(t) d4s found such that equation
(2.24) 1is minimized, equation (2.25) can be integrated to obtain the MAP

estimate of x(t) provided i(to) is known.

To find w(t) wusing the calculus of variations, let the Hamiltonian
be defined as

G
(t)

B =420 - hG©,0 [
R

(t)

+AT(E) (£ (), 1) + T(R(t),t) w(t)) Vtoe (gt (2.26)

f)
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The most direct method for solving this problem would be to initially \'}}
set i(to) to m , integrate Eq. (2.25) forward in time over the inter- ‘Ei’
val (to,tf) and evaluate the performance index (2.24). By considering 5"
changes in the performance index due to changes in §(to), one may use :& o
this information to decide if this procedure should be repeated. Specifi- : W
cally, if the change in J 1is sufficiently small and the gradient of J Eﬁ:
equals zero, then i(to) is accepted. Otherwise, the value of &(to) ?_
should be selected such that the performance index is minimized. To speed ujﬂi\
computations, parallel integration methods can be used to integrated Eq. Egié
(2.25), while the selection of the next value of x(t,) can be made using :itﬂ
an optimization method. 3; '
%

2.3 PARALLEL KALMAN FILTERING BASED ON THE DECOUPLING PRINCIPLE

e XK

To speed up Kalman filter computations, several methods have been ,j&\
considered during the past decade, For linear filtering, the Kalman filter ﬁﬁf-
. -yq !

equations have been coded on an array processor. This method works well 'bk\:

o
»

for large models but not for relatively small models (models with less than

20 state variables). Small models frequently occur in target tracking, ;:iA
ravigation, guidance and control. Hence, there is a need to develop fast Egii
..lman filter methods for small models. In particular, in the context of }:}:
target tracking, each target can be represented by a nine-state model. The E:E(
problem, however, is to estimate the trajectory of multiple targets in real ;!E_
time. Although many target trajectories can be computed in parallel, ulti- Eiéif
mate tracker performance is dependent on the speed in which each target :;3;%
trajectory can be predicted with the Kalman filter. $§:§
To provide a more accurate solution, the Parallel Kalman Filter (PKF) }SL:

is based on the trapezoidal rule of numerical integration rather than Euler :Eii

s

integration which has been used to date. The Parallel Kalman Filter update

vy

-
is then accurate to O(hz) rather than O0(h). The additional accuracy is :i¥t~
important because it is anticipated that the integration step size, b, 55%?
will be large due to the computational complexity of the Kalman filter E?E;
equations, For example, with a sample rate of 100 Hz, the Euler-integra- E:E:
tion-based PKF would be accurate to O0(h) = 0,01, while the trapezoidal- Bt
rule-based PKF would be accurate to O(hz) = 0,0001 (i.e., as accurate as N
the 12-bit sensor data), :’ {

%
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K
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is given by:

K
v
'. -
D)
N 2.3.1 Nonlinear Extended Parallel Kalman Filter Based on the Trapezoidal N,
b Rule ‘
3 ;
K
The trapezoidal rule for integrating a set of ordinary differential
~ equations is given by:
¢
-
J
b Xpepp = % t X h (f(xk,tk) + f(xk+1’tk+l)) (2.27) :
f, where x 1is the solution of the ode, £f(x,t) 1is the right-hand-side (RhS) T
i of the initial value problem and h = tk+1"tk is the integration step ;
0 ot
e size, The trapezoidal rule is an implicit method since X, 4] 8ppears o
b] ‘3
’ implicitly on the RHS of Eq. (2.27). Note that £(x,t) can be, in ‘
;4 general, a nonlinear function or linear such as f(x,t) = Fx(t), To solve
i) Eq. (2.27), a predictor is needed of the form below to estimate L RE 5
; Xeel] = X hf(xk'tk) (2.28) .
e Hence, by combining (2.27) and (2.28) we obtain a predictor-corrector method 3
based on the trapezoidal rule: y
. . P _.C c
4 Predictor: xk+1 X, + hf(xk’tk) (2.29)
) c c
. = L
' Corrector: o] ¥t 2D (f(x 6 f(xk+1, k+1) (2.30) P
| Note that the predictor must be evaluated before the corrector equation can 3
X 25101
. be computed. A parallel predictor-corrector (PPC) method allows the 3
predictor and corrector to be evaluated simulataneously on two processors :
as follows: =
) 2.3,2 Parallel Trapezoidal Rule (Two Processors) f
" .
. P _.,C p N
Predictor: Xt X1 + 2h fk (2.31) o
. c . 4C p c
Corrector: X" X + 4% h (fk + fk—l) (2.32) :
J where fF = [(xP k) and 5 . = f(x. ., ,k-1) :
] k k’ k-1 k-1" * .
) »
: In the special case when fE is the RHS of the Kalman filter state .
- update before a measurement and Gi is the RHS of the covariance update
- before a measurement then the two-processor extended parallel Kalman filter

-~
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Ronlinear Extended Parallel Kalman Filter Based on Trapezoidal Rule (Two u:','
Processors) : NN
S
Time Update: Eﬁ
- -~ ~ 3 Cal s
Predictor: x, (=) = x _,(+4) + 2h £(x, (=) (2.33) ‘o
e
2) - P (2.34) >
Pk+1( ) Pk_1(+) + 2h Gk :':
~ T, Lx
P . - - - - AT
where G Fxy _( NP ( )+Pk—1( )F (xk—l( DI+Q _;  (2.39) ‘:\‘;
Corrector: ;ck(-) =% _(# +%h (Fx (2)) + £0x, _,($))) (2.36) "
- P ¢ .37 \::-'
P(-) =P _ () +%h (G +C ) (2.37) R
c - - L
where Gk-l = F(xk-1(+))Pk—l(+)+Pk~1(+)}-(xk-1(+))+Qk-1 (2.38) :_:_:}_
oL
Measurement Update: .
Y - -~ - _ ~ - (2-39) n--
xk(+) xk( ) + lﬁ((zk hk(xk( D)) :‘:":
LR
. ) s _ (2.40) e
Pk(*) (1 Kka(xk( ) Pk( ) oA
T, - T, - -1 ~ e
- - - * - - - 2.4
K= PL(OH (R () % (B G ()P (DB (R (5)) + R (2.41) )
where e
NS
) BE(x(t))) T
- B e ————— l- ’A
F(x, ;=) TH(T) ) T
x{(t) = x (=) Srid
k-1 ;-—‘ '
) h(x(t,)) i
Hk(xk(-)) - W— ) ,,,:*
x(t,) = X (=) v
k k _.‘.:,’/
In the above PKF, the (-) notation represents a value before a measurement .-
update and the (+) notation is a value after a measurement update, ::-:,
Similarly, the p for predictor corresponds to the (-) notation and the f:-_:
o, "
¢ for corrector value corresponds to the (+) notation. _".‘.:::
-‘I
Nonlinear Extended PKF Based on the Trapezoidal Rule (Four Processors) —
With four processors, the parallel trapezoidal rule is given by: -'_:::f:
2.3.3 Parallel Trapezoidal Rule (Four Processors) ::-:t:
N P , o
Predictor: X k42 Xop-2 * 4 h ka (2.42) A
P o 4 C 3 P L P , s
Xokal " Xok-2 TR Up gy (2.43) R
- - _h P _ o¢P : X
Corrector: x2k x2k-3 3 (3f2k 9f2k-1) (2.44) ::::
c c
- ool ®
*k-1 " ¥ok-3 F 2RIy (2.29) 9
P . P p - p - e
where f2k f(x2k,2k), f2k-1 f(x2k_1,2k 1) and ::_
c c
f2k—2 - f(x2k_2,2k-2) %
-
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y
For the nonlinear EPKF, the time update is given by: ;
i Time Update: -
t . - _ . N p l,
Predictor: X, (=) = X, ,(+) + &b £, (2.46) l‘
] = p g
; Pyag(~) = Pyop(#) + & h GO (2.47) R
- - 3 P P . .
! X1 () = Xgp @) 7By + 5 y) (2.48) g
- 3 P P -
Poa1 ) = Py o + 50 (65 + b ) (2.49)
. R (=) = X IR P
Corrector: ka( ) ka-B( ) 7 (3fZk - 9f2k-1) (2.50)
) e y_h P p -
Por(=) = Po3() = 3 (3G - 96 p) (2.51) )
-~ ~ c *
' Xopo1 () = Ky a(=) + 20 £, (2.52) »
1) c LW
: o1 (=) = Py 3(5) + 20 Gy (2.53) 3
P e f(x.. (-
where ka f(x2k( D)) (2.54) :
P - £(5 _ ;
£y = £y () (2.55) X
‘ ) ™
£y = £(op o (#)) (2.56) ]
P - " - - - " - 7 :
GZk F(x2k( ))sz( ) +P2k( )F(xzk( )+ Q1 (2.57) 2
) T, _ _ el )
Cok-1 = Fl gy (0P 1 () % Pyp ) (DFxgy (0 g
* sz_l (2-58) .-'-
. ) ) g
Cok-2 = FOguag (P p () # Py p (MIF(xyy o, (40 4
+ sz_z (2,59 '_.
Measurement Update: 9
8
; k-1 = X () * Koy (2o = Pgp ) g (00D (2.60 -
i Poke1 ) = (1= Koy 1 Hopey Copey INPy 1 ) (2.61) s
\ T - - T - <
Koke1 = Powe1 I Bgpey (gpeg (9 * gy gy NPy (DM Gy (509 -
-1 ~
* Rok-1) (2.62) :
where '
f(x(t M) "
. 2k-1 -
PO (N = =31, ) 3 A
(1) = X1 ) =
h(x(t » KX
. 2k-1
LR S LR iy o o
2k-1 (t ) = x (-)
, *hak-1? T Xok-l N
. A (]
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N This section discussed the parallel estimation methods that are needed
DY W
b for real-time target tracking. These methods are well suited for implemen- :
= tation on several Systolic-481 parallel numeric processors due to the high
" degree of parallelism associated with each method, The next section
|

M develops parallel architectures that are well matched to the parallel 1

» t
- Kalman filter algorithms to achieve further reductions in computation time. J
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SECTION 3

THE WSMR PARALLEL COMPUTING ARCHITECTURE FOR
KALMAN FILTERING

e

" o™

3.1 PARALLEL KALMAN FILTER ARCHITECTURES BASED ON THE DECOUPLING PRINCIPLE

Now that the systolic computational primitive architectures have been
summarized, we shall develop parallel architectures for the PKF methods.

The computational primitive architectures can be applied to the PKF when

s v ¥

i evaluating the RHS functions (e.g., f(x,t) = Fx(t), etc.). Because, in
general, f(x) can be linear or nonlinear, generalized or systolic-like
architectures must be considered. Hence, the computational primitive

architectures for linear algebra must be expanded to consider nonlineari-

CeRT

ties. With this in mind, generalized systolic-like architectures are

presented in the remainder of this section for implementing the trapezoidal-
rule-based PKF,

~ 3.1.1 PKF Architectures Based on the Trapezoidal Rule (Two Processors)

In the last section, the dual-processor PKF was developed based on the
trapezoidal rule. In particular, Eqs. (2.33) to (2.41) define the method.
L. The systolic architecture for the PKF predictor equations (2.33) and (2.36)
¢ can be most easily derived from the signal flow graph (SFG) of the PKF
i equations. The SFG of this method is shown in Figure 3-1. Note that the
computations behind the computaticnal wavefront can proceed in parallel on
separate processors by forcing the corrector to lag the predictor by one
< time step. As it turns out, this is fundamental to all the PKF methods
K based on the decoupling principle. 1In this diagram, h (the integration

step size) is related to the data sample rate in the filter. For example,
if the sample rate is 100 Hz then the sample period is 1/100 = 0,0] = h =
integration step size, Because the structure of the PKF state update
(predictor and corrector) are essentially the same as the covariance update
) (predictor and corrector) without loss of generality the SFG and systolic-

like architectures for the state update are discussed here.
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/Convu tational Wavefront

4

Figure 3-1: SFG of PKF Based on Trapezoidal Rule

The generalized systolic architecture for implementing the PKF based

on the trapezoidal rule can be derived from the SFG of Figure 3-] (see

Figure 3-2). Figure 3-~2 shows that the PKF is decoupled into two parts:

the predictor processor architecture and corrector processor architecture.

Note that both architectures utilize the traditional inner-product cell and

a set of registers to hold intermediate values of x and f. Note also in b

33 the corrector that the output of one inner-product cell maps directly into )

)) the input of the next inner-product cell. The value h/2 also flows

through from cell to cell,

3.1.2 PKF Architectures Based on the Trapezoidal Rule (Four Processors)

As in the previous section, the systolic-like architecture for the

four-processor PKF method can be derived from its signal flow graph (SFG).
% The SFG for the method (Eqs. (2.46) to (2.59)) 1s shown in Figure 3-3.

Once again Figure 3-3 illustrates that the computations can proceed in

ke sy 2

parallel becuase the computations ahead of the computational wavefront

depend only on data behind the front, The four processors consist of two

processors for the predictor (A and B) and two for the corrector (A and B).

Ll ultafy
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> Figure 3-2: Dual-Processor PKF Architecture Based on the Decoupling Principle K
ﬂ -
) The gains associated with each processor are dependent on the accuracy N
b, requirements and sampling rate through the step size parameter, h, K
‘ w
e The PKF architecture for four processors shown in Figure 3-4a and b is K
b derived from the SFG in Figure 3-3. These parallel architectures can run q
: simultaneously providing a computational speed advantage of 4x. The struc- y
: ture of these PKF architectures are not fundamentally much different than }
5 the two-processor case in that inner-product cells and registers are ;
1 employed. The stack size and number of inner-product cells has increased
. however. The data flow with the cells is identical to the two-processor A
P~ case. ;
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Figure 3-3: SFG of PKF Based on Trapezoidal Rule
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3.2 THE WSMR PARALLEL COMPUTING HARDWARE ARCHITECTURE

The WSMR parallel computing architecture is based on industry-standard

components. It utilizes an open architecture centered around the Vme bus so

%s that the government can add special function cards to the testbed as desired
40 (see Figure 3-5). Twelve Systolic-482 boards provide 48 parallel processing

elements and three Mbytes of fast statis RAM as local memory.

Local processor-to-processor communications can be achieved over the Vme

,i local bus. On-board parallelism can be configured by each Systolic-482's
B i
M software controlled state machine, Global communications between bulk memory, )

the twelve Systolic-482 parallel processing cards and the master CPU are

KX carried out over the Vme bus, Sixteen Mbytes of global memory is provided for

Wy main program memory storage. The master CPU contains one Motorola 68030, one

o 68882 math coprocessor and eight Mbytes of RAM, The master CPU is the program

A task scheduler and manages the PKF algorithm computations. A 25 MFLOP (64-bit

array processor) is also proposed for accurate FFT's, solving ill-conditioned

linear systems of equations and the linear algebra in the Parallel Kalman

Filter.

[\ 3.2.1 64-bit Floatigﬁ;Point Array Processor Hardware

The linear algebra requirements of the WSMR testbed can be most effectively

% met with a single-board Vme bus array processor. At 32-bit precision, 20 MFLOP
)

array processor boards are commonly available for the Vme bus. At 64-bit

. precision, however, very few off-~the-shelf products exist, The VORTEX from

L) -
i. Sky Computers for example performs 64-bit floating-point operations at an eight B
b MFLOP rate. To meet WSMR throughput requirements, at least three (perhaps four) .

of these cards are needed.

As an alternative to the above, we recommend that a next generation 64~hit

Vme bus array processor be designed by Systolic Systems' technical staff, New

Lo chips from Weitek, AMD, TI, IDT, and BIT should all be evaluated for potential

design into the WSMR testbed. We should design in the fastest technology

availlable to ensure an extended life time for the testbed.

The high-speed linear equation solver hardware could be fabricated as a

[ two-board set (see Figure 3-6). Board #1 supports the transfer of data to and

K from the host and a high-speed memory array. The memory array design is multi-~

ported to allow access by multiple computational boards (e.g., Systolic-482

cards via the Vmx port). The mathematical operation sequences are under
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firmware control by board #2, Each board has 64-bit chips, one multiplier and "
one adder. Two real-time assembly language codes shall be written to handle :ﬁ:
data communications between the host and the Systolic array processor/FFT !i
R
cards. ?j
e
~
3.2,2 Memory Considerations :
~) o'
The parallel Kalman filter algorithms and architectures derived earlier ;,1
,
use decoupling to permit the predictor and corrector equations to be computed C?ﬁ
on separate processors., At any given time step k, the state, covariance, 55
and measurements must be stored, as well as intermediate values associated
X
with the linear PKF's matrix/vector calculations. For a typical nine-state ;§a
X
filter, the operation count given earlier indicates that the number of " N
operations in the standard Kalman filter is gg‘
additions: nxn+2n-1= 98 g;
h...'
multiplications: 2n x n + 4n + 1 = 199 ;?i'
0
. b
divisions: 1 e
oA
when n = 9, The data storage requirement is on the order of 8 bytes x ?,*
(98 + 199 + 1) = 2384 bytes of 2 Kbytes for 64-bit precision., If the linear -:;
two-processor PKF is used, it must be initialized by running the standard SKF :::
for the first two tune steps, Then the dual processor PKF can be run at step :?ﬂ
3 (i.e., at k = 3), Hence, the following values of x, ¢, P, =z, K, H o
and R must be stored in memory, ,:f
: . : 5 3 i
State Vector Values: xo(+), x1(+), xo(-), x2(—) $5“
State Transition Matrix Values: ¢0, ¢1, ¢2 !ﬁ
‘I’.I
Covariance Gain Values: Py(4), P1(+), P, (=), P2(—) "
1 "]
l- LY
. l- I..
Kalman Gain Values: Kl’ K2 S
WA
Others: Hl’ HZ’ Rl’ R2 2
N
Once the linear processor PKF is initialized, memory is needed to store the e
T
updated values of x, ¢, P, 2z, H and R, Hence, in general, the overall .:i
memory requirement is: H
®
Memory = (np +1) x (storage requirement of the standard Kalman filter) hfi
where np = the number of parallel processing elements. p;
L
)
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o
A e R A S S O S N S ST S S D e G R At



1,145 1" T T N S P N R QTR W RN AN ity Liptata sttt teta st st At it e i it ey diadtes ':
N
-l
'
o
o
7
Thus, (np +1) x (2 Kbytes) are needed to store the data in the parallel >
filter. With np = 2, this corresponds to 6 Kbytes, With np = 48, this E;
corresponds to approximately 98 Kbytes of RAM. -
3
Note that the above memory sizing is for data only, The PKF program "
zate -
memory has not been sized. Because the two-processor PKF algorithm can be Ef4
coded with less than 1000 lines of code and the compiled version of a 1000
line program requires about 128 Kbytes of RAM to store, a reasonable estimate

of the storage requirement for the linear PKF program would be: E
PKF Program Memory = np x 128 Kbytes gi.
where np = the number of parallel processing elements. With 48 processors, ?J
the program memory is, therefore, estimated to be 48 x 128 Kbytes = 6 Mbytes, :&4
The four-processor PKF would need 2 x 6 Mbytes = 12 Mbytes of RAM, ?t‘
Hense, a parallel processor with 6 Mbytes of bulk memory (i.e., relatively g{
slow DRAM) and 98 bytes of fast RAM (i.e.,, cache memory) should be capable of :t
implementing a 48 processor linear PKF. .:t
Because nonlinear function evaluation generally results in more inter- ﬂﬁ
mediate values than linear matrix/vector operations, the amount of local data i_
storage might be increased by a factor of 2,5x. Hence, 2,5 x 98K = 256K of i:
fast RAM is recommended for nonlinear extended parallel Kalman filter data ;Et
storage. Twelve to sixteen Mbytes of pryogram memory should be sufficient, E\
however, for the nonlinear PKF, X
3.2.3 Parallel Processor Selection EE‘
One method of estimating the computational requirements for the parallel 5::
Kalman filter is to total the number of additions, multiplications and -
divisions needed to complete one cycle of the Kalman filter algorithm., For f&_
example, the simple Kalman filter algorithm defined in Section 1 requires only ;ﬁ
98 additions, 199 multiplications and 1 division per cycle for a nine-state Si
filter. Hence, at 100 cycles per second (i.e., 100 Hz sample rate) the number %,
of arithmetic operations is given by 100 x 298 = 29,800 operations per second. E\
Ideally, a microprocessor capable of 33.1 usec per operation is all that is :i;
needed to implement a nine-state filter. Hence, a single Motorola 68020/68881 ii\
pair can easily handle the computational requirements of the Kalman filter -
assuming 1007 efficiency. Note that 33,6 usec per pass through the filter 3:
corresponds to an update rate of 39,800 samples per second.
e
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Typically, however, only 10 to 30% of peak performance is achieved in $ﬁ'~
practice due to data bus and memory access time restrictions. Therefore, one L,
target may be updated at a 4000 updates-per-second rate, For nonlinear ?E;
filtering typical of target tracking problems, 64-bit precision and the need i&“ﬂ
to compute trigonometric functions for coordinate transformations can slow :ﬁ:d
computaticns down by one or perhaps two orders of magnitude (10x to 100x). ;ﬁs'
Since it is well known that Kalman filtering must be performed using :ﬁ:‘
floating-point arithmetic to avoid stability problems, the only viable method E?E:
to gain back the throughput for nonlinear filtering problems using an extended ;f:;
Kalman filter is with parallel processing. Therefore, to rapidly implement }2?'
the parallel Kalman filter with 32/64-bit floating-point precision, a parallel ;3&
processing system of 48 processors needs a computation rate of 2.52 MFLOPs per bﬁx‘
processor to perform the necessary computations, Using four 25 MHz Motorola Séfi
68882 math coprocessors per board, 2,52 MFLOP performance is readily achieva- ’i;'
able, Hence, with twelve boards it ic feasible to track one target in real t;i‘
time. i:;:f
SN
The general-purpose nature of the Motorola 68020/68882 processors is :tﬂ:
well suited for nonlinear, as well as linear, Kalman filtering. 1In particular _!,,
because trigonometric functions (sin, cos, tan, etc,) and square-roots ;i%’
commonly occur in coordinate transformations associated with lead-angle Sﬁ}
prediction, high speed, general-purpose hardware (such as the Systolic-481 :&nb
parallel numeric processor) is needed to handle the throughput requirements, 7o
o
3.3 THE WSMR PARALLEL COMPUTING SOFTWARE ARCHITECTURE ;;E:
The testbed software architecture can be divided into three major areas: kiﬁi
(1) host-to-testbed communication software, (2) Master Processor embedded §E§:
software and (3) Systolic-482 parallel numeric processor software. This i&;f
section describes our system integration efforts related to implementing the :E::
PKF equations on the testbed, \::’
A
3.3.1 Host-to-Testbed Commu. ication Software E§§:
The testbed is a '"compute engine" for rapidly evaluating nonlinear 53;
functions for the PKF., The testbed does not have its own compiler or linker, -T
Software development for the testbed is performed on a "host-computer" which 2521
is familiar to the user. Since the testbed utilizes the 32-bit Motorola 6803C %R;'
e
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microprocessor, a Motorola development system or host such as a SUN 3/260 work-
station or MacIntosh 11 (which both use the 68020) provides a direct path for
software development for the testbed., If a VAX or IBM computer is used as a
development system for the testbed, a cross compiler is needed to create
native code for the 68020 in the testbed. Since Systolic Systems has a SUN 3

and MacIntosh II, these systems have been used for software development for
the testbed.

Once created, an application such as the PKF code must be downloaded
to the testbed, executed and the results uploaded back to the host., The
performance of this procedure, commonly employed in the industry, depends
on the data transfter link between the host/testbed, An RS-232C serial link
using Motorola S-record format has been created and tested., A high-speed
RS-422 link is being developed. These two approaches provide standard inter-
faces to the testbed and are quite useful, even if an ethernet link is

developed between the host/testbed,

3.3.2 Testbed Master Processor Software

The real-time software in the master processor is responsible for overall
system operation and managing the interactions with the host/user. From a
parallel computing point of view, the master is a task scheduler., It schedules
tasks (i.e., floating-pomt operations, subroutines) to execute on one or more
Systolic-482 cards. As discussed in the next section, tasks tend to involve
quad (four) simultaneous floating-point operations, such as ADD, SUBTRACT,
MULTIPLY, DIVIDE, TRIG, SQUARE-ROOT. Also, linking of tasks into a string
and routing these tasks to available 482 cards is the responsibility of the

master processor,

3.3.3 Systolic-482 Parallel Numeric Processor Software

The assembly language software for the 482 involves self-test diagnostics,
parallel floating-point operations, error detection/correction, and status
information. All communications with the Master and other 482 cards is based
on a "mailbox" structure. Messages are passed to the 482s mailbox from the

master and read by the 482 to determine which tasks to execute on what data.
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3.3.4 Self-Test Diagnostics and Exception Tests

The self-test diagnostics for the Systolic-482 include a memory test, LED
status indicators, bus integrity test, floating-point integrity test and mail-
box activity test. The 482 memory test includes a walking ones and zeroes test
through all 256 Kbytes of its local memory. A mix of instructions with known
answers is used to test the 68020 microprocessor., Light Emitting Diodes (LEDs)
are used for status indicators. The LEDs light each time the 482 executes a
major piece of software correctly indicating the 482 is healthy. Known data is
also passed from EPROM to RAM and compared to verify that the 32-bit-wide data
bus on the 482 is operationally sound. A known set of floating-point numbers
is also used to verify that the four 68882 math coprocessors can accurately
perform floating-point operations reliably. Additionally, known messages are
passed through the 482's mailbox to ensure its integrity. Comprehensive
diagnostic test routines were written to exercise all the above back-to-back
and display the pass/fail results for several thousand passes., This diagnostic

self-test software can be involved by the user to '"check" the testbed at any

time,

3.3.5 Floating-Point Operations

Although the 482 can operate in 32-bit, 64-bit or 80-bit extended preci-
sion, the floating-point test code was written for 64-bit floating-point
operation., The 64-bit test numbers can be entered using the VFILL ("vector
file") routine to allow the user to pick which numbers to test, Since the
answer is known by the user, he can type the answer in and the software can

subtract the numbers and display the error (if any). Thus, this test can be

tailored by the user.

Floating-point operations on the 482 can be computed as singles (on one
68882 math coprocessor) or quads (on four 68882s simultaneously). Singles
are useful for truly "scalar" processing. Quads are desireable for vector
operations that are 'chained together" four elements at a time. Long vectors
(say greater than 32 elements) can be computed on a single 482 card or eight

to twelve cards depending on task loading.

The quad (four) parallel floating-point primitives in the Systolic-482
include:

ALv, SUB, MULT, DIV, NOP, TAN, COS, SIN, SQRT, ...., etc,
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: 3.3.6 Error Detection Code
The 482 has on-board error detection code for the following error ¥

‘ conditions: bus error, address error, illegal instructions, division by zero, y!
4

; and floating-point coprocessor overflow/underflow detection. There error codes '
L]

W) are accessible through the mailbox to the master in event of a fault condition.
. Hence, the master can take appropriate action (e.g., inform user by illuminating
> a special combination of LEDs). 5
Q
\

i 3.3.7 Mailbox Error Codes

; The 482's mailbox scheme has its own set of status conditions. These ;

‘
Y include: mailbox empty, mailbox not empty, no error present in mailbox, and '
° )
:h mailbox unknown (i.e., confused). The status of the mailbox 1s available to

» the testbed's master and each 482 card in the testbed. The issue of multi- )
:' access to the mailbox, deadlock (i.e., system fault when multi-access is :
: attempted) and task priority are topics still under consideration. N
: 2
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SECTION 4

PARALLEL KALMAN FILTER ALGORITHM VALIDATION

To show the effectiveness/payoff of the parallel Kalman filter (PKF)
testbed research, it is important to consider a meaningful target tracking
problem. The test problem should be representative of typical missile appli-
cations and serve as a baseline to measure the benefits/accuracy of the PKF
technology. With this in mind, two test problems are considered. The first
problem (test case #1) is very simple, utilizes time-varying parameters, and
illustrates the speed/accuracy of the PKF method. Test case #2 is more

realistic and more challenging since it involves nonlinearities and exponen-

tials.

4.1 TEST CASE #1

Test case #1 is based on the following state and measurement model:
x(k+l) = ¢ (k+l,k) x(k) + T(k+l,k) w(k) (4.1)
z(k+1) = H(k+l) x(k+1) + v(k+]) (6.2)

where x 1s the state of the target, ¢ is the state transition matrix,

2z are measurements and w and v are noise terms.

For the purpose of test case #1, the model parameters were selected

as follows:

¢ (k+1,k) = exp (~k*0,001), T(k+l,k) = 1, H(k+l) =1 (4.3)
The noise terms

w(k) ~ N(0,Q(k)) and  v(k+l) ~ N(O,R(k+l) (4.4)

had zero mean and covarience Q(k) and R(k+l), respectively.
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in this case, the PKF equations are given by:

procedure new PKF (i:integer);

begin
H [i+1]: = 1;
A [i+l,i): = exp (-i%0.001):
A [i+2,i+1]: = exp (- {i+1)+*0.001);
B [i+1,i): = 1;
B [i+2,i+1): = 1
{ predictor ] . o
X [i+42,3+1): = A [i+2,3i+1] * A (i+1,3i) * X [i,3): ’ . . '
P [i+2,i+1): = & [i+2,i+1) * A [i+1,i) = P [i.,3] * & [1*1.}] ~ A [}*2.;+1]
+ A [i+2,i+1] * B [i+1,i} = Q [i] *~ B [3+1,i) * A [i42,3i+1)
+ B [i+2,i+1] = Q [i+1] * B fit2,3141):
{ Kalman gain )} ' ‘ '
K [4+1]): = (p [i+1,i) * H [i+1]) / ((H {i+1) * P [i+1.,i) * B [i+1]) + R
(i41));

{ corrector } . . .
% [i+l,i+1): = X [i+1.,i) + K [i+1] * (2 [3i+1]) - (H [i+1) = X l1i+1,3))):

P {i+1,i+1): ; (1 - (X [i+1) = B [i+1))) » P [3+1.i):
end; | new PKF }

Similarly, the SKF equations, when coded, appear as follows:

procedure SKF (i: integer);

begin

A la+l,i): = exp (-i%0.001):

B [i+1,i): = 1;

E [i+1] =1

X [J:.*l,}']: =2 [i+1,i] = x [ i,3i);

P [i+l.i}: .= & [i+1,i] = P [i.3) ~ A [i+1,i) - B [i+31,i) » 0 [4i]
B [i=+i,i};

K [i+1): = P (- [i+l,i)* H [i+1))/ ({H{i+1] = P [i+l,i} = H

(i+1))+ R [i+1)):

X [i+1,3+2):= X [i+1,3i) + K [i+1) = (2 [i+1] - (H [i+1) = A [i~2.i) *
X [1+1,1))):

P [i+l.i+1]:= (1 - (K [i+1]) * E [i+1])) = P [i+1.i];
end; { SKF )

The results for this time~varying case are shown in Table 4-l. The results
indicate that the PKF equations are well behaved and exhibit similar convergence
characteristics as the SKF. The optimal solution can be obtained via one pass

through the SKF equations once the PKF converges.

Since the computer simulations on these test casees were encouraging, the four-
processor PKF equations were coded (see below) with similar results.
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TABLE 4-1 COMPARISON OF THE SKF AND PKF ESTIMATES OF AN

Sequential Kalman Filter

£{0.0}:10.000000

Pl1.1}):

Pl2.2):

P{3.3):

Pl{4.4]:

P{5,5]):

Pi6,6):

P[7.7):

pi{e.8]:

P{s,9):
P{10,10):
P{11,11]:
P(12,12):
P[13,13):
P{14,14):
P{15,15]:
P[16,16]:
P17.17):
P[16,18):
P{15,19]:
P{20C,20):
Pi21,21):
p{22.22]:
P(23,23]:
P(24,24):
P[25,25):
P[26,26]:
P[27,27):
P(28,28):
P{29,29):
P{30,30}:

Parallel Kalman Filter
{0,0): 10.000000
Pi1.13:
P{2,2):
P[3.3]):
Pl4.,4):
P(S5,5]:
P(6.6]:
P[7.7):
P{6,8]):
P[9.9]:
P[10,10):
P[11,11):
P[12,12]:
P[13,13}):
Pl14,14):
P{15.15):
Pl16,16]:
P{17,17]:
P{16,18):
P{19,19]:
P(20,20]:
P{21,21):
Pi22,22}):
P(23,23]:
Pl24,24):
P[25,25]:
P{26,26]:
p{27,27}:
P{28,28):
P{29,29):
P{30,30]:

R IR T I - -
W e i,

QOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

.099020
.066535
.062444
.061842
.061737
.061704
.061681
.061660
.061639
.061618
.061597
.061576
.061556
.061535
.061514
.061493
.061473
.061452
.061432
.061411
.061390
.061370
.0613459
.061329
.061308
.061288
.061268
.061247
.061227
.061207

0.099010
0.099027
0.074876
0.074839
0.073193
0.073155
0.073003
0.072965
0.072919
0.072881
0.072B42
0.072804
0.072767
0.072729
0.072691
0.072653
0.072616
0.072578
0.072540
0.072503
0.072465
0.072428
0.072390
0.072353
0.072315
0.072278
0.072240
0.072203
0.072166
0.072128

. -
P

1.000000
1.000001
0.999666
0.998501
0.996434
0.993419
0.9689442
0.984501
0.978609
0.971781
0.964037
0.955398
0.945891
0.935542
0.924381
0.912441
0.899755
0.886358
0.87228%
0.857584
0.842285
0.826432
0.810067
0.793232
0.775971
0.758326
0.740342
0.722063
0.703530
0.684789
0.665880

1.000000
1.000002
0.999003
0.997008
0.994022
0.990055
0.985118
0.979226
0.972396
0.964649
0.956007
0.946496
0.936143
0.924977
0.913031
0.900339
0.886935
0.872858
0.858146
0.842839
0.826977
0.810603
0.793759
0.775488
0.758833
0.740839
0.722549
0.704006
0.685253
0.666333
0.647288

o~
to

210):
2{1}:
2(2]:
2[3):
2[4):
2(5):
Z({6):
217
2[8):
z2(9):
Z2(10):
2{11):
Z[12):
2113):
Z[(14):
2(15):
2[16):
Z{17}:
2118) :
2119):
2120):
2{21):
2022):
Z{23):
2124} :
Z[25]):
2[26):
2127):
2{28):
z(29):
2[30):

21(0}):
Z[1}):
2(2):
2(3]:
Z{4}):
2(5):
216):
YANAN
218):
219):

2(10):
Z[11]:
2112):
2113):
2[14):
2[15):
2116):
2[{17):
2(18]:
Z[19):
2120):
2{21}):
2122} :
2[23):
2[24):
2{25):
2(26):
2127 :
2[28):
Z(29):
2[30):

0

]
o
]
]
0
0
o]
[
0
0
0
0
0
o]
0
0
0
0
0
0
0
0
0

0
]
0
0
o
0

EXPONENTIALLY DECAYING TARGET TRAJECTORY

1.000000
1.000001
0.999002
0.997007
0.994022
0.990055
0.985118
0.979226
0.972396
0.964649
0.956007
0.946496
0.936142
0.924977
0.
0
0
0
[
o]
0
0
0
0
o]
]
0
0
]
0

913031

.900339
.986935
.872858
.85814¢6
.842839
.B26877
.810603
.793759
.776488
.758833
.740839
.722549
.704005
.685253
.666333
.647287

1.000000
1.

000002
999003
997008
994023
990056
985119
979227
972397
964650
956008
956497

.936143

924978
913032

.900340
.986935

872859

.858147
.842840
.826978
.810504
.793760
.776489
.758834
.740840
.722550
.704006
.68525¢4
.666334
.647289
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) 4,2 TEST CASE #2

Consider the problem of estimating the position of an object (missile)
:ﬂ from angle-only (or range) measuremements, The geometry of this target
t
tracking application is illustrated in Figure 4-1., Typical parameter

3 values for this exercise are given in Table 4-2,

v d
R I Missile

/ T

) RATAR //

R O v
4

A AT, ;‘!
L]
"

Figure 4-]1 Geometry of Test Case #1

- In Figure 4-1, X,, Y, Tepresent the target position in X-Y
s .
- coordinates and Y. represents the sensor position.
: The target range is given by
<
- \
> 2 2
-, X, + (v, - .
_. z 0= (xp+ 5= ¥)7) (4.5)
.
;' With angle-only measurements the line-of-sight angle, &, can be estizmatel
as follows:
&
v v, -
=1{" °s

Y € = tan (4.6)
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TABLE 4-2

PARAMETER VALUES F¥OR TEST CASE #1

o = 3.4 % 1072 1b sec?/ft”

k= 22,000 ft
£~ N(2000 1b/£c2, 2.5 x 107 1b2/2e%)
2 = 0.05 1b/5c°

= 500 ft2

2

T

L .92
P, = 2 x 10 ft”/sec

(o]
Sl | :
Ao

,)‘

5 2 4
= 2,5 x 107 1b"/ft

5

F 7 S ]
e
-

s

P, = 50 ft2

y ]

P
»
Id
- .

PR
& 5,
7

{I
P

-+
v,

L%

Pss = 50 ft
0

I'd
-

3 x 10° ft

»
=

%

xl(O)

‘-t{

2’y ‘o2
Vs
I"‘

1]

L9
-
v u

x,(0) = 2 x 10% £t

o

2

x5(0) = 1/2 x 107 £:2/1b

]
LY

vy L b
»

o

5 x 103 ft

xA(O)

L}
2

AR

()
L3
.
.

oy N

3

15(0) = 2 x 107 ft

+

P
5, 2,
]

% % X W Y 7y
~

Lo

2,
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The target's motion is modeled as a falling body in state variable form as:

Xy =V, %, =-Y., X3-= 1/8, X, = 0, x, =x.,

x, =0, Xg=y, xg= 0 (4.7)
where B8 is the so-called ballistic coefficient of the target and Y. is the
targer's height above the earth.

The equations of motion for the target are:

*1 %2 2

. o X,

X, g -d d = 2, (4.8)

}-( = 0

3 -x./k
X 0 p =0 e Lo
4 °s (4.9)
X, 0
;/.-‘ -‘~-

X £60)

where d 1s drage deceleration, g is acceleration of gravity, o 1s atzes-
sea level) and ko is a

pheric density (with G the atmospheric density at

The differential equation of velocity, is nonlinear

decay constant, X5,

through the dependence of drag on velocity, air density and the ballistic

coefficient, 8.
Initial values of the state variables are assumed to have covariance

matrix of the from

PO - diag (Pll s pz—) [ 933 [y P[‘A ’ pss ) (4-10)
o “o o o o
Estimating all the state variables may be solved using the following
extended Kalman filter:
Predictor:
x(t) & £f(x(t)) X(to) = (4.11)
P(t) = F(X())P(t) + P(OFT(x(1)) + Q(t), Pty = P, (4.12)
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Corrector:
X (4) = (=) + K (2, = b G (D)) (4.13)
Py (#) = (I - KH (3 ()P, (=) (4.14)
K, = B, (HLG (2) * (B (h, (5P (=) BL(x, () + R)™ (4.15)
where
F(r)) = 2L
x(t) = ()
. Bh(x(tk))
BN = =5y

x(t,) = %(-=)

The nonlinear differential equations were integrated using the trape-
zoidal rule. The partial derivatives were computed using a finite differ-
ence method., The model uncertainty matrix, Q, and the measurement noise

covariance, R, were given by:
Q = diag (0.2, 0.2, 0.2, 0.2, 0.2) (4.16)

R = diag (0.2, 0.2) (4,17,

4,3 EVALUVATING THE PERFORMANCE OF THE PARALLEL KALMAN FILTER BASED ON THE
PARALLEL TRAPEZOIDAL RULE

After careful inspection of the nonlinear extended parallel Kalman
filter (EPKF) formulation, it is clear that the performance of the filter
is closely related to the accuracy and speed of the numerical method used
for propagating the state and covariance time updates, The trapezoidal
rule discussed in the previous section is accurate to O(hz). For h = 0.0l
four-digit accuracy is attainable, With h = 0,001, six-digit accuracy
results, Automatic step size (h) selection based on a prespecified accuracy
requirement (e.g., norm of the local truncation less than 0.000001) can be
achieved using a variable step size integration scheme. Time to solution
can also be used a a criteria for selecting h. Since it is anticipated
that computation time is key, the parallel methods are evaluated with a
relatively large step size (h = 0,01 for each trapezoidal rule being

evaluated).
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i 4,3.1 Parallel Solution of Test Case #1

ol

"¢ The target's equations of motion were used to demonstrate the numeri-

. cal properties of the parallel trapezoidal rule. The initial conditions

% and physical problem parameters were described., The results of propagating

jh the target altitude (xl) and target velocity (x2) with the parallel

&’ trapezoidal methods are shown in Tables 4-3 and 4-4,

R The results *n Tables 4-3 and 4-4 are based on a fixed step size of

:: h = 0.0l., The data indicates that the absolute error between the sequen- ]

,S tial trapezoidal rule and the parallel trapezoidal rule is relatively small )

N ( 0.1%). However, the absolute error for the target velacity is growing '

" with time. Although at first glance this may appear unacceptahle, a more .
. detailed examination indicates that the change in the percent error norme-

M lized by the change in the variable being integrated is only 1.15x 10—77 )

;V per ft for the target altitude and 4.4 X 10-5% per ft/sec for the target i
! velocity. Since the flight time for this application is only 15 to 20 o
i cconds, the maximum absolute error on impact for the target altitude is

fE’ 0.11% and for the target velocity 0.55%. If not to improve accuracy, a f

‘f smaller step size (say h = 0.001) {is worth evaluating.

(s The results in Tables 4-5 and 4-6 are based on a fixed step size of

}2 h = 0.001. Note that in each case the parallel trapezoidal methods are as :

f: accurate as the standard sequential trapezoidal rule, Note that the worst- !

* case maximum error is much less than 0.01%. Thus, with a small step size, )

;a the parallel methods are equally good with the sequential methods only 400% :
3ot faster to compute per state equation. A trade off between speed and .

»Vf ultimate accuracy must be made. i

: 4.3.2 Summary

;E The results of this section indicate that as more processing elements

.; are used to speed up the PKF state (and covariance) propagation, the

e accuracy of the parallel solution can degrade compared with satndard :

:{ sequential methods. Thus, because the EPKF utilizes the parallel trape-

‘? zoidal rule to integrate the state and covariance equations, the EPKF ;
‘ solution should be less accurate compared with the EKF, The execution ‘
Y speed of the EPKF should improve linearly with the number of processors. N
;.
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Table 4-3  State Equation Integration Comparing the Trapezoidal Ru}e g
and the 284 Processor Parallel Trapezoidal Rule (h=0.0l A
!
Trapezoidal Rule Parallel Trapezoidal Rule -
B
1 Processor 2 Processors 4 Processors b
M : y
: 4
Time Target Target Target Absolute b
(sec) Altitude Altitude Altitude Maximum =
(ft) (ft) (fr) Error -4
[ 3
f ~ 3
4 Y%
ks 0.500 290001.923 290001.923 290001.923 0.07% Y
' 1.000 280012.071 280012.070 280211.725 0.07% .
r 1.500 270039.727 270039.726 270238.905 0.07% '
2.000 260099.339 260099.339 260297.685 0.07% ~
: 2.500 250213.191 250213.192 250410.158 0.08% o
¥ 3.000 240415.165 240415.165 240609.927 0.08% W
& 3.500 230755.644 230755.636 230946.984 0.08% f
+ 4.000 221307.016 221306.981 221493.216 0.08% =3
i 4.500 212168.020 212167.913 212346.788 0.08% s
5.2¢0 203463.303 203463.031 203631 .846 0.08% -
[\’ : '
: Table 4-4 State Equation Integration Comparing the Trapezoidal ®ule l
‘ and the 284 Processor Parallel Trapezoidal Rule (h=0.u.) }
;
Trapezoidal Rule Parallel Trapezoidal Rule
i 2
. 1 Processor 2 Processors 4 Processors i
\ Time Target Target Target Absolute .
. (sec) Velocity Velocity Velocity Max imum
‘. (ft/sec) (ft/sec) (ft/sec) Error -
> ~
/ N
. 0.500 19990.367 1999n.369 19990.690 0.0016% N
¥ 1.000 19966.004 19966.006 19966.692 0.0034% .
. 1.500 19918.640 19918.642 19919.896 0.0063%
\ 2.000 19835.603 19835.606 19837.737 0.0107% N
: 2.500 19697.851 19697.859 19701.325 0.0176% '
0 3.000 19477.635 19477 .654 19483.112 0.0281% :
) 3.500 19136.462 19136.509 19144 .840 0.0437% .
o) 4.000 18625.119 18625.229 18637.499 0.0665% R
, 4.500 17888.965 17889.210 17906.486 0.0979%
3 5.000 16882.258 16882.759 16905.719 0.1389%
h 4 8 : ¢
2 3
a: ’,
) K
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Table 4-5 State Equation Integration Comparing the Trapezoidal Rule
and the 2&4 Processor Parallel Trapezoidal Rule (h=0.001)
Trapezoidéfrﬁaigv Parallel Trapezoidal Rule
1 Processor 2 Processors 4 Processors

Time Target Target Target

(sec) Altitude Altitude Altitude
(fer) (ft) (ft)

0.500 290001.924 290001.924 290021.914

1.000 280012.072 280012.072 280032.038

1.500 270039.728 270039.728 270059.647

2.000 260099.341 260099.341 260119.176

2.500 250213.192 250213.192 250232.890

3.000 240415.163 240415.163 240434.64)

3.500 230755.630 230755.630 230774.766

4.000 221306.970 221306.970 221325.595

4.500 212167.895 212167.895 212185.784

5.000 203463.006 203463.006 203479.889

Table 4-6 State Equation Integration Comparing the Trapezoidal Rule

and the 284 Processor Parallel Trapezoidal (h=0.001)

Trapezoidal Rule

Parallel Trapezoidal Rule

1 Processor

2 Processors

4 Processors

Time Target Target Target
(sec) Velocity Velocity Velocity
(ft/sec) (ft/sec) (ft/sec)
0.500 19990.367 19990.367 19990.399
1.000 19966.005 19966.005 . 19966.073
1.500 19918.641 19918.642 19918.767
2.000 19835.606 19835.606 19835.819
2.500 19697.860 19697.860 19698.207
3.000 19477 .656 19477.656 19478.203
3.500 19136.512 19136.512 19137.347
4.000 18625.234 18625.234 18626.463
4.500 17889.215 17889.215 17890.946
5.000 16882.764 16882.764 16885.064
49
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Table 4~7 2 Processor Parallel Trapezoidal Rule L ®
Sl
doudie x1plSie@dl , xZplS10] , xiclSiddl C“?‘
s XZciSi1@el , rheplSiees , rhocolSl@Rs jévx
couble rho, beta, X3, 5, X4, x5, C, 0 3 )
goubie xi , xZ 4 Grag ., X 4krho ,vrho@ , stime ; ®
int i, nstep 4 nprant ;};
(S
W W,
# iriclurme (math,. h :-:.'r_
# inclure(stcic. D) oA
NS

ii{.
h
]

maair, () .
! B
>,
FILE #tculi _,:_F:
toutl = Topern( "tcemcl.outr" , "w" ) _5}.
ROUN

/e%% xlp denctes x1 pred. xilc denctes x1 corrector #«#/ .9.
BAG)
>

x1pl@3 = x1 ;3 xicl@] = x1 § x2cl@1 = x& ; xZpl@l = x= ; U“k

rhcop @l = rho@eexp( —x1pl@i/s/krhc) 3 rhoci@l = rho@erexp( —x1cl@I/ krno ) ﬁ& )

x1plil = x1 ; rhoplll = rho@+exp( ~xiplll/krhc ) &ﬁ \
xcplil = xo YN

4
il

for( i =1 3 id(=ristep ; ++1 ){

14
«

.

.. f’-'. N
v

v v
)

/e#% precictor eguaticrns sxs/ iﬁ?
e

rhcoplil] = rhod#exp( —x1pli1l/krhe ) 3 RS
rhocli-i5 = rho@rexp( —xicii—1J/krho ) O
crag = rnoplilexZplilexdplal/se/xE g s
- .- . . . s
Nipli+ll = xicli-1] + c.#h*( —-x2plil ) 3 31*
XEpla+1l = x2cli-1] + S.#h+( g - rhoplisexZplili#xZplal/e/x3 ) I
:.\-‘_

/enn ccorrector eguations ##%/ t!-
_\.r_‘_.:

x1clil = xicli-13 + .S#he( —xZplil - x&cli-11 ) ; RS
xecli1l = xZcl1-13 + heg - (h/4.)%( rhoplii*xZplile#xZplii/x3 noNe
+ rhocli-13#x2cli-13%x2cli-13/x3 ) ; Qﬁ;

stime = 1%

rprint = rnstep/10 ;

if( (i/rnprint)ernprint == 1 ){

~ Cief
fprirntf(tcutl, "\n\n time = %7, 3Ff sec xi = %7.37 ft x& = %7.3f ft/sec " ﬁ\_
s8time , xi1cl1] , xZclild ) ; e
N
Printf("\ri\n time = X7.3f sec x! = X7.3f ft x& = %7.3f ft/sec " A
. Stame , xlcliJd , x2clil ) 3 NP
) ®
Nl
3 :)::i
fclose(toutl) ; S*:
N
Sy
3 50 .8
N
-
NS

P Y '\'\* " ‘¥ \q.:i- ’\.l.

[ l.
200

‘-‘“.\ "-"‘- 'L-'
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Table 4-8 4 Processor Parallel Trapezoidal Rule

o\ .
R} ¢
{ b
A

W

4

| couble rhao, beta, x3, gy x4, xS5,6, 0 ;

1o dauble xi , x& 4 drag ;

o gouble x , krhe , vho? 4, stime ; ’
K double xipl(Si@@l) , x&plSiQ0Qi , xi1clSiQ0] .

sy xccl8i2@3 , rhopiSidl , rhoclSiodd ;

s

int 1, 1, m, nstep , nprint ;

#irciuace (matn.n)
#inciuce(stcic.h>

DROLTLs

main() *
{
‘h
»
? FIiLE etouts '
@ tcutZ = fopern( "tdemcZ.out" , “w" ) 3
/ene x1p genctes x1 prec. xlc deriotes x1 corrector ##x/ :
;2 /##% iratial corditions need to be specified are: .
o x1pl © - 4 3 xZpl @ - 41 xicl @ - 2 5 x2cl @ - & 5 wex/ K
- x1pIlR) = x1 3 x1cl@] = x1 3 x2clRl = %2 §; xepl@) = %2 ;3 x&plll] = xe& ;
[ xiplid = x3 3 »x1pl2) = x1 ;3 x2plEl = xc ; x2pled = x& :
- x1pl3] = x1 ;3 xi1plad = w1 3 xZpl3] = x& 3 xZplad = x= ; 2
o xicl1l = x1 ; xlcl2] = x1 5 xgclll = %2 § x2clel = x& ; N
.. rhopli@l = rhol@*exp( ~xi1pl@3/krha) ;3 rhaci@] = rhol#*exp( =xic[@1/krhe ) 3 R
rhoplll = rho@*exp( —x1pill/krhc) ; rhoclill = rho@etexp( —xiclid/krhec ) 3
. rhcplicl = rho@eexp( -xipl&3/krha) §; rhoclZl = rholeexp( -xiclZl/«rhc ) 3
o rhopiii = rhol@*exp( ~xi1pl3i/wrhc) ; :
X rhopiéal = rho@+*exp( =xi1pl4l/krho) 3 .
e rhoplel = rno@eexp( ~xiplei/krhe )
‘; rhcociil = rhc@*exp( =xlclll/=«rha ) 3
N )
x /#%% rur, oriiy precictor equaticrns for i1 = i to cotain bertter iritial
- estimate for x1pl31 , wiplad | xepl3di , x2plad #wx/ -
. x1pi42 = x1c[@5 + 4.#ha( — xZpl&i ) ; :
N xZplal = x2cl@l + 4.%hx( g - rhoplele#xZplalexZplei’ze/x2 ) K
., A
x1pl3) = xicl@] + 1.5#h#( -x2plal - x&Zpl1d ) ; .
o x2pl(3] = x2cl(@) + (.S«hs( g :
o’ —rheplelaxZplelexzpll/a/x3 + g - N
o rhcpl1)exZpli1dex2pll1l/2/ %32 ) 3 ~
d
) rhopil3l = rhol#exp(=x1pli31/krho ) 3
rhcplé] = rho@eexp(-xipl4l/krhe )
¢
. d
o for( i = 2 ; i(=rnstep ; ++1 ){
b :
L 51
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Table 4-8 &4 Processor Parallel Trapezoidal Rule (continued)

/++» predictor equaticons ##x/

racplic®il = rho@*expl

rhcpld®i-1] =
rhoc[S®1-23 =
rhoci2®i-3] =

x1pl2wi+2] =
wneplowi+Z; =

x1plZ2*i+1] =
xeplewi+il =

rho@*exp (
rho@#exp (
rhoQ+*exp(

xiclc#i—-¢e3
xeclexi-23
wxiclZ#i-232
xeple*i-2]

-xiple*il/krha )
~xiple*i-1]/krhc )
)

~xicie®i-2l/krhac

~xicl2#i-3]/krho )

-+
+

+
+

-r oe ae

g - rhoplE*i1]ex2pli*ilex2ple#il/ 2/ %3 )

-xcplewil - x=Zplexi-11)

4, #he( -x2ple*il ) 3
4, #hn(

1.5%n% (

1,.5%n*(

g — vrhoplc*iisx2plewisexIple®al/2/x3 +
g - rhoplExi-ilex2pli28*1-1]#xBpl*i—-13/8/x3 ) 3

/exs correcitor eguaticns sxx/

wicle#13 = xicle®1-3] +

xeelo®i1l = xScieg*1-31 -

xEplc#i1laxZplenilse. /x3)

xeplawi-il/e.

xlcl2#i-1] =
xecleni-1] =

rhoc le*:-ClexCelo®i-ClexCcli®i-Cl/2. /%3 )

2}

ferr( 1 = 1
stime = m¥xn

/x3 ))

xiclz*i-3]
xZclewi—-335

1= 10

«Oh®(
=T Jat X
9. *(

2. *hexzctl

+ 2, #h*(

++ ]

fprintf(toute ,"\r\n time
[ml , x2clml

s Stime , xlc

printf ("\r\n

time = %7,3f

, stime , xiclml , xZclml

3
fclose(tcute)

}

A A A A R AR

M{m

= X7.3f sec xlc = K7.3f ft x2c = %7.3f ft/sec "

)

3. #xzplgwil] — Sexgpleei-13 )
S.%( g - rhoplc#il#+

g — rhopleei-1lexgpl#i-11%

S*i-2]

= rprint+l ;

sec xlc = %7.3f ft x2c = %7.37 ft/sec "

)

- Wy

L}
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Target Hqight Estimation

Figure 4-2 shows the noisy target height measurements and the EKF
estimate of the target's height above the earth. Note that the EKF esti-
mates filter (or reduce) the measurement noise considerably, Also, note
that the EKF tracks the data quite well as the target descends toward

earth,

Target Velocity Estimation

The target's velocity is illustrated in Figure 4-3, Note that the
EKF converges to the actual velocity within four seconds. The target's
velocity is essentially constant at this altitude making target prediction
easier once the EKF has converged. This knowledge can be built into the

knowledge base for the expert system that manages the EKF.

Line-of-Sight (LOS) Angle Estimation

Figure 4-4 shows the LOS angle estimate from the EKF for test case
#1. The LOS angle is relatively steep (87° on average) and decreasing as
the target height declines. This follows because the observer is station-
ary while the target is moving. Because the tartet is 250,000 feet above
sea level, it follows that the LOS angle be large (approaching 90°),.
Based on the change in the LOS angle estimate per unit time (2°/4 seconds
= 0.5° per second), it would take 176 seconds to reduce the LOS angle to

zZero,

Target Range Estimation

The target range estimate from the EKF is given in Figure 4-5, Note
that the target is getting closer to the observer at a rate of 250,000
ft/sec. Hence, within ten seconds the target will hit the observer unless
some action is taken. Thus, the EKF must be capable of rapidly updating
the range estimates (in under one second) to be effective for WSMR

applications,

Summar

This test case 1llustrates the class of computations required for

WSMR target tracking. Squares, divides, square roots, exponentials and
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trigonometric functions are needed. In addition, the extended Kalman
filter requires the solution of nonlinear ordinary differential equations.
Thus, high-speed nonlinear function evaluation is required to solve target
tracking problems on a timely basis, This test case, although simple, can
be solved relatively easily to provide a known solution to verify the
parallel Kalman filter algorithms and architectures, This test case can
be expanded to three dimensions using angle-only measurements of the
target., In this case, the target tracking problem becomes more nonlinear

and involves additional trig functions to be computed during coordinate

transformations.
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X SECTION 5 ~
: CONCLUSIONS AND RECOMMENDATIONS j‘
) )
'
v
B
. 5.1 CONCLUSIONS ey
) —_— .
Based on the results of our Phase I study, the following conclusions can :t
be drawsn: §§
: -
o It is technically feasible to decouple the predictor and corrector '
N equations in a standard Kalman filter for parallel processing on n
multiple processors, N
]
; o The decoupling principle allows the parallel Kalman filter's N
predictor and corrector equations to be computed on separate [l
processors improving computational speed directly proportional !
to the number of available processing elements, o
13
! 3
! o It is feasible to extend the linear PKF theory to nonlinear target t!
; tracking and estimation problems allowing an extended Kalman filter )
: to run on multiple parallel processors, :
Because both linear and nonlinear filtering can benefit from the decoupling Ef
principle, this research activity appears well suited for transition to the Ky
Phase II stage of the SBIR program. =3
‘ ]
; 5.2 RECOMMENDATIONS }
Lo
‘4
Based on the conclusions derived from our Phase I results, the following ::
recommendations are presented: ::
)
; o Continue coding and evaluating the PKF algorithms on a parallel -~
? computer whose architecture can be reconfigured to validate newly {i
: developed target tracking algorithms and architectures, Many }q
] issues regarding the implementation of the parallel Kalman filter <
can be learned by coding the PKF algorithms and architectures., b
For example, timing, synchronization, drift, potential divergence )
of the error covariance update, and model sensitivities could have -
a major impact on the ultimate application of the PKF, Hence, it e
' is recommended that an expert system be developed to manage PKF "
computations. A
>
'
. o
-
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|
o
o Create a parallel computing testbed facility (based on industry- Fad
standard hardware and software), A flexible/reconfigurable ﬁ}
parallel computing testbed is recommended to rapidly test and o
evaluate the performance of newly developed parallel processing [
algorithms and architectures. Because WSMR target tracking appli- o
cations tend to be nonlinear, a scalable architecture (i.e., n
expandable based on problem size) for nonlinear function evalua- t‘
tion is recommended. General-purpose microprocessor/coprocessor !
technology augmented by a 64-bit floating-point 25 MFLOP array o
processor board set is recommended to accommodate a wide-class |
. of parallel algorithms. Four processors per card are recommended ¥
) to simultaneously compute the equations in the decoupled PKF ti
' (i.e., two processors for the predictor and two processors for e
: the corrector per card). Multiple cards (say twelve) can be A
installed in the testbed to provide 25 MFLOPs of 64-bit nonlinear -
function evaluation power. An industry-standard Vme bus is also ®
recommended for several reasons: (1) Vme is a high-performance o]
bus, (2) Vme 1is supported by several major companies allowing the &J
government to add "special function" cards to the system, and (3) )
Vme is also standard in high-rel, milspec and ruggedized systems 3&
for actual field test of our PKF technology. e
o Use actual flight test data to show the benefits of the PKF 2:
techuoivgy. DBecause of the complexity of realistic target L:(
tracking applications, it is anticipated that even today's super- -~
computer architectures will not be capable of solving these kV;
problems in real time. Due to the unique matching of the PKF "
algorithms and architectures, it is anticipated that problems
that could not be s lved otherwise in a reasonablie time (at a ~
reasonable cost) can be solved on the proposed testbed. Thus, S
it is recommended that a target tracking problem based on actual Yy
flight test data be solved and benchmark performance documented Ny
so that future designs can be compared. Due to the "special" .

architecture of the recommended parallel computing system, it
is anticipated that it can be the standard to improve upon for rody

the next five years. é:

!

5.3 SUMMARY 3
Based on the results in this report, it is clear that the PKF theory is f:;%

well developed, mature and ready to proceed to full-scale validation on actual Ex
flight test data on a parallel processing testbed. Because the PKF technology ;E
has been needed to solve several applications in the DoD for more than a e
decade, it is anticipated that once fully developed this technology can g&
benefit several sectors of the DoD. This is possible because the necessary ES}
technology (e.g., 25 MFLOP 64-bit floating-point adders/multipliers/dividers 5?
and 25 MHz 68030/68882 general-purpose microprocessors) has only recently been ‘:‘
available to transition the PKF theory into practice. Hence, Systolic Systems \fﬁ
would be pleased to continue this program under Phase II of the SBIR program, :if
N
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