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SECTION 1

INTRODUCTION

This project seeks to apply recently developed parallel Kalman filter

(PKF) methods to actual flight test data obtainable from White Sands Missile

Range (WSMR). In this Phase I feasibility study, we show that the PKF

methods offer excellent speed up, reliable convergence characteristics and

good accuracy compared with the standard Kalman filter (SKF). Parallel

computing architectures are presented that enable the PKF methods to be

implemented at 15 KHz sample rates at 64-bit floating-point precision.

This project is innovative in that the PKF architectures utilize both

horizontal and vertical parallelism. A balance of nonlinear (e.g., trigono-

metric functions, exponentials, squares, square-roots) and linear (e.g., add,

subtract, multiply, divide) computing resources rated at nearly 25 double-

precision MFLOPs (million floating-point operations per second) each is

recommended. Coupling this with an industry-standard, Vme bus chassis

provides an open architecture to permit other WSHR contractors to add to the

system.

I.1 BACKGROUND

To illustrate the need to develop Kalman filter parallel processing

architectures, the total number of arithmetic operations that must be

computed in the Kalman filter algorithm can be counted and multiplied by

different multiplier and adder speeds. For the Kalman filter algorithm

given in Table 1-1, the total number of multiplications, additions and

divisions are given by: (n2 + 2n - 1) additions, (2n2 + 4n + 1) multi-

plications, and 1 division. Therefore, the overall executiop time needed

d to update the Kalman filter algorithm in Table 1-1 is:

t - 2 + 2n - 1) t + (2n2 + 4n + 1) t + td

%n %( 4 V Vn2 "
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Kalman* Tk pkPk(+)H T + I)-
Gain k' k P() k k '

Filter k+ k_+KkY kk))"

Update k k( ) + K k H

= I-Kk k )  k ( -  KkY k  ..

Covariance .P-Update k (+ )  (I KkH k ) Pk
(- )  .. -

Measurement k+

Update Yk+l a H k+1 k

*Note that when scalar measurements are processed, the inverse .
operation reduces to a division operation.

where ta  is the addition time, tm  is the multiplication time, and td i
i is the division time. For example, if t

a  
200 nsec, t

m -200 nsec and i

td - 10 usec, one pass through the Kalman filter with n - 9 states
dO

theoretically requires only 69 usec. This corresponds to 1/69 uec - 14.5

K~z update rate using state-of-the-art 32-bit floating-point VLSI chips.".

Since most systems deliver about 20% of theoretical peak performance, to e

keep up with real-time requirements the theoretical speed needs to be 1/20',,

=5x faster than real time. Thus, the Kalman filter equations must be

computed theoretically at 5x 15 KHz - 75 KHz rate to deliver real-time

performance at 15 K.Hz. Since it is well known that the Kalman filtering

must be performed using floating-point arithmetic, the only viable method

to increase the throughput of the Kalman filter by say 5 to 10 is with

parallel processing. Optical processing is fast but optical fixed-point

U,

can cause stability problems with the Kalman filter. Nonlinear or extended -

Kalman filtering is even more computationally demanding. To perform non- ',

linear filtering in real time at 15 KHz, a 10 to 100 speed up is needed. :

Note that although much progess has been made in floating-point adders

and multipliers, the real problem is fast hardware divide (matrix inversion)-
is needed in the Kalman filter. Performing division in parallel on vector/

matrix elements is therefore, required to speed up Kalman filter
computations. k

I2k k



1.2 RESULTS OF THE PHASE I WORK

Missile Meth Model Based on Actual Flight Test Data

Unclassified flight test data was provided by White Sands Missile Range

representative of modern radar tracking systems. The radar data provided

measurements of six missile trajectories. Using the data, a math model

could be developed taking into account the physics of the problem and

parallel Kalman filter math model requirements. The math model form was

defined in the Phase I study although the actual model parameters were -

not identified. Developing nonlinear models for the data and nonlinear

(or extended) parallel Kalman filtering should be considered under Phase

II. The state variables in the nath model were range, range rate, altitude

and elevation angle.

Parallel Kalman Filter Algorithm and Architecture Selection

For our Phase I feasibility study, a dual-processor (2) and quad-proces-

sor (4) PKFwereused for the parallel architecture trade-off study on a non-

linear target tracking application. The parallel Kalman filter architecture

trade-off parameters included integer versus floating-point arithmetic,

memory sizing requirements, data bus speed and input/output subsystem

requirements. '

It was concluded that (1) at least 32-bit and preferalbe 64-bit floating-

point arithmetic is needed for accurate tracking, (2) at least 36 (prefera-

bly 48) parallel processing elements capable of 25 MFLOP 32/64-bit linear

processing speed and 24 MFLOPs at 64-bit nonlinear compute speed, (3) at

least 2 Mbytes of fast RAM is needed to store the trajectory data with

access times of less than 45 nsec (15 Mbytes of bulk memory with access

speeds of 120 nsec was also recommended based on the PKF program code size)

and (4) data bus speed of at least 20 Mbytes per second to move data in/out

of the processors.

The basis for our conclusions is discussed later in this report.

Two-Processor Parallel Kalman Filter '.

The standard Kalman filter (SKF) and two-processor parallel Kalman

filter have been coded and executed for a noisy, time-varying scalar y'a

example. Although this is a simple example, it illustrates that the PKF 1

provides excellent estimates.
3
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Nonlinear Extended Two/Four-Processor Parallel Kalman Filter

The nonlinear EKF and two- and four-processor EPKF have been coded for S

a realistic example involving gravity, drag and measurement noise. The

two-processor and four-processor EPKF estimates agree quite well with the

original EKF estimates. The EPKF utilized a parallel trapezoidal rule for

integrating the state and covariance updates in the EPKF.

Two/Four-Processor Parallel Trapezoidal Rule

The two- and four-processor parallel trapezoidal rule, ode solver

generally provided the same solution in a given number of iterations

compared with the sequential trapezoidal-rule ode solver. Because each

iteration of the parallel trapezoidal rule can run on two or four

processors simultaneously, the time to solution was reduced almost

linearly with the number of processors.

The floating-point primitives and macros for the PKF have been coded on

the 481. Specifically, quad adds (i.e., four additions), multiplies,

subtracts, divides, etc., have been written and put into PROMs on the 481

cards. The linking of these primitives into macros for say the Kalman "e

gain update is feasible.

Accuracy, Speed and Implementation Considerations

The accuracy of the parallel Kalman filter degrades somewhat as more "% "
,% %a

processors are utilized. It is recommended that no more than four to *

eight processors be used per target state but distribute the computations

over each state variable. Specifically, a nine-state target model may

use 36 processors (four per state variable) with excellent accuracy and

speed up.

To meet the WSMR target data processing requirements, 25 double-preci-

slon MFLOPs speed are needed on linear (and nonlinear) computations.

Thus, a balanced system architecture capable of 50 MFLOPs in total is

recommended. A 20 slot Vme bus based tracking system based on a Motorola

68030 master, twelve Systolic-482 cards (using Motorola 68882), one array

processor based on the new TI SN74ACT8847 and a SCSI disk/streaming tape

subsystem is recommended. ''a

4-.



Benefits Assessment

Our Phase I study determined that without parallel processing it is

not possible to process radar data in real time with a Kalman filter based

on today's data sample rates. Hence, the major benefit of parallel pro-

cessing (more specifically parallel Kalman filtering) is that it enables

real-time radar data processing that could not be performed otherwise.

This translates to quick-look and improved down range safety during missile

flight testing.

More specifically, the major benefits of the proposed Phase I and II

research include:

o A target tracking test facility that can be used in the lab
or in the field for "quick-look" analysis of flight data
improving safety and flight data quality 

.,

" A parallel processing test facility that provides advanced
state-of-the-art computing resources to solve WSMR target
tracking problems that could not be solved otherwise.

" An industry-standard parallel computing environment that
can enable the validation of new parallel Kalman filter .4

algorithms and architectures as they become available. ,.,

1.j TECHNICAL OBJECTIVES

The major objectives of the proposed Phase I & II research include:

o Ability to track multiple targets at sample rates approaching
15 KHz for real-time applications

o Realize between two and three orders of magnitude improvement

(100 to 1000x) in computational speed over existing Kalman-
filter-based tracking systems

o Design and optimize application-specific, parallel processing
hardware for real-time target tracking 5"

o Fabricate, test and deliver a parallel computing system that
is well suited for implementing parallel Kalman filter ,.4
tracking algorithms, FFT computations and target motion

resolution algorithms

o Validate the proposed hardware and software by thoroughly ..
exercising the system with actual missile flight test data 44

available from WSMR

o Deliver the parallel computing test facility and demonstrate
the accuracy and speed benefits of the parallel Kalman filter e

methods by solving P realistic target tracking application of
strategic interest to WSMR

5



1.4 SUMMARY

The remainder of this rpport is divided into four sections. Section 2

provides an overview of our technical approach including math modeling.and

the parallel Kalman filter algorithms. Section 3 derives parallel computing

architectures which are well suited for fast implementation of the PKF

methods. Section 4 illustrates the performance of the PKF methods by solving

two realistic test cases with the PKF methods. Ccnclusions and recommenda-

tions are given in Section 5.

6S
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SECTION 2

TECHNICAL APPROACH

2.1 OVERVIEW OF PHASE I & II TECHNICAL APPROACH

Our technical approach is shown in Figure 2-1. Our approach is based on

(1) our in-depth understanding of the computational requirements associated

with Kalman filtering and (2) two meetings with Foo Lam, Elwin Nunn and Bob

Green to discuss WSMR missile data processing requirements. Our technical

approach involves the design of new hardware as well as system integration of

off-the-shelf components.

64-Bit Array Processor Design

The new design activity focusses mainly on next generation array

processor technology for 64-bit floating-point FFTs (useful in precise TMR),

ill-conditiond linear equation solvers and other linear algebra (matrix/ ,

vector operations) needed by the parallel Kalman filter. Our plan is to

survey newly announced floating-point processors, fast memory and address

generators from several vendors prior to design in. Since the project is

three years In duration, the technology selected must provide significant

performance gains to be state-of-the-art three years from now.

Off-the-Shelf Components

As indicated later in this report, twelve Systolic-481 parallel

numeric processors are well matched for the WSMR target tracker. To

ensure maximum performance the 16 MHz 68881s in the Systolic-481 shall be

upgraded to 25 MHz 68882s to increase performance by nearly lOx (an order

of magnitude) per 481 board. With twelve Systolic-481 cards in the test- I

bed, this upgrade represents 12 x 10 - 120x improvement in computational

performance (i.e., over two orders of magnitude over a single 16 MHz '%

Motorola 68020/68881 32-bit microprocessor pair. These off-the-shelf

components shall be purchased along with fast memory cards, host inter-

face, Vme bus chassis, etc. Our strategy shall be to delay the purchase

7
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DESIGN 32/64-BIT FIT MODEL

VME BUS TO WSMR

ARRAY PROCESSOR TEST DATA

PURCHASE COMPONENTS CODE PARALLEL

FOR WSMR TRACKING KALMAN FILTER

SYSTEM ARCHITECTURE FOR WSMR TEST DATA , .

VALIDATE PKF
SYSTEM

CODE FOR
INTEGRATION 

AC CURACY/ STABILITY

VALIDATE SYSTEM _____"

PERFORMANCE @

PHASE I TECHNICAL APPROACH

DELIVER SYSTEM AND ""

DEMONSTRATE PARALLEL

KALMAN FILTER USING

WSMR TEST DATA

Figure 2-1: Phase II Technical Approach
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of components as long as possible (perhaps until the end of the second

year) to reduce cost and provide maximum performance within the budget.

Hence, much of the first year effort will be on the 64-bit array processor

design and fitting math models to the WSMR test data.

Math Modeling

Parallel algorithms, such as the parallel maximum likelihood method,

shall be investigated for fitting math models to the WSMR test data. Like

the PKF methods utilized in Phase I, parallel trapezoidal rule can be

incorporated into the parallel maximum likelihood method for missile model

parameter identification. Code development for this activity can be

initially done on a Systolic-481-based parallel computer. Later in the

contract the 68881 chips can be replaced with fast 25 MHz 68882 chips

prior to delivery.

Parallel Kalman Filtering

The parallel Kalman filter methods shall be employed to process actual

missile flight test data under Phase II. The two- and four-processor parallel

Kalman filter methods shall be used to estimate each missile state variable

simultaneously in parallel. If a nine-state model is utilized, 9x 4= 36

processors shall be employed in the parallel Kalman filter.

The speed of the parallel Kalman filter formulation and parallel

computing testbed shall be compared to a single M68020/68881 in a SUN 3/260

workstation, Micro VAX II and Intel 386/387 in an IBM PS/2 Model 80.

System Validation and Performance Enhancements

The integrity of the WSMR math model, the parallel Kalman filter

algorithms, the parallel architectures, and the parallel computing testbed

shall all be validated under the Phase II work plan. This can be accom-

plished by comparing the numerical results of the parallel formulation

with the numerical results of the standcrd Kalman filter on a sequential
computer. In the limit as the step size approaches zero, the parallel and

sequential methods should give the same results. This shall be confirmed

under Phase II.

p.I

p.I
-.. .9
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2.2 MATH MODEL DEVELOPMENT FROM ACTUAL FLIGHT TEST DATA

2.2.1 Analysis of the Flight Data 0

Our objective is to determine a math model and its associated

parameters from flgiht test data. The flight data provided by White

Sands Missile Range (WSMR) was unclassified. The flight data covered a

ten minute mission of six missiles launched in December 1987. Although

over three Mbytes of data was provided, it is likely that only a small

portion of the data is required for modeling purposes.

Detrending the Data

The mean (i.e., average) and covariance associated with the flight

data shall be computed. The data can then be detrended by subtracting

the mean from the data. The resulting data, although still noisy, can

then be used for modeling. S

Modeling Considerations

The data shall be divided into two parts - a training set and test •

set. The training set data can be selected by computing the information

matrix (inverse covariance matrix) along the data. The objective is to

find a data set that has maximum information (i.e., when the norm of the

information matrix is maximum). The max norm data set is then used to

compute a math model of the data. The test set (all data other than the

training set) is used to test the "goodness of fit" of the model to the

training set.

2.2.2 Math Modeling With Neural Networks

Neural-network-based modeling algorithms are self-organizing (or

adaptive learning) methods, in that the "best" model is constructed from S

all possible combinations of sensor measurement data. Thus, no data event

is overlooked. This feature of neural-network-type modeling algorithms

along with the fact that all math models can be generated simultaneously

(in parallel) makes neural-network-type algorithms particularly well

suited for real-time missile modeling applications.

10 S.
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To illustrate how a parallel neural-network-type algorithm is used

for math modeling, consider the following example:

In the parallel neural net algorithm, let

Yi ao + a1 xI + a2x 21 + noise i - I, 2, ..., n (2.1)

where y are dependent sensor measurement values which depend

on the independent state values xi and x2

The objective is to find the "best" estimate of a0 , a and a2 in a

least square sense. To estimate a0 , a2  and a3, the classical "normal"

equations can be solved as follows:

N Xx Ex a o- Zy

:Xl zx* E X a: (2.2)

X2 _a, -xy

Note that the terms in the normal equations can be solved rapidly using an

array processor to compute the sum-of-products and sum-of-squares operations.

In addition, due to the independence of the data, multiple array processors

can be run in parallel to construct all possible model forms (see Figure 5-1).

The resulting model forms can be compared and the "best" model selected based

on prediction error of F-ratio statistics.

In Figure 2-2 suppose that .

z1  a o + a1 x1 + a2x2  and z3 =c 0 + cIx 2 + c3x3  (2.3)

Then it can be shown that

y 0 0 + dlZ1 + d2z3 AIx 1 + A2x2 + A3x3 (2.4)

where

A0 - do + a0dI + c0d 2  (2.5)

A ad 1  (2.6)
11 11

1.,1
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A2 -ad + cld (2.7)
2 21 1 2

and

A c d (2.8)
3 3 3

Thus, given the least square values of AOLAll A2, Ay can be estl-
mated from the original independent variables x _ and x . Note that

using polynomials is ideal for constructing math models in terms of known

physical variables. Also, note that the least squares curve fit can be

performed simultaneously with multiple array processors. The availability

of high performance board-level array processors makes large neural-net-

based estimators feasible.

Note that the neural-network-based modeling algorithm is not limited

to linear polynomials and in fact can be generalized for quadratic and cubic

polynomials among others. Thus, the neural-net method can be used to con- .

struct nonlinear models from test data. These models, however, may not be

related back to the original measurement variables as easily and, as such,

may have less physical meaning.

'L2 -, 22 " 3 2 x3

LessLeast Least
Ssre "I uares 42 Sc uares 4s3

Z Z Z

Se ec: 2 bes: mcces a

" ZI %"

5cuares $4 j

Fi Yns. M odel.-

Figure 2-2: Neural Network for Least Squares Estimation of Model Parameters

The information flow in the generalized neural net modeling approach

is illustrated in Figure 2-3.

12+
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x1 x2 X1 XM_ 1 XM

REGRESSION REGRESSION 0 0 0 0 REGRESSION
MODEL I MODEL 2 MODEL M

Zi Z2 * * * 0 * * ZM  INTERMEDIATE
VARIABLES

SELF-SELECTION OF WELL-FITTING MODEL FORMS

V, i"YJ Y7. Y3 Yn

DESIRED MODEL

Figure 2-3: Generalized Neural Network for Model Determination

2.2.3 Real-Time Estimation of the Target Measurement Matrix Using Neural

Nets

Now that the neural network technology has been discussed, we shall

see how it can be applied to real-time estimation of the target measure-

ment matrix, H. A bank of neural nets are employed to estimate several

candidate values of H (the target measurement matrix) in Figure 2-4.

Each neural net is given a precomputed trajectory corresponding to a

candidate target type and measurement values of the actual target. r
P

13
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Network
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x (k) e H

!v(k) k__ __ __ __ __I_
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Netwrk e min (e)

Y, 2(estmate ,

6 H

x (k)

0 0

m0

Figure 2-4: Parallel Neural Network Estimator to Find H* (y Hx* + v)
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Each neural net computes a least squares estimate for H.

For example, if H is a 2x1 matrix, then the elements of the H

matrix can be found by solving the following set of "normal" equations:
N3

2x2 2x]
2 -Xk rhi X Y.

I '1k k 2k 1 1kl1k
= (2.9)

'1k x 2k 2 11121X 2kIL k LjL- Lk

Then the least squares estimate of H for the ith neural net is given by:

H i  h ( 1 h ) (2.10)

This process is performed simultaneously (in parallel) by each neural

net. The innovations for each neural network are:

z k Hi w Yk - Hi xk (2.11)

Taking the norm of each innovation e i - IzkIHi,1I provides a measure

of the size of the accumulated estimation error for each neural net. The

network with the smallest error, emin = min ei, provides the best esti-
, * i

mate of Hi -H * Once Hi is known, the class of target is classified

immediately since it corresponds to one of the precomputed candidate

target trajectories XklHi. Now that H is known, the actual target

trajectory can be determined by solving the following system of linear

equations at every time step k.

(H*T H) k H*TH* yk (2.12)

Estimated Actual

Target Target
Trajector Measurements

Thus, the neural net learns H on-line and we use H to estimate the

target trajectory, xk, for the missile.

15
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2.2.4 Parallel Maximum Likelihood Parameter Identification for Nonlinear
Missile Math Models

The least square parameter estimates obtained with the parallel neural-

net method are biased estimates of the true missile parameters. To remove

the bias and ensure that the parameters are consistent over the full dynamic

range of the missile model, the parallel maximum likelihood (PML) method

and/or the parallel maximum a priori (PMAP) method can be used. The refine-

ment of the nonlinear model parameters can be handled directly or cast as a

nonlinear two-point boundary value problem (NTPBVP). The NTPBVP can be

solved using the parallel shooting method. In addition, any unknown states

of the missile model can be reconstructed simultaneously with the aerodyna-

mic parameters using the PML and/or PMAP method. In the remainder of this

section, the parallel maximum likelihood (PML) and parallel maximum a

posteriori (PMAP) methods are described in detail.

Parallel Maximum Likelihood Method

i.

The Idximum likelihood method of parameter identification has been

proven to be highly successful over the years in aerospace application.

Parallel processing technology can be embedded into the standard maximum

likelihood method to speed up computations. In particular, the parallel

maximum likelihood (PML) method uses (1) parallel numerical methods for

integrating the missile's equations of motion, (2) a parallel Kalman filter

to construct the innovations and (3) parallel optimization methods to select |

the best parameter values which minimize the ML performance index. Mathe-

matically, the maximum likelihood method for missile parameter identifica-

tion can be stated as follows:

Consider the following nonlinear missile state and measurement

model:

- f(x(t),e(t),t) + ew(t) (2.13)

I

z(t) = h(z(t),e(t),t) + v(t) (2.14)

where x(t) is an n-dimensional state vector, e(t) is an r-dimen-

sional vector of unknown parameters, w(t) is a p-dimensional process

noise, z(t) is an m-dimensional measurement vector which has been

corrupted by the measurement noise, v(t). N
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The maximum likelihood parameter estimates are obtained by minimizing

the following negative log likelihood function: "

N ,-

J( v TB- V + log IBI } (2.15)i=l 1

where •

v = z - h [x(t), 8(t), t] (2.16)

and

B - E[vv J is the covariance of the innovations v

The innovations (v) and the covariance of the innovations (B) are

obtained from an extended Kalman filter. The Kalman filter equations can

be reformulated for parallel processing and the parameter estimates

can then be updated using the following rule:

ek+l - e k - ('%gk (2.17)

where Xk is a scalar stepsize parameter chosen to ensure that

J(k+l < J(k gk is a vector of gradients of the negative log

likelihood function

= 6=k 
(2.18)

k

and Rk is an approximation to the Hessian of J

(2.19)

36e2  _6e

Furthermore, it can be shown that

NI

IV T B-1 aB B-I+ trB - (2.2u)
i=l k k

1.

I
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The major computational savings due to parallel processing is in evaluating

v and B in the Kalman filter. Clearly, the complexity of this

technique requires parallel processing for real-time missile applicatiuub.

The stability of the Kalman filter computations also needs to be closely

monitored (say via an expert system) so that the innovations are proper.

An alternative to the parallel maximum likelihood (PML) method is the

parallel maximum-a-posteriori (PMAP) method. The PMAP method is based on

solving nonlinear two-point boundary value problems via the parallel

shooting method. Although this method is batch-processing oriented (the

PML method is recursive and as such, is well suited ft" real-time applica-

tion), the PMAP method can be useful in flight if the batch processing can

be performed within the sample time of the measurements. The PMAP method,

however, will provide superior smoothed parameter estimates compared with

the PML method. Thus, it may be appropriate to consider the PMAP approach

for off-line, ground-based missile data reduction.

Parallel Maximum-a Posteriori Method ,.'.

Consider the nonlinear aircraft state and measurement model represented

by:

x(t) - f(x(t),t) + r(x(t),t) w(t) (2.21) .

z(t) - h(x(t),t) + v(t) (2.22) 0

%

where x(t) is an n-dimensional augmented state vector which includes the

unknown parameters, w(t) is a p-dimensional process noise, and z(t) is

the m-dimensional measurement vector which has been corrupted by the

measurement noise v(t).

Now let m the mean of x(t0 ) and E(x(t 0 ) x (t 0 )) - Pxo the

0T - h0rcs
covariance of X(to). Similarly, let E(ww Q - the process noise

covariant and e(vv) - R- the measurement noise covariance. In addition,

suppose z and v have a zero mean in this analysis (if not, a bias term

can be identified).

Now let Zt - (z(r) to - 7 ! t) define the accumulated noisy state

measurements up to and including time t. The problem is to obtain an

,-"
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estimate of the augmented state vector x(t) at time t on the basis of

the observations represented by Z . Our interest will be restricted tos

the case when s > t in which case Xts is referred to as a "smoothed"

estimate of x(t).

By defining p(x;tz t) as the a posteriori probability that the

state vector assumes the value x at time t conditioned upon the

measurement data represented by Zt, the maximum-a-posteriori (MAP)
^ ^MAP

estimate of xt s  (denoted as xtls) is defined by

P(xAs;tIZt) max p(x;tiZt) t t < s < tf (2.23)
x ORn

It has been shown that the maximization indicated in Eq. (5.24) is

equivalent to finding the deterministic signal, w(t) tc(to,tf) which

minimizes the functional

J " x(tO) - x 112 + IIz(t) - h x(t) ,t) 112

0 t R (t)

+ 1w(t) 112_ ) dt (2.24)
Q (t)

subject to the dynamic-equality constraint given by

x(t) - f( (t,t) + r(x(t),t) w~t V; t C (t0,ltf) .(2.25)

Note that the SAP estimation problem has been converted to a determi-

nistic optimization problem and that once iv(t) is found such that equation

(2.24) is minimized, equation (2.25) can be integrated to obtain the MAP

estimate of (t) provided i(t 0 ) is known.

To find w(t) using the calculus of variations, let the Hamiltonian

be defined as

Hn ( 1 lz(t) - h( (t) ,t) 112 _ t + I 1w(t) 112_
R (t) Q Wt

+ XT(t)(f(x(t),t) + r(x(t),t) (t)) V t E (t0,t f  (2.26)

19
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The most direct method for solving this problem would be to initially V. -

set c(t0 ) to mx , integrate Eq. (2.25) forward in time over the inter-

val (tOtf) and evaluate the performance index (2.24). By considering

changes in the performance index due to changes in x(t0 ), one may use w

this information to decide if this procedure should be repeated. Specifi-

cally, if the change in J is sufficiently small and the gradient of J

equals zero, "hen i(t0 ) is accepted. Otherwise, the value of c(t0)

should be selected such that the performance index is minimized. To speed

computations, parallel integration methods can be used to integrated Eq.

(2.25), while the selection of the next value of x(t0) can be made using

an optimization method.

'4

2.3 PARALLEL KALMAN FILTERING BASED ON THE DECOUPLING PRINCIPLE

To speed up Kalman filter computations, several methods have been S

considered during the past decade. For linear filtering, the Kalman filter S'V

equations have been coded on an array processor. This method works well

for large models but not for relatively small models (models with less than .6

20 state variables). Small models frequently occur in target tracking, S

rivigation, guidance and control. Hence, there is a need to develop fast

..iman filter methods for small models. In particular, in the context of

target tracking, each target can be represented by a nine-state model. The

problem, however, is to estimate the trajectory of multiple targets in real •

time. Although many target trajectories can be computed in parallel, ulti-

mate tracker performance is dependent on the speed in which each target

trajectory can be predicted with the Kalman filter.

To provide a more accurate solution, the Parallel Kalman Filter 
(PKF) B

is based on the trapezoidal rule of numerical integration rather than Euler

integration which has been used to date. The Parallel Kalman Filter update

is then accurate to 0(h2 ) rather than 0(h). The additional accuracy is

important because it is anticipated that the integration step size, h, ,

will be large due to the computational complexity of the Kalman filter

equations. For example, with a sample rate of 100 Hz, the Euler-integra-

tion-based PKF would be accurate to 0(h) - 0.01, while the trapezoidal-

rule-based PKF would be accurate to 0(h2) - 0.0001 (i.e., as accurate as

the 12-bit sensor data). INN

% %
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2.3.1 Nonlinear Extended Parallel Kalman Filter Based on the Trapezoidal
Rule

The trapezoidal rule for integrating a set of ordinary differential

equations is given by:

X k+1  Xk + h (f(xk,tk) + f(Xtk+1tk+l)) (2.27)

where x is the solution of the ode, f(x,t) is the right-hand-side (RhS)

of the initial value problem and h = tk+1 - tk is the integration step

size. The trapezoidal rule is an implicit method since Xk+ 1 appears

implicitly on the RHS of Eq. (2.27). Note that f(x,t) can be, in

general, a nonlinear function or linear such as f(x,t) - Fx(t). To solve

Eq. (2.27), a predictor is needed of the form below to estimate xk+1:

Xk+1 = Xk + hf(xk,tk) (2.28)

Hence, by combining (2.27) and (2.28) we obtain a predictor-corrector method

based on the trapezoidal rule:

Predictor: xk+1 -x + hf(xk,tk) (2.29)

Corrector: X+c c + h (f(xC,tk ) + f(Xk,t (2.30)
k+1 'k k'k fkxl k+1

Note that the predictor must be evaluated before the corrector equation can

be computed. A parallel predictor-corrector (PPC) method allows the

predictor and corrector to be evaluated simulataneously on two processors

as follows:

2.3.2 Parallel Trapezoidal Rule (Two Processors)

Predictor: Xk+l - Xk- + 2 h fP (2.31)

Corrector: xk = Xk_ + kh (f + fk (2.32)

where fk - i(xkk) and fc f(x k-1).

khr f k k-i (xk-)

In the special case when fp is the RHS of the Kalman filter state
k

update before a measurement and G is the RHS of the covariance update
k

before a measurement then the two-processor extended parallel Kalman filter

is given by:

21



Nonlinear Extended Parallel Kalman Filter Based on Trapezoidal Rule (Two

Processors):

Time Update:

Predictor: xk+l(-) - xkl(+) + 2h f(xk(-)) (2.33)

P+(-) . P(+) + 2h Gp  (2.34)
k+i k-i k

where GP - F(xk l(- ))Pk i(- )+Pk (-)F( (-))+Q (2.35) %kT (- -1 k1 k-1 k-'l

Corrector: xk() -xki(+) + h (f(xk(-)) + f(Xkil(+))) (2.36)

- ( + h (Gp + GkI (2.37)

where c = F(Xkl (+))P(+)+p (+)F(X (+))Q (2.38)kR-i k ) Pk- I()Pk-i (k-i +k-I '''

Measurement Update: 0

(+) = + (2.39)

k kk(k *1-)

P k(+) , (I KkHk(xk(-))) Pk (  (2.40)

Kk=Pk(-)H T (-)) P(-)H (T + Rk) (2.41)

where
af(x(tk))

F(Xk(-)) X(t

~xXtk) -l 
-x(t) - Xk(-).

k
h (x (t ).,i

H k (k (-)) ; X(t)"
X (tk )  xk(_)

In the above PKF, the (-) notation represents a value before a measurement

update and the (+) notation is a value after a measurement update.

Similarly, the p for predictor corresponds to the (-) notation and the

c for corrector value corresponds to the (+) notation.

Nonlinear Extended PKF Based on the Trapezoidal Rule (Four Processors)

With four processors, the parallel trapezoidal rule is given by:

2.3.3 Parallel Trapezoidal Rule (Four Processors)

Predictor: x p  c +4hfp (2.42)
2k+2 2k-2 2k

p c 3 p .p
2k-2 + h k 2 (2.43)2k l ' f-2'2k '2k-I .."

c xc h- (P - op
Corrector: x2k a X2k-3 (3f 2k 2k-) (2.-.)

xc xc + c
2k-l = 2k-3 + 2 h f2k-2  %

where fp - f(xP 2k), fPk- f(xP 2k-1) and

2k 2k' 2k-i 2k-i'

fc mf(x c 2k)
2k-2 2k -2 )
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For the nonlinear EPKF, the time update is given by:

Time Update:

Predictor: x2k+2(- 2 + 4 h fP (2.46)
2k+ 2k-2 ~ 2k

P (-) P + 4 h G (2.47)
2k+2 ~2k-2 ~~ 2k

qp
x2 C-) k + . h (fk + fk) (2.48)

2k+1 X2k-2~~ 2 2k 2k-i

P2ki- ) - P2k-2(+) + 1 h (GPk + GPk_) (2.69)
Corctr (3fP k  9fP k ) (2.50) "

Corrector: x2k( -) - x2k3() - 2k - -i

- P (3GP- 9GPkl) (2.51)P2k ( - -2k-3 (-  2 2k -I_:

x2ki(-) - 2 k3(-) + 2 h c (2.52)2k- 2k32k-2 (.2

C
P2k-l(-) = 2k-3 ( - + 2 h G2k-2 (2.53)

where fPk fx 2 k( ) (2.5-.)

fP,
2k- - 2k-~ (.5fP ' f ( (-)) (2.55) ,
2k-1 2k-I %
f 2k-2 a f (X2k-2 (+)) (2.56).

GP F(x (-))Pk(-) + Pk(-)F(X(-)) + Q (2.57)
2k 2k 2k 2k 2k 2k

2k-1 F(x2k-1(-))P2k-1 (- ) + P2k-i (-)F(x2k-1

+ Q2k-i (2.58)

Gc , F(X" (+)p (+) + P (+)F x ())"
2k-2 2k2 2k-2 2k-2 21,-2

+ Q2k-2 (2. 59),

Measurement Update:

X 2 kl(+) x 2 k i +K 2 ki (z2k l-h 2 ki(X 2 kl( ))) (2. 6,"

P 2k-I (+) -(I - K 2ki H 2k-1 (x2k-l(-)))P 2k~l-) (2.61)'

TT .p () (-)H( H -)( (x()H (
K2k-1 " 2k-1(-)2k-1(X2k-1 (- ) ( 2k- lI x2k- I (- ) 2k- I ()2k-l(X2k-1 - ) "

+ R2k-)
1  (2.62)

where
f(x(t )) 

F(x ()) - 2k-i

x(t) * X2 k-I

C-)k~ ( k l( ) t k l -aJ

h(x(t 2 kl))

2 k -I 2 k -1 X ( t 2 k - x (t 2 k 1 - 2 k -
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This section discussed the parallel estimation methods that are needed

for real-time target tracking. These methods are well suited for implemen-

tation on several Systolic-481 parallel numeric processors due to the high

degree of parallelism associated with each method. The next section

develops parallel architectures that are well matched to the parallel

Kalman filter algorithms to achieve further reductions in computation time.

2
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SECTION 3

THE WSMR PARALLEL COMPUTING ARCHITECTURE FOR

KALMAN FILTERING

3.1 PARALLEL KALMAN FILTER ARCHITECTURES BASED ON THE DECOUPLING PRINCIPLE

Now that the systolic computational primitive architectures have been

summarized, we shall develop parallel architectures for the PKF methods.

The computational primitive architectures can be applied to the PKF when

evaluating the RHS functions (e.g., f(x,t) - Fx(t), etc.). Because, in

general, f(x) can be linear or nonlinear, generalized or systolic-like

architectures must be considered. Hence, the computational primitive

architectures for linear algebra must be expanded to consider nonlineari-

ties. With this in mind, generalized systolic-like architectures are

presented in the remainder of this section for implementing the trapezoidal-

rule-based PKF.

3.1.1 PKF Architectures Based on the Trapezoidal Rule (Two Processors)

In the last section, the dual-processor PKF was developed based on the

trapezoidal rule. In particular, Eqs. (2.33) to (2.41) define the method.

The systolic architecture for the PKF predictor equations (2.33) and (2.36)

can be most easily derived from the signal flow graph (SFG) of the PKF

equations. The SFG of this method is shown in Figure 3-1. Note that the

computations behind the computational wavefront can proceed in parallel on

separate processors by forcing the corrector to lag the predictor by one

time step. As it turns out, this is fundamental to all the PKF methods

based on the decoupling principle. In this diagram, h (the integration

step size) is related to the data sample rate in the filter. For example,

if the sample rate is 100 Hz then the sample period is 1/100 - 0.01 - h -

integration step size. Because the structure of the PKF state update

(predictor and corrector) are essentially the same as the covariance update

(predictor and corrector) without loss of generality the SFG and systolic-

like architectures for the state update are discussed here.
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Figure 3-1: SFG of PKF Based on Trapezoidal Rule

The generalized systolic architecture for implementing the PKF based

on the trapezoidal rule can be derived from the SFG of Figure 3-1 (see

* Figure 3-2). Figure 3-2 shows that the PKF is decoupled into two parts:

the predictor processor architecture and corrector processor architecture.

Note that both architectures utilize the traditional inner-product cell and

a set of registers to hold intermediate values of x and f. Note also in

the corrector that the output of one inner-product cell maps directly into
the input of the next inner-product cell. The value h/2 also flows

through from cell to cell.

* 3.1.2 PKF Architectures Based on the Trapezoidal Rule (Four Processors)

As in the previous section, the systolic-like architecture for the

four-processor PKF method can be derived from its signal flow graph (SFG).

The SFG for the method (Eqs. (2.46) to (2.59)) is shown in Figure 3-3.

Once again Figure 3-3 illustrates that the computations can proceed in 5"

parallel becuase the computations ahead of the computational wavefront

depend only on data behind the front. The four processors consist of two

processors for the predictor (A and B) and two for the corrector (A and B).
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Figure 3-2: Dual-Processor PKF Architecture Based on the Decoupling Principle

The gains associated with each processor are dependent on the accuracy

requirements and sampling rate through the step size parameter, h.

The PKF architecture for four processors shown in Figure 3-4a and b is

derived from the SFG in Figure 3-3. These parallel architectures can run

simultaneously providing a computational speed advantage of 4x. The struc-

ture of these PKF architectures are not fundamentally much different than

.4 the two-processor case in that inner-product cells and registers are

employed. The stack size and number of inner-product cells has increased

however. The data flow with the cells is identical to the two-processor

case.
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3.2 THE WSMR PARALLEL COMPUTING HARDWARE ARCHITECTURE

The WSMR parallel computing architecture is based on industry-standard

components. It utilizes an open architecture centered around the Vme bus so

that the government can add special function cards to the testbed as desired

(see Figure 3-5). Twelve Systolic-482 boards provide 48 parallel processing

elements and three Mbytes of fast statis RAM as local memory.

Local processor-to-processor communications can be achieved over the Vme

local bus. On-board parallelism can be configured by each Systolic-482's

software controlled state machine. Global communications between bulk memory,

the twelve Systolic-482 parallel processing cards and the master CPU are

carried out over the Vme bus. Sixteen Mbytes of global memory is provided for

main program memory storage. The master CPU contains one Motorola 68030, one

68882 math coprocessor and eight Mbytes of RAM. The master CPU is the program

task scheduler and manages the PKF algorithm computations. A 25 MFLOP (64-bit

array processor) is also proposed for accurate FFT's, solving ill-conditioned

linear systems of equations and the linear algebra in the Parallel Kalman

Filter.

3.2.1 64-bit Floating-Point Array Processor Hardware

The linear algebra requirements of the WSMR testbed can be most effectively

met with a single-board Vme bus array processor. At 32-bit precision, 20 MFLOP

array processor boards are commonly available for the Vme bus. At 64-bit

precision, however, very few off-the-shelf products exist. The VORTEX from

Sky Computers for example performs 64-bit floating-point operations at an eight

MFLOP rate. To meet WSMR throughput requirements, at least three (perhaps four)

of these cards are needed.

As an alternative to the above, we recommend that a next generation 64-bit

Vme bus array processor be designed by Systolic Systems' technical staff. New

chips from Weitek, AMD, TI, IDT, and BIT should all be evaluated for potential

design into the WSMR testbed. We should design in the fastest technology

available to ensure an extended life time for the testbed.

The high-speed linear equation solver hardware could be fabricated as a

two-board set (see Figure 3-6). Board #1 supports the transfer of data to and

from the host and a high-speed memory array. The memory array design is multi-

ported to allow access by multiple computational boards (e.g., Systolic-482

cards via the Vmx port). The mathematical operation sequences are under
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firmware control by board #2. Each board has 64-bit chips, onc WulLiplier and

one adder. Two real-time assembly language codes shall be written to handle %

data communications between the host and the Systolic array processor/FFT

cards.

3.2.2 Memory Considerations

The parallel Kalman filter algorithms and architectures derived earlier

use decoupling to permit the predictor and corrector equations to be computed

on separate processors. At any given time step k, the state, covariance,

and measurements must be stored, as well as intermediate values associated

with the linear PKF's matrix/vector calculations. For a typical nine-state

filter, the operation count given earlier indicates that the number of

operations in the standard Kalman filter is

additions: n x n + 2n - 1 98

multiplications: 2n x n + 4n + 1 - 199

divisions: 1

when n - 9. The data storage requirement is on the order of 8 bytes x

(98 + 199 + 1) - 2384 bytes of 2 Kbytes for 64-bit precision. If the linear

two-processor PKF is used, it must be initialized by running the standard SKF

for the first two tune steps. Then the dual processor PKF can be run at step

3 (i.e., at k - 3). Hence, the following values of x, 4, P, z, K, H

and R must be stored in memory.

State Vector Values: 0(+), X(+), X0(), x2( -)

State Transition Matrix Values: 409 41s €2,

Covariance Gain Values: p (+)g P(+), Pl(-) p2(_) ..

Kalman Gain Values: K1 , K2

Others: H1 , H2 , Ri, R2

Once the linear processor PKF is initialized, memory is needed to store the

updated values of x, 4, P, z, H and R. Hence, in general, the overall

memory requirement is:

Memory - (np +1) x (storage requirement of the standard Kalman filter)

where np = the number of parallel processing elements.
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Thus, (np +1) x (2 Kbytes) are needed to store the data in the parallel

filter. With np - 2, this corresponds to 6 Kbytes. With np = 48, this

corresponds to approximately 98 Kbytes of RAM.

Note that the above memory sizing is for data only. The PKF program

memory has not been sized. Because the two-processor PKF algorithm can be

coded with less than 1000 lines of code and the compiled version of a 1000

line program requires about 128 Kbytes of RAM to store, a reasonable estimate

of the storage requirement for the linear PKF program would be:

PKF Program Memory - np x 128 Kbytes
I

where np - the number of parallel processing elements. With 48 processors,

the program memory is, therefore, estimated to be 48 x 128 Kbytes - 6 Mbytes.

The four-processor PKF would need 2 x 6 Mbytes = 12 Mbytes of RAlM.

Hense, a parallel processor with 6 Mbytes of bulk memory (i.e., relatively

slow DRAIM) and 98 bytes of fast RAM (i.e., cache memory) should be capable of

implementing a 48 processor linear PKF.

Because nonlinear function evaluation generally results in more inter-

mediate values than linear matrix/vector operations, the amount of local data I

storage might be increased by a factor of 2.5x. Hence, 2.5 x 98K - 256K of

fast RAM is recommended for nonlinear extended parallel Kalman filter data
le

storage. Twelve to sixteen Mbytes of program memory should be sufficient,

however, for the nonlinear PKF.

3.2.3 Parallel Processor Selection

One method of estimating the computational requirements for the parallel

Kalman filter is to total the number of additions, multiplications and
divisions needed to complete one cycle of the Kalman filter algorithm. For P

example, the simple Kalman filter algorithm defined in Section I requires only

98 additions, 199 multiplications and 1 division per cycle for a nine-state

filter. Hence, at 100 cycles per second (i.e., 100 Hz sample rate) the number

of arithmetic operations is given by 100 x 298 - 29,800 operations per second. .

Ideally, a microprocessor capable of 33.1 usec per operation is all that is

needed to implement a nine-state filter. Hence, a single Motorola 68020/68881

pair can easily handle the computational requirements of the Kalman filter

assuming 100% efficiency. Note that 33.6 usec per pass through the filter

corresponds to an update rate of 39,800 samples per second.
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Typically, however, only 10 to 30% of peak performance is achieved in A.
practice due to data bus and memory access time restrictions. Therefore, one

target may be updated at a 4000 updates-per-second rate. For nonlinear

filtering typical of target tracking problems, 64-bit precision and the need

to compute trigonometric functions for coordinate transformations can slow

computations down by one or perhaps two orders of magnitude (10x to 100X).

Since it is well known that Kalman filtering must be performed using

floating-point arithmetic to avoid stability problems, the only viable method

to gain back the throughput for nonlinear filtering problems using an extended

Kalman filter is with parallel processing. Therefore, to rapidly implement

the parallel Kalman filter with 32/64-bit floating-point precision, a parallel p-

processing system of 48 processors needs a computation rate of 2.52 MFLOPs per

processor to perform the necessary computations. Using four 25 MHz Motorola

68882 math coprocessors per board, 2.52 MFLOP performance is readily achieva-

able. Hence, with twelve boards it is feasible to track one target in real

time.

The general-purpose nature of the Motorola 68020/68882 processors is

well suited for nonlinear, as well as linear, Kalman filtering. In particular 9

because trigonometric functions (sin, cos, tan, etc.) and square-roots

commonly occur in coordinate transformations associated with lead-angle

prediction, high speed, general-purpose hardware (such as the Systolic-481

parallel numeric processor) is needed to handle the throughput requirements.

3.3 THE WSMR PARALLEL COMPUTING SOFTWARE ARCHITECTURE

The testbed software architecture can be divided into three major areas:

(1) host-to-testbed communication software, (2) Master Processor embedded

software and (3) Systolic-482 parallel numeric processor software. This

section describes our system integration efforts related to implementing the

PKF equations on the testbe d. ..O,

3.3.1 Host-to-Testbed Commu. ication Software

The testbed is a "compute engine" for rapidly evaluating nonlinear

functions for the PKF. The testbed does not have its own compiler or linker.

Software development for the testbed is performed on a "host-computer" which

is familiar to the user. Since the testbed utilizes the 32-bit Motorola 6803C, %
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microprocessor, a Motorola development system or host such as a SUN 3/260 work-

station or Macintosh 11 (which both use the 68020) provides a direct path for

software development for the testbed. If a VAX or IBM computer is used as a

development system for the testbed, a cross compiler is needed to create

native code for the 68020 in the testbed. Since Systolic Systems has a SUN 3

and MacIntosh II, these systems have been used for software development for

the testbed.

Once created, an application such as the PKF code must be downloaded

to the testbed, executed and the results uploaded back to the host. The

performance of this procedure, commonly employed in the industry, depends

on the data transfter link between the host/testbed. An RS-232C serial link

using Motorola S-record format has been created and tested. A high-speed
1

RS-422 link is being developed- These two approaches provide standard inter-

faces to the testbed and are quite useful, even if an ethernet link is

developed between the host/testbed.

a.o

3.3.2 Testbed Master Processor Software

The real-time software in the master processor is responsible for overall

system operation and managing the interactions with the host/user. From a

parallel computing point of view, the master is a task scheduler. It schedules W

tasks (i.e., floating-pomt operations, subroutines) to execute on one or more

Systolic-482 cards. As discussed in the next section, tasks tend to involve

quad (four) simultaneous floating-point operations, such as ADD, SUBTRACT,

MULTIPLY, DIVIDE, TRIG, SQUARE-ROOT. Also, linking of tasks Into a string

and routing these tasks to available 482 cards is the responsibility of the

master processor.

3.3.3 Systolic-482 Parallel Numeric Processor Software

The assembly language software for the 482 involves self-test diagnostics,

parallel floating-point operations, error detection/correction, and status

information. All communications with the Master and other 482 cards is based

on a "mailbox" structure. Messages are passed to the 482s mailbox from the

master and read by the 482 to determine which tasks to execute on what data.
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3.3.4 Self-Test Diagnostics and Exception Tests

The self-test diagnostics for the Systolic-482 include a memory test, LED

status indicators, bus integrity test, floating-point integrity test and mail-

box activity test. The 482 memory test includes a walking ones and zeroes test

through all 256 Kbytes of its local memory. A mix of instructions with known

answers is used to test the 68020 microprocessor. Light Emitting Diodes (LEDs)

are used for status indicators. The LEDs light each time the 482 executes a

major piece of software correctly indicating the 482 is healthy. Known data is

also passed from EPROM to RAM and compared to verify that the 32-bit-wide data

bus on the 482 is operationally sound. A known set of floating-point numbers

is also used to verify that the four 68882 math coprocessors can accurately

perform floating-point operations reliably. Additionally, known messages are

passed through the 482's mailbox to ensure its integrity. Comprehensive

diagnostic test routines were written to exercise all the above back-to-back

and display the pass/fail results for several thousand passes. This diagnostic

self-test software can be involved by the user to "check" the testbed at any

time.

3.3.5 Floating-Point Operations

Although the 482 can operate in 32-bit, 64-bit or 80-bit extended preci-

sion, the floating-point test code was written for 64-bit floating-point

operation. The 64-bit test numbers can be entered using the VFILL ("vector

file") routine to allow the user to pick which numbers to test. Since the

answer is known by the user, he can type the answer in and the software can

subtract the numbers and display the error (if any). Thus, this test can be

tailored by the user.

Floating-point operations on the 482 can be computed as singles (on one

68882 math coprocessor) or quads (on four 68882s simultaneously). Singles

are useful for truly "scalar" processing. Quads are desireable for vector

operations that are "chained together" four elements at a time. Long vectors

(say greater than 32 elements) can be computed on a single 482 card or eight

to twelve cards depending on task loading.

The quad (four) parallel floating-point primitives in the Systolic-482

include:

AiO, SUB, MULT, DIV, NOP, TAN, COS, SIN, SQRT. ..... , etc.
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3.3.6 Error Detection Code

The 482 has on-board error detection code for the following error

conditions: bus error, address error, illegal instructions, division by zero,

and floating-point coprocessor overflow/underflow detection. There error codes

are accessible through the mailbox to the master in event of a fault condition.

Hence, the master can take appropriate action (e.g., inform user by illuminating

a special combination of LEDs).

3.3.7 Mailbox Error Codes

The 482's mailbox scheme has its own set of status conditions. These

include: mailbox empty, mailbox not empty, no error present in mailbox, and

mailbox unknown (i.e., confused). The status of the mailbox is available to

the testbed's master and each 482 card in the testbed. The issue of multi-
access to the mailbox, deadlock (i.e., system fault when multi-access is

attempted) and task priority are topics still under consideration.

-N a

4
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SECTION 4
S

PARALLEL KALMNA FILTER ALGORITHM VALIDATION

To show the effectiveness/payoff of the parallel Kalman filter (PKF)

testbed research, it is important to consider a meaningful target tracking

problem. The test problem should be representative of typical missile appli-

cations and serve as a baseline to measure the benefits/accuracy of the PKF

technology. With this in mind, two test problems are considered. The first

problem (test case #1) is very simple, utilizes time-varying parameters, and

illustrates the speed/accuracy of the PKF method. Test case #2 is more

realistic and more challenging since it involves nonlinearities and exponen-

tials.

4.1 TEST CASE #1

Test case #1 is based on the following state and measurement model:

x(k+l) -(k+l,k) x(k) + r(k+l,k) w(k) (4.1)

z(k+l) H(k+1) x(k+l) + v(k+l) (4.2) l

.%...%

where x is the state of the target, 0 is the state transition matrix,

z are measurements and w and v are noise terms.

For the purpose of test case #1, the model parameters were selected

as follows:

4(k+1,k) exp (-k*0.001), r(k+l,k) 1, H(k+1) 1 (4.3)

The noise terms %

w(k) "- N(O,Q(k)) and v(k+l) % N(O,R(k+l) (4.4) %

had zero mean and covariance Q(k) and R(k+l), respectively. .5-

4~~ 0P ',W
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In this case, the PKF equations are given by:

procedure new PKF (i:integer);

begin ,,

A [i+4l-i]: *xp (-*O.O01)
[i+2,i+l]: exp (-(i ) *0. 01);

B [i+l,i] : = ;',.

predictor
X [i42,J-l): A [i+2,i+i] * A [i+10i] x [i.i];
p [i+2°i+l]: A [i+2,i+lJ A [i+1,iB P li.i] A A [ 2,i+1)

A [i+2,i+l] B [i+l,i] Q [i] B [j+l,i) A [ji2,i+])

+ B [i+2,i+ 1i Q fi+l- * B [ 1i 2,i+11 
;

Kalman gain

X [i+1]: (P [i+l,i] v F [i+I]) / (({ [i+l] 0 P [+i-,i) H [i+I]) + R

corrector 
AD4J

X [i,i +1) X [i+l,i + K [i-l] * (z [i I] (H [Zf]) X [i1~i)) -'4.

p [i+l,i+l]: ( - (K [i ]) H [i 1)) 0 P [i+l,i]; ..

end; I new PKF 
.

A..

Similarly, the SKF equations, when coded, appear as follows:

procedure SKF (i: integer);

begin

A tja-,i): exp (-iV.001);
B [i+l,i): i;
X [i+!] : =

X [i !,i] = A [jll,i] X ! i,i); " i

B fi+..ij; 
..

K [i'l: = P (- ti'l,i) H ti~23)/ (Hfi-h3 - P [i'+,i3 "H
[i "-l] )'e R [i "1]J ; 

j

X [i'I.i 2]: X [i'+l,i) * K [i~l) " (Z [i-2) li i-i"l) A [i- :iJ
X [l~i]) ;,-

p f['l.i+ l] : (I " (K -i ) H [b.l]j ) 3 p [ip l ,i;

end: SKF }

The results for this time-varying case are shown in Table 4-1. The results .

indicate that the PKF equations are well behaved and exhibit similar convergence * 4

characteristics as the SKF. The optimal solution can be obtained via one pass

through the SKF equations once the PKF converges.

Since the computer simulations on these test casees were encouraging, the four-

processor PKF equations were coded (see below) with similar results.
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TBLE 4-1 CObI AXISON OF THE SKY AND ,1" ESTIMATES OF AN

EXPONENTIALLY DECAYING TARGET TR&JECTOY

Sequential Kalman Filter
P(0,0]:10.000000 XrOO]: 1.000000 z1O): 1.000000
P11,11: 0.099020 X(1,1]1: 1.000001 2[l] : 1.000001

P[2,2): 0.066535 X12,2]: 0.999666 Z(2]: 0.999002

P13.3]: 0.062444 X[3,3) : 0.998501 Z[3]: 0.997001 As

P(4.4]: 0.061842 X[4,4): 0.996434 Z[4): 0.994022

P(5,5]: 0.061737 Xf5,5]: 0.993419 Z(5]: 0.990055

Pf6,6]: 0.061704 X(6,6]: 0.989442 Z(6]: 0.985118

P[7,7] : 0.061681 X[7,7) : 0.984501 Z 7) : 0.919226

9(8,8]: 0.061660 X(8,8] : 0.978609 Z48) : 0.972396

P[9,9)-: 0.061639 X(9,9]: 0.971781 Z(9]: 0.964649

(10,103 : 0.061618 X110,10 : 0.964037 ZF1 o: 0.956007

P(11,1] : 0.061597 X[11,11): 0.955398 Z[11): 0.946496

P(12,12]: 0.061576 X(12,12]: 0.945892 Z[12] : 0.936142

P113,13]: 0.061556 X[13.13] : 0.935542 Z113] : 0.924977

(14,14] : 0.061535 X[14,14] : 0.924381 Z[14] : 0.913031

P(15,15] : 0.061514 X115,15) : 0.912441 Z[15) : 0.900339

P[16,16]: 0.061493 X[16,16] : 0.899755 j126) : 0.986935

p(17,17]: 0.061473 X[17.17]: 0.886358 Z127]: 0.872858

P(18,18]: 0.061452 X[16.18]: 0.872289 Z118]: 0.858146

P(19,19]: 0.061432 X[19.19): 0.857584 Z[19]: 0.842839 "

P120,20] : 0.061411 X[20,20] : 0.842285 Z120) : 0.826977 )p

P121,21]: 0.061390 X[21,21): 0,826432 Z[21]: 0.810603

P122,22] : 0.061370 X122,22) : 0.810067 Z122] : 0.793759

P(23,23]: 0.061349 X[23,23]: 0.793232 Z(23]: 0.776488

P[24,24]: 0.061329 X[24,24]: 0.775971 Z124): 0.758833

P[25,25]: 0.061308 X[25,25) : 0,758326 Z125]: 0.740839

P[26,26]: 0.061288 X[26,26) : 0,140342 2263: 0.722549

P[27,27]:" 0.061268 X(27,27] : 0.722063 227): 0.704005

P128,28): 0.061247 X(28,28] : 0.703530 Z[28] : 0.685253

P[29,29]: 0.061227 X[29,29]: 0.684789 Z29]: 0.666333

P(30,30): 0.061207 X130,30) : 0.665880 230) : 0.647287

Parallel Kalman Filter
[0,0]: 10.000000 X(0,O0 : 1.000000 Z10: 1.000000 ,...

PJl,13 0.099010 X (1.I : 1.000002 Z [1) : 1.000002 .%

PJ,2) • 0.099027 X(2,2]: 0.999003 Z[2]: 0.999003

P3,3]: 0.074876 X13,3]: 0.997008 Z(3]: 0.997008

P(4,4]: 0.074839 X14,4] : 0.994022 Z14]: 0.994023

P(5,5]: 0.073193 X(5,5]: 0.990055 Z[5): 0.990056

P(6,61 : 0.073155 X(6,6] : 0.985118 Z(6] : 0.985119

P[7, 7): 0.073003 X 7,7] : 0.979226 Z(7) : 0.979227

p9(,8): 0.072965 X[8,8]: 0,972396 18) : 0.972397 
%

P[99]: 0.072919 X[9,9]: 0.964649 Z[9): 0.964650

P910,10): 0.072881 X110,10] : 0.956007 Z(10]: 0.956008

P111,11): 0.072842 X(11,11) : 0.946496 Z[111: 0.956497

P(12,121: 0.072804 X112,12] : 0.936143 Z112): 0.936143

P[13,131: 0.072767 X113,13]: 0.924977 2113): 0.924978

Pf1414J : 0.072729 X114,14): 0.913031 Z114) : 0.913032

P115,15): 0.072691 X115,15) : 0.900339 2115): 0.900340

9(16,16]: 0.072653 X[16,16) 0.886935 2116): 0.986935

P117,171: 0.072616 X7,217 ): 0.872858 Z[27): 0.872859

P918,18) : 0.012576 X(16181 : 0.858146 Z[18] : 0.858147

P(19,19]: 0.072540 X119,19): 0,842839 z19): 0.842840 0

P[20,20] : 0.072503 X[20,20] : 0.826917 Z120) : 0.826978

P[21.21): 0.072465 X121,21): 0.810603 Z121): 0.810504

P912,2] : 0.072428 X[22,22] : 0.793759 Z122) : 0.793760 4.

P(23,23] : 0.072390 X[23,23) : 0.775488 Z123) : 0.776489

P(24,241: 0.072353 X(24,24]: 0.758833 Z[24): 0.758834

P125,25): 0.072315 X125,25) : 0.740839 Z[25] : 0.740840 %

P(26,26]: 0.072278 X126,26) : 0.722549 Z126) : 0.722550

p[27,27] : 0.072240 X(27,27) : 0.704006 Z[27) : 0.704006

P128.28) : 0.072203 X(28.28] : 0.685253 Z[28] : 0.685254

P129,29]: 0.072166 X129,29] : 0.666333 Z[29] : 0.666334

P(30.30]: 0.072128 X130,30): 0.647288 2130): 0.647289

%
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4.2 TEST CASE #2

Consider the problem of estimating the position of an object (missile)

from angle-only (or range) measuremements. The geometry of this target

tracking application is illustrated in Figure 4-1. Typical parameter

values for this exercise are given in Table 4-2.

Missile

/1/, T
/

/

RADAR /

t r i

Figure 4-1 Geometry of Test Case #1

In Figure 4-1, xt, Yt represent the target position in X-Y

coordinates and y. represents the sensor position.

The target range is given by
, 2 )2)

2t a (x 2 (yt " Ys) (4.5)

With angle-only measurements the line-of-sigh: ange, e, can be esimazec

Uas follows:

e *tan- k
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TABLE 4-2

PARaMETER VALUES FOR TEqT CASE #1 .Jft

o 0 3.4 x 10
- 3 lb sec

2 /ft 4

g = 32.2 ft,'se: 2

k - 22,000 ft

'-N(00 Jb/ 2  5 2 4
E N(2000 ib/f, 2.5 x 10 lb /ft)

0o 3 .

= 0.05 lb/ft3

22
Pl 500 ft2-o ~t

P22 = 2 x 104 /ft/sec
o

p3 3 = 2.5 x 10 lb2/ft f ,

o
P 4  =50 ft

2

o ft.p 5 5  50f 2
I

0 f

x1 (0) - 3 x 105 ft

S2 (0) -2 x 10 4 ft -...2t. 2

S3 (0) - 1/2 x 10-2 ft2/lb

x4(0) - 5 x 103 ft

x (0) a 2 x 103 ft

5.fd.
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The target's motion is modeled as a falling body in state variable form as:

Xl , Yt' x2 Yt' x3 x 3 -, x4 xt,

x4 - 0, x5 - Ys' x5 - 0 (4.7)

where B is the so-called ballistic coefficient of the target and yt is the

t.arget's height above the earth.

The equations of motion for the target are:X- x S
[~ ~2 2

• 0 x2
x g-d d 2- (4.8)

2 2x 3
3  0

• i x /k -:

x4  0 0 e (4.9) %

0

x f(x) •

where d is drage deceleration, g is acceleration of gravity, P is atmos-

pheric density (with p0  the atmospheric density at sea level) and k is a

decay constant. The differential equation of velocity, x2, is nonlinear

through the dependence of drag on velocity, air density and the ballistic

coefficient, B.

Initial values of the state variables are assumed to have covariance

matrix of the from

Po" diag (pl1 , P22 ' P33 , P44 ' P55 ) (4.10)
0 0 0 0 0

Estimating all the state variables may be solved using the following

extended Kalman filter:

Predictor: ,.

x(t) - f(x(t)) x(tO) 0  (4.11) -

P(t) - F(;(t))P(t) + p(t)FT(x(t)) + Q(t), P(t0) - P0  (4.12)
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Corrector:

xk(+) (- + Kk(Zk - hk(xk())) (4.13)

P I, )- (I - K.kHk(xk(-)))Pk(-) (4.14)
Kk - Pk(-)Hk(xk(-)) * (Hk(Xk(-))Pk(-) HT ( + R-k) 1 (4.15)

where

F(x(t)) -= f (x (t))
ax(t) x(t) -£(t) 

, .

h(x (t k))

H k ( x ( -) ) 3x ( t k ) I --
k x t ) x(tk) = x -) 

' "

The nonlinear differential equations were integrated using the trape-

zoidal rule. The partial derivatives were computed using a finite differ-

ence method. The model uncertainty matrix, Q, and the measurement noise -

covariance, R, were given by:

Q - d i a g ( 0 .2 , 0 .2 , 0 .2 , 0 .2 , 0 .2 ) (4 .1 6 ) ' -

R- diag (0.2, 0.2) (4.17) 0

4.3 EVALUATING THE PERFORMANCE OF THE PARALLEL KALMAN FILTER BASED ON THE
PARALLEL TRAPEZOIDAL RULE

After careful inspection of the nonlinear extended parallel Kalman

filter (EPKF) formulation, it is clear that the performance of the filter

is closely related to the accuracy and speed of the numerical method used

for propagating the state and covariance time updates. The trapezoidal

rule discussed in the previous section is accurate to O(h2 . For h - 0.01 ,.>

four-digit accuracy is attainable. With h - 0.001, six-digit accuracy .

results. Automatic step size (h) selection based on a prespecified accuracy

requirement (e.g., norm of the local truncation less than 0.000001) can be

achieved using a variable step size integration scheme. Time to solution

can also be used a a criteria for selecting h. Since it is anticipated %

that computation time is key, the parallel methods are evaluated with a d

relatively large step size (h = 0.01 for each trapezoidal rule being

e v a l u a t e d ) .
, . ,

46

'. 

',-

' "%'.' ' .L '.W' V '% 'V.€" 
" 5," " " ' " " " " 

"w" " %' %"%'#'. ,"'W,%,'.%:" " " " " " " %' " " " "" " " " """" " " """ " " " " "" . . . . . " "SI.



4.3.1 Parallel Solution of Test Case #1

The target's equations of motion were used to demonstrate the numeri-

cal properties of the parallel trapezoidal rule. The initial conditions

and physical problem parameters were described. The results of propagating

the target altitude (xi) anid target ve1ocity (x2) with the parallel

trapezoidal methods are shown in Tables 4-3 and 4-4.

The results in Tables 4-3 and 4-4 are based on a fixed step size of

h - 0.01. The data indicates that the absolute error between the sequen-

tial trapezoidal rule and the parallel trapezoidal rule is relatively small

( 0.1%). However, the absolute error for the targPt veloclty is growing

with time. Although at first glance this may appear unacceptable, a more

detailed examination indicates that the change in the percent error noima-

lized by the change in the variable being integrated is only 1.15x 10-7 %

per ft for the target altitude and 4.4 x 105 % per ft/sec for the target

velocity. Since the flight time for this application is only 15 to 20

sc:onds, the maximum absolute error on impact for the target altitude is

0.11% and for the target velocity 0.55%. If not to improve accuracy, a

smaller step size (say h - 0.001) is worth evaluating.

The results in Tables 4-5 and 4-6 are based on a fixed step size of
h - 0.001. Note that in each case the parallel trapezoidal methods are as

accurate as the standard sequential trapezoidal rule. Note that the worst-

case maximum error is much less than 0.01%. Thus, with a small step size,

the parallel methods are equally good with the sequential methods only 400%

faster to compute per state equation. A trade off between speed and

ultimate accuracy must be made.

4.3.2 Summary

The results of this section indicate that as more processing elements

*" are used to speed up the PKF state (and covariance) propagation, the

i* accuracy of the parallel solution can degrade compared with satndard

sequential methods. Thus, because the EPKF utilizes the parallel trape-

zoidal rule to integrate the state and covariance equations, the EPKF

solution should be less accurate compared with the EKF. The execution

speed of the EPKF should improve linearly with the number of processors.
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Table 4-3 State Equation Integration Comparing the Trapezoidal Rule
and the 264 Processor Parallel Trapezoidal Rule (h=0.0l)

Trapezoidal Rule Parallel Trapezoidal Rule

I Processor 2 Processors 4 Processors

Time Target Target Target Absolute
(sec) Altitude Altitude Altitude Maximum

(ft) (ft) (ft) Error

0.500 290001.923 290001.923 290001.923 0.07%
1.000 280012.071 280012.070 280211.725 0.07%
1.500 270039.727 270039.726 270238.905 0.07%
2.000 260099.339 260099.339 260297.685 0.07%
2.500 250213.191 250213.192 250410.158 0.08%
3.000 240415.165 240415.165 240609.927 0.08%
3.500 230755.644 230755.636 230946.984 0.08

4.000 221307.016 221306.981 221493.216 0.08% -

4.500 212168.020 212167.913 212346.788 0.08'
5.000 203463.303 203463.031 203631.846 0.08%'-

Table 4-4 State Equation Integration Comparing the Trapezoidal Oule
and the 2&4 Processor Parallel Trapezoidal Rule (h=0.u.)

Trapezoidal Rule Parallel Trapezoidal Rule

1 Processor 2 Processors 4 Processors

Time Target Target Target Absolute

(sec) Velocity Velocity Velocity Maximum
(ft/sec) (ft/sec) (ft/sec) Error

0.500 19990.367 19991).369 19990.690 0.0016%

1.000 19966.004 19966.006 19966.692 0.0034%
1.500 19918.640 19918.642 19919.896 0.0063%
2.000 19835.603 19835.606 19837.737 0.0107%
2.500 19697.851 19697.859 19701.325 0.0176%
3.000 19477.635 19477.654 19483.112 0.0281%
3.500 19136.462 19136.509 19144.840 0.0437%
4.000 18625.119 18625.229 18637.499 0.0665%
4.500 17888.965 17889.210 17906.486 0.0979%
5.000 16882.258 16882.759 16905.719 0.1389%
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Table 4-5 State Equation Integration Comparing the Trapezoidal Rule
and the 2&4 Processor Parallel Trapezoidal Rule (h=0.001)

Trapezoidal Rule Parallel Trapezoidal Rule

I Processor 2 Processors 4 Processors

/,

Time Target Target Target
(sec) Altitude Altitude Altitude

(ft) (ft) (ft) '

0.500 290001.924 290001.924 290021.914
1.000 280012.072 280012.072 280032.038 %

1.500 270039.728 270039.728 270059.647
2.000 260099.341 260099.341 260119.176

2.500 250213.192 250213.192 250232.890

3.000 240415.163 240415.163 240434.641
3.500 230755.630 230755.630 230774.766
4.000 221306.970 221306.970 221325.595

4.500 212167.895 212167.895 212185.784
5.000 203463.006 203463.006 203479.889

Table 4-6 State Equation Integration Comparing the Trapezoidal Rule
and the 2&4 Processor Parallel Trapezoidal (h=0.O0l)

rrapezoidal Rule Parallel Trapezoidal Rule

1 Processor 2 Processors 4 Processors

Time Target Target Target
(sec) Velocity Velocity Velocity

(ft/sec) (ft/sec) (ft/sec) . .

0.500 19990.367 19990.367 19990.399
1.000 19966.005 19966.005 19966.073
1.500 19918.641 19918.642 19918.767
2.000 19835.606 19835.606 19835.819
2.500 19697.860 19697.860 19698.207
3.000 19477.656 19477.656 19478.203
3.500 19136.512 19136.512 19137.347
4.000 18625.234 18625.234 18626.463
4.500 17889.215 17889.215 17890.946
5.000 16882.764 16882.764 16885.064
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Table 4-7 2 Processor Parallel Trapezoidal Rule

double rhc., beta, xZ, rj,4, x5, d, h ;
6 c:u b -e x x_'7 e ra& x ,krho. ,:, st irne

# ir~c 'ir (th . h)
in---- p., Op

riE "ten~ cuut e (t c, c.h

F, c".' t c. ' (

/*#xlp derictes xI pred. xl c deictes x1 cc-rrectcor *

xlpre; -X1 ; XICEC'J = X1 ; x2CEQ@J = X2 x2p"0J = X2
rhcpib rhc-.0*e p ( ->xlp[0l/krhc.) ; rhc.cZOJ = rhoOZ*exp( -xlc[~b3/krnc )
xlp[13 -i x' rhc-p~l) = rhcoZA*exp( -X~p[13/Krhc.
)(ap'Lll -XL

fcr( -'A; i (=rstep ;+1-i

/**pr-ecictcr e~ita C~re, *

rhcPri3 rhc.Q'i*exp( -xlp'Li]/krhc )
rhc.tZ'*exp( -xlc i-'A/.rhc ),

xlpnj+ll = x'lcli-1 + 2.*h*( -xapri]
xc' Z +I:= x~c Ci-3 + 2.*h*( rh - - C 1 m; jx"R 32

/**cc.rrectc'r eq~uation~s */9

xli = xlc'Li-ui + .5*h*( -xap~il - xE'cCi-i))
x2cli'j = xac[1-13 + hg- (h/4.)*( rhop~i p~i*xEpij]/x(3

+ rhc-cri-1J*xac~i-13*x~c~i-13/x3);

St ime i

f ( (i /r~pr irt r.pr it i
f pr irtf (t c-ut I '\ r, t ime =%7. 3f se c x' %7. 3f f t x2 %7. 3 f f t/sec

,st~m , xc[13 xaeli] %

printf ("\r\r, time -%7.:3f sec xI %7.3f ft xE %7. 3f ft/sec
St iffe , xlc~i C 1 xac i 3

}% %

fclase(toutl);
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Table 4-8 4 Processor Parallel Trapezoidal Rule

CcLub) e rhc., beta, x3, g, x4, X5, d' 6

double x, x2 , dra&
d,,-bAex ,krhc , rh-oO' , st ie

, 2c['5100 , rhCprvjOO3 ho51'0

irnt i , 1, m , ristep , nprint

* ~i ric Iude(st ici.h >

ma i n(

F"LE *tc-utJ:
tc'utE = fcper ( "tdenc.2. cut' "w"

/*.xlp oernctes xI pred. xlc den~otes xI corrector **

/**initial con~dition~s need to be spec if ied are:
xl 0 4 1 mapr 0 4 3 xlc[ 0 -2 -j x2cL 0 -

xlpt03 X1 ; XlCtOJ =X1 ; x2cE0] x2 ; XEpIOI =X2 ; X2aPL'J x2
* xlp[.L5 =X1 ; Xlpt2) X1 ; X2P[2] =X2. ; x~pC23 =XE: ;

xlp[3] x1 ; xlp143 xI ; x2pE33 xE ; x2p[43 x2
* xl'ctfl x1 ; xlcE2] = x1 ; x2c~l'j= x2- ; x2c[ZJ = xE

rhop '10 = rhoOZ*exp( -m Ip LIM/krhc.) ;rhc L~ = rhoO*exp( -xlc[03/k-rho)
rhop 113 = rh c.*e xp ( -xlp[IJ/krhc.) ;rhoc L) = rhoO*exp( -xlcED/ .'rhc.
rhc'p[21 = rh.O~~emp( -xlp~23/krh') ;rhoc 12] = rhoO*exp( -xlc123/.rhc- );
rhcnPZI- = rhc.Ie*exp( -xlp[3-./rh.)
rhop-4: = rhco'~exp( -xlp[4:/krhc)

*rhop 121 = rnoi2Z~exp( -xlp[2.-]/krhtc.
*rhocEI) = rhc.O*exp( -xlc[13/orh.)

/***rut oy predictor equations for i to oatain better irita
est imate for xlp[33 , xlp[43 , x2pE3-. , x~p[43 "

x1p4"A xlc[O.0 + 4.*h*( - xrap[25
x~p[43 x2ctg'j + 4.*h*( G - rhopE234x2pE.E)*x2pt2]/2/x3);

XILpE3J xlc[0J + 1.5*h*( -XapE2J x2pflJ
x2pE33 - x2c[03 + 1.50h*( &
-rhc-pE2)*x pEE*.*x: pt2)/2/x3 + -

rhop[1)*.x:,p[l)*x2prl)/2/xZ ) ;

rhop:3! = rhoiO*exp(-xlp[3]/krho,
rhopr4) rhc.O*exp(-xlp[4)/ikrho);

for( i -2~ i(arstep ; -- )



Table 4-8 4 Processor Parallel Trapezoidal Rule (continued)

/**predictcor equationrs*/

rhc-Pr.2i'j = rhoO~*exp( -xlpE2*i3/krhc.
rhcP[Z*i-13 = rhcs0*exp( -xlpE*i-13/krhc,

rho[2*-2''A= rhoO~*exp( -xcrL*-23/krh.)
rhoCcr2*i-33 - rhoQO*exp( -x12*i-33/krho)

x1P[2*i+23 xqc'*i-E2 +- 4.*h*( -x~?p[2*i)
XaCre~i-Ej + 4.*h*( g - rhop[a*iJ*x2pra*Xap[E*J/IxZ )

xlpt[?*i~ll x~cE*i-2' + 4L.5*h*( -xEp2*i) x.?pE[2*il7J)
x.-.p 2* - ' xpr.2*i-23 + 1. 5*h*
-rhc-p:2 iJ*x~pE*i:*x~pEXE*I'j/2/x3 +
-rhcopE*i-'*x~p*i-13*xapr2*i-1)/2/x3);

/**ccrrec-ior equat icris *

xlc2*'j= x'Lc[2ai-3 + .5*h*( 3..*>xpr2*i3 - 9*xap[2*i-13
x~ * 3= x Ec '* -3] 3 5*ri* 3.* g rhopra2*

xapa~x~x~~a~J/2/x3 -9..*( g -rhopMa~i-1'j*xapE2*i-13*

x 1 c * i- 13 x 1c [2* i-33 2.- x~ 2
xac[Z*i-13 x~c[2*i-3- + -.h*

rhoc 2* 1Jx2C E* i -a, *xa2C a-Ea x3)

fov(1 -; 10 ; ++I ) m =prirint*l
st ire rflWn
fpriritf (tciutR C\rArn timne %7.3f sec xlc =%7. 3f ft xac %7. 3f f t/sec

Starne , XlcCImJ x~c[m]

priritf("\r~\ri time =%7.3f sec xlc =%7.3f ft x2c %7.3f ft/sec
,stime xlcrm3 x2clm)

fclose(tcout2);
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Target Height Estimation

Figure 4-2 shows the noisy target height measurements and the EKF

estimate of the target's height above the earth. Note that the EKF esti-

mates filter (or reduce) the measurement noise considerably. Also, note

that the EKF tracks the data quite well as the target descends toward

earth.

Target Velocity Estimation

The target's velocity is illustrated in Figure 4-3. Note that the

EKF converges to the actual velocity within four seconds. The target's

velocity is essentially constant at this altitude making target prediction 0

easier once the EKF has converged. This knowledge can be built into the

knowledge base for the expert system that manages the EKF.

Line-of-Sight (LOS) Angle Estimation S

Figure 4-4 shows the LOS angle estimate from the EKF for test case

#1. The LOS angle is relatively steep (870 on average) and decreasing as

the target height declines. This follows because the observer is station-

ary while the target is moving. Because the tartet is 250,000 feet above

sea level, it follows that the LOS angle be large (approaching 900).

Based on the change in the LOS angle estimate per unit time (20/4 seconds

- 0.50 per second), it would take 176 seconds to reduce the LOS angle to U'.

zero.

Target Range Estimation

The target range estimate from the EKF is given in Figure 4-5. Note "'.

that the target is getting closer to the observer at a rate of 250,000

ft/sec. Hence, within ten seconds the target will hit the observer unless

some action is taken. Thus, the EKF must be capable of rapidly updating

the range estimates (in under one second) to be effective for WSMR

applications.
.%

Summary %.5-

This test case illustrates the class of computations required for a

WSMR target tracking. Squares, divides, square roots, exponentials and

%.
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trigonometric functions are needed. In addition, the extended Kalman

filter requires the solution of nonlinear ordinary differential equations.

Thus, high-speed nonlinear function evaluation is required to solve target

tracking problems on a timely basis. This test case, although simple, can

be solved relatively easily to provide a known solution to verify the

parallel Kalman filter algorithms and architectures. This test case can

be expanded to three dimensions using angle-only measurements of the

target. In this case, the target tracking problem becomes more nonlinear

and involves additional trig functions to be computed during coordinate

transformations. 
'.

-q
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

,p

5.1 CONCLUSIONSNAE

Based on the results of our Phase I study, the following conclusions can

be drawsn:

o It is technically feasible to decouple the predictor and corrector

equations in a standard Kalman filter for parallel processing on
multiple processors.

o The decoupling principle allows the parallel Kalman filter's

predictor and corrector equations to be computed on separate
processors improving computational speed directly proportional

to the number of available processing elements.

o It is feasible to extend the linear PKF theory to nonlinear target
tracking and estimation problems allowing an extended Kalman filter
to run on multiple parallel processors.

Because both linear and nonlinear filtering can benefit from the decoupling

principle, this research activity appears well suited for transition to the

Phase II stage of the SBIR program.

5.2 RECOMMENDATIONS

Based on the conclusions derived from our Phase I results, the following

recommendations are presented:

o Continue coding and evaluating the PKF algorithms on a parallel

computer whose architecture can be reconfigured to validate newly
developed target tracking algorithms and architectures. Many

issues regarding the implementation of the parallel Kalman filter
can be learned by coding the PKF algorithms and architectures.
For example, timing, synchronization, drift, potential divergence

of the error covariance update, and model sensitivities could have
a major impact on the ultimate application of the PKF. Hence, it
is recommended that an expert system be developed to manage PKF lp
computations.
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o Create a parallel computing testbed facility (based on industry-
standard hardware and software). A flexible/reconfigurable
parallel computing testbed is recommended to rapidly test and
evaluate the performance of newly developed parallel processing
algorithms and architectures. Because WSMR target tracking appli-
cations tend to be nonlinear, a scalable architecture (i.e., N'

expandable based on problem size) for nonlinear function evalua-
tion is recommended. General-purpose microprocessor/coprocessor
technology augmented by a 64-bit floating-point 25 MFLOP array
processor board set is recommended to accommodate a wide-class
of parallel algorithms. Four processors per card are recommended
to simultaneously compute the equations in the decoupled PKF
(i.e., two processors for the predictor and two processors for 7
the corrector per card). Multiple cards (say twelve) can be
installed in the testbed to provide 25 MFLOPs of 64-bit nonlinear
function evaluation power. An industry-standard Vme bus is also
recommended for several reasons: (1) Vme is a high-performance
bus, (2) Vme is supported by several major companies allowing the
government to add "special function" cards to the system, and (3)
Vme is also standard in high-rel, milspec and ruggedized systems
for actual field test of our PKF technology. V5

o Use actual flight test data to show the benefits of the PKF
techuolugy. Betause of the complexity of realistic target
tracking applications, it is anticipated that even today's supet-
computer architectures will not be capable of solving these
problems in real time. Due to the unique matching of the PKF

algorithms and architectures, it is anticipated that problems
that could not be s lved otherwise in a reasonabie time (at a
reasonable cost) can be solved on the proposed testbed. Thus,
it is recommended that a target tracking problem based on actual
flight test data be solved and benchmark performance documented
so that future designs can be compared. Due to the "special"
architecture of the recommended parallel computing system, it
is anticipated that it can be the standard to improve upon for
the next five years.

5.3 SUMMARY

Based on the results in this report, it is clear that the PKF theory is W1%

well developed, mature and ready to proceed to full-scale validation on actual

flight test data on a parallel processing testbed. Because the PKF technology

has been needed to solve several applications in the DoD for more than a

decade, it is anticipated that once fully developed this technology can

benefit several sectors of the DoD. This is possible because the necessary

technology (e.g., 25 MFLOP 64-bit floating-point adders/multipliers/dividers

and 25 MHz 68030/68882 general-purpose microprocessors) has only recently been

available to transition the PKF theory into practice. Hence, Systolic Systems

would be pleased to continue this program under Phase II of the SBIR program.
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