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ABSTRACT EE

—>This technical report is an attempt to survey the organization :
principles for distributed systems in a systematic and concise manner.
Starting with a comprehensive set of terms covering the area of
distributed computing, a classification scheme for distributed
operating systems is developed. Based on this classification scheme
several communication models are surveyed. Client-server models as
an attractive structuring means for distributed operating systems
are discussed in greater depth. The report concludes by elaborating
the nature of cooperation as an unique underlying principle to organize
the work in distributed systems. . _
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1. INTRODUCTION

&

Distributed computing has become one of the most rapidly developing technology in the computer
field in recent years. A growing number of research efforts in the computer science community are

devoted to different subjects of this fascinating topic worldwide.

Distributed computing -as opposed to centralized computing-appears as an attractive alternative
to configure a computing system and to organize its work. It receives its potential power from a
characteristics fundamental to the structure of any distributed system: its conceptually unlimited
extensibility in terms of processing nodes and storage capacity. This property gives raise to the

hope that some day one will be able to built distributed systems which -in terms of processing

s

power and reliability- will exceed by far the most powerful centralized systems ever built.

However, when more and more people were ¢caling with different aspects of distributed comput-
ing the terms ani concepts got frequently mixed-up and misused. Today. the term "distributed
computing” and al its derivates are buzzwords without any precise meaning. Compare for exam-

ple the following tems and try to relate them to each other precisely:

distributed processing Accession For

distributed programming ' NTI;S*GTRAJE
distributed program DTIC TAB

*y

parallel programming
parallel program

.' parallel system ﬂ.l ;
. :. -

o

parallel programming language
large grain parallelism

o fine grain parallelism
“n network
AN

AT AT

.-. - Oy Y i
s A A

e distributed system Unannounced ]
Co distributed operating system Justifiocation

‘. ! distributed programming language e
"E:' By i Topy
J:': iz:zzf-;:?l:yprogram | Distribution/ \‘-\ms"fcfr;. :
el C ‘ — ] .o

- concurrent programming language Avallability Codes

I ‘Avail and/or

- parallel processing Dist Spoclal




networking
network program
network operating system

[t i1s probably hard for most readers to tell exactly the differences between a concurrent and a dis-
tributed program, or to explain how large/fine grain parallelism relates to distributed and parallel

programs and so on.

This discussion motivates our main concern followed up with this paper: instead of providing a
comprehensive overview of actual research activities in the distributed operating system field as
given by Tanenbaum and Renesse in their recent survey|(l] we iniend to focus on the development
of a structuring framewcrk for distributed operating systems. [t should serve as a sufficient basis
for classification and comparison of existing approaches of distributed operating systems as well as

for 1dentifving and discussing solved and unsolved problems in a systematic manner.

2. A STEP TOWARDS PRECISE TERMS

Before developing a structuring framework for distributed operating systems it is necessarv to

agree on a precise understanding of terms. The following proposal which is by far not comprehen-

sive 15 an attempt to re-assign precise meanings to frequently used terms in the field of distributed

R R A

(2l '}
4

computing{also referred to as distributed processing) and to relate them to the area of networking,

v
B

concurrency and parallel processing.
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To start with let us consider what the unique characteristics of distributed computing wie

4

x
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Loosely spoken, the term refers to the simultaneous execution of interdependent programs on a

.l‘

special computer architecture. So let us have a deeper look into computer architectures suitable

for distributed computing and program structures adequate for simultaneous execution

USSP

A computer capable of executing programs simultaneously is called a multicomputer. Figure 1

shows four basic multicomputer architectures. In a multiprocessor architecture(MP) as shown 1n
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1a)
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1d)

Multiprocessor (MP)

Message - Interconnected
Multicomputer (MMC)

Storage - Interconnected
Multicomputer (SMC)

Hybrid - Interconnected
Multicomputer (HMC)

Basic Multicomputer Architectures
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Figure la two or more identical processing units(P’s) are hooked up to a common working store.
Systems of this architecture are commercially available since the middle of the 1960’s and are

usually organized by a single operating system.

In a message-interconnected multicomputer architecture(MMC) as shown in Figure Lb several
autonomous processor-storage units(called computer nodes) are interconnected by a message tran-
sport system. Each computer node could have local peripherals attached to it. The message tran-
sport system separates the system into spheres of independent controi threads and distinct, non-

overlapping address spaces. Systems of MMC-architecture are usually called computer networks.

A storage-interconnected multicomputer architecture(SMC) is shown in Figure lc.In contrast to
the previous MMC-architecture all computer nodes have access to a common storage. This archi-
tectures has been favored by data base designers since it avoids time consuming copving of bulk

data between different nodes|2-6|.

A combination of message -and storage interconnection can be found in hybrid- interconnected

multicomputer architectures as for example in the Butterfly multicomputer7!.

These basic architectures can be combined in various ways to configure hierarchically and nested
multicomputer systems. One attractive structure is shown in Figure 2.It consists of multiproces-
sors interconnected by a message transport system and combines the basic architectures of types a
and b in a nested structure. Other examples are discussed in[8.A thorough match between the
computer architecture and the structure of the software running on it is required in order to fully

exploit the potential power of a given architecture.

A nuseful classification of programs with respect to distributed computing takes the number of
independent threads of control and the number of disjunct address spaces as classifying parame-

ters as depicted in Figure 3. This leads to three major program categories:

Sequential program
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A sequential program is a one-thread entity defined in either one or n address spaces. The

dynamic occurrence of a sequential program is called a process.

Concurrent program

A concurrent program is a multi-thread, one address space entity. The dynamic occurrence of a
concurrent program is sometimes called a team(of tightly coupled processes).

Communication between processes of a team is usually achieved by giving all processes direct
access to common variables. The necessary synchronization to shared variables is supported by
well known mechanisms like semaphores'9/.Monitors{10] provide a more structured but indirect
way of process communication within teams in that they encapsulate shared data and force
processes to access them via a procedural interface. Since there is only a single address space for

all processes global state information may easily be obtained from each process.

Network program

A network program is a multi-thread, multi-address space entity which comes in two variations:
-as ¢ collectinn of single-thread /~ddress spaze entities

-as a collection of multi-thread/address space entities.

The coupling between the disjunct address spaces for both variations of network programs is
accomplished by message exchange between programs residing in different address spaces. The
dynamic occurrences of both types of network programs are called "communicating processes”™ or

"communicating teams” respectively.

With this classification scheme for programs we are able to define a distributed program as a net-
work program which meets the additional requirement of hiding its network structure from its

users. The term "network transparency” is used here in order to denote this essential property of

J"w"\:’




distributed programs. It means that a distributed program should mamtain a high degree of
invisibility on its internal structure thereby making it impossible to recognize from outside on

what trpe of computer architecture 1t is running.

~

Metwork transparency as defined above encompasses "location transparency” and “performance
rransparency”. Location transparency is the invisibility of the location{from a user’s point of
view] where the different parts of a distributed program get executed. Pei{urmance transparency

15 the invisibility of performance differences in spite of the execution of parts of a distributed pro-

gram at different locations(i.e. local or remote).

Notice that there exists a special case for which concurrent programs and network programs look
the same: 1t 1s characterized by zero interactions between the independent threads of control. The
b.bavior of such programs can be graphically described by a precedence graph as depicted in Fig-
ure 4. It 1s assumed that a fork-operation creates the independent threads of control which con-
ceptually execute in parallel without interaction until terminated by a join-operation. We call
programs with this behavior parallel programs. The parallel execution of parallel programs i= best

supported by airav computers 11 They are beyvond the scope of this paper

Distributed computing can now be defined as the distributed execution of a distributed program
on a muldcomputer. A distributed system is a permanent combination of a distributed program

and a multicomputer where the principles of distributed processing appiv.
Notice, that with the above definitions a sequential program running on a multicomputer is not a

distributed system nor is a distributed program runniug on a single processor system

It 1s rather easy now to relate networking to distributed computing. Networking is the more gen-

eral and less restrictive term which always applies if two or more computers aie linked together.

A network operating system, for example, 1s a collection of native cperatiug systems extended by
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threads of control
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independent
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A precedence graph for a parallel program

Figure 4
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T mechanisms to request and receive remote logins between them. A user of a network operating
-

k system s always aware which local site he is interacting with. In contrast, a distributed operating

system ideally provides a single operating system 1mage to its users. A user should be unaware of

|
the fact that several computers are involved in performing a requested service. Although operat- “
ing systems are probably the most important class of distributed programs used to build distri- “

buted systems there 1s no ultimate need to base distributed svstems always on the existence of a

distributed operating system as Enslow didi12]. Highly dedicated distributed systems as for «xam-
ple distributed data base systems are likely to appear which are built from scratch or on top of a

orimitive distributed kernel.

Having ~xplored a more precise conception of distributed computing we wili turn our artention

now ro the distributed programming process.

Bv listributed programming we simply understand the programming process which results into a
Jistributed program. In order 1o better understand the principles which lead to some form of a
Jdisuributed program  structure it is helpful to start with an object-oriented view of a non-
fisteibuted program as shown in Figure 5. A program is considered there as a black box which
'manage=s some Internal state S and exports the function set F for use by other programs. For the

state 3 we assume that it can be decomposed into a set of independent data tvpes for which

several instantiations may exist. This leads to a matrix representation for S as depicted in Figure
5 A row for example Tx. contains all instantiations of a given Jata tvpe x {there may be empty
matrix elemnents) We assume that each data type Tx is manipulated by a corresponding function
set Fx. Fx 1s assumed to be a subset of the function set F(this is an oversimplification which may
not alwavs apply in practice but it 1s sufficient for the »urpose of explaining the general idea
betind the distributed programming process).

In the =equel we will use the term resource type instead of data type and associate with the

inrtantiations of a given data type the number of resources available from a given resource type.

W A b W W W
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Figure 5 An objected oriented view of a program managing the

state S and exporting the function set F.
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T« all data instantiations of a given data type x

Vy a collection of data instantiations from each data type

F. operations defined for data type x

Figure 6 A data model for an object's state S
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>From the refined structure of the state S one can derive three basic distribution strategies

resulting 1n different versions of distributed program structures for our original program.

A) Full replication({Figure 7a)

In a fully replicated program the state S and the function set S are replicated n times at =ach
node of a distributed system. This organization requires an expensive cooperation process between
the identical program copies in order to maintain a consistent global state of the resources. It is

the preferred method if a high degree of fault tolerance is the primary design goal for a system.

B) Function replication-resource partitioning(Figure 7b)

In this approach we partition the state S along columns of our state matrix. This leads to a parti-
tioned program where each program copy contains the full function set of the original program
but manages only a small subset of all resources.

If one node fails all others can continue operation by bypassing the resources of the failed node
This organization is favorable in case that graceful degradation is the primary design goal of a
systemn. [t also vields the advantage of high uniformity of the overall system structure since all

coples of the distributed program are basically identical(they differ only in the number of

resources they manage=data structures).

RO

C) Function and resource partitioning{Figure 7¢)

»
&

.‘:-.

NN In this approach the state S is partitioned along rows of the state matrix. This automatically

ey

- e . Lo . . . . . . .

e leads to a function partitioning since each row is associated with a certain resource type and with |
)
-

° a subset of the function set F therefore.

This decomposition strategy results in distributed systems with specialized nodes, each managing

all resources of a given type and favors such desirable properties as isolation(of different

.‘l=l 'i_i'll,
P L N
L

subsystems),simplicity(because of its dedicated nature) and efficiency(because of its simplicity).
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The basic distribution strategies explained above can be combined in various ways in order to
obtain distributed systems which combine the advantages of the different approaches. For exam-
ple, a distributed operating system can be designed along the distribution strategy C above where
some of its critical components may be replicated in order to provide a high degree of fault toler-

ance.

3. CLASSIFICATION OF DISTRIBUTED OPERATING SYSTEMS

According to the distribution strategies developed in the previous chapter we can identify two

different classes of distributed operating systems currently in use:
A. MIDOS-Architecture

The MIDOS-architecture{Multi-Instance Distributed Operating System) follows basically the dis-
tribution strategy B as explained in the previous chapter. There the distributed operating system
1s made up of n identical full- function copies of the original single node operating system where
each copy manages only a subset of the available resources. Figure 8 provides an overview of the
resulting system architecture. As a first step the LOS’s have to be extended by a inter-process
communication mechanism to facilitate message communication between processes across node

boundaries.

The single image view of the resulting distributed operating system is achieved by a connection
layer on top of each LOS. The connection layer's task is to provide network-wide, location-

transparent access to all resources of the distributed system. This requires some cooperation

Ty
2ECSCP S
Lh MRS NN
LI I i e B

between all connection layers while performing a user’s request. Typically, the connection layer

L
I;‘I
_" will provide the functicn set F’ to its users thereby differing from the functionality of the original
AN
o LOS. However, if the services of the LOS have been defined at an adequate level of abstraction it
.:.\“
N . . . . . .
° is conceivable to provide exactly the same functionality F by the connection layer as offered at
‘.
:,-‘. the LOS-interface. This is the most desirable case since it provides for full portability of programs
47
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Connection Connection
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LOS IPC € - --eeonn - |IPC LOS

LOS Local Operating System

F Function Set of LOS

IPC Inter-Process Communication

T Function Set of IPC

F Function Set of Connection Layer

Figure 8 MIDOS - Architecture of a distributed operating system
(Multi-Instance Distributed Operating System)
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in the network environment which have been originally developed for running under control of a

»

local operating system.

- e

E’ > One of the major problems which had to be solved were the integration of the local file systems
»
D "
b . . . ¢ L . .
K _':_. in a network-wide file directory scheme([13-15]. Ad:quate load distribution and load balancing
e
\
et policies and mechanisms are still a matter of ongoing research{16.17.
!._J’
o
::‘Q " It is possible to configure a node in a MIDOS-system with zero resources of a given type and
By
i:::" removing the corresponding functions from the LOS. This will result in specialized nodes which
¥

are dedicated to certain functions. This procedure i1s equivalent to applving the distribution stra-

tegy C as introduced in the previous chapter as a second step to a MIDOS-prestructured operating

)
a
K v system. This method has been applied to specialize nodes in a MIDOS-system to discless worksta-
08
!’_i tions, file servers etc. The UNIX file servers NFS'18! and AFSi19] are prominent examples for the
P
""_ﬂ' UNIX world.
o
*-: For comparison reasons we will use the notion MIDOS-I to denote a system purely structured
)
{, according to distribution strategy B. The notion MIDOS-II is used in order to denote a system pri-
b\ -
ﬁ. marily structured along distribution strategy B while the resulting distribution units are subject to
)
o"‘l .
Lt the distribution strategy C thereafter.
f-\‘x
.,.;:j B. SIDOS-Architecture
SN
[
‘r' ‘n'
e

The SIDOS-architecture(Single-Instance Distributed Operating System) results by applying distri-

v,

bution strategy C to the original LOS as the primary structuring method. This will lead to a svs-

; i
AL

“5
&2

tem with specialized servers which manage all resources of a given type and offer a restricted

function set for use by the external environment.

-
Ay

-

- In its pure form SIDOS-systems do rarely exist since a single server handling all resources of a
o given type imposes unnecessary restrictions which is likely to end up in bottlenecks. Therefore
‘o
gl
_-:-', distribution strategy B is usually applied as a second step to SIDOS-prestructured operating sys-

tems. The resulting distributed systems are usually made up of a certain number of workstations
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and specialized servers such as lile servers, print servers, network servers etc. The typical architec-
ture of 2 node in a SIDOS-aichitecture is shown in Figure 9.Instead of a full function operating
system it consists of a simple distributed operating system kernel which provides only the com-
munication infrastructure for the higher layers. The functionality of a node is established by a
specific client ‘server component running on top of the kernel{it is not excluded to run more than

one client or server component on a kernel).

For reasons of comparison of the different approaches we will use the notion SIDOS-I in order to
denote purely SIDOS-structured systems. The term SIDOS-II will be used in order to denote sys-
tems primarily structured according to the distribution strategy C where the resulting structuring
units are subject to distribution strategy B thereafter.

A few examples of systems of the SIDOS-class are V20|, ACCENT{21]|, Amoebai22'. Eden 23’
Clouds 24!, CONICI[25], DEMOS/MP 26|, Cronus{27), INCASI28] from the research environment.
There are also commercial products available which follow the SIDOS structuring approach as for

example the Apollo-Domain system.

Figure 10 summarizes the results of the above discussion for further investigations.

The MIDOS-I architecture is unique in the sense that it preserves complete functional autonomy
of each node with respect to the function set of the original LOS. If a node fails then all resources

managed by this particular node get unaccessible but the remaining nodes can still provide their

full service since they do not depend on the availability of other nodes. This property is some-

times referred to as graceful degradation. A disadvantage of the MIDOS-I-architecture is its

l“{ l. l‘ I'“ .

rather low distribution granularity as compared to the MIDOS-II and SIDOS-II architectures.

Distribution granularity as a measure for the degree of distribution obtained by the application

RIY P

of a certain distribution strategy is a determining factor for such desirable properties as incremen-
tal extensibility and support of highly distributed applications. As higher the distribution granu-
larity as smaller are the increments in which a system can grow and as higher is the potential of

performing operations in parallel.
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One would expect that the MIDOS-II and the SIDOS-II architectures are equivalent since both
exhibit the same distribution granularity(because the same distribution strategies have been
applied but in reverse order). For a more objective comparison of the two approaches we will
consider an example system consisting of three server nodes and one client node as shown in Fig-
ure 11.

A service request issued by a client program in Figure 11a is accepted by the corresponding con-
nection layer first. The connection layer will start a cooperative conversation with all other con-
nection layers until the appropriate location for performing the service has been determined. The
corresponding connection layer will then call the requested service from its local LOS and reply to
the originating connection layer after completion of the service request. The originating connec-
tion layer will tinally return control to the blocked client.

Notice that neither a client nor the different LOS’s are aware that they are part of a larger sys-

tem. This global knowledge is completely encapsulated within the connection layers.

In the SIDOS-II architecture of Figure 11b the clients view of the available services of the system
is different: it sees a set of servers it can send requests to(being unaware of the server's
location).In case that several alternatives are available for requesting a certain service the client

negotiates directly with the corresponding servers in order to determine the most suitable one to

carry out his request. In order to isolate the global knowledge(how many servers are present) from

I'g

,1

the local service handling as provided by the MIDOS-approach one can decompose clients and

_ Y

@ s,

servers into two sublayers each thereby separating these two aspects clearly from each other. This

)..

-

A ]
b
[ ) 'l.'.‘l .l:'

has been indicated by dotted lines in Figure 11b. By doing this the difference between MIDOS-II

and SIDOS-II architectures degenerates to a mere software engineering argument:

LI

L4 4

In the MIDOS-II architecture services are encorporated in the dedicated LOS’s. It is required
that the overall LOS-structure allows to cut an LOS to any desired functionality necessary for a

certain type of service. p In the SIDOS-II architecture services have been clearly separated from
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12
This vields the following advantages:

-Chents and servers are represented in a uniform way, i.e. there exists only a single abstract con-

cept for their realization.

-The system philosophy is basically open ended with respect to later extensions by new services
since the DOS-kernel does not care about the number and functionality of clients and servers run-

ning on top of it.

For the above reasons The SIDOS-II architecture is considered superior over MIDOS-1I so that we

will spend no more time for investigations of the MIDOS-II approach.

Consider now the following thought-experiment: we configure each node of a SIDOS-II structured
distributed system by a complete set of servers, one for rach different type of services as depicted
in Figure 12, Each node can now provide the whole spectrum of OS-functions in an autonomous
way as this 1s the case for MIDOS-[ architectures(provided that the required peripheral devices are
locally connected) In this way a MIDOS-I system can be viewed as a special case of the SIDOS-I]
architecture. For these rez;aons we can abandon further investigations in the MIDOS-I architec-

Ture

since the SIDOS-I architecture has been ruled out earlier for its limited practical value the
SIDOS-II architecture remains the only alternative which deserves a more elaborated considera-

tion 1n the succeeding chapters.

1. COMMUNICATION MCDELS

In this chapter we will focus on the elaboration of basic communication models for distributed

operating systems within the framework of the SIDOS-II system class. This requires the develop-

ment of models for
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o
bd \w ‘
o a. the architecture of mterrcting units running on top of the DOS-kernel,
L
n':-'
b'. «

b. the interaction scheme imposed to provide controlled communication between interacting units.

\':‘ . .. . ) . .
- A variety of different structuring models have been proposed and implemented in experimental
U
\.I\. . - .

= distributed svstems.There exist only a few attempts to classify these approaches'29-32°. Our sim-
1

% ple classification scheme illustrated by Figure 13 distinguishes between active units represented by
;,.
)

- . , . .
A processes or teams and passive objects represented by a collection of procedures subject to exter-
v

v

LS

nal invocation

N If units are active they communicate with each other by some form of explicit message passing.
h _‘.:
} - . . .
,,-:‘ [wo different variations of message passing scheme have been proposed:
LA
A
® a. One-way message communication
S0
..4
‘- Here the message 1s mierely transported to a given destination by the SEND operation and picked
. ]
.
hul up from the transport system by a RECEIVE operation at the receiver’s site later on. The mes-
.‘\ . . - . .
o sage transaction does not include the execution of some actions at the receiver nor the reply of
LN
"- results. Sending back of results 1s an independent message transaction issued by the receiver.
-
2
~
. b. Two-way message communication
N
I:J
.' . . . .
o In a two-way communication scheme a message transaction includes
-
>
-
® .
o -sending a message to the destination
.,-; -accepting the message at receiver’s site
:" -performing an action as a response to the message
-1 -sending back possible results by a reply message.
R~ [f units are passive in a two-way communication scheme a remote invocation mechanism is used
“w
-‘.‘
~ as the interaction method also known as "Remote Procedure Call”(RPC). The RPC concept is well
-
- : . .
) nnderstood. relatively easy to implement and vields the additional advantage that users are fami-
\d
. liar with 12 33.34 . The RPC is a two-way communication concept since result parameters can be
- : ,
-
®

420,
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14
passed back to the caller as with a regular procedure call.

Message passing schemes can be further refined if the degree of synchrony between senders and
receivers s taken into account. This leads to the distinction of four basic message passing

semantics(Figure 14):

1. Rendezvous semantics
It is a one-way synchronous message passing scheme in which the sender can never send messages
faster than received by a receiver, i.e. a rendezvous has to be established between senders and

receivers prior to sending the messagei35|.

2. No-walit semantics

[t is a one-way. asynchronous message passing scheme in which senders can issue SEND opera-
tions with a speed independent of the corresponding RECEIVE operations of servers 31 This pro-
perty 1s achieved by a (principally unlimited)message buffer capacity somewhere in the path
Letween the sender and the receiver. In early-buffering schemes the message will be buffered at
the senders site which results in least waiting times within the SEND operation. In [ate buffering
the sender is blocked in the SEND operation until the message has been stored successfully in a

message buffer at the receiver’s site which increases the waiting time.

3. Remote Service Invocation semantics(RSI)

[t is a two-way synchronous message passing scheme which blocks the sender in the SEND opera-
tion until a reply message has been properly received from the receiver. RSI mechanisms can serve
as a basis for the implementation of the RPC mechanism. Adequately defined they can provide

more flexibility than a pure RPC mechanism as demonstrated in the V-kernel20!.

4. Asynchronous Remote Service Invocation semantics(ARSI)
It is a two-way message passing scheme which does not bind the sender at one SEND operation

at a time. SEND RECEIVE and REPLY operations can be issued independently of each other as

O PRI e g Tt v R Rt R T g RO s R s g g iy o s 'I‘-F e -’ Il
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in asynchronous communicationi36|. This scheme is very powerful but also hard to use and

difficult to implement.

Another important characteristic of a message passing scheme is the expected degree of reliability.

Four different levels of reliability are usually distinguished:

-At-least-once
-At-most-once
-All-or-nothing
-Exactly-once
At-least-once semantics guarantees correct completion of a message transaction at least once. [t

does not prevent message duplication and should be used only if the operation triggered by the

message at the receiver has the property of being idempotenti29|.

At-most-once semantics guarantees correct completion of a message transaction at most once. In
the absence of permanent node crashes and broken transmission lines it performs the message

transaction exactly once.

The all-or-nothing semantics guarantees atomic behavior of a message transaction in spite of
crashes of nodes and transmission lines: either it performs its function completely or it has no

effect at all/37,38].

Exactly-once-semantics guarantees under all circumstances successful completion of a message
transaction in spite of node crashes or broken transmission lines. It can only be approximated to a

certain degree by redundancy mechanisms|39].

The two-way communication paradigm is particularly suited if the prevailing form of interactions
between users is to request and perform a service. The interacting units play the role of either

clients(which request a service) or servers(which provide some sort of service for clients).

Client-server models as represented by the RPC concept or by the two-way message passing
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scheme appear as the adequate models for structuring distributed operating systems since their

main job is to provide different kinds of services to user programs.

In the succeeding section we will take a deeper look into client server models therefore.

5. CLIENT-SERVER MODELS

In a client-server system the relation between any pair of client-server can be described by the

state diagram of Figure 15. In the initial state “service completed” previous services have been

-
«

completed and new ones not vet started. In the state "service requested” a client has released a

L o e T

service request which has not been taken into account by the server. If the server has accepted

gl R A A g

g

the request the state is changed into "service in progress”. After completion of the service request
the server replies the results back to the client which changes the state back into "service com-

pleted”.

Figure 16 shows the overall structure of a client-server system. We assume the simultaneous
existence of several distributed applications that view the distributed operating system as a collec-
tion of servers. Within the distributed operating system there might exist servers not available for
general use which are only needed to implement higher level services. In this way the servers of
the DOS generally form a hierarchy where only the servers of the bottom layer never turn tem-
porarily into clients. All higher level servers behave as clients against the lower layvers and as

servers against the upper lavers.

It should be noticed that no assumption has been made about the communication model used
within distributed applications. While every component of the distributed application requesting a
service from the DOS behaves as a client the internal communication model of the distributed
application might substantially differ from a client-server model. Implications are discussed in

40].
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Two different abstract views for client-server systems have becn developed’4l :
a) the process. message view
b) the object, action view

We will present both views in detail and discuss the differences (and similarities) as well as possi-

ble implications of both approaches.

5.1 THE PROCESS/MESSAGE VIEW

In the process/message view of the client-server model a given system is decomposed into
processes or process groups which exchange messages. Figure 17 summarizes the essentials of this
view. In its simpliest appearance each client-server is represented by a single process as depicted in
Figure 17a. Reduest messages are sent by a client process to a port connected to a server process.
Ports represent different service types exported by a sarver.

A generalization of this view is represented in Figure 17b. Here. each client-server is represented
by a team of processes. A request message is issned always by a specific process member of a
team. Since the message is directed to a port rather than to a process the internal process struc-
ture of a team remains transparent to clients.

In a static team structure the number of processes forming a team is fixed at team creation time.
A usual approach for subdividing the team’s work is to associate a process with each port. Simul-
taneous requests for services arriving at different ports can be processed in parallel conceptually.
However, overlapping requests to the same port are qucued necessarily.

In a dvnamic team structure the number of processes may vary at run time. An obvious
approach to organize a server exploiting dynamic process creation/deletion is the followiag one:
At team creation only one process- the root process- exists. The root process’ task is to create a

server process with every incoming message:
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.
A
. »."\j PROCESS root
A LOOP DO
R, Wait for incoming message;
( Create server process;
AN, Pass Portld to 1it;
o END;
Wned: END root:
e
St
b,
-
‘e Depending on the speed of incoming messages an arbitrary number of server processes may come
, P g P )
§
)
%, . . Ly .
:':'l. into existence within a team. All server processes adhere to the same basic structure:
)
L)
Wt
-~
‘ ’
LG B
N PROCESS server
*\.-; Receive message frorq port{...};
"::" Call approptiate service procedure;
o~ s Send reply message to requesting client;
..f END server;
k' '
o
B -":
“ . .
W In the above implementation structure the number of processes changes frequently. In contrast to

a static team structure the danger of unnecessary serialization of service processing diminishes32}.

Care
S
-.::-. , . . .
: ‘:’ The overhead associated with frequent process creation/deletion can bhe kept at an acceptable
el
o level by an efficient light weight implementation. The dynamic approach has been adopted for
—~
)
o processes in guardians{42].
] ';u:' The time fow diagram in Figure 17c¢ provides a rough understanding of the semantics of the
a
>,
» . . . L . .. .
o communication primitives SEND, RECEIVE, REPLY considered as the minimal function set to
.-- ’ . , - e . . .
-}:,_\ support the process/message client-server paradigm. The SEND operation will block a client pro-
.‘.r"
B . . . . .
A cess until the successful arrival of a corresponding reply message. The RECEIVE operation blocks
B
- a server until a request message has been arrived and passes the message content {or a pointer to
°

. it) to the receiver. The REPLY operation is a non-blocking operation which is issued after com-

,
NN

pletion of a request processing by a server. The successful arrival of the reply message at the des-

o
)
A
0

tination will unblock the client in its SEND operation.
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5.2 THE OBJECT ACTION VIEW

In an object wiicated view of clieut-server systems servers are conceived as a collection of passive
procedures which manage an internal state. An action is performed within an object by calling
one of its procedures thereby passing a thread of control to the object. The callee of an object ix
usually another object which has been called before. At the outermost calling level there exist a

certain number of processes which stimulate activity in the system by calling object procedures.

In order to avoid dealing with two different types of structuring units- processes and objects- we
take a slightly more generalized view of objects. There, objects can contain a certain number of
housekeeping processes which are not directly involved in the processing of service requests. This

leads to the following principle structure for objects:

OBIJECT xyz IS

ENTRY proc_a(...)---- ----- - END;
ENTRY proc b(..)-=necmennmn-- END;
ENTRY proc k(..o = =« «««=««- END:
data deciarations;
PROCLESS pl - --------- - --END;
PROCESS pn - - - < = << - <« - - END;
BEGIN
[nitialization;
END xvz;

By a statement of the form

AB,C: xyz;

we denote the creation of three instances of the object type xyz.

Two concurrently executed call’s from within different threads of control of the form
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A.proc_a(...): .~\.proc_5(.“):

result in two simultaneous actions within the object A. [t is assumed that the necessary svnchron-
ization between simultaneous actions in an object is supported by appropriate svnchronization

primitives like semaphores:9] or monitorsi10].

Processes can be represented within this generalized object model by objects containing a single
internal process each with an empty export interface. An obvious implementation structure for
objects as introduced above i3 shown in Figure 18. At the client’s site each Remote Procedure
Call{RPC) 1= redirected to a local stub procedure. This stub procedure collects the actual parame-
ters passed with the procedure call and constructs the message out of it. It then sends the message
to a stub process at the receiver's site. The stub process which might have been created in
response to the incoming message receives the message and calls an appropriate local service pro-
cedure which actually carries out the service request. After return from the service procedure the
stub process constructs the reply message, sends it back to the client and terminates

For conveniencs reasons it was assumed in Figure 18 that the stub procedure at the client’s site
and the stub process at the server’s site communicatc via aL sy uCifGuuus. vwu-#ay nessage han-
dling scheme with the functions SEND, RECEIVE, and REPLY as introduced in section 5. 1. This

also simplifies the comparison of both approaches.

It is interesting to notice that the implementation structure of the object model sketched by Fig-
ure 18 corresponds directly to the server organization with a single root process and a dynamie

number of server processes in the process/ message paradigm.

This leads to the following primary conclusions:
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1. At a first glance. the object ‘action and process message approach are two abstract views on

client-server models with basically the 1dentical expressive power.

2. The object. action view is on a more abstract level. A process/message scheme can easily be

used to implement the object ‘action view.

5 EXTENSIONS TO THE BASIC CLIENT-SERVER MODEL

The basic client-server model as discussed in the previous chapter is sufficient to analyze its prin-
cipal merits as compared to other approaches. As a basis for a real system, however, the model
needs to be extended in several directions 1n order to serve as a powerful structuring means for
hstnibuted operating svstems. [n the following two subsections we discuss useful extensions in

three areas

. extensions of the basic client-server model to enhance its expressive
power,

2 narning issues,

3 protection

Stnce naming and protection are highly interrelated we will treat them together.

6.1 EXTENSIONS OF THE BASIC CLIENT-SERVER MODEL TO ENHANCE ITS EXPRES-

sINVE POWER

By expressive power we denote the ease of describing typical structures using the available

features of a given client-server model. As long as the service to be designed is represented by
rxactly one single server, the basic client-server models sufficient to model the server as well as
e the interactions of the server with its environment.

However, the following list of possible interrelationships between a service and servers show other
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frequent constellations:

service = single server |

L™

- service = one arbitrary server out of a pool of identical servers
4 , - service = pipelined server formed by n pipeline segments
N - service = fault tolerant server formed by m stand-by servers.
W
3
A%
b Figure 19 provides an example for each mentioned service-server interrelationship. A powerful
o
AN . . . . . L
S client-server model should support structuring a service as a pool of identical servers, a pipelined
\
s _
S server or a fault tolerant server by convenient addressing and message propagation mechanisms.
‘\; An obvious requirement from the above discussion is a selective message broadcast mechanism
I-‘
.-: also called a multicast. An ideal multicast mechanism should reveal the following properties:
G
YAS
PY a) it should be possible to group targets for messages as for example ports and associate a group
.
&/;:, name to them.
O
- _
-~ b} A message sent to a group potentially reaches all actual members of the group.
N,
-:.: ¢) The effort spent by the message handling systeiu to assure a certain degree of success of a mul-
1 ‘;:
K\ ticast operation should be parameter controlled( for example: "enforce successful completion of at
Nﬂ
~ least three message deliveries”).
‘.‘
o d) There is no global control of the members belonging to a multicast group. This releases a
"
'_ sender from specifying the number of potential receivers of a multicast message and favors distri-
. .
o buted control algorithms.
‘
“u
s Cheriton 201 has shown in the V-kernel design that it is rather simple to extend the basic client-
Y
°® server model to support a flexible multicast mechanisms. Cheriton envisaged the concept of pro-
- cess groups and provided functions for entering and leaving groups. The minimal degree of success
[--.
::‘ of a multicast message transaction is defined as the successful reply of at least a single reply mes-
® sage. However, further expected replies can be received hy the GET_REPLY operation.
I
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There are other extensions to the basic client-server model in the V-kernel which are helpful to
structure servers according to needs stated above: The V-kernel offers a FORWARD operation for
forwarding a request message from a server who might consider to delegate this job to someone
else. This operation has the overall effect that the client-server pair involved in the actual mes-
sage transaction is redefined replacing the original server by the new one where the request mes-

sage was forwarded to.

There are further examples taken from the V-kernel which prove to be extremely useful exten-

stons of the bhasic client-server model with respect to scheduling and efficiency issues:

-The V-kernel allows a server to work simultaneously on several requests (several RECENE
operations may be issued before the processing of an request has been finished by the REPLY
operation). In case of a static process structure this feature regains the server's ability of schedul-

Ing incoming requests according to its internal needs.

-The standard message length is 32 bytes. This restriction favors simple storage management poli-
cies and fast protocols for the most frequent case. Bulk data may be transmitted in user con-

rrolled portions by the COPY_TO and COPY_FROM operations.

The above discussion can be summarized as follows:

j In order to support the design of real systems the basic client-server model should be extended to
* facilitate

{

) |

. - multicast /broadcast

- - pipelining (by message forwarding)

’ - simultaneous request processing by servers

; - explicit transfer of bulk data

<

-

| Prototype systems have proven that it is rather easy to define appropriate extensions in the
-

) process;/mesaage view and supp~rt them efficiently by a DOS-kerrel.
Lt

It is doubtful that similar extensions could be defined for the object/action view without

e R O R AL R s
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destroying its conceptual simplicity. [t is our belief that the object/action view as the more
abstract model of client-server systems is adequate for certain applications. As such it should
maintain a rigid and simple view of objects and actions at the cost of flexibility.

At the DOS level however, more flexibility is needed in order to structure servers and whole svs-
tems of clients and servers which requires means for explicit control of message flow, scheduling of
arriving messages and data transfer between system components. The process/message view pro-

vides the appropriate level of abstraction needed to achieve those requirements.

5.2 NAMING AND PROTECTION

Naming refers to a class of mechanisms in operating systems which help to solve the following

problems:

a} generation of unique names
b) name retrieval for public services
¢} binding of names to physical locations of the corresponding system objects

In a dynamic system environment new services enter and old services leave the system (to be
replaced by improved versions). This requires a mechanism for the generation of unique names
even if names exist for a long period of time (several years). If the user starts up a new client it
has to get aquanted with those names related to the services it intends to invoke. For example,
the client would like to query the system:”give me all names of servers referring to the print ser-
vice”. Names usually consist of rather long character strings. Before an object can be actually
referenced the corresponding names have to be bound to physical locations as memory addresses.
devicr. addresses etc. In a highly dynamic system environment binding occurs at runtime shortly

before the actual reference is made.

In a static system environment the naming problem almost disappears for the following reasons:
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-t
D Iq-
‘.\- . . . . .
- - A generation scheme for names is not required since the system designer generates the names
Yu
- )
» and assoclates them to system components.
“
::: - Name retrieval is irrelevant since all names are known and directly used in order to establish the
ad
! .,)‘: interconnection structure between system components.
M
‘
')
2y -Binding of names to physical locations is carried out at translation or load time.
-I':.'
N - : : :
T In a large distributed system environment the incremental growth of the system according to the
~
users needs is highly desirable. Therefore, dynamic system environments are more likely to be the
b/
i:.‘;
Pon standard case.
: s ¥
A
Q'“ ]
] Name generation and name retrieval can be organized in a central name server{l:. Central name
servers- while sufficient for small distributed systems~ can cause substantia! performance degrada-
::‘. tions 1f they get overloaded in large distributed systems. In addition, the demise of the name
":,
"‘\ server could bring down the whole system.
:\': In a distributed name serving scheme name generation is based on local name generators in each
‘* . . . . .
node. Each public server responds to retrieval requests arriving from outside.
n
&
v
- In a process/message based system with ports representing services a distributed name retrieval
B p / g p p 8
e
'_':'\- service could be organized as follows: each object offering a public service exports a standard port
S
:,.‘\ which is joint in a publicly known port group "PublicServices”. A request sent to "PublicServices”
-’:
_ will return all port names to the requester currently available for public services.
)
ot , .
,J-: The knowledge of the nuams cf a server enables a client to contace the server. In the absence of
o
" protection riechanisms the ability to contact a service is equivalent to get the service.
. .
"o : . . . .
» Protection mechanisms introduce another fire wall between clients and servers: even if the name
15
: of a certain service is known to a client, utilizing the service requires a special permit. If the peor-
rd
Vol mit (access right) was not granted before the protection mechanism will reject attempts to request
vl . . . . .
0 services. In general, protection schemes are responsible for the following tasks{43]:
Vg
d-
1Y
i
Y
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J
e
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{a) prevention of unauthorized usage of services
{b) prevention of impersonating of existing services
{c) control of access rights migration

PG
4,-'[. It is still an open question to which degree protection should be supported by operating systems.

1R
" . . . . .

AN In trustworthy kernels naming and protection can be included as an integral part in the DOS ker-
\..

Y
— , . . . . .

i nel. Kernels which emphasize protection like HYDRA[44] are often called security kernels. In dis-

(

RS

Qin . . . o .

o tributed svstems with an open interface like in workstation networks everyone can connect a com-
)

C . ‘ 4 .
"'-.j puter to the network with its personal operating system thereby bypassing any global protection

Py 8

scheme. For this reason some distributed systems don’t rely on trustworthy kerneis. A good

E7
o~ 4 -
> a example is the Amoeba system45;.

-\-. N

b

L . . . :

o) More research is needed to determine a useful minimal set of services provided by some
®

AT trustworthy communication interface as the basis of arbitrary protection schemes.
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e

)
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KA 7. THE COOPERATION PRINCIPLE

o

L]
%d - . . . . .

L In a client-server oriented distributed system there exist usually several servers which can carry

f‘. \-

b out a requested service. The decision making process involved in selecting the most suited
:" server(s) requires some form of cooperation between a client and the potential servers before the
I_‘.-

: 'f;-.' service can be processed. It is this cooperation process which establishes the fundamental
iy

\ - “

- difference between centralized and distributed system organizations (in fact. a centralized system
- can be viewed as a system with a single server for each service type thus relinquishing cooperation
Vel
e needs).

M The objective of any cooperation process is to optimize the overall system behavior with respect
L J

™ . . . . . . L . . .

N to some optimization criteria. Conceivable optimization criteria are:

e

s

197 . R
> -averaging resource utilization
.' -maximizing the overall system throughput

-achieving a required degree of fault tolerance
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Our concern in this chapter is to study the principle nature of this cooperation process and to

conclude with some hints for future research

It 1s convenient to think of the cooperation algorithms as being encapsulated in a separate
cooperation layer as indicated in Figure 20. This layer is made up of a collection of so called ser-
vice managers. At client’s sites service managers receive service requests from clients. They

yoperatr with nther service managers in ~rder o determins the mcot appropriate server(s) at
that time to carry out the service. The service manager(s) at server’s site{s) finally pass a request
to the server(s) waiting for incoming requests. Clients and servers are unaware of the decision

making process in the cooperation layer underneath.

An ultimate goal of every cooperative effort is to keep the overhead involved in the decision mak-
ing process small with respect to the amount of information exchanged between service managers

and the frequency this information is being exchanged between them.

Suppose in a distributed system exist several identical print servers. A client calling a print
operation doesn’t care which print server actually performs the request. The corresponding service
manager at the client’s site starts a cooperation with other service managers in order to determine
the print server with the least actual load.

This print server gets finally the request passed to it. An obvious solution for a cooperation algo-

rithm corresponds directly to a well known solution in centralized systems: all service managers at

2 client’s sitzs -after having received a print request- enter a distributed critical region. Within the
‘\-."

" critical region the present load of all print servers is interrogated and the server with the least
o load selected. Its present load is adjusted before the critical region is terminated. The print
e

?. request is finally forwarded to the selected print server. The service manager at a client’s site
'-‘

o, .

- takes the following form:

c‘.:
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A
>~
,,1‘-.' ServiceManager (* client site *)
.-i
e DO
) Recelve print reguest,
( Lock(Mutex): (* distributed P-operation *)
"N Broadcast to all service managers at server sites:
B send actual load;
X '}.: Collect answers:
B Select server with the least load;
- Adjust load at selected server by
N sending a message to its service manager;
'.-.}"- Unlock(Mutex); (* distributed V-operation *)
: i Tofwald piiid cequest Lo seic.ted server,
h .«',:': END ZerviceManager,
N
M, o
N
4 "
.';':. While the above algorithm works efliciently in a centralized system it might produce prohibitive
--‘:. . . . . . . . . .. . F
NG communication costs in a distributed system due to the expensive distributed critical region 46 .
-'.
Vo
b
!‘ More efficient solutions are based on approximative measures of the actual load of servers, for
S L _ : . S
e example by periodic server interrogations. However, they are susceptible to load oscillations.
2
B \
K .l. . . - . .
. The above discussion exemplifies a fundamental lack of understanding what factors establish a
' . . . . . . .
o good cooperation algorithm. [t might be an important observation towards a systematic design
s . . :
-\,: methodology for distributed algorithms that higher level distributed programs tend to use fre-
) ::!’
"\ quently the same basic algorithms in order to achieve their goal as for example: 1
N
n.
‘.
:-. - broadcast a message
. - obtain a consistent snapshot of a distributed global state
; :-. - establish a distributed critical region
i - reach consensus on a global situation
.‘, - determine global time
N - determine termination of a distributed algorithm
::j.'
340 i
O etc.. 47,
]
1
A It i1s considered a challenging research undertaking to devise a design methodology which supports
,::-
t,: the systematic construction of distributed programs by composition from a universal set of distri-
L
A L
° buted primitives.
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