
CR)

COMPUTER SCIENCE
- TECHNICAL -REPORT SEIS

DTIC'
SECTED

UNIVERSIT OF MRLN
COLLEGE PARK, MARYLAND' *

-- *.20742 :

bA ra wb

AFP

CS-TR- 2 079 July, 1988

A Structuring Framework for
Distributed Operating Systems *

Juergen Nehmer **

Systems Design and Analysis Group E T
University of Maryland
College Park, MD 20742 E- C; TF

ABSTRACTS

"This technical report is an attempt to survey the organization
principles for distributed systems in a systematic and concise manner.
Starting with a comprehensive set of terms covering the area of
distributed computing, a classification scheme for distributed
operating systems is developed. Based on this classification scheme
several communication models are surveyed. Client-server models as
an attractive structuring means for distributed operating systems
are discussed in greater depth. The report concludes by elaborating
the nature of cooperation as an unique underlying principle to organize
the work in distributed systems...

This work is supported in part by contract DASG60-87-C-0066 from the
U.S. Army Strategic Defense Command and by contract N00014-87-K-0241

from the Office of Naval Research to the Department of Computer Science,

University of Maryland, Ccllege Park, MD.

The views, opinions, and/or findings contained in this report are
those of the author and should not be con3trued as an official Department
of the Army or Navy position, policy, or decision, unless jo
designated by other official documentation.

•* The author was on leave from Universitaet Kaiserslautern, D6750
Kaiserslautern, Fachbereich Informatik, Postfach 3049, West Germany.

6A

i. INTRODUCTION

-Distributed computing has become one of the most rapidly developing technology in the computer

field in recent years. A growing number of research efforts in the computer science community are

devoted to different subjects of this fascinating topic worldwide.

Distributed computing -as opposed to centralized computing-appears as an attractive alternaLive

to configure a computing system and to organize its work. It receives its potential power from a

characteristics fundamental to the structure of any distributed system: its conceptually unlimited

extensibility in terms of processing nodes and storage capacity. This property gives raise to the

hope that somp day one will be able to built distributed systems which -in terms of processing

power and reliability- will exceed by far the most powerful centralized systems ever built.

However, when more and more people were ocaling with different aspects of distributed comput-

ing the terms ani concepts got frequently mixed-up and misused. Today. the term "distributed

computing" and a.l its derivates are buzzwords without any precise meaning. Compare for exam--A..

A,. pie the following te 'ms and try to relate them to each other precisely:

distributed processing Aoession For

m' distributed programming NTIS GMA&I

distributed program DTIC TAB
distributed system Unannounced [
distributed operating system Just ifioation

A "distributed programming language

", .
~By. o,

concurrency D stribution/
concurrent program -r o
concurrent programming language Avallbi 1ity Codes

AvhifLl ind/or
parallel processing Dist Spotal

[• parallel programming
parallel program
parallel system
parallel programming language
large grain parallelism
fine grain parallelism

network

'A

'

%0

2

networking
network program
network operating system

It is probably hard for most readers to tell exactly the differences between a concurrent and a dis-

tributed program, or to explain how large/fine grain parallelism relates to distributed and parallel

programs and so on.

This discussion motivates our main concern followed up with this paper: instead of providing a

, comprehensive overview of actual research activities in the distributed operating system field as

given by Tanenbaum and Renesse in their recent surveyl1 we intend to focus on the development

of a structuring framework for distributed operating systems. It should serve as a sufficient basis

for classification and comparison of existing approaches of distributed operating systems as wAll as
0

for identifying and discussing solved and unsolved problems in a systematic manner.

2. A STEP TOWARDS PRECISE TERMS

% Before developing a structuring framework for distributed operating systems it in necessary to

agree on a precise understanding of terms. The following proposal which is by far not comprehen-

sive is an attempt to re-assign precise meanings to frequently used terms in the field of distributed

computing(also referred to as distributed processing) and to relate them to the area of networking,

* concurrency and parallel processing.

To start with let us consider what the unique characteristics of distributed computiits aie

Loosely spoken, the term refers to the simultaneous execution of interdependent programs on a

special computer architecture. So let us have a deeper look into computer architectures suitable

k . for distributed computing and program structures adequate for simultaneous executin

A computer capable of executing programs simultaneously is called a multicomputer. Figure 1

shows four basic multicomputer architectures. In a multiprocessor architecture(MP) as shown in

t%

0%

S

. 1 a) Multiprocessor (MP)

[working store

-

1 b) Message- Interconnected
Multicomputer (MMC)

message transport system

1%

1c) Storage Interconnected
w i tMulticomputer (SMC):working store

1 1

message transport system 1d) Hybrid - Interconnected

Multicomputer (HMC)

working store

,.

Figure 1 Basic Multicomputer Architectures

0% %

* 3

Figure la two or more identical processing units(P's) are hooked up to a common working store.

Systems of this architecture are commercially available since the middle of the 1960's and are

usually organized by a single operating system.

In a message-interconnected multicomputer architecture(NLfMC) as shown in Figure lb several

autonomous processor-storage units(called computer nodes) are interconnected by a message tran-

sport system. Each computer node could have local peripherals attached to it. The message tran-

sport system separates the system into spheres of independent controi threads and distinct, non-

overlapping address 3paces. Systems of MMC-architecture are usually called computer networks.

A storage-interconnected multicomputer architecture(SMC) is shown in Figure 1c.In contrast to

the previous MMC-architecture all computer nodes haie access to a common storage. This archi-

tectures has been favored by data base designers since it avoids time consuming copying of bulk

data between different nodes[2-6.

A combination of message -and storage interconnection can be found in hybrid- interconnected

multicomputer architectures as for example in the Butterfly multicomputer71.

These basic architectures can be combined in various ways to configure hierarchically and nested

multicomputer systems. One attractive structure is shown in Figure 2.lt consists of multiproces-
,I.

sors interconnected by a message transport system and combines the basic architectures of types a

and b in a nested structure. Other examples are discussed in[8.A thorough match between the

computer architecture and the structure of the software running on it is required in order to fully

V exploit the potentia power of a given architecture.

• A ,seful classification of programs with respect to distributed computing takes the number of

independent threads of control and the number of disjunct address spaces as classifying parame-

ters as depicted in Figure 3. This leads to three major program categories:

Sequential program

w orking store
E

(n
4:

CL

P -- LP 0

C

working store

Cz
Cn
a:

E

P P-----------P

working store

.:

Figure 2 A nested multicomputer architecture

consisting of multiprocessor systems
0I! interconnected by a message transport system

.1-

number of address spaces
S(I) (n)

sequential
program

(M)
"0"

concurrent network (i) E
program program -

-.:

Figure 3 Classification of programs according
* to the number of control threads and

address spaces

..

* 4

A sequential program is a one-thread entity defined in either one or n address spaces. The

dynamic occurrence of a sequential program is called a process.

Concurrent program

A concurrent program is a multi-thread, one address space entity. The dynamic occurrence of a

concurrent program is sometimes called a team(of tightly coupled processes).

Communication between processes of a team is usually achieved by giving all processes direct

access to common variables. The necessary synchronization to shared variables is supported by

well known mechanisms like semaphoresigi.Monitors 101 provide a more structured but indirect

[Qway of process communication within teams in that they encapsulate shared data and force

processes to access them via a procedural interface. Since there is only a single address space for

all processes global state information may 'azily be obtained from each process.

Network program

A network program is a multi-thread, multi-address space entity which comes in two variations:

-as, i rollectinn nf singl-,-t hre,.,I-'' dress p"" entitips

-as a collection of multi-thread/address space entities.

The coupling between the disjunct address spaces for both variations of network programs is

accomplished by message exchange between programs residing in different address spaces. The

dynamic occurrences of both types of network programs are called "communicating processes" or

* "communicating teams" respectively

With this classification scheme for programs we are able to define a distributed program as a net-

work program which meets the additional requirement of hiding its network structure from its

users. The term "network transparency" is used here in order to denote this essential property of

0!

0 .5

distributed programs !t means that a distributcd program should maintain :1 high degree of

invisibility on its internal structure thereby making it impossible to recognize from outside on

what ty.pe ol computer architecture it is running.

Network transparency as defined above encompasses "location transparency" and *'performance

transparency". Location transparency is the invisibility of the location(from a user*s point of

view) where the different parts of a distributed procam get. executed. Pei 'imance transparency

1s the invis~bility of performance differences in spite of the execution of parts of a distributed pro-

gram at different locations(i.e. local or remote).

p-

. Notice that there exists a special case for which concurrent programs and network programs look

,- the same: it is characterized by zero interactions between the independent threads of ,:ontrol The

b.'avior of such programs can be graphically described by a precedence graph as lepictd In Fig-

ire 4. It is assumed that a fork-operation creates the independent threads of control which con-

ceptually execute in parallel without interaction until terminated by a join-operation W call

* programs with this behavior parallel programs. The parallel execution of parallel program I- best

-upported iw aray -omputersll They are beyond the scope of this paper

Distributed computing can now be defined as the distributed execution of a distributed program

on a muli.i.mputer. A distributed system is a permanent combination of a distributed program

and a multicomputer where the principles of distributed processing apply.

* Notice, that with the above definitions a sequential program running on a multicomputer is not a

• distributed sy.3tem nor is a distributed program runting on a single processor system

4

" It is rather easy now to relate networking to distributed computing. Networking is the more gen-

eral and less restrictive term which always applies if two or more computers ai'e linked together.

*I A network operating system, for example, is a collection of native operatiug systems extended by

% - - ;- -. : -- - : - -

iin

'JII

p,.

F independent
,-", threads of control
1%

'
. -without interactions

.'

p..:

. Figure 4 A precedence graph for a parallel program
-U

mechanisms to request and receive remote logins between them. A user of a network operating

system is always aware which local site he is interacting with. In contrast, a distributed operating

system i deally provides a single operating system imiage to its users. A user should be unaware of[the fact that several computers are involved in performing a requested service. Although operat-

ing systems -re probably the most important class of distributed programs used to buddistr-

buted systems there is no ultimate need to base distributed systems always on the existernc of a

distributed operating system as Enslow did121 .Highly dedicated distributed systems as for exam-

ple distributed data base systems are likely to appear which are built from scratch or or top of a

:rinitive distributed kernel.

Having -xplored a more precise conception of distributed computing we wili turn our attention

-ow r0 the distributed programming process.

B.- ,istributed programming we simply understand the programming process which results into a

i isLributed program. In order to better understand the principles which lead to some form of a

lis'.ribited program structure it is helpful to start with an object-oriented view of a non-

,istributed program as shown in Figure .5. A program is considered there as a black box which

"inaag - some internal state S and exports the function set F for use by other programs. For the

-tat- " v- -, sume that it can be decomposed into a set of independent data types for which

- everal instaitiations may exist. This leads to a matrix representation for S as depicted in Figure

u -\ row for example Tx, contains all instantiations of a given data type x (there may be empty

rnatrix elements).We assume that each data type Tx is manipulated by a corresponding function

-et Fx. Fx is assumed to be a subset of the function set F(this is an oversimplification which may

* in ild s apply in practice but it is sufficient for the -urpose of explaining the general idea

dinhrd the drstributed programming process).

In the -equil we will use the term resource type instead of data type and associate with the

:-m iati ons of a given data type the number of resources available from a given resource type.

7,,W

%.%

"Z ". -7Z -:''-- , ''- -" - .'-'.-.-''- -'-'.- "''-..'''.-. --7 - ---'F ":'---.'.- .'- -"-" '- ",.- ", "." " " "

1F
S

Figure 5 An objected oriented view of a program managing the

state S and exporting the function set F.

V1 V 2 ---------------------- V e

F 1 i T1 S1 S12 Sle

F 2 - T2 S2 1 S22 S2e

F2 * Tk Ski Sk2 Ske

Tx all data instantiations of a given data type x

VY a collection of data instantiations from each data type

Fx operations defined for data type x

Figure 6 A data model for an object's state S

7

>From the refined structure of the state S one can derive three basic distribution strategies

resulting in different versions of distributed program structures for our original program.

A) Full replication(Figure 7a)

In a fully replicated program the state S and the function set S are replicated n times at each

node of a distributed system. This organization requires an expensive cooperation process Eetween

the identical program copies in order to maintain a consistent global state of the resources. It is

the preferred method if a high degree of fault tolerance is the primary design goal for a system.

'I 1B) Function replication-resource partitioning(Figure 7b)

9 In this approach we partition the state S along columns of our state matrix. This leads to a parti-

tioned program where each program copy contains the full function set of the original program

but manages only a small subset of all resources,

If one node fails all others can continue operation by bypassing the resources of the failed node

This organization is favorable in case that graceful degradation is the primary design goal of a

system. It also yields the advantage of high uniformity of the overall system structure since all

copies of the distributed program are basically identical(they differ only in the number of

e:. resources they manage=data structures).

C:) Functicn and resource partitioning(Figure 7c)L In this approach the state S is partitioned along rows of the state matrix. This automatically

leads to a function partitioning since each row is associated with a certain resource type and with

a subset of the function set F therefore.

This decomposition strategy results in distributed systems with specialized nodes, each managing

%' all resources of a given type and favors such desirable properties as isolation(of different

0 subsystems),simplicity(because of its dedicated nature) and efficiency(because of its simplicity).

W% %P

-

'L. IFFigure 7a:

LS..14i-h - Full replication'"' S S

. E Figure 7b:

V V Function replication-
resource partitioning

.E I_ Figure 7c:
-- Function and

"-T2 ... Tk resource partitioning

.e

" " Figure 7 Distribution strategies for a program described by (F,S)

A"-

The basic distribution strategies explained above can be combined in various ways in order to

obtain distributed systems which combine the advantages of the different approaches. For exam-

ple. a distributed operating system can be designed along the distribution strategy C above where

some of its critical components may be replicated in order to provide a high degree of fault toler-

ance.

3. CLASSIFICATION OF DISTRIBUTED OPERATING SYSTEMS

According to the distribution strategies developed in the previous chapter we can identify two

different classes of distributed operating systems currently in use:

A. MIDOS-Architecture

The \IIDOS-architecture(\Multi-Instance Distributed Operating System) follows basically the dis-

tribution strategy B as explained in the previous chapter. There the distributed operating system

is made up of n identical full- function copies of the original single node operating system where

each copy manages only a subset of the available resources. Figure 8 provides an overview of the

%., resulting system architecture. As a first step the LOS's have to be extended by a inter-process

%[communication mechanism to facilitate message communication between processes across node

boundaries.

The single image view of the resulting distributed operating system is achieved by a connection

layer on top of each LOS. The connection layer's task is to provide network-wide, location-

transparent access to all resources of the distributed system. This requires some cooperation

between all connection layers while performing a user's request. Typically, the connection layer

will provide the fincticn set F' to its users thereby differing from the functionality of the original

LOS. However, if the services of the LOS have been defined at an adequate level of abstraction it

is conceivable to provide exactly the same functionality F by the connection layer as offered at

.r, the LOS-interface. This is the most desirable case since it provides for full portability of programs

0N %

0

$ applications

W4I

Connection Connection

F!~ LT_ T_ F
X:.

S LOS PC 4 ------------ IPC LOS

LOS Local Operating System

F Function Set of LOS
" IPC Inter-Process Communication

T Function Set of IPC
, F' Function Set of Connection Layer

0

* Figure 8 MIDOS - Architecture of a distributed operating system
(Multi-Instance Distributed Operating System)

9

9o 9

in the network environment which have been originally developed for running under control of a

local operating system.

One of the major problems which had to be solved were the integration of the local file systems

in a network-wide file directory scheme[13-151. Ad:quate load distribution and load balancing

policies and mechanisms are still a matter of ongoing researchr16.171.

it is possible to configure a node in a MIDOS-system with zero resources of a given type and

removing the corresponding functions from the LOS. This will result in specialized nodes which

are dedicated to certain functions. This procedure is equivalent, to applying the distribution stra-

tegy C as introduced in the previous chapter as a second step to a MIDOS-prestructured operating

system. This method has been applied to specialize nodes in a MIDOS-system to discless worksta-

rions, file servers etc. The UNIX file servers NFS'181 and AFSI191 are prominent examples for the

UNLX world.

For comparison reasons we will use the notion MIDOS-I to denote a system purely structured

according to distribution strategy B. The notion MIDOS-Il is used in order to denote a system pri-

marily structured along distribution strategy B while the resulting distribution units are subject to

the distribution strategy C thereafter.

B. SIDOS-Architecture

The SIDOS-architecture(Single-Instance Distributed Operating System) results by applying distri-

bution strategy C to the original LOS as the primary structuring method. This will lead to a sys-

tem with specialized servers which manage all resources of a given type and offer a restricted

%, function set for use by the external environment.

In its pure form SIDOS-systems do rarely exist since a single server handling all resources of a

given type imposes unnecessary restrictions which is likely to end up in bottlenecks. Therefore

distribution strategy B is usually applied as a second step to SIDOS-prestructured operating sys-

p.. tems. The resulting distributed systems are usually made up of a certain number of workstations

% .,.
. [A •

10

Ianid specialized servers such as file servers, print servers, network servers etc, The typical architec-

ture of a node in a SIDOS-aichitecture is shown in Figure 9.lnstead of a full function operating

system it consists of a simple distributed operating system kernel which provides only the com-

munication infrastructure for the higher layers. The functionality of a node is established by a

specific client -server component running on top of the kernel(it is not excluded to run more than

one clien. or server component on a kernel).

For reasons of comparison of the different approaches we will use the notion SrDOS-I in order to

denote purely SIDOS-structured systems. The term SIDOS-II will be used in order to denote svs-

tems primarily structured according to the distribution strategy C where the resulting structuring

units are subject to distribution strategy B thereafter.

A few examples of systems of the SIDOS-class are V[201, ACCENT[211, Amoeba122 . Eden 23',S

Clouds 241, CONIC[251. DEMOS/MIP'261. Cronus271, INCAS128] from the research environment.

There are also commercial products available which follow the SIDOS structuring approach as for

example the Apollo-Domain system.

Figure 10 summarizes the results of the above discussion for further investigations.

The MIDOS-l architecture is unique in the sense that it preserves complete functional autonomy

of each node with respect to the function set of the original LOS. If a node fails then all resources

managed by this particular node get unaccessible but the remaining nodes can still provide their

full service since they do not depend on the availability of other nodes. This property is some-

times referred to as graceful degradation. A disadvantage of the MIDOS-I-architecture is its

rather low distribution granularity as compared to the MIDOS-II and SIDOS-I1 architectures.

Distribution granularity as a measure for the degree of distribution obtained by the application

of a certain distribution strategy is a determining factor for such desirable properties as incremen-

tal extensibility and support of highly distributed applications. As higher the distribution granu-

S larity as smaller are the increments in which a system can grow and as higher is the potential of

performing operations in parallel.

I. %--..- :' .: ." - . "-'-\-":..;.'- ' ;- -'.,::-'

S

(application)

Sserver client server

DOS- DOS- DOS-
kernel kernel kernel

Figure 9 SIDOS - architecture of a distributed operating system
(Single Instance Distributed Operating System)

...
0

U,

V'..'

V'.

SL

I

LOS
function LO

replication function and

resource esource part :Joningpartitionin

4 function and function
resource replicatio

partitioning resourceIpartitionin
MIDOS-I MIDOS-I SIDOS-i SIDOS-)

Figure 10 Classification scheme for distributed
operating systems

mr

io1

*..-., One would expect that the MIDOS-I and the SIDOS-I1 architectures are equivalent since both

exhibit t.hp same distribution granularity(because the same distribution strategies have been

applied but in reverse order). For a more objective comparison of the two approaches we will

consider an example system consisting of three server nodes and one client node as shown in Fig-

ure II.
-ii

A service request issued by a client program in Figure 11a is accepted by the corresponding con-

nection layer first. The connection layer will start a cooperative conversation with all other con-

nection layers until the appropriate location for performing the service has been determined. The

corresponding connection layer will then call the requested service from its local LOS and reply to

the originating connection layer after completion of the service request.. The originating conntc-

tion layer will finally return control to the blocked client.

Notice that neither a client nor the different LOS's are aware that they are part of a larger svs-

tern. This global knowledge is completely encapsulated within the connection layers.

In the SIDOS-II architecture of Figure lb the clients view of the available services of the systein

is different: it sees a set of servers it can send requests to(being unaware of the server's
',

location).In case that several alternatives are available for requesting a certain service the client

negotiates directly with the corresponding servers in order to determine the most suitable one to

carry out his request. In order to isolate the global knowledge(how many servers are present) from

the local service handling as provided by the MIDOS-approach one can decompose clients and

servers into two sublayers each thereby separating these two aspects clearly from each other. This

has been indicated by dotted lines in Figure lib. By doing this the difference between MIDOS-II

and SIDOS-Il architectures degenerates to a mere software engineering argument:

0i In the MIDOS-II architecture services are encorporated in the dedicated LOS's. It is required

that the overall LOS-structure allows to cut an LOS to any desired functionality necessary for a

certain type of service. p In the SIDOS-II architecture services have been clearly separated from

0 L,.,,ei evel infrastiucture mechanisms like communication primitives.

- '!",-:

client

II F I
connection connection ononnection

F, IP F2 PC [f3 I-FCI IPO

LOS LOS LOS LOS

SF= (F1, F, 3

a) Example of a MIDOS-1i systemI

server server server client

F F F
2 3

connection connection connection connection

D DOS > DOS
kernel kernel kernel kernel

I
b) Example of a SIDOS-11 system

Figure 11 An example distributed operating system
as a MIDOS-Il and SIDOS-II architecture

I

I

-.

* 12

This yields the following advantages:

-Clients and servers are represented in a uniform way. i.e. there exists only a single abstract con-

Ncept for their realization.

-The system philosophy is basically open ended with respect to later extensions by new services

since the DOS-kernel does not care about the number and functionality of clients and servers run-

ning on top of it.

For the above reasons The SIDOS-I1 architecture is considered superior over MIDOS-11 so that we

will spend no more time for investigations of the MIDOS-[I approach.

p..

0" Consider now the following thought-experiment: we configure each node of a SDOS-II structured

ditributed system by a complete set of servers, one for each different type of services as depicted

in Figure 12. Each node can now provide the whole spectrum of OS-functions In an autonomous

way as this is the case for MIDOS-I architecturesprovided that the required peripheral devices are

locally connected) In this way a M[DOS-l system can be viewed as a special case of the SIDOS-I

architecture. For these reasons we can abandon further investigations in the MDOS-l architec-

Uire

Since the SIDOS-1 architecture has been ruled out earlier for its limited practical value the

*SDOS-II architecture remains the only alternative which deserves a more elaborated considera-

0 tion in the succeeding chapters.

4. CO.,LMTUNICATION MODELS

In this chapter we will focus on the elaboration of basic communication models for distributed

%, operating systems within the framework of the SMOS-II system class. This requires the develop-

ment, of models for

- *.."- .°

* - - * -

%-

server server server server

F F F F12 3 n

connection connection connection connection

DOS - kernel

,A.

- Figure 12 A SIDOS-II structrued operating system
"-" providing complete functionality at each node
0

* 13

a. the architecture ot nter, ctg units running on top of the DOS-kernel,

b the interaction scheme imposed to provide controlled communication between interacting units

A variety of different structuring models have been proposed and implemented in experimental

distributed systems.There exist only a few attempts to classify these approaches 29-321 Our -sim-

pie classification scheme illustrated by Figure 13 distinguishes between active units represented by

" processes or teams and passive objects represented by a collection of procedures subject to exter-

nal invocation

If units are active they communicate with each other by some form of explicit message passing.

% Two different variation, of riessage passing scheme have been proposed:

* a. One-way message :omrilunication

' Here the message is merely transported to a given destination by the SEND operation and picked

tup from the transport system by a RECEIVE operation at the receiver's site later on. The mes-

'- sage transaction does riot include the execution of some actions at the receiver nor the reply of

' results. Sending back of results is an independent message transaction issued by the receiver.

b Two-way message communication

".'- In a two-way communication scheme a message transaction includes

-sending a message to the destination
-accepting the message at. receiver's site

.- -performing an action as a response to the message
-sending back possible results by a reply message.

,% If units are passive in a two-way communication scheme a remote invocation mechanism is used

as the interaction method also known as "Remote Procedure Call"(RPC).The RPC concept is well

'- understood, relatively easy to implement and yields the additional advantage that users are fami-

liar with i: 33.3-. The RPC is a two-way communication concept since result parameters can be
-" ,

[•~

interacting active passive
units (processes or (procedures)

teams)

p

interaction message procedurescheme passing invocation (RPC)

interaction one- two- two-
pattern way way way

a.(notify) (service) (service)

client/server models

Figure 13 Classificatinn of structuring models
A

14

passed back to the caller as with a regular procedure call.
k'

Message passing schemes can be further refined if the degree of synchrony between senders and

receivers is taken into account. This leads to the distinction of four basic message passing

semantics(Figure 14):

1. Rendezvous semantics

It is a one-way synchronous message passing scheme in which the sender can never send messages

faster than received by a receiver, i.e. a rendezvous has to be established between senders and

receivers prior to sending the messagei351.

2. No-wait semantics

0It is a one-way, asynchronous message passing scheme in which senders can issue SEND opera-

tions with a speed independent of the corresponding RECEIVE operations of servers 31 This pro-

perty is achieved by a (principally unlimited)message buffer capacity somewhere in the path

between the sender and the receiver. In early-buffering schemes the message will be buffered at

the senders site which results in least waiting times within the SEND operation. In late buffering

the sender is blocked in the SEND operation until the message has been stored successfully in a

message buffer at the receiver's site which increases the waiting time.,
3 Remote Service Invocation semantics(RSI)

It is a two-way synchronous message passing scheme which blocks the sender in the SEND opera-
S

*" tion until a reply message has been properly received from the receiver. RSI mechanisms can serve

as a basis for the implementation of the RPC mechanism. Adequately defined they can provide

more flexibility than a pure RPC mechanism as demonstrated in the V-kernel20.

. 4. Asynchronous Remote Service Invocation semantics(ARSI)

, It is a two-way message passing scheme which does not bind the sender at one SEND operation

at a time. SEND.RECEIVE and REPLY operations can be issued independently of each other as

4.*

'.%b
4- % &? , k

0

.us

synchronous asynchronou

one - way rendezvous no - wait

two - way remote asynchronous
service remote service
invocation (RSI) invocation (ARSI)

Figure 14 Message Passing Semantics

.1

4
-J

.J

1,3
i . Fgur 1 Mesag Pasig S manic

i m 15

in asynchronous communication'361. This scheme is very powerful but also hard to use and

difficult to implement.

Another important characteristic of a message passing scheme is the expected degree of reliability.

Four different levels of reliability are usually distinguished:

-At-least-once
-At-most--once
-All-or-nothing
-Exactly-once

At-least-once semantics guarantees correct completion of a message transaction at. least once. It

does not prevent message duplication and should be used only if the operation triggered by the

* message at the receiver has the property of being idempotent291.

At-most-once semantics guarantees correct. completion of a message transaction at most once. In

the absence of permanent node crashes and broken transmission lines it performs the message

transaction exactly once.

The all-,r-nothing semantics guarantees atomic behavior of a message transaction in spite of

crashes of nodes and transmission lines: either it performs its function completely or it has no

effect at a11r37,38 1 .

Exactly-once-semantics guarantees under all circumstances successful completion of a message

transaction in spite of node crashes or broken transmission lines. It can only be approximated to a

certain degree by redundancy mechanisms[391.

0 The two-way communication paradigm is particularly suited if the prevailing form of interactions

between users is to request and perform a service. The interacting units play the role of either

clients(which request a service) or servers(which provide some sort of service for clients).

Client-server models as represented by the RPC concept or by the two-way message passing

~ ~$-~, %.r. N

scheme appear as the adequate models for structuring distributed operating systems since thir

main job is to provide different kinds of services to user programs.

In the succeeding section we will take a deeper look into client server models therefore.

5. CLIENT-SERVER MODELS

In a client-server system the relation between any pair of client-server can be described by the

state diagram of Figure 15. In the initial state "service completed" previous services have been

completed and new ones not yet started. In the state "service requested" a client has released a

service request which has not been taken into account by the server. If the server has accepted

* the request the state is changed into "service in progress". After completion of the service request

the server replies the results back to the client which changes the state back into "service com-

pleted".

Figure 16 shows the overall structure of a client-server system. We assume the simultaneous

existence of several distributed applications that view the distributed operating system as a collec-

tion of servers. Within the distributed operating system there might exist servers not available for

general use which are only needed to implement higher level services. In this way the servers of

the DOS generally form a hierarchy where only the servers of the bottom laver never turn tern-

porarily into clients. All higher level servers behave as clients against the lower layers and as

servers against the upper layers.

., It should be noticed that no assumption has been made about the communication model used

Swithin distributed applications. While every component of the distributed application requesting a

service from the DOS behaves as a client the internal communication model of the distributed

A' application might substantially differ from a client-server model. Implications are discussed in

- !40i.
% %

;,.-

H1.'pi
6d

client server

requested accepts progress
41 request

-. ,

Figure 15 State diagram for Client/Server Systems

-'IN

distributed
applications

DOS-

jervice requestinefc

Sere Server internalF1 Server

service
request

Figure 16 Overall Structure of a ClientlServer System

* 17

Two different abstract views for client-server systems have been developed'41:

a) the process, message view

b) the object, action view

We will present both views in detail and discuss the differences (and similarities) as well as possi-
A,

ble implications of both approaches.

5.1 THE PROCESS/MESSAGE VIEW

In the process/message view of the client-server model a given system is decomposed into

0 processes or process groups which exchange messages. Figure 17 summarizes the essentials of this

view. In its simplest appearance each client-server is represented by a single process as depicted in

Figure 17a. Request messages are sent by a client process to a port connected to a server process.

Ports represent different service types exported by a server.

A generalization of this view is represented in Figure 17b. Here. each client-server is represented

by a team of processes. A request message is issued always by a specific process member of a

team. Since the message is directed to a port rather than to a process the internal process struc-

ture of a team remains transparent to clients.

In a static team structure the number of processes forming a team is fixed at, team creation time.

A usual approach for subdividing the team's work is to associate a process with each port. Simul-

taneous requests for services arriving at different ports can be processed in parallel conceptually.

However: overlapping requests to thc same port are queued necessarily.

0. In a dynamic team structure the number of processes may vary at run time. Ani obvious

Sapproach to organize a server exploiting dynamic process creation/deletion is the follow'g one:

At team creation only one process- the root process- exists. The root process' task is to create a

server process with every incoming message:

%%0

Ports
client

server

V a) A single process Per client/server

b) A team per client/server

server blockedclient
blocked

REPLY

Figure 17 Process/Message View of a Client-Server Systemn

* 18

PROCESS root
* LOOP DO

Wait for incoming message;
Create server process;
Pass Portid to it;
END;

END root;

Depending on the speed of incoming messages an arbitrary number of server processes may come

into existence within a team. All server processes adhere to the same basic structure:

PROCESS server
Receive message from port(...):
Call approptiate service procedure;
Send reply message to requesting client:

END server:

In the above implementation structure the number of processes changes frequently. In contrast to

a stattc team structure the danger of unnecessary serialization of service processing diminishesr32.

The overhead associated with frequent process creation/deletion can be kept at an acceptable

level by an efficient light weight implementation. The dynamic approach has been adopted for

processes in guardians[42].

The time flow diagram in Figure 17c provides a rough understanding of the semantics of the

communication primitives SEND, RECEIVE, REPLY considered as the minimal function set to

support the process/message client-server paradigm. The SEND operation will block a client pro-

-ess until the successful arrival of a corresponding reply message. The RECEIVE operation blocks

a server until a request message has been arrived and passes the message content. (or a pointer to

0
'*. it) to the receiver. The REPLY operation is a non-blocking operation which is issued after com-

-.. pletion of a request processing by a server. The successful arrival of the reply message at the des-

., tination will unblock the client in its SEND operation.

L"V%. ,.",0'"

'p "" , "''''',, \ .,.,. ' '-'. 1", ' " " ; € 1 s ' t." J'
"

e .":_,.C .,,"sG € ., ' " d ", ;.:k ,_

5.2 THE OBJECT ACTION VIEW

In ,,i)bu -, . ' tw A' ciitiic-server systems servers are conceiveo as a collection of passive

procedures which manage an internal state. An action is performed within an object by calling

one of its procedures thereby passing a thread of control to the object. The callee of an object 1!!

usually another object which has been called before. At the outermost calling level there exist a

certain number of processes which stimulate activity in the system by calling object procedures.

In order to avoid dealing with two different types of structuring units- processes and object.s- we

take a slightly more generalized view of objects. There, objects can contain a certain number of

housekeeping processes which are not directly involved in the processing of service requests. This

* leads to the following principle structure for objects:

OBJECT xyz IS
ENTRY proc_a(...)- --------- END;
ENTRY proc-b(...)----- ---- END:

ENTRY proc k(...)- ---------- END:
data deciarations;

PROCESS pl ------------- END;

PROCESS pn -------------- END
-A. BEGIN
* Initialization;

END xyz;

By a statement of the form

ABC: xyz;
5.

we denote the creation of three instances of the object type xyz.

Two concurrently executed call's from within different threads of control of the form

% %

* 20

rig A.proc a(... A. procb(...):

result in two simultaneous actions within the object. A. It, is assumed that, the necessary svnchron-

ization between simultaneous actions in an object is supported by appropriate synchronization

primitives like semaphores 91 or monitorsil01.

Processes can be represented within this generalized object model by objects containing a single

V.-. internal process each with an empty export interface. An obvious implementation structure for

objects as introduced above is shown in Figure 18. 'kt the client's site each Remote Procedqure

CalI(RPC) is redirected to a local stub procedure. This stub procedure collects the actual parame-

ters passed with the procedure call and constructs the message out of it. It then sends the message

to a stub process at the receiver's site. The stub process which might have been created in

response to the incoming message receives the message and calls an appropriate local service pro-

,. ,cedure which actually carries out the service request. After return from the service procedure the

stub process ,'onstructs the reply message, sends it back to the client and terminates

For convenience reasons it was assumed in Figure 18 that the stub procedure at the client's site

'4 . and the stub process at the server's site communic,, via ai, .) ciiroiu, ,-,,ay message han-

-%'. dling scheme with the functions SEND, RECEIVE, and REPLY as introduced in section 5 1. Thi-

also simplifies the comparison of both approaches.

4. ,4

It is interesting to notice that the implementation structure of the object model sketched by Fig-- ure 18 corresponds directly to the server organization with a single root process and a dynamic

number of server processes in the process, message paradigm.

This leads to the following primary conclusions:

0

client process

service
, (.procedures

Collect parameters; RECEIVE

Build message; CALL serice proc(n);
SEND (--.);
Copy back Build reply message;
parameters; REPLY (...);
RETURN; Termiante;

stub-processes

stub-procedure object

Fol

".°

i~i Figure 18 Implementation Structure for the object model

5P

2-,

a" S

-t, ,. a K K . K~i U 4 i -,mw ~ n wv w. - rs .r..,; V.. .WV w'. r r _' -rr~~ ?r'w. - v ra - -, ' '.- r ,

* 21

o-.

1. At a first glance. the object action and process niessage approach are two abstract views on

client-server models with basically the identical expressive power.

2. The object action view is on a more abstract level. A process, message scheme can easily be

- used to implement the object action view.

6 EXTENSIONS TO THE BASIC CLIENT-SERVER MODEL

The basic ,lient-server model as discussed in the previous chapter is sufficient to analyze its prin-

,Ipal nirits, az, rnpared to other approaches. As a basis for a real system, however, the model

needs t, tp -xt, nied in several directions in order to serve as a powerful structuring means for

!strnbitet ,.erattng systems. In the following two subsections we discuss useful extensions in

* ."p r hre areas

1 extensions of the basic client-server model to enhance its expressive
- power.

2 naming issues.
" protetion

"since naming and protection are highly interrelated we will treat them together.

6.1 EXTENSIONS OF THE BASIC CLIENT-SERVER MODEL TO ENHANCE ITS EXIRES-

' SIVE POWER

By exprssive power we denote the ease of describing typical structures using the available

features of a given client-server model. As long as the service to be designed is represented by

Pxactly one single server, the basic client-server mod-ls sufficient to model the server as well as

the interactions of the server with its environment..

Hfowe ver, the following likt of possible interrelationships between a service and servers show other

I. - %

22

frequent constellations:

- service single server
- service - one arbitrary server out of a pool of identical servers
- service = pipelined server formed by ii pipeline segments
- service = fault tolerant server formed by m stand-by servers.

r-, Figure 19 provides an example for each mentioned service-server interrelationship. A powerful

client-server model should support structuring a service as a pool of identical servers, a pipelined

server or a fault, tolerant server by convenient addressing and message propagation mechanisms.

SAn obvious requirement from the above discussion is a selective message broadcast mechanism

also called a multicast. An ideal multicast mechanism should reveal the following properties:

* a) it should be possible to group targets for messages as for example ports and associate a group

name to them.

%£ b) A message sent to a group potentially reaches all actual members of the group.

c) The effort spent by the message handling systii to assure a certain degree of success of a mul-

ticast operation should be parameter controlled(for example: "enforce successful completion of at

least three message deliveries').

d) There is no global control of the members belonging to a multicast group. This releases a

sender from specifying the number of potential receivers of a multicast message and favors distri-

buted control algorithms.

Cheriton'20 has shown in the V-kernel design that it is rather simple to extend the basic client-

* ser',er model to support a flexible multicast mechanisms. Cheriton envisaged the concept of pro-

cess groups and provided functions for entering and leaving groups. The minimal degree of success

of a multicast message transaction is defined as the successful reply of at least a single reply mes-

* sage. However, further expected replies can be received by the GET REPLY operation.

,. ,A

!/I i.

,.client server

a) service = single server

I.
client

b) service = single server from
a pool of identical servers

__-_ _ _pipelined server

V client

c) service = pipeline

fault tolerant server

. I client

d) service = k redundant servers

Figure 19 Examples for service-server relationships

J. .0"'..

t-m, "1 .- i

I23

*" There are other extensions to the basic client-server model in the V-kernel which are helpful to

*_ structure servers according to needs stated above: The V-kernel offers a FORWARD operation for

*, forwarding a request message from a server who might consider to delegate this job to someone

else. This operation has the overall effect that the client-server pair involved in the actual mes-

-age transaction is redefined replacing the original server by the new one where the request mes-

sage was forwarded to.

There are further examples taken from the V-kernel which prove to be extremely useful eXten-

sions of the basic client-server model with respect to scheduling and efficiency issues:

-The V-kernel allows a server t.o work simultaneously on several requests (several RECEIVE

operations may be issued before the processing of an request has been finished by the REPLY

operation). In case of a static process structure this feature regains Lhe server's ability of schedul-

ing incoming requests according to its internal needs.

-The standard message length is 32 bytes. This restriction favors simple storage management poli-

cies and fast protocols for the most frequent case. Bulk data may be transmitted in user con-

trolled portions by the COPYTO and COPYFROM operations.

-The above discussion can be summarized as follows:

In order to support the design of real systems the basic client-server model should be extended to

*" facilitate
4

- multicast 'broadcast
- pipelining (by message forwarding)
- simultaneous request, processing by servers
- explicit transfer of bulk data

Prototype systems have proven that it is rather easy to define appropriate extensions in the

process, message view and supp,'rt them efficiently by a DOS-kernel.

* It is doubtful that ,imilar extensions could be defined for the object/action view without

t%

24

%

destroying its conceptual simplicity. It is our belief that the object/action view as the more
abstract model of client-server systems is adequate for certain applications..s such it. should

maintain a rigid and simple view of objects and actions at the cost of flexibility.

At the DOS level however, more flexibility is needed in order to structure servers and whole svs-

tems of clients and servers which requires means for explicit control of message flow, scheduling of

-arriving messages and data transfer between system components. The process/message view pro-

vides the appropriate level of abstraction needed to achieve those requirements.

6.2 NAMING AND PROTECTION
J.

Naming refers to a class of mechanisms in operating systems which help to solve the following

problems:

a) generation of unique names
b) name retrieval for public services
,:) binding of names to physical locations of the corresponding system objects

In a dynamic system environment new services enter and old services leave the system (to be

replaced by improved versions). This requires a mechanism for the generation of unique names

-'ven if names exist for a long period of time (several years). If the user starts up a new client it

has to get aquanted with those names related to the services it intends to invoke. For example,

the client would like to query the system:"give me all names of servers referring to the print ser-

vice". Names usually consist of rather long character strings. Before an object can be actually

referenced the corresponding names have to be bound to physical locations as memory addresses.

devicr. addresses etc. In a highly dynamic system environment binding occurs at runtime shortly

before the actual reference is made.

In a static system environment the naming problem almost disappears for the following reasons:

%

.4
2, MV mz,

* 25

- A generation scheme for names is not required since the system designer generates the names

and associates them to system components.

- Name retrieval is irrelevant sinc- all names are known and directly used in order to establish the

interconnection structure between system components.

-Binding of names to physical locations is carried out at translation or load time.

In a large distributed system environment the incremental growth of the system according to the

users needs is highly desirable. Therefore, dynamic system environments are more likely to be the

standard case.

Name generation and name retrieval can be organized in a central name serveri' i . Central name

servers- while sufficient for small distributed systems- can cause substantia! performance degrada-

tions if they get overloaded in large distributed systems. In addition. the demise of the name

server could bring down the whole system.

In a distributed name serving scheme name generation is based on local name generators in each

node. Each public server responds to retrieval requests arriving from outside.

In a processmessage based system with ports representing services a distributed name retrieval

service could be organized as follows: each object offering a public service exports a standard port

which is joint in a publicly known port group 'PublicServices'. A request sent to "PublicServices"ai

. will return all port names to the requester currently available for public serv.ices.

The knowledge of the ia.=. 3 a server enables a client to contac the server. In thEt absence of

protection rmechanisms the ability to cc.itact a service is equivalent to get the service.

"'. Protection mechanisms introduce another fire l between clients and servers: even if the name

of a certain service is known to a client, utilizing the service requires a special permit. If the r'-

mit (access right) was not granted before the protection mechanism will reject attempts to request

services. In general, protection schemes are responsible for the following tasks[43]:

*1.

r o SMU% .MMw
~!

N..

F% 26

;' (a) prevention of unauthorized usage of services
(b) prevention of impersonating of existing services
(c) control of access rights migration

It is still an open question to which degree protection should be supported by operating systems.

In trustworthy kernels naming and protection can be included as an integral part in the DOS ker-

nel. Kernels which emphasize protection like HYDRA[441 are often called security kernels. In dis-

tributed systems with an open interface like in workstation networks everyone can connect a corn-

puter to the network with its personal operating system thereby bypassing any global protection

scheme. For this reason some distributed systems don't rely on trustworthy kerneis. A good

example is the Amoeba system:451.

More research is needed to determine a useful minimal set of services provided by some

trustworthy communication interface as the basis of arbitrary protection schemes.

7. THE COOPERATION PRLNCfPLE

In a client-server oriented distributed system there exist usually several servers which can carry

out a requested service. The decision making process involved in selecting the most suited

'_server(s) requires some form of cooperation between a client and the potential servers before the

service can be processed. It is this cooperation process which establishes the fundamental

difference between centralized and distributed system organizations (in fact. a centralized system

can be viewed as a system with a single server for each service type thus relinquishing cooperation

needs).

The objective of any cooperation process is to optimize the overall system behavior with respect

to some optimization criteria. Conceivable optimization criteria are:
'.,

-averaging resource utilization
40 -maximizing the overall system throughput

0-achieving a required degree of fault tolerance

9.%

* 27

Our concern in this chapter is to study the principle nature of this cooperation process and to

conclude with some hints for future research

It is convenient to think of the cooperation algorithms as being encapsulated in a separate

cooperation layer as indicated in Figure 20. This layer is made up of a collection of so called ser-

vice managers. At client's sites service managers receive service requests from clients. They

,,per-t*,, with ,Vhpr ervi-e ,.an-4ers in -rAr -? ieterm.. the -.,c;t appropriate server(s) Lt

that time to carry out the service- The service manager(s) at server's site(s) finally pass a request

to the server(s) waiting for incoming requests. Clients and servers are unaware of the decision

making process in the cooperation layer underneath.

An ultimate goal of every cooperative effort is to keep the overhead involved in the decision mak-

ing process small with respect to the amount of information exchanged between service managers

and the frequency this information is being exchanged between them

S uppose in a distributed system exist several identical print servers. A client. calling a print

operation doesn't care which print server actually performs the request. The corresponding service

manager at the client's site starts a cooperation with other service managers in order to determine

the print server with the least actual load.

This print server gets finally the request passed to it. An obvious solution for a cooperation algo-

rithm corresponds directly to a well known solution in centralized systems: all service managers at

client's sites -after having received a print request- enter a distributed critical region. Within the

critical region the present load of all print servers is interrogated and the server with the least

* load selected. Its present load is adjusted before the critical region is terminated. The print

request is finally forwarded to the selected print server. The service manager at a client's site

takes the following form:

S1

~ Th'v - -~ b.' '~

S

. client

service service- service
interface request accept

service cooperation cpt
layer

DOS communication. . kernel

Figure 20 Encapsulation of the descision making process
in a cooperation layer,a.--

o
"is,

0 28

ServiceManager (* chient site *)
DO
Receive print request.
Lock(Mutex): (* distributed P-operation *)

Broadcast to all service managers at server sites:
send actual load;
Collect answers;
Select server with the least load;
Adjust load at selected server by
sending a message to its service manager;

. Unlock(Mutex); (* distributed V-operation N)

f,,,aru ei.t ..eue. o sei.ted server,

END ServiceMinager;
As

While the above algorithm works efficiently in a centralized system it might produce prohibitive

communication costs in a distributed system due to the expensive distributed critical region,46

* More efficient solutions are based on approximative measures of the actual load of servers, for

example by periodic server interrogations. However, they are susceptible to load oscillations-

The above discussion exemplifies a fundamental lack of understanding what factors establish a

good cooperation algorithm. It might be an important observation towards a systematic design

methodology for distributed algorithms that higher level distributed programs tend to use fire-

quently the same basic algorithms in order to achieve their goal as for example:

- broadcast a message
- obtain a consistent snapshot of a distributed global state
- establish a distributed critical region
- reach consensus on a global situation

* - determine global time
- determine termination of a d;stributed algorithm

etc. 471

It is considered a challenging research undertaking to devise a design methodology which supports

the systematic construction of distributed programs by composition from a universal set of distri-

buted primitives.

W.

4N. %

J%

* 29

* REFERENCES

I A.S Tanenbaum, R.vanRenesse: Distributed Operating Systems, ACM., Computing Survey 17,
No.4, 419-470 (1985)

2' V'* mbadar: Data Base M ,achines, Proc. 18th Annual Hawaii International Conf. on SYstem
Sciences, 352-372 (1985)

3 R.Bax'er. K.Elhardt, W.Kiessling, D-Killar: Verteilte Date n banksystenie- Eie L7ebersichitj4 S Ceri G.Petagatti: Distributed DatabasesPrinciples and Systems, McGraw-Hill 1984

. T.Haerder,E Rahm: M,!,hrrechner--Datenbanksys teme fuer Transaktionssysterne holier Leis-
tungsfaehigkeir., IT 28, Heft 4, 214- .251986)

*6' DRK Hsiao(ed.): Advanced Database Machine Architectures, Prent "co Hall 1983U7. C M.Brown. C.S.Ellis. J.AFeldman. T.J.LeBlanc: Research with the Butterflv Mulrticom-
puter. 19)84-1985 Computer Science and Computer Engingeering Research Revie'w, U-niv. of

* Rochester 1985

A4 S K Preukel: Evaluating Two Mvassively Parallel Machines, CACM1V 29, No. 8, 752-7-58(1986)

12 P.Enslow: What is a Distributed Data irocessing SyStem, IEEE Computer, Vol. 11, No.

1.3 D R Brownbridge, L.F.Marshall, B-Randell: The Newcastle Connection or UNI~es of the
World Unite-!, Software- Practice and Experience 12, July 1982, 1147-1162(1982)

14 A.Barak, D.-Malki, R.Wheeler: AFS,BFS,CFS... or Distributed File Systems for UNIX. Proc.
of the 1986 EITUG Fall Conference, Manchester, England, 461-472(1986)

1.5 M.Kaiserswerth: Verteilte Dateisysteme unter UNIX: Eine Gegenueberstellung verschiedt-ner
Loesungen. Informationstechnik it, Heft 6, 390-398(1987)

- 16 D.Eager, E ,Laszowska, J.Zahorjan: Dynamic Load Sharing in Homogeneous Distributed Sys-
tems, IEEE Transactions on SE-12, No. 5, 662-675(1986)

17A.Barak, A.Shiloh -k Distributed Load Balancing Policy for a Multicomputer. Software-
Practice and Experience 15, 901-913(1985)

18. NFS Protocol Specification. Networking on the SUN Workstation, SUN Microsystems 1986

*19 P.Weinberger: The Eight Edition Remote File System, EUTUG Spring Conference, Florence
1986

201 D.Cheriton: The V-Kernel- A Software Base for Distributed Systems. IEEE Software, 19-

:2(L84 R. ahdC -Robertson: Accent: A Communication Oriented Network Operating System

KerelPro. o th 8h SSP,64-5(Dc.1981), also in ACM-OSR 15(5)

z L~ ~~~~. 41 ~ . j, *V.Va~

*@ 30

22; S JMullender, A.S.Tanenbaum: The Design of a Capability-Based Distributed Operating Sys-
tern, The Computer Journal. Vol. 29, No .1, 289-300(1986)

23 G.T.-mes, A.P.Black, E.D.Lazowska. J.D Noe: The Eden System: A Technical Review,
iEEE Trans. on SE-11, No. 1. 43-59(1985)

'241 P.Dasgupta, R.J.LeBlanc, W.F.Appelbe: The Clouds Distributed Operating System: Func-
tional Description, Implementation Details and Related Work, Technical Report GIT-ICS-87 42,
Georgia Institute of Technolog) . Atlanta 1988

.5 Kramer, J..Magee, I.Sloman, A.Lister: CONIC- An Integrated Approach to Distributed
Computer Control Systems, IEEE Proc. Vol. 130. Part E, No. 1, 1-10(1983)

26' B.P.Miller, D.L.Presotto, M.L.Powell: DEMOS,'MP: The Development of a Distributed

Operating System. Software- Practice and Experience 17, 277-290(1987)

27' R.E.Schantz, R.H.Thomas. G.Bono: The Architecture of the Cronus Distributed Operating
System, Proc. of the 6th Int. Conf. on Distributed Computer Systems. IEEE Computer Society,
May 1986

28' J.Nehmer, D.Haban. F.Mattern, D.Wybranietz, H.D.Rombach: Key Concepts of the INCAS
* \Iulticomputer Project. Trans. on Software Engineering 13.Vol. S. 913-923(1987)

- 29' E.Jul: A classification of Distributed Operating Systems. Techn. Report 85-05-01, Dept. of
• 'omputer Science, Univ. of Washington. 1985

30j S.M.S,t,: Communication Mechanisms for Programming Distributed Systems, IEEE-
Computer, Vol. 17, No. 6, 2!-29(191)

.31 B.Liskov: Primitives for Distributed Computing, Proc of the 7th SOSP, 33-42(1979)

32! B.Liskov: Limitation of Synchronous Communication with Static Process Structure in
Languages for Distributed Computing, Techn. Report No. CMU-CS-85-168, Carnegie-. lion
1-Univ. 1985

33 A.D.Birell, J.Nelson: Implementing Remote Procedure Calls, ACM-TOCS 2, 39-59(1984)

34 A.D.Birell: Secure Communication Using Remote Procedure Calls, ACM-TOCS 3, 1-14(1985)

35 C.A.R.Hoare: Comunicating Sequential Processes, CACM 21, 666-677(1978)

36 K.Geihs, R.Staroste, H.Eberle: Operating System Support for Heterogeneous Distributed Sys-
tems, GI,'NTG-Fachtagung, Aachen Febr. 1987, Informatik- Fachberichte 130, Springer, 178-
189(1987)

371 B.Lampson: Atomic Transactions, Lecture Notes in Computer Science Vol. 105, Springer,
365-370(1980)

381 J.Walpole, G.S.Blair, D.Hutchinson, J.R. Nicol: Transaction Mechanisms for Distributed
Programming Environments, Software Engineering Journal Vol. 2, No. 5, 169-177(1987)

0 39 L.Svobodova: Resilient Distributed Computing, IEEE- Software Engineering 10, No. 3, 257-
268(1984)

S%

* 31

401 J.Nehmer: On the Adequate Support of Communication Interfaces in Distributed Systems,
, Int. Workshop on "Experiences with Distributed Systems". Univ. of Kaiserslautern, Sept. 1987 (to

- appear in Lecture Notes in Computer Science, Springer)

41' S.K Shrivastava. LV..lancini. B.Randell: On the Duality of Fault Tolerant System Struc-
tures. nt. Workshop on "Experiences with Distributed Systems". Univ. of lKaiserslautern, Sept.

1987 (to appear in Lecture Notes in Computer Science, Springer)

42' B.Liskov. R.Scheifler: Guardians and Actions: Linuistic Support for Robust Distributed Pro-

- A C Nf-T0PL .% V , .:-. 3, "8t-404(1983)

43i A.S.Tanenbaum, R.vanRenesse: Reliability Issues in Distributed Operating Systems, Proc
6th Symposium on Reliability of Distributed Software and Database Systems. Williamsburg, Vir-
ginia. 3-11(1987)

44' W.Wulf, E.Cohen. W.Corwin, A.Jones, R.Levin, C.Pierson, F.Pollack: HYDRA: The Kernel
' of a Muitiprocessor Operating System, CACI Vol. 17, June 1974

N

45 A.S.Tanenbaum, R.vanRenesse. S.J.Mullender: Capability Based Protection in Distributed
Operating Systems. Proc. of the Symposium on "Certificering van Software". Utrecht. Nether-
lands. Nov. 1984

6

47 G.Roucairol: On the Construction of Distributed Programs, in: Paker. Baikatr,
* Bozvigit(eds): Distributed Operating Systems: Theory Practice, Springer, 47-65(1987)

,%W

a,

.AwpIJ*A . V. * ,~
S.S " **-

V=

UNCLASSIFIED
-. ECuR CLASSFCATION OF THNS PAGE

REPORT DOCUMENTATION PAGE
IS REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2 /A /approved for public release;

Nb. DECLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATON

Univ'I..iLy of Maryland (f applicable) U.S. Army Strategic Office of

I N/A Defense Cotmand Naval Research

6. ADDRESS (City, State, and ZIPCoe) 7b. ADDRESS (City, State, and ZIP Code)

Department of Computer Science Contr & Acq Mgt Ofc. 800 N. Quincy Str.

University of Maryland CSSD-H-CRS, P.O. Box 1500 Arlington, Va

College Park, MD 20742 Huntsville, AL 35807-3801 22217-5000

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) DASG60-87-C-0066 N00014-87-0241

S.P c. ADDRESS (C4t, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. 14.ACCESSION NO

11. TITLE (Include Securrty Classification)

A Structuring Framework for Distributed Operating Systems

12. PERSONAL AUTHOR(S)

Juergen Nehmer

13L. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT

Technical I FROM __ TO J T_,, 31

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if nocesry and identify by block number)

FIELD GROUP SUB-GROUP

. 19 ABSTRACT (Continue on revers if necessary and identify by block number)

9 This technical report is an attempt to survey the organization principles for distributed systems in
a systematic and concise manner. Starting with a comprehensive set of terms covering the area of

distributed computing, a classification scheme for distributed operating systems is developed.I" i Based on this classification scheme seversl communication models are surveyed. Client-server
models as an attractive structuring means for distributed operating systems are discussed in
-eater depth. The report concludes by elaborating the nature of cooperation as an unique under-

* Ilying principle to organize the work in distributed systems.

- 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E UNCASSIFIEDAJNLIMITED 0 SAME AS RPT. 0OTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

8D FORM 147 4 MAR 83 APR edition may be used until e s SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. U C"I E[UNCLAS S IF IED

pJ.%, % % ..-- ." . -% % % %

