PERCENTAGE POINTS FOR THE FISHER-COCHRAN TEST FOR EQUALITY OF VARIANCES

BY

HERBERT SOLOMON and MICHAEL A. STEPHENS

TECHNICAL REPORT NO. 403 AUGUST 19, 1988

Prepared Under Contract N00014-86-K-0156 (NR-042-267) For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

88 916 002

PERCENTAGE POINTS FOR THE FISHER-COCHRAN TEST FOR EQUALITY OF VARIANCES

by

Herbert Solomon

and

Michael A. Stephens

1. Introduction.

A well known test for equality of normal population variances, based on sample variances, was introduced by Cochran (1941). Suppose σ_i^2 , $i=1,\dots,n$ represents the population variances of n normal populations, and let independent sample variances, each based on k degrees of freedom, be s_i^2 , $i=1,\dots,n$. Suppose the s^2 are ranked, so that the ordered variables are $s_{(1)}^2$, $s_{(2)}^2$, \dots , $s_{(n)}^2$. To test H_0 : the σ_i^2 are all equal (suppose the common value is σ^2), Cochran (1941) introduced the test statistic

$$Z = \frac{s_{(n)}^2}{\sum_{i=1}^n s_i^2},\tag{1}$$

which compares the largest sample variance with the sum of the sample variances. Clearly the intent is to discover if one variance is an outlier (too large), and, in general, H_0 will be rejected for large values of Z. However, excessively small values of Z could be useful also: they will suggest that in some way the sample variances are more homogeneous than should be expected from a set of normal variances all from equi-variable populations, an event which might occur if samples with widely disperse variances have been omitted from a set of data. Such an event would be important, for example, in monitoring quality or process control.

Cochran gave some distributional results for Z, and these were used by Eisenhart and Solomon (1947) to construct tables for the upper 5% and upper 1% points, 95th and 99th percentiles to supplement the very brief table presented by Cochran in his article. Another table with 5% and 1% points, for $n \leq 20$ and for slightly different values of k, was given

by Yamauti (1972). The Eisenhart and Solomon tables have been frequently reproduced and we now augment those tables in what follows by producing the additional percentiles listed in Table 1 for n = 2(1)10, 12(2)20, 25(5)50, 60, 120 and k = 1(1)20, 30. When k = 2, the test statistic serves as the basis of a significance test for any particular term in the harmonic analysis of a series as was demonstrated by Fisher (1929) who also provided a brief table of 95% and 99% points. In another paper, Fisher (1940) provided another brief table that also gave 95% values for the largest and second largest fractions. Tables for the Fisher problem, namely k = 2 were supplemented extensively by Nowroozi (1967) but to our knowledge more extensive tables for other values of k have not been produced. It might be useful to have such points, and we give them in the tables below.

An obvious application would be to process control or quality control. Historically, this was mostly examined using, say, the mean of a sample taken daily, but it has become increasingly the practice to examine the variance also, for stability of the process. Thus, for example, the seven variances in a week might be examined to see if these were homogeneous, using the test given below. One might not always wish to be limited to comparing the largest variance with the total, and, for example, the two largest of the week or the four largest of a monthly set of variances, might be tested as too large. The theory given below can be adapted to provide such a test, and work is in progress to provide tables for this more general situation. The test procedure is given in Section 2, followed by theoretical results in Section 3.

2. Test for Equality of n Normal Population Variances.

The test of H_0 thus proceeds as follows.

- 1. Suppose for the *i*th population the sample variance s_i^2 is given, (the unbiased estimator of σ_i^2), based on k degrees of freedom.
- 2. Calculate Z from (1).
- 3. Reject H_0 given in Section 1 at significance level α if $Z > Z_{\alpha}$, where Z_{α} is given in Table 1, for appropriate values n, k, and α .
- 3'. On occasion, H_0 might be rejected at level 1α if Z is smaller than Z_{α} .

Table 1 has been constructed, for values $Z_{\alpha} > 0.5$, from an exact formula for upper tail probabilities, given by Cochran (1941) and used by Eisenhart and Solomon (1947); for critical values $Z_{\alpha} < 0.5$ Pearson curve approximations have been used. The techniques

used, and comments on the accuracy of the tables, are given in Section 3.

3. Theory of the Tests

3.1. Calculation of critical points $Z_{\alpha} > 0.5$. Define $r_j = s_j^2 / \sum_i s_i^2$. Cochran (1941) showed that the probability P(Z > g) is given by

$$P(g) = nP_1(g) - \frac{n(n-1)}{2}P_2(g) + \frac{n(n-1)(n-2)}{3!}P_3(g) \cdots$$
 (2)

where $P_1(g)$ is the probability that any one ratio r_j exceeds g, $P_2(g)$ is the probability that two of the ratios both exceed g, etc., and observed that the upper tail probabilities P(g) will be exactly $nP_1(g)$ when g exceeds 0.5. Eisenhart and Solomon (1947) showed limits for the accuracy of approximating P(g) by $nP_1(g)$ for lower values of g. $P_1(g)$ is given by an incomplete Beta function (Cochran, 1941):

$$P_1(g) = \frac{\int_g^1 X^{k/2-1} (1-x)^{\frac{k(n-1)}{2}-1} dx}{B(\frac{k}{2}, \frac{k(n-1)}{2})} \quad 0 \le g \le 1$$
 (3)

where $B(\cdot,\cdot)$ is the Beta function. $P_1(g)$ can also be evaluated from tables of the F distribution. In Table 1, $P_1(Z_{\alpha})$ has been used to give critical values Z_{α} , when these are greater than 0.5.

3.2. Pearson curve approximations for $Z_{\alpha} < 0.5$. For smaller values of Z_{α} corresponding to higher significance levels, we have approximated the distribution of Z by Pearson curves. For this, the first four moments of $Z^{1/2}$ are used.

Suppose Z is constructed as follows:

- (a) Let y_1, y_2, \dots, y_n be i.i.d. random variables, each with the distribution $\sigma^2 \chi_k^2$, where σ^2 is any positive value; let $y_{(1)} < y_{(2)} < \dots < y_{(n)}$ be the order statistics of the set y_i .
- (b) Let $Y = \sum_{j} y_{j}$.
- (c) Then $Z = y_{(n)}/Y$.

It is clear that the distribution of Z is independent of σ , the scale parameter of y_i ; also Y is a completely sufficient statistic for σ^2 . Thus, by the Basu/Hogg/Craig Theorem.

Z and Y are independently distributed. We can henceforth assume that $\sigma = 1$. Then $ZY = y_{(n)}$, and we have

$$E(Z^r) = \frac{E(y_{(n)}^r)}{E(Y^r)}. (4)$$

where $E(\cdot)$ denotes expectation. The denominator of (5) is easy to find, since Y is a χ^2 -variable with kn degrees of freedom: then

$$E(Y^r) = \frac{2^r \Gamma\{(kn+2r)/2\}}{\Gamma(kn/2)}$$
 (5)

For the distribution of $y_{(n)}$ suppose G(t) is the distribution of χ_k^2 ; the distribution of $y_{(n)}$ is then $[G(t)]^n = P(y_{(n)} < t)$, and moments are given by

$$E(y_{(n)}^r) = \int_0^\infty t^r n(G(t))^{n-1} g(t) dt$$
 (6)

where g(t) is the density of χ_k^2 .

Thus the moments of Z or of $Z^{1/2}$ are very easy to calculate, from (4) using (5) and (6). The first four moments of $Z^{1/2}$ have been found and used to fit Pearson curves (see Solomon and Stephens, 1978) to the distribution of $Z^{1/2}$ and hence to obtain significance points Z_{α} for Z.

3.3. The case when k=1.

For k=1, when each sample variance has only one degree of freedom, there is an interesting connection with a distribution in the statistics of directions. Suppose P is a point uniformly distributed on the n-sphere with center 0 and radius 1. It is well-known (Marsaglia, 1972) that a method to generate such points P is as follows. Generate w_1, w_2, \dots, w_n i.i.d. from N(0,1), and calculate $X_i = w_i/Y^{1/2}$ where $Y = \sum_j w_j^2$; then X_i , $i = 1, \dots, n$ are the components of vector OP. Let $S_i = |X_i|$; then $Z = S_{(n)}^2$, that is, Z, when k = 1, is the square of the largest component of a random unit vector on an n-sphere. We can then get some distributional results for Z by finding the distribution of $S_{(n)}$.

 $\underline{k=1,\,n=2}$. For example, when n=2, OP can be fixed by the angle θ it makes with the x-axis, and θ is uniformly distributed, between 0 and 2π , written $U(0,2\pi)$. For the distribution of $S_{(n)}$ we can confine attention to the first quadrant, $0<\theta<\frac{\pi}{2}$; then when $0<\theta<\frac{\pi}{4}$, $S_{(n)}=\cos\theta$ and when $\frac{\pi}{4}\leq\theta\leq\frac{\pi}{2}$, $S_{(n)}=\sin\theta$. It is easily shown that the

density $f_S(x)$ of $S_{(n)}$ is given by

$$f_S(x) = \frac{4}{\pi\sqrt{1-x^2}}, \qquad \frac{1}{\sqrt{2}} \le x \le 1.$$
 (7)

The moments $\mu'_r = E(S^r_{(n)})$ are $\int_c^1 x^r f_S(x) dx$, where $c = 1/\sqrt{2}$; these can be easily calculated to give

$$\mu_1' = 0.90032, \quad \mu_2' = 0.81831, \quad \mu_3' = 0.75026, \quad \mu_4' = 0.69331.$$

Check with formula (2). From (2) and (3), with k = 1, n = 2, we have for g > 0.5.

$$P(g) = \frac{2}{\pi} \int_{g}^{1} x^{-1/2} (1-x)^{-1/2} dx.$$

since $B(\frac{1}{2}, \frac{1}{2}) = \pi$. Let $x = t^2$ and we have

$$\begin{split} P(Z>g) &= P(S_{(2)} > \sqrt{g}) \\ &= \frac{2}{\pi} \int_{\sqrt{g}}^{2} 2(1-t^2)^{-1/2} dt = 2 - \frac{4}{\pi} \sin^{-1} \sqrt{g}, \quad g \ge 0.5. \end{split}$$

This is the same result as obtained by integrating (7).

Of course, for n=2 there is a simple correspondence with the F-test for equality of two variances, since $Z^{-1}=1+s_{(1)}^2/s_{(2)}^2$. It quickly follows that z_{α} , the critical value of Z at level α , is related to $F_{k,k}(\alpha/2)$.

For n=3, the algebra is more complicated. Let vector OP, where P is now uniformly distributed on the first orthant of the unit sphere (that is, all coordinates of OP are positive), have usual spherical coordinates θ , ϕ . Then $z=\cos\theta$ is U(0,1), and $\phi=U(0,\frac{\pi}{2})$, so that, if we use rectangular axes for (ϕ,z) , probability is uniform on the rectangle R: $0 < z < 1, \ 0 < \phi < \frac{\pi}{2}$. We now want $\Pr(\text{maximum component of } OP < t) = P(t)$. This is found as follows.

 $k=1,\ n=3,\ t\geq \frac{1}{\sqrt{2}}.$ If z>t, and $t\geq \frac{1}{\sqrt{2}},$ it is clear that z must be the maximum component, for all ϕ . Thus P(z>t)=1-t. By symmetry, $x=\sin\theta\cos\phi$ or $y=\sin\theta\sin\phi$ (the other two components of OP) could be the maximum component with equal probability, so that P(maximum component>t)=3(1-t).

Equations (2) and (3), for n = 3, k = 1, g > 0.5, give

$$P(Z > g) = 3 \int_{g}^{1} x^{-1/2} dx / B(\frac{1}{2}, 1) = 3(1 - \sqrt{g});$$

thus $P(S_{(3)} > \sqrt{g}) = 3(1 - \sqrt{g})$, in agreement with the result above.

 $k=1, n=3, \frac{1}{\sqrt{3}} \le t \le \frac{1}{\sqrt{2}}$. Then $P(S_{(3)} < t) = P(\text{all 3 components} < t)$; this is given by the probability over an area bounded by (1) z=t; (2) $\sqrt{1-z^2}\cos\phi=t$; (3) $\sqrt{1-z^2}\sin\phi=t$, roughly in the middle of rectangle R. Thus

$$P(S_{(3)} < t) = \frac{4}{\pi} \int_{\phi_1}^{\pi/4} (t - z) d\phi$$

where $\cos \phi_1 = t/\sqrt{1-t^2}$ and where $\sqrt{(1-z^2)}\cos \phi = t$; so

$$P(S_{(3)} < t) = \frac{4}{\pi} \int_{\phi_1}^{\pi/4} \{ t - \sqrt{1 - t^2 \sin^2 \phi} \} d\phi, \qquad \frac{1}{\sqrt{3}} \le t \le \frac{1}{\sqrt{2}}.$$

This last expression must be evaluated numerically.

Similar ideas can be used to give upper tail results for higher values of n, for k = 1, but again they lead in the end to integrals which must be evaluated numerically.

3.4. Accuracy of Table 1.

Various checks on accuracy have been made for the points in Table 1. In fitting the Pearson curves, the fit was made to $Z^{1/2}$, which, when k=1, is $S_{(n)}$. The numerator of $S_{(n)}$ is the largest absolute value of a set of n standard normals, and the expectation of this variable is known (Biometrika Tables for Statisticians, Vol. 2), since absolute values of standard normals are used in analysis of experiments when main effects and interactions are plotted on half-normal plots (see, for example, Bennett and Franklin, 1954). These known values enabled a check to be made on the accuracy of (6), for k=1 and $r=\frac{1}{2}$. Also, for k=1, n=2, the moments of $S_{(n)}$ could be compared with the exact values given above.

In addition, the exact distributions given above have been used, for n=2 and n=3, to check the percentage points. A further check was made, for k=2, by comparing the values with those given by Nowroozi (1967). Finally, the most extensive check on the Pearson curve points was made by comparing the points Z_{α} with those given by the exact formula (2), when $Z_{\alpha} > 0.5$. It was found that the Pearson curve fits were very accurate, with occasional differences from the exact values in the fourth, or sometimes the third, decimal place: however, these differences will make negligible error in the α -value corresponding to the given point Z_{α} .

References

- Bennett, C. A. and Franklin, N. F. (1954). Statistical Analysis in Chemistry and the Chemical Industry, New York, Wiley.
- Cochran, W. G. (1941). The distribution of the largest of a set of estimated variances as a fraction of their total. *Annals of Eugenics* 11, 47-52.
- Eisenhart, C. and Solomon, H. (1947). Significance of the largest of a set of sample estimates of variance. Chapter 15. Techniques of Statistical Analysis, Eisenhart. Hastay, and Wallis (eds.), McGraw Hill, New York.
- Marsaglia, G. (1972). Choosing a point from the surface of a sphere, Annals of Mathematical Statistics 43, 645-646.
- Nowroczi, A. A. (1967). Table for Fisher's test of significance in harmonic analysis, Geophysical Journal of Royal Astronomical Society, Vol. 2, No. 5, 517-520.
- Solomon, H. and Stephens, M. A. (1978). Approximations to density functions using Pearson curves, Journal of the American Statistical Association, 153-160.
- Yamauti, Z. (Ed.) (1972). Statistical Tables and Formulas with Computer Applications. JSA-1972. Japanese Standard Association, Tokyo.

%66	0.99999 0.9950 0.9794 0.9373 0.8988 0.8674 0.8540 0.8540 0.8118 0.7948 0.7987 0.7684 0.7684 0.7684 0.7684	99% 0 9933 0 9933 0 9423 0 9423 0 8335 0 7606 0 7335 0 7107 0 6912 0 6595 0 6595 0 6595 0 6595 0 6595 0 6597 0 6597 0 6597
97.5%	0 9996 0 9815 0 9619 0 9340 0 9083 0 8857 0 8856 0 8386 0 8386 0 7880 0 7787 0 7487 0 7487 0 7487	97 5% 0 9834 0 9834 0 9087 0 7883 0 7466 0 6909 0 6909 0 6223 0 6223 0 6103 0 5103 0 5484 0 5484 0 5484 0 5484
92%	0.9985 0.9750 0.9392 0.9057 0.8534 0.8534 0.8132 0.8132 0.7662 0.7662 0.7662 0.7765 0.	95% 0 9669 0 8709 0 7457 0 7457 0 6770 0 6770 0 6331 0 6167 0 6025 0 5394 0 5134 0 5239 0 5239 0 5239 0 5239
%0 6	0.9938 0.9500 0.9500 0.8647 0.8647 0.7911 0.7747 0.7607 0.7381 0.7287 0.7287 0.7287 0.7288 0.7288 0.7288 0.7000 0.6699 0.6616 0.6480	90% 0 9344 0 8174 0 6934 0 6938 0 6307 0 6307 0 5948 0 5540 0
20%	0.8536 0.7500 0.7500 0.7020 0.6245 0.6298 0.6298 0.6299 0.6299 0.6299 0.5880 0.	50% 0 6945 0 5918 0 5918 0 5452 0 4990 0 4990 0 4561 0 4561 0 4399 0 5399 0 6399 0 6399 0 6399 0 6399 0 6399 0 6399 0 6399 0 7399 0
10%	0.578 \\ 0.5500 \\ 0.53535 \\ 0.53535 \\ 0.52595 \\ 0.5229 \\ 0.52	10% 0 4739 0 4337 0 4038 0 3965 0 3965 0 3776 0 3776
5%	0 5392 0 5250 0 5196 0 5197 0 5133 0 5114 0 5113 0 5092 0 5092 0 5095 0 5058 0 5058 0 5058	5% 0 4444 0 3942 0 3942 0 3747 0 3749 0 3690 0 3690 0 3692 0 3692 0 3692 0 3599 0 3599 0 3599 0 3599
2.5%	0 5 0 3 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	2.5% 0 4291 0 3955 0 3643 0 3643 0 3526 0 3526
**	0 5078 0 5039 0 5033 0 5033 0 5024 0 5023 0 5020 0 5013 0 5013 0 5013 0 5013	1% 0 4195 0 3850 0 3554 0 3544 0 3544 0 3544 0 3477 0 3477 0 3465 0 3395 0 3395
D	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

%66	0.9676	781		9			0.5897		0.5536				0.5054		461	₹.	420	ro.	0.3805	%66	1 1 1 1	0 9293	a		0.6957		0 5875										0 3851		0.3486	0 3272	
97.5%	0.9406	0.8138 0.7305		9							0 4931	٧.	₹.	₹.	0.4362	٧.	٧.	e.	365	•	1 1 1 1 1		0 0968	000.			4	0.5123			4				.384	.37	m	co.	0 3313	(C)	n
%36	906	6/9/0	628		559												0.3841			95%	r r E 2 1	CAFR		0.04			0.5063										'n			0 3006	
%06	853	0.7076	578						0.4556						0.3931		36	349	33	%06	1 1 1 1		110			0.3462											0 3265		0.3022	0 2878	278
50%	0 5981	0.5000		0 4085															298	50%	1																		0 2586		
*01	4	0 3648	י רי						0 3010	C	0 2965	C	G	C		ď	C	27		10%	1 1 1 1	9996		ى ر	~ (Ÿſ				0 2551									0 2300	0 2260	C
5%	382	0 3427	2 2 4																0 2680	2%	1 1 1 1	Ç	, (4 (4 ("			~		~		~		C	0.2244	221	N
2.5%	6	0 3287	0 3126	2 0		~	N												0 2646	ľ	1 1 1	,																	0 2203		
*		0 3175													266	7	264	261	0 2616	3.	1 1 1 1	,	•	• •	•	• •	0 2434	• •	• •	• • •		-	C	C	. 4	(4	(ν	(4	0 2165	"	
Q.	-	7	m •	t	· c	, ,	60	6	ō	-	12	4	9	Œ	30	50	2	4	20	Ţ			_	7	n	4 1	ח נ	۰ م	- a	σ	2	-	2	4	9	6	50	25	30	40	50
۲ .	4	4	٠ ٠	7 4	4	4	4	4	4	₹	4	4	4	4	4	4	4	4	4	2	: :	١	ŋ	ß	ស	រ ល	U r	n u	צי ר	י ע	ט ו		ı.c	វេ	, ru	ď	ı,	z,	S	'n	'n

%66			0.7218				0.4852	0.4597					0.3845				0.3308				0.2788		%66	1 1 1								0.3901									0 2729	~	0 2431	C
97.5%	: : :		0.6658			0.4771	0.4478	0.4253	0.4069	0.3918	0.3792	0.3682	0.3589	0.3432	9306	0.3204	0.3117	0.2950		0.2020	0.4030	0.2548	%5'.16	1 1 1 1	0.7814	0609.0	0.5203	0.4639	0.4268	0.3993	0.3781	0.3611	0.3471	0.3355	0.3253	0.3166	0.3022	0.2907	0.2813	0 2734	0.2581	0 2471	0 2318	2
85%	7 * 7 * 1		0.6162	0.5321			0.4176	0.3975								0 3042					0.2336	C	%56	1 1 1 1 1				0.4297	0.3965	0.3719	0.3531	0.3379	0 3254	0.3152	0.3060		0.2855		0.2670		0 2464		0.2228	
%06	1 1 1 1		0.5591				0.3852	0.3677													0.2447	$^{\circ}$	%06	1 1 1						0.3427		0.3132									0.2338		0 2133	
50%	; ; ; ;	0.4843	0.3902				0.2923		0.2747	0.2682	0.2627	0.2581	0.2539	0.2472	0 2416	0 2372	0.2335	0 2261				0.2082	50%	1 1 1 1		0.3532				0.2602		0.2435								0 2048	0.1980	٠.	0 1861	٠.
10%	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 2838	0.2620	0 2490	0 2401	0 2336	0.2286	0.2244	0.2210	0.2182	0.2157	0.2136	0.2101	0 2072	00000	0.2029			200.0			10%	1 1 1					0.2144			0.1990							-		0 1742	٠.	0 1676	
2%	t 		0.2657											0.2028				_	•		9/9	•	2%	1 1 1 1				• •	0.2037	Τ.	0.1939	Ξ.			Ξ.			•	٠.	-	0.1694	_	969 0	_
2.5%	1	0.2930	0.2538								0.2036					1940				7 6	٠.	•	2 5%	- 1			0.2128			0.1909					0.1778	0.1764					0 1658	Ξ.	0 1607	_
<u>*</u>	! ! !	0 2814	0.2435							0.1991					•				•	•	7	0.1804	<u>*</u>	1 f 1 f			0 2044	_	٠.	0.1843	٠.		٠.			0 1714			Ξ.	-	0 1623	-	0 1577	_
để	1 1 1	-	7	၈	4	S	9	7	60	Œ	Ç	-		4		<u> </u>	200	25	0 0	9 9	04	50	đ		-	7	ო	4	ស	9	1	60	6	õ	=	12	14	16	18	20	25	30	40	50
c	1	9	9	9	9	9	9	9	9	9	9	G	· c	G	ų (9 (4	φ.	(•	0 (٥	9	c	1	7	^	7	١	_	7	7	۲	7	7	7	7	7	7	7	7	7	_	_	7

%66			0.6152													0.2671					0.4.00		%66	1 1 1 1 1 1	0.7544					0.3581		0.3199				0 2758		0.2505			0.2189		0.1938	
97.5%		0.7352	0.5613	0.4735	0.4217	0.3866	0.3607	0.3408	0.3250	0.3120	0.3011	0.2916	0.2836	0.2702	0.2596	0.2510	0 2437	7966	0.400	0.2196	0.4036	0.1964	97.5%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6936	0.5209	0.4362	0.3869	0.3536	0.3293	0.3106	0.2957	0.2835	0.2733	0.2645	0.2570	0.2446	0.2348	0.2268	0.2200	0.2071	197		9/
95%	! ! ! !		0.5157									0.2743			0 2458						1 8 0		95%	; ; ; ;	0.6385	0.4761	0.4020	0.3577	0.3281	0.3064	0.2897	0.2765	0.2657	0.2566	0.2488	0.2421	0.2311	0.2224	0.2152	0.2092	0.1977			0.1704
%06	1		0.4654								0.2633							900			7691.0	0.1821	%06	1 1 1 1	0.5742	0.4304	0.3653	0.3268	6006.0	0.2821	0 2677	0.2562	0.2468	0.2390	0.2321	0.2264	0.2168	0.2092	0.2030	-	0.1877	-	0.1702	_
20%	: : : : :	0.4108	0.3236	0.2847	0.2618	0.2462	0.2349	0.2261	0.2191	0.2133	0.2084	0.2044	0 2008	0 1948		_	-	•	- •	- 1		0.1606	20%	1 1 1 1					- 1							0.1822		٠.		٠.	0.1591		₹.	0.1443
10%	i 1		0.2362			0.1942	0.1880										•	•		- '	_	0.1463	10%	1 1 1	0.2645	C	0.1983	-	-	-	-	-	-	_	•	-	-	-	0 1455	_	0 1401	-	0.1339	-
5%) () 	0.2622	0.2210	0.2027	0.1916	0.1844	0.1790			0.1689			-		777	. •	. •	•	-	0.1487	0.1453	Ξ.	7,4	1 1 1	0.2452	0.2047	0.1868		Τ.	Τ.	Τ.	Τ.	Τ.	٠.	٠,	٠.	Τ.	0.1428	•	٠.	0.1363	_	-	0 1291
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2491	0.2107	0.1940	0.1838			0.1689									•	` '	_	_	_	0.1412	ሪ %	1 1 1	0.2328	0.1951		Ξ.		Τ.	Ξ.	₹.	Τ,	_	0.1449	-	Τ.	0, 1391	-	-	0, 1335	131	Ξ.	127
×	1 1 1 1	0.2383	0.2016	0 1861	0.1765														7.	_	4	0.1391	74				0.1713			0.1523				_	0.1406	Τ.	Ξ.	Ξ.	_	0.1329	0.1307	_	0.1261	-
\$	1 4 1 1 1	-	~	ო	4	ស	v	~	α	0	ç	: :	: ;	* *	7 (9 9	0 (2 :	52	9	40	20	Ť		-	2	m	4	ស	9	7	60	6	10	-	12	14	16	69	20	25	30	40	20
c	; ! f	60	60	œ	co	80	œ	6 0	• •	o es	•	a			်	0 0	0 0	p q	20	æ	œ	œ	c	: 1	6	6	σ	6	6	6	6	6	67	6	6	6	6	6	6	6	6	6	60	6

%66	0.7175	0.4450	0.3560	0.3298	0.3097	0.2938	0.2807	0.2698	0.2603	0.2923	0.2288	0.2203	0.2131	0.1994		0.1761		%66	1 1 1 1 1	0.6528	0.4727	0.3903	0.3415	0.3089	0.2852	0.2672	0.2529	0.2413	0.2316	0.2233	0.2162	0.2045	0.1953	0.1878		0.1695		7 7 7	0.1413
97.5%	0.6563 0.4838	0.4048					0.2600	0.2504	0.2423	0.2332	0 2145	0.2070	0.2007	0.1887		0,1680		97.5%	1 1 1	0.5927			0.3114				0.2336				٠.	0.1911		0.1765	٠.	0.1603	٠, ١	0.1422	٠.
95%	0.6020									0.2215			0.1908		0.1723		0.1546	85%	 			0.3259	0.2876	0.2621	0.2436	0.2296	0.2185	0.2094	0.2018	0.1954	0.1897	0.1806			0.1625	0.1531		0.1368	
%06	0.5399	0.3385	0.2774	0.2595	0.2460	0.2352	0.2264	0.2190	0.2127	0.2071	1992	0.1853	0.1804		0.1642	-	-	%06	1 4 1 1	0.4836	0.3532	0.2959	0.2626	0.2404	0.2244	0.2122	0.2025	0.1946			0.1775		0.1632		-	_	Ξ.	0. 1311	Ξ.
50%	0.3596					0.1834		0.1738		0.1669		0 1537		٠.	_	Τ.	0.1312	20%	f 1 1 1	0.3216	0.2458	0.2128		Ξ.		Τ.	0.1583	Τ.	٠.		0.1434			٠.	0.1288	0.1236	•	0.1147	Τ.
404	0 2490		0.1644	Τ.	_	- . '	- .	- 1	٦,	0.1407					Ξ.		-	10%	1 1 1	0.2237	٠.		٠.	0.1433	Τ.	٠.					_	₹.	₹.	٠.	0 1122	0 1091		0.1035	
%5	C) ==	0.1735		-	Ξ.	0.1439	Ξ.	Ξ,	Ξ,	Ξ.	∵ *	7	. •		_	_	0,1172	5%	1 1 1 1 1	0.2074			Τ,		_										0.1088	0.1061		0.1011	
2.5%													,			_	0.1155	2.5%	1	0.1966	_		0.1368													0.1038		0.0993	
*	0.27.30			0.1400	Ξ.	Ξ.	Τ.	0.1308	Ξ.	- '	_ '	. •		•	_	-	0.1138	7,	1 1 1	0.1874		_	Ξ.		-	,										0.1016		0.0974	
Đ	- ~	: en •	4 K.	9	7	80	6	₽:	_ :	2:	4 (٥٩	<u> </u>	, c	2 6	8 6	2 0	đ	1	-	٠ ~	, m	ব	ស	9	7	œ	ത	9	Ξ	12	14	16	18	50	25	30	40	20
٤	00	9	2 5	5	5	ō	ō	9 9	9	9	2 9	2 9	2 5	2	Ç	9	2 2	2	:	5	1 2	2	12	<u>:</u>	12	7	12	12	12	12	12	12	12	12	12	12	12	12	12

%66	; 1 ; 1	J. 5986	0.4251	0.3481	0.3031		0.2517	0.2354	0.2224	0.2119		0.1957	0.1893				•	٠.	0.1398	0.1294	0.1225	%66	1 1 1 1	0.5527	0.3866		0.2728	0.2453	0.2255	0.2105	0.1987	0.1891	0.1811	0.1744	0.1685	0.1590	0.1515	0.1455	0.1404	0.1307	0.1238	0.1144	0.1082
97.5%	1	0.5407	0.3839		0.2761	0.2500	0.2310	0.2168	0.2054	0.1963	0.1886	0.1820	0.1763	0.1671			0.1490	0.1396		0.1235		97.5%	t t 1 1	0.4947	0.3487	0 2851	0.2484	0.2244	0.2071	0.1939	0.1836	0.1752	0.1682	0.1622	0.1570	0.1487	0.1421	0.1367	0.1323	0.1237	0.1175	0.1092	0,1037
95%	1 1 1 1	0.4903			0.2550		0.2149	•	Τ.	٠.		0, 1712				0.1463		0.1333	0.1271	0.1188	Τ.	95%	1 1	0.4504	0.3188	0 2621	0.2294	0.2081	0.1927	0.1809								0.1299		0.1182		0.1051	0. 1001
%06	1 1 1 1 1	0.4391	0.3165	0.2635	0.2329		0.1980		0.1782			0.1600						0.1267		0.1138	Τ,	%06	1 1 1 1	0.4028	0.2872	0.2380	0.2096	0.1910	0.1776	0.1674	0.1593	0.1528	0.1473	0.1427	0.1386	0.1321	0.1269	0.1226	0.1191	0.1124	0.1074	0 1007	0.0963
20%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2919	0.2208	_	0.1722	_	0.1516	٠.	0.1396	٠,	0.1316	٠.	0.1259		-	Τ.	Τ.	٠.	0.1046	0.0998	0.0965	50%	1 1 1	0.2680	0 2009	0 1731			0.1362		0.1252	0.1211			0.1125	0.1084	0.1051	0.1024	0.1002		0.0928		0.0854
10%	i i i t	0.2040	0.1631	0.1452		0.1274	0.1222				0.1101	0.1082	0.1065	0.1038	0.1016			0.0953		0.0901		10%	1 1 2 1	1881	0 1490	1210	1218	0 1151	0, 1101	0.1063	0.1033	0.1008	0.0987	6960.0	0.0953	0.0928	0.0907	0.0890	0.0876	0.0848		0.0799	0.0781
5%	1	0, 1891	0.1527	0.1368	Τ.	٠.	0.1163	0.1130	0, 1101	0.1078	0.1058		0.1026							0.0881	0.0864	5%		1744	1305	1343	0 1153	1004	0,1050	0.1016	0.0989	0.0967	0.0949	0.0932	0 0918	0.0895	0.0877	0.0862		0.0825	0.0806	0.0781	0.0765
2.5%	# t t t t t t t t t t t t t t t t t t t	0.1792	0.1454	0.1308	,	0.1165		0.1091			0.1026	0.1010			0.0956		0.0930	0000			0.0851	2.5%	; ! ; ! ; !	0 1653	1329	0.1323	100	1050	0.1012		0.0957	0.0937				0.0871		0 0841		0.0808		0.0767	0.0753
<u>*</u>	1 1 1 1	0.1707	0.1388	-								0.0980	9960.0	0.0947	0.0931			0.0888			0.0838	7		1573	0.00	0.1200		1039	0.0975	0.0946	0.0925	0.0908	0.0892	0.0878	0.0864	0.0846		0 0820		0.0791	0 0771	0.0753	
qę	 	-	7	က	4	ß	9	7	80	6	0	=	12	4	9	~	2 6	3 5	2	3 5	0 0	ų.	, ! , !	•	٠,	۷ (, 10 -	ru	o uz	, _	80	6	9	=	12	4	9	6 0	20	25	30	40	20
c		4	4	4	4	14	4	4	4	4	4	4	14	4	4	4	4	4	•		4	c	: ;	Ų	9 5	9 9	۽ ۾	<u> </u>	<u> </u>	16	9	16	16	16	16	16	16	9	9	91	16	16	16

\(\text{\tint{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\texit{\text{\texitint{\text{\texit}\text{\text{\texititt{\texitt{\texit{\tex{

%66	0.5136	0.2871		C					1574		0 1365	_				0.1025	0.0968	%66	1 1	0.4768	0.3281	0.2643	0.2280	0.2042			•	0.1560	0.1492	0.1435							0.1009	0.0930	R/RO O
97.5%	0.4587			0.1878				0.1519			0.1280		0.1190			٠,		97.5%	1 1 1 1	0.4278	0.2956	9660 0	0.2077	0.1868	0.1719											0.1010	0.0957	0.0887	0.0843
%56	0.4171	0.2392						0.1428		0.1336	1214	0 1169						85%	1 1 1 1	0.3886	0.2701	2202	0 1919	0.1733	0.1600				0.1303	0.1258	0.1218	0.1155	0.1105	0.1064	0.1030	9960.0	0.0918	0.0854	0.0815
%06	0.3726	0.2172	0.1736					0.1332		0.1252			0.1072			0.0905	0.0865	%06	1 1 1	0.3470	0 2434	200	0 1754		0.1476	Τ.					0.1142		0.1042		0.0975		087		0.0784
20%	0.2482	Τ, Τ	0.1314							0.1018			0.0904				0.0766	20%	1 1 1 1 1	0 2315	0 1711		0 1307		0, 1138	0.1084	0.1041	0.1005					0.0866				0.0760		0.0695
10%	0.1749		0.1114		0.0968	0.0939	0.0916	0.0896	0.0879	0.0864	0.0840	0.082	0.0791	0.0764	0.0745		0.0701	10%	1 4 1	7637	0 1277		0 1030	0000	0.0924	0.0890	0.0862	0.0840	0.0821	0.0805					0.0721			0.0653	0.0637
5%	0.1623		0.0999								0.0810							2%	t f 1	0.45	0 1197		0.0038		0.0881		0.0826												0.0626
2.5%	0.1538		0.1010	0.0923							0.0788			•	4			2.5%	1 1 1 1 1 1	.0	•		21010						0.0766				0.0707			,			0.0617
**	0.1463	0.1045			0.0863				0.0797				2000				0.0670	7.	1 1	0,00			980.0	0.0899		0.0793						0.0701			0.0665				6090.0
*	- 0	(F)	4 ₹	, 0	7	80	6	9	=	2	4 (9 9	e 6	, c) Ç	\$ 4	2 0	þ	1 1	•	- ,	~ (m •	4 N	יט ר	٠,	· œ	6	9	=	12	7	16	18	50	52	30	40	20
چ	6 6	6	<u>ه</u> ۾	<u> </u>	18	18	6	6	9	©	8 0 9	D 9	0 9	o 4	. .	a	, c	2		ç	2 6	2 6	0,0		2 0	200	200	20	50	50	20	50	50	50	20	50	20	20	20

%66	0.2769 0.2212 0.1898	0.1548 0.1439 0.1353 0.1284 0.1227 0.1178	0.1069 0.1016 0.0973 0.0937 0.0869 0.0821 0.0755	99% 0 36 11 0 2402 0 1630 0 1450 0 1228 0 1094 0 1094 0 1094 0 0966 0 0966 0 0824 0 0735 0 0636	
97.5%	0.3673 0.2493 0.2005 0.1730	0.1423 0.1327 0.1252 0.1191 0.1140 0.1097	0.1001 0.0953 0.0916 0.0883 0.0823 0.0721 0.0721	97.5% 0.3227 0.2163 0.1729 0.1329 0.1329 0.1015 0.0934 0.0934 0.0934 0.0934 0.0934 0.0934 0.0934 0.0934 0.0934 0.0937 0.0939	
95%	0.3332 0.2278 0.1844 0.1599	0.1326 0.1240 0.1172 0.1073 0.1034	0.0948 0.0905 0.0871 0.0871 0.0787 0.0787 0.0694	95% 0.2926 0.1977 0.1591 0.1234 0.1050 0.0954 0.0958 0.0739 0.0739 0.0632	
%06	0.2973 0.2055 0.1677 0.1464	0.1224 0.1149 0.1090 0.1042 0.0968 0.0939	0.0892 0.0854 0.0854 0.0759 0.0750 0.0715 0.0666	90% 0.2610 0.1488 0.1260 0.1448 0.0983 0.0983 0.0885 0.0885 0.0885 0.0885 0.0885 0.0885	
50%	0.1993 0.1453 0.1226 0.1096	0.0901 0.0901 0.0864 0.0808 0.0786	0.0737 0.0692 0.0692 0.0676 0.0644 0.0621 0.0589	50% 0. 1759 0. 1269 0. 1065 0. 0948 0. 0871 0. 0744 0. 0673 0. 0673 0. 0673 0. 0673 0. 0673 0. 0673 0. 0673 0. 0673 0. 0674 0. 0674 0. 0674 0. 0674	
10%	0.1421 0.1092 0.0951 0.0869		0.0635 0.0618 0.0605 0.0594 0.0572 0.0536	10% 0.1263 0.0959 0.0959 0.0755 0.0755 0.0641 0.0641 0.0586 0.0573 0.0573 0.0573 0.0573 0.0573 0.0573 0.0574	
5%	0.1320 0.1025 0.0898 0.0824	0.0739 0.0711 0.0689 0.0672 0.0657 0.0643	0.0614 0.0598 0.0587 0.0576 0.0556 0.0521 0.0521	5% 0.1175 0.0901 0.0901 0.0672 0.0638 0.0638 0.0564 0.0564 0.0552 0.0552 0.0552 0.0552 0.0552 0.0552 0.0552	
2.5%		0.0687 0.0687 0.0667 0.0652 0.0638 0.0625		2.5% 0.1114 0.0860 0.0781 0.0689 0.0593 0.0593 0.0593 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591	
*	0.1189 0.0931 0.0823 0.0760	0.0687 0.0687 0.0687 0.0615 0.0607 0.0607	0.0582 0.0559 0.0559 0.0532 0.0532 0.0519 0.0501	1% 0.1059 0.0820 0.0661 0.0661 0.0591 0.0591 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532	
4 - 0	- 4641	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 30 30 50 50 50	- 1	
; ع	2222		2222222	300000000000000000000000000000000000000	

%66	0.2140 0.1365 0.1064 0.0899	0.0794 0.0720 0.0665 0.0622 0.0587	0.0535 0.0515 0.0482 0.0435 0.0435	0.0362 0.0331 0.0311	0.0119 0.0581 0.0581 0.0581 0.0385 0.0331 0.0312 0.0239 0.0272 0.0239 0.0239 0.0219
97.5%	0.1912 0.1232 0.0968 0.0823	0.0730 0.0664 0.0616 0.0578 0.0547	0.0501 0.0482 0.0453 0.0430 0.0411	0.0345 0.0347 0.0317 0.0299	0.0534 0.0531 0.0531 0.0531 0.0353 0.0353 0.0256 0.0256 0.0226 0.0226 0.0226 0.0226 0.0226
%\$6	0.1735 0.1130 0.0894 0.0764	0.0681 0.0622 0.0578 0.0543 0.0516	0.0474 0.0474 0.0430 0.0409 0.0392	0.0332 0.0332 0.0289 0.0289	95% 0.0996 0.0493 0.0418 0.0376 0.0276 0.0276 0.0228 0.0228 0.0228 0.0228 0.0228 0.0216 0.0216
%06		0.0630 0.0577 0.0538 0.0508 0.0483	0.0446 0.0446 0.0431 0.0388 0.0373	0.03348 0.0295 0.0280	90% 0.0897 0.0577 0.0577 0.0387 0.0314 0.0291 0.0291 0.0274 0.0274 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276
50%		0.0492 0.0457 0.0431 0.0410 0.0394	0.0358 0.0358 0.0341 0.0318 0.0318	0.0292 0.0280 0.0263 0.0251	0.0637 0.0430 0.0348 0.0348 0.0253 0.0253 0.0225 0.0225 0.0225 0.0199 0.0199 0.0176 0.0176
40%	0.0791 0.0577 0.0488 0.0438		0.0347 0.0347 0.0298 0.0289	0.0262 0.0253 0.0240 0.0232	10% 0.0483 0.0282 0.0229 0.0223 0.0203 0.0193 0.0174 0.0174 0.0174 0.0174 0.0174 0.0162
35	0.0739 0.0544 0.0464 0.0417	0.0387 0.0387 0.0348 0.0323			0.0454 0.0323 0.0239 0.0239 0.0219 0.0173 0.0173 0.0173 0.0168 0.0173 0.0173 0.0154
2.5%	0.0703 0.0521 0.0445	0.0373 0.0373 0.0337 0.0328			2.5% 0.0432 0.0310 0.0231 0.0231 0.0189 0.0189 0.0169 0.0169 0.0169 0.0169 0.0169 0.0169
×	0.0669 0.0498 0.0427		0.0284 0.0284 0.0275 0.0266 0.0261		0.0413 0.0297 0.0223 0.0223 0.0193 0.0170 0.0170 0.0157 0.0157 0.0157 0.0157 0.0157
ð	- n n a		515468	2 4 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
د	0000			0 0 0 0	200000000000000000000000000000000000000

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION F	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT HUMBER	L GOVT ACCESSION NO.	L RECIPIENT'S CATALOS NUMBER
408		·
TITLE (and Subillie)		L TYPE OF REPORT & PERIOD COVERED
Percentage Points For The Fisher-Co For Equality Of Variances	ochran Test	TECHNICAL REPORT
Tot aquatity of variances		4. PERFORMING ORG. REPORT NUMBER
AUTHORY		E. CONTRACT OR GRANT NUMBERY
Herbert Solomon and Michael A. S	tephens	N00014-86-K-0156
PERFORMING ORGANIZATION NAME AND ADDRESS		14. PROGRAM ELEMENT, PROJECT, TASK AREA & TORK UNIT NUMBERS
Department of Statistics Stanford University	i	NR-042-267
Stanford, CA 94305		NN 0 /2 20 /
. CONTROLLING OFFICE NAME AND ADDRESS		IZ. REPORT DATE
Office of Naval Research		August 19, 1988
Statistics & Probability Program C	ode IIII	11. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESSII atteren	I frem Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		184 DECLASSIFICATION/DOWNGRADING
		SCHEDUCE
7. DISTRIBUTION STATEMENT (of the obeliact enlared	to Block 30, il dillerati be	in Report)
IS. SUPPLEMENTARY NOTES		
	· .	
9. KRY WORDS (Continue on reverse side if necessary or	nd identify by block member)
tests for equality of variances; tables for tests of variances	Cochran's statis	tic;
18. ABSTRACT (Continue on reverse side if necessary an	d ideally by block member	
PLEASE SEE FOLLOWING PAGE.		

TECHNICAL REPORT NO. 408

20. ABSTRACT

A well known test for equality of normal population variances, based on sample variances, was introduced by Cochran (1941). Suppose σ_i^2 , i=1,...,n represents the population variances of n normal populations, and let independent sample variances, each based on k degrees of freedom, be s_i^2 , i=1,...,n. Suppose the s_i^2 are ranked, so that the <u>ordered</u> variables are $s_{(1)}^2$, $s_{(2)}^2$,..., $s_{(n)}^2$. To test H₀: the σ_i^2 are are all equal (suppose the common value is σ_i^2), Cochran (1941) introduced the test statistic

$$Z = \frac{s^2(n)}{\sum_{i=1}^n s_i^2},$$

which compares the largest sample variance with the sum of the sample variances. Clearly the intent is to discover if one variance is an outlier (too large), and, in general, H_{ℓ} will be rejected for large values of Z. Tables of various percentiles are given for various values of n and k.