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PARALLEL PROCESSORS FOR PLANNING

UNDER UNCERTAINTY

George B. Dantzig & Peter W. Glynn

ABSTRACT

In this paper we describe.joint research under way by Mordecai Avriel, Robert Entriken, and the authors.

"goal is to demonstrate, for an important class of multistage stochastic models, that a variety of techniques
for solving large-scale linear programs can be effectively mixed to attack this fundamental problem. The

ideas involve nested primal and dual decomposition, combined with Monte Carlo simulation, high speed

importance sampling, and quadrature methods for numerical integration, together with the use parallel

processors.
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1. Hedging Against Uncertainty

A long outstanding problem of great practical importance concerns finding an efficient way to
do planning, scheduling, and control of complex systems under uncertainty. Although progress has
been made on this fundamental problem of operations research, control theory, and economics by

Roger Wets, John Birge, and others, it remains in general unsolved.

We first state the deterministic version of the problem and then generalize it to include two
important characteristics of stochastic problems encountered in practice which we will refer to as
intra-period and inter-period uncertainty. Mathematical prograns are u-ed for planning, schedul-

ing, and optimal design of large-scale complex systems. Applications include models used for
strategic planning, policy decisions to guide the irowtb of the ecrcnomy, scheduling prndI,f;,%n Pnd

expansion of large-scale industrial enterprises such as those that generate and distribute electricity,
water, fuel, or produce agricultural products. Many such models have thousands of variables and

equations. These models are mostly deterministic. Unfortunately, the solutions of deterministic

models are often not taken seriously because they do not properly hedge against future contingen-

cies.

While it is relatively easy to reformulate deterministic models to take account of uncertainties,

the rub has been that for complex time-staged systems the model size increases exponentially with
the number of stages. This has made them too expensive to solve. [10,131

A variety of heuristic devices are used in practice to adjust deterministic solutions so that they
hedge. Scenario analysis is one popular way to do this. Several different scenarios, are computed
(usually only five or six), the results are compared, and a compromise solution somehow cr other

is arrived at empirically.

Birge has developed clever ways to arrive at approximate solutions to stochastic programs and
ways to estimate the quality of his approximations. [4,5,6].

Our approach is more direct. Many scenarios are run and used to arrive at a compromise

solution that hedges against uncertainties. The sample space of all possible scenarios, could be

continuous, or could run into millions of discrete points. For many problems, it is reasonable to

consider solving thousands of sample scenarios which are used as input data for generating the
hedging solution. Since these sample scenarios are independently drawn, it is easy to see why

parallel processors are ideal for efficiently carrying out such computations.

One class of deterministic models, which we generalize to the stochastic case are the time-staged

linear programming models whose matrix structure is lower block triangular, [11,12,14]. Other basic
references are [2,10,11,15,331. See also [18,26,28,29,31,32]. By introduction of in-process inventories

and other devices, this class can be reduced to the mathematically equivalent "staircase" problems

of the form:
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FIND min Z and vectors Xt > 0, such that

bi = A 1X1

b -B 1 X1 +A 2 X 2

bt -Bt-iXt-, +AtXt

bT = -BT-XT-1 +ATXT

(min) Z = c1X1  +..+cX, +... +CTXT

where matrices At, Bt and vectors bt, ct are given.

Sipposc one of several contingencies (events) can happen in the second period so that b2 , B 1 ,

and A2 are not known with certainty. We index the possible events by w = 1,2,... , K and assume

that p(w), the probability of the event w is known. Then in place of the second relation

b2 = -B 1 X 1 + A 2 X 2

we have many relations of the form

b2 = -B(1)X, + A2 (1) X 2 (1)

b2 (W) = -B(w)XI + A2 (W)X( )

b2(K) = -B 1 (K)X +A 2 (K)X 2 (K)

If there are no further contingencies after the second period, then associated with each X-,(w) will

be a system of relations associated with it of exactly the same form as those below X2 above except

variables Xt for t > 2 are replaced by Xt(w). In the objective equation, the terms ctXt are replaced

by their expected values, ctip(w)Xt(w).

In general, however, there will be contingencies happening in every period. The "event tree"

of contingent events in this more general case has the form
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Ist STAGE _

2IstSSTAG

2nd STAGE

2 2 2

3rd STAGE 2B 8

3 3 3 3 3 3 3 3 3
E E E E E E E E E

11 12 13 21 22 23 31 32 33

The number of branches associated with each node can be finite or infinite. It is obvious why

the size of the system can grow exponentially with the number of stages. Moreover, even if a

problem has only two stages, there ct n be a large or infinite number of possible contingencies in

the second stage. Some researchers, like Roger Wets, [33,34,35] have concentrated on the two stage

case because it is an important problem in its own right and because it can be used as a stepping

stone for finding solutions to the multi-stage case for certain classes of problems as we will soon

see.

2. The Intra-Period Stochastic Submodel

The general stochastic programming appears to us to be intractable given the present state of

the art. We, therefore, have been concentrating on cla-3es of models that are relevant and whose

event tree does not grow exponentially with the number of time periods being modelled, [13]. Here

are some examples:

Typically, industries use their facilities to carry out operations. Thus an airline has a fleet

of airplanes of different kinds, and has other facilities for handling passengers on the ground and

repairing aircraft. Their operations consist of flying aircraft, maintaining them, and serving passen-

gers on the ground. In the case of an electric utility, it has facilities for generating and distributing

electricity (dams, generators using nuclear fuel, fossil fuel, water power, and transmission lines).

Operationally, these facilities are used to generate and distribute electricity. [16]

Planning models for such industries may be essentially deterministic as far as their plans
for expansion of facilities are concerned. In the airline example, the deterministic part are the

schedules for purchase or retirement of aircraft in the fleet and the expansion of ground facilities.

Their operations, however, must be is modeled in a stochastic way in order to be sure the facilities

on hand are sufficient to take care of various contingencies that might arise in day-to-day operations.
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What allows us to decompose the problem into a deterministic part and uncertainty part is the

assumption that, whatever be the contingencies that arise in day to day operations, the facilities

will not be destroyed in the process of using them for operations. (A situation in which this might

appear not be true would be an aircraft being used for operations which is destroyed by an accident.

This contingency, however, can be modeled so as not to affect the future state of facilities if there

is insurance to cover the loss.) Models of this type for two periods have the form:

Let w = 1,2,... and D = 1,2,... be independently drawn random variables.

FIND minZ, Xt 0, , (w) 0, U2 (cj) >_0 such that:

b, = AIX 1

• • * di(w) = -DI (w)XI + (w)Ui(w)

b2 = -BIXI + A 2 X2

d2 ((Z) = -D 2 (5)X 2 + F2 (CJ)U 2( 0)

min Z = ClX 1  + C2 X 2

+EZ.pi(w)gI(0) Ui(W) + E.2()2()2@

The probabilities that w and (D occur are given by p2(w),p2(cv). The objective minimizes

expected costs. The Intra-period Submodels correspond to the set of equations marked by ***

above, one for each period. The remaining equations constitute the "Deterministic" part of the
syst'm.

Benders decomposition is an ideal way to solve such a model as we shall soon see, [3,17].

Under this approach, the submodels are solved with X1 and X2 temporarily fixed at some valuez,

X, = X* and X 2 = X2. Note that, when X and X2 are known, the submodels decompose into

many, many small independent subproblems, one for each value of w = 1,2,..., and D = 1,2,...,

namely

FIND mingI(w)U(w), U(w) _ 0, such that FI(w)UI(w) = di(w) + DI(w)Xl

and for each C = 1, 2,. . ., namely

FIND ming 2 (D)U 2 (C), U2 (C) 0, such that F2 (&D)U 2 ((D) = d2 (D) + D 2 (()X2*

Parallel processors can be effectively used to solve these problems wholesale for all choices of w

and Cv when thre are not too many values of w and (. When thre are too many (A and a, then a
"repeP,3entr'1ive" sample is used instead.

3. The Inter-Period Stochastic Part of the model (Ideas in this section are due to Moredecai

Avriel).

We now consider an equally relevant class of models where the contingencies that arise in one

period affect later periods. Suppose in one year the demand for some item is hivh -4 this higher
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demand it more likely that demand in the following year will also be higher. The simplest

case wou 3ne in which demand di+ 1 in period t + 1 is related to the demand in period t by

d Ad with probability a
d 1 dt with probability I- a

where A > u.

oL,

DEM4UO AL It i'1c

AdcI, A Ad$

dpd

3. 2 3 T

In this simple example, the number of cases at time t will be 2t , i.e., the size of the problem is

growing exponentially in t. However, because Apd, --pAd1 , there is a consolidation in the number

of cases so that in fact, the number of cases is only growing proportional to t.

Even though a low demand in year t - 2 followed by a high demand in year t - 1 might arrive

with the same probability of an intermediate demand in period t as a high demand in period t - 2

followed by a low demand in period t - 1, this does not mean we can equate other components

in the state space. For models having a more complex structure, the state at time t of the other

components of the system could be quite different depending on the history of their past states.

Mordecai Avriel of our research team has proposed a way to reduce the number of cases in general

by forcing the consolidation of the case HL generated by a high (= H) followed by a low (= L) year

and the case LH generated by a low (= L) followed by high (= H) year. He recommends averaging

the other components of their state vector at time t. This is illustrated below for a three period

model:
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FIND rin Z, (X 1 ,XL' X2H, X
L L

, 3LH' XHH ) > 0:

AX 1  -b

-BLX 1 L+BL

- B ~= bgL

+A2L y2L 2_L L

-B +AXX1 +AHHbHH

--1 2= X2 2= 
L

B ILHXL 1HLyX__L2L L

- 2 " 2 - 2 3 3 -'

ClXl +tcL2 L  +(3)cHX2H +¢2C3Lx3LL +2, LHX3LH +# 2 cHHX H Z(min)

The asterisks *** above indicate that the intra-period stochastic constraints have been omitted.

The first and second set of omitted relations are:

di (w) = -DI(w)XI + F,(w)Ui(w), w = 1,2,...

aj(w) = -D L p)X 2 + F L Ju ), U, = 1,2,...

4. Solving the Inter-period part of the Stochastic Model

Without the intra-period **- constraints, when the number of time periods is rrall. it may be

practical to use standard linear programming software to directly solve the model. A model having

too many *** constraints may nevertheless be tractable if we replace operating constraints by "cuts"

generated when Benders decomposition is used to find tentative solutions to the subproblems, [3].

These cuts, for example, are many inequalities of the form

C€rj(w)dj(w) _ -r(w)Dj(w)Xj + e1 , w= 1,2,...

.2r<C 0 C r () D - 1,2,...

When the size of the inter-period part of the model becomes too large to solve directly using

standard linear programming software, it is planned to use nested Benders decomposition software.

Such software has already been developed by Robert Entriken for solving staircase systems by

modifying the MINOS linear programming code, (19,23,24,25].

To apply Bonders decomposition, the model is partitioned by columns - see dotted vertical

lines [1]. The first "Master" corresponds to the columns in the first period. The Master assigns
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a tentative value to X 1 , say X1 = X . The subproblem corresponds to the remaining columns

and is solved assuming that X, = X[ is specified and terms -BLX, and BHX 1 have been added

to the right hand side. This subproblem can, in turn, be partitioned into a Master and Sub with

the Master corresponding to variables XL,X H . (The earlier consolidation of two states in period

3 complicates the discussion which follows.) To simplify matters assume, instead, either the term

BpL H L or B HLXH is used to represent the LH or HL states but not both. If this is done the2 2  2o2r

Benders subproblem at each stage will turn out to be a set of smaller problem3 to be iteratively

solved, of which the following is typical;

A 2 2 bL +B, X XL > 0

CUTS - G2 + g , t = 1,2,...

c 2  + 0 - min

The theory of how such cuts are generated and how information is passed back and forth to other

subproblems will be outlined next.

4.0. Solving the Intra-Period Stochastic Model

We begin with the simplest two-stage case first studied in Dantzig [101 and developed by R.

Wets (33,34,351:
bi = A1 X 1 , (X,X 2 ) >! 0,

b2 = -B 1 X 1 +A 2 X 2

(min) Z = c1 X 1  +c 2X 2  (3)

where the first stage (b1 , A,, ci) are known with certainty while the second stage (b2 , C2, B I I A 2 ) is

assumed to be functions of a random variable w with known probability distribution p(w),W c Q.

The values of w in fQ may have a continuum of vajoes in -:,,.h cBse p2 (w) is a probability density

distribution; or w may take on a finite or an infinite set of discrete values, in which case p2 (w) is

a discrete probability distribution where w = 1, 2,..., K where K may be infinite. When applied

to the intra-period submodel discussed earlier, the equation b2 = -BIX 1 -t- A,2 X 2 ii replaced by

di (w) = - D1 (w)XI + F, (w)U1 (w) with corresponding changes in the objective form;

Let fi be the sample space of w. For the purposes of the computational approach outlined in

this paper, we require that fQ be discrete with a finite number of elements. Practically speaking,

this is no restriction since any distribution may be approximat ed by a probability mass func-

tion concentrated on a finite set of points. Then, assuming we label the sample points W us-

ing the integers {1,2,. .. ,k}, the random vectors and matrices (b2 , c 2 , B 1 , A 2 ) takes on the value

(b2 (w),c 2 (w), Ba(w), A 2 (w)), (1 < wa < K) with known probability p2 (W).

We now illustrate the approach for K = 2. The stochastic problem of minimizing expected

costs under uncertainty then has as its certainty equivalent the deterministic linear program that

we outlined earlier except now we describe the computational method in greater detail:



Find minZ, X, > 0, X 2 (w) 0, w 1,2,3 (4.0)

b, = AIX, (4.1)

b2 (1)= -B(1)X, + A2 (1)X2(1) (4-2)

b2 (2)= -B(2)XI + A 2(2)X2 (2)

b,(3)- -B (3)X+ (3)X 2 (3)

minZ c A, +p2(l) c2 (1)X 2 (1) +p 2 (2)c 2 (2)X 2 (2) + p2 (3)c 2 (3)X 2 (3) (4.3)

To simplify the discussion, assume a bounded optimal solution exists. It follows that we can

always find ir2 (w) to premultiply constraints corresponding to b2 (w) above and subtract from the

objective so that adjusted c2 (w) > 0. Therefore we can assume without loss of generality c2 (w) > 0.

Except as noted otherwise, we will assume B 1 is independent of w, i.e., BI = Bi(w) for all w.

Typically, as we have already noted, this problem is solved using "Benders'" decomposition,

see i3]. The key idea is to replace the contribution of the second period variables to the objective

function by a scalar 02, and to replace the second period constraints - those shown in (4.2) between

the dashed lines b-- Ly a set of inequalities expressed in terms of X, and 02 only, called "cuts". These

are necessary conditions which are satisfied by all feasible and optimal solutions to (4). These cuts,

are added sequentially (- 1,2, ... ) to the first period problem, A, I'1 = b,X 1 "> 0. And these,

together with a modified objective Z = cIX 1 + 0 constitute the "Restricted MASTER Problem"

whose Z is a lower bound estimate for minZ of (4.1) ... (4.3). Cuts are added to the Master

until they become sufficient to solve (4). This happens when the current value of the objective Z

for a feasible solution to (4) equals the lower bound estimate of min Z. In piactice the iterative

process is stopped when this difference is judged to be "small enough". Cuts come in two "flavors":

feasibility, cuts and optimality cut-. The "MASTER" problem for Benders' decomposition method

has thz form:

FIND minZ, X, > 0,0 2 >0

b, =: AXi, (5.1)

CUTS: g9 < -G'X 1 + b' 2 , t= 1,...,L (5.2)

mill Z c 1A] + 02 (5.3)

where 6' = 0 for feasibility cuts if the subproblem from which it was derived is infeasible, and

' 1 for optimality cuts if the subproblem (6) below is feasible. The optimal solution X, = Xl

to (5.0) ... (5.3) is the value of X, that i- temporarily specified and passed to the subproblem

where it 's "tested" to see if it qualifies as the first period component of some optimal solution

[X,Y 2(1),X 2 (2),X 2 (3)J for (4). This is done by solving the set of subproblems (6) below to see

(i) if the contribution BIXj from the first period implies for the second period a feasible solution



for every choice of w, and (ii) if it together with the set of optimal solutions to the second period

for every w provides a global optimum to the original problem. Global optimality is easily tested

by checking whcther the lower bound estimate for min Z is equal to the value of Z for the current

feasible solution. If the answer to (i) or (ii) is negative, the optimal 7r2 (w) to (6) is substituted in

formula (7.1) or (7.2) below in order to generate cut L + 1 which is then added to the L already

generated in (5.2). It can be proved that the current optimal solution of the Master violates the cut

condition and therefore the next optimal solution to the Master will generate an improved lower

for Z, [3] .

4.1 The Sub Sub Problem

For each w in 0, FIND minZ 2(w),X 2 (w) > 0:

Dual Prices

A2(W)X2(w) =b 2(W) + BxX :7r2(W)

P2 (W). c2 (w)X 2 (W) = ;2 (w)(min) (6)

where w = {1,..., K}. These problems are solved for w = 1,.. ,K and their optimal dual "prices"

(if (6)is feasible), or "infeasibility" prices (if not feasible) are computed and used as follows: If any

subproblem w is infeasible, its infeasibility prices are used to generate a "feasibility" cut (7.1) below

with 6+1 __ 0
1 r2(W)b2(w); G ' =r 2(w)Bi(w) .(7.1)

If feasible for all w E f, then X1 is tested for optimality by comparing the lower bound estimate

of 0 from the master problem with _ Z 2 (w). If the test fails the expected values:

Z~r2(w)b2(w); G'+' =Er2(w)BI(w) (7.2)

are used to generate new "optimality" cut conditions to augment those of (5.2) with 61+1_

Note that (7.2) are actually expected values because ir2 (w) as defined by (6) is proportional to the

probabilities P2(w).

5. The Concept of Reliable Systems

The stochastic operations submodels above have been formulated so that facilities made avail-

able for day-to-day operations are always sufficient to meet the demands on the system whatever

be the contingeny w. Formulating the model this way can make the facilities required too costly to

build. Instead of requiring the system to be always feasible, it is often formulated to be reliable,

i.e., feasible most of the time.

Conditions that place an upper bound on the allowed frequency of failure to meet demand

turn out to be non-convex when expressed in terms of the usual variables representing the levels
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of operations and therefore car.not be approximated satisfactorly in a linear programming context,

[16]. However, conditions that measure the expected amount of demand not satisfied are casy to

express linearly, one such constraint being added to each stage. The submodels for each state for

w = 1,2,... will no longer be independent. The way to restore independence is to make these extra

constraints correspond to a "Super Master" (in the Dantzig-Wolfe primal decomposition sense),

The Super Master systematically assigns penalty weights to the extra conditions and these are

used to modify the objective. If this approach is adopted, independence of the subproblems is

restored; the subproblems are reformulated so that they are always feasible whatever be w, [11].

6. Using Parallel Processors

The decomposition algorithm, however, is clearly only practical when K is small. When K is

large, it is proposed that parallel processors be used as high-speed sampling or quadrature devices

to effectively solve the subproblems. One idea is to have a processor at the MASTER level serve as

an integrator which sequentially receives as input estimates of the cuts (5.2). The Master Problem

is then solved to optimality with the estimates it has received so far and used to generate as output,

revised X 1 = X that are sent to other parallel processors which are busy solving (6) for various

choices of w. This process also provides a lower bound estimate for min Z which monotonically

increases with each solution of the master problem.

The amount of space needed to store the generated cuts in the computer memory need not

be high. Assuming B 1 is independent of w, no more than L < M 2 of the cuts will be tight on any

majcr iteration, where m 2 is the number of rows in B 1. This is so because G', generated by linear

combinations of the rows of B 1 , has rank < r where r < m 2 is the rank of B 1 . The remainder may

be dropped (possibly to be regenerated on some later iteration).

Several parallel processors could be at the SUB level, each having as input the latest value of

Xt and solving (6) in dual form for many random or stratified choices of w. When C2, A 2 are the

same for all w, the dual of (6) is a linear program with only the dual objective b2 (w) changing. By

judiciously stratifying the random sampling of 0 we hope to use the optimal basic dual feasible

solution for one w to find quickly the optimal one for the next w. To provide cuts for the MASTER,
e+1the parallel processors are to be used to determine the expected values g+ and Gt +

1 defined by

(7.2) or to approximate them by means of a large enough "importance sample", see Section 7.

If it is practical to solve (6) for all w, the set of solutions to (6) generates a valid cut and a

correct lower bound estimate for min Z. In that case, the difference between the lower bound and

upper bound estimates can then be used to test optimality of X for the original problem. When

Z, according to some specified tolerance, is close enough to the lower bound estimate for min Z the

iterative process is stopped and XI declared "optimal".
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7. Importance Sampling

For the cases where K is large, it is no longer possible to solve (6) for all w. Instead, we
propose to use random sampling to choose a set of w's for which (6) will be solved. 120,21) This

solution strategy will require

a) the development of an efficient sampling plan,

b) the development of an efficient stopping rule.

By a), we refer to the fact that naive sampling as a computational tool, will tend to be inefficient
in the sense that a large number of w's will typically be needed to obtain a reasonable degree of
solution accuracy. The reason why this is so for the class of applications we have in mind is that
certain w's play a particularly important role in the solution. For example, in an electric utility
capacity planning problem, the w's corresponding to generator or transmission line failure, while

comprising only a small portion of the total sample space w, are significant enough conting ncies to
force the utility to "hedge". Hence, it is important to design sampling schemes which concentrate
an appropriate level of computational effort on these "rare" ce's. We will use two basic ideas, from
Monte Carlo simulation, to accomplish this task: stratification and importance sampling. [7,22,27).

In stratification, one pre-assigns a certain proportion of the total sample to each of (say) m

subsets partitioning the sample space fl. This increases the efficiency of the sampling procedure
by reducing the clustering effects typical of a conventional sampling scheme. For example, in naive
random sampling, the entire sample could (with small probability, of course) fall into one subset.
There is also a variant of stratification which we will be considering, called pre-stratification, that

is easier to program, see Cochran, W.G. [9].

The second concept that we shall exploit is importance sampling. Within each subset of the
stratification partition, we can design our sampling procedure so that we sample not according to
the original probability mass function (or, more precisely, the original mass function conditioned on
w belonging to the particular subset), but rather according to a mass function which assigns more
weight to the "important" elements of the sample space. By "important", we mean those elements
which will contribute significantly to the average value of the dual variables. The estimator needs

to be appropriately adjusted to account for the new sampling mechanism, but this is easily done,
see Hammersley and Handscomb [22]. We intend to use both theory and exploratory data analysis
to guide us in developing efficient importance sampling-algorithms.

As for problem (6) described above, we will need to develop a stopping rule (hopefully sequen-
tial) which meshes appropriately with the mathematical programming ideas described elsewhere.
Specifically, the stopping rule should ensure that a sufficient accuracy is obtained at each iteration

of the sampling procedure so as to impart useful information to the optimization loop of the routine.
We expect the basic structure of the stopping rule to be of Chow-Robbins type, see [8].

The above sampling ideas should prove to have powerful applications in the optimization con-
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text of interest here. We believe in this approach to be fundamental for two reasons, one historical

and the other prospective. First, the dimension of the sample space over which expectations need
to be computed usually is huge. Monte Carlo methods are easy to extend to the parallel com-

puting environment, and the speed-ups are significant, [30]. The reason, of course, is that Monte

Carlo methods are based on replication and replication is trivial to distribute over many parallel
processors. For both the above reasons, we believe that Monte Carlo ideas, in conjunction with

the mathematical programming concepts developed for solving large-scale systemson main frames,

form a promising avenue for the development of efficient solution algorithms for complex stochastic

optimization problems.
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