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lecture outline

THE ROLE OF STATISTICS IN
AUTOMATED INSPECTION AND CLASSIFICATION

FOR PROCESS CONTROL

Stuart Geman, Brown University

S I. Introduction
A. Systematic improvements in computing hard-

ware have sustained hopes for "intelligent",
computers.

B. In many application areas, such as speech
Iprocessing, filtering, and vision, algorithm

and software development have not kept pace
with hardware improvement. Partly, this is

- because the appropriate scientific tools have
not been utilized.

K C. In many (most?) cases, the mathematical sci-
ences, especially probability and statistics of-
fer the right tools for constructing suitable al-

3 gorithms. In this regard, the utility of "sym-
bolic processing" and other "AI" tools such as

ft frames and schemas have been overestimated
and oversold.
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D. Encouraging a role for the mathematical sci-
*ences:

1. Traditional consulting arrangements en-
courage shallow scientific involvement by
mathematicians.

2. Probabilists, statisticians, and other
mathematical scientists can best con-
tribute by joining and initiating research
efforts in high technology areas, such as
speech, filtering, and vision.

3. "Neural networks" are parallel process-
ing systems for statistical inference. This
well-funded field could catalyze involve-
ment of mathematicians, physicists, and
other scientists not traditionally associ-
ated with algorithm development for "in-
telligent" processing.

4. Affiliate programs and entrepreneurial ar-
rangements could encourage mathemati-
cians to take leadership roles in technol-
ogy research.

U.9
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II. Computing horsepower - an illustrative example
*' A. Parallel processing will play an increasingly

important role in weapon systems and indus-
£trial automation.

B. In the next few years, the most useful parallel
machines will likely have modest numbers of
relatively powerful processors.

C. One example is the MTAP system, based on
* VHSIC technology, being developed for the

Army.
D. Other examples are the multi-DSP processor

3systems now coming on the market.
1. One example has 4 to 12 DSP proces-

Isors with extensive local memory and very
high bandwidth communication.

2. This system costs between $15,000 (for
g4 processors) and $30,000 (for 12 proces-

sors).
3. Each processor has a 10 (soon to be 16)

megahertz clock, and performs two mem-
ory operations, one arithmetic operation,

gand one accumulate per clock cycle.
4. Future versions will offer more processors.

U-slides of architecture-

I I I



III. Opportunities for industry and mathematical
sciences
A. Speech recognition

1. Most researchers acknowledge the IBM
framework to be the most advanced.

2. Beautiful mathematical structure, accom-
modating vertical processing (interpreta-
tion guided segmentation), time warping,

3. Two severe weaknesses: top level (lan-
guage) model, bottom level (signal)
model.

4. Signal model: clustered feature vector
from FFT or LPC (ARMA model).
a. Much more sophisticated and powerful

tools exist in the statistics collection.
b. Modern theories of time series, Markov

models, ... should be harnessed.
c. These are not off-the-shelf methods;

mathematicians should be involved in
implementation.

'll



B. Filtering
1. Sample problem:

0 Xt, t = 0, 1, ...T : "state" such as a cali-
I brated setting of a stage handler .

* Yt, t = 0, 1, ...T : noisy observation of xt
I| * Given yt, t = 0, 1, ...T, estimate xt, t =

0, 1,...T.
2. Standard solution: Kalman filter with es-

3 -timation of state parameters.
3. Existing hardware permits exploitation of

U more general framework.
4. Especially: should construct more realis-

tic state models.5
Il
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5. Example:
a. Often have a priori knowledge about

qualitative behavior of state process,
e.g."
i. There exist occassional jumps.

ii. Between jumps, movement resem-
bles random walk.

b. Suggest: build Markov model of state
using Gibbs representation of random
fields:

P(xtO < t <T)=

1 T
(-)exp{-A 1:b(xt - xti)}

t=1

i. € "engineered" to capture a priori
knowledge.

ii. A estimated from data.
iii. Computationally feasible!

II
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i C. Vision

| 1. Example: automatic defect detec'ion and
classification for wafer manufacturing pro-
cess control. Wafer ID's read automati-
cally for defect cataloguing.

-slides of wafers & wafer characters-

2. State-of-the-art
a a. Template matching for defect detection

(sells)
I b. Optical character recognition:

matched filter (sells)
c. Effectiveness

* i. Both very sensitive to lighting, fo-
cus, and normal process variations

*l (such as texturing).
ii. Not suitable for detailed multilay-

ered (end-stage) inspection.

A -slides of textures & texture histograms-

3. Mathematical technologies for inspection,
classification and optical character recog-

£ nition:
a. Inspection

i. Probabilistic analysis of texture:
aspatial statistics, random fields, ...

1 7



-slides of textures & texture segmentations-

ii. Statistical estimation of normal
process variations.

iii. Combinatorial optimization of de-
tection algorithm.

iv. Result: full field of view inspection
(512 x 512 pixels); submicron defect
detection (2 x 2 pixels); 400 millisec-
onds.

* processing time independent of
complexity

* one 8 megahertz DSP
* Algorithm fully parallel (as are

most vision algorithms)
b. Classifier

i. Decision tree/recursive partition
classifier (statisticians version of an
expert system).

ii. Naturally accommodates statistical
variation.

c. Optical character recognition
i. Tcmplatcs -+ Rclational Templates.

ii. Optimize speed by exploiting se-
quential decision framework for
graph matching.

.*:. U
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BACKGROUND ARTICLE 0

Technical Report, Division of Applied Mathematics & Center for Intelligent Control Systems.

To appear in Proceedinga of the 46th Sesion of the ISI. Bulletin of the IS!. Vol. 52, (1987). SI

STATISTICAL METHODS FOR TOMOGR.APHIC IMAGE RECONSTRUCTION

Stuart Geman and Donald E. McClure
Division of Applied Mathematics

Brown University, Providence, Rhode Island,.U.S.A.

1. Introduction

Interest in statistical approaches to reconstruction problems in emission computed tomogra-
phy was greatly enhanced by the work of Shepp and Vardi (1982) on the use of maximu, m likelihood
(ML) methods. There are earlier instances of suggestions to regard the reconstruction problem as
a statistical estimation problem; however, the demonstration of the versatility of the approach as
well as the specification of algorithms that work were advanced substantially by Shepp and Vardi's
work.

The image reconstruction problem, viewed as an estimation problem, is inherently nonpara-
metric: one seeks an estimate of a function of general form on a continuous domain. As such, it
is widely recognized that the estimates need to be regularized or smoothed, especially in "small
sample" implementations. Various approaches to regularization have been suggested, including
penalized ML, the method of sieves, and Bayesian methods. In Geman and McClure (1985), we
proposed that a priori spatial information be built into a statistical reconstruction algorithm, in
a Bayesian approach, by quantifying spatial constraints in the form of a Gibbs prior distribution.
In this paper we will expand on our earlier description and present recent work on parameter
estimation for the Gibbs priors, which leads to completely data-driven algorithms.

This application to single photon emission computed tomography (SPECT) follows a general
Bayesian paradigm for problems in image processing and vision laid out in Geman and Geman
(1984) and Grenander (1984).

1. Following the general procedure, we shall describe in §2 and §3 the deformations that trans-
form the object X that we wish to reconstruct into the data Y that we can observe. The
deformation is embodied in a probability distribution II(YfX) reflecting the physics of the
observed phenomenon, the characteristics of the sensor used, etc. Alone, 11(Y(X) is the basis
for ML reconstructions.

2. The prior information about the unknown object X is then prescribed in the form of a Gibbs
prior distribution II(X) (§4). In this particular application, the prior is designed to express 0
spatial constraints, such as "isotope concentrations within subregions of common tissue type
and common metabolic activity are fairly homogeneous."

3. The prior distribution and the deformation mechanism let us solve, by Bayes formula, for the
posterior distribution II(XIY) (§5).

4. With the posterior distribution in hand, we can base reconstruction algorithms on the sta-
tistical principle of minimum risk. In §5 we define procedures for the MAP and MMSE
reconstructions.

S 5. The special association of the Gibbs prior with a statistical mechanical system translates
into Monte Carlo computational methods, which mimic the dynamics of the physical system.
Stochastic relaxation (§5) is a technique for sampling from the posterior distribution II(XIY).

11
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In §6 we describe two methods for parameter estimation for a natural parameter of the family
of Gibbs priors. Finally, we give examples of the reconstruction and parameter estimation methods.

This paper is intended as an introduction, with emphasis on the statistical perspective. A
more complete discussion of physical, computational, and mathematical issues will be provided in
a following paper.

2. Single Photon Emission Tomography

Emission tomography is used to determine the distribution of a pharmaceutical in a part
of the body such as the brain, liver, or heart. Depending upon the pharmaceutical used, this
concentration can be taken as a measure of local blood flow (perfusion) and/or local metabolic
activity. Glucose, for example, is taken up by neuronal cells in proportion to metabolic activity,
and the latter generally mirrors recent electrical activity. Thus, areas of the brain most used
in performing a cognitive or motor task will demonstrate a relatively increased uptake of glucose
immediately following the task. For the heart, pharmaceuticals can be chosen whose uptake reflects
local perfusion. The concentration of these pharmaceuticals can thereby be used to assess the
adequacy of blood flow to the different parts of the heart.

In SPECT, pharmaceutical concentration is estimated by detecting photon emissions from an
injected or inhaled dose of the pharmaceutical that has been chemically combined with a radioactive
isotope. This combined agent is called a radiopharmaceutical. The goal of SPECT is to determine
radiopharmaceutical concentration (equivalently, isotope concentration or density) as a function of
position in a region of the body. Detectors with collimators are strategically placed around the
region of interest, and these are able to count photons emitted by radioactive decay of the isotope.
A detector will capture those photons which escape attenuation and whose trajectories carry them
down the bore of the collimator.

The determination from photon counts of isotope concentration as a function of position is
referred to as reconstruction.

Let X(s) denote the concentration of the radiopharmaceutical at the point s = (z, y) in the
domain R of interest. We shall take f! to be a bounded two-dimensional region, though for the
models and methods we will describe there are no essential changes when fl is three-dimensional.

We assume that the detectors are arranged in a linear array, at equally spaced lateral sampling
intervals, and that the detector array can be positioned at any orientation 0 relative to the z-axis.
(See Figure 1.) We assume the detectors are of so-called parallel bore type, meaning that they
detect only those photons in a small interval [0 - AG/2, 0 + A9/2] when the array has orientation
0. Let L denote the total number of detectors in the array and let Aa denote the spacing between
detectors.

The physical effects incorporated in the model are the spatial Poisson process that describes
the sites of the radioactive decays from which photons emanate and the process of photon atten-
uation by which photons are annihilated and their energy is absorbed by matter through which
their trajectoric. pass. Attenuation is accurately described by a linear attenuation function J(s)
on fQ. The function p is assumed to be known; values of i for bone, muscle, etc. and for various
photon energies are known a priori or could be measured by transmission tomographic methods.
Attenuation is a -nemoryless process and we can thus deduce the functional form of the probability
that a photon survives to reach the detector array. When a photon trajectory has direction 8 and
it emanates from site s = (z, y) in fl, then

P(photon survival) = exp{- / z( , r/)dl

2
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// s= (x y)

xI

Figure 1.

where the line integral is taken over the segment £(z, y) from (x, y) to the detector and dl is

differential arc length.

For our sampling design, we shall position the detector array at n equally spaced angles 0k

for duration T time units at each angle. Then at each angle, we observe the random variables
Y(t), for t E Dk = {(ajeO)j = 1,... ,LI that give the numbers of photons reaching the respective

detectors during the sampling interval. Assuming that (i) photons are generated by a spatially

nonhomogeneous Poisson process with intensity X(s) per time unit, and (ii) the orientations 6 of£ photon trajectories are uniformly distributed on [0, 2r), we can show that Y(t), fort E D= UnDk,

is itself a Poisson process with a nonhomogeneous intensity function described in terms of the
attenuated Radon transform (ART) of X. The ART of X is defined as

(R,TX)(a,O) = TX(x,y)exp(- IL(,rf)dl')dl

I where C is the line with orientation 0, through point a of the detector array, £(x,y) is the segment
of L starting at point (z, y) in 1, and dl and d(' are differential arc length in the two line integrals.
The intensity function of Y is then given by

EY(t)= 12  (R,TX)(a, O)dadO,

where t = (aj, 9k). The important feature of this representation is that the intensity function of Y
is the result of applying a positive linear integral operator AT to X:

EY = ATX. (2.1)
I3
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The model includes the predominant physical effects. Other potentially significant effects,
such as photon scattering and background radiation, are assumed for now to be negligible. Fur-
ther, we have not included effects from the sensor, such as imperfect collimation, blurring, and
noise. We note, however, that the reconstruction methods described below, since they are based
on the generally applicable principles of maximum likelihood and Bayes optimality, are adaptable
to models incorporating additional physical and sensor effects. Mertus (1987) has made extensions
for scattering and collimation errors.

3. Maximum Likelihood and EM

A variety of reconstruction algorithms for emission tomography are described by Budinger
et. al. (1979). The algorithms that are traditionally used are based on ideas of extracting a signal
in the presence of noise and related methods of linear filtering.

More recently, interest has been heightened in the use of algorithms that use fuller information
of the mathematical model sketched above, along with the ML principle. Shepp and Vardi (1982)
laid the mathematical foundations and developed effective algorithms based on EM (Dempster,
Laird and Rubin (1977)) for implementing ML reconstructions in positron emission tomography
(PET). A penetrating description-, written from a statistician's perspective, is given in Vardi, Shepp
and Kaufman (1985). (In PET, photon attenuation does not enter the model relating isotope
concentration to the observables.) McClure and Accomando (1984) have developed the foundations
for applying ML to SPECT reconstructions and have implemented EM algorithms on a variety of
computer systems. Independently, Miller, Snyder and Miller (1985) have made similar extensions
of ML and EM for SPECT.

By exploiting properties of the Poisson process, it can be shown that the observables Y(t)
are mutually independent and Poisson distributed; the likelihood function is then easily obtained
from (2.1). To carry out a ML reconstruction, we first discretize the domain Q into pixels parame-
terized by discrete points s in a square lattice S. Now {X(s)}srS represents a piecewise constant
approximation of the isotope concentration on the continuous domain. When Q is discretized, then
equation (2.1) takes the form

EY = ATX,

where AT is a matrix, AT = {A(i, S)}tED,sES; commonly, the order of AT is extremely large and it
may not have full column rank. Now for a given X, the Poisson probability function of Y is

y lx Y(t)! exp{-(ATX)(t)} (3.1)

where our notation is making convenient abuse of the distinction between a random variable and
its value.

The log-likelihood function is

In L(x) = Z{-ln(Y(t)!) + Y(t)ln[(ATX)(t)] - (ATX)(t)). (3.2)
tED

The necessary conditions for maximizing In L(X) obtained by setting derivatives to zero do not
yield explicit solutions for a maximizing X. Nonetheless, -In L(X) is globally convex, and the
ML optimization problem conveniently adapts to the EM method. In general, -In L(X) is not
strictly convex; this is an identifiability issue related to the column rank of AT. Conditions for
strict convexity are discussed by Accomando (1984).

.. ....4! .



The EM algorithm becomes an explicit iterative reconstruction procedure. We initialize the
iteration with {X°)()}'s and update X (') by the formula

I(rl = {[A'(Y 0 ATX(r))] 0 A'l.} 0 X(r), (3.3)

where 1 is the vector whose components are identically one, 0 denotes component-by-component di-
vision, and 0 denotes component-by-component multiplication. At each step, the iteration requires
two (large) matrix multiplications. The sequence of iterates converges to an X* that maximizes
In L(X). Consistency results that depend on the sampling design and on the discretization of fQ
can be proved.

Figure 2C in §5 shows an example of a ML reconstruction for a simulation experiment. The
true isotope density used for the simulated data is depicted in Panel A of Figure 2. The noisy
appearance of the ML reconstruction is not atypical, even though the sample size is rather large
in this experiment for estimating the 32 x 32 discrete image. The high degree of local irregularity

3 occurs because ML builds in no spatial information, e.g. about relative locations of pixels- in the
grid. Snyder and Miller (1985), recognizing the inherent nonparametric nature of the reconstruction
problem, have suggested using Grenander's method of sieves (Grenander (1981)) to regularize theg ML estimates. Accomando (1984) also usessieves to study consistency questions.

4. Gibbs Prior Distribution
We suggest a Bayesian formulation for incorporating prior spatial constraints into the recon-

structions. We shall construct a prior distribution on X that captures simple prior expectations
about the qualitative nature of the isotope density. Mainly, we wish to exploit the anticipated
smoothness of X. Neighboring locations will typically have similar intensity levels. But we must
also accommodate sharp changes in concentration, which might occur across an arterial wall or
across a boundary between two tissue types.

I In the spirit of nonparametric estimation, we might construct the prior on a suitable space of
functions X : 1 -. R. It is more convenient, however, to do the construction on the discrete domain
S introduced in §3. The prior, therefore, is on the array X = {X(s)},Es. The range of Nralues
of X(s) will be confined to a compact interval, usually [0,255], and might be further restricted to
only the integer values in the interval. As a further convenience, we will restrict ourselves to priors
with Gibbs representation

11(X) = exp {-U(X)} (4.1)

where Z is the normalizing constant, Z = f exp{-U(X)}dX, and U : Rs - R is known as the
"energy". As it stands, the Gibbs representation is only mildly restrictive since U is arbitrary.
However, we shall restrict U to involve only "nearest neighbor" interactions among the components
of X.

j We employ the Gibbs representation because it is easier to design an energy function with
desired properties (such as localization of interactions, Markovian restrictions on conditional distri-
butions, ... ) than it is to construct a distribution HI directly. We will design U so that the expected
configurations have low energy as they do in a real physical system. The expected configurationsare those for which typical neighboring sites s, t E S have similar intens, ties X(s), X(t). This is a
local constraint and it is conveniently captured by a locally composed energy function U,

U(X) = Zom )- X(t)) + E -t3=(X(s) - X(t)). (4.2)5 5

I



Here we use (s, t] to indicate that s and t are nearest horizontal or vertical neighbors in the lattice S
and < a, t > to denote diagonal neighbors. The constant 03 is positive and the function 4)( ) is even
and minimized at C = 0. Thus U is minimized by configurations of constant intensity. Under the
Gibbs distribution (4.1) the more likely isotope densities are those with small site-to-site variation
in intensity.

This definition of 0 and U induces a graph on S in which each pixel site s is linked to its eight
nearest neighbors in the square lattice. The distribution 11 then determines a Markov random field
with this neighborhood structure.

ro achieve the desired properties for the more likely isotope densities, the exact form of 4 is
probably not important, but its qualitative features can make a difference. We have experimented
with O's that are increasing in f for f > 0. An obvious choice is €(O) - 2, but then under 1(X),
large intensity gradients, as would be associated with certain natural boundaries, are exceedingly
unlikely. Instead, we use functions of the form

= (4.3)

where 6, like 0, is a constant to be fixed later.

There are two free parameters in the specification of U: 6 is easily interpreted as a scale
parameter on the range of values of X(s) and 8 controls the "strength" of the interactions between
a pixel and its neighbors. It is a natural parameter of the exponential family (4.1), and admits
meaningful statistical and physical interpretations.. From the physical viewpoint,/3 is the reciprocal
of temperature for the statistical mechanical system defined by (4.1). From the statistical viewpoint,
it will be seen as a "smoothing parameter" controling the tradeoff for our reconstructions between
the influence of the observables and the influence of the prior constraints.

Levitan and Herman(1987) have recently proposed the use of Gaussian priors in a Bayesian
formulation. Liang and Hart (1987) also suggest the use of Gaussian priors, as well as others,
deduced by max-ent arguments from prior constraints on low-order moments of X. Our earlier
experiments with the quadratic energy function indicated that the resulting Bayesian algorithms
oversmoothed real boundaries where the difference (X(s) - X(t)) should be allowed to be large.
The finite asymptotic behavior of our 4-function was designed to mitigate this oversmoothing.

5. Posterior Distribution and Bayes Optimal Reconstructions
From (3.1) and (4.1) the posterior distribution on X is

1
II(XIY) = Z exp{ -U(X) + Z_ [Y(t)ln[(ATX)(t) - (ATX)(t)]} (5.1)

(Y) tED

where Z(Y) is a normalizing constant that depends on Y.

We have developed algorithms for two Bayes opptimal reconstructions of X-the minimum-
mean-squared-error (MMSE) estimator

X- = E(XY) (5.2)

and the maximum-a-posteriori (MAP) estimator, which maximizes the value of II(XIY) or equiv-
alently minimizes the posterior energy

U(X) - 1 [Y(t) ln[(ATX)(t)] - (ArX)(t). (5.3)
tED

6
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The algorithm for each of these reconstructions is built around a technique for simulating compu-
tationally the dynamics of a statistical mechanical system with energy given by (5.3). Details of3 the generic algorithm, a variant of the Metropolis algorithm (Metropolis et. al. (1953)) known as 0
stochastic relaxation (SR), are given in Geman and Geman (1984); the idea is sketched below.

Notice in (5.3) that we have the usual equivalence between Bayesian MAP estimation and
so-called penalized ML. ML maximizes

E [Y(t) ln[(ATX)(t) - (ATX)(t)1,
tED

wheras MAP estimation includes the "penalty term" -U(X), which penalizes lack of smoothness.
One advantage, we believe, of the Bayesian viewpoint is that it suggests mechanisms for estimating
the required degree of smoothness, which amounts to estimating the pivotal parameter )3 in the
Gibbs prior. We focus on this estimation problem in the next section.

3 MMSE Algorithm. The computational method is iterative. We initialize X = X (° ) . In practice,
we choose a "good" initialization such as the EM reconstruction, but easy theory says that con-
vergence is independent of the initialization. We visit each site s in the pixel array, successively in
any order, and replace X(s) by a value sampled from the conditional distribution on X(s), under(5.1) and conditioning on all X(t),t 0 s; this is the essence of stochastic relaxation (SR). The
iterates X ( ") form a Markov chain with equilibrium distribution (5.1). The ergodicity of the chain3 guarantees that an ergodic average of {X()}= 0 will converge to X" a.s. In practice, we compute
N iterates and average the final M, with choices such as N = 25 and M = 5. The selection of
suitable M and N can be guided by monitoring stabilization of statistics of the successive iterates

MAP Algorithm. Computing the minimum of (5.3) is, in general, a hard problem. The method
of simulated annealing can be implemented to yield a sequence {X(' ) } converging in distribution
to a MAP estimator X*. The procedure is similar to SR. The fundamental ideas are described
in Pincus (1970), Cern (1982), and Kirkpatrick, Gellatt and Vecchi (1983). See also Geman and
Geman (1984) for applications to image processing.

For the design of feasible algorithms, we are guided by pragmatism as well as by the theoretical
underpinnings of SR and simulated annealing. First we compute the ML reconstruction by EM.
Then-in the language of simulated annealing-we "run" the physical system with posterior energy
(5.3) at zero temperature. When our state-space (the range of values for X(s)) is discrete, this
amounts to using Besag's method of Iterated Conditional Modes (ICM), Besag (1986). When the
state-space is a continuous interval and the temporal index is also continuous (r E (0, oo)), we
implement this step by performing gradient descent on (5.3) starting at the EM reconstruction.
The local minimum of (5.3) obtained by ICM or by gradient descent is our approximate MAP
estimate of X.

Note that 1CM and gradient descent do not guarantee convergence to a global minimum of
(5.3). The rationale for making a judicious choice for the initialization is to capture a "good" local
minimum for the approximate MAP reconstruction.

Figure 2, Panels D, E, and F, shows approximate MAP reconstructions of the known phantom
depicted in Figure 2A. First the ART of the phantom X was computed, for n = 60 sampling angles
and L = 64 lateral sampling steps. The nonuniform attenuation function / depicted in 2B was usedto compute the ART; it builds a very substantial attenuation effect into the model. The Poisson
data Y was generated to satisfy (3.1). Figure 2C shows the approximate ML reconstruction after 54
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iterations of EM. For the Bayesian reconstructions, we used the prior of (4.1)-(4.3), with 6 = 0.7,
and with the range of X(s) in [0,15] Each of the Bayesian reconstructions is computed by gradient
descent starting from the EM estimate (EM-GrD). The effect of different choices for O3 on the degree
of smoothing is apparent. We shall discuss estimation of 6 in the next section.

6. Parameter Estimation
The choice of 8 is critical. With = 0 the estimator is undersmoothed, and in fact MAP

estimation is just ML, since the prior is uniform. If / is too large, the estimator is too faithful
to the prior and is oversmoothed. The parameter 6 is also important, though we have found
that (i) its value can usually be set based on information about the range of values {X(s)}, and
(ii) reconstructions are not sensitive to moderate changes in 6. The discussion here will focus on P.

Because of the setting in which reconstruction alorithms are actually used, it is desirable
to design estimation methods that work with a sample Y of size one from the observable process.
The isotope density X is assumed to be drawn from a Gibbs prior with unknown fl, but known 6
(4.3). We shall estimate / from Y? and use the estimate / in the MMSE or MAP reconst-uction
program. It is reasonable to do this with a single observation Y, since IY contains a large amount
of data about ±, which, in turn, contains a large amount of data about the local energy function
U(X).

To be more explicit about the dependency on 3 of the prior and posterior distributions, we
introduce the function

1V(X) = Zx(x(s)- x(t)) + 72= E (X(s) -X(t)).
(S,t] <Sit>

V is just U/. The prior is now written

H(x) = exp {-,Ov(x)}

and the posterior, given IY, is

Il(XIY) = exp{-/V(X) + E_[]?(t)ln[(ATX)(t)] - (ArX)(t)] }
ZO(Y) tED

Now V(X) is a complete-data sufficient statistic for P. If we were able to observe X directly,

then we could, in principle, solve the likelihood equation

E#[V(X)] = V(9) (6.1)

for the ML estimate of /3. The left-hand side of (6.1) is strictly decreasing in/3 and thus (6.1) yields
a unique root /.

Our situation is more complicated than this since we do not observe X, but instead we see
only the incomplete data Y'. We have a classic setup for application of EM. The EM algorithm,
when it converges, will yield a root of the incomplete-data likelihood equation

Ep[V(X)I = E0 (V(X)If); (6.2)

8
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see Dempster, Laird and Rubin (1977). We note that there is no proof of uniqueness of roots of

(6.2). Conceptually, (6.2) is solved at the intersection of two monotone decreasing functions of j.

Whether (6.2) does admit multiple solutions is an open and elusive theoretical question.

To solve (6.2), the EM algorithm consists of two alternating steps-estimation of the right-

hand side of (6.2) for prescribed P3 (E-step) and computation of the root 4 of (6.2), substituting
the current estimate of Ea(V(X)IY) on the right-hand side. Specifically, we fix an initial 0 =/ 0

* and an initial X = X' (and hence V'). Then solve

E-step. Estimate the complete-data sufficient statistic:

v(,+l) = Ep)(V(X)IY) (6.3a)

M-step. Determine 3('+I) as the solution of

EO4V(X)] = V("+'). (6.3b)

The first step is done using SR, using say ten steps of SR and averaging the last five values of
V(X(")). The second step is a simple root-finding calculation once the curve E0tV(X)I is known.
Conveniently, the SR procedure simultaneously yields updates X(T) of the MMSE reconstruction.
Thus (6.3a' and (6.3b) together give a completely data-driven method of reconstruction.

The construction of EO[V(X) as a function of 3 can be done "off line", once and for all.
We have done this using SR to simulate 230 configurations X from the prior (4.1) for #-values

ranging from 0 to 6. Five replications were done at each of forty-six values of f3. The resulting
curve, fit by a cubic-spline regression fuvrieon, is depicted in Figure 3. the calculation cf this curve
required forty-one hours of CPU time, using a highly optimized program on the 100 Megaflop Star
Technologies ST100 Array Processor.

J. Mertus (1987) has developed an efficient vectorized FORTRAN program for the EM esti-
mation/reconstruction procedure described above. Each E-step, with ten sweeps of SR, takes on
the order of seven minutes of CPU time on an IBM3090 or about three minutes on a CYBER 205,
working on a 64 x 64 pixel lattice S, for isotope densities X having their support on a disk of
diameter 44 pixels (about 22cm) and with a range of 64 grey levels. (These values correspond to
our real data sets.) The computational requirements are enormous, but not prohibitive.

To circumvent the computational demands of EM, we have devised and experimented with a
moment method for estimating /3. The goal is to have a direct estimation method for /3 that can be
applied to the observable Y without requiring intermediate reconstruction of X. We construct a
statistic M(Y) based on the notion that the smoothness of Y will reflect the magnitude of 3 in the
same way that the smoothness of X does. The exact form of M(Y) is also guided by our knowledge
of the Poisson distribution of Y and ability to compute theoretical moments of the Poisson random
variables.

For the detector bin at angle Ok and at sampling step oj, denote t = (oj,Ok) and t+ =

(aj+1,k). Also, introduce the notation a(t) = (AT1)(t), where 1 is the vector with components
identically equal to one; a(t) is simply the row-sum of AT associated with the detector at location
t. Then define the moment statistic

"I [(r(t) Y(t+) r(t) Y(t + )  (6.4)
M(Y) = a(t) a(t+) a2 (t) a2 (t+)

k=1 j=22

10
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The inner sum restricts the moment to the central part of the support of the isotope density to
avoid edge effects. The expectation of M(Y), for given X, is a measure of roughness of normalized

ART projections of X:

r ,2
E(MY)I) =ZZT ATX(t) _ATXWh)a(t) a(t+) I (6.5)

We anticipate that the expectation E[M(Y)] with respect to the prior will have the same general

behavior as Ep[V(X)] in (6.1). Accordingly, we define the moment estimate 0* of 0 as the root of
the equation

N Ec[M(Y)] = M(Y). (6.6)

The effort to compute 6* is trivial, once the left-hand side of (6.6) is known as a function of 0.

We have constructed the curve describing Eo[M(Y)] using the same simulated X-data that
generated Ec[V(X)] in Figure 3. Figure 4 shows the resulting curve; it does, indeed, exhibit the
same qualitative behavior as the curve in Figure 3.

A variety of experiments have been done with both the EM and moment method of estimating
0. The most ideal circumstance, of course, is when the model truly fits the data.

In one such experiment, an X-array was generated from the prior (4.1) with 3 = 1. (As
above, we used a 64 x 64 pixel lattice, 64 grey levels, a disk of diameter 44 pixels for the support of
X, and a uniform attenuation function for the construction of AT.) In implementing the E-step,
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ten passes of SR were performed and the last five values of V(X(r)) were averaged to estimate the
right-hand side of (6.3a). When 00 = 0.0, the successive iterates of 6('r) from the M-step were 0.63,

0.85, 0.95, 1.01, and 1.03. When ,0 - 6.0, the successive were 2.26, 1.15, 1.08, 1.05, 1.05, and 1.04.
For the same X-array, five independent replications of the observable Y process were generated
and the moment method yielded estimates /3 of 0.97, 1.00, 1.02, 1.06, and 0.98; the five estimates
have mean 1.005 and standard deviation 0.034.

For more thorough testing of the moment method, a test set of X-arrays-independent of
the set used to construct the curves in Figures 3 and 4-was generated with 3-values ranging
from 0.5 to 2.5. For each #, five X-arrays were generated, and for each X-array, five independent
replications of the Y process were simulated. Figure 5 depicts the estimate errors 03 - / for each
of the twenty-five experiments at each 8-value. The dispersion of the errors as a function of 0 is
what one would anticipate from the slope of E#[M(Y)).

7. Reconstruction Experiments

We report on two experiments which have been run on real and simulated data to learn
about the performance of the Bayesian reconstruction methods in cases for which the underlying
model does not fit exactly. One simulation experiment was designed to test the versatility and
robustness of the methods to known departures from the model. The other experiment illustrates
the performance of the algorithms on real data from a lung section.

The pseudo-grey-level images in Figures 6 and 7 associate high values in [0,63] with black and
low values with white. Our ability to present pictorial examples is limited by the printing process
for this volume. Interested readers can obtain higher resolution copies of photographs on request to

12
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I Experiment 1. A phantom isotope density (Figure 6A) was designed to have a combination of

(i) large-scale structure, including subregions of ! with considerable differences in intensity, and
t (H) local irregularity of the same qualitative nature as that of sample functions from the Gibbs

model (4.1)-(4.3), yet not precisely fitting the Gibbs model. Two functions were averaged to form i
the phantom. First, an aray with a sharp spike in intensity (near the center, below the middle)
was constructed. Second, an array was sampled from (4.1)-(4.3) with parameter values 0 = 1,
and 8 = 12. Intuitively, the local structure of the average will be governed by the array sampled

from the Gibbs model. But observe that the rescaling of this array due to the aithmetic averaging
means that it will not exactly fit a model from the same family. Roughly speaking, the averaging
has the effect of smoothing the aray so that it will be better described by a Gibbs model with

larger #-value, assuming 6 is fixed for now. We thus anticipate estimated values of 6 larger than ;

the value 0 = 1 used to generate the Gibbsian part of the averaged phantom.

1* -

To simulate the emitted photons, the constant linear attenuation function/ J= 0.2 was chosen,
corresponding to approximately ten percent attenuation per centimeter for our scaling of the real

i system. A total of 663,144 photons were counted at 64 angles 0, with L = 64 bins on the linear

detector array; in actuality, only 44 of the bins collect positive counts because the support of the

phantom is contained in a smaller disk of diameter 44 pixels.

Reconstructions are depicted in Panels B-F of Figure 6. All were constructed on the range
{[0,631 with parameter 6 = 12. The MMSE reconstruction, with 6 estimated by EM (6.3) is shown
in Panel 6B. When 3 was initialized at 00 = 0.0, the successive EM iterates from (6.3b) were 0.52, b

I~13
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0.72, 0.85, 1.01, 1.18, 1.29, 1.34, 1.38, 1.40, 1.41, ... , 1.47 after thirteen steps of (6.3b). The MMSE
in Panel 6B was run at /3 = 1.47. (The moment estimate of /3 was 3 = 1.38.) Panel 6C depicts
an approximate MAP reconstruction obtained by ICM, with 3 = 1.47 and using the MMSE in
Panel 6B to initialize the local minimization of the posterior enerry. Characteristically, the MAP
is slightly smoother than the MMSE; on a video monitor the difference is perceptible and manifests
itself in apparent coarser transitions between grey levels in the MAP image.

The EM reconstruction after 5000 (!) steps of (3.3) is shown in Panel 6D. When (3.3) is
run with double precision, the successive iterates still continue to increase the log-likelihood (3.2)
after 5000 iterations. Panel 6E shows an MMSE run with a value of (3 = 0.52, which is too small
(undersmoothing). Panel 6F shows an MMSE run with a value of/3 = 4.40, which is too large
(oversmoothing).

5 Experiment 2. A total of 124,136 photons were counted from a cross-section of a patient's torso,
including the lungs. The observed data are depicted in the so-called sinogram in Figure 7A. The
darkness in the figure is proportional to the number of detected photons. The first column of
Panel 7A corresponds to the linear detector being positioned to the right of the lung sectf'on; the
subinterval of high counts in this column is the "shadow" of the region of high isotope concentration
in the lung. The successive columns in Panel 7A correspond, in turn, to the data from the successive
sampling angles. We are using the same sampling design as in Experiment 1, with 64 equally spaced
angles 0 and L = 64 lateral sampling steps on the linear detector array.

For the reconstructions,, we set the linear attenuation function again at y S 0.2. The3 reconstructions were done on the range [0, 63] with fixed 6 = 12.

Panel 7B shows the EM reconstruction after 5000 steps of (3.3). The "hot spot" in the lung is
apparent, but local structure is difficult to distinguish. Panel 7C shows the MMSE reconstruction
with /3 estimated at /3 = 4.56 after four steps of the EM estimation procedure (6.3); here we
initialized 30 = 6.0. Panel 7D shows an approximate MAP reconstruction formed by applying ICM,
setting 3 = 4.56, and using the EM reconstruction in Panel 7B to initialize the local minimization3 of the posterior energy. Again in this experiment, the MAP reconstruction is somewhat smoother
than the MMSE.

The moment estimate for /3 in this example is(3' = 2.71. The moment estimate is sensitive toIsharp singularities in the isotope concentration, such as the hot spot in the lung data. We feel that
the moment method can be made more robust by using terms other than the quadratic variation
used in (6.4) for the summands that define the moment statistic. There are analytical obstacles,
however, to calculating a bias correction for alternative summands, so that the expectation of the
moment statistic, given X, is a function of differences alone, as (6.5) is.
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SUMMARY

The reconstruction problem for SPECT (single photon emission computed tomography) is formu-
lated as a statistical estimation problem: estimate the nonhomogeneous intensity function of a
two- (or three-) dimensional Poisson process from indirect observations. Previously, this has been
addressed using the principle of maximum likelihood, but the likelihood method does not incorpo-
rate spatial constraints. Alternatively, spatial information about the unknown intensity function
can be described by a Gibbs prior distribution and this then leads to Bayesian methods for the
reconstruction (estimation) problem. Bayesian reconstructions axe described and illustrated by
examples using both real and simulated data. A parameter estimation problem for the Gibbs prior
distributions is posed. Two methods are suggested and illustrated for the subsidiary parameter
estimation problem. Computational algorithms are given.

RtSUMIt

Nous considdrons le problime de reconstruction de SPECT (single photon emission computed to-
mography) comme 6tant un problime d'estimation; c'est i dire que nous estimons la fonction
d'intensit6 (nonhomog~ne) d'un processus Poissonien i 2 (ou 3) dimensions. Jusqu'k maintenant,
ce problime a 6ti trait6 en utilisant le principe du maximum de vraisemblance; mais cette mthode
ne tient pas compte des contraintes spatiales. D'autre part, l'information spatiale sur la fonction
d'intensit6 inconnue peut tre traduite par 1'emploi d'une distribution de Gibbs a priori, et nous
sommes conduit a. une mithode Bayesienne pour le problime de reconstruction. Nous ddcrivons
des reconstructions Bayesiennes et donnons des exemples utilisant A la fois des donnees rdelles et
simulies. Nous posons des questions sur l'estimation des paramtres de la distribution a priori
de Gibbs, et nous sugg~rons et donnons des exemples d'application de deux mdthodes pour ce
problime subsidiaire de l'estimation de paramitres. Nous donnons aussi les algorithmes utilisds.
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ABSTRACT

U We exploit a Bayesian framework, using Gibbs priors, for finding boundaries
and for partitioning scenes into homogeneous regions. In both applications, the
prior model is a joint probability distribution for the array of pixel grey levels and
an array of "labels." In boundary finding, the labels are binary, zero or one, rep-
resenting the absence or presence of boundary elements. In partitioning, the label
values are generic: two labels are the same when the corresponding scene locations
are considered to belong to the same region. The prior incorporates a measure
of disparity between certain spatial features of pairs of blocks of pixel grey levels,
using the Kolmogorov-Smirnov nonparametric measure of difference between the
distributions of these features. Large disparities encourage intervening boundaries
and distinct partition labels. The number of model parameters is minimized by
forbidding label configurations that are inconsistent with prior beliefs, such as those
defining very small regions, or redundant or blindly ending boundary placements.
Forbidden configurations are assigned prior probability zero. We examine the MAP

* (maximum a posteriori) estimator of boundary placements and partitionings. The
forbidden states introduce constraints into the calculation of MAP configurations.
Stochastic relaxation methods are extended to accommodate constrained optimiza-
tion, and experiments are performed on some texture collages and some natural
scenes.
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1. INTRODUCTION

Most problems in image analysis, from signal restoration to object recogni-
tion, involve inference about physical entities, usually those in a three-dimensional
scene. These inferences (or estimates) are based on both the observed data, usually
radiant energy (or range) measurements, and general information, and imply rep-
resentations of the image in terms of unobserved attributes or label variables. The
labels may be abstract ("edge", "class k") or concrete ("occluding edge", "grass"),
measurements (depth, surface normal) or semantical ("two bolts"). They may be
conclusive, or serve as intermediate data structures for further analysis, perhaps
involving additional data, assorted "sketches", or stored models.

This work is about two such representations: partitions and boundaries. The
partition labels do not classify. Instead they are generic and are assigned to blocks
of pixels; the size of the blocks (or label resolution) depends on the resolution of
the data and intended interpretations. The boundary labels are just "on" or "of'.
and associated with an inter-pixel sub-lattice. Two specific models are constructed
in Sections 2 and 3; these are instances of a "label model", which will be outlined

presently, and which in turn is an application of the Bayesian paradigm in previous
work ([24],[25],[271,[33]).

Both models are applied to the problem of texture discrimination. The data
is a grey-level image consisting of textured regions, such as a mosaic of micro-
textures from the Brodatz album, a patch of rug inside plastic, or radar-imare-
ice floes in water. The goal is to find the regions, either by assigning generic
labels to the pixels, or by constructing a boundary map, which of course avoids
the microedges within the textures. The problem is more difficult than texture

identification or classification, in which we are presented with only one texture from
a given list. Discrimination can be complicated by an absence of information about
the number of textures, or about the size, shape, or number of regions. In addition.
the microedges within the textures may represent sharper intensity changes than
those associated with the texture boundaries.

There is no effort to "model" the textures (and hence no capacity for texture

synthesis). Partitioning and boundary placements are driven by the observed spatial

statistics as summarized by selected features. Still, the labeling is not unsupervised

because in some cases we use "training samples" to select feature thresholds; see

Sections 2 and 3. We experimented with several classes of features: the well-known

ones based on co-occurrence matrices ([37]) and new ones based on "directional

residuals". The latter involve third and higher order distributions, the conjecture of

Julesz ([42]) notwithstanding. Finally, the model enjoys some invariance properties,
with respect to changes in illumination.

There are many applications for partitioning and boundary detection. Tex-

ture is a dominant feature in remotely-sensed images, and regions cannot be distin-
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U guished by methods based solely on shading, such as edge detectors or clustering

algorithms. Specifically, for example, one might wish to determine the concentra-

tion of ice in synthetic aperature radar images of the ocean, or analyze multispectral

satellite data for land use classification. Another application is to wafer inspection:

low magnification views of memory arrays appear as highly structured textures, and

other geometries have a characteristic, but random, graining. Many other examples

and analyses of texture can be found in [16],[20],[37],[45],[48],[60],[70],[71],[72].

Texture discrimination can be regarded as the detection of discontinuities in

surface composition. We also consider the problem of locating sudden changes in

depth (occluding boundaries) or shape (surface creases, etc.). The idea is to define

contours which are faithful to the 3-D scene but avoid the "non-physical" edges due

to noise, digitization, texture, lighting, etc. Obviously, there are discontinuities,
such as shadows, which are essentially impossible to distinguish from the occluding

and shape boundaries, at least without information from multiple sensors or a rich

knowledge base, in which case boundary classification becomes possible.

The complications are well-known: digital edges tend to be very "noisy", due5 in part to the digitization process itself, but also to de-focusing and random effects

in detecting the photons. The result is a variety of pathologies: "true" boundaries
suddenly disappear, spurious ones appear haphazardly, and in general the surface

transitions are highly redundant.

We formulate boundary detection as a single optimization problem, fusing the3 detection of edges with their pruning, linking, smoothing, and so-on. The subject
of edge detection is very active, and there has been considerable progress of late
in designing filters based on differential operators for "optimally" detecting var-
ious "ideal" step, crease, and other edges in noise-corrupted 1-D and 2-D signals
([11],[50],[69]). Other methods detect edges after fitting smooth surfaces to the data

([36],[341,[591), and still others ([31,[4],[13],[51],[52],[561,[681) perform surface recon-
I struction and boundary detection at the same time, and are cast in a framework

similar to the set-up in [25].

The use of boundary maps as the input to further processing is ubiquitousI in computer vision; for example, algorithms for stereopsis, optical flow, and simple
object recognition are often based on matching boundary segments. Other appli-
cations include the analysis of medical images (e.g. angiograms and ultrasound);

automated navigation [9]; and the detection of the paths of roads and geologic faults,
or the edges of lakes, flood plains, and crop fields, in remotely-sensed images.

Bayesian Framework. Most would agree that a coherent theoretical frame-
work for image analysis would support more robust and more powerful algorithms
for restoration and interpretation. In this work we continue exploring an approach

based on Bayesian image models, well-defined principles of inference, and a Monte
Carlo computation theory. Exploiting this framework, or Bayesian paradigm, weI have obtained encouraging results in several areas of application, including im-
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age restoration [25] and analysis [33], computed tomography [27], and texture and
boundary analysis [21],[24],[26],[30]. Other researchers have adopted and expanded
this (and closely related) methodologies. For example, the application in [57] to
scene segmentation based on optical flow incorporates both temporal and global
interactions and a degradation model based on sensor optics and other physical
principles. Additional examples include surface reconstruction [51],[52], scene seg-
mentation based on shading and texture [15],[17], and frame-to-frame matching for
computing optical flow and stereo disparity [44]. Similar models have appeared in
recent work on neural networks [38], speech [71, and remote sensing [46].

The approach is Bayesian because we construct prior probability models for
both observed and unobserved scene attributes. These models express the regular-
ities and preferred relations found in most real scenes, such as the unlikeliness of
"blind" endings to boundaries, or very small or thin regions, and the likeliness of
meaningful transitions at discontinuities of various spatial statistics. These regular-
ities are rarely deterministic; they are best expressed as correlations and likelihoods,
and we are led to the representation of our prior expectations by a "prior" proba-
bility distribution to capture the tendencies and constraints that characterize the,5-|
particular scene of interest. Inference can then be guided by this prior distribution
together with a model for the degradation, which determines the relation between
the image attributes and the observation, usually in the form of a conditional den-sity of the latter given the former. If these steps are well-conceived, there are severe,

but appropriate, limits imposed on the plausible restorations or interpretations.

To set the stage for the applications to partitioning and boundary finding, we
shall briefly review the formal description of this Bayesian framework, as it may be
applied to image processing, and make some specializations and extensions that will
be needed later. This will be self-contained, but we refer to [25] for more complete
discussion.

Ve will represent by x the (high dimensional) vector of relevant image at-
tributes, including, for example, the digitized pixel grey levels and the zero or
one (off or on) boundary labels. The prior distribr:tion, I, is a probability for x:
0 : I1(z) _ 1 Vx, E. II(x) = 1, where F, is summation over all configurations of
x (all assignments of grey levels and boundary placements, for example). We adopt
the Gibbs representation, which is to say that we represent II as

I( = Z = eXP-U(X)1Z

The real-valued function U is called the energy, and evidently determines 11. The
Gibbs distribution describes the equilibrium of a physical system, suitably uncon-
strained, that has energy U (after an appropriate scaling) as a function of the state,
x. The analogy suggests using U as a vehicle to construct II: design an energy U
that is "small" for those configurations that are compatible with prior beliefs, but U
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is "large" when these beliefs are violated. Then the likely states under II will be
the ones that meet with prior expectations. Building U is more natural, and can p
be much easier, then directly building II (see [2],[25],[27J,[331,[52,[58 for explicit
examples).

The object of interest is z; we define it to include the relevant attributes
for the particular image p.ocessiLg task at hand (such as the boundary labels or
the generic region labels used herein, the texture classification labels used in [30],3 isotope intensities for computed tomography [27], or the object classifications used
in [33]). There is a problem-specific degradation that precludes directly observing x.
It may be the blur and noise introduced in infrared imaging, the attenuated Radon3transform that figures into emission tomography, or simply an occlusion, as when
pixel grey levels are observed uncorrupted, but the object of interest is the boundary
placements. In the last example, the data comprises only those components of x that
correspond to pixel intensities; the actual boundary labels are of course unobserved.
We will denote the data (observations) by y. Its components are usually pixel grey
levels, but could also be, for example, range data from laser radar, or gamma
camera counts from an emission tomography machine. The details of the imaging p
mechanism define the degradation, which we formally model by speciflying the
conditional distribution of y (the observation) given x (the "true" state): II(y lx).

[ Given the prior (II(x)), the observation model (II(y lx)), and the data (y), the
posterior distribution, II(xly), is derived by Bayes' formula:

nl(Xly) = flo(yx)fl(X)

I It is useful to preserve the formal connection with statistical mechanics, and so we
write the posterior distribution in the Gibbs representation:

S f(Xly) = 1exp{-U(X)}

Of course, the posterior energy U, and the new normalizing constant, i, may both
depend on y, but this is fixed by observation.

The goal is to estimate x, which may correspond to restoring a blurred and

3 noise corrupted picture, placing boundaries, classifying textures, or perhaps label-
ing objects, depending on the task at hand. Mostly, we have worked with two
estimators, the maximum a posteriori (MAP) estimator and the posterior mean.
The MAP estimator is any mode of the posterior distribution:

x = arg max II(xIy),
XU which is the Bayes estimator corresponding to the zero-one loss function

L(x, :) = {, otherwise

* 6
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On the other hand, the posterior mean

X H=ZI(xy 10
z

minimizes the mean squared error, corresponding to the losq function L(x,.i) =

The appropriate loss function is necessarily problem-specific. For tomography 1)
[27] we mostly use the posterior mean, although simulations from the posterior
distribution are also very informative. For the boundary and generic region labels
discussed here we find MAP most appropriate.

There is skepticism about the MAP estimator: see e.g. [2],[19J,[52]. It has ID

sometimes been found to be too "global", leading to gross mislabeling in certain i!
classification problems and "over-smoothing" in surface reconstruction and image
restoration. (See [101 for a different view.) The discussion paper of Besag [2] has
shed much light on the subject; see especially the remarks of Silverman (65] on MAPLi
vs. simulations from the posterior II(xiy), and the remarkable comparisons between
the exact MAP estimate and approximations derived from simulated annealing in
the commentary of Greig, Porteous, and Seheult [321. However, pixel-based error
measures are too local for boundary analysis. In particular, the Bayes rule based
on misclassification error rate, namely the marginal (individual component) modes
of II(xjy), is unsuitable because this estimator lacks the fine structure we expect of
boundary maps; placement decisions cannot be based on the data alone - pending
labels (i.e. context) must be considered. See [52],[63], and (731 for discussions of
alternative loss functions and performance criteria.

Actually computing samples, means, and modes is usually impossible, at least
with today's hardware. For approximations, we use a variation of the Metropolis S
algorithm [53] that we call stochastic relaxation (SR). This is a highly parallel
Monte Carlo algoritim that loosely simulates the approach to equilibrium of an
imagined system with energy U. Later, we will have more to say about SR and
certain extensions, and a full account can be found in (23] and (251. For now, suffice
it to say that, asymptotically at least, SR can be used to sample from the posterior,

or to compute its mean and mode.

We have found it convenient, especially when working with boundaries and

partitionings, to extend this framework by allowing "infinite energies" (zero prob-i
abilites) in the prior distribution. (See Moussouris [55] for an analysis of Gibbs
measures with "forbidden" states.) Rather than inhibiting, by high energy, "blind"

boundary endings and redundant boundary representations, or a partitioning into

excessively small or thin regions, we simply disallow, or forbid, these configurations.

Later, we will define a function V(x) that essentially counts the number of subcon-

figurations among the labels that are forbidden. More generally, we let V(x) be
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nonnegative and consider the Gibbs prior on the (allowed) set {x : V(x) = 0):

I 1(X) (= {vo(X)eXP{-U(X)1, Z = Zbw=o(X)eXr{-U(X)}
Zz

Whatever the degradation model, the posterior distribution will be similarly re-
stricted, and nf the fo m

I I1(XlY)_ :bfVoj(X)eXP{-U(X)}, i = E bvo (x)exp{-f )
z

Z
I

The constraint, V(x) = 0, amounts to a placement of infinite energy barriers
in the "energy landscape". These inhibit the free flow that is essential to the good
performance of SR; indeed, the theory will in general break down, and convergence
is no longer guaranteed. A simple and effective solution is to introduce these barriers
gradually during the relaxation process. This will be made precise in §4, with the
supporting convergence theory, which is quite straightforward, layed out in [23].

We now specialize to the partitioning and boundary placement applications, in
which the relevant attributes are pixel grey levels and labels, the latter either repre-
senting boundary elements or regions. To make this explicit we write x = (xL, zP),
where xL is the vector of boundary or region labels, and x P is the vector of pixel
grey levels.. Two rather different kinds of considerations will go into constructing the
prior. These will be discussed in detail shortly, but the upshot is that we separate
the prior energy into a pixel-label interaction term and a pure label contribution.IThe former, U(xL, XP), promotes placements of boundaries, or assignments of dis-
tinct labels, between regions in the image that demonstrate distinct spatial patterns.
The pure label contribution is to inhibit "blind" endings of boundaries, redundantNboundary representations, small regions, and other unexpected label configurations.
As discussed previously, the simplest way to avoid these unwanted configurations is
to forbid them by introducing V = V(xZ) and concentrating on {x : V(x ' ) =
The prior, then, is of the form

NI =
Z

As for the degradation, in this paper we shall concentrate on the common
situation in which our observations of the pixel grey levels are essentially uncor-
rupted: y - x P . There is no significant blur or noise, and hence no need for grey
level restoration. Our only interest is in estimating the unobserved label process
XL. II(ylx) is singular, and the posterior reduces to

I ,XP)6[V=ol(XL)eXP{_U(XLXP)},
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=j 6{zP=y}(XP)6{V=o}(XL)exp{...U(xL,XP)l

Since xz - y is fixed by observation, we equivalently treat

rj(__L ly) Z 168V=Ol (_L)e__pIU(XL, Y,)},

S= bV=O)(XL)eXp{U(XL, y)}

derived from the prior

ll(xL,y) = 16{V=o)(XL)exP{-U(L, y)},

zL'

The superscript L is now superfluous, and we will henceforth simply use z when
referring to the label process.

Label Model: General Form. Let x = {x 1 ,s E S1 and y = {yij, I < i,j <
N} denote, respectively, the labels and the data; thus x, is the label at "site" s E Sand and yii is the grey-level at pixel (i, j). The set S of label sites is a regular b
lattice, distinct from that of the pixels, and typically more sparse; the coarseness
depends on the label resolution a. For partitioning, we associate each site s E S with
a block of pixels, "sitting below it," if we were to stack the label lattice on top of bthe pixel lattice. In the boundary model, pairs of nearby sites in S define boundary
segments, and these are associated with pairs of pixel blocks, sitting "across from
each other," with respect to the segments (see Figure 6). Later, we will define a
neighborhood system for S such that the bonding is nearest'neighbor (relative to a)
in the boundary model, whereas in the region model there are interactions at all
scales. This has important consequences for the distribution of local minima in the"energy landscape"; see §2. Other energy functionals with global interactions canbe found in [271,[311, and [57].

The "interaction" between x and y is defined in terms of an energy function

U(X, Y) =>:'',()I~~

The summation extends over all "neighboring pairs" (or "bonds") < S. >.
4).,t(y) is a measure of the disparity between the two blocks of pixel data zsoc:ac1with the label sites s, t E S. PI,,t(x) depends only on the labels x, and : . I- "act,we simply take 'P,,t(x) = 1 - xxt in the boundary model and i'n,i) = l. ,
the partition model. In this way, in the "low energy states", large disparities (,D > 0)
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will typically be coupled with an active boundary (X, = Xt = 1) or dissimilar region
labels (z. 0 xt) and small disparities (4p < 0) will be coupled with an inactive3 boundary (z, = 0 or Z, = 0) or equal region labels (x, = xt).

The interaction between the labels and the data is based on various dispar-
ity measures for comparing two (possibly distant) blocks of image data. These
measures derive from the raw data as well as from various transformations. We
experiment with several transformations y -- y' for texture analysis, for example3 transformations of the form

(1.1) y = lt- 1:ayjI

where E ci = 1 and {t~i} are pixels nearby to pixel t and in the same row, column,
or diagonal. We call these "directional residuals", regarding 'aiyt, as a "predic-Itor" of Yr. We have also experimented with a variety of transforms suggested in
[37]. Disparity is measured by the Kolmogorov-Smirnov statistic (or distance), a
common tool in nonparametric statistics which has desirable invariance properties.
(In particular, using the directional residuals, the disparity measure is invariant to
linear distortions (yij .-- ayij + b) of the raw data, and using the raw data itself for
comparisons, the disparity measure is invariant to all monotone (data) transforma-
tions.) The general form of the term is then

is) eet(y) n(amax f f t is t he
= PrY (s), 1()0))

where 0 is monotone increasing, p denotes a distance based on the Kolmogorov-

Smirnov statistic (see §2), and y(a), Y) are the data in the two blocks azsociated
with < s, t > for the ith transform. Often, we simply take m = 1 and y(l) =.

Apparently some of these ideas have been kicking around for a while. For
example, the Kolmogorov-Smirnov statistic is recommended in [64], and reference
is made to still earlier papers; more recently, see [72]. Moreover, the distributional
properties of residuals (from surface-fitting) are advocated in [34],[611 for detecting
discontinuities. It is certainly our contention that the statistical warehouse is full
of useful tools for computer vision.

1The other component in the model is a penalty function V(x) which counts
the number of "taboo patterns" in x; states x for which V(x) > 0 are "forbidden".
For example, boundary maps are penalized for dead-ends, "clutter", density, etc.
whereas partitions are penalized for too many transitions or regions which are "too
small".

3 Given the observed image y, the MAP estimate i = i(y) is then any solution
to the constrained optimization problem

1 (1.2) minimrizex:v(. )=0U(x, y)
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We seek to minimize the energy of the data-label interaction over all possible non-
forbidden label states x.

The rationale for constrained optimization is that our expectations about cer- m
tain types of labels are quite precise and rigid. For example, most "physical bound-
aries" are smooth, persistent, and well-localized; consequently it is reasonable to
impose these assumptions on image boundaries, and corresponding restrictions on
partition gecmctries. Ccntrast this with other inference problems, for example
restoring an image degraded by blur and noise. Aside from constraints derived
from scene-specific knowledge, the only reasonable generic constraints might be
"piecewise continuity", and generally the degree of ambiguity favors more flexible
constraints, such as those in U, or in the energy functions used in [251 and [27]. 1

As mentioned earlier, the search for i is by a version of stochastic relaxation
which incorporates rigid constraints. The theoretical foundations are laid out in
[23], although there is enough information provided here to keep this paper self- I
contained; see §4. Basically, we simulate annealing ([12], [47]) by introducing a
control parameter t corresponding to "temperature", and another control param-
eter A, corresponding to a Lagrange multiplier for the constraint V = 0. More U
specifically, let

U() = tk1 [U(x, y) + AkV(x)I

where y (the data) is fixed, tk 0 0, and Ak / oo. The algorithm generates a
sequence of states :ik, k = 1, 2,..., by Monte Carlo sampling from the local condi-
tional distributions of the Gibbs measures with energy functions Uk. Under suitable
conditions (see §4), the sequence iL. "converges" to a solution of (1.2).

The algorithm is computationally demanding but has the same potential for b
parallel implementation as standard st,chastic lelaxation. The experiments here
were performed on serial machines but required considerably less processing time
than those in [25], for example, due to lower resolution labels, departures from
the "correct" annealing schedules, and deterministic approximations akin to those
in [2], [18], and [27]. A "fast annealing" algorithm is reported in [67]. In any
event, too much fuss over CPU times may be ill-advised. Software engineers know i
that it is often possible to achieve order-of-magnitude speed-ups by some modest
reworkings and compromises when dedicating a general purpose algorithm to a
specific task, and this has certainly been our experience. Besides, advances in h
hardware are systematically underestimated. It is reported in [58] that experiments
in [25] requiring several hours of VAX 11/780 time were reproduced in less than h
one minute on the ICL DAP, and the authors speculate about real-time stochastic
relaxation.

There are no multiplicative parameters in the model, such as the "smoothing"
or "weighting" parameters in [3],[21],[24],[25], and [27]; in effect, the energy is U +
AV with A = 00. Thresholds must be selected for .he disparity measures, but
much of this can be data-driven (see §5), and fortunately the performance is not
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unduly sensitive to these choices within some range. Other inputs include the
label resolution, block sizes, and penalty patterns. The model is robust against
these choices as well, so long as modest information about the pixel resolution is
available.

There are close ties with "regularization theory" for "computational vision"
([52],[62]) and even closer ones with "variational" approaches, such as those of
Mumford and Shah [561, Blake [31, Blake and Zisserman [41, and Terzopoulos [681,
which incorporate discontinuity constraints and penalties. Perhaps the main dif-
ference is the separation of the energy components into terms corresponding to the
prior and degradation models; in particular, we regard the energy function as the
(negative) log-likelihood of the posterior distribution and our optimization proce-
dures are strongly motivated by this viewpoint. Stochastic relaxation permits us
to analyze the posterior distribution, revealing its likely and unlikely states. For
instance, the posterior mean, E(x[y), is not a property of the energy per se, but
is an excellent estimate in some cases ([27]). And, identifying the "regularization
term" as the (negative) log-likelihood of the prior provides a statistical framework
for estimating the regularization parameter ([27]), as well as other parameters in
the model ([26),[22],[74)).

Sources of Information. All information bearing on the labeling is encodedU in the posterior distribution, or, equivalently, in the (posterior) energy function
and constraints. There is no pre- or post-processing. The final estimate i = i(y)j is totally a function of the model and the data. In particular, if the energy does
not account for any global image attributes, e.g. templates or semantical variables,
then there is no "top-down" or "goal-directed" component to the search process.
Such is the case in this work; we are currently investigating the capacity of this
methodology for integrating "high-level" information.

On the other hand, Markov random field (equivalently, Gibbs) priors have
proven well-suited to cooperative processing. For example, several tasks can be
effectively linked, such as simultaneous surface interpolation and boundary-finding
[511,[52], or simultaneous filtering and deconvolution [25]. (See also [57].) More
to the point, a single, complex task may involve a number of sub-procedures. For
example, boundary detection involves seeding, organization, and smoothing. These 0
sub- procedures are usually performed sequentially; here they are fully coupled.

As we have already mentioned, we consider only one data source, a single
frame of visible light or L-band synthetic aperature radar. It would be desirable
to incorporate data from motion, multiple views, or multiple sensors, and we are
currently studying an expanded version of these models utilizing both optical and
range data for boundary classification and other applications. See §6 for additional
remarks about generalizations of the model and 1541 for a thoughtful discussion
about multivariate data.
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2. PARTITION MODEL kb4
Partitionings. Denote the pixel (image) lattice {(i,j): 1 < i,j _ N} by Sr k j

and let SL (formally S in §1) be the label lattice, just a copy of Sl in the case of the
partition model. For each experiment, a resolution a is chosen, which determines I
a sub-lattice S(' ) C S, and the coarseness of the partitioning. Larger a's will k
correspond to coarser partitionings and give more relidble results (see §5), but they
lose boundary detail. Specifically, let

S(,7) = {(ia + 1,ju + 1): 0< i, <_ N

Recall that the observation process, or data, consists of grey levels y,, s E Sr. With
the usual grey-level discretization, the state, or configuration, space for the data is

= {{y,} : s E Sr,o < y, < 255}

The configuration space for the partitioning, x, is determined by a, and by a max- I
imum number of allowed -.gions, P:

J-uP)-{x3} : s E S'a,0 < x,, < P-l11.

Recall that the labels are generic: x defines a partitioning by identifying sites with
a given label (0,1,...,P - 1) as belonging to the same region. Only the sub-lattice
S') is labelled, and a maximum number of labels (regions) is fixed a priori. A

prior estimate of the number of distinct (but not necessarily connected) regions
must be available, since the model often subdivides homogeneous regions when P I
is too large (see §5). The boundary model (§3) is more robust in this regard.

Each label site s E SL is associated with a square block D, C SI of pixel
sites centered at s. (Recall that SL is just a copy of Sr; we sometimes use "s"
ambiguously to reference a site in SL and the corresponding site in Sr.) x, labels
the pixels in D, : {{yr} : r E D,}. As we will see shortly, the partitioning is based on
the spatial statistics of these (overlapping) sub-images. The size of D, is.therefore
important. We have experimented only with textures (the boundary model has been
applied more generally), and it is obvious that for these the pixel blocks {Ds}sEsC)-
must be large enough to capture the characteristic pattern of the texture, at least in
comparison to the other textures present. Of course, "large enough" is with respect
to the features used, but in the absence of a multiscale analysis, an a priori choice
of scale is unavoidable. In all of our experiments, ID,1 = 441, a 21 x 21 square block
of pixels. There is again a resolution issue: larger blocks characterize the textures
more reliably, having less within-region variation, but boundary detail is sacrificed.

Label-Data Interaction. We establish a neighborhood system on the label
lattice S('): each s E S(') is associated with a set of neighbors N, C S ). The I
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system is symmetric, meaning that s E Nr 4* r E N. As we shall see, the neighbor-
hood system largely determines the computational burden. For now we will proceed

II as though the neighborhood system is given, but we will have much more to say
about it shortly.

Let < s,t >, denote a neighbor pair, meaning s,t E S('), s E Nj. We
will introduce a disparity measure "[,,t = 'st(y) for each neighbcr pair < s, t >,.
Roughly speaking, -, measures the similarity between the pixel grey levels in the

Stwo pixel blocks associated with s, t E S( ). For the partition model, D,,t is simply
-1 ("similar") or +1 ("dissimilar"); it is more complicated for the boundary model.
The interaction energy is then

3 U(X,y) => {.=z,)

In the low energy states, similar (resp. dissimilar) pairs, " -1 (resp. .1 ,,t =
+1), are associated with identical (resp. distinct) labels: x. = xt (resp. x, 5 zt).
Although U(x, y) is conceived of as the interaction term in a prior distribution that
is jointly on x and y, only the posterior distribution is actually used, and y is fixed
by observation. It would be interesting, and perhaps instructive (see [43]), to sample3from the joint distribution, but computationally very expensive.

Neighborhood System. A simple example will serve to highlight the issues.
Suppose y has R constant grey-level (untextured) regions (ys E {0, 1, ...R - 11, s E

Sr), and a = 1 (full resolution). Of course, in this case y is a labelling, so there is no
point in bringing in the partition process x; but this is just an illustrative example.
The obvious disparity measure is simply 4,,j = -1 if y, = yi, and +1 otherwise:

(2.1) U(X, y) =S 6 {Z.=X,) (6 1Y. 7YS} - 6Y=,3I <S,t>i

Entertain, for the time being, a nearest neighbor system on SL, which is the natural
choice. To be concrete, take N, to be the four (two horizontal and two vertical)
nearest neighbors of s. There are three essential difficulties with this choice of
neighborhood system. Two can be readily appreciated:

3 * (See Figure 1.) If R =2 and P =3, and if region "0" (i.e. {s E S: y, = 0})
is split into two disjoint pieces by region "1" (i.e. {s E Si : y., = 1}), then
(2.1) has two kinds of global minima: correct labellings, in which there are two
populations of labels corresponding to the two grey-level regions; and spurious
labellings, in which the three regions (two of type "0" and one of type "1") are

* given three distinct labels.

* (See Figure 2.) If R = 3, and region "0" does not neighbor region "T', then
there are again two kinds of global minima: correct labellings h'ave three labels;
spurious labellings have only two, incorrectly identifying regions "0" and "2".
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01 10 0 00 12 21 1 11 21 10 00 0
0 1 0 0 00 1 2 2 1 1 1 1 2 1 1 0 0 0 0
1110000 2221111 1110000

Left: original "image" and a correct labelling

Middle: a correct labelling

Right: spurious labelling

FIGURE 1

0001122 1112200 0001100 
0001122 1112200 0001100 
0 0 1 1 1 2 2 1 1 2 2 2 0 0 0 0 1 1 1 0 0
0011222 1122000 0011000 
0112222 1220000 0110000
0112222 1220000 0110000
11 12 2 22 22 2 00 00 11 10 00 0

Left: original "image" and a correct labelling

Middle: a correct labelling

Right: spurious labelling F R
FIGURE 2

Quite obviously, the model requires more global interactions. In particular, tk
just a few long range interactions would disambiguate the correct from the spurious
labellings. Only a correct labelling would achieve the global minimum of U in these
two examples.

The third difficulty with local neighborhoods is computational, and is already
apparent when R = 1 and P = 2. This time there are only two global minima,
and each is a desirable labelling ({x, = 0 Vs E SL} or {z, = 1 Vs E SL}). But,
with N = 512, for example, consider the label configuration in which xi, = 0
whenever 1 < i < 256 and xi, = 1 whenever 257 < i < 512, a half "black" and

half "white" picture. This is a local minimum, and rather severe in that it would
take very many "uphill" or "flat" moves (single site changes) to arrive at either
of the global minima. SR is a local relaxation algorithm, and despite the various
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convergence theorems, the practical fact of the matter is that "wide" local minima
such as these are impossible to cope with. (But, there are some encouraging results
in the direction of multiscale relaxation, see [29],[6],[66].) Many readers will be
reminded of the Ising model, in the absence of an external field, and the notorious
difficulty of finding its (two) global minima by Monte Carlo relaxation. In fact,
the R = 1, P = 2 energy landscape is identical to that of the Ising model, as is
readily demonstrated by a suitable transformation of the label variables. (Indeed,
the same goes for the R = 2, P = 2 case, although this is less obvious. A suitable
transformation identifies the two Ising minima with the two acceptable labellings:
x. = 0 4* y, = 0 and x, = 1 4 y, = 0.)

These local minima can be mostly eliminated by introducing long range inter-

1$actions in the label lattice the same remedy as for the label ambiguities. We
will provide a heuristic argument for the important role of long range interactions
in creating a favorable energy landscape. In any case, simulations firmly establish
their utility. First recall that the distance between two sites in a graph is the small-
est number of edges that must be crossed in travelling from one site to the other.
Notice that in the four nearest neighbor graph (two dimensional lattice) the average
distance between sites is large. Correct partitioning requires all pairs of label sites
to resolve their relationships ("same" or "different"), as dictated by the statistics
of their associated pixel blocks. Of course most pairs are not neighbors. With a
local relaxation, such as SR, the resolution is achieved by propagating relationships
through intervening sites. Thus the task is facilitated by minimizing the number
of intervening sites, and a relatively small number of long range connections can
drastically reduce the typical number of these.

The largest distance over all pairs of sites is the diameter of a graph. In
an appropriate limiting (large graph) sense, random graphs have minimum diam-
eter among all graphs of fixed degree 1. In light of our heuristics, this suggests

. a random neighborhood system for S Indeed, random neighborhoods have a
remarkable effect on the structure of local minima for these systems. In a series
of experiments, with "perfect" disparity data (such as the a = 1 grey-level prob-
lems discussed above) we could always achieve the global minimum by single-site
iterative improvement when adopting a random graph neighborhood configuration,
using rather modest degrees for large graphs. We conjecture, but have been unable
to prove, that even with the degree a vanishingly small fraction of the graph size,
random graphs (in the "large graph limit") have no local minima, under the Ising
potential or the potential U(x, y) with perfect disparity data (2.1).

Of course the disparity data is not usually perfect. In challenging texture
discrimination tasks there will be pixel blocks from the same texture that are mea-
sured as dissimilar (4, 1) and others from distinct textures that are measured as

A graph has fixed degree if each site has the same number of neighbors. The

degree is then the number of neighbors per site.
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similar (%,,t = -1). Under these circumstances it helps to also have near neighbor
interactions, since these tend to bond neighboring label sites and thereby increase
the effective number of long range interactions per site. Although near neighbors
were not always needed to get the best results, we settled on using four near neigh-
bors, and sixteen random neighbors per site, in each of our experiments (see §5).
By "near neighbors" we mean the closest two horizontal and two vertical neighbors h
whose associated pixel blocks do not overlap. For example, with o = 7, and using

21 x 21 blocks, the near neighbors have two intervening sites in S( ' ) . Details on
the generation of the (pseudo) random neighbors can be found in [30]. Overall,
perhaps the most effective neighborhood system would have a gradual fall-off of
interaction densities with distance, a system with an equal number of neighbors at
each Manhattan distance, for example.

Kolmogorov-Smirnov Statistic. At the heart of the partitioning and
boundary algorithms is a disparity measure -%,t. Recall that if s, t are neighbors in

S( ") (< s, t >,,) then (,,t is a measure of disparity between two corresponding blocks
of pixel data, {{y,-} : r E D,} and {{y,} : r E Dt} in the case of the partition model.We base 4%,t on the KoLmogorov-Srirnov distance, a measure of separation betweenI

two probability distributions, well-known in statistics. When applied to the sample

distributions (i.e. histograms) for two sets of data, say v() v, vO),.. , vM

d v,(, ,v,,2} it provides a test statistics for the hypothesis that
v( 1) and V(2 ) are samples from the same underlying probability distribution, mean-

ing that F1 = F2 where, for i = 1,2, v() = {Vt4V0i), ,... ,vi?} are independent and

identically distributed with Fi(t) = P(v i)  t). The test is designed for continuous
distributions and has a powerful invariance property which will be discussed below.

The sample distribution function of a data set {v 1 , v2 ,... , v,} is
1/1~t = Jk _< t), -oo < t < +oo
nI

Thus, P is a step function, with jumps occurring at the points {vk}. It characterizes
the histogram. Now consider two sets of data v0 ) , V( 2) with sample distribution
functions F1 , P2 . The Kolmogorov-Smirnov distance (or statistic) is the maximum
(vertical) distance between the graphs of F1, F2 , i.e.

(2.2) d(v(1), v(2)) = max 1FP(t) - F2 (t)

We write d(v( 1 ), v(2 )) to emphasize the data (which in our case consists of blocks of
possibly transformed pixel intensity values); the conventional notation is d(fi', F2).

The invariance property is the following. Suppose v(1), V( 2) are samples from
continuous distributions F1 , F2 . Then under the ("homogeneity") hyprothesis F, =
F2 , the probability distribution of d (as a random variable) is independent of the
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I (common) underlying distribution. Basically, this stems from the fact that d is

invariant to strictly monotone transformations of the data, i.e.
Sd(v(1), V(2)) = d(q(1), q (2))

3 where W = TM' ) ) and r is strictly increasing or decreasing. Thus, in two sample
tests for homogeneity, one rejects the null hypothesis that F = F 2 if d(v( 1), v(2 )) _
dw, where d* depends only on n1 and n 2, and on the significance level of the test.

For our purposes, the data v(1) and v(2) consist of either the (raw) grey levels,
or (in most cases of texture discrimination) transformations of these, restricted to
blocks of pixels; these blocks are adjacent in the boundary model, but may be well
separated in the partition model (recall that we employ a largely random topology).
In either case, the assumptions made in statistical testing are generally viL,.ated: it3 may be unreasonable to assume that the grey levels in a block of pixels represent
independent and identically distributed observations from some underlying proba-
bility distribution (although this is occasionally done). Of course, the size of the3blocks relative to the image structures is very important. The blocks may contain
hundreds of pxiels, but i1 they are still small relative to the image structures, then
the formal assumption will be more nearly satisfied. At any rate, the formal theory

Sis primarily motivational. The distance (2.2) is an effective "measure of homogene-
ity" which is invariant to pointwise (monotone) data transformations induced by
lighting and other factors.

Disparity Measures. Sometimes, just grey level histograms are enough for
good partitionings, as with the SAR image of water and ice (see §5). In these3 cases, disparity is measured as follows. Recall that D,, s E S(O' ) , is a square block
of pixel sites (always 21 x 21 in the partitioning experiments) centered at s. Let
y(D,) = {y, : r E D,}. Given (possibly distant) neighbors s,t E S( ' ) , we define
m-,t using the Kolmogorov-Smirnov statistic and a threshold c:

.(st= 2 8{d(y(D.),y,(D.))>c})(Y) - 1

In other words, i,,t is 1 or -1 depending on whether the Kolmogorov-Smirnov
statistic is above threshold or not.

Of course, many distinct textures have nearly identical histograms (see [261 for
some experiments with partitioning and classification of such textures, also in the3 Bayesian framework). In these cases, discrimination will rely on features, or trans-
formations, that go beyond raw grey levels, involving various spatial statistics. We
use several of these at once, defining -%,t to be 1 if the Kolmogorov-Smirnov statis-3 tic associated with any of these transformations exceeds a transformation-specific
threshold, and -1 otherwise. The philosophy is simple: If enough transformations
are employed, then two distinct textures will differ significantly in at lcast one of3 the aspects represented by the transformations. Unfortunately, the implementation 3
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of this idea is complicated; more transformations mean more thresholds to adjust, I
and more possibilities for "false alarms" based on "normal" variations within ho- l

mogeneous regions. I
Proceeding more formally, let A denote one such data transformation and

put' = A(y), the transformed image. In general, y is a function of both yt and I
the grey-levels in a window centered at t E S1 . For example, y' might be the
mean, range, or variance of y in a neighborhood of t, or a measure of the local
"energy" or "entropy". Or, y' might be a directional residual defined in (1.1); l
isotropic residuals, in which the pixels {ti} surround t, are also effective. Notice
that any A given by (1.1) is linear in the sense that if y, - ay, + b, Vs E Sr then
y' --+ Ialy', Vs E Sr, and recall that the Kolmogorov-Smirnov statistic is invariant U
with respect to such changes. This invariance is shared by other features, such as
the mean, variance, and range. It should also be noted that these transforms are
decidedly multivariate, depending (statistically) on the marginal distributions of the [
data of at least dimension three. Many approaches to texture analysis are based
solely on the one- or two-dimensional marginals, i.e. the grey-level histogram and
co-occurrence matrices. We were not able to reliably detect some of the boundaries I
between the Brodatz microtextures with these standard features. Perhaps the jury
is still out. k

Given a family of transformations, A,, A2,... A,, we define

(2.3) , ta = ma [2b{d(y0(.,((,)c ) -Y(0

where y() = A<(y), 1 < i < m and y()(Dr) = y( , S E D,}, r s, t. The h
thresholds cl,., c, are chosen to limit the percentage of "false alarms" (cases of
exceeding threshold for pairs of blocks within the same texture); see §5.

The disparity measure (2.3) inherits the aforementioned invariance to linear
shifts for many transforms, including all "differences of averages". More impor-
tantly, perhaps, imagine we are comparing two pairs of image blocks, each pair

in a different region of the image. Then, roughly speaking, the two distances are
automatically calibrated, regardless of the differing statistical properties of the two

regions; i.e. the disparit measure has the same interpretation anywhere in theim__ IPenalties. Recall that V(x) counts the total number of "penalties" associated O

with x E !n(4 7 P) . There are two kinds of "forbidden" configurations that give rise to

penalties: roughly, these correspond to very small regions and very narrow regoL5.

coniguration x is "small at s E S(')" if fewer than nine labels in {ft : t E E.}

agree with x,. Notice that a right corner at s is allowed; there are exactly nine
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agreements. The total number of penalties for "small regions" is

(2.4) ~"E (~. 8 )~

'ES(' 1L

Obviously, the numbers "5" and "9", as well as other penalty parameters below,
are quite arbitrary, and could reasonably be scale-dependent.

As for "thin regions", these are regions that have a horizontal or vertical "neck"
that is only one label-site wide (at resolution a). Let 'rh be a one-site horizontal
translation within S(), and let r,, be the analogous vertical translation. Penalties
arise when either {x,-,, 0 xs and x, $ XS+,h} or {Xs-r, 5 x, and x. 5 .,+r.
The number of "thin-region" penalties is therefore

S-. q
and V(x) is just the sum of (2.4) and (2.5).

Summary. We are given S

(i) a grey-level image y =yi};

(ii) a resolution a = i, 2,..., and a maximum number of labels, P;

(iii) a disparity measure (%st(y) for each pair < s,t >, in the sub-lattice S(7); SL ,

(iv) a collection of penalty patterns.

The (MAP) partitioning & = i(y) is then any solution x E SY"p) of the constrained
optimization

_' minimize:..V(Z)=0 6{=,=Z,} ,,ty ) __

where V(x) is the number of penalties in x.
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3. BOUNDARY MODEL

Boundary Maps. The pixel lattice is again Si. Let SB denote another
regular lattice interspersed among the pixels (see Figure 3) and of dimension (N -
1) x (N- 1); these are the "boundary sites". We will associate s = (i,j) E SB with
the pixel (i, j) E S1 to the upper left of s.

0 0 0
+ +

o 0 0
+ +

o 0 0
N=3

Pixel sites (o) and boundary sites (+)

FIGURE 3

Given y, a grey-level image, we wish to assign values to the boundary variables
x = {x,, s E SB}, where x, = 1 (resp. 0) indicates the presence (resp. absence)
of a boundary at site s E SB. We have already discussed the corresponding in-
terpretation of the boundary map x = x(y) in terms of physical discontinuities in
the underlying three-dimensional scene. We establish a boundary resolution or grid
size a > 1, analogous to the resolution used earlier for the partition model. Let

S ( ) C SB denote the sub-lattice {(ia + 1,ja + 1): 1 < ij < (N- 2)/a}. Only the
variables x,, s E S(', interact directly with the data; the remaining variables x,,

S s SB \ S('), are determined by those on the "grid" S( ' ) . Figure 4 shows the grids
S(') and S(') for N=8; the sites off the grid are denoted by dots. The selection of

a influences the interpretation of x, the computational load, the interaction range
at the pixel level, and is related to the role played by the size of the spatial filter

in edge detection methods based on differential operators. Finally, let flr and Q('B)

denote the state spaces of intensity arrays and boundary maps respectively; that is,

2j{y.:S E Sr, 0 <Y, :255), f2aBsES(',x

Sometimes, we simply write f2B for Q().

Boundary-Data Interaction. Let < s,t >,, s,t E S(a) denote a nearest-
neighbor pair relative to the grid. Thus, s = (ia + 1,ja + 1), t = (ka + 1, la + 1)
is such a (horizontal or vertical) pair if either i = k and j = 1 1, or j = I and
i = k ± 1. We identify < s, t >, with the elementary boundary segment consisting
of the horizontal or vertical string of a + 1 sites (in SB) including s, t and the a - 1
sites "in between".
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S+ + -+ -+ + + +

. . + . + . + + . . . . . +

+ + + +
+ -- + - +

+ + + +

+ + + + + + +

B B3Boundary grid at resolutions a = 2 and a = 3
FIGURE 4

The disparity measure should gauge the intensity "flux", A ,t z ,o)(y) > 0,
across < s, t >,,, i.e. orthogonal to the associated segment. We will experiment
with several types of measures. An obvious choice at high resolution (o = 1) is
At = ly9. -yt. where s*, t" E S1 are the two pixels associated with < s, t >1; see
Figure 5.

+ + 0 0
0 +

Pixel pairs (o's) associated with horizontal
and vertical boundary segments

* FIGURE 5

The analogous choice at a lower resolution (a > 1). might be a measure of the form
A,,t = m-'1 E r,- Y9 -- yt 1, where D,., Di. C Sr are adjacent blocks of pixels,
of the same size (m) and shape, and "separated" by < s, t >,. These and other
measures are discussed later on.

3 The energy function U(x, y) should promote boundary maps x which are faith-
ful to the data y in the sense that "large" values of A3 ,(y) are associated with "on"
segments (Xsxt = 1) and "small" values with "off" segments (Zxt = 0). There are

* no a priori constraints on x at this point; in fact, because of digitization effects,
textures, and so-on, the energy U will typically favor maps x with undesirable dead-
ends, multiple representations, high curvature, etc. These will be penalized later
on. A simple choice for the x/y interaction is

(3.1) U(X, y) = x (1 -(a-tXy))

where the summation extends over all nearest-neighbor pairs < s, t >,; the "weight-3 ing function" O(x), x > 0, and "normalizing constant" a will be described presently.

The energy in (3.1), which is similar to a "spin-glass" in statistical mechanics,3I is a variation of the ones we used in our previous work ([24],[25]); w,,hen a = 1, the
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variable xxt corresponds directly to the "edge" or "line" variables in [25] and [57].
Since y is given, the term 1 - x,xt can be replaced by -xxt with no change in
the resulting boundary interpretation. By contrast, in [25] we were concerned with
image restoration and regarded both x and y as unobservable; the data then consists, I
of some transformation of y, involving for example blur and noise. In that case, or
in conceiving U as defining a prior distribution over both y and x, the bond between
the associated pixels should be broken when the edge is active, i.e. 1-xxt = 0. The
term 1 - xZxt is exactly analogous to the "controlled-continuity functions" in [68].
See also [43] for experiments involving simulations from a related Markov random
field model; the resulting "fantasies" (y, x) are generated by stochastic relaxation
and yield insight into the nature of these layered Markov models. I

Returning to (3.1), a little reflection shows that 0 should be increasing, with
0(0) < 0 < 0(+oo); otherwise, if 0 were never negative, the energy would always
be minimized with x, - 1. The intercept 3 - 0- 1 (0) is critical; values of A
above (resp. below) the threshold d* - a3 will promote (resp. inhibit) boundary I
formation. The influence of the threshold is reduced by choosing 0'(3) = 0. We
employ the simple quadratic

(3.2) O(X) {( .2 x/

Notice that the maximum "penalty" (0(0) = -1) and "reward" (0(1) = 1) are
balanced if we select a w. max A,.t.

Disparity Measures. We employ one type of measure for depth and shape
boundaries and =,other for the texture experiments. In the former case, the dispar-
ity measure involves the (raw) grey-levels only, whereas for texture discrimination
-ve also consider data transforms based on the directional residuals (1.1). Except
when a = 1, the data sets are compared by the Kolmogorov-Smirnov distance.

At the highest resolution (a = 1), the measure ly,. - yj. I (where s*, t* are the
two pixels associated with the boundary sites s, t - see Figure 5) can be effective for
simple scenes but necessitates a single differential threshold d* = aO3. Differences
above d* (resp. below d*) promote (resp. inhibit) boundary formation. Typically,
however, this measure will fluctuate considerably over the image, complicating the
selection of d ° . (Such is the case, e.g. for the "cart" scene, see §5.) Moreover,
this measure lacks any invariance properties, as will be explained below. A more
effective measure is one of the form

(3.3) A3,.(y) = t -

+ EIy - YtI I
where the sum extends over parallel edges < s,, ti > in the immediate vicinity of
< s, t >. Thus the difference [y,. - yt. I is "modulated" by adjacent, competing dif-
ferences. The result is a spatially-varying threshold and the distribution of As,t(y) I
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0 0 0 0 0 0 0 0 0 0

+(s)
o 0 0 0 0 0 0 0 0 0

D.- o o o o o o o o o Dt-

+(t)
O 0 0 0 0 0 0 0 0 0

Pixel blocks, D,. and D.,
associated with boundary segment < s, t >3

FIGURE 6

across the image is less variable than that of ly,. - yt- Choosing -Y = const. x A,
where A is the mean (raw) absolute intensity difference over all (vertical and hori-
zontal) bonds, renders A.,t(y) invariant to linear transformations of the data; that
is, A.,t(y) = Ag(ay + b) for any a, b.

At lower resolution, let D,. and Dt. denote two adjacent blocks of pixels, of
equal size and shape. An example is illustrated in Figure 6 for the case of two
square blocks of size 52 = 25 pixels which straddle a vertical boundary segment
with a = 3. Let y(D,) = {y,, s E D, }, r = s*, t*, be the corresponding grey-levels
and set

(3.4) A3 ,t(y) = d(y(D,. ), y(D.)),

where d is the Kolmogorov-Smirnov distance discussed in §2. This is the disparity
measure used for the House and Ice Floe scenes (see §5).

One difficulty with (3.4) is that the distance between two non-overlapping
histograms is the maximum value, namely 1, regardless of the amount of separation.
Thus, two constant regions differing by a single grey level are as "far apart" as two
differing by 255 levels. Thus, it is occassionally necessary to "de-sensitize" (3.4),
for example by "smearing" the data or perhaps adding some noise to it; see §5.

Raw grey-level data is generally not satisfactory for discriminating textures.
Instead, as discussed in §2, we base the disparity measure on several data transfor-
mations, involving higher order spatial statistics, such as the directional residuals
defined in (1.1). Given a family A1,A 2 ,...,A,, of these transforms (see §2), a

resolution a, and blocks D,., D,. as above, define 'w

(3.5) A,t(y) =max [C7'd(y(')(D 5 .), y()(Dt)1J
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where y(') = Ai(y), 1 < i < m, and y(')(D7 ) = {y.), s E Dr}, exactly as in §2. Then
A,9(y) > d (and, hence, 0(a - A,t(y)) > 0) if and only if d(y(i)(D 8.),y0')(Dt.)) _
d'ci for some transform i. The thresholds cl, ... , cm are again chosen to limit "false

alarms". Finally, we note that (3.5) has the same desirable invariance properties as
the measure constructed for partitioning (§2).

Penalties. V(x) again denotes the total number of "penalties" associated

with x E fl('). These penalties are simply local binary patterns over subsets of

S(*'). Figure 7 illustrates a family of four such patterns; they can be associated
with any resolution a by the obvious scaling.

0 1 11 

Forbidden patterns

FIGURE 7

These correspond, respectively, to an isolated or abandoned segment, sharp turn, I "'
quadruple junction, and "small" structure. Depending on a, the pixel resolution, .

and scene information, we may or may not wi-h to include the latter three. For
example, including the last one with a = 6 would prohibit detection of a square
structure of pixel size 6 x 6.

To further clarify the definition of V, identify each pattern, up to translation,

with a set C C S(') and binary set = { ,,s E C}. For instance, for a = 2,
the first pattern in Figure 7 is represented by C = {(1,3),(3, 1),(3, 3), (3, 5)} and
corresponding C-values 0,0,1,0. Let {C(i),CO)}, 1 < j < J be a family of patterns.
Then

J

V(X) = :) 6Z., r3
j=1 r

where the inner sum extends over all translates r and 37
6 = 1 if _ - for all sE C

0 otherwise

Finally, there is a natural extension from Q(B to £2 B which is useful for display

and evaluation. Given x E Q('), we define x, = 0 for sites s E S \ S(') lying on a

row or column disjoint from SB '', and x I = x, 2 if s lies on a segment < ti, t2 >,.

Thus, for example, the state x E f22 in Figure 8(a) is identified with the state
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z E SB in 8(b).
1 0 1 1 1 0 0

0 0 1 0 0

0 1 0 0 0 1 0 0S0 0 1 0 0

0 1 1 0 0 1 1 1
8(a) 8(b)

Completion of boundary configuration, from a = 2 to a = 1

j Figure 8

Summary. We are given

(i) a grey-level image y = j,};

(ii) a resolution level a = 1, 2,...;

j (iii) a disparity measure t (a-'A,,t(y)) for each neighbor pair < s, t >, in the

sub-lattice S(";

(iv) a collection of penalty patterns.

The (MAP) boundary estimate i = .(y) is any solution x E fP(' ) of the constrained
optimization

mininize :V(z)=o (1 - xx,)q (o' -. A,(y))

where V(x) is the number of penalties in x.
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4. ALGORITHMS

We begin with an abstract formulation of the optimization and sampling prob-
lems outlined in Sections 1-3. We are actually interested in posterior distributions,
1I(xly), but y is fixed by observation, and can be ignored in this discussion of [!
computational issues. Thus, we are given two functions U and V on a space of
configurations !Q = {(x, , X3 2 *,. .. ,xSM) x,, E A, 1 < i < M} where A is finite,
M is very large, and S = fs 1 ,s 2 ,... ,SM} is a collection of "sites", typically a 2-D
lattice. Write x = (z,,... , S,) for an element of S, and let

= x: V(x) = = V(x)II
z

rI*(X) = ~(X) exp{-U(x)} I
=Z'EO exp{-U(x')}

We wish to solve the constrained optimization problem minimize {U(x) : ii
V(x) = 11_ or to sample from the Gibbs distribution I*. (Recall that sampling
allows us to entertain estimates other than the MAP.) II

We have studied [25] Monte Carlo site-replacement algorithms for the uncon-
strained versions of these problems: stochastic relaxation (SR) for sampling. and
stochastic relaxation with simulated annealing (SA) for optimization. SA was de- II
vised in [12] and [47] for minimizing a "cost functional" U (e.g. the tour length for

A. the traeliing salesman problem) by regarding U as the energy of a physical system
and simulating the dynamics of chemical annealing. The effect is to drive the sys-
tem towards the "ground states", i.e. the minimizers of U. This is accomplished by
applying the Metropolis (relaxation) algorithm to the Boltzmann distribution

(4.1) 
e- z

Ee-U(z')/t I
at successively lower values of the "temperature" t.

We presented two theorems in [25]: one for generating a sequence {X(k)} 1!
which converges in distribution to (4.1) for t = 1 (SR), and one for generating a
sequence {X(k)} having asymptotic distribution the uniform measure over Qo =
{x E QT : U(x) = u}, a_ = min, U(x), (SR with SA). The essence of the latter
algorithm is a "cooling schedule" t = t1 , t 2 , ... for guaranteeing convergence. SA has
been extensively studied recently ([5],[14],[28],[29],[35],[39],[41],[67]); see also the
comprehensive review [1] and the references therein. Applications have emerged in i
neural networks and circuit design, to name but two areas.

Results concerning constrained SR and SA are reported in [23], which was fI
motivated by a desire to find a theoretical foundation for the algorithms used here.
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We have deviated from the instructions in [23], with regard to the cooling schedule,
but at least we know that the algorithms represent approximations to rigorous

3 results.

Both algorithms produce a Markov chain on 2 by sampling from the low-order,
marginal conditional distributions of the free Gibbs measures

I tA exp {-t-1 (U(x) + AV(x))}

.n(x; t, A) - exp {-t-' (U(x') + AV(x')1

It is easy to check that

£ (4.2) lim fI(x; 1, A) = n'(x)A--oo

and that

(4.3) lim H(x;t,A) = x E Q.*
A-oo 0, otherwise

where n2* = {w e : U(w) = }, = min E- U(x). Let Io denote the uniform
I measure in (4.3). Sampling directly from fl(x; t, A) is impossible due to the size of
- 2; otherwise just use (4.2) and (4.3) to generate a sequence of random variables

X(k), k = 1,2,..., with values in 2, and limiting distribution either II* or IIoI However, we can evaluate ratios 11(x; t, A)/fl(z; t, A), x, z G Q, and hence conditional
probabilities. The price for indirect sampling is that we must restrict the rate of
growth of A and the rate of decrease of t.I!

Fix two sequences {tkl}, {Ak}, a "site visitation" schedule {AkJ}, Ak C S,
and let fIk(x) = II(X; tk, Ak). The set Ak is the cluster of sites to be updated
at "time" k; the "centers" of the clusters are addressed in a raster scan. In our
experiments we take either IAk1 _ 1 or JAki 5, in which case the Ak's are of the
form {(i,j),(i + 1,j),(i - 1,j),(i,j + 1),(i,j - 1)}.

I Define a non-homogeneous Markov chain {X(k), k = 0, 1,2,.. .} on Q2 as
follows. Put X(0) = 77 arbitrarily. Given X(k) = (X,,(k),...,X,3 (k)), define
X,(k + 1) = X,(k) for s Ak+1 and let {X,(k + 1): s E Ak+i} be a (multivari-
ate) sample from the conditional probability distribution fIk+1(XS, s E Ak+1x =
X,(k), s Ak+i). Then, under suitable conditions on {tk } and {Ak , either

m lim P(X(k) = xIX(0) = 77) = rI*(x)
k-oo

or the limit is rI,(x). The condition in the former case (constrained SR) is that %
tk -- 1, Ak / co, and Ak < const. logk. The condition for convergence to ri
(constrained SA) is that tk \ 0, Ak // cc and tk-2 Ak _< const. , logk. The algorithm3 yields a solution to the constrained optimization problem (1.2) in the sense that the
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asymptotic distribution of X(k) is uniform over the solution set: if the solution is
unique, i.e. $Q = {x,}, then X(k) -- xo in probability. See [23] for proofs.

Approximations. The logarithmic rate is certainly slow. Still, we often
adhere to it for ordinary annealing; others ([44],[57]) have as well. We refer the
reader to [43] for some interesting comparisons between schedules and to [67] for
"fast annealing" algorithms. It is commonplace to find linear (tk = t - ak) and
exponential (tk = (1 - y)kto, 7 small) schedules; here k refers to the number of

sweeps or iterations of S; in our experiments S - 5( ) or S( ).

We now describe several protocols used in our experiments. One variant we
do not use is to fix A, _ A very large and do ordinary annealing, which might
appear sensible since the solutions to min{U(x) : V(x) = 0} coincide with those
of min{U(x) + AV(x)} for all A sufficiently large (due to the fact that Q? is finite).
However this is not practical: unless t, is very large and tk is reduced very slowly,
the system immediately gets stuck in local energy minima of U + AV which are
basically independent of the data, although faithful to the constraints. It is better
to begin with states faithful to the data and slowly impose the constraints, a standard
technique in conventional optimization.

One variation of constrained SR that has been effective is "low-temperature
sampling": fix tk = e (small) and let Ak / oo. The idea is to reach a likely state
of the posterior distribution II(xly). In practice, we allow Ak to grow linearly; the
details are in Section 5..

Another variation is the analogue for constrained relaxation of "zero- temper-
ature" sampling, which has been extensively studied by Besag [21 under the name
ICM (for "iterated conditional modes"); see also [15], [18] and [27]. Without con-
straints, this algorithm, which is deterministic, results in a sequence of states X(k)
which monotonically decrease the global energy, i.e. increase the posterior likeli-
hood. The constrained version operates as follows. Recall that when the set of
sites Ak+1 is visited for updating, we defined X(k + 1) by replacing the coordinates
of X(k) in Ak+1 by a sample drawn from the conditional distribution of flk+1 on
{x, s E Ak+ 1 } given the values {x, = X,(k), s q Ak+l}. Suppose we replace the
sample with the mode, i.e. the most likely vector {xs, s E A,,+I } conditional upon
{X, = X,(k), s Ak+l}. In essence, we fix t, = 0. This generates a deterministic
sequence X(k), k = 0, 1, 2,... depending only on X(O), Ilk, and {Ak}. (Notice that
the mode is unaffected by tk since it corresponds to the minimum of U(x)+AkV(x).)
Then, during the kth sweep, with A _ Ak, the energy U + AV is successively re-
duced, just as in ICM where A,, 0. Of course since there is no fixed (reference)
energy, the algorithm cannot be conceived as one of iterative improvement. Several
experiments were run with both the stochastic and deterministic algorithms; see
Section 5.
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1 5. EXPERIMENTS "

PARTITION MODEL

There are three experiments: an L-band synthetic aperature radar (SAR)
image 2 of ice floes in the ocean (Figure 9), a texture mosaic constructed from the
Brodatz album [8] (Figure 10), and another mosaic from pieces of rug, plastic andI cloth (Figure 11).

Processing. In each experiment the partitioning was randomly initiated; the
labels, x, s E S('), were chosen independently and uniformly from 0, 1, ...P - 1.
Thereafter, label sites were visited and updated one at a time, by a "raster scan"
sweep through the label array. MAP partitionings were approximated by "zero-jtemperature" sampling (see §4), with A = Ak increasing with the number of sweeps.
Specifically, A was held at 0 through the first 10 sweeps, and thereafter was raised by
1 every 5 sweeps: A& = 0, k = 1,...10; Ak = 1, k = 11,...15; Ak = 2, k = 16,...20;
etc. Most probably, A could have been increased more rapidly, perhaps with every
sweep, without substantially changing the results, but this was not systematically
investigated. For the three experiments shown in Figures 9, 10, and 11, between
15 and 50 sweeps sufficed to bring the changes in labels to a halt; see below for
more details. Recall that zero-temperature sampling corresponds to choosing the
conditional mode. Occasionally there are ties, and these were resolved by choosing
randomly, aaid uniformly, from the collection of modes.

As a general rule, results were less reliable at higher resolutions (lower a's)
and when more labels were allowed (higher values of P). In these cases, repeated
experiments, with different initializations, often produced different results. With P
too large, homogeneous regions were frequently subdivided, being assigned two or
three labels. With a too small, the tendency was to mislabel small patches within a
given texture. It is likely that many of these mistakes correspond to local minima;
perhaps some could be corrected by following a proper annealing schedule (see
§4), and by more careful choices of thresholds (see below). Here again, definitive
experiments have not been done.

Measures of Disparity. Recall that the disparity measure is derived from
the Kolmogorov-Smirnov distance between blocks of pixel data under various trans-
formations, as defined in §2, equation (2.3). For the SAR image, good partitionings
were obtained using only the raw data: m = 1 and Y(l) is just y in equation (2.3).

Fortran code and terminal sessions are available.

We are grateful to the Radar Division at ERIM for providing us with the SAR
image (collected for the U.S. Geological Survey under Contract 14-08-0001-21748
and the Office of Naval Research under Contract N-00014-81-C-0692 and N-00014-
81-C-0295).
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Evidently, grey-level distributions are enough to segment the water and ice "tex-
tures", at least when supplemented by the "prior constraints" embodied in the
penalty term, V(x).

The texture collages in Figures 10 and 11 are harder. We used four data
transformations in addition to the raw pixel data. Hence, for these experiments
m - 5, yM) = y, and y(2), ... y(5) are based on various transforms. In particular.

Y(2) measures the intensity range in the 7 x 7 pixel block, V, centered at s:

y(2) = maxtiv.yt - mintEV.Yt;

ys is the "residual" (equation (1.1)) obtained by comparing y, to the 24
"boundary pixels" (OV,) of V, (i.e. all pixels on the perimeter of the 7 x 7
block):

(3) = , 1E ,1
24 tEav, I,

and y(4) and y() are horizontal and vertical "directional residuals":

=I(.4 -= (ya+(IO + Ys+(-,O))

. ) = Iy - I(Y8+(0,,> + Ys+(,-l))J.2i

Parameter Selection. The resolution (a) was 7 for the SAR picture (Figure
9); 15 for the Brodatz collage; and 13 for the pieces of rug, plastic and cloth. 3
These numbers were chosen more or less ad hoc, but are small enough to capture
the important detail of the respective pictures while not so small as to incur the
degraded performance, seen at higher resolutions and mentioned earlier. 'C

The number of allowed labels is also important; recall that too many usually

results in over-segmentation. This was actually used to advantage in the SAR
experiment (Figure 9), where there are evidently two varieties of ice. The best
segmentations were obtained by allowing three labels. Invariably, two would be
assigned to the ice, and one to the water. Using just two labels led to mistakes within V
the ice regions, although there was little experimentation with the I(olmogorov-
Smirnov threshold, and no attempt was made with the data transforms (m > 1)
used for the collages. In the other experiments, the number of labels was set to the
number of texture species in the scene.

The most important parameters were the thresholds, {ci} 1 < i < m, associated
with the Kolmogorov-Smirnov statistics (see (2.3)). For the SAR experiment, m =
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1, and the threshold was guessed, a priori; it was found that small changes ar;
reflected only in the lesser details of the segmentation. For the collages (m = 5), the

j thresholds were chosen by examining histograms of Kolmogorov-Snirnov distances 9-
for block pairs within homogeneous samples of the textures. Thresholds were set
so that no more than three or four percent of these intra-region distances wouldU be above threshold (a "false alarm"). Of course, we would have preferred to find
more or less universal thresholds, one for each data transform, but this may not
be possible. Conceivably, with enough of the "right" transforms, one could set
conservative (high) and nearly universal thresholds, and be assured that visibly
distinct textures would be segmented with respect to at least one of the transforms.
Recall that the disparity measure (equation (2.3)) is constructed to signal "different"
when the distance between blocks, with respect to any of the transforms, exceeds
threshold. 0

UFigure 9 (SAR). As mentioned earlier, three labels were used, with the ex-
pectation that the ice would segment into two regions (basically, dark and light).
The resolution was a = 7, and the Kolmogorov-Smirnov statistic was computed
only on the raw data, so m = 1. The threshold was cl = .15. The original image is
512 x 512 (the pixel resolution is about 4m by 4m), but to avoid special treatment
of the boundary, only the 462 x 462 piece shown in 9(A) was processed. The label
lattice, S('), is 64 x 64. Figure 9(B) shows the evolution of the partitioning during
the relaxation. For display, grey levels were arbitrarily assigned to the labels. The

Supper left panel is the random starting configuration. In successive panels are the
states of the labels after each five iterations (full sweeps). In the bottom right panel,
the two labels associated with ice are combined, "by hand". ,

Figure 10 (Brodatz Textures). The Kolmogorov-Smirnov thresholds were
cl= .40, C2 = .53, C3 = .26, C4 = .28,and c.5 = .19, corresponding to the transforms

y(l), ...y( 5 ) discussed above. A 246 x 246 piece of the original 256 x 256 image was
processed, and is shown in Figure 10(A). Leather and water are on top, grass and
wood on the bottom, and sand is in the middle. The resolution was a = 15, which
resulted in a 16 x 16 label lattice SLj. Figure 10(B) shows the random starting
configuration (upper left panel), the configuration after 5 iterations (upper right
panel), after 10 iterations (lower left panel), and after 15 iterations (lower right
panel), by which point the labels had stopped changing.

Figure 11 (Rug, Plastic, Cloth). The 216 x 216 image in Figure 11(A) was
partitioned at resolution a = 13, with a 16 x 16 label lattice. The Kolmogorov-
Smirnov thresholds were cl = .90, c 2 = .49, c3 = .20 c4 = .11, and c5 = .12,
corresponding to the same data transforms used for the Brodatz textures (Figure
10). The experiment makes apparent a hazard of long range bonds: the gradual but
marked lighting variation across the top of the image produces a large Kolmogorov-.I
Smirnov distance when raw pixel blocks from the left and right sides are compared.
This makes it necessary to essentially ignore the raw data Kolmogorov-Smirnov 0
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statistic, and base the partitioning on the four data transformations; hence the
threshold cl = .9. The transformed data are far less sensitive to lighting gradients.
Figure 11(B) displays the evolution of the partitioning during relaxation. The lay I
out is the same one used in the previous figures, showing every 5 iterations, except
that there are 10 iterations between the final two panels. The lower right panel is
the partitioning after the 30'th sweep, by which time the pattern was "frozen".

'I
PLACE FIGURES 9, 10, 11 HERE i

BOUNDARY MODEL [
There are five test images: one made indoors from tinkertoys ("cart"), an out-

door scene of a house, another of ice floes in the ocean (the same SAR image used
above), and two texture mosaics constructed from the Brodatz album.

Processing. All the experiments were performed with the same site-visitation
schedule. Given the resolution a, which varies among experiments, the sites of the 5
sub-lattice S( ' ) were addressed in a raster-scan and five sites were simultaneously
updated. Specifically, at each visit to the site (ia + 1,ja + 1), the values of the *1
boundary process at this site and its four nearest neighbors, {((i ± 1)a + 1, (j ±
1)a + 1) }, were replaced based on the conditional distribution of these five boundary
variables given the variables at the other sites and the data y. Of course this
distribution is concentrated on the 2' = 32 possible configurations for these five
variables.

Two update mechanisms were employed: stochastic relaxation and the "zero-
temperature", deterministic variation discussed earlier. In the former case, the
updated binary quintuple is a sample from the aforementioned conditional distri-
bution, which varies depending on the penalty weight Ak for the k'th sweep of 3
the lattice S(") . Of course "0-temperature" refers to replacing the sample by the
conditional mode.

Constrained simulated annealing was not used, at least not in accordance with
the formula in which tk \ 0, Ak / oo and te 1 Ak ! const.logk (k =sweep number).
Instead, we let A, grow linearly and, in the case of stochastic relaxation, we fixed k
the temperature tk at some "small" value.

Stochastic relaxation at low temperature is more effective than at zero tempera-
ture (essentially iterative improvement). However, deterministic relaxation sufficed K
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for all but two scenes, the ice floes and the four texture collage; these results could
not be duplicated with deterministic relaxation. In one case, we present both results
for comparison.

Generally, deterministic relaxation stabilizes in 5 to 10 sweeps whereas stochastic
relaxation requires more sweeps, perhaps 20 to 60. We provide several pictures
showing the evolution of the algorithm.

Penalties. All the experiments were conducted with the same forbidden pat-
terns, namely those in Figure 12, with the exception of the house scene, for which
the last pattern was omitted. (At the resolution used for the house, namely a = 3,
the inclusion of that pattern would inhibit the formation of structures at the scaleUof six pixels; many such non-trivial structures appear in that scene.) Thus, the
penalty function V(z) records a unit penalty for each occurrence in the boundary
map x = {x, s E S ") } of any of the five patterns depicted in Figure 12. It is in-
teresting to note that in no case was the final labelling completely free of penalties,
i.e. V(s) = 0. Perhaps this could be achieved with a proper annealing schedule, or3 with updates of more than five sites.

S0 1 1 1 10 101 I1 1 1
010 AI1

Forbidden patterns

FIGURE 12

Measures of Disparity. All the experiments are based on instances of the
measures (3.3)-(3.5) described in §3.

U (i) For the first experiment, the cart scene, the boundary resolution is a = 1 and we
employed the measure given in (3.3) with -y = 10A and the raw difference ly.- - yt- I
modulated by the four nearest differences of the same orientation as < s*, t" >.
Thus, for the horizontal pair < s, t > of adjacent boundary sites,

lY'" - Yt- I
10A + k lYi,j+k - Y+lj+kl

Nwhere s" = (i,j), t" = (i + 1,j), and A is the mean absolute intensity difference
over the image. The utility seems largely impervious to the choice of the scaling
constant (here = 10) for the mean as well as to the range of the modulation.

(ii) We used the Kolmogorov-Smirnov measure (3.4) for both the house and ice
floes scenes. For the house, we chose a = 3 and blocks of size 25; the set-up is3 depicted in Figure 6. Due to the uniform character of the background (e.g. the
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sky) the distance (3.4) was computed based on the transformed data y i = Yi + 7ij,
where (iji} are independent variables, and distributed with a triangular density,
specifically that of 10(ul + u2 ), u1 , u 2 uniform (and independent) on [0, 1].

The boundary resolution for the radar experiment is a = 8, reflecting the larger
important structures there; the image is 512 x 512. The dynamic range is very
narrow and the difference between the dark water and somewhat less dark ice is
essentially one of texture, due in part to the customary speckle noise. In particular,
the ice cannot be well-differentiated from the water based on shading alone. The
disparity measure is (3.4), applied to the raw image data over 24 x 24 blocks. The
problem encountered in the house scene is actually alleviated by the speckle.

(iii) The texture mosaic experiments are based on the measure (3.5) for a paxtic- I-
ular family A,,...,As of five data transformations or "features". In each case, the
resolution is a = 5 and block size is 21 x 21. Recall that these five features are
combined into a single measure of change according to the formula in (3.5). The
transformations used are the range

z3 maxt v.yt - mintEvoYt

over a 7 x 7 window V centered at pixel s, and the four directional residuals 5
1

1Z l~ y. - 2 (YS+(O,o) + Ys+(O-,))I

~1 4= Iy. - (Ys+(,) + YS+(- 1,-))3

Zi = - (Ys+-1,1) + Y,+(1,-1))I.

These residuals were then uniformly averaged over V, yielding the final features
y(,...Y s.

It is instructive to compare the Kolmogorov-Smirnov differences for the raw and L
transformed data over these texture mosaics. Typically, if one looks at the resulting
two histograms of differences for a give transform, on finds that, whereas the raw
(Kolmogorov-Smirnov) differences are actually larger at the texture borders, the .
transitions between the borders and interiors are sharper for the transformed data.
Detecting the boundaries with the raw data necessitates an unacceptable number
of "false alarms" in the sense of interior "micro-edges".

Finally, the valuess of the constants ci,..., cs used in the construction of A,,t
(see (3.5)) are selected by restricting the percentage of false alarms. The details are %
given in the following section.

35

..... ....



Parameter Selection. Recall that the total change across the boundary seg-
ment < s,t > is measured by 0 (a-'A.,t(y)), where 0 is given in (3.2). Given A,
there are two parameters to choose: a normalizing constant a and the intercept

= 0-1(0); the "threshold" for A is then d* -- a3.

For the object boundary experiments, namely the cart, house and ice floes,
the parameters a and 8 were chosen as follows. Find the mean disparity over all
(vertical and horizontal) values of As,t for relevant bonds < s, t >; take a equal to

the 99th percentile of those above the mean and d* equal to the 70th percentile of
those above the mean. This yields the values a = 150, /3 = .28 for the cart scene;
recall that for this experiment, both the grid and block sizes are unity. For the
house scene (a = 3) the Kolmogorov-Smirnov statistics were computed over 5 x 5
blocks, and the resulting parameters are then a = 1 and 3 = .7. (The number of 0
distances at (the* maximum) value A = 1 was considerable.) Finally, for the ice

U floes, the recipe above yielded a = .33, #3 = .40.

Turning to the experiments with texture mosaics, let Ci,k denote the normalizing ,
constant in (3.5) for feature i, 1 < i < 5, and texture k, 1 < k < K, where K is
the number of textures in the mosaic. For each feature i and texture type k, we
computed the histogram of the (combined vertical and horizontal) Kolmogorov-

Smirnov distances and selected cik = 100(1 - 7) percentile of that histogram.
Specifically, we took 7 = .01 for the two Brodatz collages. (Other experiments
indicated that any (small) value of -y will suffice, say 0 < - < .03.) Thus, 100(1 -Y)
percent of the distances d(y(i)(Di),y(t)(D 2)) are below ci,k withil each texture
type k. Now set ci = max<k<KCci, k, insuring that at most ky(100) percent of
the interior differences A,,t(y) within the entire collage will exceed the threshold
d= 1. Finally, since a and /3 are then constrained by a/3 = 1, we put a = 2 and

[Figure 13 (Cart Scene). Sixty sweeps of stochastic relaxation were run with
tk- .05 and ,k / 3. Actually, all the boundaries were "in place" after about 10
sweeps, as illustrated in Figure 13(B), which shows every third sweep up to the
forty-sixth. Figure 13(C) shows the forty-sixth sweep at larger scale. The image
is 110 x 110. Not shown is a run with the deterministic algorithm; the results are
virtually indistinguishable.

UFigure 14 (House Scene). This 256.. 256 monochrome image was supplied
to us by the VISIONS group at the University of Massachusetts. The update is by I
deterministic relaxation with Ak increasing linearly from A0 = 0 to A10 = 2.

Figure 15 (Ice Floes). The image (15(A)) is 512 x 512. We did sixty sweeps
of stochastic relaxation with tk * .1 and Ak / 2. Figure 15(B) shows sixteen
"snapshots" - every third sweep as in Figure 13, as well as the final (60th) sweep. V-9

Figure 16 (Brodatz Collage 1). The collage is composed of nine Brodatz
textures (16(A)): leather, grass, and pigskin (top row), raffia, wool, and straw (mid- S
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ar, wood, and sand (bottom row). Two of Lhe textures, leather and
.d in the two circles. The image size is b84 x 384, the individual
128 x 128. We show the results (16(B)) of both the deterministic tbined into a single
tic (right) algorithms; they are roughly comparable. Other false izatons.
.005, .02, and .03) yield the same overall quality.

rodatz Collage 2). There are four textures (17(A)): raffia (upper aryunit or nmi-
dependent, namely

right), wool (bottom), and pigskin (center). Two runs (different is detected and lo-
(17(B)), individual frames representing every third sweep. parity measure has

< s, t > , by other
;ix represented (up
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local configurations in the pair (xb, XI), for example "type 1" errors (a boundary
"between" like region labels) and "type 2" errors (no boundary "between" unlike
labels). The problem may be that there are deep local minima which are unfaithful
to the data but difficult to escape from, at least without updating many sites.
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7. SUMIMARY

We have developed algorithms for partitioning an image, possibly textured,
into homogeneous regions and for locating boundaries at significant transitions.

t Both are based on a scale-dependent notion of disparity, or gradient, and both

employ a Bayesian framework to make use of prior beliefs about regular boundary

r or region configurations.

The disparity measure scores the difference between the statistical structures
of two scale-dependent blocks of pixels. We have experimented with several mea-
sures. Ideally, the disparity will be large when there is an apparent difference, either
in grey-level or in texture, between the blocks. Usually, it was necessary to tune
the measure to the particular textures or structures involved; a more universal mea-
sure may require both better preprocessing (e.g. first extracting reflectance from
intensity (401) and better use of "high-level" information about expected macro-
structures and shapes. For texture discrimination, by either partitions or boundary
placement, we introduce a class of features, or transformations, that are decid-
edly multivariate, depending on the spatial distribution of large numbers of pixel
grey levels. Our disparity measure is then a composite of measures of differences in
the histograms of the block data, under the various transformations. Low-order fea-
tures, such as those derived solely from raw grey-level histograms and co-occurrence
matrices, were not as effective in our framework.

Disparity measures between pairs of pixel blocks drive the segmentations or
boundary placements through a "label model", that specifies likely label configura-
tions conditional on disparity data. For partitioning, labels are generic and asso-
ciated with local blocks of the image. Two labels are the same if their respective )
regions are judged to be instances of the same texture. For boundary placement,
the labels are zero or one, and interpreted as indicating, respectively, the absence or

0 presence of boundary elements. A priori knowledge about acceptable label config- !
urations, which, for example, may preclude very small or thin regions, or cluttered
boundary elements, is applied by restricting labels to an appropriate subset of all
possible configurations. The result of modelling disparity-label interactions and of f
defining restricted configurations, is a Gibbs distribution jointly on pixel k - -, levels
and label configurations, with the marginal label distribution supported on a subset
of the configuration space.

Partitioning and boundary finding is accomplished by approximating the max-
imum a posteriori (MAP) label configuration, conditioned on observed pixel data.
Because certain configurations are forbidden, MAP estimation amounts to con-
strained optimization. Stochastic relaxation and simulated annealing are extended
to accommodate constraints by introducing a non-negative constraint function that
is zero only for allo;,ed label configurations. The constraint function, with a mul-
tiplicative constant, is added to the posterior energy, and the constant is slowly ' .
increased during relaxation. Straightforward calculations establish an upper bound
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a on the rate of increase of this multiplicative constant that insures convergence of the
relaxation and annealing algorithms to the desired limits. In a series of partitioning
and boundary-finding experiments, deterministic and other fast variations of the
constrained relaxation algorithm are found to be effective.

The partitioning model is appropriate when a small number of homogeneousUregions are present. Disjoint instances of a common texture are automatically iden-
tified. The boundary model can be effective in complex, multi-textured, scenes.5 Both models sometimes require prior training to adjust parameters.
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I appreciate this opportunity to show you an approach that we at

CPC have developed to enhance quality in manufacturing through

modeling.

To illustrate some key ideas in this approach, I will start with

a simple example: the design of a wheelcover.

I will then go into greater details the mathematics of this

approach; followed by yet another application on a more

complicated example: the design of a door hanging process that

consistently yields the same door closing effort.

I will then close with some comments.
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This is a typical wheelcover (show wheelcover). It is a simple

and small part typical of the thousand parts that go in to make a

quality car. In our business, the top priority is customer o

satisfaction. For this wheelcover, there are at least two

features a customer has come to expect from it: ease of removal

if you have to change the tire; and good retention on the wheel

so you won't loose it when you hit a bump or turn a corner.

Depending on the customer, a male or a female, and on the tool

used to remove the wheelcover, the retention force above which

the cover becomes difficult to remove will vary from say 30 N,

easily removed; to 60 N, completely unremovable and therefora

100% unsatisfactory.
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On the other hand, the retention force below which the cover will

fall off also depends on the customer usage of the car. Cars on

bumpy roads and with sharp turns require a higher retention force

than cars on freeway driving. In other words, customer

expectation on good retention will vary.
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These two competing requirements combined into a target value of

retention force deemed most satisfactory to the customer. Any

departure from the target value will incur some degree of

customer dissatisfaction and potential loss of market share.
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In our business of mass production, we will never be on target

all the time. Most assuredly, we will produce cover with a range

of retention forces whose mean is off target and a spread of

values about the mean. The mean shift is called the bias; and

the spread is called the variance. Our tasks are: (1) to get

the mean on target -from an engineering viewpoint, that is not

difficult-; and (2) to reduce the spread around the mean - that

is difficult. I

As a starting point, we must identify what are the factors or

variables that affect the retention force.
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This slidu shows back side of a typical wheelcover. The cover

has three clips, each with two prongs, spaced around the

circumference to form a circle. The diameter of this circle,

which I call the clip diameter, is larger than the diameter of

the rim on the wheel. So when you press the cover onto the

wheel, the clip acts like a spring and clicks onto the rim.
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With an understanding of the physics, we can now deploy customer

expectation, retention force on target with minimum variation, in

terms of engineering variables. There are two. The first one is

the difference between the clip diameter and the rim diameter.

Remember that the clip diameter is larger than the rim diameter.

The larger the difference in diameters, the larger is the force

developed. In fact, the relationship is linear. The second

factor is the stiffness of the clip which is the slope of the

line. As I mentioned earlier, it is easy to get the mean on

target. For example, a diffezence in diameters of 6.65 mm and a

clip stiffness of 5.2 N/mm will get us there.
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In our business of mass production however, there is always

variation. We never get exactly 6.65 mm but a distribution of

values instead. This distribution projects into a distribution

of retention forces and results in less than satisfied customer.

This is one point we all must realize -- in mass production,

variation is a fact of life. It is the underlying cause of poor

quality.

The usual practice is to control the variation by tightening the

tolerance, say by sorting large covers to match with large rims

and small covers with small rims. That of course, is expensive.

So we achieve quality at extra cost, hoping to recover that cost

through warranty cost reduction and improved customer

satisfaction.
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There is however, another approach. Instead of trying to sort

the covers into large and small, we could choose less stiff clips

spaced at a larger diameter. As you can see, with this choice,

we can achieve the same quality with no cost because we do not

have to tighten the tolerance. This is the Taguchi concept of

insensitive design. It says: do not fight variation head on.

Instead, make your design less sensitive to the variation.

At this stage, the warranty cost comes down and the customer is

satisfied. But we, as engineers, should not be satisfied.

Because ...
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by choosing still weaker clips and a larger clip diameter, we can

open up the tolerance and still arrive at the same quality. Now

the cost really comes down. We can go with less expensive

suppliers; our processes can be less precise; and the labor need

not be skilled. In other words, we now achieve quality at extra

profit; or "better for less". That -better for less- is the

primary motivation-behind the concept of insensitive design.

Warranty cost reduction is only a secondary by product. It comes

naturally when we do our design right.

Since better for less is our goal, our approach to

process/product design must change. In this problem for

example, the usual practice is for a design engineer to decide

on the nominal clip diameter and stiffness to get the nominal

retention force on target; and the manufacturing people would

then decide what tolerances should go with them. Herein lies the

crux of the problem: when the design engineer specifies the|

nominal clip diameter and stiffness, he already fixes the

sensitivity of the wheelcover to the variation of mass j
production. The only mean left to the manufacturing people to

reduce variation in retention force, if he wants to, is to

tighten the tolerances of the clip diameter and stiffness, which

as I said earlier is expensive. The more cost effective approach

is the other way around. Go first to the manufacturing plant and

negotiate for the most cost effective tolerance; and then come

back and decide what the nominal clip diameter and stiffness 3
should be to arrive at the quality we want.

To summarize, what we have here is a miniature QFD, Quality

Function Deployment, in which we have deployed customer

expectation in terms of product/process variables. Now we can

explore very early on in the design phase, the different

product/process design alternatives that will produce qualityI

product.
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This sketch illustrates what we are trying to do. In on-line

quality control, we try to inspect quality into the product

through SPC and related statistical tools. I think that is too

late and too expensive. In Taguchi method and related design of

experiment methodology, we attempt to figure out early in the

development phase what factors adversely affect quality and

dissensitize the design against these factors. This is a big

step forward. But I think that also is too expensive and too

late. What I propose is to carry the ctivities further upfront

in the design phase. Only then can we achieve the greatest

impact.

Let me show you then the mathematical framework for carrying out

this strategy. [
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Let's go back to the wheelcover problem. In the neighborhood of

the target x, we may approximate customer dissatisfaction as a
quadratic function of the retention force f, about the target.

Assuming loss to be directly proportional to customer

dissatisfaction, the fraction p(f) of wheelcover population with

retention force f that deviate from the target value entails a

loss proportional to

2(f- ) p( f)df

Summing up this loss over the range of f, we have loss directly

proportional to the mean squared error (MSE) of f.
I?

Loss(J (f-r)2p(f)df = MSE(f)

5I
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The mean squared error (MSE) can further be decomposed into the

square of the bias, a measure of how far the mean is off target,

and variance, the spread of the response from its mean. Our aim

is to get the mean on target and the variance, a minimum. The

procedure of searching for design with this property, Taguchi

called it parameter design. In traditional optimization, it is

called equality constraint optimization. So what I am doing is

just transferring technology. Whereas Taguchi method implements

the concept in the development phase through design of experiment

in the lab, I would implement the same concept in the design

phase through optimization in the computer.
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The basic requirement is that we must know the relation between 5
the response f and the factors x which control or affect f. In

the case of the wheelcover, the response is the retention force, I

and the factors are the clip stiffness xI, the clip diameter x2
and the rim diameter x3. The key is to expand the response

function about the nominal values of the factors. You can then

derive in closed form the bias and variance of the response in

terms of the nominal values of the factors x. In these

equations, gi is the gradient of f with respect to the factor xi ,

hij is the hessian of f with respect to xi, xj; Ii is the mean or 3
nominal value of xi; and aij is the variance-covariance matrix of

xi, xj. I

These equations relating bias and variance to factors x are then

submitted to an optimizer to search for nominal values of x that

ensure the response is on target and with minimum variance.

I would like to point out again the difference between the

traditional design and the variation minimum design. I

Traditionally, the design engineer takes a deterministic approach

and uses the bi.as relation to find the se- of nominal values Vi ,
that ensures the response is on target. in so doing, he fixes

the sensitivity gi(LL) of the design to the variation of mass

production. The manufacturing engineer, if he wants to improve

the quality, has no other recourse but to tighten the tolerance,

aij which generally is expensive. By contrast in variation I

minimum design, one tries to find the set of nominal values that

ensures not only the response is on target but al3o the variance
is a minimum. And so quality is achieved at no cost because you

don't have to tighten the tolerance. Indeed, it is possible to

find a set of nominal ialues that even allows you to open up the

tolerance. At that stage, we attain the 'better for less'

situation.
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Let me demonstrate how this approach is implemented in another
real life example: design a door hanging process that yields
consistent door closing effort.
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Door closing effort in car is spent mostly in overcoming air

resistance. Thus, much less effort is needed to close a door

with the window down than with the window up.. We can reduce air

resistance by closing the door slowly. However, the door needs

to attain a certain velocity at closing for it to have the

necessary amount of kinetic energy to compress the weatherstrip

and effect a seal. The primary variable associated with door

closing effort therefore, is the energy stored in the deformed

weatherstrip. A reduction in stored energy (SE) means a reduced

door velocity needed at closing which translates to a dramatic

decrease in air resistance and door closing effort.

With the door closed, the weatherstrip is compressed between the

body and the door around the door periphery as shown in this

figure. The car to car variation in SE comes from the car to car

variation in the diameter of the weatherstrip and in the gap

between the door and the body. In turn, the variation in the gap

comes from the variation in the build of both-the body and the

door and in the positioning of the door with respect to the body

during hanging. For purpose of illustration, we consider only

the variation due to hanging.
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Take, for example, one car line currently being assembled. The

door is positioned with respect to the door opening by locating

three points (1,2,3) on the door at 869.26, 876.87 and 813.00 mm

respectively, from the centerline of the car in the cross car

direction as shown in this figure. These points correspond to

the hinges and latch locations on the door. Once the door is

positioned, hinges are screwed on to the door and the pillar.

Suppose in positioning the door, the points (1,2,3) are in error

by no more than 0.5 mm. How much deviation from the nominal

value of the door closing effort do these errors produce? For

the same tolerance of 0.5 mm, is there a trio of nominal cross

car positions w-=[1,4 2 ,13 ] of the points (1,2,3) at which

positions the door closing effort is the least sensitive to the

errors in positioning? I
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For example, this figure is a plot of the equation depicting how I

SE varies with xI , the position of the upper hinge. The lower

hinge and the latch are fixed at their current nominal positions.

The sensitivity of SE to hanging is now apparent. With x at its

current nominal position of 869.26 mm, a 1.0 mm deviation in x1
produces a deviation in SE of about 0.25 N-m. By contrast, with

x at say 873.00 mm, the same amount of deviation in x, produces

only a deviation in SE of about 0.1 N-m. It is this potential

for desensitizing a design to the variation in manufacturing that

we try to exploit: instead of trying to tighten the 1.0 mm

deviation to a smaller value, we reconfigure the design,

positioning x1 at 873 mm, to render the design insensitive to

variation.
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To analyze this problem, we first derive from a physical

consideration the response SE as a function of the factors

x=[lx 21 X31, the cross car position of points (1,2,3). In a 0

diametral compression, the weatherstrip exhibits a linear

force-deflection relationship. Therefore, for a weatherstrip of

diametral stiffness K, diameter D and length L, the function

SE(x) is:

SE(x) , K(D-G(s 1 2 ds for D > G;

where G is the gap which varies along the door periphery s.

We then discretized the weatherstrip into 15 segments L. The

integral may now be approximated by summation, and the SE(x) for

a given x may be computed:

/S
SE (x) K. E[CD-Gi (x)] I;2= II

where nominally, K = 0.012 N/mm/ram, D = 19mm. 5
The above equation completely describes the relationship between

the response SE and the factors x.
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We now exploit the full potential by considering simultaneously

all three nominal positions u=(t1i 2 11L] of x. Avoiding drastic

departure from the current positions IL =(869.26,876.87,813.00],

we search within a 2 mm neighborhood for a position w* at which
the mean value of SE(tL*) is the same as that of the current; and

the variance of SE(tL*) is minimized. Cast in the context of

optimization, we submit the problem to a standard optimization

routine and found the solution IL* = (870.27,874.87,811.00]. The

result is shown in this figure. For the same 0.5 mm tolerance

allowed in IL, the variance of SE at optimum position is only a

third of that at current position.

The significance of this example is not so much in the results

but in the fact that insensitive design concept can be integrated

into CAD/CAM environment thus permits a widespread, early and

upfront implementation of the concept.
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To summarize, let me review these key points:

" that in mass production, variation is a fact of life;

* that we should not try to fight variation head on, but

instead make our design insensitive to it;

* that in doing so, our primary motive is 'better for less';

* and finally, that a framework has been developed which

relates customer expectation to product/process design; and

allows a widespread, early and upfront implementation.
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CONCLUSIONS•
- VARIATION IS HERE FOREVER;

. DESENSITIZE THE DESIGN;

. PRIMARY MOTIVE IS "BETTER FOR LESS";

U . FRAMEWORK DEVELOPED WHICH

* RELATES.CUSTOMER EXPECTATION

TO PRODUCT/PROCESS VARIABLES;

ALLOWS INTEGRATION INTO CAD/CAM & THUS

UWIDESPREAD AND UPFRONT IMPLEMENTATION,
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Ladies and gentlemen, in our business of mass production we look

upon variation as an evil because it is the root cause of poor

quality and unreliability. There is however, one thing good

about variation--it is blind. It does not discriminate Ford from

GM from Toyota. It affects everyone and exempts no one. For

that reason we should view variation not as a problem, but as an

opportunity to use it to our advantage and gain a competitive

edge over our competitions.
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BACKGROUND ARTICLE

VARIATION TOLERANT DESIGN

C.p.C Group
Warren. Macdggan

ABSTRACT

Taguchi philosophy of robust design is formulated in the
context of optimization. In particular, the mean squared error of
a design performance is derived explicitly in terms of the design
parameters. This permits the strategic choice of the parameters
that minimize the mean squared error of the performance early at
the design phase. Thus, Taguchi philosophy will achieve an even
greater impact on quality improvement as its implementation is
shifted from the usual domain of experimental development to the
early phase of analytical design.

A real life problem is used to illustrate the implementation
of the formulation: design a door hanging process in car assembly
that yields consistent door closing effort.

INTRODUCTION

Quality improvement activities achieve their maximum impact
when they are carried out up front in the product realization
process. Thus, the Taguchi philosophy of shifting quality control
from assembly line inspection to pro-production experimentation is
a significant step in this direction. Another contribution of
Taguchi is the philosophy of robust design: do not try to control
the sources of variation affecting the design; make the design
insensitive to these sources instead.

To implement the Tauchi philosophy, one usually employs a
planned experimental program to acquire knowledge about: (1) theUi relationship between the design response and the factors affecting
the response; and (2) the variability in the design response caused
by the variability in the factors. Based on the knowledge (1)
acquired, one then sets the factors to some nominal values such
that the average value of the design response equals a target value
while the variance of the design response in (2) is at a minimum.
In this way, one has achieved a variation minimum or variation
tolerant design. A variation tolerant design may not achieve
optimal performance level; but it will have performance
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consistency. It is the latter that is to be emphasized to achieve
robust design.1

The strategy as described above is well known in the field of
optimization and is called equality constraint minimization 111. 2

If the relationship between the response and the factors is known,
then as pointed out in [2,32, variation tolerant design can be
accomplished by implementing the Taguchi philosophy solely through
numerical optimization. No experimentation is needed. This is the
motivation of this paper: to show that traditional optimization
techniques can be applied in the design phase for the design of
performance consistency, as opposed to Taguchi method which tries
to achieve performance consistency in the development phase through
the design of experiments.

There are several compelling reasons to implement the Taguchi
philosophy of robust design through numerical optimization. First,
greater impact can be achieved since we are taking another step
further up front; i.e., from experimental development to analytical
design. Second, there already exist in the engineering sciences, a
vast amount of Knowledge relating design response to design
factors. These relationships are either known or can be derived 0
through a simple application of the physical laws or a sophisti-
cated modelling such as finite element modelling. By tapping into
this existing knowledge and evoking Taguchi strategy through
optimization, more design alternatives can be explored in a shorter
time; and much variation tolerant design can be achieved with
little experimentation. Finally, with more and more products and
processes now being designed with computer-aided engineering (CAE),
using optimization to implement the Taguchi philosophy permits the
integration of the Taguchi philosophy into CAE and allows the full
realization of computer-aided robust design. In the next section,
we devise a method which permits the implementation of the Taguchi
philosophy of robust design in the context of optimization. In the

last section, we use a real life example to illustrate the
Implementation: design a door hanging process in car assembly that
yields consistent door closing effort.

FODULATION

Let f denote the value of the design response of interest and
4, its target. As mentioned earlier, the dependency of f on the
design factors xmtx Ix _,x 13 is either known to us or can be
derived. Because ok tA evariability in x, f would exhibit a random -%
deviation from T. Let the mean squared error (MSE) De a measure of
this deviation. Then,

HtsR(f) - E(f-T)2 3 ''

* mtf-K(f)] 2 ) , [jjf)-)2 .  
(1) 1 -.•

IAuthor acknowledges these terse statements by one discusser.
2Numbers in bracket refer to references at the end of the text.3Bold symbols are vector quantities unless otherwise specified.
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The symbol a denotes expectation, or averaging over x:

Z(-) f(.)p(z)dz

where p(z) is the joint probability density function of the design

factors x. On the right hand side of Eq (1), the first term is the
variance of f. This is a measure of the variation of f from its
mean. The second term is the bias squared. This is a measure of
the deviation of the mean value of f from the target. It is a
fixed error affecting every design. Our aim is to minimize MSE(f)
by a choice of the mean values w(u4LU2 .... , Un] of z that:

j ensures zero bias B(f)-g 0 0:

and minimizes variance I((f-g(f)] 2 .

Taguchi called the above strategy, parameter design. In
optimization, it is called equality constraint minimization. If
p(z) is known, e.g., normal distribution with known standard
deviations but with the means as parameters yet to be determined,
the above strategy could be carried out numerically. The
computation, however, is simplified considerably and no knowledge
of p(x) is required if we expand f(x) about IL in Taylor series and
neglect terms of order three or higher:

If(x) a f(iU)+ 9 g(10 (x.-u IEZh (%L)(x -u.) (x-_u. (2).2

where (u), h (W) are the partial derivatives af/x,, C 2f/ax.)x.
evaluatd at ui "..... IL Since E(x )au i the 1ean valui 01

f I s 2.u .i e a a un

I(f) = f(U) + . E h.(100 (3)

and the bias and variance of f may be computed from Eqs (2,3) as
follows:

fnn
bias (f) - Z(f)-T a f(u) - + E Z h ti)o ; (4)j 2i- 2j i
var Z (lf-E(f)J 2 UE g(u)(x -U 15 2

j I -1 i

In above equations, v i' denotes the variance-covariance of (x ,xi
given by -

var (xi), for ii ;

- coy (xi.x j, for ± J j.

Several philosophical points about variation tolerant design

are evident from Eqs (4,5). In product or process design, theusual practice is to choose a set of u such that the response f is
on target. This is usually done based on deterministic calcula-

tions. Once the choice is made, the gradient gi(u) in Eq (5) is
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fixed. This fixes the variance of f. If the variance of f is 3
unacceptable, the design engineer would then attempt to reduce it
by tightening a, the variance-covariances of the design factors
in Eq (5). Thik~approach generally requires more precise process-
ing and skillful labor. It is a more expensive approach. Thus, I
quality is achieved at extra cost. Hopefully, this zxtra cost will
be recovered in the form of reduced warranty cost and improved
customer satisfaction.

By contrast, variation tolerant design attempts to find a set of ti
not only to ensure that the response is on target but also to
guarantee that the gradient g - ) in Eq (5) is a small value. This
would reduce the variability in the response f at no extra cost
since there is no attempt to tighten a . Therefore, quality is
achieved at no additional cost. IndeeA there exists the possi- m
bility of finding a set of L which reduces g t&b) to such a low
level that a may be opened up without incriasing the variability
in the respoAle f. In this case, manufacturing becomes less costly
and qality is achieved at extra profit. In short, the primary
motivation in variation tolerant design is profit. Warranty cost

reduction and improved customer satisfaction are secondary
by-products.

A related point to the above discussion is the following.
While the usual design practice is to first set nominal values of
the design factors based on deterministic calculations and then let
the design engineer and the production people negotiate on what the
tolerances of these factors should be, the more profitable approach
is to first set the tolerances of these factors at values that
minimize the cost and then implement the variation tolerant design
to choose the nominal values that ensure design response on target
at minimum variability. As a corollary, the design engineer must
know a , the capability of manufacturing before he can carry out a
variatign tolerant design.

AN EXAMPLE

Door closing effort in car is spent mostly in overcoming air
resistance. Thus, much less effort is needed to close a door with
the window down than with the window up. We can reduce air resist-
ance by closing the door slowly. However, the door needs to attain
a certain velocity at closing for it to have the necessary amount
of kinetic energy to compress the weatherstrip and effect a seal.

The primary variable associated with door closing effort,
therefore, is the energy stored in the deformed weatherstrip. A
reduction in stored energy (SE) means a reduced door velocity
needed at closing which translates to a dramatic decrease in airresistance and door closing effort.

With the door closed, the weatherstrip is compressed between 3
the body and the door around the door periphery, Figure 1. The car
to car variation in SE comes from the car to car variation in the
diameter of the weatherstrip and in the gap between the door and
the body. In turn, the variation in the gap comes from the vari-
ation in the build of both the body and the door and in the
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SECTION 4 9 5 SECTION4 I3HINGE PILLAR ROCKER

FNUt 1. GAP 'A' AROUND THE DOOR PERIPHERY.

positioning of the door with respect to the body during hanging.
For purpose of illustration, we consider only the variation due to
hanging.

Take, for eAMple, one car line currently being assembled.
The door is positioned with respect to the door opening by locating
three points (1,2,3) on the door at 869.26, 876.87 and 813.00 mum,.1 respectively, from the centerline of the car in the cross car
direction, Figure 2. These points correspond to the hinges and

latch locations on.the door. Once the door is positioned, hinges
are screwed on to the door and the pillar. Suppose in positioning
the door, the points (1,2,3) are in error by no more than 0.5 mm.
How much deviation from the nominal value of the door closing
effort do these errors produce? For the same tolerance of 0.5 nm,
is there a trio of nominal cross car positions u( u u 3 of the
points (1,2,3) at which positions the door closing iffrt is the
least sensitive to the errors in positioning?
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force-deflection relationship. Therefore, for a weatherstrip of
diamoetral stiffness K, diameter D and length L. the function SE(x1
is:

SEWx *IK(D-G(sx)l ds for D> G; (6)

where G is the gap which varies along the door periphery s. Since

only small rotations are involved in positioning the door, the gap
would be linearly proportional to It. Therefore upon integration,
the SEWx will be a qu~adratic function of x:

SEWx a 0 1 1~x j 1 c iixx* 1;X(7
The coefficients a0 , b. and c ii are estimated as follows.
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Cartesian coordinates of two sets of points are digitized from
the blueprints. One set of 15 points is on the body spaced around
the door opening at locations indicated by the arrows, Figure 2.

The other set of equal number of points is on the door directly

opposite to tht 1. points on the body. The set on the body is held
fixed while the set on the door moves with the locating points

(1,2.3) as & rigid body as the locating points are positioned to an

x value. The coordinates of the ith point on the door as moved can

be computed from its initial coordinates and the z values. There-

fore, the distance between the ith point on the door and the
opposing point on the body can be computed. This distance
represents the gap G at that location of the door periphery.
Approximating the integral in Eq (6) by summation, the SE(W) for a
given a may be computed:18

SE() iK E [D-G.(x)] L (8)
1-4 i

where nominally, K a 0.012 N/me/mm, D = 19me, and L. is the length
of the weatherstrip between two points: the midpoini of points
(i-l) and i; and that of points i and (i+1).

Using Eq (8). the SE values for twenty seven sets of x,
covering the realistic ranges of x, are generated. These are shown
in Table I. Using Eq (7) and data in Table I, a regression of SE
on x is then made to estimate the coefficients a , b , and cThe results are shown in Table 1. These coeffi~enis, together

with Eq (7), completely describe the relationship between the
response SE and the factors .

STORED ERERGY oN-M

(CLOSING EFFORT)

N Fore x2  876.87 
mm,

xr 813.00 m

2AII II

~CURRENT
00

N p 65  LO67 %9OF 871 873 875

IILOCATION OF POI NT (1), m

FIGURE 3. STORED ENERGY V PESUS R HINE LOCATION.
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For example, Figure 3 is a plot of Eq (7) depicting how SE

varies with x1 , the position of the upper hinge. The lower hinge

and the latch are fixed at their current nominal positions. The

sensitivity of SE to hanging is now apparent. with x at its

current nominal position of 869.26 mm, a 1.0 mm deviaion in x

produces a deviation in SE of about 0.25 N-m. By contrast, wi h x

at say 873.00 w, the same amount of deviation in x produces only
1

a deviation in SE of about 0.1 N-r. It is this potkntial for

desensitizing a design to sources of variation that we try to

exploit: instead of trying to tighten the 1.0 mm deviation to a

smaller value, we reconfigure the design, positioning x1 at 873.00
mm, to tender the design insensitive to variation.

we now exploit the full potential by considering simultane-
ously all three nominal positions uu. u, u 1 of x. Avoiding
djastic departure from the current positions
tt u(869.26,876.87,813.00), we search within a 2 mm neighborhood for
a position U* at which the mean value of SE(1) is the same as that
of the current; and the variance of SE(I ) is the least. Assuming
no correlations among the factors, we have:

a = (0.5/3)2 for 1 * 1, 2, 3 ;

a *j 0, - for £ j

Substituting the values of a. into Eqs (4,5,7) and simpli-
fying, we have for a given IL, the'ias and variance of SE(%&) as
follows:

bias (SE(W]) a ESE(u)) - ZISE(Uc)]
3

J1 I I I -!1 . i- I I j

var (SE(I)] i(b + CL i C U 2 a

Cast in the context of optimization, we submit the following
problem to a standard optimization routine: search for u* that

3 3 2minimizes £(b. + C U Ec IL a
J.1 Ij I,

and satisfies b. (u. -tC I c (i U U a 0;
J-1 i-1 i- ii

The solution is i.* [870.27,874.87,811.00]. S
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Figure 4 are histograms which display the results of Monte
Carlo simulations of the door hanging process using the current u
and the optimum W. positions of x. For the same 0.5 mm tolerance
allowed in IL, the variance of SE at optimum position is only a
third of that at current position.

1 0 . .81 01. .

| 1'

|..*.*.. *

FIGURE 4. HISTOGRAMS ENERGY (CLOSING EFFORT)

DOOR HANGED AT CURREN' AND AT OPTIMM POSITION.

N REFERENCES

[I] Haftka, R.T. and Kamat, M.P., "Elements of Structural optimi-3 zation". Martinus Nijhoff Publishers, The Netherlands, 1985.

(21 Box, G.E.P. and Fung, C.A.. "Studies In Quality Improvement:
Minimizing Transmitted Variation By Parameter Design", Center
For Quality And Productivity Improvement Report No. 8, 1986,
Madison, Wisconsin. r

(31 Hunter, J.S., "Statistical Design Applied To Product Design",
Journal of Quality Technology, Vol. 17, No. 4, pp 210-221.

145

UI



TABLE I - Computed Stored Energy (SE)For Various x = [X,X 3x

x 2  x3  SE(m) (m) (m) (N-m)
0.86926 0.87687 0.8130 1.2260.86926 0.87687 0.8090 2.3990.86926 0.87687 0.8170 0.540

0.86926 0.88087 0.8130 2.7'i5
0.86926 0.88087 0.8090 4.240086926 0.88087 0.81500.86926 

2.785

08960.87587 
0.8130 1.675

0.86926 0.87287 0.8090 2.024
0.869260.86926 0.87587 0.8170 0.4700.86926 0.87687 0.8130 0.6320.87226 0.87687 0.8090 1.472
0.87226 0.87687 0.8140 0.498
0.87226 0.88087 0.8130 1.0770.87226 0.88087 0.8090 2.2380.87226 0.87087 0.8150 0.4010.87226 0.87637 0.8130 0.6790.87226 0.87587 0.8090 1.5090.87126 0.87587 0.8135 0.6740.86526 0.87687 0.8130 3.550
0.86526 0.87687 0.8090 0.168
0.86526 0.87687 0.8150 2.924
0.86526 0.87887

0 
0.8130 

4.845
0.86526 0.87887 0.8110 5670.86526 0.87787 0.8150 3.4850.86526 0.87287 0.8130 2.0660.86526 0.87287 0.8090 3.3610.86526 0.87287 0.8170 1.25

TABLE II - Coefficients Estimated From
The Regression of SE on x

Coefficients stimate

a 0  (N-rn) 
3821.457

b I (N) 
-19810.583

b (N) 
23463.203

(Nm) -13062.5711 /n 
42582 511

*2 (N/M)
22(N/r 

40061.7873(N/r) 
7169.96912 (N/rm) 

-85552.756 1
C13 (N/rn) 

25113.789C 2 3  (N/m) 
-23579.615
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QUALITY IMPROVEMENT: AN EXPANDING
DOMAIN FOR SCIENTIFIC METHOD

George E. P. Box

U Data Analysis and Experimental Design

Sir Ronald Fisher saw Statistics as the handmaiden of Scientific Investigation. When

U he first went to Rothamsted in 1919 it was to analyze data on wheat yields and rainfall that I

extended back over a period of some seventy years. Over the next few years Fisher

developed great skill in such analysis, and his remarkable practical sense led in turn to

important new theoretical results. In particular, least squares and regression analysis were

placed on a much firmer theoretical basis, the importance of graphical methods was

U emphasized and aspects of the analysis of residuals were discussed.

But these studies presented him with a dilemma. On the one hand such

"happenstance" data were affected by innumerable disturbing factors not under his control.

On the other hand, if agricultural experiments were run in the laboratory, where complete

control was possible, the conclusions might be valueless, since it would be impossible to

know to what extent such results applied to crops grown in a farmer's field. The dilemma I

was resolved by Fisher's invention of statistical experimental design which did much to

* move science out of the laboratory and into the real world - a major step in human

progress.

The theory of experimental design that he developed, employing the tools of

blocking, randomization, replication, factorial experimentation and confounding, solved the

problem of how to conduct valid experiments in a world which is naturally nonstationary -
The Center for Quality and Productivity cares about your reactions to our reports. Please
send comments (general or specific) to: Report Feedback, Center for Quality and
Productivity Improvement, 610 Walnut Street, Madison, WI 53705. All replies will be
forwarded to the authors.
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and nonhomogeneous - a world, moreover, in which unseen "lurking variables" are linked

in unknown ways with the variables under study, thus inviting misinformation and
confusion.

Thus by the beginning of the 1930's Fisher had initiated what is now called statistical

data analysis, had developed statistical experimental design and had pointed out their

complementary and synergistic nature. Once the value of these ideas was demonstrated for

agriculture they quickly permeated such subjects as biology, medicine, forestry and social

science.

The 1930's were years of economic depression and it was not long before the

potential value of statistical methods to revive and reenergize industry came to be realized.

In particular at the urging of Egon Pearson and others, a new section of the Royal

Statistical Society was inaugurated. During the next few years, at meetings of the

Industrial and Agricultural Section of the Society, workers from academia and industry met

to present and discuss applications to cotton spinning, woollen manufacture, glass making,

electric light manufacture, and so forth. History has shown that these pioneers were right

in their belief that statistical method provided the key to industrial progress. Unhappily

their voices were not heard, a world war intervened, and it was at another time and in

another country that their beliefs were proved true.

Fisher was an interested participant and frequent discussant at these industrial

meetings. He wrote cordially to Shewhart, the originator at Bell Labs of quality control.

He also took note of the role of sampling inspection in rejecting bad products, but he was

careful to point out that the rules then in vogue for selecting inspection schemes by setting

producer's and consumer's risks, could not, in his opinion, be made the basis for a theory

of scientific inference (Fisher 1955). He made this point in a critical discussion of the

theory of Neyman and Pearson whose "errors of the first and second kind" closely

paralleled producer's and consumer's risks. He could not have forseen that fifty years later

the world of quality control would, in the hands of the Japanese, have become the world of
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quality improvement in which his ideas for scientific advance using statistical techniques of

design as well as analysis were employed by industry on the widest possible basis.

The revolutionary shift from quality control to quality improvement which had been

initiated in Japan by his long-time friend Dr. W. Edwards Deming was accompanied by

two important concomitant changes; involvement of the whole workforce in quality

improvement and recognition that quality improvement must be a continuous and never-

ending occupation (see Deming (1986)).

Aspects of Scientific Method

To understand better the logic of these changes it is necessary to consider certain

aspects of scientific method. .. mong living flhis mankind has the almost unique ability

of making discoveries and putting them to use. But until comparatively recently such

technical advance was slow - the ships of the thirteenth century were perhaps somewhat

better designed than those of the twelfth century but the differences were not very

dramatic. And then three or four hundred years ago a process of quickened technical

change began which has ever since been accelerating. This acceleration is attributed to an

improved process for finding things out which we call scientific method.

We can, I think, explain at least some aspects of this scientific revolution by

considering a particular instance of discovery. We are told that in the late seventeenth

century it was a monk from the Abbey of Hautvillers who first observed that a second

fermentation in wine could be induced which produced a new and different sparkling

liquid, delightful to the taste, which we now call champagne. Now the culture of wine V

itself is known from the earliest records of man and the conditions necessary to induce the

production of champagne must have occurred countless times throughout antiquity.

However, it was not until this comparatively recent date that the actual discovery was

made. This is less surprising if we consider that to induce an advance of this kind two

I ," I . .-.... . ,- + • - ,



circumstances must coincide. First an informative event must occur and second a

perceptive observer must be present to see it and learn from it.

Now most events that occur in our daily routine correspond more or less with what )
we expect. Only occasionally does something occur which is potentially informative.

Also many observers, whether through lack of essential background knowledge or from

lack of curiosity or motivation, do not fill the role of a perceptive observer.

Thus the slowness in antiquity of the process of discovery can be explained by the I
extreme rarity of the chance coincidence of two circumstances each of which is itself rare.

It is then easily seen that discovery may be accelerated by two processes which I will call

informed observation and directed experimentation. |

By a process of informed observation we arrange things so that, when a rare

potentially informative event does occur people with necessary technical background and I
motivation are there to observe it. Thus, when last year an explosion of a supernova

occurred, the scientific organization of this planet was such that astronomers observed it I
and learned from it. A quality control chart fills a similar role. When such a chart is

properly maintained and displayed it ensures that any abnormality in the routine operation

of a process is likely to be observed and associated with what Shewhart called an

assignable cause - so leading to the gradual elimination of disturbing factors.

A second way in which the rate of acquisition of knowledge may be increased is by I
what I will call directed experimentation. This is an attempt to artifically induce the

occurrence of an informative event. Thus, Benjamin Franklin's plan to determine the

possible connection of lightning and electricity by flying a kite in a thunder cloud and

testing the emanations flowing down the string, was an invitation for such an informative

event to occur.

Recognition of the enormous power of their methods of scientific advance is now

commonplace. The challenge of the modern movement of quality improvement is nothing

less than to use them, to further in the widest possible manner the effectiveness of human
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activity. By this I mean not only the process of industrial manufacture but the running, forI
example, of hospitals, airlines, universities, bus services and supermarkets.

The enormous potential of such an approach had long been forseen by systems engineers

(see for example, Jenkins & Youle (1971)) but until the current demonstration by Japan of

3its practicability, it had been largely ignored.

L Organization of Quality Improvement with Simple Tools

The less sophisticated problems in quality improvement can often be solved by

Uinformed observation using some very simple tools that are easily taught to the workforce.

While on the one hand, Murphy's law implacably ensures that anything that can go

wrong with a process will eventually go wrong, this same law also ensures that every

process produces data which can be used for its own improvement. In this sentence the

word process could Luran an itdustrial manufacturing process, or a process for ordering

supplies or for paying bills. It could also mean the process of admission to a hospital or

of registering at a hotel or of booking an airline flight.

One major difficulty in past methods of system design was the lack of involvement of

' the people closest to it. For instance, a friend of mine recently told me of the following
three incidents that happened on one particular day. In the morning he saw his doctor at

3 /the hospital to discuss the results of some tests that had been made two weeks before. The

results of the tests should have been entered in his records but, as frequently happened at

this particular hospital, they were not. The doctor smiled and said rather triumphantly,

3R "Don't worry, I thought they wouldn't be in there. I keep a duplicate record myself

although I'm not supposed to. So I can tell you what the results of your tests are." Later

3 that day my friend flew from Chicago to New York and as the plane was taxiing prior to

takeoff there was a loud scraping noise at the rear of the plane. Some passengers looked

N concerned but said nothing. My friend pressed the call button and asked the stewardess

about it. She said, 'This plane always makes that noise but obviously I can't do anything



about it." Finally on reaching his hotel in the evening he found that his room, the

reservation for which had been guaranteed, had been given to someone else. He was told

that he would be driven to another hotel and that because of the inconvenience his room-

rate would be reduced. In answer to his protest the reservation clerk said, irm very sorry

- it's the system. It's nothing to do with me."

In each of these examples the system was itself providing data which could have been

used to improve it. But in every case improvement was frustrated, because the doctor, the

stewardess and the hotel clerk each believed that there was nothing they could do to alter a

process that was clearly faulty. Yet each of the people involved was much closer to the

system than those who had designed it and who were insulated from receiving data on

how it could be improved.

Improvement could have resulted if, in each case, a routine had been in place

whereby data coming from the system were automatically used to correct it.

To achieve this it would first have been necessary

(a) to instill the idea that quality improvement was each individual persons

responsibility,

(b) to move responsibility for the improvement of the system to a quality

improvement team which included the persons actually involved,

(c) to organize collection of appropriate data (not as a means of apportioning blame,

but to proide material for team problem-solving meetings).

The quality team of the hospital records system might include the doctor, the nurse,

airplane problem, the team might include the stewardess, the captain, and the person

responsible for the mechanical maintenance of the plane. For the hotel problem, the team N

might include the hotel clerk, the reservations clerk, and someone responsible for

computer systems. It is the responsibility of such teams to conduct a relentless and never-

ending war against Murphy's regime. Because their studies often reveal the need for
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additional expertise, and because it will not always be within the power of the team to

institute appropriate corrective action, it is necessary that adequate channels for

j communication exist from the bottom to the top of the organization, as well as from the top

to the bottom.

Three potent weapons in the campaign for quality improvement are Corrective

Feedback, Preemptive Feedforward and Simplification. The first two are self explanatory.

HI The importance of simplification has been emphasized and well illustrated by Tim Fuller

(1986). In the past systems have tended to become steadily more complicated without

necessarily adding any corresponding increase in effectiveness. This occurs when

(a) the system develops by reaction to occasional disasters,

(b) action, supposedly corrective, is instituted by persons remote from the system,

(c) no check is made on whether corrective action is effective or not.

Thus the institution by a department store of complicated safeguards in its system for

customer return of unsatisfactory goods might be counter-productive; while not providing

sufficient deterence to a menaacious few, it could cause frustration and rejection by a large

number of honest customers. By contrast the success of a company such as Marks &

Spencer who believe instead in simplification and, in particular, adopt a very enlightened

policy toward returned goods, speaks for itself.

Because complication provides work and power for bureaucrats, simplification must

be in the hands of people who can benefit from it. The time and money saved from

quality improvement programs of this sort far more than compensates for that spent in

putting them into effect. No less important is the great boost to the morale of the

workforce that comes from their knowing that they can use their creativity to improve

efficiency and reduce frustration.

Essential to the institution of quality improvement is the redefinition of the role of the

manager. He should not be an officer who conceives, gives and enforces orders but rather

N a coach who encourages and facilitates the work f his quality teams.

N 7



Ishikawa's Seven Tools

At a slightly more sophisticated level the process of informed observation may be

facilitated by a suitable set of statistical aids typified, for example, by Ishikawa's seven

tools. They are described in an invaluable book available in English (Ishikawa 1976) and

written for foremen and workers to study together. The tools are check sheets, Pareto

charts, cause-effect diagrams, histograms, graphs, stratification and scatter plots. They

can be used for the study of service systems as well as manufacturing systems but I will

use an example of the latter kind (see, for example, Box and Bisgaard, (1987)).

Suppose a manufacturer of springs finds that at the end of a week that 75 springs

have been rejected as defective. These rejects should not be thrown away but studied by a

quality team of the people who make them. As necessary this team would be augmented

from time to time with appropriate specialists. A tally on a check sheet could categorize

the rejected springs by the nature of the defect. Display of these results on a Pareto chart

might then reveal the primary defect to be, say, cracks. To facilitate discussion of what k
might cause the cracks the members of the quality team would gather around a blackboard

and clarify their ideas using a cause-effect diagram. A histogram categorizing cracks by

size would provide a clear picture of the magnitue of the cracks of how much they varied.

This histogram might then be stratified, for example, by spring type. A distributional

difference would raise the question as to why the cracking process affected the two kinds

of springs differently and might supply important clues as to the cause. A scatter plot

could expose a possible correlation of crack size with holding temperature and so forth.

With simple tools of this kind the team can work as quality detectives gradually "finding

and fixing" things that are wrong.

It is sometimes asked if such methods work outside Japan. One of many instances

showing that it can, is supplied by a well-known Japanese manufacturer making television

sets just outside Chicago in the United States. The plant was originally operated by an

American company using traditional methods of manufacture. When the Japanese ',4
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company first took over the reject rate was 146%. This meant that most of the television

sets had to be taken off the line once to be individually repaired and some had to be taken

off twice. By using simple "find and fix" tools like those above the reject rate over a

period of 4 -5 years was reduced from 146% to 2%. Although this was a Japanese

j company only Americans were employed, and a visitor could readily ascertain that they

greatly preferred the new system.

I Evolutionar Operation

i Evolutionary Operation (EVOP) is an example of how elementary ideas of

experimental design can be used by the whole workforce. The central theme (Box 1957,

Box and Draper 1969) is that an operating system can be organized which mimics that by

which biological systems evolve to optimal forms.

For manufacturing, let us say, a chemical intermediate, the standard procedure is to

continuaiiy run the process at fixed levels of the process conditions--temperature, flow

rate, pressure, and agitation speed and so forth. Such a procedure may be called static

operation. However, experience shows that the best conditions for the full scale process

are almost always somewhat different from those developed from smaller scale

experimentation and furthermore, that some factors important on the full scale cannot

always be adequately simulated in smaller scale production. The philosophy of

UEvolutionary Operation is that the full scale process may be run to produce not only

product, but also information on how to improve the process and the product. Suppose

that temperature and flow rate are the factors chosen for initial study. In the evolutionary

operation mode small deliberate changes could be made in these two factors in a pattern

(an experimental design) about the current best-known conditions. By continuous

Naveraging and comparison of results at the slightly different conditions as they come in,

information gradually accumulates which can point to a direction of improvement where

Ufor example higher conversion or less impurity can be obtained.
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Important aspects of Evolutionary Operation are

(a) it is an alternative method of continuous process operation. It may therefore be

run indefinitely as new ideas evolve and the importance of new factors are

realized.

(b) it is run by plant operators as a standard routine with the guidance of the

process superintendent and occasional advice from an evolutionary operation

committee. It is thus very sparing in the use of technical manpower.

(c) it was designed for improving yields and reducing costs in the chemical and

process industries. In the parts industries, where the problem is often that of

reducing variation by studying variances instead of means at the various process

conditions the process can be made to evolve to one where variation is

minimized.

Design of Experiments for Engineers

The methods described so far are ways of doing the best we can with what we have,

assuming that the basic design of the product we produce and the process that produces it

are essentially immutable. Obviously a product or process, which suffers from major

deficiences of design, cannot be improved beyond a certain point by these methods.

However by artful design of a new product and of the process that makes it, it may be

possible to arrive both at a highly effluent process of manufacture and a product thatbehaves well and almost never gewrn.The design of new products and poessis

a fertile field for the employment of statistical experimental design by engineers.

Which? low? Why? >
Suppose y is some quality characteristic whose probability distribution depends on

the level of a number of factors x. Experimental design may be used to reveal certain

aspects of this dependence; in particular how the mean E(y) = f(x), and the -variance
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0 2(y) = F(x), depend on x. Both choice of design and method of analysis are greatly

affected by what we know or what we think we know about the input variables x and the

functions f(x) and F(x) (see for example Box, Hunter and Hunter (1978)).

Which: In the early stages of investigation the task may be to determine which

subset of variables xk chosen from the larger set (x) are of importance in affecting y.

In this connection a Pareto hypothesis (a hypothesis of "effect sparsity") becomes

I appropriate and the projective properties into lower dimensions in the factor space of

highly fractionated designs may be used to find an active subset of k or fewer active

factors. Analyses based on normal plots and/or Bayesian methods (Box and Meyer

3 1986a)) are efficient and geometrically appealing.

How: When we know or think we know which are the important variables xk we

U may need to determine more precisely how changes in their levels affect y. Often the

nature of the functions f(x) and F(x) will be unknown. However over some limited

region of interest a local Taylor's series approximation of first or second order in xk

may provide an adequate approximation, particularly if y and xk may be re-expressed

when necessary in appropriate alternative metrics. Fractional factorials and other response

surface designs of first and second order are appropriate here. Maxima may be found and

exploited using steepest ascent methods followed by canonical analysis of a fitted second

degree equation in appropriately transformed metrics. The possibilities for exploiting

multidimensional ridges and hence alternative optimal process become particularly
important at this stage (see for example Box and Draper 1986).

Why: Instances occur when a mechanistic model can be postulated. This might take

the form of a set of differential equations believed to describe the underlying physics.

Various kinds of problems arise. Among these are:

How should the parameters (often corresponding to unknown physical constants) be

estimated from the data?

How should candidate models be tested?

N1 1 "
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How should we select a model from competing candidates?

What kinds of experimental designs are appropriate?

Workers in quality improvement have so far been chiefly occupied with problems of

the "which" and occasionally of the "how" kind and have consequently made most use of

fractional factorial designs, other orthogonal arrays, and response surface designs.

Studying Location, Disp2ersion and Robustness

In the past experimental design had been used most often as a means of discovering

how xk affected the mean value E(y) how, for example, the process could be improved

by increasing the mean of some quality characteristics. Modemn quality improvement also

stresses the use of experimental design in reducing dispersion as measured, for example,

by the variance.

Using experimental designs to minimize variation: High quality particularly in the parts

industries (e.g autermobiles, electronics) is frequently associated with minimizing

dispersion. In particular the simultaneous study of the effect of the variables x on the

mean and on the variance is important in the problem of bringing a process on target with

smallest possible dispersion (Phadke 1982). Bartlett and Kendall (1946) pointed to the
2advantages of analysis in terms of log s y to produce constant variance and increased

additivity in the dispersion measue It is also very important in such studies to remove

transformable dependence between the mean and standard deviation. Taguchi

(1986,1987) attempts to do this by the use of a signal to noise ratios. However, it may be

shown that it is much less restrictive, simpler and more statistically efficient to proceed by

direct data transformation obtained, for example, by a "lambda plot" (Box 1988).

A practical difficulty may be the very large number of experimental runs whihh may

be needed in such studies if complicated designs are employed. It is recently shown how i

w~ing what Fisher called hidden replication, unreplicated fractions may sometimes be

I
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employed to identify sparse dispersion effects in the presence of sparse location effects

U (Box and Meyer 1986b)).

I Experimental Design and Robustness to the Environment: A well designed car will start

over a wide range of conditions of ambient temperature and humidity. The design of the

starting mechanism may be said to be "robust" to changes in these environmental

variables. Suppose E(y) and possibly also a 2 (y) are functions of certain design

variables xd which determine the design of the system and also of some external

environmental variables xv which, except in the experimental environment, are not under

N our control. The problem of robust design is to choose a desirable combination of design

variables xdo at which good performance is experienced over a wide range of

environmental conditions.

Related problems were earlier considered by Youden (1961a,b) and Wernimont

(1975) but recently their great importance in quality improvement has been pointed out by

Taguchi. His solution employs an experimental design which combines multiplicatively

an "inner" design array and an "outer" environmental array. Each piece of this

combination is usually a fractional factorial design or some other orthogonal array. Recent

research has concentrated on various means for reducing the burdensome experimental

effort which presently may be needed for studies of this kind.

Robustness of an assembly to variation in its components: In the design of an assembly,

such as an electrical circuit, the exact mathematical relation y = f(x) between the quality

N/ characteristic of the assembly, such as the output voltage y of the circuit, and the

3 characteristics x of its components (resistors, capacitors, etc.) may be known from

physics. However there may be an infinite variety of configurations of x that can give

the same desired mean level E(y) = Tl, say. Thus an opportunity exists for optimal

%lo" design by choosing a "best" configuration.

Suppose the characteristics x of the components vary about "nominal values" .

with known covariance matrix V. Thus fc rxample a particular resistance xi might vary

-13



about its nominal value 4i with known variance o2 . (Also variation in one component

would usually be independent of that of another so that V would usually be diagonal.)

Now variation in the input characteristics x will transmit variation to the quality

characteristic y so that for each choice of component nominal values 4 which yield the

desired output y = i" there will be an associated mean square error E(y - Tr)2 = M(n) =

Using a Wheatstone Bridge circuit for illustration, Taguchi and Wu (1985) pose the

problem of choosing 4 so that M(11) is minimized. To solve it they again employ an

experimental strategy using inner and outer arrays. Box and Fung (1986) have pointed

out, however, that their procedure does not in general lead to an optimal solution and that

it is better to use a simpler and more general method employing a standard numerical

nonlinear optimization routine. The latter authors also make the following further points.

(a) For an electrical circuit it is reasonable to assume that the relation y = f(x) is

known, but when, as is usually the case, y = f(x) must be estimated

experimentally, the problems are much more complicated and require further

study.
2

(b) It is also supposed that each of the 2 are known and furthermore that they

remain fixed or change in a known way (for example proportionally) when i

changes. The nature of the optimal solution can be vastly different depending

on the validity of such assumptions.

Taguchi's quality engineering ideas are clearly important and present a great

opportunity for development. It appears however (see, for example, Box, Bisgaard and

Fung (1988)) the accompanying statistical methods that Taguchi recommends employing
"accumulation analysis," "signal to noise ratios" and "minute analysis" are often defective,

inefficient and unnecessarily complicated. Furthermore, Taguchi's philosophy seems at

times to imply a substitution of statistics for engineering rather than the use of statistics as .-

14
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a catalyst to engineering (Box 1988). Because such deficiencies can be easily corrected it ,

is particularly unfortunate that, in the United States at least, engineers are often taught

these ideas by instructors who stress that no deviation from Taguchi's exact recipe is

permissible.

A Wider Domain for Scientific Method

UQuality improvement is about finding out how to do things better. The efficient way

to do this is by using scientific method-a very powerful tool, employed in the past by

only a small elite of trained scientists. Modern quality improvement extends the domain of

3scientific method over a number of dimensions:

over users (e.g. from the chief executive officer to the janitor)

3 over areas of human endeavor (e.g. factories, hospitals, airlines, department stores)

over time (never-ending quality improvement)

over causative factors (an evolving panorama of factors that effect the operation of a system).

3 Users. Although it is not possible to be numerically precise I find a rough graphical

picture helpful to understanding. The distribution of technological skill in the workforce

might look something like Figure 1(a). The distribution of technological skill required to

solve the problems, that routinely reduce the efficiency of factories, hospitals, bus

Ucompanies and so forth, might look something like Figure 1 (b).

In the past only those possessing highly trained scientific or managerial talent, would S

have been regarded as problem solvers. Inevitably this small group could only tackle a

small proportion of the problems that beset the organization. One aspect of the new

approach is that many problems can be solved by suitably trained persons of lesser

technical skills. An organization that does not use this talent throws away a large

proportion cf its creatve potential. A second aspect is that engineers and technologists

must be taught how to experiment simultaneously with many variables in the presence of

noise. Without knowledge of statistical experimental design they are not equipped to do II
* 15
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this. A group visiting Japanese industry was recently told "an engineer who does not

U know statistical experimental design is not an engineer." (Box et al 1988.)

Areas of Endeavor: At first sight we tend to think of quality improvement as applying

3 only to operations on the factory floor. But even in manufacturing organizations a high

proportion of the workforce are otherwise engaged - in billing, invoicing, planning,

3 scheduling and so forth - all of which should be made the subject of study.

But the individual citizen in every day of his life must deal with an unnecessarily

U complex world, involving hospitals, government departments, universities, airlines and so

3 forth. Lack of quality in these organizations results in needless expense, wasted time and

unnecessary frustration. Quality improvement applied to these activities could free us all

Sfor more productive and pleasurable pursuits.

Time: For never ending improvement there must be a long-term commitment to renewal.3 A commonly used statistical model links a set of variables xk with a response y by an

equation y = f(xk) + e where e is an error term, often imbued by statisticians with

properties of randomness, independence and normality. A more realistic version of this

model is

y = f(xk) + e(xu)

where xu is a set of variables whose nature and behavior is unknown. As time elapses,

by skillful use of the techniques of informed observation and experimental design, as time

'3 elapses, elements of xu are transferred into xk - from the unknown into the known.

This transference is the essence of modem quality improvement and has two consequences:

(a) once a previously unknown variable has been identified it can be fixed at a level

N that produces best results.

(b) by fixing it we remove an element previously contributing to variation.

3 "This transfer can be never-ending process whereby knowledge increases and variation is

reduced.
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The structure of the process of investigation so far as it involves statistics has not

always been understood. It has sometimes been supposed that it consists of testing a null

hypothesis selected in advance against alternatives using a single set of data. In fact most

investigations proceed in an iterative fashion in which deduction and induction proceed in

alternation (see, for example, Box (1980)'. Clearly optimization of individual steps in

such a process can lead to sub-optimization for the investigational process itself. The

inferential process of estimation whereby a postulated model and supposedly relevant data

are combined is purely deductive and resembles a process of "summation"of model and

data. It is conditional on the assumption that the model of the data generating process and

the actual process itself are consonant. No warning that they are not consonant is provided

by estimation. However a comparison of appropriate qualities derived from the data with a

sampling reference distribution generated by the model provides a process of criticism that

can not only discredit the model but suggest appropriate direction for model modification.

An elementary example of this is Shewhart's "assignable cause" deduced from data

outside control lines which are calculated from a model of the data-generating process in a

state of control. Such a process of criticism contrasts features of the model and the data

and thus resembles a process of "differencing" of model and data. It can lead the

engineer, scientist or technologist by a process of induction to postulate a modified, or a

totally different model, so recharting the course for further exploration. This process is

subjective and artistic. It is the only step that can introduce new ideas and hence must be

encouraged above all else. It is best encouraged, I believe, by interactive graphical

analysis. This is readily provided these days by computers which also make it possible to

use sophisticated statistical ideas that are calculation-intensive and yet produce simply

understood graphical output. It is by following such a deductive-inductive iteration that

the quality investigator can be led to a solution of a problem just as a good detective can

solve a murder mystery.
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Factors and Assignable Causes: The field of factors potentially important to quality

improvement also can undergo seemingly endless expansion. Problems of optimization

are frequently posed as that of maximizing some response y over a k-dimensional space

of known factors xk, but in quality improvement the factor space is never totally known

and is continually developing.

Consider a possible scenario for a problem which begins as that of choosing the

reaction time x1 and reaction temperature x2 to give maximum conversion y of raw

materials to the desired product. Suppose experimentation with these two factors leads to

the (conditional) optimal choice of coordinates in Figure 2(a). Since conversion is only

1 50% we see that the best is not very good if we restrict the system in this way. After some

deliberation it is now suggested that higher conversion might be obtained if biproducts

which may be being formed at the beginning of the reaction were suppressed by

employing a lower temperature in the early stages. This idea produces two new variables,

I the initial temperature x3 and the time x4 taken to reach the final temperature. Their best

values, and the appropriately changed levels of x, and x2 , might be those shown in

Figure 2(b). This new (conditional) optimal profile again results in only partial success

I (y = 68%) leading to the suggestion that the (newly increased) final temperature may result 0

in other biproducts being formed at the later stages of reaction. This suggests
experimentation with variables x5 and x6 allowing for a fall off in temperature towards

the end of the reaction. The new (conditional) optimal profile at this stage might then be as S

in Figure 2(c).

These results might now be seen by a physical chemist leading him to suggest a

mechanistic theory yielding a series of curved profiles which depended on only two 0

theoretical constants X, and X2 . If this idea was successful the introduction of two new

experimental factors would have eliminated the need for the other six. The new

mechanistic theory could in turn suggest new factors, not previously thought of, which
might produce even greater conversion and so on. Thus the factor space must realistically

19

-A V0



temp. temp. y3

y 56% y 68%

2 X4

() 'I I I I ! t ! 1 i I

(a) time - (b) time

X6s
i

temp. temp.

y 73°%o i~

(C) time-- (d) time,!

Figure 2. Development of the factor space in a problem of maximizing * :
experimentally the chemical conversion y as a function
of time and temperature

[1.

• • 1 -i~ [ II Il1 I I'll~t 
JI l"

1 LlilllJ - ll ~ll iil klJF la ILL .la } 1{ : a, -



be regarded as one which is continually changing and developing as part of the evolution

Iwhich occurs within the scientific process in a manner discussed earlier by Kuhn (1962).

j Instituting the necessary training for quality is a huge and complex task. Some

assessment must be made of the training needs for the workforce, for engineers,

technologists and scientists, and for managers at various levels, and we must consider

how such training programs can be organized using the structure that we have within

t industry, service organizations, technical colleges and universities.

A maximum multiplication effect will be achieved by a scheme in which the scarce

talent that is available is employed to teach the teachers within industry and elsewhere.

It is, I believe, unfortunately true that the number of graduates who are intersted in

industrial statistics in Great Britain has been steadily decreasing. The reasons for this =;r

complex and careful analysis and discussion between industry, the government, and the b.

statistical fraternity is necessary to discover what might be done to rectify the situation.

Management

The case for the extension of scientific method to human activities is so strong and so

U potentially beneficial that one may wonder why this revolution has not already come

about. A major difficulty is to persuade the managers.

In the United States it is frequently true that both higher management and the

workforce are in favor of these ideas. Chief executive officers whose companies are

threatened with extinction by foreign competition are readily convinced and are prepared to

exhort their employees to engage in quality improvement. This is certainly a step in the

right direction but it is not enough. I recently saw a poster issued jointly by the Union and

N the Management of a large automobile company in the United States which reiterated a
Chinese proverb "Tell me - I'll forget; Show me - I may remember; Involve me and
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I'll understand". I'm not sure that top management always realize that their involvement

(not just their encouragement) is essential. The workforce enjoy taking part in quality

improvement and will cooperate provided they believe that the improvements they bring

about will not be used against them.

Some members of the middle levels of management and of the bureaucracy pose a

more serious problem because they see loss of power in sharing the organization of quality

improvement with others. Clearly the problems of which Mr. Gorbachev complains in

applying his principles of perestroika are not confined to the Soviet Union.

Thus the most important questions are really not concerned so much with details of

the techniques but with whether a process of change in management can be brought about

so that they can be used at all. It is for this reason that Dr. Deming and his followers have

struggled so hard with this most difficult problem of all - that of inducing the changes in

management and instituting the necessary training that can allow the powerful tools of

scientific method to be used for quality improvement. It is on the outcome of this struggle

that our economic future ultimately depends.

Fisher's Legacy

At the beginning of this lecture I portrayed Fisher as a man who developed statistical

methods of design and analysis that extended the domain of science from the laboratory to

the whole world of human endeavor. We have the opportunity now to bring that process

to full fruition. If we can do this we can not only look forward to a rosier economic

future, but by making our institutions easier to deal with, we can improve the quality of N

our everyday lives, and most important of all we can joyfully experience the creativity

which is a part of every one of us.
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Customers' Processing r
Example: Bales of Fibers (8") used

for Carpets

Steps: Fiber

Blending

Carding
("Like combing hair") (1

Spinning

Twisting t

Heat Setting a
Tufting

Dyeing

Carpet
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VARIANCE COMPONENT DESIGN FOR PROCES!

" SAMPLE-TO-SAMPLE (TIME)
* POSITION-TO-POSITION
" FILAMENT-TO-FILAMENT

FILAMENT-TO-FILAMENT AUTOMATICALLY
ESTIMATED BY INSTRUMENT. ABOUT 50
FILAMENTS PER SAMPLE.

I.

MACHINE

POSITION "I

SAMPLE "1
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BREAKDOWN OF VARIATION SOURCES

STD. DEV.
POSITION-TO-POSITION .15

SAMPLE-TO-SAMPLE .09

POSITION X SAMPLE Os .14

FIL-TO-FIL 4 .38

STANDARD DEVIATION FOR
FUTURE PRODUCTION SAMPLE=

WHERE p= # OF POSITIONS I
N= # OF FILAMENTS I
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Figure 6: Plant A: Simulated variation in incoming fiber.

Plant A: Autoregressive model for Initial Material
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* A BA'YESIAN PERSPECTIVE ON
"OTLER AN C(N 61

I* N'e. 5IN4PUR ,€t.t.,m

I PEAMOLE:

Mi REVIE W OF THE LITERATURE" ON

STATISTIC-AL ToLERANCING" LEAD, ME TO ',

BELEIVE THrT THERE MAY Be A LACK

* OF UNIFORMITY WITH REFERENce To

*I THE kiERNIN4 AND INTEaRPRETTION i

OF THE NOTION OF TOLERAN<E.

HE ABov" CON$1DER ATION LEADS

ME To PRoPOSE THE FOLLoWtIN, AS /A

if 5 TREAMLINED APPROACH T Viewi 4

j0 TOLERANCE IS MY APPROACH WELL KNOWN,0-p

0



WE ATTGMPT TO MODEL T )ES ra Al

E m d i mEE _,_Ks_______IV

*LCT BE 5om E DIMENSION OF

INTEREST To A bIS14NER ~

b: DIAMETER OF A~ SOLT,

*S11NCI THe. NOTION OF A MEASUREME-0l'

SucH AS A LENGivTN, WiIDTN CIRtcum-

FRaNtwx . ETC,, 15 AN Aa$TRACrio9N

(IT ExIS's -ONLY' IN OUR MiNDS AhiD So

CAN NEVER Be REALIZED IN REAL. LIFE). '

3) 1 AN4 UNNOaWN QuANqTITYm 5R?

ALL UnCERTAINTY 15 BEST DEscniSED

B~P&6B8DIY AND SO 1



VSOTECTIVELY. SPECIFY HISI110A 2,

#JwCN TAINTy ABOcuT RFEALIZ1ING Z ViA A P.

ST$ATEMENT (ASSUMEI SYMMETRIC)-

SWHERE Q( >O 1S A SMALL NO.

~(1) AloVE 15 CALLeo A "DDIN5EC'

TS6 FIREQUENTIST INEPRrrIN1

T HAT (jmd)%/ 0F ITEMS PROOuCeeD WILL

"A HVE bE d4 to& eJJ

dL (5 'CALLED 'THE NOMINAL VALUE~ AND
ge EIS CALLED A TOLERANCE,

I. 4d"()E1$ CALLED ANI UPPMRCLOWER)
SPEICIFICATION LIMIreT71



v $!I ouCTve (3 SPEcIFY f.

CmIV6N a( AN 40

TE MNUFACTURIN! S, .,RRIo

* LET e" THvE DIMEN$1ON CORRESPOAk

IN4 To 3) OF TE MANUFACTURED ITe.

* ONce A4AIN, 3) IS AN UNKNOWN QUANTl

To oG WHO DESCWHOES HIS!.ER

UNCE RTRNTY AOUT Ds VIA SAY A

GAUSSIAN bt$TR1BUTIOAJ OF T~eFce4i

*SP. FU RTMERI THmT IS 1 UNCERTiIN Aso'JTJ 4

AND FbOR c,~T)



M*IT~ow FOLLOWS (PRoM SrANDARD ARAuu4me,,lls

NOTE: 11 THE LITERATURS DiSTRI BuiaJS

£ 5uCH AS (3) ARE EGIvEN A FRE~uENTIrl"T

£ INTERPR6TA-riot4) AND ARE ViEwAeD AS 8eiMq

GMENERATEo AS THe ACTULJL CAPABILITIES OF

THE MANuF'ACTLUINC4 PROCESS, WeMG TAKE EXCE'PrPo

a WirH THIS POINr OF VIEW ANO RE4AaD (S3) AS

~ U ~ UfSrEG',vs ATSESSMENT A~ouT THE

UNC6KTAINTy AlBOUT D' THE F'REQUENTIsr

SINTERPRETATION oP (3) F~t~ To HOLD WHEN

Vt4E, CONSIDER FLE110LE MRNtuF'AenURiN4C SE.NR145#~

-~~W' NeV~*§



F~om (3) AiboVE IT FObLLOWS, TmATr4F.

(4) /(++

= I- ~WHERE FOR AN'j 3PEC1Pvr.O

. I KNOWN.*

* '9-"+ J7T") Arze PNCVWNi AS 7He'

NATURAL TOLBRANC LeIITS AN

UNFORTUNATE CHOICE OF TERMINOLOdy. A

+f

AS Twe UPPER~ (LowieR) 7OLERAiNC6 LIMIT,

V AL~ - 5* ' 5 * .. . 1



*THUS 'To SUMMARCRE WE HAvE, A3 A MO~CKL
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MOTIVATION

I. Emphasis on Deterministic Optimization

Si.
2. Robust Design |

-- Variations in LoadingDimensions, Material, Shape k'

* important while optimizing

-- Nonlinear Functions

* finite element modeling

* power transmissions; dynamic systems
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PROBABILISTIC ANALYSIS USING SECOND-MOMIENT CRITERIA

*Hasofer-Lind (H-L) Reliability Index

*Basis for generalised reliability indices

U CONSIDER

* DEFINE

IP

N ~~~THUS Q ( : P
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LIMIT STATE

IT
T~ ~ ~ V AT.oI, 9

minimize 1/2 d d

subject to g =0 / _"-___ _._

+I

|*

IDesign Requirement:

I ------ - -

texact if G is linear and xis normal

I
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Algorithm for the sub-problem iv

minimize 1/2d Td

subject to .g(d) = 0

Step 1 Choose initial design do _

Set k=0

I Step 2 Solve QP

3 Minimize 1/2pTp + dkT p

Subject to VIp gk = 0

Let pk be the solution.

J "" Step 3 Set d - dk + apk

I Step 4 I If (_)1 < TOL, and Jlfl1 -TOL,

Then set A 0 1/2
Sthenwse, d) ,set and stop.

i Otherwise, set k=k+1 and goto step 2.

IN@
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g ~ PROBABILISTIC OPTIMAL DESIGN PROBLEM WITH H-L INDEX

N ~~~Minimize ~ L s]~

I Subject to

%4
and
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" I.
DESIGN SENSITIVITY ANALYSIS OF THE H-L RELIABILITY INDEX,

-- L,.j.- - -o - fII

Problem 4~ . L

I b-  - !~

_ = -, ' ..., -'. - --, -

(xi

-- ~

Sensitivity:

CLV

(s)
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FIRST- AND SECOND- ORDER DERIVATIVES IN STRUCTURAL RESPONSE

Finite Element Model

Direct Method

*First-Order

- econd-Order

I +

* djoint Method

.



& 
a

Continuum Model 1

* j

II.

Equivalent to First-Order and Second-Order I,"Perurbation A tnalysis" y
II

I



VarI&ta.ft are talen as of w, * 03 - 0.2. The previous r9%aV. ye can also conclude that re- a

reliatJlit, y index 21 - I IS taken as same for all rfzed i -. there 13 a sudden .. ange in the govertnig

ona.rantln . The magiaal vo~ijt density is 0.1 failure MO16 wlwfl 0 13 increased from 0.0C to 0.06.

I.iL:3, To- -3 modalua Z - 101 pat. allowaole This also substantiates the tact that considering only

acrs.i34 art 1 ; 3e33 -:5000 Psi. = 2 - ZO..o00 W- tS failure 2ode based an a der'tttzii.i design is

4Lspupacamt lt ar a& - 3 - 0.005 In. lowr generally unsafes unezpected aLlure modes cam play a

bousul La natural frequency equals 2178 Hr:. a a loe role in Probabilistic design.
. bun of 0.05 in

2 La i-mose on each design vaf-table.*"I
boun at .05 n2 1 imosedan *cn dsignV~i~l*.Thirdly . It is .*nteresting to conduct parametric

"T-JA stParti ng design 13i V 5 130 .0.) InZ.. "My h T P = rl~r.+l ~ "n:. re
-- .. sarn desgn s v e (.0, 5.0. 5.0)d ?Pi studies related to 9. Spec-ificaLly, changes in

othef' starting designs were used and resulted In the optimum, cost and changes in the sensitivity values

&ame solutions. wthl respect to I may provide the designer with

addltional insights.
Table 2 contains results rer various values of 1.

- . . -. .. . ... Tons fan--Comare$ tan Spring (Fig. 3)

ZSMv PN:., I?=

0 l.l .11 si"J a |.a -Yll

gilhlll &3e111411 4.ii
l

13,11 if
4.4s -$.. II .4.4

l~ l$t .IIN 11 el4 -lJ4*:. "

5.21 -S.1 2.6 .1.6
e.1 MMei 1.18 3.8 -&.4 .65.4 -0.4,

St.3 -2:.3 . -9.1 Figure 3. Tens on-CoCoress flg Spring.
0.2 ULI.U J Ji |. 2 .2 -..4. -4.6 -4.4

6.3 2.ASS . . .. 6 6. 9 ... The problem C163 is to 21MElO:. the (eXpeetd)
i a. veitn, Of" the spriLng subject. to constraints. an minimum

0.4 22.32 14. -z. deflection. 3 near stra s3o surg e rreqen-., limits on
..1A: outsidel diameteor an~d on a•signt vartalel. The wirst

e. . 1 .. 5. .. diameter d, -oil diAmeter. 0 and number air coils n
e.g 2].13 2.6 i.5 -4. e.J .. have been considered as random variables., and their

mean values are considered as destg", v-table. After

23.924 6.6 .0. -4. ac-ountLng for the Input data, the determinist c
problem an be expressed as .c..

O.8 24.930 " .2,2 1.3 s41 11+*.+ ubject to
43 .1 03 1 <

I-02-d 10

It 2&Y be noted that the deterministic solutlon is 1.2566 x 10
a 

(043--44
)  

5.106 x1IQ 2 4
obtained by olgving proalem (36) and crrespa., In
effect, to a value of I - C. The design sensitivity
analysLs erprtsstons dr yed In this ;ar U•* !o(er 3av) e %1" <ee
Verifled using a dLvLde-Lffterence scheme based on a

(38) dg/do t - g(IVT . . . . . . . v €*
'

. . . . TI) "
i(vI . . . 1

,  
o. D < o

64terq C is asmall mamw. The sensitivityo at O the0.
active. 34cn --,ment =.teat. dd (I - AtlS) for I s: , 0 .05 ;
1 . aro prited out In Taal@ 2. The result-s In Table 2 -

provide t.ie designer Vtm a choice of designs, D > 0.05
dePending on "e de ir d retlaotlIty level.

Since t.e Oef .arcen. ta.tion a Is same for ea..

varIable. t..e -tult. Only depend on the prvdu -- o n. Te PO pro0Lem orresoWdinl79 to (39) is In the
Thus. h e absence or a solution "or 2 - 0.2 and s ) for-* (37Y. with x - Is. I - ]. The results of the
4 holds "r'1e6 . 2 - 0. ,ad3 ) 2. Thus. for PO proolem. far vartous veluas of 3. are ilven InU *0Otiled -aLJ* Ot 2. the =UBs ,, Fellsoility or :hie Ta0LG 3. For this ;ro lem 0,d - 0.005. 0 - 0.05. an
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SUMMARY " 1,4b A,

General Approach for Probabilistic Optimal Design C _

- robust design I
p

Reliability Index Methods

Quality Control ; Tolerancing

*Extensions L.IK o % - S . V'\
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TABLE I

LOAD CONDITIONS FOR 3-BAR TRUSSI

I Load Case 1 2 3

6, deg 45 90 135

P, kips 40 30 20*

I
UI
U
U
U
*

I
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TABLE 2

RESULTS FOR 3-BAR TRUSS

FINAL FINAL ACTIVE SENSITIVITY OF ACTIVE
BCOST DESIGN SET CONSTRA.INTS

8.91
0 20.542 1.93 2,8

(deterministic) 4.25

9.30 -0.4 4.1 -5.4!
0.05 20.768 2.21 2,8 -3;2 -27.1 -19.3

3.82

9.35 -5.1 2.0 -2.61
0.1 20.919 2.18 2,8 -1.6 -13.4 -9.4

3.90

9.33 -2.5 0.9 -1.1
0.2 21.211 2.03 2,8 -0.9 -6.6 -4.4

4.231

9.80 1.3 -0.7 -2.8
0.3 21.855 2.38 1,2 -1.6 0.6 -0.9

3.98 p" !

9.98 1.0 -0.5 -2.0
0.4 22.522 2.54 1,2 -1.1 0.4 -0.6

41.14

10.16 0.7 -0.4 -1.5
0.5 23.153 2.68 1,2 -0.9 0.3 -0.5

4.32

10.37 0.6 -0.3 -1.2
0.6 23.924 2.87 1,2 -0.7 0.2 -0.4

4.52 p
10.47 0.5 -0.25 -1.0 1 "

0.7 24.272 2.79 1,2 -0.6 0.17 -0.3
4.73

,0.65 0.4 -0.2 -0.8
0.8 24.938 2.93 1,? -0.5 0.15 -0.25

4.91

X40TZ: 21 a 2 23 - 0.2
Acti-pe constraint no. 1 - natural frequency,

8 = vertical horiontl diplaemen, lad cse!

I
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3 TABLE 3
RESULTS FOR TENSION-COMPRESSION SPRING

BFINAL FINAL SENSITIVITr OF ACTIVE3COST DECISION CONSTRAINTS 0
X 0.001

0 1541.0 (.064I,.750.2.945)
(deterministic)

0.05 156.0 (.065,.752,2.971) 6813.0 -J439.0 -37.0
-192411.0 507.0 0.

0.10 158.0 (.065,.757,2.971) 3389.0 -218.0 -18.5I-9608.0 252.2 0.

0.2 162.0 (.065,.768.2.973) 1677.0 -107.0 -9.2
-41791.0 125.0 0.

0.11 171.0 (.066,.789,2.975) 821.0 -51.41 -41.53-2283.0 61.3 0.

.. 180.0 (.o67,.812,2.977) 536.0 -33.0 -3.0

-1580.0 
40.0 0.

0.3 189.0 (.068,.8341,2.980) 393.5 -23.9 -2.3
-1179.0 29.5 0.

I1.0 200.0 (.068,.858,2.982) 308.0 -18.1 -1.8
-938.0 23.1 0.

1.2 11. ( .0 9,.83. .985 25 .3 - 4.7 -1.

-777.0 18.9 0.

14222.0 (.070,.908,2.988) 211.0 -12.2 -1.23I-662.6 15.9 0.

N1.45 270(01,92292 1741.0 -9.8 -1.0
2370 (07,.9122.92) -558.0 13.1 0.

1110



UDESIGN OPTIMIZATION WITH
INNER AND OUTER NOISE
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OBSERVATION:

-We are not solving the design optimization
problem incorrectly.

-We are solving the wrong design optimization
problem



:I

PROBLEM WITH TRADITIONAL METHODS:

/- Design is a fuzzy endeavor.

~- Optimization requires a precise mathematical t

representation.

I
U

RI



UNCERTAINTIES IN DESIGN:

- Specifications

- Material properties I

- Loading conditions

- Service environment

- Manufacturing process

- Idealized model

I
!~i1



am INNER NOISE: Controllable variations in ihe
j design variables caused by time and manufacturing

(Wear and tolerances)

U OUTER NOISE: Uncontrollable variations in
design parameters (temperature, humidity)-S

U
U

U"
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DESIGN QUESTIONS:
I

- Why is 50,000 PSI acceptable and not 50,001?

I
- Is E = 30.0 E+06 or is it really 30.1+06?

* -IsF~ = 10,000 lb or is F~ 10,100 Ib?

I
I
I
I
I
I
U
£
I

9
I

CA.
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METHODS FOR DEALING WITH
UNCERTAINTY1:

-- Monte Carlo Simulation iL

Stochastic Programming |1 I

- Fuzzy Optimization

- Design for Latitude

- Game Theory (Multiple Objectives) I ki

Ii

i° -'
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5 Figure 2: The Ti-ale-off Triangle
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I The Nonlinear Programming Formulation

* Minimize Volume=- 2 %F2XI + X2  A t2

I subject to

*15i = 20,000 - 10-11 0

9 2(x) = 20,000 - 11k2 1 > 0

93=- 20,000 - >u1  0

* and

* .01 < 5-i 5.0 i=112



N.
I
3.

Variations Considered in Truss Design
0

- Change in load from 15,000 lb to 20,000 lb

- Change in direction of load from 30 to 60
degrees

0pl
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Goals for Nonlinear Goal Programming I.

-Minimize Volume: Volume + d1- - d + - 0

- Minimize Max Stress: Max Stress
+ d2- - d2+ - 0

- Minimize change in stress due to design i
change.

1I

I

II

,t v , ,. .". . i :1
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I OBSERVATION:

If we can precisely define the uncertainties forI our design then they are not really uncertain.
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* Integrated Circuit Design

and Fabrication
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STATISTICAL APPROACHES TO

I* IC DESIGN AND FABRICATION

PROCESS CONTROL
I

I
Andrzej J. Strojwas "

Carnegie Mellon University

Pittsburgh, PA 15213

II May 11, 1988
I
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PRESENTED APPROACH:

EIGHT YEAR RESEARCH PROGRAM AT CMU

S. W. DIRECTOR

W. MALY

S. R. NASSIF

C. SPANOS

P. K. MOZUMDER
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i OUTLINE

Stochastic nature of VLSI fabrication

I Statistical simulation

S
Tuning - parameter identification

Worst-case analysis/design
I

UI Yield maximization

*I Statistical quality control

. .



VLSI DESIGN AND MANUFACTURING

Goal: Sl
minimize cost per chip

* Short design cycle

" Fast turn-around I
IsHimanufacturing yield



VLSI DESIGN AND MANUFACTURING

Solutions:

I *Design Automation
o system, circuit and process levels

sYield Maximization
o parametric and catastrophic

1 Active Process Control
*o monitoring, diagnosis, quality

and adaptive control

II '
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DeSpositon Measure. Lithography Disanure.

Chantel-top OxdtinOxd

Imlntto Measure. (field Oxide) Evaluation

Lithography Critical
of Deplition Distance

Modsesar Measure.

Assmbl Structu3

Pareri PSkgigMesre1

Ovorl4S3N%.I
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ICauses of Process DisturbancesW

I -human error and equipment failures

- fluctuations In process conditions

e.g., turbulent gas flow

- fluctuations In materials

*e.g., Impurities in chemicals

S -variations In substrate
e.g., point defects, dislocations

gsurface Imperfections

-lithographic spots (during mask fab and use)

e.g., transparent spots In opaque regions
il

JI

I



jPerformance FaultsW

I
I

* Structural faults:

-Changes In circuit topology -i
(e.g., shorts or opens) I-

-may depend on bias

I

e Hard performance faults

-IC doesn't function properly U
(e.g., some state transitions do not occur) p

* Soft performance faults P
- IC functions but response (e.g.,

speed or power) falls outside allowable limits

'
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Manufacturing Based Simulation

process Contro I Iisturbances

Devp~iceGeometries le/eMdlPrmt~
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PROCESS DISTURBANCES

* Fluctuations in process controls
(e.g. temperature variations) Ii
account for small portion of
variations in device performance -

* Physical disturbances (e.g. diffusion I
coefficient, oxide growth rate)
crucial to model device parameter
fluctuations realistically

m

Ui
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* Devices

U Lot

Hierar'chical
Nature of

the IC Process



WXWK 1rW-WAMRV -4 X

CU;

00

00

aT IIz*L - f -1

o- N



%__ _ _ _ _ _ %~w.

00% r% %
%. % %%

:% % % %

. If w
% %%%

% /

0%
kO %

00k A
% L

0 A IIo

%% %
UL

ac
ch CL

V.~4 -Z~

~ ~' .. -o"



czU

CC
* 0oc
C C2

Eo 0

cu Q

0 Nz
0

0u = 0)
> I= - 0.

7F C/ -' C

u1 0- =3 - 3 -0~Q3 CL CL 0

u0 o o U2/0
0
4L C j



C-, E

C

w 
Sz

o ~ E
csm CZ CZc

E>~ C

*~ E2 C
_n C / j

00

*0 0Z0 . .C) 
pS'

0~~ 0~ 0- ~
E E CL-

2 E0U EE0" E 0 '

0. -CM w_ _D 0 a'
~~CL

C . )C0

0, -j



C. )

U) 0 0

E tE
o C

C a)
~0 0,

-~ 0

o E3

0o 0~ E,>

_ C c
0) E ) L

0) 0 0 m

a) W )L

aL 0 C/, 0

cu 0 CL. >%

0a) %*.- 0 a 0  Ca

0)0 0 70)

a 0 a) U

0a)~~U CO>h 0 n
=3 cm) 0 4.d1l )

(LL _ ) L.. (13 CL) (3u

00 0
Q)



U),

U),
La f4

z > 0 C4)

m E

0 Ci0U

ClCC

cc a

o 0 3

4 ) w o,

C -

0IO



E E

2t 1.2 0

CL 

(I0 _ CL

0 -2
I. . (0 V
0 ~ I cm

a)- a) -

EO 0

0 a,a, 0
-$ .LL.

U..

0
z

-,Oo U'e



ca.

1.r. >1a

oc

q) ~ 0

((3

00

-02

cr .U



uI C
.. 0 iz

4--t .U .
.1 .: ...... C

M) CL

0(
oc

__ 
cc

ON _ QII

ccI

LL. .
NI

. .~~4 . . . . . .
0 CL

(1 3

40

CL 0.

LizlnO



Worst Case AnalysisU
Defn: The set of parameters which cause the

performance to vary in the same direction

It y=f(x 1 , x 2)

a~ (XXf(* X
1 12 1 2

,,X
I

X22

Worst Cases:

a Y Ymn : x " x2+ X2

* *

I y yU max 1 +  x2 - x2

I , ~' ~- ,.,.



Traditional Worst Case Analysis p

'arameter Based: p

Device Circuit
Parameters Simulat.or Performance
(vth, rB) I 3

f Ignores correlation between parameters

* A set of physical parameters that produces I
the worst case may not exist r

" Results very pessimistic

Device Based:

Device Performance I
Type tuao

(fast-fast,
slow-slow)

* Ignores correlation between devices

P



New Worst Case

• Process FABRICS imut

jMisturbancesSiuao

I
U Performance*

I

* Process Disturbances are uncorrelated

1 e All device parameters and devices correctly
correlated

d
I
I:
I

:: k
I

I
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Example: RAM

The methodology was applied to a 3-transistor cell RAM.

The circuit simulated consisted 'of the 8enae-amplifler, the

storage cell, the bit-line precharge logic, and the

read/write logic:

Precharge-

Stoe, 9  Sense

I
TS

12.2 DevIce.S
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Example: RAM cont.

Performances considered were:

* P, 1peak: power dissipation and peak current

• read' write read and write times

Performances were most sensitive to:

" LN, line width variation of nitride layer

* Lp, line width variation of poly layer i

* DB, diffusivity of Boron -j.
* D., diffusivity of Arsenic |

" Ro., oxide growth rate

* Nsub, substrate concentration

S

Pp

.



"--% Exam ple: RAM cont.

U Th~e vciitivitics were calculated by perturbation:

LN Lp DB DAs Rox Nsub

N~ ~ + - - - - -

A,4

C +

- + + + +

NB
7*w + + - + +

N T wvo wor.,t cse parameter sets were generated.

.1%

N

N 5

II .53
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JJExample: RAM cont.

Worst case performances, at p +/- 1.5a: I

performance nominal worst case worst case
A B

Power 1.45 mW 2.28 mW 1.17 mW

'peak 1.1 mA 1.8 mA 0.85 mA

Tread 16.9 ns 13.6 ns 20.8 ns [I

7writ e  23.8 ns 15.7 ns 28.6 ns

Probability of a performance better than this worst case

Was = 0.66

4



1CA

I Comparison to
Traditional Worst Case

Performed worst case analysis with respect to device

parameters.

Sensitivities were calculated by perturbation.

Performances were most sensitive to:

9 Depletion device: Vth, KP, and -1

e . Enhancement device: Vth, KP, and ''W1

Worst case was simulated with device parameters

perturbed by lo from their mean values.

"

te:

I¢
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Comparison, cont.I

Worst cases were found at lo-

performance nominal worst case worst case
Disturbances Devices

Power 1.45 mW 1.77 mW 2.30 mW

'peak 1.1 mA 1.4 mA 1.9 mA [

rwrite 16.9 fls 19 .8 fls 27.0 n U
Tread 23.8 fls 27.3 flS 31.0 n II
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Multilevel Optimization

Designable Parameters:

Local - layout of individual cells
Ir

Global - fabrication process controls I[|
common to all cells tI

Yield Maximization Problem:

Given the JPDF of Process Disturbances
max YIELD

P,L
subject to box constraints on:

P (process control capabilities) I
L (lithography capabilities & chip area)

,

S,



Example

Buildinq macromodels for minicell, and using models to

perform local Optimization of minicell--prformances

Minimize Power-Delay product of an NMIOS inverter.

* O .. .....

***go

II. ......



II
Desiqnable Parameters

* Gate Oxidation Time, Tx

e Depletion Threshold Dose, OD

* Minimum Dimension, m IJ
9 Ratio of Pullup/Pulldown, R Ii*

Performances II:

1. Power Dissipation, P 1

2. Rise time, r , (10% to 90% of vd) [I
3. Fall time, 'rF N'

Test Conditions N:
Loaded with 0.01 pF, - 1 gate load.

L911

-,-/-;



* Optimization

*E Problem: min IL(P)j(L(Tr )

x

-pConstrsints;

Ibox constraints on desiqnable parameters:

I 0.75 Tox 1.5
0.75 D1.5 .

0.75 m "

* 0.75 R < 2.0

Iconstraints on performances:
* minicell area: m2(4+ R) 24

power: p(P) + a(P) K 1
delay: a(-rr)/U(Tr) 0.1

I Solution:

Tox =1.17 OD 0.96  m= 0.75 R =0.873

'/7
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CMU-CAM SYSTEM

ANALYTIC AND
QUASI-ANALYTIC

MODELSOPTIMIZATIO

REDESIGN L

IN-LINE
WAFER FABRICATION

PROCESS MONITORING V
0 FACTORIZATION

00

0S

STATISTICAL PROCESS
COTO

POYOMA MODELSFOR I
FARCTO

* 0d
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PROCESS OBSERVABILITY

1 * Measurement types
- in-line measurements
- test structure measurements

I - probe measurements

I
* In-line tests (CD, layer thickness, sheet resistance)

III
* Scribe lane test structures (performance evaluation)

j * Probe measurements (until first fail)

I Need3 for process control:
- increase number of in-line measurements
- establish relationships between in-line ,4
distributions and yield

-determine selection thresholds and quality •
control procedures

Fp.



STAT. QUALITY CONTROL

1. Continue processing if predicted yield >
Threshold of acceptability

2. Corrective measures -+Feed forward control

3. Rework jj4

4. Reject the lot if predicted yield < Threshold of
rejection
(i.e. further processing is not cost effective)

IN ON

10 
Ji0
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STATISTICAL QUALITY
CONTROL FLOW

*r MEASURE
[PERTINENT IN-LINES

[ ESTIMATE jpdf OF
*I IN-LINES

IS THE PROCESS
NEAR ITS NORMALa YES TRAJECTORY ?

4 NO

HAS THE PROCESS YES
* DEVIATED VERY

FAR ?

I NO

II REJECTION OR CORRECTION

d BASED ON PROCESS
TRAJECTORY

I ACCEPLT REJECT

LT LOT

MAI-



PROBLEM DECOMPOSITION

* Shared information between observed in-lines 1L.
-*correlation

* Grouping in-lines so that no shared information
within groups -+clustering

* In-lines in a cluster depend on restricted set of HI
process parameters and disturbances

* Minimal set of in-lines within each cluster that 1
needs to be observed -+factorization -)-principal
components

* Identification of factor in-lines

r'

IllN.'



U REGRESSION

4IPT iX2 X3 X4

LAYER 1
4 4VARS. Z1 Z20 Z4 Z2 z3 6 3

SLAYER 2
6 VARS. Z4 Z3 Z52 2

LAYER 3E FINAL LAYER

CHOSEN Y=Z31 (BEST FIT)

---- INTERMEDIATE VARIABLE REJECTED

- INTERMEDIATE VARIABLE CHOSEN FOR NEXT LAYER

* Level 1: P, D -+Factor in-lines

* Level 2: Factor in-lines, P, D -+X and Non-5 factor in-lines



PROCESS MODELING

SCIRCUIT

PROCSS FBRIC 11VARIATIONS &
PARAMETERS DISTURBANCES

IN-LINE DVC

PARAMETER PARA E E R

CLUSTERING SPIC

PRINCIPAL OUPU
COMPONENT __T__J

DECOMPOSITION PARAMETERS

FACTOR IN-LINE IR'
IDENTIFICATION

MULTI-LAYtER
REGRESSION t

MODELS OF J i

FACTOR MODELS OF
OUTPUT

IN-LINES PERFORMANCES



I

EXAMPLE DECOMPOSITION

1•.4 device NMOS process

Data generated by FABRICS

Clustering with threshold of 0.1: 10 distinct
clustersI •.S

• Principal component decomposition: a few
factor in-lines

* 3 CMOS processes from TI -+tuned toFABRICS -,to be used for further study

,N

II -
II S
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2-LAYERED DEVICE MODELS

NE CGBO(U
(DEVICE

PARAMETER)

THS102GATE XJE4 bS
(IN-LINE)(I-NE

TEMPIGATE- PO2FIELD2 5
&oU.

LINEARDR
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1 ARAMEER PARAMEE2TER)L

I (PITRCE). (PROCESS) DOPRONSG

3 ~(PROCES

IN



IR

QUALITY CONTROL FLOW

MEASURE

PERTINENT IN-LINES

ESTIMATE jpdf OF 1
IN-LINES I

IS THE PROCESS
~~ NEAR ITS NORMAL l

YES TRAJECTORY ?I-,

NO

HAS THE PROCESS YES S
DEVIATED VERY

FAR ?

NO

DECIDE ON ACCEPTANCE,
REJECTION OR CORRECTION

BASED ON PROCESS
TRAJECTORY

ACCEPT REJECT
LOT LOT

iw.OU Z Z



K--TO I~vrw~~~
SIMPLICIAL APPROXIMATION 1

.Acceptability region specified in terms of circuit
performances -+constraints

Joint distribution in terms of in-lines
-+estimated during process

\'Map back acceptability region to in-lines

-Simplicial approximation

rI"v F

.I.
I I 1"@'" 20

I -
I"_-



SIMPLICIAL APPROXIMATION

[I!

Z2 FEASIBLE
POINT
(NOMINAL

DESIGN)
- Ion

I SIMPLICIAL to

ACTUAL APPROXIMATIONBOUNDARY 1
CORRESPONDING

FEASIBLE POINT t
R~ 

to

12

BOUNDARY
DERIVED BY
SIMPLICIAL

APPROX.

&o
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* QUALITY CONTROL DECISIONS

* Determine tolerances on distributions -+use of
process trajectory

Acceptance
3Statistical distances to determine how far

process has deviatedU
o Rejection

Moments of distributions of single in-lines S
* Partial yields

i.

I:r
Hi :'

Im-
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QUALITY CONTROL contd.
ACCEPTANCE CRITERION

e Distance between jpdfs using nonparametric (
techniques 1

* Yield sensitivity to magnitude and direction of (
shift I

eChange in yield due to the shifted mean L
(e.g. weighted Mahalanobis distance) V

, Accept if change is small

y2
ego *in



QUALITY CONTROL contd.
REJECTION CRITERION

I
e Dimension reduction by factorization (quasi-

I independence)

* Simplified approximation of acceptability
I region by hyperbox

I ,Appropriate coordinate transforms

Rejection based on single in-line distribution
-,partial yields -,tolerances on in-line
distribution

I
I U2 Acceptability V2I €// region /

' 1
II
3

.w ,, ~,, ,,1v,'- v; ¢ . ' ,.p .._' p':,' , -. , ,,, z
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YIELD PREDICTION

• . Integrating jpdf over acceptability region in in-
*line or circuit performance space

Sy = " - " 4(U)t'u(U)du...dunu

3 ., Coupling -+large computing time for integration

I Low dimensionality for control

U2
~ACCEPTABILITY

IREGION

17.

U. u



SYSTEM OVERVIEW
Data generation from device

and circuit simulators
BUILDREG

Sensitivity calculations, Problem decomposition
data base creation and (Clustering, Factorization

storage and In-line identification)
CALCSENSE & FACTOR

REGDEF

Multi-layer Regression
MULREG

Preprocessor to simplicial
(parsing dependency trees)

SIMPARSE

Simplicial Approximation
SIMPROX J

Quality control
(Distance, Partial yield

and total yield)
MARGIN

SProcess Identification
HANPAL '

~Yield Improvement

Yield Derivative Method
YIELD

i - ' Y& "
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EXAMPLE
i ,

•" Parameter: NE-CGBO, Acceptance level: 85%

, Observables: thsio2gate, xjf4

" Acceptance:
3 Partial yield due to xjf4 - 99%

Partial yield due to thsio2gate2 = 93.8%
The Mahalanobis distance between the two
distributions - -6.3005e-03
The estimated yield is = 93.0%

" Rejection:I Partial yield due to xjf4 = 99%
Partial yield due to thsio2gate2 = 77%
The Mahalanobis distance between the two
distributions - 9.7272e-02
The estimated yield is = 79.5%

I6
I

N 67 N ,
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EXAMPLE

" Parameters: NE-VTO and ND-KP, fl :
Acceptance level: 75%

* Observables: thsio2gate, xje2, tempsrcdrive 21
" Partial yield due to thsio2gate2 - 79% [I

Partial yield due to xje2 = 98%
The Mahalanobis distance between the two
distributions - 2.66e-2
The estimated yield is 71%

PI

[o

S2



CURRENT WORK

Statistical simulation
- sampling techniques
- analytical mapping of jpdf's

Yield prediction
3 - dimensionality reduction

techniques

Statistical design
- inverse mapping techniques

- factor-splitting aporoach

IStatistical process control
I - nonparametric methods

619
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i Statistical Optimization for Computational Models

3 Kishore Sin ghal

AT&T Bell Laboratories
1247 South Cedar Crest Blvd.

Allentown, PA 18103

I
Realistic engineering problems of expected product cost minimization and reliability

i maximization in the presence of manufacturing fluctuations and parameter variations
due to environmental and age related e:ffects can be formulated mathematically as
constrained statistical optimization problems. Parametric Sampling is a particular
technique for solving such problems when the system performance can be obtained
through simulation using computational models.

A database containing the results from a small number of simulations is first created.
Parametric Sampling allows us to estimate the objective function, the constraints and
their gradients not only at the initial set of design parameters but also at new design3 points generated by the optimization algorithm. As needed, additional sample points
are added to the database to ensure estimation accuracy.

Sensitivity studies to determine the influence of specification changes and departures
from assumed statistical distributions are possible with minimal computational cost.
Experience with electrical and mechanical systems shows that substantial improvement

hin the objective functions is possible.

SI Conference on Uncertainty in
Engineering Design, 1988 ( , ,)

Ref: Statistical Design Centering and Tolerancing Using Parametric Sampling. IEEEuTrans. Circuits and Systems, July 1981.

II
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3 FOIL 21

Computer Simulation vs

Physical Experimentation

I + Often faster (real time)

1 + Less expensive

+ Easy to explore areas of operation where physical
experimentation may be difficult

* - Need a computer model

Need reasonable characterization of probability
model,
Key difference in Optimization Strategy

9 We can distort reality to assist us

0 .Analysis and Decision steps can be easily
interlaced

e Computational complexity is no longer an Issue

.
U 4.
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I *Design for Manufacturability, Reliability

* and Minimum Product Life Cycle Cost

Include

e Process variation

* Tolerance vs cost tradeoffs

e * Environmental condition variations

e Limits on performance degradation with age

* .Testing and field repair costs

e Cost of lost goodwill

* etc etc etc

in the design phase Itself

I"
./
I



Simulator Components LOW

Equations Parameters L

Inputs System Outputs L
Simulator 

P



Statistical Simulator Components

Distribution f (x;0)

nominals
O= tolerances

correlations

Ran-Ldom
variables

U Noise
* Temperature

Humidity
I Age.



Simple Monte Carlo -

Parameqter Rno
DIStri but lOfS), dystm

f (x;e) Lefera To r

Inputs System

Sreifctc otYield PS ~~ ecfiato Postsor_______.N omentsProcessor tIstograms f
1 e t c

i.E



*Simple Statistical Design

New 0

* Depision
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Variance Reduction by Importance Sampling L

Parameter Sapln
Distribution T Distribution andom

f (xq) h(x; h) E ~etra~o

Response

estimates Processor



j Statistical Design by Parametric Sampling

Uoif for newO0
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Statistical Design by Parametric Sampling

new
h(x;Oh)p
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Ordinary Monte Carlo

Evaluate high dimensional Integrals of the form

E(v) f v(x)f (x;9)dx
-00

where v Is a function computed through simulation
and fx;O) Is a density with parameters 0 by
sampling as i

=N
v- Nj v(xi)

where x: are samples drawn from the distribution
f(x; 0)

+ +

:'El



Importance Sampling
E(v)= f v(x)f(x;O)dx

-00
can be written as

00
I E(v) = f (x) h(x;o,,h dx;o),x

where h(x;Oh) is some other density

i The second integral can be approximately evaluated
by sampling as

1 N f (x;;O)/ V E VCX;) x;
N h(xi=h)

Uwhere xi are samples drawn from the distribution
h(x;Oh) selected to reduce the variance of f*

t
I. +

I
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Parametric Sampling

1 N f (xi1 O)
:h(x .G)

where x i are samples drawn from the distribution

h(x;Oh) independent of 0 Hp

e Functional form of f(xi;O) Is known and V can
be evaluated for any O without performing a new
Monte Carlo p

* First and higher order derivatives of 0 are easily
computed allowing the use of powerful
optimization tools

Parametric Sampling thus changes a statistical P
optimization problem Into a standard deterministic
problem II

I'
+ + i

'*A

- -J %~plY
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1~~1

Some Details

Stochastic Approximation principles used to forcej convergence in probability

The multivariate normal sampling density Is

related to the Hessian information obtained from
the optimizer and enables navigation along

Quasi random numbers are used to reduce

estimator variance

* Sample pooling to reduce sample size

i Ratio estimators improve accuracy

j , jacknife for bias reduction and error estimation

d eSensitivity to parameter distributions easily
computed

* Re-design following specification changes is

simple

lip.
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DESIGNING FOR QUALITY

USING

COMPUTER EXPERIMENTATION

JEFF HOOPER

MAY 1988
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OVERVIEW

OBJECTIVE: DISCUSS THESE PAPERS IN
LIGHT OF SIGNIFICANTl
DESIGN FOR QUALITY
EFFORTS USING PHYSICAL
EXPERIMENTATION

* LOSS FUNCTIONS AND ADJUSTMENT
PARAMETERS

o EXPERIMENTAL DESIGNS IF

* NOISE 15
o OPTIMIZATION

I.• u, v
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DESIGN FOR QUALITY OBJECTIVE

USE NOMINAL DESIGN VALUES TO
MINIMIZE THE INFLUENCE OF NOISE

ON THE PERFORMANCE OF THE DESIGN

* STATISTICAL DESIGN CENTERING

COMPUTER EXPERIMENTS

o ROBUST DESIGN

4 ~ PHYSICAL EXPERIMENTS
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LOSS FUNCTIONS AND ADJUSTMENT PARAMETERS

1. "SQUARED ERROR" VS 0-1 LOSS

- ECONOMIC ADVANTAGES FOR BEING
CLOSE TO TARGET

1 MAY REQUIRE MULTICRITERIA
OPTIMIZATION

2ADJUSTMENT PARAMETERS

HOW TO IDENTIFY

HOW TO CHOOSE A PERFORMANCE
MEASURE

ono
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