
IJIIC t ILL LAAJ
AVF Control Number: AVF-VSR-117.-O88

87-09-02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT: TIC I

Certificate Number: 871211W1.09006 _iLECTE
R.R. Software Inc.

JANUS/Ada, Version 2.0.0 SEP 0
NCR Worksaver

300

Completion of On-Site Testing:

10 December 1987

Prepared By:

Ada Validation Facility
ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081

Approved ior pu-Aic releGSl

' 88 8 31 o 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _ ____ 070 _____ 1__

REPORT DOCUMENTATION PAGE REA INSTUCTIONSM3EFORE COMPLETEING F010
I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: R.R. 10 Dec 1987 to 10 Dec 1988
Software Inc., JANUS/Ada, Version 2.0.0, NCR
Worksaver 300 (Host and Target). 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 10 December 1987 0
United States Department of Defense 13. NUMBER OF PAGS-
Washington, DC 20301-3081 48 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

Wright-Patterson Air Force Base, 15a. RE uSfFICATION/DOWNGRADING
Dayton, Ohio, U.S.A. N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

JANUS/Ada, Version 2.0.0, R.R. Software Inc., Wright-Patterson Air Force Base, NCR Worksaver 300 under
MS-DOS 2.1 (Host and Target), ACVC 1.9.

DD kuwm 1473 EDITION OF I NOV 65 iS U8SOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS OAGE (When Data Entered)

11M

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada, Version 2.0.0 0

Certificate Number- 871211WI.09006

Host: Target:
NCR Worksaver 300 under NCR Worksaver 300 under
MS-DOS 2.1 MS-DOS 2.1

Testing Completed 10 December 1987 Using ACVC 1.9

This report has been reviewed an is approved.

Ada Validation Facility
Steven P. Wilson
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

a WValidatid Orgniztio
Dr. John F. Kramer c T; j -
Institute for Defense Analyses ,
Alexandria VA 22311

F-o- -

Ada Jednt Program Office .-

Virginia L. Castor t . C -
Director .
Department of Defense lnt
Washington DC 20301

IO

IQ=

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions

of validation testing performed on the JANUS/Ada, Version 2.0.0, using
Version 1.9 of the Ada Compiler Validation Capability (ACVC). The
JANUS/Ada is hosted on a NCR Worksaver 300 operating under MS-DOS 2.1.
Programs processed by this compiler may be executed on a NCR Worksaver 300
operating under MS-DOS 2.1.

On-site testing was performed 4 December 1987 through 10 December 1987 at
R.R. Software Inc. in Madison, Wisconsin, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. At the time of testing, version i.9 of 0he ACVC
comprised 3122 tests of which 24 had been withdrawn. Of the remaining
tests, 293 were determined to be inapplicable to this implementation. Not
all of the inapplicable tests were processed during testing; 201 executable
tests that use floating-point precision exceeding that supported by the
implementation were not processed. Results for processed Class A, C, D,
and E tests were examined for correct execution. Compilation listings for

Class B tests were analyzed for correct diagnosis of syntax and semantic
errors. Compilation and link results of Class L tests were analyzed for 5
correct detection of errors. There were 92 of the processed tests

determined to be inapplicable. The remaining 2805 tests were passed. The
results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

2_ 4 5 6 7 8 9 10 11 12 13 14

Passed 190 484 527 236 164 98 140 326 131 36 234 3 236 2805

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S
Inapplicable 14 89 148 12 2 0 3 1 6 0 0 0 18 293

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity to

ANSI/MIL-STD- 1815A Ada.

S

TABLE OF CONTENTS 0

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2 0
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS • • 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD 0

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

9

0

CHAPTER 1

INTRODUCTI ON

-This Validation Summary Report 4*S" describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoruuhly
reports the results of tcsting this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. \The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

M06

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

.To attempt to identify any language constructs supported by the 0w

compiler that do not conform to the Ada Standard

• To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
4 December 1987 through 10 December 1987 at R.R. Software Inc. in Madison,
Wisconsin.

1.2 USE OF THIS VALIDATION SUMMARY REPORT e

Consistent with the national laws of the originating country, the AVO may V
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from: 0

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting ;validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for establishing procedures
for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

~ .~WV

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend interpretations and
Panel possible changes to the ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity regarding
a particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Cla3s B tests are expected to produce compilation errors.
Class L tests are expected to produce link erro.% .

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or

1-4

INTRODUCTION

semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and

executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or _
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class •
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK-FILE, support
the self-checking features of the executable tests. The package REPORT
i~rovides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to 0
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific v .lues--for example, an

1-5

q~ ~ ~ F111 A1

INTRODUCTION 0

illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler r -. st correctly process each of the tests in the suite and 0
demonstr .e conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal 0
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

%

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: JANUS/Ada, Version 2.0.0

ACVC Version: 1.9

Certificate Number: 871211W1.09006

Host Computer:

Machine: NCR Worksaver 300

Operating System: MS-DOS 2.1

Memory Size: 1 megabyte

Target Computer:

Machine: NCR Worksaver 300

Operating System: MS-DOS 2.1

Memory Size: 1 megabyte

2-1

V .' ~~S*~ ~~r~\ '(~ CP6

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and rec'arsive procedures separately compiled
as subunits nested to 6 levels. The compiler cannot process block
statements nested to 65 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55A03A..H (8 tests), D56001B, D64005E..G (3 tests),
and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64-bit integer calculations. (See tests
D4AO02A, D4A002B, D4AO04A, and D4AO04B.)

• Predefined types.

This implementation supports the additional predefined type
LONG FLOAT in the package STANDARD. (See tests B86001C and
B860UlD.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

" Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

N Wi 1 - N11'>4 a

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM4.MAX IFN components raises no exception. (See test
C36003A.)

NUMERICERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when :'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERhOR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension

calculated and exceeds INTEGER'LAST. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

Not all choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a non-null range of a non-null aggregate does not
belong to an index subtype. (See test E43211B.)

" Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION 0

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
not supported. (See tests C35502I..J, C35502M..N, and A39005F•)

0
Enumeration representation clauses containing noncontiguous values
for character types are not supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE :> 0, TRUE => 1) are not
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types must
give the the default value of T'SIZE. All other SIZE
specifications are rejected. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE-SIZE specifications for task types are
not supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications must give the default
value of T'SMALL. All other SMALL specifications are rejected.
(See tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.0

The pragma INLINE is not supported for procedures or functions.
(See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and
CA3004F.)

Input/output.

The packages SEQUENTIALIO and DIRECTIO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. However, an attempt to create a file with
unconstrained array types is rejected. (See tests AE2101C,
AE2101H, EE2201D, EE2201E, EE2401D, and EE2401G.)

Modes INFILE and OUTFILE are supported for SEQUENTIAL10. (See
tests CE2102D and CE21O2E.)

2-5

CONFIGURATION INFORMATION

Modes IN FILE, OTTT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE21021, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL.10 and DIRECT IO.
(See tests CE2102 and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECT_10. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file. (See
test CE2208B.)

An existing text file can be opened in OUT-FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE2110B, CE2111D,
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..D
(4 tests) and CE2111D.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107E..I (5
tests) and CE2111H.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.) S

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests of
which 24 had been withdrawn. Of the remaining tests, 293 were determined
to be inapplicable to this implementation. Not all of the inapplicable
tests were processed during testing; 201 executable tests that use
floating-point precision exceeding that supported by the implementation
were not processed. Modifications to the code, processing, or grading for
34 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1046 1586 10 14 44 2805

Failed 0 0 0 0 0 0 0

Inapplicable 5 5 270 7 4 2 293

Withdrawn 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

0

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 484 527 236 164 98 140 326 131 36 234 3 236 2805

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 89 148 12 2 0 3 1 6 0 0 0 18 293

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122 0

3.4 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A 'E28005C C34004A C35502P A35902C
C35904A C35AO3E C35A03R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C41402A C45614C A74106C C85018B C87B04B S
CC1311B BC3105A AD1AO1A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered S
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 293 tests were inapplicable for the
reasons indicated:

C355021..J (2 tests), C35502M..N (2 tests), C35507I..J (2 tests),
C35507M..N (2 tests), C35508..J (2 tests), C35508M..N (2 tests),
A39005F, and C55B16A use enumeration representation clauses which
are not supported by this compiler.

3-2

TEST INFORMATION

• C35702A uses SHORTFLOAT which is not supported by this
implementation.

" A39005C..D (2 tests), C87B62B, and C87B62D use length clauses with
STORAGE SIZE specifications for access tyles or for task types
which are not supported by this implementatic.•

• A39005E uses length clauses with SMALL specifications that do not
give the default value of T'SMALL, which are not supported by this
implementation.

" A39005G uses a record representation clause which is not supported
by this compiler.

* The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D

" The following tests use LONGINTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45b31C C45632C
B52004D C55B07A B55B09C

• C45231D and B86001D require a predefined numeric type other than
those defined by the Ada language in package STANDARD. There is
no such type for this implementation.

" C45332A: An implementation may, by using a type with a wider
range than the base type of the operands, correctly evaluate an
expression that is expected to raise an exception, even when
MACHINE OVERFLOWS is true.

• C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use *coarse 48-bit
fixed-point base types which are not supported by this compiler.

" C45651A has been ruled inapplicable to this implementation by the
AVO on the grounds that a choice of model numbers to represent the
upper bound of a fixed-point type is legitimate, but not the
choice expected by the test.

• D55AO3E..H (4 tests) use more than 17 levels of loop nesting which
exceeds the capacity of the compiler.

3-3

TEST INFORMATION

" D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

" D64005F and D64005G use nested procedures as subunits to a level
of 10, which exceeds the capacity of the compiler.

" C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

" CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

* CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

" EE2201D and EE2401D use instantiations of package SEQUENTIAL 10 or
DIRECT 10 with unconstrained array typt.,. An attemp. to create a
file with one of these types raises a USEERROR exception.

" CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,
CE2111H, CE3111B..E (4 tests), CE3114B, and CE3115A are
inapplicable because multiple internal files cannot be associated
with the same external file except for reading. The proper
exception is raised when multiple access for any mode except
reading is attempted.

" The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C357O7L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in 'order to compensate for legitimate
implementation behavior. Modifications are made with the approval of the
AVO, and are made in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into subtests so
that all errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated by
the test (such as raising one exception instead of another).

3-4

TEST INFORMATION

The following 33 Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002A B26005A
B27005A B29001A B37106A B37201A B44O01A
B49003A B49005A B49008B B51001A B53003A 0
B55AOIA B63001A B63001B B64001A B91001H
B95001A 3A1101A BAI101C BA1101E BA3006A
BA3006B BA3007B BA3008A BA3008B BA3013A
BC2001D BC2001E BC3005B

BC3009B was split to remove the detected compile-time errors; the remaining
error was detected at link-time.

BC3204D, 8C3205C, and BC3205D reported the expected compile-time errors at
link-time.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by -
the JANUS/Ada was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANUS/Ada using ACVC Version 1.9 was conducted on-site by a
validation team from the AVF. The configuration consisted of a NCR
Worksaver 300 operating under MS-DOS 2.1.

Diskettes containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions were taken on-site by the
validation team. Tests that make use of implementation-specific values
were customized before being written to the diskettes. Tests requiring
modifications during the prevalidation testing were included in their
modified form on the diskettes. i

The contents of the diskettes were loaded directly onto the host computer.
After the test files were loaded to disk, the full set of tests was
compiled and linked on the NCR Worksaver 300, and all executable tests were
linked and run. Results were printed from the host computer.

The compiler was tested using command scripts provided by R.R. Software
Inc. and reviewed by the validation team. The compiler was tested for the
Class B tests using all default option settings except for the following:

3-5

IMIMNWA0

TEST INFORMATION

/Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have to
be responded to.

/W - Warnings off - warnings were suppressed mainly because of the many
confusing warnings the validation tests produce. Many validation
tests have intentional errors (such as an expression which always
raises an exception, use of null ranges, unreachable code, etc.).
The large volume of warnings produced made it difficult to grade
the B-Tests in particular, so they were suppressed.

/T - Trimming code on - this directs the compiler to generate code which
allows the linker to trim unused subprograms. This is necessary in
order to have a few large tests be small enough to run.

/D - Debugging code off - this directs the compiler to not generate any
debugging code (generally line numbers and walkbacks). This was
also used to cut the space used by the tests.

Then, all tests except the Class B tests were linked with the options:

/Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running L-Tests; otherwise every error would have to
be responded to.

/T - Trim unused code - this option directs the linker to remove unused
subroutines from the result file. This can make as much as a 30K
space saving in the result file.

/E - Produce an .EXE file - this option directs the linker to produce an
.EXE file rather than a .COM file; the .EXE file can contain more
code.

Tests were compiled, linked, and executed (as appropriate) using one host
computer. The output of each test was captured with standard MS-DOS I/O
redirection. The Class B tests skipped the unnecessary link and run steps.
Test output, compilation listings, and job logs were captured on diskettes
and archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at R.R. Software Inc. in Madison, Wisconsin on
4 December 1987, and departed after testing was completed on 10 December
1987.

3-6

APPENDIX A

CONFORMANCE STATEMENT

R.R. Software Inc. has submitted the following
conformance statement concerning the JANUS/Ada.

A-1

CONFORMANCE STATE -NT

DECLARATION OF CONFORMANCE

Compiler Implementor: R.R. Software Inc.
Ada®Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: JANUS/Ada Version: Version 2.0.0

Host Architecture ISA: NCR Worksaver 300 OS&VER #: MS-DOS 2.1
Target Architecture ISA: NCR Worksaver 300 OS&VER #: MS-DOS 2.1

Iuplementor' 3 Declaration

I, the undersigned, representing R.R. Software Inc., have implemented no
deliberate ektensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software Inc. is
the owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate name.

Date: 0 / f
/R.R. Sof are Inc.-

James A. Stewart, General Manager

Owner' s Declaration

I, the undersigned, representing R.R. Software Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada
Lan age Standard ANSI/MIL-STD-1815A.

Date:_ _ _ _ _ _ _

A James A. Stewart, General Manager

Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in

chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on

representation clauses. The implementation-dependent characteristics of the

JANUS/Ada, Version 2.0.0, are described in the following sections which discuss
topics in Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-1815A).

Implementation-specific portions of the package STANDARD are also included in

this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -((2.0 ** 128) - (2.0 * 104))
((2.0 ** 128) - (2.0 ** 104));

type LONG FLOAT is digits 15 range -((2.0 * 1024) - (2.0 * 971))

((2.0 * 1024) - (2.0 ** 971));

type DURATION is delta 1.0/4096.0 range -((2.0 **31) - 1)/4096.0
((2.0 *31) - 1)/4096.0;

end STANDARD;

B-1

F Implementation Dependencies 0

This appendix specifies certain system-dependent characteristics of JANUS/Ada.

F.1 implementation Dependent Pragmas

In addition to the required Ada pragmas, JANUS/Ada also provides several others.
Some of these pragmas have a textual range. Such pragmas set some value of
importance to the compiler, usually a flag that may be On or Off. The value to be
used by the compiler at a given point in a program depends on the parameter to
the most recent relevant pragma in the text of the program. For flags, if the
parameter is the identifier On, then the flag Is on; if the parameter is the
identifier Off, then the flag is off; if no such pragma has occurred, then a default
value is used.

The range of a pragma - even a pragma that usually has a textual range - may
vary If the pragma is not Inside a compilation unit. This matters only if you put
multiple compilation units in a file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects only that unit. .
2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.
Certain required Ada pragmas, such as INLINE, would follow different rules;
however, as it turns out, JANUS/Ada ignores all pragmas that would. 0

The following system-dependent pragmas are defined by JANUS/Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ALLCHECKS Takes one of two identifiers On or Off as its argument, and has a
textual range. If the argument is Off, then this pragma causes
suppression of arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK - see below),
storage error checking, and elaboration checking. If the argument is
On, then these checks are all performed as usual. Note that pragma
ALLCHECKS does not affect the status of the rEBUG pragma; for the
fastest run time code (and the worst run ime checking), both
ALLCHECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALLCHECKS does not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALL-CHECKS and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ALLCHECKS may be combined with the JANUS/Ada pragmas
ARITHCHECK and RANGECHECK; whichever relevant pragma has

B-2

Revision 4.4

I Rot.

occurred most recently will determine whether a given check is
performed. ALLCHECKS is on by default. Turning any checks off may
cause unpredictable results- if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done. since any program that handles an
exception may expect results that will not occur if no checking is
done.

ARITHCHLCK Takes one of the two identifiers On or Off as its argument, and has a
textual range. Where ARITHCHECK is on, the compiler Is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise NUMERICERROR; these checks include overflow
checking and checking for division by zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ARITHCHECK may be combined with the JANUS/Ada pragma
ALLCHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur if no checking is
done.

CLEANUP Takes an integer literal In the range 0..3 as its argument, and has a
textual range. Using this pragma allows the JANUS/Ada run-time
system to be less than meticulous about recovering temporary memory
space it uses. This pragma can allow for smaller and faster code, but
can be dangerous: certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more danger is permitted.
A value of three - the default value - causes the run-time system
to be its usual immaculate self. A value of zero causes no reclamation
of temporary space. Values of one and two allow compromising between
cleanliness and speed. Using values other than 3 adds some risk of
your program running out of memory, especially in loops which contain
certain constructs.

DEBUG Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of line number
code and procedure name code. When DEBUG is on, such code is
generated. When DEBUG is off, no line number code or procedure
names are generated. This information is used by the walkback which

B-3

is generated after a run-time error (e.g., an unhandled exception).
The walkback is still generated when DEBUG is off, but the line
numbers will be incorrect, and no subprogram names will be printed.
DEBUG's initial state can be set by the command line; if no explicit
option is given, then DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of JANUS/Ada's power in
describing run time errors.

Notes:
DEBUG should only be turned off when the program has no errors. The
information provided on an error when DEBUG is off is not very
useful.

If DEBUG is on at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG to be off for an entire
compilation, then you can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate compiler
option.-

ENUMTAB Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration
tables. Enumeration tables are used for the attributes IMAGE, VALUE,
and WIDTH, and hence to input and output enumeration values. The
tables are generated when ENUMTAB is on. The state of the ENUMTAB r
flag is significant only at enumeration type definitions. If this pragma
is used to prevent generation of a type's enumeration tables, then the
three mentioned attributes are not permitted for the type;
furthermore, the type should not be used as a generic actual discrete
type, and In particular TEXT_IO.ENUMERATION_1O should not be
instantiated for the type. If the enumeration type is not needed for
any of these purposes. the tables, which use a lot of space, are
unnecessary. ENUMTAB is on by default.

INCLUDE This pragma allows the input file to include more than one physical
MS-DOS file. It takes a string literal as its argument. The file named
by the string literal is added to the text of the source file at the
point of the pragma. The file named should be a text file containing
JANUS/Ada program code, and it must not have any pragma INCLUDE's
in it. It is suggested that each pragma INCLUDE be on a separate
line. This allows the listing and error messages to be generated
correctly. -INCLUDE pragmas should occur inside a compilation unit. S

and the compilation unit may not end inside the INCLUDEd file.

B-4

Revision 4.4

* PAGE-LENGTH
This pragma takes a single integer literal as its argument. It says
that a page break should be added to the listing after the each
occurence of the given number of lines. The default page length is
32000, so that no page breaks are generated for most programs. Each
page starts with a header that looks like the following:

JANUS/ADA Version 2.0.0 compiling file on date at time

RANGECHECKTakes one of the two identifiers On or Off as its argument, and has a
textual range. Where RANGECHECK is on, the compiler Is permitted to
(and generally does) not generate checks for situations where it is
expected to raise CONSTRAINTERROR; these checks include null
pointer checking, discriminant checking, Index checking, array length
checking, and range checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS/Ada pragma ALL_CHECKS; whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
if execution would have caused the corresponding assumption to be
violated. Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles an exception may expect results
that will not occur if no checking is done.

RESTRICTED_ENUMERATIONS
This pragma tells the compiler that you did not use certain features
of Ada enumerations. This allows the compiler to use substantially
less symbol table space, and therefore allows compiling a bigger
program. This pragma takes no parameters, and it must appear
between the context clause and the compilation unit. It may be used
with the RESTRICTEDRECORDS and RESTRICTEDSUBPROGRAMS
pragmas. When this pragma is used, you may not derive enumeration
types, and you may not use the attributes IMAGE, VALUE. and WIDTH.

RESTRICTEDOPERATORS
This pragma tells the compiler that you did not use certain Ada
operators. It takes a single parameter, an integer literal in the range
0 .. 100, and it must appear between the context clause and the
compilation unit. The parameter refers to an internal compiler number
for the operator In question. Because using this pragma can cause
confusing error messages, we do not recommend using It. This pragma
is intended for R.R. Software internal use only. S

B-5

RESTRICTED RECORDS
This pragma tells the compiler that you did not use certain features
of Ada records. This allows the compiler to use substantially less
symbol table space, and therefore allows compiling a bigger program.
This pragma takes no parameters. and It must appear between the
context clause and the compilation unit. It may be used with the
RESTRICTEDENUMERATIONS and RESTRICTEDSUBPROGRAMS pragmas.
When this pragrna is used, you may not derive record types, and you
may not use record aggregates.

RESTRICTEDSUBPROGRAMS
This pragma tells the compiler that you did not use certain features
of Ada subprograms. This allows the compiler to use substantially less
symbol table space, and therefore allows compiling a bigger program.
This pragma takes no parameters, and It must appear between the
context clause and the compilation unit. It may be used with the
RESTRICTED-ENUMERATIONS and RESTRICTEDRECORDS pragmas. When
this pragma is used, you may not derive any non-predefined types,
and you may not use function calls in default parameters.

SYSLIB This pragma tells the compiler that the current unit is one of the
standard JANUS/Ada system libraries. It takes as a parameter an
integer literal in the range 1 .. 15; only the values one through four
are currently used. For example, system library number two provides
floating point support. Do not use this pragma unless you are writing
a package to replace one of the standard JANUS/Ada system libraries.

VERBOSE Takes On or Off as its argument, and has a textual range. VERBOSE
controls the amount of output on an error. If VERBOSE is on, the 2
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE is off, only the line number Is printed.

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

B-6

Revision 4.4

La

The reason for this option is that an error message with VERBOSE on
can take a long time to be generated, especially in a large program.
VERBOSE's initial condition can be set by the compiler command line.

Several required Ada pragmas may have surprising effects in JANUS/Ada. The
PRIORITY pragma may only take the value 0, since that is the only value in the
range System.Priority. Specifying any OPTIMIZE pragma turns on optimization;
otherwise, optimization is only done if specified on the compiler's command line.
The SUPPRESS pragma is ignored unless It only has one parameter. Also, the
following pragmas are always ignored: CONTROLLED, INLINE, INTERFACE,
MEMORYSIZE, PACK, SHARED, STORAGEUNIT, and SYSTEMNAME. Pragma
CONTROLLED is always ignored because JANUS/Ada does no automatic garbage
collection; tbus, the effect of pragma CONTROLLED already applies to all access
types. Pragma SHARED is similarly ignored: JANUS/Ada's non-preemptive task
scheduling gives the appropriate effect to all variables. The pragmaS INLINE,
PACK, and SUPPRESS (with two parameters) all provide recommendations to the
compiler; as Ada allows, the recommendations are ignored. No other languages are
supported that use the INTERFACE pragma. The pragmas MEMORYSIZE,
STORAGEUNIT, and SYSTEMNAME all attempt to make changes to constants in
the System package; in each case, JANUS/Ada allows only one value, so that the
pragma is Ignored.

F.2 Implementation Dependent Attributes

JANUS/Ada does not provide any attributes other than the required Ada
attributes.

Some of the required Ada attributes provide system-dependent information; some
of the interesting cases are listed below.

The Address attribute In JANUS/Ada returns a value of the type System.Address,
which refers to data segment addresses. For subprograms, packages, task types,
and labels, the conventional value 0 is returned (since these addresses are
outside the data segment). If the value returned by the address attribute is less
than zero, it refers to an address that Is 65536 greater than the given value;
that is, the address can be considered to be a whole number in the standard 8086
format.

The Size attribute gives the size of the non-dynamic part of an object, type, or
subtype. For an array with non-static bounds, for example, the Size attribute
returns the size of the array descriptor.

B-7

N ' -,- -~

The attribute StorageSize for an access type always returns the universal integer
value 655836 (the size of the data segment). This occurs because, in theory, the
values of an access type may take up all of the data segment. In practice, some
of the data segment will be taken up by other data.

F.3 Specification of the Package SYSTEM

The package System for JANUS/Ada has the following definition.

package System is

-- System package for JANUS/Ada

type Address is new Integer;
type Name is (MSDOS2);

System-Name : constant Name := MSDOS2;

StorageUnit : constant := 8;
Xemory _ize : constant :-65536;

-- Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the data
-- segment.

-- System Dependent Named Numbers:
MinInt : constant : -32768;
Max-Int : constant 32767;
Max Digits : constant := 15;
Max_Mantissa : constant := 31;
Fine-Delta : constant := 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less accuracy;

-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

-- Other System Dependent Declarations

subtype Priority is Integer range 0..0;

type Byte is specially defined, see below;

end System;

B-8

Revision 4.4

The type Byte in the System package corresponds to the 8-bit machine byte.

The type System.Byte can be considered to be an enumeration type with no visible
literals. The type is discrete, so that values of the type may be obtained using
the Val attribute. The parameter to the Val attribute must have a value between
0 and 255; if it is not, the exception CONSTRAINT_ERROR will be raised.

Since Byte is a discrete type, it can be used as the type of an array index, a
loop parameter, a case expression, and so on. It is not a numeric type, so the
predefined numeric operators cannot be used on objects of the type.

F.4 Restrictions on Representation Clauses

JANUS/Ada representation clauses are currently rather unpretentious. Specifically,
JANUS/Ada currently only allows certain representation clauses that simply echo
what the compiler would have chosen anyway. This minimal implementation of
representation clauses helps the JANUS/Ada compiler to be fast and to fit in the
limited memory address space of various machines.

Speclfcally, there are the following !--trictions:

A length clause that specifies T'SIZE for a type T must give the default size for
T.

A length clause that specifies T'STORAGESIZE is not supported; JANUS/Ada uses a
single large common heap.

A length clause that specifies T'STORAGESIZE for a task type T is currently not
supported. This feature is scheduled for support in the next version of
JANUS/Ada. The given value of T'STORAGE_SIZE specifies an amount of stack
space to be used by tasks of the given type; any allocated objects are allocated
in a different area of the data segment.

A length clause that specifies T'SMALL for a fixed point type must give the
default value of T'SMALL, namely the greatest power of two less than or equal to
the delta specified for the type. This value must be in the range

2.0 ** (-99) .. 2.0 ** 99,
inclusive.

An enumeration representation clause for a type T must map the values of the
type T to consecutive integers starting with zero.

B-9

0_

The expression in an alignment clause in a record representation clause must

equal one.

A component clause must give a storage place that is equivalent to the default
value of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to one less
than the size of the component.

JANUS/Ada does not support any address clauses; hence, JANUS/Ada does not
support any interrupt entries.

The rules for representation clauses, together with the fact that the pragma PACK
Is ignored in JANUS/Ada, imply that typo conversions cannot cause a change of
representation in JANUS/Ada.

F.5 Implementation Defined Names
0

JANUS/Ada uses no implementation generated names.

F.6 Address Clause Expressions

JANUS/Ada does not support any address clauses.

F.7 UncheckedConversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple type or a simple subtype (respectively)
if it Is a scalar (sub)type, an access (sub)type, a task (sub)type, or if it satisfies
the following two conditions:

1) If it is an array type or subtype, then it Is constrained and its index
constraint is static; and

2) If It is a composite type or subtype, then all of its subcomponents have a
simple subtype.

A (sub)type which does not meet these conditions is called non-simple.
Discriminated records can be simple; variant records can be simple. However, •
constraints which depend on discriminants are non-simple (because they are

B-10

Revision 4.4

Lill

non-static).

JANUS/Ada imposes the following restriction on instantiations of
Unchecked Conversion: for such an instantiation to be legal, both the source
actual subtype and the target actual subtype must be simple subtypes, and they
must have the same size.

F.8 Implementation Dependencies of I/O

The syntax of a external file name depends on the operating system being used.
Some external files do not really specify disk files; these are called devices.
Devices are specified by special file names, and are treated specially by some of
the I/O routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:

[a:] [path) filename [.ext]

where "d:" is an optional disk name; "path" Is an optional path consisting of
directory names, each followed by a backslash; "filename" is the filename
(maximum 8 characters); and ".ext" Is the extension (or file type). See your
MS-DOS manual for a complete description. In addition, the following special
device names are recognized:

STI: MS-DOS standard input. The same as Standard_Input. Input is buffered
by lines, and all MS-DOS line editing characters may be used. Can
only. be read.

STO: MS-DOS standard output. The same as StandardOutput. Can only be
written.

ERR: MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

CON: The console device. Single character input with echoing. Due to the
design of MS-DOS, this device can be redirected. Can be read and
written.

AUX: The auxiliary device. Can be read or written.
LST: The list (printer) device. Can only be written.
KBD: The console Input device. No character interpretation is performed,

and there is no character echo. Again, the input to this device can
be redirected, so it does not always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN without
colons ':'). For compatibility reasons,: we do not recommend the use of these

B-i1

names.

The MS-DOS 2.xx version of the LO system will do a search of the default
search path (set by the DOS PATH command) if the following conditions are
met:

1) No disk name or path is present in the file name; and
.) The name is not that of a device.

Alternatively, you may think of the search being done if the file name does
not contain any of the characters ':', ', or 'V.

The default search path cannot be changed while the program is running, as
the path is copied by the JANUS/Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory.

Upon normal completion of a program, any open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any files that
are used.

Sharing external files between multiple file objects causes the corresponding
external file to be opened multiple times by the operating system. The effects of
this are defined by your operating system. This Is only allowed If all Internal
fies associated with a single external file are opened only for reading (mode
In-File), and no internal file is Created. UseError is raised if this is violated. A
Reset to a writing mode of a file already opened for reading also raise UseError
if the external file also is shared by another internal file.

Binary I1O of values of access types will give meaningless results and should not
be done. Binary I/O of types which are not simple types (see definition in Section
F.7, above) will raise UseError when the file is opened. Such types require
specification of the block size in the form, a capability which is not yet
supported.

The form parameter for Sequential_10 and Direct_10 is always expected to be the
null string.

The type Count in the generic package Direct_10 is defined to have the range C.
32767.

B-12

Revision 4.4

21 2

Ulm v- v mV - ' X

Ada specifies the existence of special markers called terminators in a text file.
JANUS/Ada defines the line terminator to be <LF> (line feed), with or without an 0
additional <CR> (carriage return). The page terminator is the <FF> (form feed)
character; if it is not preceded by a <LF), a line terminator is also assumed.

The file terminator is the end-of-file returned by the host operating system. If no
line and/or page terminator directly precedes the file terminator, they are
assumed. If the form "Z" is used. the <Ctrl>-Z character also represents the
end-of-file. This form is not necessary to correctly reaa files produced with
JANUS/Ada and most other programs, but may be occasionally necessary. The only
legal forms for text files are "" (the null string) and "Z". All other forms raise
USEERROR.

If the form Is "", the <Ctrl>-Z character is ignored on Input. The <CR> character
is always ignored on input. (They will not be returned by Get, for instance). All
other control characters are sent directly to the user. Output of control characters
does not affect the layout that Text_1O generates. In particular, output of a <LF>
before a New-Page does not suppress the NewLine caused by the New_Page.

On output, the "Z" form causes the end-of-file to be marked by a <Ctrl>-Z;
otherwise, no explicit end-of-file character is used. The character pair <CR> <LF>
is written to represent the line terminator. Because <CR> are ignored on input,
this is compatible with input.

The type Text_IO.Count has the range 0 .. 32767; the type Text_IO.Field also has 0
the range 0 .. 32767.

IO Exceptions.USEERROR is raised if something cannot be done because of the
external file system; such situations arise when one attempts:

- to create or open a external file for writing when the external file is
already open (via a different internal file).

- to create or open a external file when the external file Is already open for
writing (via a different internal file).

- to reset a file to a writing mode when the external file is already open (via
a different internal file), writing.

- to write to a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an Illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a directory or read-only file)

already exists;
- to delete a protected file; S
- to use an illegal form (Open, Create); or

B-13

SI

- to open a file for a non-simple type without specifying the block size;
- to open a device for direct I/O. 0

IOExceptions.DEVICEERROR is raised if a hardware error other than those
covered by USEERROR occurs. These situations should never occur, but may on
rare occasions. For example, DEVICEERROR is raised when:

- a file is not found In a close or a delete;
- a seek error occurs on a direct Read or Write; or 0
- a seek error occurs on a sequential End Of File.

The subtypes Standard.Positive and Standard.Natural, used by some I/O routines,
have the maximum value 32767.

No package LowLevel_1O Is provided. ,

F.9 Running the compiler and linker

The JANUS/Ada compiler is invoked using the following format: 0

JANUS [d:] filename [.ext] I/option)

where flename is an MS/DOS file name with optional disk name [d:], optional
extension [.ext], and compiler options f/option}. If no disk name is specified, the
carrent disk is assumed. If no extension is specified, .PKG is assumed. 0

The compiler options are:
B Brief error messages. The line in error is not printed (equivalent to turning

off pragma VERBOSE).
D Don't generate debugging code (equivalent to turning off pragma DEBUG)
F Use in-line 8087 instructions for Floating point operations. By default the

compiler generates library calls for floating point operations. The 8087 may
be used to execute the library calls. A floating point support library is still
required, even though this option is used.

L Create a listing file with name fllename.PRN on the same disk as filename.
The listing fle will be a listing of only the last compilation unit in a file.

Ld Create a listing file on specified disk 'd'. Choices are 'A' through 'W'.

B-14

Revision 4.4

0m

Ox Object code memory model. X is 0 or 1. Memory model 0 creates faster,
smaller code, but limits all code in all units of a program to one MS-DOS
segment (i.e.. 64 kilobytes); Memory model I allows code size limited only by
your machine and operating system. See the linker (JLINK) manual for more
information. Memory model 0 is assumed if this option is not given. The
compiler records the memory model for which each library unit was compiled,
and it will complain if any mismatches occur. Thus, the compiler enforces
that if it is run using the /o1 option, then all of the withed units must
have been compiled with the same option.

Q Quiet error messages. This option causes the compiler to not wait for the
user to interact after an error. In the usual mode, the compiler will prompt
the user after each error to ask if the compilation should be aborted. This
option is useful if the user wants to take a coffee break while the compiler
is working, since all user prompts are suppressed. The errors (if any) will
not stay on the screen when this option is used, therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntaox errors can cause the compiler to print many error messages for each
and every line In the program. A lot of paper could be used this way! Note
that the /Q option disallows disk swapping, even if the /S option is given.

Rd Route the JRL file to the specified disk 'd'. Choices are 'A' through 'W'. The
default is the same disk as filename.

Sd Route Scratch files to specified disk. This is useful If you have a RAM disk
or if your disk does not have much free space. The use of this option also
allows disk swapping to load package specification (.SYM) files. Normally,
after both the compiler and source file disks are searched for .SYM files, an
error is produced if they are not all found. However, when the /S option is
used. the compiler disk may be removed and replaced by a disk to search.
The linker has a similar option, which allows the development of large
programs on systems with a small disk capacity. Note that disk swapping is
not enabled by the /S option if the /Q (quiet option) is also given. The /Q
option is intended for batch mode compiles, and its purpose conflicts with
the disk swapping. Thp main problem is that when the /S option is used to
put scratch files on a RAMdisk, a batch file may stop waiting for a missing
.SYM or ERROR.MSG file; such behavior would not be appropriate when /Q is
specified.

T Generate information which allows trimming unused subprograms from the
code. This option tells the compiler to generate information which can be
used by the remove subprograms from the final code. This option increases
the size of the .JRL files produced. We recommend that it be used on
reuseable libraries of code (like trig. libraries or stack packages) - that is
those compilations for which it is likely that some subprograms are not
called.

W Don't print any warning messages. For more control of warning messages, use
the following option.

B- 15

,

r - -, -

SWx Print only warnings of level less than the specified digit 'x'. The given
value of x may be from 1 to 9. The more warnings you are willing to see.
the higher the number you should give.

X Handle eXtra symbol table information. This is for the use of debuggers and
other future tools. This option requires large quantities of memory and disk
space, and thus should be avoided if possible.

Z Turn on optimization. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout your compilation. 0

The default values for the command line options are:
B Error messages are verbose.
D Debug code is generated.
F Library calls are generated for floating point operations.
L No listing file is generated.
0 Memory model 0 is used.
Q The compiler prompts for abort after every error.
R The JRL file is put on the same disk as the input file.
S Scratch files are put on the same disk as the compiler.
S No trimming code Is produced. 0
W All warnings *are printed.
X Extra symbol table information Is not generated.
Z Optimization is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call to JANUS. 0
Spaces are otherwise not recommended on the command line. The presence of
blanks to separate the options or between the filename and the extension will be
ignored.

Examples:
JANUS test/Q/L
JANUS test.run/W4
JANUS test
JANUS test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when a specification
is compiled, and a SRL or JRL (Specification ReLocatable or Janus ReLocatable) file 0
when a body is compiled. To make an executable program, the appropriate SRL and
JRL files must be linked (combined) with the run-time libraries. This is
accomplished by running the JANUS/Ada linker, JLINK.

The JANUS/Ada linker is invoked using the following format:

JLINK [d:3 filename I/optioni

B-16

Revision 4.4

A.

Wbam

Here "filename" is the name of the SRL or JRL file created when the main program
was compiled (without the .SRL or .JRL extension) with optional disk name [d:,
and compiler options i/optioni. The filename usually corresponds to the first eight
letters of the name of your main program. A disk may be specified where the files
are to be found. See the linker manual for more detailed directions. We summarize
here, however, a few of the most commonly used linking options:

E Create an EXE file. This is assumed if the /01 option is given. This allows 0
allow a slightly larger total program size if memory model is used.

FO Use software floating point (the default).
F2 Use hardware (8087) floating point.
L Display lots of information about the loading process.
00 Use memory model 0 (the default); see the description of the /0 option in

the compiler, above.
01 Use memory model 1.
Q Use quiet error messages; i.e., don't wait to interact after an error.
T Trim unused subprograms from the code. This option tells the linker to

remove subprograms which are never called from the final output file. This
option reduces space usage of the final file by as much as 30K.

Examples:
JLINK test
JLINK test /Q/L
JLINK test/Ol/L/F2

Note that If you do not have a hardware floating point chip, and if you are using
memory model 0, then you generally will not need to use any linker options.

B-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG ID1 (1-.199 >'A', 200 =>'I')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..199 :>'A', 200 =>'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..100 =>'A', 101 >'3', 102..200 =>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..100 >'A', 101 =>'4', 102..200 =>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (1..197 :>'0', 198..200 :>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1.. 1 94 >'0', 195..200 :>"69.0EI")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (1..100 =>'A')
A string literal which when
catenated with BIGSTRING2
yields the image of BIG IDI.

$BIGSTRING2 (101..199 =>'A', 200 =>'I')
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDI.

$BLANKS (1..180 =>' ')
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 32767
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

$FIELD LAST 32767
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAME WITH BAD CHARS <BAD I ->
An external file name that
either contains invalid
characters or is too long.

$FILENAMEWITH WILD CARDCHAR BAD*.*
An external file name that
either contains a wild card
character or is too long.

$GREATER THANDURATION 300000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

- Yk',V

TEST PARAMETERS

Name and Meaning Value

$GREATER THAN DURATION BASE LAST 1.0E6
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNALFILENAME1 FROBIIT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 <FROBIT>
An external file name which
is too long.

$ INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal
whose value is INTEGERtLAST + 1.

$LESS THAN DURATION -300_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -1.0E6
A-unive-rsal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS 15 0
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAX INT 32767
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 32768 0
A universal integer literal
whose value is SYSTEM.MAXINT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAXLENINT BASEDLITERAL (1..2 => "2:", 3.197 => '0',
A universal integer based 198-•200 :> "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN 0
long.

$MAX LENREAL BASED LITERAL (1..3 => "16:", 4..196 => '0',
A universal real based literal 197..200 => "F.E:")

whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => '"', 2..199 => 'A', 200 => '"')
A string literal of size
MAX INLEN, including the quote
characters.

$MIN INT -32768
A universal integer literal
whose value is SYSTEM.MIN INT.

$NAME LONG_-LONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NEG BASEDINT 16#FFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not appear
in a listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the
matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINTERROR.

• C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper bound of
a fixed-point type to an object raises CONSTRAINT-ERROR, for that
value lies outside of the actual range of the type.

" C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINTERROR, because its upper bound exceeds
that of the type.

" C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

D-1

WITHDRAWN TESTS

• C37213H: The subtype declaration of SCONS in line 100 is

incorrectly expected to raise an exception when elaborated.

* C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

* C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

. u38102C: The fixed-point conversion on zine 23 wrongly raices

CONSTRAINTERROR.

. C41402A: The attribute 'STORAGESIZE is incorrectly applied to an
object of an access type.

. C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

. A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated
for the base type, raising CONSTRAINT ERROR. Errors of this sort
occur at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

• AD1AO1A: The declaration of subtype SINT3 raises CONSTRAINT ERROR
for implementations which select INT'SIZE to be 16 or greater.

. CE2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

D-2

