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Adaptive Gaussian Pattern Classification

C. E. Priebe

D. J. Marchette

Abstract -- A massively parallel architecture for pattern classification is described. The architecture

is based on the field of density estimation. It makes use of a variant of the adaptive kernel

estimator to approximate the distributions of the classes as a sum of Gaussian distributions. These

Gaussians are learned using a moving mean, moving covariance learning scheme. A temporal

ordering scheme is implemented using decay at the input level, allowing the network to learn to

recognize sequences. The learning scheme requires a single pass through the data, giving the

architecture the capability of real-time learning. The first part of the paper develops the adaptive

kernel estimator. The parallel architecture is then described, and issues relevant to implementation

are discussed. Finally, applications to robotic sensor fusion, isolated word recognition, and vision

are described.

I. Introduction

This paper describes a pattern recognition technique which arises from the related area of

probability density estimation. The technique is described within the framework of a distributed

algorithm implemented as an Adaptive Network System (ANS) (also called "adaptive neural

system" or "neural network"). This gives the potential for real-time processing, and the system is

truly adaptive in the sense that "learning" need never stop. The paper is organized around the two

concepts of density estimation and network architectures. Density estimation and several related

methods are described in the context of a network architecture. Finally, applications to real world

problems using architectures tuned to the particular problem are described.

What is density estimation?
[J

The problem of estimating the probability density function of a distribution from a finite set

of points gampled fr,,m the distribution is findamental to mariy aVpiicaituris. Such lti -s:i....

gives a measure of the variation of the data, the number of modes in the data, and allows

comparisons between different data sets which can be of value in classification tasks.

1t



The probability density function f of a random variable X is a non-negative real valuled

function described by the relationship:

b
P(a<X<b) = fa f(x) dx (1)

where P represents probability. Density estimation is the technique of estimating the probability
density function of a distribution from a finite set of points. The most familiar technique is the
histogram method. Essentially, the histogram method partitions the input space into intervals, and
a count is kept of the number of points in each interval. The counts are normalized by the total
number of points multiplied by the width of the intervals. This gives a histogram which in many
cases is a good estimation for the density. An obvious problem with this approach is that the size
of the interval is critical to the performance of the estimator (in fact this is a problem common to
many estimators). To see this, consider the two extremes of an interval size, one which is so large
that all points lie in a single interval, and in the other extreme an interval size so small that each
point lies in a unique interval. The problem now is to choose the interval size in such a way that
one arrives at a good estimate of the density. Much work has been done in this area [ 13]. This is
the problem that we are addressing with our architecture, though it is based on the kernel estimator,
which is an improvement over the histogram method, and uses Gaussians instead of rectangles to

build up an estimate of the distribution.

What is classification?

Classification involves assigning a class name to each element of a set of data. In addition
to the assignment of a class, it is desirable to give a probability or likelihood that the assignment is
correct. In general, some measure of likelihood is given for all classes from which the data point
could have come. This vector of likelihood measures for each of the classes will be referred to as
the classification vector.

Examples of classification problems are found in many fields. A doctor would like to
classify a patient as high risk or low risk. Stars are classified according to their emissions, size
etc. Clouds are classified as cumulus, stratus, etc., and this information has consequences in the
prediction of weather. Speech processing involves the classification of a signal as a particular
utterance, or as coming from an in,,fividual speaker. All c,' these nrob/et r, rvO'ive ai.;-g a
class name to a data point. The solutions to these problems involve studying a set of data for
which truth is known, and constructing a model of the various classes which allows the

2



assignment of a name to each data point input. One of the most natural ways to do this is to

construct the probability density functions for the different classes, and return the classification

vector for that input. This is the approach that will be explored in this paper.

Overview of network architectures

Network architectures, which fall under various labels such as "neural networks",
"adaptive network systems", "adaptive neural systems", and many others, all have a common basic

architecture (see, for example, [11]). This consists of a collection of independent processing

elements, called "nodes" (also called "neurons" by some) and connections between nodes through

which they communicate. Specifically, a node is a processing element which has any number of

inputs and a single output (Figure 1). The node performs some operation on its inputs, and sends

the results of this operation out. There is a so called "local principle" invoked which states that the

operation performed by the node is dependent on its inputs and its current state alone. No global

information is allowed, and the states of other nodes cannot be used except as they are transmitted

as inputs to this node. The inputs travel along "weighted connections", which can be thought of as

wires with a resistance associated with them. The output of a node gets broadcast to one or more

other nodes along these connections, with each connection weighting this output. The input to a

node, then, is the weighted outputs of other nodes.

Note that Figure 1 indicates that the output of the node is an arbitrary function of the input

and weight vectors. Though this is a reasonable construction in general, the function F is usually

more restrictive. In most architectures, F is a function of I.W. In our architecture, F is a function

of I - W. In addition to these vectors, F may depend on locally stored information, which is not

indicated in the figure.

The basic architecture is then a directed graph of weighted connections, with processing

occuring at each node in the graph (Figure 2). The network is divided into layers of nodes, with

the nodes in a layer having similar properties. The connections conveying input into a node are

referred to as the afferent connections of the node, and the connections projecting out from a node

are referred to as the efferent connections of the node.

Associated with this graph is a learning rule which describes the manner in which the

connection weights and any variables local to a node are changed as data flows through the

network. Typically, a training set of data, a truth set of known data or subset of all available data,

is used to teach the network a desired computation, and after training thic network is tested on a

,!przite set of the same type of data. Another technique of validation, referred to as

cross-validation, is to teach the system on all but one datum, then test on this datum. This process
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is repeated until all the points have been tested. This technique is useful in the event that the

available data is not large enough to allow for significant teaching and test sets.

II. Gaussian Classification

The Gaussian or normal distribution (2) is used extensively in density estimation. In

parametric density estimation, the distribution is assumed to be a known one, in this case a

Gaussian, and the parameters of the distribution are estimated from the data. A more general

approach is to approximate the distribution as a sum of Gaussians. This allows the modelling of

nearly arbitrary distributions in principle, though it can have problems in practice. Distributions

for which some moments do not exist, and distributions with finite support cannot be represented

as sums of Gaussians, but the approximation as a sum of Gaussians may be good enough for most

purposes. The kernel estimator is the most commonly used method of this type.

The multivariate, or multi-dimensional, Gaussian density is given by:

exp ( -0.5 [(jj- U0t -1-1 -(I -u)]
G (! ) = ----------------------------------------- (2)

(2T)(d/2 ) * 171( 1/2)

Here, I is a real valued vector of dimension d, tt is the mean of the Gaussian, and I is the

covariance matrix. The expression in square brackets above is referred to as the Mahalanobis

distance of 2L from LL. Equation 2 is the multi-dimensional analog of the familiar normal

distribution.
One of the applications of density estimation is classification. The classifier partitions the

input space into regions corresponding to the different classes. For example, given a set of

measurements such as blood pressure, heart rate, etc. a doctor would like to classify a heart patient

as high risk or low risk. Given a historical database of previous patients, one could model the

probability density for each of the two categories, then decide the class based on the relative values

of the estimators on the current patient's data. The at solute values of the outputs, combined with

the overall shapes of the distributions, gives a good estimate for the likelihood that the point is in

fact from the chosen class. Figure 3 shows the distributions which may be arrived at from a

sample of such data. Note that mistaken conclusions can arise from not observing the full

distribution. For example, a point near the mean of the high risk patients can give a larger value

for the low risk distribution, a potentially dangerous occurance in the event the point actually

represents a high risk patient. This indicates that the overall shape of the distribution is an

5



important factor in the classification decision. The doctor can weight this information with the

penalty for a wrong assessment to produce a more reliable diagnosis.

The idea fundamental to the work described here is the one of using Gaussian distributions
as the blocks to build up the distribution. The basic idea is to model the distribution as a sum of
Gaussian distributions (Figure 4), in much the same way that the histogram method is a sum of
rectangles. Thus, the estimation is made up of a series of Gaussian "bumps", and the problem is

to find the appropriate Gaussians to model a given data set. It is clear that (given reasonable

assumptions on the distribution as mentioned above) any distribution can be approximated by sums

of Gaussians (Figure 4).

Gaussians as feature detectors

Another interpretation of the Gaussians in this scheme is as basic feature detectors. Here
the goas is classification, rather than density estimation for its own sake. Each Gaussian (2) can be
thought of as keying on a particular feature within the data, and the number of Gaussians used for

the data determines the number of features used to identify the classes. In this interpretation, the
means of the Gaussians become the features, and each Gaussian returns a distance measure
between its feature and the input data item. It is instructive to think of the Gaussians in this
manner, particularly as it gives them an autonomous flavor. Each Gaussian is conceived of as
comparing the input with its stored feature, making its computation ir lependently of the others. It

is this independence that is critical to implementation as a network architecture and leads to the
architecture that will be described.

An interesting interpretation of the Gaussian nodes is as a Voronoi, or nearest neighbor

classifier [7]. Consider a set of points, each with a single Gaussian over them (Figure 5), where
the level curves of the Gaussians are circles (in general the level curves are ellipses). If the

Gaussians are identical except for their means, then for any set of level curves, the intersections
define the boundaries of a Voronoi classifier; that is, the Gaussian nodes produce an optimal

nearest neighbor classifier. If each point is considered to be a -ypical example of a particular
feature within the data, then the Gaussian above the point can be considered a detector of that

feature. It is in this sense that the Gaussian nodes in the architecture described belov: can be
considered to be feature detectors.

There are two extremes in the use of Gaussians for classification. The assumption can be
made that the classes all come from normal distributions, and a single Gaussian can be assigned to
each class, with its mean and covariance matrix estimated from the data. In the other extreme, each

point of the data can be assigned a Gaussian, and the Gaussians for each class are summed to

6
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Figure 3. Densities of high and low risk
heart patients from a fictional study. The
unimodal distribution represents high risk
patients and the bimodal represents low
risk patients.

050 100 150
Heart rote

Figure 4. Representation of a bimodal
distribution as the sum of Gaussian

q distributions.
0-50 5

...

Figure 5. Voronol classification using
Gaussians. The circ!es represent level
curves of the Gaussians centered over
the solid dots. The line segments show
the Voronoi classification.
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produce the estimate of the density. In this case, the data point becomes the mean for the Gaussian

and the covariance matrix is determined experimentally.

A more general case, subsuming both, is the architecture which will be described in the
sequel. Many choices can be made to determine the number of Gaussians to be used in the

approximation, and an adaptive method is described in which the number of Gaussians is

determined by the distribution of the data. This produces a dynamic, rather than static, system
which adapts itself to the data. The main distinction between static and dynamic systems is that a

static system cannot adapt to new data, while a dynamic one is allowed to modify its representation

after the initial teaching.

III. Single Gaussian distribution

Fitting a Gaussian to data

If a priori information about the distribution leads to the assumption that it is a Gaussian

distribution, or if this assumption is not too restrictive, it is reasonable to model the data as a
Gaussian distribution. This involves using a sample set to determine the multivariate mean and

covariance matrix. There are several ways to do this, but the simplest is to proceed from the

definitions. Let 2 be a random vector of m components, and let {Xk be n vectors sampled from

the distribution of x. Then the sample mean is defined to be the vector U, whose components are

In
-t I - xki, 1 :<i :5m (3)

n k=

where xki is the ith component of the kth sample vector k, and the sample covariance matrix is

the matrix I whose components are

I n
i ---. Xxki gi)(xkj- gj), 1 i mI j m (4).

n-i k=1

This is the unbiased form of the covariance [12]. From these definitions, it is clear how an

8



estimate of the distribution would be formed.

Adaptive Gaussian: How to adapt the Gaussians' parameters to new data

Now that the Gaussians' parameters have been determined, how can they be changed to

adapt to new data? The answer is the key to the network solution proposed in Section V. First,

consider the mean it. From (3) we have, after n+l points:

I n+l
i(n+ ) . .... . I x ki (5)

n+1 k=i

1 n 1
. Xki +- X(n+l)i (6)

n+l k=1 n+1

n 1
.----- i(n) +- --- X(n+l)i (7)
n+l n+l

1
= 9i(n) +- ---- (X(n+l)i - pti(n)) (8)

n+1

and so the change in g, Ai, is defined by

1
Aii(n+l . ...... (X(n+l)i - Li(n)) (9)

n+l

Equation (9) gives the amount that the mean should be changed to include the new data point. A

similar formula can be constructed from the sample covariance [1]. This formula hinges on the

computation of the sums Sij:

9



Sij(n+l) = X (Xki - gi(n+l))(Xkj - j(n+l)) (10)

The summations will always be from 1 to n+l in what follows. With this definition, the

covariance after n points is either S(n+1)/n-I or S(n+1)/n, depending on whether the unbiased or

biased estimator is desired [12]. The iterative formula for S is then derived from (10) as follows.

Let

,Vkl = Xkl - itl(n) (11)

Then, replacing t1 in (10) with formula (8), we have

1 1
Sij(n+l) = [cki .----- '(n+l)i][ckj ------ (n+l)j] (12)

n+1 n+1

= YXki Okj + ---- -L-(n+l)i Xkj - (n+l)jX ki + ,(n+l)i (n+l)iI (13)
n+1

1
=Sij(n)+ '(n+l)icc(n+l)j -----. c(n+l)i (n+l)j (14)n+l1

since the sums in parentheses in (13) are equal to Cf(n+l)l with 1 = i orj, as appropriate. This

leads to the update formula:

n
Sij(n+l) = Sij(n) + --- (X(n+l)i - ii(n)) (X(n+l)j - pj(n+l)) (15)

n+1

This formula gives a in a form which can be calculated independently of the update calculation of

the mean, and hence can be carried out in parallel with the mean calculation. In the sequel the

formula for unbiased covariance will be used:

10



1

EUj = ----- sij (16)
n

after n+ 1 points.

Formulas (9) and (15) give an iterative method for determining the mean and covariance for

the case of an estimate consisting of a single Gaussian. In Section V these formulas will form the

basis for the learning rule in a system which uses a sum of Gaussians for its representation.

IV. Kernel Estimators

One of the most popular density estimation techniques is the kernel estimator. For clarity,
the system for a one-dimensional distribution will be described. This extends to multiple

dimensions, though there are serious problems with density estimation in high dimensions.

The kernel estimator can be thought of as a generalization of the single Gaussian

construction above. The idea is to approximate the distribution as a sum of Gaussians. This

allows for approximation of arbitrary distributions. Just as the histogram method approximates the

distribution as a sum of rectangles, the kernel estimator uses a sum of "bumps". These "bumps"
can have width varying from near zero, in which case the sum is, roughly speaking, a sum of
Dirac delta functions ( 13], to very large with respect to the range of the distribution, in which case
all detail is obscured and the result is similar to a single Gaussian.

The kernel estimator is constructed by assigning to each point in the sample distribution a

Gaussian. The estimation is then

A in
f(x) = .... XK(x-Xi/h) (17)

nh

where h is window width, or variance, Xi is the sample point, n is the number of samples, and

K(x) is the kernel, in this case the Gaussian

exp(-x2/2)
K (x) ------------- (18)

(2n1) 1/2



Ir general, almost any distribution could be used for the kernel, but for the purposes of this paper

K will always be a Gaussian.

Assuming that the number of samples is fixed, the only variable quantity in (17) is the
window width h. Different values of h will give different estimators. The kernel estimator is

widely used in practice, though it does suffer from the fact that a single window width is used for

all points (see [13] for adaptive kernel techniques which allow varying the window width). The
main problem with these techniques is that they require a large number of nodes in a network

implementation, which is one of the motivations for the architecture suggested in Section V.

V. Network architecture

The actual computational architecture proposed is designed explicitly for massively parallel
processing. The application areas in pattern recognition, specifically vision and audition, require

enormous processing resources. Only by designing a system with a large number of independent
units, and therefore a high degree of distributed processing, can we hope to approach a real-time

solution to these problems.

The adaptive Gaussian architecture was developed from the principles of neural network
theory, but has a number of fundamental differences. Nevertheless, the basic network features of
information flow can be used to understand the dynamics of the system. The system is described

as a collection of nodes, organized in layers, and connections between these nodes. Preliminary
work can be found in [8]. The design proposed, as well as the most promising application areas,
suggest a discrete-time system in which each node performs some function at each time step. This

does not preclude asynchronous behavior, although the descriptions herein are for synchronous

nodal processing.

The nodes in the network must be considered independent of one another for the purposes
of nodal processing. Each node performs its computations at a given time step based on inputs

from an explicit set of surrounding nodes. As such, this system can be thought of as a type of
cellular automaton [2], albeit with a somewhat complex, and in fact dynamic, neighborhood (in a

network such as this, the neighborhood of Gj is all nodes with efferent connections to Gj). In

addition, if Gj uses its own value at time t to produce a value at time t+l, then Gj is considered a

member of its own neighborhood.

The network is organized in layers of nodes, with the information flowing from the input
layer, through the Gaussian layers (hidden layers), and finally yielding a network output at the

12



output layer (Figure 6). First the individual nodes will be discussed in detail, and this

understanding of the processing capabilities of each member of the network will then be used to

understand the network organization from a macroscopic viewpoint.

Individual nodes

In a description of any highly distributed, nodal system such as this, it is necessary to

define the individual processing elements, or nodes, and their inputs. To do so, the functionality

of the nodes as well as the makeup of their neighborhoods must be addressed.

With the exception of the simple nodes that constitute the input and outut layers, each node

in the system is a Gaussian classification node, so named because the fundamental component of a

network node, the transfer function, is a Gaussian, or pseudo-Gaussian, function (Figure 7). As

such, each node requires two defining characteristics: a covariance matrix, Z, and a vector-valued

mean ,L. Figure 8 indicates the implementation of these defining characteristics. The covariance

matrix for a node Gj is contained at the node, while the mean is defined as the n-tuple

<)A l,J .. ,Anj> of afferent connection weights coming into Gj from the previous layer. These

connections, then, define the neighborhood for Gj. For many applications, the node Gj will be

connected to all of the nodes in the previous layer, though this is by no means a requirement. In

fact, as will be seen in the vision application described below, much can be gained by restricting

the inputs to a node to a subset of the previous layer.

Node GP, so defined, is then quite simple in its functionality. Each processing element acts

on its inputs at each time step according to the standard Gaussian function described in equation

(19), identical to equation (2).

exp ( -0.5 [(x - Ld~t .  (21 (- L,)]
Gj (&) = ......................................... (19)

(2r-)(d/2) * 111(1/2)

Here Gj(,) is the activation value of the jth Gaussian node when presented with vector

input x. 7 is the covariance matrix for Gaussian node Gj, while U is the vector-valued mean for

this Gaussian. d is the dimensionality of this particular Gaussian and is equated with the number

of input connections to node Gj. Since the components of the mean U are represented as a node's

13
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input weights, these weights can be thought of as shifting the origin of the input space for the

node. This Gaussian function is then applied to the inputs of Gj, producing the node's activation

value.

An important element of the system's power and flexibility stems from the fact that each

individual Gaussian node defines its own covariance matrix, in addition to having a unique mean

vector. This implies that the system ultimately consists of nodes whose activation functions, or

transfer functions, are defined by the node itself. Each transfer function takes on its own unique

shape, although all nodes retain the familiar bell-shaped Gaussian signature.

In practice, it is sometimes necessary to deviate from the strict Gaussian activation function

and use a pseudo-Gaussian. By this we mean a transfer function retaining the basic shape shown

in Figure 7, but not necessarily retaining other properties of the true Gaussian. For some

applications the output of two or more nodes must be compared despite the inequality of their

respective input dimensionalities. In these situations it may be necessary to alter the normalization

term of the true Gaussian. A further discussion of these applications is undertaken in Section VI.

The general form for the pseudo-Gaussian activation function is described in equation (20).

Gj(t + 1) = AGj(t) + Bj * Dj * e-nEj (20)

This equation gives the activation of Gaussian node Gj at time t + 1 in terms of the node's

previous activation, Gj(t), and an exponential function of Ej, the Mahalanobis distance between

the input stimulus x and the mean U of Gaussian Gj defined in equation (21).

Ej= (L- t. -. ( L) (21)

A is a short-term memory constant which allows an added dimension of history - the node's

previous activation - to be incorporated into the activation calculation. n is a Gaussian parameter

that alters the default standard deviation - the width of the bell-shaped curve - of dic Gaussian

function. Bj is a statistical parameter based on the number of patterns seen. This parameter can

give an a priori estimate of the probability that the current stimulus belongs to the category

represented by node Gj. In its simplest form, Bj equates to the ratio of the total number of patterns

seen to the number of patterns that have been categorized as belonging to the category indicated by

node Gj.

15



The nodes that make up the input and output layers are much simpler than the Gaussian

nodes. For the input layer, we can think of each node as having a linear transfer function. These

nodes simply send environmental inputs into the network unchanged. The output nodes, on the

other hand, are simple summation nodes. These nodes perform the "sum of Gaussians" described

above and output this result as the network's classification of the current input.

Network organization

The nodes should be thought of as organized in layers, similar to conventional neural

networks. Specifically, we have three or more layers (Figure 6). The first, or input, layer consists

of nodes having interactions with the environment. The nodes here are quite simple, and are

primarily concerned with defining the Zomputational problem for the ensuing time step. The input

layer is therefore the bridge from the outside world into the network. It is through these nodes that

the data is presented to the network.

The remaining layers, of which we need at least two, are essentially feature detection layers

consisting of Gaussian classification nodes. It is in these feature detection Gaussian nodes, and in

their afferent connections, that the learning takes place. The first Gaussian layer (G1) is made up

of nodes with afferent connections coming from the input layer. An initial classification, or
partitioning of the input space, is accomplished at G 1. The first level of features, those explicitly

present in the input pattern, are distinguished at G1.

The output layer is not actually a feature detection layer. At this layer the network performs

a "combination of Gaussians" (Figure 9). This technique, taken from kernel estimation theory

(17), allows the network enormous flexibility. The nodes in the output layer correspond

one-to-one to the classes being discriminated. The non-zero afferent connections into an output

node Oj from layer GI indicate the features, or preliminary Gaussian classifications, that are to be

combined to make up the ultimate distribution for class Cj. While each of the G I nodes that are

summed to create Oj are themselves Gaussians, the final distribution need not be constrained to be

a Gaussian. As described above, a wide variety of distributions can be approximated by a mixture

of Gaussians. The network has the flexibility to model a particular class C based on the statistics

of the input the system has seen, rather than being forced to fit the data to a Gaussian.

The input layer, one or more Gaussian feature detection layers, and the output layer

comprise the network. Upon receiving an input stimulus (visual pattern or digitized waveform, for

example), the information propagates through the network, driven by local nodal calculations,

ultimately determining the activation values of the output nodes, and hence the individual class
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values. These outputs are then interpreted as the relative likelihoods that the current input belongs
to the individual classes. Figure 10 gives examples of interpretations of network outputs.

The network's output values yield a dual interpretation. First, the relative values are
important. The output node with the highest activation value corresponds to the class to which the

network determines the input belongs. In Figure 10a, node 02 is the obvious winner. In addition

to this relative interpretation, there is an absolute one. In Figure 10b node 01 has the highest value

and is therefore the network's best guess as to the classification of the input. However, the low
value of this winning node indicates a lack of confidence in this classification. It is more likely that
the input stimulus used to evoke this output belongs to an entirely new class -- a class for which

the network has not developed a representation. Similarly, in Figure 10c, two unique classes are
indicated with high likelihood. This implies that, although one of the nodes (03) has the highest

vilue, both classes C2 and C3 are potentially correct classifications for the input. In other words,

classes C2 and C3 in Figure 10c have some overlap, and the current input falls in this area of

overlap.
Operating environments in which there is a penalty assessed for misclassification, such as

medical diagnosis, must have this absolute meaning inherent in their outputs. If, for example,
Figure 10c depicts a situation in which failing to recognize the high likelihood of class C2 could

lead to a fatal misclassification, it is imperative to indicate class C2 is potentially the correct

classification.
It is now possible to see that each node is independent of the other nodes on the same layer.

This implies that all the nodes on a given layer, say G1, can process in parallel. Since a layered
system such as that depicted in Figure 6 can be thought of as a pipeline processing architecture, the

entire system, when realized in parallel hardware, can accept inputs with a relatively fine discrete
time step. The delay between successive inputs need be no longer than the time it takes to calculate
a multi-dimensional Gaussian function. The slowest individual node in the system defines the time
step, and that node need perform only a single, simple function calculation.

Learning techniques

While the information flow through the network defines the classification architecture, it is

still necessary to describe the rules for network adaptation. It is unacceptable to require that the
system be handcrafted for a particular problem. There must be a method allowing the network to
adapt dynamically to incoming stimuli, thereby developing an internal representation for the
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Interpretation of Network Outputs

1 == 0.17 01 == 0.23 01 0.19

02 == 0.67 02 0.11 02 0.83

03 == 0.24 03 == 0.13 03 == 0.87

(a) (b) (c)

Figure 10. Example outputs from a 3-class system.
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statistics of the stimuli. This internal representation is necessarily created from layers of Gaussian

feature detectors and the eventual summation of Gaussians, as described above.

This adaptation is necessary because of the restrictions on processing required by a given
application. While the kernel estimator may in some instances perform better, it may require far

more "nodes" than are available in hardware. Another consideration is the problem involved when
the input dimension is increased. A kernel estimator may require an extremely large amount of

teaching data in higher dimensions [ 131. The hope is that the adaptive system will function well

with fewer points, and experiments with applications seem to bear this out.

The adaptation of the network takes place in two separate and distinct forms: alteration of

the Gaussian means tL, represented as connection weights, and alteration of the covariance

matrices Z contained in the individual nodes. These two adaptation techniques allow the network
to develop a useful representation of the data. The adaptation of the covariance matrix for a

particular node Gi, described in equation (15), allows the network to reach a state in which every

node potentially has a unique activation function. The weight updates described in equation (9),

altering the means for each Gaussian, provide for the modeling of the data. These adaptation
techniques allow for the creation of a distributed, redundant model of the data to be used in

classification.

There are two classes of learning, or adaptation schemes. The first, unsupervised learning,
requires the system to develop its representations independent of any feedback as to the correct

classification. The system is presented with a sequence of multi-dimensional input stimuli

I = ( , i 1 .... 'in) (22)

and is required to partition these inputs into categories. In other words, in unsupervised learning
the network is never told what the stimuli entering the system represent in the environment. As

such, it is inherently difficult to get a clear picture of the environment. The best the network can
hope for is to cluster the inputs into categories based on their fundamental characteristics.

Overlapping or confused data will necessarily be clustered in tle same category.

In supervised learning, on the other hand, it is possible for the network to gain a detailed

understanding of the environment. Supervised learning requires, however, that the network have
access to ground truth data (teaching data). Feedback as to what the particular inputs actually
represent must be fed into the system, thereby allowing the network to build its representation in an

informed manner. The network is presented a sequence of teaching pairs
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I ((iO,C), (il,Ci)..., Cn,Cn)) (23)

Each pair consists of an input stimulus and the correct classification of that stimulus. In this way

the network can build a representation that clarifies some of the details of a confused environment.

Although it is still impossible to determine the proper class in an overlapping category situation, it

is possible to make educated guesses based on the probabilistic information content of the teaching

data. An important point here is that the teaching data must be representative of the input the

network is going to see in order to derive optimal performance from the network.

In many application environments a combination of supervised and unsupervised learning

may be best. Initially, the network's internal representation is developed using a teaching data set

for which the truth is known. After this initial learning phase, the system is placed in the

operational environment and allowed to adapt in an unsupervised manner, altering its

representation if necessary. The network, then, receives an input sequence that is the

concatenation of a teaching set with an unsupervised input sequence. Numerous situations arise in

which adaptation beyond the initial supervised learning stage is necessary. Instances where the

teaching data may not be entirely representative of the actual data the network will receive may

include distributions where the known classes may change slowly in time (drift), or when a new

class appears in the input data that was not represented in 1.
The learning rule consists of two parts. First, each node must decide whether or not to

coalesce the new input into itself, using the rules for moving mean and moving covariance

described in Section fI. The network must then decide whether the point is adequately covered

by the existing nodes, or whether a new node should be allocated.
The tradeoff described in Section II between too few nodes per class and too many nodes

per class has a middle ground wherein the actual distribution is closely approximated. In practice,

a network has finite memory and processor resources. In the three layer network paradigm, there

are only N Gaussian nodes available in layer G1. It is necessary to develop an internal

representation which not only models the data, but does so within the physical constraints. To do

so there must be a dynamic criterion for making the decision between allocating a new node for

input ik and coalescing ik with one or more previously created Gaussian nodes. The most obvious

technique for making this decision is to choose a value c as the window for inclusion. Let the

unscaled value of the node be defined by

_Qq(ik) = (2 1 )(d/2) * IX(l/ 2)*Gqdk) (24).
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If input stimulus ik enters the system, and, for all nodes Gq of the same class as the input, we have

.aq(1k) < C (25)

then we will create a new node with mean U = ik and covariance equal to some initial value 10. In

the unsupervised case, we create a node if all nodes so far satisfy (25), regardless of the class

associated with them.

To decide whether to coalesce the input into a given node, we need another constant u<=c.

If for some node Gq we have

.Qq(ik) >- U (26)

then we coalesce the input ik into the node Gq using the moving mean and covariance formulas (9)

and (15). In the case of supervised learning, the node is required to be of the same class as the
teaching input in order to be updated. In the unsupervised case, all nodes are updated,
proportional to the output for the node's class.

The window values c and u should not be static. As mentioned above, hardware
constraints necessitate a dynamic window. The Gaussian layer must monitor itself, dynamically
altering the window value to ensure that the system does not allocate too many nodes. There are a
number of ways to approach this problem, and it is the focus of ongoing research.

The method of network adaptation described is two-fold: adapting the mean and adapting
the covariance. The two can be separated for discussion, and in fact, many application areas do
not necessarily require the adaptive covariance, and in others it might be preferable to adapt the

covariance but leave the means fixed.

The first, and simplest, learning scheme involves using the moving mean technique while
requiring the covariance to remain fixed. This method can be thought of as s'mply creating

Gaussian nodes according to equation (24) and adjusting their means according to equation (9). A
partitioning of input space by hyperspheres of equal size is accomplished. When classifying a
novel input stimulus in this scheme, the network essentially ranks the classes by distances from the

input point.

Adapting the covariance along with the mean allows the system more flexibility. The
moving covariance (15) allows the additional ability to alter the size of the individual hyperspheres
independently, based on the statistics of the incoming data. This then yields a field of Gaussian
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hyperspheres of va-rying size, and the network's classification technique is to have each Gaussian

output its value when evaluated at the current input ik.

An important feature of the proposed learning algorithms is their one-pass nature. If this

system, or any other system, is to be called a truly adaptive network, then it is somehow

incongruous to require off-line learning. Such a learning scheme is more properly thought of as

static, with an entirely new network replacing the old one at intervals, i.e. when a new network has

been taught on the most recent teaching data available. On-line learning, on the other hand,

requires an algorithm that can perform in real-time or near real-time. Although this criterion is

dependent on the environment to some extent, it is clear that real-time learning implies a

single-pass, or at worst a few-pass, learning algorithm. The scheme described herein is a one-pass

algorithm. There is no need to present a particular input stimulus to the network repeatedly. The

learning consists of updating the weights (means) and the nodal transfer functions (covariances),

and allowing the system to adapt to the newest input data ik at the same time the information is

flowing through the network. There may be times when it would be beneficial to have a static

network, a network that will not adapt to incoming data after an initial learning period. The

adaptive Gaussian network can accommodate this need. However, it is in the arena of truly

adaptive systems that the Gaussian network shines. Here, real-time learning is a reality.

Figure 11 shows the results of running 500 points of simulated data taken from a Cauchy

distribution through three systems: a kernel estimator (KE), a fixed-mean, moving-covariance

estimator (FMMCE), and a moving-mean, moving-covariance estimator (MMMCE). Note that the

FMMCE is comparable to the kernel estimator, but uses fewer nodes (recall that the kernel

estimator requires one Gaussian node for each point). If the means are allowed to v.ry, the

Gaussians will move toward the nearest mode, causing the modes to become accentuated. This

can be undesirable in a density estimator, but it can be useful for many classification tasks. In a

classification task, the "features" are the modes of the distribution, and the classifier must be able

to distinguish between these features. In fact, in many cases, as seen in the applications in Section

VI, the covariance can be fixed, remaining unvarying throughout learning. In these systems, the

network learns to find the modes of the distributions; it learns the features which distinguish the

classes.

In the example given in Figure 3, it was noted that a problem can arise if only the value of

the distribution is used in classification. In that example, a point near the mean of the distribution

for high risk patients could be mistakenly classed as a low risk patient due to the fact that it is also

near a mode of the low risk distribution. This problem can be remedied by returning a distance

from the mode, rather than the value of the distribution at the mode. This can be accomplished
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Figure 11. Density estimates using 3 techniques. The data used for the estimates was
sampled from a Cauchy distribution (dotted curve). Each column shows the three
techniques run on the same data with the initial constants as listed at the top:
u = update threshold; c = create threshold; s = starting variance. The techniques are
top: moving mean moving variance: middle: fixed mean moving variance; bottom: kernel.
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using a moving mean architecture since, as seen in Figure 11, the nodes tend to cluster around the

modes in this case.

VI. Applications

The network architecture described in Section V, with slight modifications dictated by the
particular application, is currently being used in a variety of applications. Among these are isolated
word recognition, feature detection in vision, sensor fusion in a robotic environment, interpreting
magnetic resonance inputs and parametric classification of clouds. We will describe three of these

applications: sensor fusion, isolated word recognition and vision. The network runs in the C
programming language on a variety of computers, including SUN, VAX, Convex mini

supercomputer and PC-AT. For the most part, due to the relatively fast learning allowed by the
one-pass adaptive mean/covariance techniques, the applications can be performed on an 80286

based microprocessor.

Robotic sensor fusion / sequence recognition

The ability to understand one's environment is not governed solely by static pattern
recognition. The order in which events occur can be even more important than the events
themselves, and an intelligent system, whether it be a mouse or a robot, must be able to detect and
understand this ordering. Thus the dimension of time allows access to a wealth of information
about the current environment, past events, and expectations about the future. An ability to
incorporate time into information processing is necessary for abilities such as the recognition of
sequences of events, understanding cause and effect, and making predictions and planning.

The ability to recognize sequences is essential for many tasks, most notably those involved
with audition and vision. A sequence may consist of a stream of phonemes, typed letters or frames

from a movie. Once the initial preprocessing has been done and the individual members of the
sequence have been recognized, the task is shifted. The processing is then concerned with
determining which of the known sequences are represented by the input. The answer may depend
on the context in which the input has been received. The system therefore must return all the
sequences that the input might represent, with a confidence rating indicating the quality of match

between the input and the known sequences.

Consider a stream of phonemes. The task is to recognize the words that are being spoken.
Here it is important to recognize the order in which the phonemes appear and the words these
sequences of phonemes might reprcsent. A certain amount of error will appear in the sample due
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to normal fluctuations in a speaker's voice and a large number of variable conditions in the
environment. Also, a sub-sequence may be a legitimate word which the system should recognize

in order to allow a more sophisticated system to deal with the ambiguities.

A simple formulation of this recognition problem, similar to that provided by Tank &
Hopfield[ 14], is shown in Figure 12. The problem is to extract known sequences from noisy data.

Ideally, we must be able to recognize the sequence "I D A H 0" from the stream given, despite the

fact that a perfect match is not present The letters in the figure can be thought of as abstract events

such as sensor firings and the words as higher-level activities, or sequences of events. The letters

along the x-axis are the inputs to the network, received in the order shown (left to right). After

each input, the network attempts to correlate the input received thusfar with the sequences the
system has been taught (iowa, idaho, utah and ohio). The y-axis (Recognition Results)
indicates the degree of match between the known patterns and the input stimuli. These values are

the outputs of the Gaussian classification nodes corresponding to each known pattern. The fact
that ohio and idaho are present in the input, albeit with noise, is indicated by the relatively high
values output by the classification nodes corresponding to these sequences. All the necessary

characters for the sequence iowa are present in the input, but they appear in improper order. This
is indicated by the lower, but non-negligible, output from the iowa classificaiton node. Each
known pattern has a space-character as the last character in the pattern to aid in determining word

breaks. This character is also present as the last input stimulus.
To process this stream of events the system must be able to represent order information and

work on imperfect exemplars. The duration of the constituents of the sequence and the spacing

between them is also important. The system must be able to incorporate this information, learn the
sequences, and adapt to the environment in which it is operating.

The network used for robotic activity recognition runs on an 80386-based microprocessor,
and is very similar to the architecture described above. The application described here uses

ROBART II [3], a mobile sentry robot resident at Naval Ocean Systems Center, as the testbed.
For this application we think of the robot as a sensor platform. ROBART II has multiple
homogeneous and heterogeneous binary sensors, and the task is to accept input from these diverse

sensors, fuse the incoming data, and develop an understanding of the activities taking place in the
environment. To do this, the Gaussian network must be able to accept the various data into a
single field, and develop a representation of actvities of interest that incorporates time as well as

sensor type. The robot has many diverse sensor types, but these initial results are based on just
two working sensor sets: one microwave sensor and five infrared sensors.

The architecture consists of three layers. The input layer is temporally ordered using a

decay scheme. The Gaussian layer recognizes sequences of events, and the output layer sums the
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output of one or more Gaussians (Figure 13). Data comes from the robot in sensor packets,
individual information packets indicating which sensor fired. Ultimately, the network will be

resident on the robot, or on a computer with a link to the robot.

The temporal ordering scheme used is straightforward. After input stimuli are received into

the input field from the various sensors, the output values in the field expenence a decay factor that
acts as an ordering function [5],[9). By using this decay (as seen in Figure 14) the input field can

develop a representation in which the order the stimuli were received is preserved. This decay is

implemented via the following formula:

aj(t+l) = aj(t) - r * aj(t) (27)

where aj(t) is the activation value at time t for input node j, and r is the decay rate. r is chosen

large enough to sufficiently separate the inputs for the Gaussian classification. This ordering can

be used to distinguish between two or more sequences having the same elements, but in a different
order. Since a different order will produce a different pattern on the input layer, the Gaussians can

distinguish between different sequences. The distance of the current input field from the learned
patterns already represented on the Gaussian level is the basis for determining the degree of match,

and therefore the network's classification of the current input.

It is clear that the input field must contain more than a single node for each distinct stimuli.
For example, if the system is categorizing sequences of letters, there must be more than one input

node corresponding to the letter "A". Were this not the case, the second "A" entering the system
would activate the only input node corresponding to "A", overwriting information concerning the

previous "A".

Evaluation of the performance of any temporal pattern recognition system is far from a

straightforward task. In many, if not most, instances the incoming data does not fit exactly with

any of the learned sequences. There is little value in a yes/no decision on the presence of a
sequence. The system is asked instead to give a "best guess" of which pattern(s) it is seeing based
on some set of criteria. This is by definition an ambiguous task, and the ultimate result can only be

evaluated by looking at the criteria and the input data and attempting to generate a "better" solution,

as defined by the human evaluator.
The network has been tested on simulated data under a variety of environmental conditions.

It is necessary to recognize sequences of sensor firings as one of a set of learned sequences even if

the incoming unknown sequence contains extraneous firings, is missing elements (noise
conditions), or multiple sequences are occurring simultaneously.
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Figure 13. Architecture used for robot activity recognition.

Decay at F3 level: r = 0.15
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Figure 14. Example of decay after 5 inputs to the
system.
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The simplest and most straightforward experiment that can be used to test the quality of the
system is that of sequence recognition in a noiseless environment. Here it can be determined
whether the system has performed properly or improperly. As a complete sequence is input it
exactly matches one of the learned patterns, and it is imperative that the system correctly identify
this pattern. In addition, the system must exhibit the ability to indicate the presence of multiple
patterns. Multiple patterns are ultimately flagged as present due to the relative magnitude of their
activations compared to the activations of the other patterns stored in the system. This is vital since
many robotic environments do not ensure mutually exclusive events or patterns. The system may
give as output more than one pattern that has a high value. This represents the fact that the

Gaussian nodes corresponding to each of the indicated patterns received input close to their
corresponding means, and therefore the activation values for these nodes are close to the

maximum possible value the Gaussian can attain.
In evaluating the system under different stimuli conditions, it is useful to understand and

assess the prediction ability of the system. Prediction is the ability to indicate the presence of a
pattern prior to receiving the entire pattern. If the network has been taught that a particular

sequence of twenty sensor firings indicates an intruder has entered the room, we expect the
network to recognize as relevant the sub-sequence made up of the first fifteen of these sensor
firings. A system with little or no prediction capability is of limited use, since the system user
would like to be warned of possible happenings prior to their conclusion, thus allowing the user to
affect the ultimate outcome by acting on early stimuli. The prediction capabilities are relevant in

both noisy and noiseless environments.
Data may be "missed" due to sensor inadequacies or by subtle variations in the actual

pattern itself which alter the sequence in some small way, yet leave the overall meaning of the
pattern unaltered. Although the pattern received does not correlate exactly with the learned pattern,

the network must indicate that the pattern of input stimuli is similar to one of the learned patterns.
There is no hard and fast rule for determining how certain the system should be that it is seeing a
given pattern. The only definitive statement that can be made is that the system must give some
indication that it is close to seeing the learned pattern. The adaptive Gaussian system actually
outputs a "distance" from the learned Gaussian mean to the received stimuli, using this as its
analog output. Therefore the system indicates the presence of a particular pattern despite the fact
that the input stimuli consists of only a partial pattern. An intruder entering the room is indicated

with some smaller degree of certainty despite the absence of two sensor firings that the system has

been taught belong in the pattern.

In the case of extraneous data, or noise, the network is asked to ignore the noise where
possible and process only the relevent information to determine the existence of learned patterns.

30



The individual Gaussians are concerned only with inputs that are represented in their

dimensionality, and therefore ignore stimuli that are not a part of the Gaussian domain. For stimuli

present in the Gaussian dimensionality, the Gaussian nodes attempt to determine which input of a

partirular class (or dimension) is closest to the component of the mean for that dimension. In this

way, extraneous data are disregarded.

The system can be altered to perform at various stages along a continuum from order being

all-important to disregarding order. The extent to which the system can identify patterns despite

the stimuli being received out-of-order rests on a design decision tightly tied to the type of

environment in which the system operates. Since there exist no generic criteria for determining

how important ordering should be, the network needs to be flexible in this regard.

Performance of the system on sensor data has been analyzed. The network was taught to
recognize two separate scenarios: someone entering the room and someone exiting the room. The
similarity in these scenarios figured in their selection for testing purposes. In a general sense, one

is just the temporal inverse of the other. The sensors that fire when a person enters the room

should be, for the most part, identical to the sensors that fire upon exiting. Roughly speaking, the

major difference is that particular sensors fire in the reverse order. As such, these scenarios force

the system to actually incorporate the ordering of the sensor firings, as well as which sensor fired,
in order to discriminate between the two.

The network is taught via supervised learning, using multiple instances of a scenario. Four
separate people were observed entering the room, and the sensor firings that occurred during these

activities were fed to the net along with feedback that the activity "entering" was occurring. The
four "entering" scenarios are then coalesced, using the Gaussian learning scheme described above,
into a template for the activity "entering". Similar teaching sequences were used for the "exiting"

scenario.

At this point the network has developed a representation for both activities, and can be

tested. Sensor firing data from the robot is collected over a long period of time, and this data is fed
into the network. It is known where in the data certain activities occur, but the network is not

given this information. The activation values for the network's output nodes are traced, and the

network does in fact indicate the presence of the activities at the proper points in time. Figure 15

indicates this recognition. The x-axis indicates time, from right to left. As time progresses, the

network receives sensor firings from the robot. The y-axis indicates the output of the Gaussian

classification nodes, with each graph depicting the output of a seperate node. A spike in the graph
is indicative of the network correlating the most recent sensor firings with a known pattern. Notice

the fact that when the network indicates the presence of "entering", it also sees "exiting", albeit

with a lower likelihood. This is expected, and arises from the inverse-time relationship of the two
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Figure 15. Output of robot activity recognition system. The top graph is
the output of the node corresponding to the event "person walking toward
robot" and the bottom is the output of the node corresponding to the
event "person walking away from the robot." During the time shown a

person entered, approached the robot, then retreated and exited.
Spurious sensor firings, inherent in a complex environment, are the cause
of the high noise level seen.
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scenarios.

The data used in Figure 15 was collected using two sensor suites: IR and microwave. The

microwave sensor was malfunctioning, causing it to fire at any motion, and this resulted in a high

level of noise. This noise is the cause of the high output values for the network when "nothing" is
happening. Since in this data set the scenarios consist of the firing of three of the IR sensors and

the microwave, the microwave comprises one fourth of the required sensors. As a result, it has an

exaggerated importance in the network. Even with this handicap, the network can still correctly

distinguish between the two scenarios and learns to ignore the spurious firings.

Isolated word recognition

A promising application of the adaptive Gaussian network scheme is in the area of speech
recognition. Specifically, we have applied a variation of the network to the problem of recognizing

isolated words. The system currently runs on an 80286-based microprocessor. The input to the

system is the digitized waveform (amplitude-time domain) output by a coprocessor A/D board in
the computer. Sampled at 8KHz, integers representing the amplitude of the signal are fed into the

system. The network architecture employed is shown in Figure 16.

A speech signal is a nonstationary signal, variable in the time domain. As such, it is
necessary to break such a signal into smaller wave segments, each of which approximates a

stationary signal. From this approximated stationary signal, one can extract information and
analyze the waveform. An example of this technique is the short-time Fourier transform. The

parameters of a speech signal (the frequencies present and the transitions between frequencies) are
changing throughout the duration of the signal, and it is these changes in time that must be

exploited in the recognition of the waveform.

For our purposes, digitized waveforms representing individual utterances of the digits 0
through 9 were recognized. Gaussian classification with moving mean is performed on the

amplitude-time domain representation of the utterances. The results cited below are for a system in
which the covariance is kept constant. Analysis of the data indicates, however, that an adaptive

covariance scheme will increase the recognition abilities of the system. Research is currently

ongoing in this area.

This system uses a temporal representation combining energy, zero-axis crossings of the

signal and zero-axis crossings of higher derivatives of the signal, and uses the temporal reliability

of these parameters to classify an unknown utterance as one of a known set of learned utterances --
in this case the learning consists of the ten digits 0 through 9. Kedem's work [6] shows that

higher-order zero-axis crossing statistics can be very useful as discriminators. A Gaussian
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template for "ONE", obtained through the coalescing of numerous utterances of "ONE", consists

of multiple multi-dimensional Gaussians (Figure 17). The Gaussians that make up an utterance

template serve different purposes. The firs,, the Z0-Gaussian, is a temporal representation of the

zero-crossings within the utterance. The information contained in the ZO-Gaussians is

predominantly low frequency information. The Z 1-Gaussians, orn the other hand, contain

information about the zero-axis crossings of the first derivative of the signal (peaks and valleys)

throughout the utterance. These crossings contain higher frequency information about the

utterance. Each successive derivative of the signal gives rise to a Zi-Gaussian which is tuned to

higher frequencies than the preceeding Zi. 1-Gaussian. There is, of course, a limit to the number of

derivatives that yield information, and hence that have discriminatory power. We have found,
however, that there exists important information for speech recognition through at least the sixth

derivative.
These Gaussians are then combined to yield the ultimate template for a word (Figure 17).

In addition to the zero-axis crossing Gaussians, an E-Gaussian representing energy information is
included in the template. Once the system has been taught to recognize the required words, an

input stimulus representing an unknown utterance returns a Gaussian distance from both the

Zi-Gaussians for each template. These distances are combined to give the final output of the

network -- the relative lildihood that the input stimulus belongs to each of the learned categories.
Each dimension of these multi-dimensional Gaussians is a small portion of the entire

utterance. Dividing the utterances into sections, each of whose length is a function of the total
length of the digitized utterance, provides a straightforward method of length-normalization which

is useful in the Gaussian classification stage in addition to yielding an approximation of a stationary
signal. If we let N be the desired dimensionality of the Gaussians, then it becomes necessary to

divide the utterances into N sections. Let L be the length of an utterance in digitized samples.

Then each section would be L/N samples long. However, since it is desirable to have overlapping

sections, we want

K = L / ((N+1)/2) (28)

where K is the length of each section.

Then, rather than use this simple count of the number of occurances of zero-axis crossings
in a section, we use this count divided by the length of each section, K, to obtain the frequency of

occurance. In this way we implicitly time warp the utterances such that the impact of differences in
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length is minimized as long as the relative frequencies of these two parameters remain sinilar.
By taking ordered, overlapping counts of the frequency of occurance of both

zero-crossings and peaks, the system is able to characterize an utterance according to the Gaussian

distance from some teaching mean for each category, established using the moving mean

calculation from equation (9). The representation at the input level is m+2 separate N-dimensional

fields; a field for the energy, a field for the zero-axis crossings of the signal itself, and m fields
representing higher-derivative zero-axis crossings, where m is the number of derivatives. As the

input stimulus enters the system, the input level breaks it into sections as described above. For
each section, a count of the number of zero-crossings (or an energy calculation) is obtained, and
this count is then divided by the length of the section to obtain a value for the frequency of
zero-crossings in that section. This value is entered in the arrays at the input level, and the
procedure continues for the next section of the current input. When the input waveform has been

completely received by the input field, all N sections will have calculated a frequency value and

deposited this value into the appropriate slot in the input arrays, yielding an m+2 by N dimensional
input array representing the temporal zero-crossing and energy information inherent in the signal.

The Gaussian field then uses the input arrays to create the Gaussians to be used as
templates in the reco rntion of novel input stimuli. If a template already exists for a word when
new training data enters the system, t' - input arrays are coalesced with the existing Gaussians via

the moving mean calculation to obtain a refined word template.
These Gaussian categorizations, thus coalesced, become the templates for the classification

of unknown utterances. In this case, input arrays are compared with the Gaussian templates to
obtain a Gaussian distance from each stored word template. These distances indicate which

category the system believes the input stimulus comes from. The system performs quite well on
the limited vocabulary tested, with correct categorization in the 90% - 100% range for speaker
dependent recognition. Table I summarizes the results of this word recognition. There are five

sets of utterances, a through e. Each set consists of one utL.erance from each of the ten digits. The
network is taught on four of these sets, and the remaining set is tested to determine iietwork
performance. These results compal-s favorably with conventional approaches [10]. The system

can also be used to perform speaker independent recognition, with many varied utterances from

different speakers being coalesced into one or more Gavssian templates for each word.

This scheme for individual word recognition is conceptually extensible to continuous

speech. Since the Gaussians that make up the word-templates independently calculate their

distance from the input field, it is possible to consider this an ongoing process, performed at each
time interval. In this way, the distortion of words due to run-together will cause the system

performance to degrade, but the mechanics of the processing will remain intact. In fact, if the
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Table 1. Results of speech recognition system on isolated digits.

TEACH TEST CLASSIFICATION RATE

a,b,c,d e 90%

a,b,c,e d 90%

a,b,d,e c 100%

a,c,d,e b 100%

b,c,de a 100%

overall 96%
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system were taught on input data of this type (containing run-together), the performance would

increase. This may, however, require a more intcnsive training period. Also, the processing

requirements for such a system would be quite intensive if the system is considered as a sequential

simulation. As a parallel system, these requirements would not be overwhelming.

Vision

Preliminary work has been done on a system to recognize objects, in this case hand written

characters, under conditions of translation, noise, and scaling. The system is required to recognize

which characters are in the image, and indicate their position within the image. The Gaussian

network is used in a hierarchical structure that allows the system to learn basic features at the first

level, and combine these features in later layers to produce higher level features. Only the last two

layers are classification layers which know the classes represented by the input. The architecture

is very similar to the Neocognitron described by Fukushima [41 (Figure 18).

The system consists of an input image, one or more feature detection modules, and a

classifier. The classifier is just the last two layers of the Gaussian classification system described

above. The feature detection module consists of a layer of Gaussian feature detectors followed by

a layer that combines the different individual features in a small area on the feature detection layer.

Each layer consists of one or more slabs. A slab consists of nodes which share the same mean

vector and covariance matrix. In this manner, each slab can be thought of as a single feature

detector, with each node in the slab looking for the same feature on a different area of the previous

layer.
Figure 18 shows the overall architecture. It consists of an input layer, the visual field, one

or more feature detection modules (only one is shown for clarity), and a classification module.
The Gaussian feature detectors, labeled F in Figure 18, have a small receptive field on the previous

layer. The receptive fields overlap, so that adjacent nodes have overlapping inputs. These nodes

share means and covariances, so the implementation needs only one set of these for each slab.

This layer then learns to recognize features in an unsupervised manner, with a separate slab needed

for each feature. The next layer, M, has a similar architecture. Each node has a small receptive

field, only in this case the node sees only the maximum value of the nodes in its receptive field.

This means that the dimension of these nodes is equal to the number of slabs in the previous layer.

This gives the network a measure of tolerance for deformations and slight translations. As in M,

each node on a slab uses the same means and covariances. These two layers form a module, called

the feature detector module. The final module, the classification module, consists of a layer of

Gaussian classification nodes, G, whose input consists of the output of all the nodes in the final M
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layer, with each node keeping its own mean vector and covariance matrix. These nodes are taught

in a supervised manner, sc they also have a cliss associated with them. The final layer, C,

contains one node for each class (letter) that the network must recognize, and each node computes

the weighted sum of the outputs from the nodes of its class on the G layer, as described in Section

IV.

The system described makes strong use of the interpretation of Gaussian nodes as feature

detectors. In addition, it uses an idea taken from biological visual systems, that of restricting the

input, or receptive field, of the nodes to allow the system to discover local features. These low

level features can aid in attention focusing. The areas of the visual plane that have a high level of

activity amoung these feature detectors are the areas of likely interest. These low level features are

combined in a hierarchical system to combine low level features into more general features.

This system has shown promise in recognizing characters under conditions of translation,

noise and slight deformation, such as would be expected in handprinted characters. The problems

of scale and rotation invariance still need to be addressed. A possible solution to the rotation

invariance problem might be to use the low level features to focus attention, then implement a

log-polar transform, which would give a measure of rotation invariance.

VII. Discussion

An adaptive network architecture has been described which draws upon conventional

statistical methods for its theoretical groundings. Falling somewhere between the single Gaussian

classifier and the kernel estimator, the system is concerned with developing a stntistical

representation of the input data. A two-faceted, one-pass learning algorithm, combining both

connection-weight adaptation and transfer function adaptation, is developed from standard

statistical moving mean and moving covariance calculations.

Several choices can be made in the learning algorithm described. On a high level, learning
consists of adapting the means and/or the covariances. If the means are held fixed, the system is

comparable to an adaptive kernel estimator, but it makes use of fewer nodes than the kernel

estimator. If the means are allowed to vary, the Gaussian nodes tend to cluster around the modes

of the distribution. This allows the system to seek out "features" in the data, and it becomes a

classification system based on these features. The system can be taught in either a supervised or

unsupervised manner, or these methods can be combined to allow the system to continue to adapt

after the initial supervised learning. On a lower level, the constants u and c, which control

updating and creation of nodes, can be varied. These constants control the smoothness of the

distribution and the number of nodes used by the network. More work is needed to determine
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intelligent choices for these parameters for a given data set.

The architecture is a very flexible classification system which has been applied to a wide

range of problems including robotic pattern recognition, vision and audition. It can be easily

tailored to the problem, and the representation produced by the network is easily understood in

statistical terms. The network can be designed within hardware constraints, such as the number of

nodes available in an implementation, to produce a robust, application-dependent network. The

combination of both supervised and unsupervised learning techniques yields a truly adaptive

system which can continue to evolve after initial teaching.
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