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"That whenever any style of ornament commands universal admiration, it

will always be found to be in accordance with the laws which regulate the

distribution of form in nature."

- Owen Jones, "The Grammar of Ornament", 1856

"I often wondered at my own mania of making periodic drawings. Once I

asked a friend of mine, a psychologist, about the reason of my being so

fascinated by them, but his answer: that I must be driven by a primitive,

prototypical instinct, does not explain anything."

- M. C. Escher, Preface to "Fantasy and Symmetry", 1965
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INTRODUCTION

Few applications in the mathematical field of group theory are as

readily understandable as the useful beauty of plane symmetry groups. Plane

symmetry groups are a classification system for describing the symmetry of

two-dimensional figures and patterns. Here mathematics truly comes alive, as

abstract symbols used to describe symmetry can be immediately visualized as

the rotation of a snowflake, the pattern on a vase, or the ceramic tile of an

ornate kitchen floor. The goal of this paper: to introduce the basic theory

behind plane symmetry groups, and to present some simple algorithms one may

use to analyze complex designs.

To make the theory accessible to as broad an audience as possible, the

mathematics has been deliberately downplayed. Simple proofs that would be of

interest to the undergraduate math major can be found in the appendix. More

difficult or tedious proofs are relegated to the bibliography. Since mosaics

and patterns are visual creations, examples and illustrations are used

frequently in the text. The prerequisites to understanding the contents of

this report are modest. The authors assume that the reader is comfortable

with the basic notation and theory for sets, functions, and the composition

of functions.

As we progress, several fascinating topics will branch off from our main

theme. As alluring, beautiful, and important as these topics may be, we will

not take the time to investigate them here. Rather, such topics will be

! referred to the bibliography, affording the ambitious reader the opportunity

to progress further on his own.

9XI-1
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This paper is the joint effort of Major David Jensen and Cadet Firstclass

Gary Harvey. It represents partial fulfillment of Math 499 (Independent

Study) course requirements for Cadet Harvey, a senior math major at the Air

Force Academy. The material for this technical report comes largely from a

two-hour talk Major Jensen developed to introduce plane symmetry groups using

the brilliant work of the Dutch artist, M. C. Escher.
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-'$ . Chapter 1

BASIC THEORY

A binary operation is a function that takes two elements in a nonempty

set G and assigns to them a unique element also in the set G. Using standard

function notation, if * is a binary operation on G we write * : G x G 0 G.

Familiar examples of binary operations abound, with one of the easiest being

the real numbers under normal addition ( + : R x R + R).

With this notion of a binary operation we can define a group--one of the

most important algebraic structures in the world of mathematics.

Definition 1.1 Group (G,*)

A group (G,*) is any nonempty set G together with a binary operation

: Gx G + G that satisfies the following three properties:

Associative Property: a * (b * c) - (a * b) * c, for all a, b, and c E G.

Identity Property: There exists e e G such that a * e - e * a - a,

for all a c G. We call e the identity element

of thi group-

Inverse Property: For every a e G, there exists b e G, such that

a * b b * a - e.
it -1

We call b the inve-se of x and wr~te b " a

'i.

We say (H,*) is a subgroup of a given group (G,*) when H is a nonempty

* subset of G, and (H,*) is itself a group. Also, a group (G,*) is called

Abelian if all its elements commute, that is a * b - b * a for all a and b

in G.

.. '
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The definition of a group is important because the properties listed

above give it enough structure to be useful, while at the same time the

definition is not too restrictive. There are lots of groups. The real

numbers under normal addition (R,+) form a group with identity e - 0 and

inverses of the form a- -a. Rather than R, we could have just as easily

chosen the rational numbers Q or the integers I and formed the groups (Q,+)

and (1,+). For another example, the real numbers (excluding zero) under normal

multiplication, (R - {01, -), form a group with identity e = 1 and inverses

given by a 1 I/a.

It is also easy to define groups of matrices or groups of functions under

various binary operations. In particular, consider R2 , the set of all points

S.. in the plane, and let G be the set of all one-to-one functions from R2 onto R2.

Then consider (G,o) where o represents composition of functions. First note

that all one-to-one, onto functions from R2 to R2 are invertible. Therefore,

elements in G have inverses. Moreover, o is a binary operation on G since the

composition of two invertible functions is again an invertible function. The

other two properties needed to establish that (G,o) is a group follow readily

Sfrom the fact that all invertible functions from R2 to R2 are associative

under composition, and the identity function i : R2 + R2 defined by i(p) - p

for all p e R2 is the logical choice for the group identity element.

-: When investigating the symmetry properties of plane figurzz and patterns,

the group (G,O) is too large to be very useful. Our first real progress in

applying group theory to questions of symmetry comes when we consider a special

subset H of G. We let H be precisely the invertible maps from R2 to R2 that also

preserve distance between points. Using the usual notation of vertical lines

'p.-
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for distancP, we have H - la e G : 1p - qj - ja(p) - a(q)l for all p, q e R

where lp - qj is the straight line distance from point p to point q and

!a(p) - c(q)j is the straight line distance :rom point a(p) to point c(q).

It is easy to show that H is a subgroup of G (see appendix A), and we call

the elements of H the motions, or isometries, of the plane. Moreover, it can

be shown that there are only four types of motions possible [1]:

1. Translation A mapping a that sends all points in R2 the same dis-

tance d in the same direction e. To illustrate, con-

sider pi' qi e R 2 with a(pi) -qi i - 1, 2, 3:

Figure 1.1

2. Rotation A mapping a obtained by rotating the plane clockwise a

fixed amount * about a fixed point p. To illustrate,

consider pI, q, c R2 with a(pl) -ql:

I

I P

S.

Figure 1.2

F -5-

."

SW, W - r ~.43*



3. Mirror A mapping c obtained by reflecting the plane through a

fixed line L (that is, a mapping that sends each point p

to a point q such that L is the perpendicular bisector

of the straight line between p and q). To illustrate

consider pit qi C R2 with E (p1 ) - q,, i - 1, 2, 3, 4:

L ,

'a'
Figure 1.3

4. Glide A mapping a composed of a translation in the direction

of a fixed line L, followed by a mirror through L. To

illustrate let pit qe R2 with a (p1) - q,, i - 1, 2:

a. y
V

a,

* _Figure 1.4

aHaving defined the subgroup (H,o) Gf (G,o) we are nearing our goal of being

able to use group theory to analyze the symmetry of figures and designs in the

plane. The problem is that (H,o), as a set, is still too large. The next

-6-
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definition overcomes this problem by restricting (H,o) in a very natural way,

leaving us with precisely the motions we need to describe the symmetry of a

given figure.

Definition 1.2 Symmetry Group of T

Let T be any nonempty set of points in the plane, T C P.2. Define a sub-

set HT of H by HT = [a e H : a(T) - T}. Here a(T) - T denotes set invariance,

that is a(p) e T for every p c T. It can be shown (see appendix B) that

HT is itself a subgroup of G. We call HT the symmetry group of T.

The way to view this definition of HT is as follows:

- Start with a given figure in the plane. For a simple example, take a circle

of radius r centered at the origin of the Cartesian coordinate system.

- Consider the points that make-up the figure to be T. Therefore, for our

example, the set T is the locus of points satisfying x2 + y2 - r2.

y

Figure 1.5

-7-

% %%%



- Then HT is exactly those translations, rotations, mirrors and glide. that map

T back onto itself. When T is the circle shown in Figure 1.5 (in fact, when T

is any bounded figure) we will see in Chapter 2 that translationb and glides

A cannot be elements of HT . If we consider rotations, there are obviously an

infinite number of possibilities, since any rotation about the origin will

leave T invariant. In addition, any mirror through a line passing through

the origin will also map T onto itself.

Example 2.1 Find the symmetry group of T where T contains only two distinct

points, say T - {plP21 . Note first that the identity map i is in R T . For if

i(p) - p for every p in the plane, then certainly i(T) - T. To determine the

other motions in HT, let L, be the straight line through points p1 and P21

and let L2 be the perpendicular bisector of the line segment from p1 to P2.

IALIZ

Figure 1.6

Using the definitions of a translation and a glide, it is easy to see that as

in the case of the circle, translations and glides cannot be elements of HT.

The only rotation in HT is the rotation of 1808 about the point p0. (We don't

count the case where we pick a point, say pl, and rotate everything 3600 about

that point. After all this just yields the identity map, which we have already

0 _acknowledged as being in HT.) The only two mirrors possible are reflections

through the lines L I and L2. Therefore, H T contains exactly four elements: the

identity map, 1800 rotation about p0 , reflection through L,, and reflection

through L 2.

-8-
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Example 2.2 Find the symmetry group of T where T is the set of points that

make-up the footsteps depicted below [21:

, 4r

Figure 1.7

The footprints are assumed to continue infinitely to the right and to the left.

There are no rotations or mirrors in HT. However, this is the first example we

have encountered where translations play a part. A translation of length t (or

any integer multiple of t) in the direction of L will map T onto itself. There

is also a glide in this case consisting of a t/2 translation (or any integer

multiple of t/2) in the direction of L followed by a reflection through L. Note

that because different integer multiples of the period t (t/2) give rise to

different translations (glides), HT has an infinite number of elements. A

symmetry group that has an infinite number of elements is called an infinite

symmetry group. Likewise, a finite symmetry group is one with only a finite

number of elements.

A major goal of this paper was to introduce the basic theory behind plane

symmetry groups. In this chapter we have accomplished that by developing the

foundational idea of the symmetry group of a set T. In the next three chapters

-we will see how to use this idea to classify the symmetry of different figures

and designs in the plane. Specifically, we will accomplish the following:

-9-
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Chapter 2: Classify symmetry groups for plane bounded figures.

Chapter 3: Classify infinite symmetry groups for patterns that repeat them-

selves regularly in one dimension. (Frieze Groups)

Chapter 4: Classify infinite symmetry groups for patterns that repeat them-

selves regularly in two dimensions. (Wallpaper Groups)

-10-



S

Chapter 2

SYMMETRY GROUPS FOR PLANE BOUNDED FIGURES

A bounded figure in the plane is one which can be encompassed by a circle

of finite radius. In this chapter we classify the types of symmetry groups,

that is the sets of motions HT, that are possible for plane bounded figures.

The task is easier than it might first appear. Translations (and glides) cannot

be motions in the symmetry group of a set T which represents a bounded figure.

A simple proof of this fact can be found in Appendix C. Therefore, in dealing

with plane bounded figures, we need only consider rotations and mirrors.

Consider the symmetry group of an equilateral triangle:

L "X
OP

'4, • 1, 3

Figure 2.1

/-11-
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' T  ' { " 2 ,3 ,4 ,5 ,6J where

a, = identity map
o2 - rotation 120 clockwise around p

aS = rotation 240* clockwise around p

a4 - reflection through L

04 = reflection through L2

a6 - reflection through L3

We call this symmetry group a dihedral group and write HT =D 3. The order of a

group is simply the number of elements in the group. Therefore, the order of

D3 is 6. A part of D3 that we are especially interested in is the subgroup

* C3 - 1o 1,2,"3}. Note that C3 can be generated by repeated compositions of the

single rotation a2:

C ~2 31

.3 {02,03,01}l - Ia '2 *02, 02 * 2 0 021 '{a 2,CE2*0 }

A group which is generated by a single element in the group is called a cyclic

group. Therefore C3 is a cyclic subgroup of order 3.

From the development of D3, the symmetry group of an equilateral triangle,

it is easy to envision a similar development for the symmetry group of a square.

We would obtain a dihedral group D4 with eight elements, (4 reflections and 4

rotations). Once again, the rotations would form a cyclic subgroup, in this case

C4. More generally the symmetry group of any regular n-sided polygon is Dn

(with subgroup C n) where [21:

Cn is a cyclic group of order n, consisting of clockwise rotations through

k (3600 0 < k < n, around a fixed point p.

-12-



D is a dihedral group of order 2n and consists of C together with reflec-n n

tions through n axes that intersect at p and divide the plane into 2n equal

angular regions.

With these definitions of C and D we can now classify all possible
n n

finite symmetry groups for plane bounded figures. Specifically, we have the

following powerful result:

Theorem 2.1 A finite symmetry group of a plane bounded figure must be either

a cyclic group Cn or a dihedral group Dn -

An especially well-written proof of Theorem 2.1 is provided by Durbin [2].

We will not discuss the proof here except to note that the word "finite" is

important. The circle we discussed in Chapter I is certainly a plane bounded

figure, but it cannot be classified as either Cn or Dn for finite n. As we saw

earlier, the symmetry group of a circle contains an infinite number of rotations

and reflections. The symmetry groups for circular figures are a special case

and are called continuous symmetry groups. They are often denoted C.. Except

for circular figures, all plane bounded figures have finite symmetry groups and

Theorem 2.1 applies.

While Cn and Dn (and C. for circular figures) classify the symmetry for

bounded figures, we still need to address the more difficult unbounded case.

That's the next challenge to be taken up in Chapters 3 and 4 where we will look

at patterns (figures that repeat themselves at regular intervals in the plane).

Before moving on however, let's consider some especially beautiful examples of

plane bounded figures. The cardioids and roses that follow were derived from

-13-
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Dr. Peter M. Mauer's recent work in computer graphics (7]. A special thanks to

Lt Colonels William J. Riley and Robert L. James, Office of the Dean of

the Faculty, U. S. Air Force Academy, Colorado, for programming Dr. Mauer's

algorithm and actually generating the illustrations.

0

Figure 2.2

0 '"Spiral of Archimedes"

A Symmetry: D1 (Bipolar Symmetry)

-14-
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Figure 2.3

Symmetry: C 2

N ~-1I5-
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Figure 2.4

Symmetry: D2 (Klein 4-Group)

Labeling Figure 2.4 as D2 is an example of the liberty one might take in

classifying the symmetry of a given design (note that a reflection a through a

vertical line through the center of 2.4 does not quite yield invariance a(T) -

T, since the two sides do not perfectly align). In fact, with every picture of

a planar figure one should remember that perfect symmetry is a mathematical

ideal--an ideal not fully realized by the stroke of any pen. Indeed. if just

one molecule of ink is "misplaced" after a motion, an infinite number of points

are not invariant. So when is there "enough" symmetry present to classify a

given picture as having a certain symmetry type? The answer is subjective. In

many contexts, the following consideration is useful: did the artist who

created the design intend for the viewer to interpret it as having perfect

symmetry?

-16-



Figure 2.5

Symetry: D3
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Figure 2.6

* Symmetry: D8

Figure 2.7

0 Symmetry: D11
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As a final example, the 26 letters of the alphabet represent 5 different

symmetry types. One from each type is listed below. Can you classify the other

21 letters?

F - CI

*! H - D

S - C2

S- 
2

0 - C

Figure 2.8

.,

V

-19-
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Chapter 3

FRIEZE GROUPS

A frieze is any decorative strip or border that contains lettering, sculp-

ture, pictures, etc. (In classical architecture, the frieze is that part of the

entablature between the architrave and the cornice.) From our group symmetry

point of view we are interested in those two-dimensional designs located in a

frieze that repeat themselves at regular intervals. We assume these designs

continue infinitely in both directions along a straight line. The footsteps we

encountered in example 1.2 are a good example of a frieze pattern.

I t I

ST

' I ! I

i%7

%"

Like all frieze patterns, the symmetry group of the footprints is an infinite

. " symmetry group. However, note that the footprints do have a minimum translation

0i period, in this case t. The existence of a minimum translation period identifies

-20°
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the pattern as having what is called a discrete symmetry group. This is not

always the situation, as when we consider the stripe pattern depicted below:

Figure 3.2

A stripe pattern has no minimum translation period and we say that its

symmetry group is continuous (this is really the same idea we encountered with

circles when dealing with bounded figures--there no minimum rotation existed).

We will assume for the rest of this paper that we are dealing with only discrete

symmetry groups.

The symmetry group of a frieze pattern is called a frieze group, and there

are exactly seven types of frieze groups [6]. This classification is based on

the fact that the only motions possible for a frieze pattern are:

- translations along a fixed line L
- 180* rotations about points on L
- a horizontal mirror through L
- vertical mirrors perpendicular to L
- glides with respect to L

Every frieze group must have translations, but it is the "resence or absence of

the other motions that defines the symmetry. The seven types of frieze groups

are depicted in the following illustrations taken from John R. Durbin's book [21,

"Modern Algebra: An Introduction."

-21-
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0t

-FL L L L tg

TTTTtv

t rgv

trhv

Figure 3.3 A

Key: t - translations
g - glides
v - vertical mirrors
h - horizontal mirror
r - rotations

Doctors Bruce Rose and Robert Stafford have recently created a simple

algorithm to aid in classifying frieze patterns [8]. With slight modification,

the algorithm is as follows:

-22-



no
Tran~slations? Not a Frieze Group

yes

180 ° Rotations? Horizontal Mirror? Vertical Mirrors? des?

yes yes yies o

yes

Figure 3.4

Example 3.1

Classify the symmetry group HT for the graph of f(x) - sin x.

Figure 3.5

-23-
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While translations along the x-axis (minimum period of 2w) are obvious,

there are also 1800 rotation points along the x-axis at + nw, n an integer.

Using the algorithm in Figure 3.4 we would next ask if HT contains a hori-

zontal mirror through the x-axis. It doesn't, but we do observe that a trans-

lation of w units along the x-axis followed by a reflection through that axis

is a member of the symmetry group. Therefore, glides are elements of HT and

we conclude that the symmetry type is "trgv".

We conclude this chapter with seven illustrations taken from Owen Jones'

classic "The Grammar of Ornament," first published in 1856 [4]. As an

example of the impact color has on symmetry, notice that the coloring in the

"trhv" illustration doubles the minimum translation period. Polychromatic

Symmetry is a fascinating field and for those interested in learning about the

impact of color on symmetry one of the most enjoyable places to start is

Caroline MacGillavry's book [5], "Fantasy and Symmetry: The Periodic

Drawings of M. C. Escher".

Key to Figure 3.6:

t - Medieval Stained Glass - Cathedral of Bourges

tv - Medieval Stained Glass - Cathedral of Bourges

tr - Persian Manuscript - British Museum

trhv - Persian Manuscript - British Museum

th - Medieval Stained Glass - Cathedral of Bourges

tg - Persian Manuscript -British Museum

* trgv - Greek Vase - Britsh Museum or the Louvre

-24-
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Chapter 4

WALLPAPER GROUPS

Wallpaper patterns are those patterns in the plane that repeat themselves

at regular intervals in two non-parallel directions.

"

Figure 4.1

The above pattern is a reduced copy of an actual wallpaper sample. Notice

that we have independent translations along the two lines L1 and L2. We assume

the wallpaper design repeats itself infinitely, filling the entire plane. We call

the symmetry group of a wallpaper pattern a wallpaper group. As with a frieze

group, a wallpaper group is an infinite symmetry group. The key to classifying

wallpaper groups was unlocked in the 1890's by the Russian crystallographer E. S.

Fedorov: there are only 17 types of wallpaper groups. We will not take up the

proof of Fedorov's assertion except to say that at the heart of the proof lies one

of the most elegant and useful tools found in any branch of mathematics, the

Crystallographic Restriction. The Crystallographic Restriction tells us that the

only nontrivial rotations possible in a wallpaper group are rotations of 60*, 90*,

-26-



120, and 180. The best informal discussions that explain the Crystallographic

Restriction and why there are 17 types of wallpaper groups are given by Durbin [2]

and Schattschneider [9]. For those with a hearty background in mathematics, a full

group theory development is given by Schwarzenberger [11].

In theory, determining the symmetry type of a given wallpaper pattern should be

easy and straightforward. In reality however, the symmetry type can often be

devilishly obscure. Therein lies the challenge and fun. Fortunately, there are some

marvelous aids to help us analyze complex designs. Schattschneider has compiled a

useful table for classifying wallpaper patterns [9]. Virtually the same table has

been put into algorithm form by Drs Rose and Stafford [8] and is reproduced from

Durbin's book [2] in Figure 4.2.

Traslaion in to No No wo-d"eu

No

Yes Clee? yfrueso~ . wle

perpendiular No0-p mi No Glide
, 
iina = -'iD *7 Y"i

oi a mioor adlaws? mi*r

1. do me 4

of *oto G l9'p2 ines llo-
• -- r'lll mffomirrlo lis?

Iu mtno __iro Zin8

Fud oreglet r t 4 r a b

0I

ofacne fof of duo 3?tVaiam lso

Figure 4.2
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In Figure 4.2 the symbols used for the 17 types of wallpaper groups (also

called two-dimensional crystallographic groups) are those most commonly

accepted and come from a coding system designed by crystallographers. A full

explanation of the symbols is given by Schattschneider [9].

Example 4.1 Classify the symmetry group HT for the following illustration

taken from Owen Jones' book [4], "The Grammar of Ornament."

6*.

Figure 4.3

This pattern is easy to analyze using the algorithm in Figure 4.2. First, note

that there are vertical mirror lines thr, ugh the center of each leaf. By

observation, these are the only mirror lines for this pattern. Therefore,

non-parallel mirror lines do not exist. We next ask if there are horizontal

glide lines (perpendicular to the vertical mirror lines). The answer is no

since any horizontal reflection would have to change the "arches" from being

concave down to being concave up. This brings us to the final question: Are

there vertical glide lines? Careful observation tells us that there are if we

shift the pattern vertically half a period and then reflect it through lines

like the one depicted in figure 4.4. Figure 4.5 traces the decision process we

have followed and we conclude that the pattern has symmetry "cm".

-28-
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i We conclude this chapter with illustrations of the 17 types of wallpaper

. groups. Three examples are given for each type. In every case the first example

is from a paper written by George Polya in 1924. In that paper, Polya included a

complete set of patterns depicting the 17 wallpaper groups. Historically, Polya's

I/'i examples are important in that they were studied and copied by Escher--knowledge

" Eseher built upon to eventually create his most brilliant designs (10]. The

~second and third examples are from Durbin (2] and Schattschneider [9])

respectively.
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APPENDIX A

Let (G,o) be the group of all one-to-one, onto functions from R2 to R2 under

composition and let H be those functions in G that preserve distance, that is:

H - ja e G: lP - qi - Ia(p) - a(q)I for all p, q e R 2 }

Then (H,o) is a subgroup of (G,o).

Proof We use the following simple theorem found in every undergraduate modern

algebra text: A nonempty subset H of G is a subgroup of G if and only if for all a,

8 e H, the element a o 8 E H.

We start by noting that H is not empty since the identity map preserves

* •distance. Let a and 8 be any two elements in H, and let p and q be any two elements

vmR 2 .

Notice that 8 e H implies 8 £ H since

S -)(p
) 

- (0 -1)(q)i - p - O( 1 (q)JJ - ]8-1 (p) - 0-1(q)l

What we must show is a o 8- 1 c H, that is a o 8-  preserves distance. It follows

immediately since a C H and 8-£ H yields

I(a o 81)(p)- (a I 8)(q)l - a(l-(p))- a8-1(q))j

-18-(p) -- 1(q)l

- - qj

Q.E.D

6%'

p.%
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APPENDIX B

Let (H,o) be the group of all one-to-one, onto functions from R2 to R 2 under

composition that also preserve distance. Let T C R2 , T * *, and define

HT - {a e H: a(T) - T}. Then (HT,o) is a subgroup of (H,.).

Proof The identity map i is in HT since i(T) - T. Let a, 8 be any two elements in

HT . Notice that 8 e T implies C - e T since T - 8 1 ((T)) - 8-(T). We need only

show (a o S- ) £ HT . It follows easily since a e HT and - £ HT yields

(a o 8- )(T) - a(C-(T)) - a(T) - T.

I Q. E. D.

,

*1
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4 APPENDIX C

Nonzero translationi cannot be motions in the symmetry group HI of a bounded
4.

figure.

Proof Since we are dealing with a bounded figure, pick a circle with radius R such

that all of T lies inside the circle. We will assume there exists a c HT, where a is

4, a nonzero translation with translation distance d > 0, and arrive at a contradiction.

Since (HT,*) is a group, it is closed under composition: in particular, a k: k a

*positive integer} C HT . Note that if we apply ck to the plane we are translating

every point in the plane a distance kod. For large enough k, say K, we are shifting

the entire plane a distance K'd > 2R, and points that start off inside the circle

must end up outside the circle. But this obviously means that invariance no longer

K Kholds, that is a (T) * T. We conclude a , contradicting our previous statement.

.D.

Q.E.D.
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