
NSWC TR 87-181

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

I, RPORT SECURY CO,.ASSICA- L RESTRICTIE MARKINGS

UNCLASSIFIED
Za. SECUTM CLASSKCATION AUTHOaRn 3. OIST-RUIRITON/AVAILAIBILfY OF REPORT

Approved for public release; distribution is
2b. DELASSIAICATIOD OWAING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMUER) S. MONITORING ORGANIZATION REPORT NUMUBER(S)

NSWC TR 87-181
Ba. NAME OF PERFORING ORGANI.ATION 6b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Surface Warfare Center (if ________ Strategic Systems Program Office

k. ADORESS (Gy, Stat, an&W ZIP Code) 7b. ADDRESS (Cfty, State, and ZP Code)

Dahlgren, VA 22448-5000 Washington, DC 20376-5002

NAME OF FUNDING/SPONSORING iW OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ((Wicable)

Strategic Systems Program Office
. ADORSS (Ci t. ate.Znd, Cods) 1. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Washington, DC 20376-5002 ELEMENTNO. No. NO. NO.

64363N J0951
11. TILE (Indud Sec Oassr fsion)

Higher Order Software - Evaluation and Critique
12. PERSONAL AUTHW)

Huber, Hartmut G. M.
13..4L I OF REPORT ,3,. TIME COVERED 14. DATE OF RPM(TYr.. Aft, Oy) IS. PAGE COUNT

Final FROM 1976 To 1987 1987,August 69
IL SUPPLEMENTARY NOTATION

17. COSATI CODES IL SUIJECT TERMS (Continue on evere if necessy and identfy by block nmba)

IW G SUL G oftware Specifications,Functional Programming'Abstract Data
,'Efficiency Productivity, ILutomatic Documentation. (,-/

It ABSTRACT (Contiu an mvmn if necawy &n dnfti by block nunibe

Higher Order Software (105) is resented by itsauth-oras a methodology for system design and
implementation based on a functiinal view of a system and its development process. This abstract
methodology is implemented as a set of integrated tools, collectively called USEIT. This report addresses
and evaluates the theoretical aspects of HOS as well as the practical aspects of its implementation in the
formofUSEIT. k fL o,'e$.)

28. DISTRNLTOAVAILAMY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNO.ASSIEMfUNUIO XSAMIE AS wr. oIcusES UNCLASSIFIED

n& NAME OF RESPONSILE IIVIODUAL M TELEPHONE MUMM 22c. OFFICE SYMBOL
(bndu* AnM Code)

Hartmut G. M. Huber (703) 663-7510 Code K52

FORM 1473.84 MAR EDITION OF I APR IS OSSOM . UNCLIE
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UN'4CLAqIFIED
SKUN" QASSIkOArlft OF TWIS PAGE

NSWC TR 87-181

FOREWORD

This report was written in the Quality Assurance Branch (K52), Submarine
Launched Ballistic Missile (SLBM) Software Development Division (K50), of the
Strategic Systems Department (K) at the Naval Surface Warfare Center (NSWC),
Dahlgren, Virginia.

The purpose of this document is to describe, evaluate, and critique the
HOS approach for system implementation and its automation in the form of a set
of tools called USEIT.

This report was reviewed by personnel in K52, the Operational Support
Branch (K53), and the Operational Systems Branch (K54). The help of the
reviewers is appreciated, however, the author is solely responsible for the
conclusions expressed in this report.

This project was funded by the Strategic Systems Program Office, Washing-
ton, D.C. 20376, under task number K36403.05.

Questions, comments, and suggestions concerning the material presented in
this document should be directed to the Commander, Naval Surface Warfare
Center, ATTN: K52, Dahlgren, Virginia, 22448-5000.

Approved by:

Aefteton For <ZIm .6 W I _UD. B. Colby, Head
NTIS 2 Strategic Systems Department
DXC TAB

Uannounoe I
Justifloatlon

Dlatribution/

Availability Codes

lAva'i- iid/or 1
Dist I Special

iii

NSWC TR 87-181

CONTENTS

CHAPTER 1 INTRODUCTION 1-1

CHAPTER 2 THEORETICAL ASPECTS OF HOS 2-1
2.1 BACKGROUND 2-1
2.2 AXES 2-2
2.2.1 Functions 2-2
2.2.2 Abstract Control Structures 2-2
2.2.2.1 Composition 2-3
2.2.2.2 Set Partition 2-3
2.2.2.3 Class Partition 2-3
2.2.3 Axioms of Control 2-3
2.2.4 Abstract Data Types 2-5
2.2.4.1 Example of an Abstract Data Type 2-5
2.2.4.2 Derived Functions versus Defined FunctionR 2-6
2.3 MACHINE INDEPENDENCE OF AXES 2-8
2.4 AXES AND PROGRAMMING LANGUAGES 2-8
2.5 PROOFS OF THEOREMS AND PROOFS OF PROGRAMS 2-9

CHAPTER 3 HOS IMPLEMENTED: USEIT 3-1
3.1 DESCRIPTION OF USEIT 3-1
3.1.1 AXES in USEIT 3-1
3.1.2 Analyzer 3-3
3.1.3 Resource Allocation Tool (RAT) 3-3
3.2 PROBLEM AREAS OF USEIT 3-4
3.2.1 Fundamental Problems 3-4
3.2.1.1 Higher Level Features 3-4
3.2.1.2 Notation for Expressions 3-4
3.2.1.3 Efficiency 3-4
3.2.2 USEIT Design and Implementation 3-5
3.2.2.1 Language Independency of the Analyzer 3-5
3.2.2.2 Control Map Representation 3-5
3.2.2.3 Recursion Restrictions 3-6
3.2.2.4 Automatic Documentation in USEIT 3-7
3.2.2.5 Documentation of the USEIT System 3-8
3.3 PRODUCTIVITY 3-8

CHAPTER 4 CONCLUSION 4-1

CHAPTER 5 REFERENCES 5-1

APPENDIX A ADDITION OF VECTORS A-1
A.1 MATHEMATICAL FORMULATION A-1
A.2 USEIT CONTROL MAPS FOR VECTOR ADDITION A-1

V

NSWC TR 87-181

APPENDIX B ADDITION OF MATRICES. B-1
B.1 ARRAY BASED ALGORITHM. B-i
B.2 USEIT CONTROL MAPS FOR MATRIX ADDITION B-1
B.3 USEIT GENERATED DOCUMENTATION. B-4
B.4 LIST BASED ALGORITHM B-6

APPENDIX C GREATEST COMMON DIVISOR OF A LIST OF INTEGERS . . C-1

APPENDIX D PARSING BY RECURSIVE DESCENT D-1
D.1 MATHEMATICAL FORMULATION D-1
D.2 USEIT CONTROL MAPS FOR THE RECURSIVE DESCENT

PARSER *'D-3

D.3 USEIT GENERATED DOCUMENTATION FOR THE RECURSIVE
DESCENT PARSER. D-9

APPENDIX E THE TOWERS OF HANOI GAME. E-1
E.1 MATHEMATICAL FORMULATION E-1
E.2 USEIT CONTROL MAPS FOR HANOI, VERSION 1. E-2
E.3 USEIT CONTROL MAPS FOR HANOI, VERSION 2. E-4

DISTRIBUTION......................................(1)

~vi

NSWC TR 87-181

CHAPTER 1

INTRODUCTION

When software systems were small, no formal discipline for developing
them was needed. As software systems grew to enormously complex systems in
the late sixties and seventies, the need for a software development process
producing reliable economical systems at predictable cost became apparent and
urgent. It was in the wake of the search for such a development method that
the conceptual framework of Higher Order Software (HOS) was born. Like many
other systems with that same goal, it was called a methodology, a system of
methods. Unlike many other systems, HOS was conceived as a formalized method
based on the mathematical concept function and on the principle of abstrac-
tion.

HOS is presented by its authors as a unified methodology for system
design and implementation derived from a functional view of a system and its
development process. This abstract methodology is implemented as a set of in-
tegrated tools, collectively called USEIT . One of the functions of USEIT is
to generate code in a programming language such as FORTRAN or PASCAL for a
system being designed. Thus, USEIT depends on a target language. In fact,
for each target language supported by HOS a different USEIT system exists.

This report addresses the theoretical aspects of HOS, the practical
aspects of its implementation in the form of USEIT, and the particular USEIT
system with FORTRAN as its target language, here called FORTRAN USEIT.

1-1

NSWC TR 87-181

CHAPTER 2

THEORETICAL ASPECTS OF HOS

2.1 BACKGROUND

HOS and its automation in the form of USEIT were developed by M. Hamilton
and S. Zeldin starting in 1975 when they both worked at the Charles Stark
Draper Laboratory on the Appollo project. Subsequently they founded a Company
called Higher Order Software (HOS). For clarity, the company, in particular
its founders, will be referred to as "HOS" and the methodology as "HOS
methodology".

While working on the Apollo project Hamilton and Zeldin discovered that
most errors in a software system are interface errors between the components
of the system. A second realization was that for the different phases ot the
software development process either no formal methods were used or different,
basically unrelated formalisms were used that did not allow automatic
analysis. A third reccgnition was that the von Neumann type architecture of
computing machines and of programming languages encouraged machine dependent
thinking in terms of representation of data and specific state transition al-
gorithms rather than machine independent thinking in terms of the functional
abstract properties of a system. These were the major ideas that led to the
HOS methodology, a formalized functional approach for all phases of the pro-
gram development process [9,10,11,12,14,15] and for all aspects of it includ-
ing management [13] and documentation (19].

In addition to making full use of the concept function and the principle
of abstraction for system development, HOS also recognized the importance and
relevance of other ideas already developed in this area, the major one being
the concept of abstract data types. HOS advocated these general ideas with
eloquence and passion. It is in emphasizing these ideas for a consistent view
of a system starting from the top level down to the lowest level that HOS made
a contribution to Computer Science. It is in realizing this vision via a for-
malism and a set of tools supporting this formalism that HOS went aground and
foundered.

HOS implemented the general idea of a total functional approach to system
building via a formalism called AXES. The purpose of AXES is to serve As a
specification language that can be used for specifying the functional proper-
ties of systems as abstractly as desired. Ideally, it should be possible to
specify a system without making a commitment to use particular data structures
to represent data or a particular programming language to express the

2-1

NSWC TR 87-181

algorithms or a particular machine to execute the software system. The for-
malism AXES, though not strictly and completely defined [9,10), supports, in
principle, this approach to system design. However, the formalism, to be use-
ful, must be supported by tools. Unfortunately, the tools provided in the
form of the USEIT system fall far short of supporting the goals of AXES. More
will be said on this in later sections.

2.2 AXES

Following is a brief review of the essential features of AXES and the re-
lationship of this formalism to programming languages. Unfortunately, no
standard definition of AXES has been published. The terminology changed over
the years starting with the original papers [9,10) and ending with the USEIT
Reference Manual [19). The following sections describe the essential features
of a version of the AXES formalism that served - in the judgment of the author
- as a foundation of USEIT. Concepts and terminology lost by the wayside
between 1976 and 1983 will not be discussed.

AXES has three fundamental components: functions, abstract control
structures, and abstract data types.

2.2.1 Functions

Functions are either primitive functions that operate on data belonging
to an abstract data type or are non-primitive. Non-primitive functions are
either defined or derived. A "derived function" is specified implicitly via a
set of relations with primitive functions (see section 2.2.4.2); a "defined
function" is represented explicitly in terms of other functions. Every de-
fined function, in particular the function representing the entire system, is
defined in terms of other functions and, ultimately, in terms of primitive
functions.

2.2.2 Abstract Control Structures

The means of defining functions in terms of other functions are provided
in the form of abstract control structures. The use of abstract control
structures to support the definition of functions in terms of other functions
is peculiar to AXES. The objective is to allow full interface checking, that
is, type checking of the parameters and checking the number of parameters.
This led HOS away from the conventional notation for specifying functions us-
ing functional expressions and lambda abstraction, to a notation that identi-
fies a function by a name, by a list of input variables, and a list of output
variables and defines the effect of a function as the combined effect of lower
level functions according to the rules of an abstract control structure.

2-2

NSWC TR 87-181

Abstract control structures are the "forms" of specifying functions in
terms of other functions. Primitive abstract control structures are composi-
tion, set partition, and class partition.

2.2.2.1 Composition

This is normal function composition. f is defined in terms of g and h by

f(x) - h(g(x)).

More generally, if the domain of h is a Cartesian product Dlx.. .xDk then
k functions gl,...,gk can be composed with h to form f.

2.2.2.2 Set Partition

The domain of f is partitioned into two groups by a property P, DI - {x:
P(x)}, D2 = {x: not P(x)} and f is expressed in terms of g and h by

f(x) - if P(x) then g(x) else h(x)

More generally, the domain of f may be partitioned into n (n>2) sub-
domains and f is expressed in terms of n functions on these subdomains.

2.2.2.3 Class Partition

Both the domain and the range of values of f are represented as Cartesian
products D - DlxD2 - {(xl,x2): xl in Dl, x2 in D2}, V - VlxV2 - {(yl,y2): yl
in VI, y2 in V2}, and f is expressed in terms of g and h by

f(xl,x2) - (g(xl),h(x2))

More generally, the domain and the range of values can be a Cartesian
products Dlx...xDk, Vlx...xVk and f is expressed in terms of gl, ...,gk where
each gi contributes one component gi(xj) to the value of f.

2.2.3 Axioms of Control

Once the primitive abstract control structures are defined, other
abstract control structures can be expressed as groupings of them. Some of
the most useful ones are predefined in AXES; other abstract control struc-
tures can be defined by the user. With the possibility of defining abstract
control structures the question arises: What are the rules for defining such
abstract control structures? The answer in the HOS methodology is: The rules
are defined by six axioms! The primitive abstract control structures as well

2-3

I I Ii i '

NSWC TR 87-181

as the predefined ones satisfy these rules. User defined abstract control
structures must be specified using the AXES formalism which guarantees that
the axioms are satisfied.

The axioms formulate the rules for building up functions from given func-
tions, or, equivalently, for decomposing functions into a structured set of
lower level functions, in a peculiar, obscure, and unnecessarily difficult

language. According to HOS [11], a "formal control system" is a finite tree
in which the relationship between each internal node and its descendents is
defined by a control structure. Each subtree represents a function. If the
subtree is a leaf node then it represents a primitive function or a function
defined by a separate tree. Otherwise, the control structure for the root of

the subtree and the set of descendents describes how the function is expressed
in terms of the descendent functions. The properties of any such relationship

sufficient to guarantee function definitions with clearly defined interfaces
are postulated as axioms. A consequence of the rules is that a function de-
finition using defined control structures is always equivalent to a definition
of this function using only the primitive control structures ([17], page 33).
Systems so defined will be reliable in the sense that complete type checking
can be done and no timing conflict can arise [11].

A more severe conflict, however, arises for the conceptual formulation of

the HOS approach from the wording of axiom one describing function invocation.
This axiom says: "A given module controls the invocation of the set of func-

tions on its immediate, and only its immediate lower level" (wording from
[17], page 35). The "module" represents a function whose value is computed as
the collective effect of invoking the lower level functions according to the
abstract control structure used. The problem is the word "only" since it im-
plies that a module cannot invoke a function if that function is not one of
the descendants of the module. Yet, to achieve any significant power in com-
puting one must allow the recursive invocation of functions, and AXES does al-
low that. In the picture of the function tree this means that a node may
invoke a function represented by a higher level node. This is apparently not

permitted by axiom one.

If the formulation of axiom one is accepted then the concept of a finite

tree becomes inadequate for representing a defined function. Either we intro-
duce a graph for this purpose or an infinite collection of finite trees each
finite tree representing the invocation structure for a particular computa-
tion. Since, for recursive functions, the invocation structure depends on the
input value of the recursive function, there is, in general, a different invo-

cation tree for different input values. For nonrecursive functions the invo-
cation structure is static, that is, independent of the input values.
Therefore, in this case, one single finite tree suffices to represent the com-
putation of all function values, hence, to represent the function.

HOS does not address this problem adequately. They simply allow recur-

sion and leave the apparent conflict with axiom one unresolved. It appears

that originally HOS modeled the formal control structure after the hierarchi-
cal structure of an organization. In fact, on many occasions HOS uses the or-
ganizational structure of a Company or a military Command as an example of the
hierarchical decomposition of a function. This, however, is misleading in one

2-4

0 NSWC TR 87-181

essential point which is at the root of the problem with axiom one. The
static invocation structure of a function is, in general, not a tree but a
graph. Functions are not built up in terms of other functions in a strictly
hierarchical manner.

As an afterthought, the question arises whether the strict hierarchy is
an adequate organizational form for Companies or the military. Perhaps, the
organization of Companies should be modeled after the organization of func-
tions.

2.2.4 Abstract Data Types

HOS uses the algebraic approach for defining abstract data types
developed by Guttag [8), Zilles [23], and others [2,3,17] in the mid seven-
ties. The two papers by Cushing, Algebraic Specification of Abstract Data
Types, and The Intrinsic Types of AXES, contained as appendices in [10] are a
lucid, delightful description of this approach.

An abstract data type is characterized by a set S representing the data
being defined, a list of functions called primitive operations, and a set of
axioms describing the interactions of the primitive operations with one
another. AXES has the most commonly used data types predefined as intrinsic
data types: boolean, property (of T), set (of T), natural, integer, rational,
line. Both "property (of T)" and "set (of T)" are schemas of data types. The
schema becomes a data type for each value of the parameter T which must be a
data type. AXES also provides a mechanism for the user to define new abstract
data typea.

The axioms for a data type define all the relevant characterics of the
data type. Any implementation of the data type must satisfy these axioms and
any implementation that does satisfy them is a valid implementation no matter
how obscure it is or how different it is from other valid implementations.
The differences of valid implementations are irrelevant for the correct use of
the data type. They may be important for higher efficiency in execution time
or memory use but are irrelevant for their functional use. It is this
abstraction of the concept data from representation and implementation con-
siderations that makes the concept "abstract data type" so powerful and so at-
tractive.

2.2.4.1 Example of an Abstract Data Type

The simplest example of an abstract data type is "BOOLEAN" which will
serve us to illustrate the use of the axioms of a data type and to explain the
difference between primitive functions, derived functicns, an-, defined func-
tions. Following is the specification of the abstract data type BOOLEAN in
the syntax of AXES [10]:

2-5

NSWC TR 87-181

DATA TYPE: BOOLEAN;
PRIMITIVE OPERATIONS:
boolean3 - AND(booleanl,boolean2);
boolean2 - NOT(booleanl);

AXIOMS:
WHERE True IS A CONSTANT BOOLEAN;
WHERE False IS A CONSTANT BOOLEAN;
AND(True,True) - True;
AND(True,False) - False;
AND(False,True) - False;
AND(False,False) - False;
NOT(True) - False;
NOT(False) - True;

END BOOLEAN;

Here boolean1, boolean2, boolean3 are variables ranging over the set
BOOLEAN; True, False are constant elements in BOOLEAN and are, in fact, the
only elements in this set. The two primitive functions "AND" and "NOT" are
specified by a complete listing of all pairs of domain values and correspond-
ing function values. It is well known that any function F:D -> BOOLEAN where
D is a finite Cartesian product of BOOLEAN can be represented by a finite com-
position of AND's and NOT's.

The function OR, for example, can be represented as follows:

(1) OR(x,y) - NOT(AND(NOT(x),NOT(y)))

OR can also be defined implicitly by the following two relations:

(2a) OR(x,NOT(x)) - T
(2b) NOT(OR(x,y)) - AND(NOT(x),NOT(y))

Now consider the following relation:

(2c) OR(xAND(y,z)) - AND(OR(x,y),z)

If this relation is added to (2a)+(2b) then the three relations (2a)+(2b)+(2c)
will not be compatible with the axioms of BOOLEAN. The combined set
axioms+(2a)+(2b)+(2c) is inconsistent. This is easy to verify by standard
truth table techniques. However, the three statements (2a)+(2b)+(2c) without
the axioms are consistent which can be seen by interpreting NOT as the iden-
tity, OR and AND as EQUIV where EQUIV is defined by: EQUIV(x,y) - T if and
only if z - y.

2.2.4.2 Derived Functions versus Defined Functions

OR as specified via (1) is an example of a defined operation (function),
OR as specified via the relations (2a)+(2b) is an example of a derived
operation (function). Both AND and NOT as specified in the axioms are

2-6

NSWC TR 87-181

examples of primitive functions. In general, a defined function is specified
explicitly in terms of other functions via control structures, in the case of
OR, only using composition; a derived function is specified implicitly via a
set of relations.

It would be possible to add the definition of OR via a complete truth
table to the axioms. This would mean that OR is considered a primitive func-
tion. It is not wrong to do so but unnecessary and therefore undesirable. It
would complicate the data type BOOLEAN by apparent postulates about a function
OR even though OR can be expressed in terms of AND and NOT without the need
for any axioms.

When representing OR in terms of AND andNOT explicitly as in (1) nothing
can go wrong. This type of specification says nothing beyond the fact that
for each value in the domain a unique function value is defined. However,
when specifying a function f implicitly via relations three different cases
could occur:

(1) There is no conflict and f is incompletely specified.

(2) There is no conflict and f is completely specified.

(3) There is a conflict. The relations for f are inconsistent with the
axioms.

Given the axioms for AND and NOT, it is easy to verify that (2a) by it-
self is an example of case 1, (2a)+(2b) is an example of case 2, and
(2a)+(2b)+(2c) is an example of case 3. (2a)+(2c) is another example of
case 3 and (2c) by itself is another example of case 1.

There is a difference in the specification of defined functions and
derived functions. Defined functions always exist consistently with the ax-
ioms, whereas derived functions must be specified such that no conflict with
the axioms arises. In both cases, the function is described explicitly or im-
plicitly in terms of the primitive functions.

It can happen that a desired function cannot be expressed in terms of the
primitive functions of a data type. In this case it may be necessary to ex-
tend the type by adding a new function and appropriate axioms specifying the
behavior of the function relative to the other primitive junctions. An exam-
ple of this situation would be if a data type BOOL would be defined with only
one primitive operation, NOT. In this case, OR and many other functions can-
not be expressed explicitly or implicitly in terms of NOT. One could extend
BOOL to BOOL2 by adding the axioms-for OR. Bool2 with NOT and OR as primi-
tives is different from BOOLEAN which has NOT and AND as primitives, but BOOL2
and BOOLEAN are equivalent in the sense that any function that can be ex-
pressed in terms of NOT and AND can be expressed in terms of NOT and OR and
vice versa.

2-7

NSWC TR 87-181

2.3 MACHINE INDEPENDENCE OF AXES

The significance of using abstract data types in AXES is that they pro-
vide machine independence and therefore complete portability of a system
specified in AXES. If the system is correctly specified in AXES then it will
execute correctly on any machine on which the data types and their primitives
are implemented correctly, that is. according to the axioms. Thus, the
problem of portability of programs from machine A to machine B is reduced to
the correct implementation of one fixed set of operations, the primitive func-
tions, on both machines. This one time effort makes all programs using only
these primitives automatically portable.

It must be realized, however, that AXES is not a closed formalism in the
sense that it has a fixed set of abstract data types and associated primitive
functions as its basis. Therefore, if a system is specified in AXES using
newly defined data types not yet implemented on a machine A then an incremen-
tal effort to implement these newly defined data types on A is necessary to
make the system executable on A.

Finally, a serious flaw in the perfect picture is that some of the most
important abstract data types, such as the integers, are almost never im-
plemented validly by any implementor, including HOS. The implemented data
type normally uses a finite set of data elements whereas the algebraically de-
fined data type requires an infinite set. Thus, imperfections creep into the
methodology and proliferate, and the theoretical beauty of complete portabil-
ity degenerates in reality to only partial portability.

2.4 AXES AND PROGRAMMING LANGUAGES

AXES is a formalism for specifying functions in terms of primitive func-
tions. As such it is a functional programming language. A program is a
function; running a program means applying a function to a set of parameter
values. The means of defining a function in terms of other functions is
restricted in AXES as compared to functional languages based on the lambda
calculus.

Since the AXES formalism is defined rather loosely and incompletely in
[10), restrictions will be discussed with respect to the implementation of
AXES in USEIT even though these restrictions may apply to AXES as well.

HOS describes AXES as a specification language which is "not a program-
ming language" ([15],page 41, [19]. It appears that there .are two reasons for
this view. The first reason is a very narrow concept of a "programing lang-
uage" as a sequence of instructions ([17], page 61]. This, of course, dis-
qualifies all functional languages and logical languages, such as Prolog, as
programming languages. A second reason is that the functional elements in an
AXES specification may not be executable; therefore, such a specification
should not be called a program (private communication). However, this situa-
tion can also occur in a standard procedural programing language, such as
ADA, by associating only input output properties with the names of the

2-8

NSWC TR 87-181

primitive functions but no executable body. In any case, it appears somewhat
miraculous that code can be generated automatically from a specification which
is not a program. The implication is that in the HOS methodology all program-
ming and all problems that plague programmers are avoided; only a very high
level specification process remains. The truth, however, is that specifying
in AXES is programming and, as it turns out, in USEIT, very tedious program-
ming.

A second related issue is the correctness of the specified product. HOS
gives credit to its methodology for producing "correct" specifications. The
next section addresses the issue of correct programs.

2.5 PROOFS OF THEOREMS AND PROOFS OF PROGRAMS

In Mathematics, theorems are proved. A proof of a theorem is a sequence
of statements, the theorem being the last one in the sequence, such that each
statement is a logical consequence of previous statements in the sequence and
of the basic assumptions about the underlying theory and of theorems already
proved. Thus, a proof establishes a connection between the theorem and a
"basis" already known to be true. The theorem and the basis are given. Find-
ing a proof means constructing such a connection.

What does it mean when we say that a program is correct? What is a proof
of a program? A program is correct if the program computes what the problem
statement specifies. More formally, it means that the following statement is
a true theorem: "The function P implemented by the program is the function F
specified by the problem statement if the domain of P is restricted to the
domain of F". A proof of a program, then, is a proof of the above theorem.

HOS considers a system specified in AXES to be correct if the specifica-
tion is well formed according to the rules of AXES. Such a system is defined
as a, possibly very large, structure built up from primitive functions such
that all primitive functions involved operate on data of the correct type and
produce data of the correct type. Intermediate functions in this structure
will operate on and produce, data of certain types the same way for all uses.

This is good to know that a specification is at least well formed but it
has nothing to do with it being correct as a specification for a system whose
properties are defined by some requirements. In the HOS terminology, every
system specification that is well formed is correct; the concept "correct" is
synonymous with the concept "well formed". The perplexed AXES user, however,
will want to know: Which one of all these "correct" system specifications is
the the one that implements my system?

Correctness of a program means a relationship between two different for-
mulations, one being the program and the other one being the problem state-
ment. The relationship is: The program computes what the problem statement
requires. A proof of correctness is a proof of this relationship. This rela-
tionship is traditionally expressed as a proposition in terms of a
precondition, a program, and a postcondition. This is what Floyd [6], Hoare

2-9

NSWC TR 87-181

[16], Dijkstra [4], Gries [7], and others have tackled. It is preposterous to
compare their methods of correctness proofs for programs with the HOS method
of simply establishing well formed AXES specifications [19,20].

Another important aspect of proving programs correct is the proof of the
correct implementation of an abstract data type. An abstract data type is
specified axiomatically by a set of equations between expressions involving
the primitive operations of the type. Implementing the data type means to ex-
press the primitive functions in terms of a set of functions which are already
implemented and satisfy certain conditions in the form of equations between
expressions involving the implementing functions. An implementation is cor-
rect if it maps the implemented data type onto the defined data type and ex-
presses the primitive functions in terms of the implementing functions such
that the equations for the defined functions become true because of the
properties expressed by the equations for the implementing functions. This
correctness concept was developed by Zilles [23] and Guttag [8]. Guttag and
others have also developed practical methods and tools that assist in the
semi-automatic proofs of abstract data type implementations.

Considering the depth and quality of research in the area of proving pro-
grams correct, the HOS literature on this subject [19,20,21] with all their
unsubstantiated claims is embarrassingly naive and unscientific. In particu-
lar, J. Martin's book [20] may be useful as a tutorial for the HOS methodology
but is of little value in the area suggested by the title. It is interesting
to note that an earlier version of this book with practically identical con-
tent was published under the title: "Program Design which is Provably Cor-
rect".

2-10

NSWC TR 87-181

CHAPTER 3

HOS IMPLEMENTED: USEIT

The HOS methodology is supported by a set of tools collectively called
USEIT. This section first describes the major features of USEIT briefly.
Following this is a discussion cf some problem areas in USEIT and of the issue
of productivity.

It should be noted that until June 1987 HOS was implementing a PC based
USEIT system which has been announced as more general than the VAX based USEIT
system (private communication). The author does not know in what stage of
completion this PC based USEIT system was when HOS went out of business or if
the criticism expressed in this paper applies to the new system.

3.1 DESCRIPTION OF USEIT

USEIT has three main components: The specification formalism AXES, the
Analyzer, and the Resource Allocation Tool (RAT). In more familiar terms,
these components correspond approximately to a programming language, the
target language independent part of a compiler, and the code generator of a
compiler.

3.1.1 AXES in USEIT

Functions are specified by control maps. A control map is a tree
representation of the definition of a function in terms of other functions,
ultimately, in terms of primitive functions. Each node represents a function.
The root represents the function being defined, the leaf nodes represent
primitive functions or functions defined by other control maps or recursive
calls of nodes higher in the tree. USEIT also allows leaf nodes to reference
external functions which are defined outside the USEIT formalism.

Each control structure is represented as a node together with its descen-
dants and a symbol identifying the type of the control structure: "join" (j)
for composition, "or" (o) for set partition, and "include" (i) for class
partition. The following diagrams illustrate the primitive control
structures:

3-1

NSWC TR 87-181

Composition: y - f(x) - h(g(x))

1 \

/\

y h z z g x

Set partition: y - f(x) - if b then g(x) else h(x)

yEiZ
Ib
/o

y X y g x

Class partition: (yl,y2) - f(xl,x2) - (g(xl), h(x2))

YlI iIxl
y2 x2

/\
/ \

y2 h x2 yl g xl

More general and more convenient control structures are predefined and
are directly available to the AXES user. Examples can be seen in the Appen-
dices.

The following data types are predefined for every target language and can
be used together with their primitive operations: boolean, natural, integer,
rational., terminal. In FORTRAN USEIT, a variety of other types is predefined
(see Reference Manual [19)). Also certain generic functions, such as equal
and copy (called "clone"), are defined for every type and must be defined for
every new type that is added to the system.

Under the FORTRAN USEIT system on the VAX, these control maps are con-
structed and modified using a graphics editor and are displayed, in the sim-
plest case, on a VT240 work station. There is a variety of utility commands,
for example for printing control maps and for extracting "documentation" of a

3-2

NSWC TR 87-181

control map. The usual activity associated with constructing programs occurs
in this environment. The difference is that the programs are functional and
that they are represented as control maps rather than in textual form. Also,
not all information relevant to a control map is visible on it, for example,
the types of the variables used for input and output of the functions on all
levels of the tree. This information is contained in a file associated with a
control map. In the course of constructing, analyzing, "ratting", running,
printing, and documenting a control map a large collection of files is
generated and associated with the control map file.

3.1.2 Analyzer

The Analyzer performs the following target language independent function:
Check if the control map is well formed according to the rules of AXES. This
means, in particular:

(1) Check that all functions are defined and all variables have a type.

(2) Check for consistent usage of types in function interfaces (arguments
and values).

(3) Make these checks also across independently developed control maps
and against libraries.

In the HOS terminology, the analyzer guarantees completeness by (1) and (3)
and consistency by (2) and (3). The concepts "completeness" and "consistency"
are used in many HOS publications in a general sense without the definition of
a restricted meaning, and the claim is made that the HOS methodology guaran-
tees completeness and "logical consistency" of a specification. The puzzled
reader, knowing that logical consistency of a set of statements cannot be
proved by a program in general, wonders what exactly these claims mean. Lit-
tle does he realize that it only means "All symbols are defined and used con-
sistently according to their definition". Of course, this condition is
normally guaranteed by a good compiler (and Linker) for any typed language.

3.1.3 Resource Allocation Tool (RAT)

Once a control map is analyzed, target code can be generated. This pro-
cess is often referred to as "ratting".

For each target language for which USEIT is available, object code can be
generated from the control maps. If the target language is FORTRAN, then the
translation of a control map that has a number of defined leaf nodes results
in the generation of a main program and a number of subroutines. Subroutines
correspond to separately defined control maps. This design decision for FOR-
TRAN USEIT has the consequence that the limitations of FORTRAN with respect to
recursion and reentrancy become limitations of FORTRAN USEIT.

3-3

NSWC TR 87-181

3.2 PROBLEM AREAS OF USEIT

The problem areas of USEIT fall into two different categories: (1) fun-
damental and inherent in the HOS approach; (2) arising from USEIT design
decisions and from the poor quality of the implementation and documentation of
USEIT.

3.2.1 Fundamental Problems

3.2.1.1 Higher Level Features

USEIT does not provide higher level features such as functions as argu-
ments or values of functions. There is no abstraction mechanism in AXES that
produces a function from an expression similar to the lambda operator in LISP.
Thus, functions are static objects that can only be defined as "constant ex-
pressions" in terms of primitives but cannot be created or manipulated during
the execution of a program.

3.2.1.2 Notation for Expressions

USEIT does nor provide a notation for expressions such as the conven-
tional infix notation. All expressions are functional expressions that must
be represented via control maps. This lack of expressiveness in USEIT adds
greatly to the apparent complexity of control maps.

3.2.1.3 Efficiency

As a functional language AXES shares the efficiency problems of func-
tional languages caused by the lack of the destructive assignment. This makes
these languages cleaner and more amenable to analysis but also less useful, at
least currently, for certain problem domains such as linear algebra (Appen-
dices A and B). As a simple example, a direct implementation of the addition
of Ma matrices will generate MxN different MxN matrixes, each one being dif-
ferent from the previous one by only one element (Appendix B.1). In this
case, a different recursive algorithm can be used that computes the elements
of the sum matrix and gradually assembles the resulting sum matrix without any
unnecessary copying of elements already computed (Appendix B.4). This al-
gorithm uses a different representation of matrices where elements are not
directly addressable. However, for most problems of linear algebra such al-
gorithms have not been developed. The existing algorithms work efficiently by
manipulating directly addressable elements of matrices represented as arrays
in a language like FORTRAN but become hopelessly inefficient when
transliterated into a functional language. While these problems are not
specific to USEIT, one must realize that USEIT is, for this reason, not

3-4

NSWC TR 87-181

suitable for many important problem domains. Currently, it is not suitable
-for the construction of a mathematical library as suggested by HOS (private
communication).

3.2.2 USEIT Design and Implementation

Given the theoretical basis of AXES, does the implementation of the HOS
approach in the form of USEIT measure up to the promised advantages inherent
in this methodology?

3.2.2.1 Language Independency of the Analyzer

A major goal in the HOS approach is to make specifications target lang-
uage independent. This goal was abandoned in the implementation. The FORTRAN
USEIT Analyzer generates FORTRAN code and makes the user adhere to the
restrictions imposed by FORTRAN as target language. Thus, general recursive
functions cannot be specified and analyzed.

3.2.2.2 Control Map Representation

A control map is a bulky unmanageable two-dimensional representation of a
function. The problem is that too little information is spread out too thin
in two dimensions. Even very simple function definitions that take only a few

lines in a mathematical notation normally extend over one page in each direc-
tion. To get the picture of a tree, a printed control map requires cut and
paste, a time consuming manual activity. This is unacceptably slow and tedi-

ous for the specification of a complex system with frequent changes during the
development and maintenance phase. For any program development system, it is
absolutely mandatory that a readable printed representation of the program can
be produced quickly and automatically without any manual work.

It is hard to envision a readable representation of an AXES specification

essentially different from the USEIT control maps. Therefore, this point be-
longs perhaps into the fundamental category. It is described here since a
better control of the shape of the tree could possibly alleviate the situation
considerably.

USEIT does provide the capability to plot control maps. This, however,
is an expensive operation with a longer turn-around time for a service that is
required frequently and should be cheap and fast.

Not only are the USEIT control maps large in size and light in content,
they are also, in general, over specified. Some of the information on them is
irrelevant and therefore undesirable. Only the root, the leaves, and those

internal nodes that are called recursively need to be named. USEIT requires

every node to be named, a rather counterproductive requirement. Most internal

3-5

NSWC TR 87-181

nodes do not represent functional units as envisioned by the user; they
represent only information such as in which order subfunctions are to be exe-
cuted and how arguments are to be passed around. There is no need to name
them. If the user wishes to name a node, he should be able to do so. If he
does not name a node, the system can generate its own name for internal refer-
ence purposes.

3.2.2.3 Recursion Restrictions

Recursion is the only way in USEIT to specify an unbounded number of exe-
cution steps, the actual number being determined at execution time depending
on the input data. FORTRAN USEIT allows only a special form of recursion that
can be compiled directly to iteration. This form is commonly called tail re-
cursion. The conditions for it in the USEIT environment are stated incom-
pletely in Appendix I of the Reference Manual. Following is a complete
description of the conditions for tail recursion in FORTRAN USEIT.

First we give some general definitions for control map trees:

A path is a sequence of nodes nl, ...,nk where each node ni+l is a descendant
of ni, l<i<k. A path is leftmost if each ni+l is a leftmost descendant of ni,
l<i<k. A leftmost descendant of a node is one that appears leftmost in the
control map except for "or" and "coor" nodes. In these cases all descendants
are leftmost. Two paths overlap if they have at least one node in common. A
path ending in a terminal node is called a terminal path.

If it was not for "or" and "coor" nodes, then there would be exactly one
leftmost path starting at node nl and ending in a terminal node. Because of
"or" and "coor" nodes, there may be many such paths.

A node nl defines a tail recursive function F if the following conditions
are satisfied.

(1) The node nl is labeled F.

(2) There is at least one terminal path starting from nl ending in a node
n2 labeled F. Each such path is leftmost. Each such path is called
a recursion path for F.

(3) nl and n2 have the same number of input variables.

(4) n2 must have at least one input variable different from the input
variables at nl.

(5) nl, n2 must have identical output variables.

(6) Every recursion path for F must contain an "or" or "coor" node.

3-6

NSWC TR 87-181

(7) The function called by the end node of any terminal path that is not
a recursion path for F must not invoke, directly or indirectly, the
function F.

(8) The recursion paths for F must not overlap with any recursion paths
for another function Fl.

Condition 2 defines tail recursion by requiring that all recursion paths
be leftmost. Conditions 4 and 6 are necessary but not sufficient for termina-
tion. Condition 7 prevents indirect and mutual recursion of a set of func-
tions. The last condition 8 defines a simple form of nested recursion where
the nested function cannot invoke the embracing function.

The Analyzer of FORTRAN USEIT will not check all these conditions but re-
quires the conditions to be satisfied for correct code generation. For exam-
ple, it will not check the condition for proper nesting or the condition
preventing mutual recursion. Thus, it is quite possible to get the blessing
of the Analyzer for incorrectly specified control maps and have incorrect code
generated. This happened at NSWC when a matrix addition function was speci-
fied using incorrect nesting. The generated code did not work, of course.
Ironically, HOS acknowledged a "known bug" in their FORTRAN USEIT that some-
times generated incorrect code in nested loops.

The example of a recursive descent parser (Appendix D) uses mutually re-
cursive functions which are not recognized as such by the Analyzer. Incorrect
code is generated which, surprisingly, works for many cases because of the
simple use of the recursive functions involved. The input ((A*A)*A) will
force an execution path for which a wrong result will be printed even though
the given expression is recognized correctly.

3.2.2.4 Automatic Documentation in USEIT

The automatic documentation facility of USEIT gives some of the informa-
tion of the formal specification, as represented by the control maps and asso-
ciated type files, in English with little control by the user. A box
corresponding to y - f(x) appears as "f processes x as input and produces y as
output". This is advertised as satisfying Nil Standard 2167 [5].

The only reason for mentioning in the documentation of a function the
input or output variables of this function is to explain their meaning and
role in the function definition. This, of course, cannot be done
automatically; it must be supplied by the programmer. But, without it, the
words produced by the automatic documenter are useless.

Now, if a systematic documentation of a program is to be produced, then
let the system generate a skeleton in symbolic form suppressing primitive
functions and any internal nodes considered only cluttering up the documenta-
tion. Function definitions should be documented, not each use of them as
USEIT does. The user needs control to direct the system accordingly. This

3-7

NSWC TR 87-181

reviewer's opinion is that the string "y = f(x)" is shorter and easier to read
than the string "Function f processes data x as input producing y as output"
and is, therefore, preferable in the skeleton. This argument becomes much
more convincing when one considers the amount of English generated by the
USEIT documenter for functions with more input or output parameters. It is
instructive to see the voluminous output generated by the USEIT documenter for
a simple function definition such as matrix addition (Appendix B.3). It is
clear that by adding user text to the USEIT generated skeleton the resulting
documentation would become even more voluminous and remain, for the most part,
irrelevant.

Documentation is, unlike code generation, not an activity that can easily
be automated, at least not with current technology. Good documentation
describes the properties of functions and data structures more abstractly,
that is, omitting details, than the program specification. It also should
describe existing relationships that are assumed in the program but are not
expressed explicitly. Therefore, contrary to popular belief, documenting is a
creative intellectual activity. It is a challenge to write good documenta-
tion. Tools with good, convenient editing and graphics capabilities can help
with bookkeeping to make the creative part of documenting easier and more pro-
ductive. The USEIT documenter is a much too rigid tool to be useful for
creating good documentation.

3.2.2.5 Documentation of the USEIT System

The criticism of the USEIT generated documentation applies, in part, to
the documentation of the USEIT system itself.

The Reference Manual contains no less than 780 pages. It is a common
Manual for USEIT for the three target languages: FORTRAN, PASCAL, and C. It
contains much detailed operational information on how to create and modify
control maps using Editor commands etc. Yet, there is no concise complete
description of the AXES formalism. Syntax of variable names, function names,
literals, the scope of names, all these things are left for the user to find
out by using the system.

New users of the USEIT system are expected to take a five day training
course offered by HOS. The course material consists of 370 viewgraphs [18].
Again, there is no definition of the AXES formalism. Instead, the HOS metho-
dology is presented in general terms as the panacea that requires only the
high level specification of a problem and makes all programming in the usual
sense obsolete.

3.3 PRODUCTIVITY

Considering the problems described above, how does USEIT compare with a
standard programming approach using FORTRAN with respect to productivity?

3-8

NSWC TR 87-181

HOS presents USEIT as a methodology that increases productivity greatly.
To demonstrate that, HOS compares the actual time, tu, for constructing USEIT
control maps with an "estimated time", te, for constructing equivalent FORTRAN
algorithms. This estimated time is N/10 in man-days where N is the number of
FORTRAN source lines generated by USEIT and 10 is assumed as the number of
lines a FORTRAN programmer can code per day ([15], page 61).

If we apply this approach to the Matrix addition (ADD, Appendix B) then
te - 18.5 man-days. In the FORTRAN code for ADD, text comment lines are
counted, but blank comment lines and 33 lines for input output are not
counted. The author submits that, given the problem statement

Matrix Addition: C - A + B defined by
C(ij) - A(i,j)+B([,j) for 1<i<M, I<j<N

an average FORTRAN programmer would be able to write something equivalent to
the following code in one afternoon, or, more likely, in one hour:

* SUBROUTINE ADDM COMPUTES THE SUM OF TWO MxN REAL MATRICES.
* X AND Y ARE THE INPUT MATRICES, Z IS THE OUTPUT MATRIX

SUBROUTINE ADDM(M,N,X,Y,Z)
DIMENSION X(M,N), Y(M,N), Z(M,N)
DO 200 J-1,N

DO 100 I-1,M
Z(I,J) = X(I,J) + Y(I,J)

100 CONTINUE
200 CONTINUE

END

Assuming that it takes the FORTRAN programmer one full day, the dis-
crepancy with the HOS estimate is a factor of 18.5. The reason is that, given
a problem, no FORTRAN programmer will solve it by writing code as USEIT does.
His code is normally much more compact and many times more efficient in execu-
tion than the code produced by USEIT. Of course, he will use the assignment
statement and a state transition instead of a functional style of coding.
This is the style FORTRAN was designed for. Thus, the HOS claims for in-
creased productivity should be examined with great caution.

3-9

0

NSWC TR 87-181

CHAPTER 4

CONCLUSION

This report is an evaluation and critique of the HOS methodology for sys-

tem specification and program development.

The HOS methodology is based on abstract data types and on a functional

approach to all phases of system development, including design, specification,
programming, and project management. The underlying formalism AXES is a
restricted functional language; restricted in the sense that high level

features such as functions as arguments and values of functions are not al-
lowed. The implementation of this approach is called USEIT. In USEIT, AXES
specifications are represented graphically by control maps and are processed
by tools for analysis, code generation, and documentation.

The HOS approach has been presented to the Computer Science community via

a series of technical papers, mostly by Hamilton and Zeldin, with very little
response. Consultants associated with HOS have reviewed and praised the HOS

approach, but, apart from some very brief independent reviews [22], the
professional world has not reacted to HOS. This report has been written to
help fill that gap.

Can USEIT serve as the sole methodology for system development as sug-
gested by HOS ([15],pp. 40-44)? Ls USEIT a good practical tool for some part
of the system building process?

Developing a system from conception to validation of its implementation
is a complex process that can be viewed as a sequence of refinements starting
from a general, highly abstract requirements description down to the most con-
crete description in form of an executable program. It includes documenting,
testing, and proving consistency of the products on the various levels of
abstraction.

So far, no formalism has been developed that is uniformly adequate for
all phases of system development. AXES and the HOS methodology are no excep-
tion despite the claims by HOS. The author bel eves that it is unlikely that
such a formalism will be found. The current trend in software engineering ap-
pears to aim at a variety of methods and tools, integrated in some sense, to
support the variety of activities associated with system development. For ex-
ample, for requirements and design specifications, state transition diagrams,.
data flow diagrams, and methods of formal language specification are very use-
ful and powerful description tools. For practical reasons, such as produc-
tivity, flexibility, and reliability, the system developer wants to be able to
use these tools. He does not want to restrict himself to a single formalism,

4-1

NSWC TR 87-181

even if it would theoretically be possible to do so. It follows that USEIT
cannot serve as the sole method for specifying requirements, design, code, and
good documentation of a system.

In areas where USEIT is, in principle, sufficient, it has severe
shortcomings. The control map representation of a function is uneconomical
and hard to manage, the object code is large, and the execution speed can be
unacceptably slow, especially for programs operating on arrays. FORTRAN USEIT
on the VAX is particularly poor because the analyzer is FORTRAN dependent and
incomplete in its checking across different control maps. This violates the
HOS goals of a target language independent and "logically complete" analysis
of specifications. Also, analysis of control maps and resource allocation are
extremely slow operations compared to compiling FORTRAN source code.

The USEIT Reference Manual is voluminous and at the same time quite in-
complete. Many things such as syntax of names and scope of names are left to
the programmer to find out by trial and error. In general, the HOS literature
tends to advertise their ideas and products more than making a contribution in
substance to the field of Computer Science.

The author recommends that USEIT not be used in the TRIDENT program or
any program development at NSWC. Even for a high level system specification,
USEIT is not seen as a good choice. A mathematical functional notation or a
PROLOG-like notation appears better suited for that purpose. The examples in
the Appendices of this report, especially Appendices C, D, and E, show that a
LISP-style mathematical notation is more compact and normally easier to read
than the control map notation of USEIT.

On a more positive note, the author considers the functional approach to
system development and programing very promising. Systems so conceived and
programs so constructed are more amenable to analysis and therefore, in prin-
ciple, more reliable and better manageable. The literature on functional pro-
gramming and its relatives, equational and logic programming, is extensive.
More work needs to be done in the direction of making these approaches practi-
cal and competitive with the traditional approach for program development us-
ing imperative languages ranging from FORTRAN to ADA. Specifically, efficient
functional algorithms need to be developed in various problem domains, al-
gorithms that are not, in essence, transliterated FORTRAN programs. Major
progress in this area would be a significant step toward a solution of the
software crisis. It was this crisis that spawned the HOS methodology and many
others during the past 15 years. Methodologies abound but, so far, the crisis
is still here.

4-2

NSWC TR 87-181

CHAPTER 5

REFERENCES

(1] Clocksin, W.F. and C.S. Melllish, Programminj in PROLOG, Springer
Verlag Berlin Heidelberg New York, 1981.

(2] Cushing, S. "Algebraic Specification of Data Types in Higher Order
Software (HOS)", Proceedings, Eleventh International Conference on
Systems Sciences, Honolulu, Hawaii, 1978.

[3] Cushing, S. "A Note on Arrows and Control Structures, Category
Theory and HOS", In Axiomatic Analysis, TR-19, Higher Order Software,
Inc. Cambridge Ma. 1978.

(4] Dijkstra, E. W. A Discipline of Programing, Prentice-Hall 1976.

(5] DOD-STD-2167, Military Standard, Defense System Software Development,
4 June 1985.

(6] Floyd, R. W. "Assigning Meaning to Programs", Proc. AMS Symposium
in Applied Mathematics, 19, pp 19 - 31, 1967.

[7] Gries, D. The Science of Programming, Springer Verlag, New York
1981.

(8] Guttag, J.V, E. Horowitz, and D.R. Musser, "Abstract Data Types and
Software Validation", Com. ACM Vol. 21, No. 12, December 1978.

(9] Hamilton, M. and S. Zeldin, "The Foundations of AXES, A Specification
Language based on Completeness of Control", Doc. R-964, Charles Stark
Draper Laboratory, Inc., Cambridge Ma. 1976

[10] Hamilton, M. and S. Zeldin, "AXES Syntax Description", TR-4, Higher
Order Software, Inc., Cambridge Ma. 1976.

(11] Hamilton, M. and S. Zeldin, "Higher Order Software - A Methodology
for Defining Software", IEEE Transactions on Software Engineering,
Vol. SE-2, No. 1, March 1976, pp 9-32.

(12] Hamilton, M. and S. Zeldin, "Integrated Software Development System/
Higher Order Software Conceptual Description", Research and Develop-
ment Technical Report ECOM-76-0329-F, U.S.Army Electronics Command,
Fort Monmouth, N.J.

5-1

NSWC TR 87-181

[13] Hamilton, M. and S. Zeldin, "The Manager as an Abstract System
Engineer", Proceedings, COMPCON 1977 Fall Conference, IEEE Computer
Society, Washingtoa D.C.

(141 Hamilton, M. and S. Zeldin, "The Relationship between Design and Ver-
ification", The Journal of Systems and Software, Vol 1, No 1, 1979.

[15] Hamilton, M. and S. Zeldin, "The Functional Life Cycle Model and its
Automation: USE.IT", The Journal of Systems and Software 3, 25-68
(1983).

[161 Hoare, C.A.R. "An Axiomatic Basis for Computer Programming",
Comm. ACM, 12(10), 1969.

[17] HOS Inc., Axiomatic Analysis, TR-19, Higher Order Software, Inc.

Cambridge Ma. 1978.

[181 HOS Inc., The USE.IT System, Training Course.

[19] HOS Inc., The USE.IT System, System Reference Manual, VAX - Release
3.0. High Order Software, Inc., Cambridge, Mass. 1985.

[20] Martin, J. System Design from Provably Correct Constructs.
Prentice-Hall, Inc., 1985.

[21] Mimno, P. "Bug-Free Systems: A new Technology for Mathematically
Provable Systems", Computerworld, C.W.Communications, Framingham
Ma. Dec 1982.

[22] Peters, L.J. and L.L. Tripp, "Comparing Software Design Methodolo-
gies", Datamation, Nov 1977, pp 89-94.

[23] Zilles, S.N. "Abstract Specification for Data Types", IBM Res. Lab,
San Jose, Calif., 1975.

5-2

NSWC TR 87-181

APPENDIX A

ADDITION OF VECTORS

A.1 MATIEMATICAL FORMULATION

The vectors x, y, z are represented as one dimensional arrays and

z(i) - x(i) + y(i) for 1 < i < N

The sum vector z is computed by a call of addr: z - addr(O,N,x,y,zO) where zO
is the null vector (0,...,0). The recursive function addr is defined as
follows:

addr(i,col~x,y,z) - if i > col then z
else addr(il,col,x,y,

newrow(z,il,val(x,il)+val(y,il)))
where il - i+l

newrow(z,i,e) - new vector u,
u(j) - e for j - i
u(j) - z(j) otherwise

val(x,i) - x(i)

A.2 USEIT CONTROL MAPS FOR VECTOR ADDITION

The following control maps are the USEIT representation of addr.

A-1

NSWC TR 87-181

4 - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - ------- 4.

R ADDROW *1
* *COL
**X

*************y
* z

I *

I C + ** I . .

--- - 4----- -------------

R IaP1 II 0ooL IGE II 1
I ICOL Ile ICOL
I IX I I
--.--.- . Y +- ------------- I

I z p
I BOOL

I
.---------- CO -----------.
I I

R I 2 Iz I ICLOBRZ 13
I ICOL I I
I IX I I
+-.-- + -------------

I z p
I

---------------------- CJ/CJ ----------------------
I* I

S*ADDROW *12 12 IADD II Z IPREPA IEAGS 1I
* *COL lINT I'1" I Ix
* *x I I I II
************* +.--------- - -------------- .- 4. .Z

R zi pI

I I

Z1 It3 Ill ii IADD_ I1
I IX IINT I
I II I I

I -
-- - - - CJ -- - - - -

I I

zl lAuT In It IY

I IV I Inl

p OP

4--

I
11O-NOV-1987 15:22:21.71

1 I
IiNNUBERI:ADDR:ADDROW
4--

A-2

NSWC TR 87-181

- + --- - - - - - - - -- - - - - - - - -

D IF4 IA
I Is

I I IcI
I --- ------

I I
I 4.-------------- -----------
I I I
I -.-.-- +--+-- -+

I D IADD In ZI IFN2 IA
I 1NT3 ITI Ti I Is
I I I I Ic

-4------- 4------

I I
I .--------- C---------- I
I I I I
I --------- 4 --- ------- I
I Y IQ T In ZI JGZT IA I

IAS IC IlAs- IC I
I I I I I I
I 4------------- -------------
I p pII I

4---

I I
110-NOV-1917 15:22:44.62II
I[ENUSZI :ADDR:F4

--

A-3

NSWC TR 87-181

APPENDIX B

ADDITION OF MATRICES

B.1 ARRAY BASED ALGORITHM

The Matrices x, y, z are represented as two dimensional arrays and

z(i,j) - x(ij) + y(ij) for 1 < i < row, 1 < j < col

The sum matrix z is computed by a call of addm: z - addm(O,rowO,col,x,y,zO)
where zO is a row by col zero matrix. The recursive function addm is defined
as follows:

addm(i;row,j,col,x,y,z) -
if i > row then z
else addm(il,row,j,col,x,y,addmr(ilrow,jcol,x,y,z))

where il - i+l

addmr(i,row,jcol,x,y,z) -

if j > col then z
else
addmr(i,row,jl,col,x,y,newm(z,i,jl,val(x,i,jl)+val(y,i,jl)))

where j1 - j+1

newm(z,i,j,e) - new matrix u,
u(k,l) - e for k-i and 1-j,
u(k,l) - z(k,l) otherwise

val(x,i,j) - x(ij)

B.2 USEIT CONTROL MAPS FOR MATRIX ADDITION

The following control maps are the USEIT representation of addm.

B-i

NSWC TR 87-181

:AA.

II l.

I gaoI *,-COL

...... ---- - +
Is

Is a IC Z Is

III5 ao ADDN SI' I1" 1 I g*.1 gxss I gt glow

Ow lor

* COO

............. a

at *|DU :agl 21 IA

............. iOs--. ;- j|i
CLow p

IsI

Ig II
I I

g g mow gI cos.

I * 1
g .~ll *-I AI6 & II '" i AD I

92 : a gtiT MIo gs
-

D1

a low I JS II Ig o, * so I
g L* Im

jai I
I- - - ------------*----- - -

Ii I g Io u osx m
I

---- ----------------

-

. sl I*1gIal *1ll WI~ Iles

II p •I ~ 4 -

iI •OSS 15u253I I

---- 4b--

"i=' ' !i: " i"" i= : "'- '

NSWC TR 87-181

4-+

OUTPUT jIASBY5 JINPUT
I I

I II

I II

II I I iI

I II

---------------------- +

P P

110-UOV-1987 15:23:56.38

[(NHUBER]:ADDNATRXZ:IA5BYS
--

B-3

NSWC TR 87-181

B.3 USEIT GENERATED DOCUMENTATION

Following is the documentation of the control maps for matrix addition
produced by the USEIT documenter.

CHAPTER 1 ADD

1.0 ADD
Function ADD processes data A,B,ROW,COL as input producing R as output. It

has 3 children.
It is required that ROW,COL be of type INT.
It is required that A,B,R be of type IASBY5.

1.1 K INT
Function K INT processes data "00,ROW as input producing I as output.

Operation K INT is a primitive operation.

1.2 K IASBY5 ZERO
Functioi K IASBY5 ZERO processes data "l",I as input producing Z as output.

Operation K_IASBYSZERO is a primitive operation.

1.3 ADD
Function ADDM processes data A,B,Z,I,ROW,COL as input producing R as output.

It has 2 children.

1.3.1 GE INT
Function GE INT processe3 data I,ROW as input producing BOOL as output.

Operation GE INT is a prisitive operation.

1.3.2 rl
Function Fl -c &s$s data A,B,Z,I,ROW,COL,BOOL as input producing R as

output. It ha -, children.

1.3.2.1 CLONEl
Functlon CLONE1 processes data Z as input producing R as output. Operation

CLONE1 is a pvLmitive operation.

1.3.'.2 F2
Function F2 processes data A,B,Z,IROW,COL as input producing R as output.

It has 4 chilhrn.

1.3.2.2.1 ADD INT
Function ADD INT processes data I,"1" as input producing I1 as output.

Operation ADDINT is a primitive operation.

1.3.2.2.2 K INT
Function K INT processes data "0",1l as input producing J as output.

Operation KINT is a primitive operation.

1.3.2.2.3 ADDMR
Function ADDKR processes data A,B,Z,I1,J,ROW,COL as input producing Z as

output. It has 2 children.

1.3.2.2.3.1 GEINT
Function GE INT processes data J,COL as input producing BOOLI as output.

B-4

NSWC TR 87-181

Operation GE INT is a primitive operation.

1.3.2.2.3.2 F3
Function r3 processes data A,B,Z,11,J,ROW,COL,BOOLI as input producing Zl as

output. It has 2 children.

1.3.2.2.3.2.1 CLONEZI
Function CLONEI processes data Z as input producing ZI as output. Operation

CLONEZI is a primitive operation.

1.3.2.2.3.2.2 F4
Function F4 processes data A,B,Z,11,J,COL,ROW as input producing Zl as

output. It has 3 children.

1.3.2.2.3.2.2.1 ADD INT
Function ADD INT processes data J,"1" as input producing J1 as output.

Operation ADDINT is a primitive operation.

1.3.2.2.3.2.2.2 NZWK
Function NZWK processes data A,B,Z,I1,31 as input producing Z2 as output.

It has 4 children.

1.3.2.2.3.2.2.2.1 GET IASBYS
Function GET 1AS5Y processos data A,I1,J1 as input producing Vl as output.

Operation GET ZASBY5 is a primitive operation.

1.3.2.2.3.2.2.2.2 GET ZASBY5
Function GET IA5BY5 proEosses data B,11,31 as input producing V2 as output.

Operation GET IA5BY5 is a primitive operation.

1.3.2.2.3.2.2.2.3 ADD INT
Function ADO INT processes data V1,V2 as input producing V as output.

Operation ADO INT is a primitive operation.

1.3.2.2.3.2.2.2.4 PUT IASBYS
Function PUT IASBY5 processes data Z,I1,J1,V as input producing Z2 as

output. Operation PUT IASBY5 is a primitive operation.

1.3.2.2.3.2.2.3 ADDMR
Function ADDMR processes data A,B,Z2,I1,JI,ROW,COL as input producing Zl as

output. Function ADDMR is a recursive function. See above documentation.

1.3.2.2.4 ADDM
Function ADDM processes data AB,ZI,I1,ROW,COL as input producing R as

output. Function ADDM is a recursive function. See above documentation.

B-5

NSWC TR 87-181

B.4 LIST BASED ALGORITHM

The matrices x,y are represented as lists of rows, each row being a list
of elements. The algorithm assumes that there are the same number of rows in
x and y and that all corresponding rows of x and y have equal length. The al-
gorithm uses the LISP functions car, cdr, cons for the first of a list, the
remainder of a list, and the construction of a new list. The empty list is
denoted by nil. For convenience, the sum of nil + nil is defined to be nil.

The sum x+y is computed as the value of addmat(x,y). The recursive func-
tion addmat is defined as follows:

addmat(x,y) - if x - nil then nil
else cons(addrow(car(x),car(y)),

addmat(cdr(x),cdr(y)))

addrow(u,v) = if u - nil then nil
else cons(car(u)+car(v),addrow(cdr(u),cdr(v)))

One could transliterate the specifications for addmat and addrow into
USEIT control maps. However, since FORTRAN does not support lists and the as-
sociated functions car, cdr, cons, these control maps would not be executable.
In addition, both addmat and addrow are not tail recursive and FORTRAN USEIT
would complain about that even if the user had defined a new abstract data
type "list".

B-6

NSWC TR 87-181

APPENDIX C

GREATEST COMMON DIVISOR OF A LIST OF INTEGERS

The list of integers is represented by a one dimensional array A of suf-
ficient size and the length n>l. The greatest common divisor of (A,n) is com-
puted as follows:

gcdlist(A,n) - g(A(1),A,2,n)

g(x,A,i,n) - if i > n then x
else g(gcd(x,A(i)),A,i+l,n))

gcd(x,y) - if y - 0 then x
else gcd(yx mod y)

The following control maps are the USEIT representations of the functions
g and gcd.

C-1

NSWC TR 87-181

Z *G *X
**A
* *1

-.-. +-..+ - -.. + .-.. +
z I Ix BOOL (EQ IN

I IA I I
I It I I
------------- +N -------------

I DOOL P
I

i I
----------- Co-------------

z I72 Ix ICLOUSI Ix
I IA I I
I II I I
-------------.. N -- -- - -- -

I P
- CJ/CJ -------------- --.. .4
*I I

************* 4-... -... 4-4... -4...

Z *G *x1 Xi I(3 Ix 1 I ADD_ I
* *A I IA IINT ("1"

* *11 I In I I
*************N + +- + + -------------+

R i P
+--------- CJ ---------- +
I I

+.-------------+ +---------------+
Xl JGCD IX Y IGRT IA

I Iy IIAS- Ill
I I I I
-- - - - - -+ -------------

oP P

--

110-NOV-1987 15:24:43.96

([HHUBERI:GCD:G
+---

C-2

NSWC TR 87-181

4---

C :GCD *A

C Fl ISO IOL~E

I pBO
4- ----------------

I
I ------------- C------------

I IIB

I I ID I I
II I I
I ------ 4 C---------------
I I

I-------C,------------I

I C *GCD *13 2 INOD. IA

I +---------------
IR P

---------- ---4

110-NOV-1987 15:25:03.60

I CEUBRI :GCD:GCD

C-3

NSWC TR 87-181

APPENDIX D

PARSING BY RECURSIVE DESCENT

D.1 MATHEMATICAL FORMULATION

Consider as an example the expressions built up from identifiers,
parentheses, and the operators + and * as defined by the following grammar:

E -> E + T
E -> T
T -> T * F
T -> F
F-> (E)
F -> id

The program will use the following equivalent grammar:

E - T E'
E' -> + T E'
E' -

T - F T'
T' - F *T'
T->
F-> (E)
F -> id

An expression e is represented by the sequence of symbols it consists of,
stored in a sufficiently large one dimensional array A: e - A(1)A(2)... For
each syntactic unit <s> a function fs: Naturals -> Integers is defined that
recognizes that unit. fs is defined as follows:

fs(i) - if A(i)A(i+l)... - <s>A(j)... then j
else -i

The following function definitions can be directly derived from the above
grmmar:

fe(i) - fep(ft(i))

fep(i) - if A(i) - "+" then fep(ft(i+l)) else i

ft(i) - ftp(ff(i))

D-1

NSWC TR 87-181

ftp(i) - if A(i) - "*" then ftp(ff(i+l)) else i

ff(i) - if A(i) - "id" then i+l

else if A(i) - "(" then
{ let j - fe(i+l)

if A(j) - ")" then j+l else -j }

The function fe will consume as much input as possible, that means, it
will stop only on an error. One can fairly easily rectify this situation by
introducing a unique terminating symbol. We have omitted this because it
would require more conditions in the above function definitions and would make
their relationship with the grammar less transparent.

An expression stored in the array A is parsed by computing fe(l). For
example:

Input string stored in A Value of fe(1)

((A+A)*A) 10
A(A+A) 2
(A*A -5

The following control maps are the USEIT representations of the functions
fe, fep, ft, ftp, and ff. The element "id" is represented as the character A.
One function for printing out a trace was added. It prints, after the recog-
nition of certain syntactic units s, the numbers i,j and an identifier for s,
where i and j-1 are the start and end positions of the substring representing
S.

Compared to the 8 line compact functional notation, the USEIT control
maps appear rather bulky and large. The accompanying text in the above
description is brief but informative and explains the underlying ideas that
are used but are not expressed directly in the function definitions. The do-
cumentation produced by the USEIT documenter (last section of-this Appendix)
is a monument of wasteful documentation void of any useful information. Even
user added enhancements could not make a good document out of this monstros-
ity.

Even though the above functions are mutually recursive, the analyzer does
not recognize this. It turns out that with the exception of the printline
function all other functions use only values of previous functions and work
correctly. The printout, however, can be wrong due to the overwriting of an
input variable during a recursive invocation of another function. For exam-
ple, when parsing the expression ((A*A)*A), a portion of the trace will be

... 3 7 F, 8 9 F, 3 9 T, 3 9 E, 3 10 F,
instead of the correct portion

... 2 7 E, 8 9 F, 2 9 T, 2 9 E, 1 10 F,
according to the correct parse that was in fact recognized by fe.

D-2

NSWC TR 87-181

D.2 USEIT CONTROL MAPS FOR THE RECURSIVE DESCENT PARSER

The following control maps are the USEIT representations of the functions
fe, fep, ft, ftp, and ff. The additional function print_line prints a trace
of the parse.

--
I +------- -------

. Irs lA
II I I

I +---c3------------I I

-- - -- - -- ----------

I 1 aE!.. I I

OP I
------ 4i -----------4

I n r _ I I 1 I I

it 31 PP IA 11.IF? IA I
I I l 1 I1 1

I I'z I II

-- - - - - - -- - - - - - IIOP OP I
oI I

--

I

110-MOV-1987 15:25:54.82

I I UIU I:PAR3Z:PZ

D-3

NSWC TR 87-181

I3 'PEP 'AI

* *Z

I .4~*** ********** ** ****CJ/C***C********** ***** ** * ''**
I I II

-- - - - - -... .---..----... --.. ..-- ----- -- -- ----. .

I Ii IA BOOL IEQ IV v IOT IAI
I I I I"+" ICAS Ii
I IBOOL I I I I I
--------- ------------ ------------- I

I P P
---------- CO -----------
I I

I + - ..- +. . .+ + -. .+ -.... I
I3 ICLOWEl II 1 162 IA
I I I I
I I I I
---------- ----------- . 4--

I P I
I -------------------- CJ/CJ--------------------

* I I
I ------------4 - --- ------

I , *PEP *A 12 IFT IA IAD II
* *12 I Ill IINT

* I I I I

R OP
+-- -- - - - - - - - - - - - - - - - - - ------------------.4 ----------------

I I

110-OV-1987 15:26:11.81

1 I
[IIEUBERI:PARSE:FEP

--

D-4

NSWC TR 87-181

I - --- --- ---

I I II
I - -

I I
I -CJ ------------

I I I
I -- - -- - -- -- - -- - -
I J IPfIXM_ 31 l41 JA
I ILIU Ii3 I I'
I I I"T* I I
I -- -- - -- - -- - - - - -
I OP I

I - -- - - CJ-+

I I I
I ------- --- -------

I J1 IFTP IA I1-IF IA
II I1 I I
II I I I
I -- - -- - -- --- -- -- -

I OP OP

II

1O-MOV-1987 15:27:04.01

I(NUBR]:PARSE:FT

NSWC TR 87-181

I a ABO N V VIS I

I 'z I I. .IA-1
I INOOL I I I* I

-- -- - - - -- -- - -- - -------------* * **** **ft*4

I I I I
I ------ --- -4 -+- . ,4 - -

I II1I' lA I

I ----- 4- 4 -+----C/J---------------.4-----------+

I II
I *- + 4 --- ------------- ------------ I
I J ICLOU *A 12 I A IAD 1
1 *1 11 IZN I0 I
I I I I I I
I ------------- --4 -------

I PP I
I -----------------------CJ/C- ----- 4. I------------

I 3 'FTRIP 'A 121F A i AD

--

D-6

NSWC TR 87-181

I I

I ,

I ~ I I
* I

* -,, l +

I I
-I

I I 1 ---I I
I I

I Ig- -ao
I

? ,

'
I-

- I I
-

II

I

I i
I Ii "

* I ,I II 1
I

I I - I I

* I- - I,
- -

I

I I I

I

* *-+llb I

I I 0 I ."...,

* *--* -- -*

, + - * * - - I - --

I I I I I I

* I I I - lb •I ,
" I" I I I I I- - "I I 0-+",I.V I * --+I :

I+- I .I
-, I I -

I I I I I ---- ---- I -

I I I I I II -7

I I I I I I 3I I

NSWC Th 87-181

* I

* !

I I U I
* 4 IlI

-
* U
II .

II I~
I I b

II I UI

I I

,i-i lb
I I

,---4

I I

I III Q

I - -I-*--

I N~j I ImIII - -4- - -
II JI I I 'II I ul II

I I I..
I I ,
I- -I

I S.

I -8

NSWC TR 87-181

D.3 USEIT GENERATED DOCUMENTATION FOR THE RECURSIVE DESCENT PARSER

What follows is the documentation produced by the USEIT documenter for
the recursive descent parser with the exception of fourteen pages of FORTRAN
code.

TABLE OF CONTENTS

CHAPTER OPSATION PAGE

I 1
2 FT 2................................2
3 FEP................................... 3

4 PRINT LINE........................ 4
.. FF 5
S FTP 7
7 E8

D-9

NSWC TR 87-181

CHAPTER 1 FE

1.0 FE
Function FE processes data A,I as input producing J as output. It has 2

children.
It is required that RNINEDTYPE>> be of type

CAS'((15)NODELCONTAINSVARIABLESOFUNDETRNINEDTYPE>>.
It is required that >> be of type

INT < (14)PARENTOUTPUTISIrPUTTOOFFSPRIG)>.
It is required that 11,J1 be of type INT.
It is required that "E" be of type CHAR.

1.1 G1
Function G1 processes data A,I as input producing 31"as output. It has 2

children.

1.1.1 FT
Function FT processes data A,I as input producing I1 as output. For

information on operation FT see chapter 2.

1.1.2 rEP
Function FEP processes data A,I1 as input producing J1 as output. For

information on operation FEP see chapter 3.

1.2 PRINT LINE
Function PRINT LINE processes data I,J1,"E" as input producing J as output.

For information on operation PRINTLINE see chapter 4.

D-10

NSWC TR 87-181

CHAPTR 2 FT

2.0 FT
Function FT processes data A,I as input producing J as output. It has 2

children.
it is required that A be of type CAS.
It is required that I,J be of type XNT.
It is required that I be of type INT.

2.1 Gi
Function G processes data A,! as input producing 31 as output. It has 2

children.

2.1.1 FF
Function Fr processes data A,! as input producing I1 as output. For

information on operation F see chapter S.

2.2.2 FTP
Function FTP processes data A,1 as input producing J1 as output. For

information on operation FTP see chapter 6.

2.2 PRINT LINK
Function PRINT LINE processes data 1,JI,Tw as input producing J as output.

For information o; operation Pl1NTLIN8 see chapter 4.

D-11

NSWC TR 87-181

CHAPTER 3 FEP

3.0 PEP
Function PEP processes data A,I as input producing J as output. It has 3

children.
It is required that A be of type CA5.
It is required that 1,3 be of type INT.

3.1 GET CA5
Function GET CAS processes data A,I as input producing V as output.

Operation GETCA5 is a primitive operation.

3.2 EQ
Function EQ processes data V,"+" as input producing BOOL as output.

Operation EQ is a primitive operation.

3.3 G1
Function GI processes data A,I,BOOL as input producing 3 as output. It has

2 children.

3.3.1 G2
Function G2 processes data A,I as input producing J as output. It has 3

children.

3.3.1.1 ADD INT
Function ADD INT processes data I,"J" as input producing I as output.

Operation ADDINT is a primitive operation.

3.3.1.2 FT
Function PT processes data A,Il as input producing 12 as output. For

information on operation FT see chapter 2.

3.3.1.3 EP
Function FEP processes data A,12 as input producing J as output. Function

FEP is a recursive function. Sea above documentation.

3.3.2 CLONEl
Function CLONE1 processes data I as input producing J as output. Operation

CLONEI is a primitive operation.

D-12

NSWC TR 87-181

CHAPTER 4 PRINTLINE

4.0 PRINT LINE
Function PRIfNT LIME processes data I,J1,C as input producing J as output.

It has 5 children.

4.1 1 TERMINAL
Functiong K TERMINAL processes data 31 as input producing TZRMIN as output.

Operation K TIERMINAL is a primitive operation.

4.2 DISPLAY INT
Function DISPLAYlET procv.,,. data I,TERMIN as input producing TERM as

output. Operation DISPLAYI NT is a primitive operation.

4.3 DISPLAY INT
Function DISPLAYlET processes data 31,TERX as input producing TERM1 as

output. Operation DISPLAY I NT is a primitive operation.

4.4 DISPLAY CHAR
Function DISPLAYCHAR processes data C,TERMl as input producing TERMOUT as

output. Operation DISPLAY-CHAR is a primitive operation.

4.5 al
Function Gl processes data J1,TERMOUT as input producing J as output. it

has 2 children.

4.5.1 CLONEI
Function CLONEl processes data 31 as input producing J2 as output.

Operation CLON1El is a primitive operation.

4.5.2 CLONEl
Function CLONEI processes data J2 as input producing J as output. Operation

CLONZI is a primitive operation.

D-13

U01

NSWC TR 87-181

CHAPTER 5 FF

5.0 FF
Function FT processes data A,I as input producing J as output. It has 4

children.
It is required that A be of type CA5.
It is required that 1,3 be of type INT.

5.1 GET CAS
Function GETCA5 processes data A,I as input producing V as output.

Operation GETCA5 is a primitive operation.

5.2 EQ
Function EQ processes data V,"A" as input producing BOOL as output.

Operation EQ is a primitive operation.

5.3 GI
Function Gi pro-esses data A,I,BOOL as input producing Jl as output. It has

2 children.

5.3.1 ADD INT
Function ADDINT processes data I,"l" as input producing 31 as output.

Operation ADD tNT is a primitive operation.

5.3.2 G2
Function G2 processes data A,I as input producing Jl as output. It has 3

children.

5.3.2.1 ;ET CA5
Function GET CA5 processes data A,I as input producing U as output.

Operation GET CA5 is a primitive operation.

5.3.2.2 EQ
Function EQ processes data U,"(" as input producing B as output. Operation

EQ is a primitive operation.

5.3.2.3 G3
Function G3 processes data A,I,B as input producing 31 as output. It has 5

children.

5.3.2.3.1 ADD INT
Function ADDINT processes data I,"l" as input producing I1 as output.

Operation ADDINT is a primitive operation.

5.3.2.3.2 FE
Function FE processes data A,Il as input producing 12 as output. For

information on operation FE see chapter 7.

D-14

NSWC TR 87-181

5.3.2.3.3 GE? CAS
Function GET CA'S processes data A,12 as input producing U2 as output.

operation GET c!5 is a primitive operation.

5.3.2.3.4 EQ
Function EQ processes data U2," as input producing 31 as output. Operation

EQ is a primitive operation.

5.3.2.3.5 04
Function G4 processes data 12,31 as input producing 31 as output. It has 2

children.

5.3.2.3.5.1 ADD-lET
Function ADD INT processes data 12,11 as input producing 31 as output.

operation ADD lET is a primitive operation.

5.3.2.3.5.2 SUBINT
Function SUB- INT processes data NOV,12 as input producing 31 as output.

Operation SUB ZNT is a primitive operation.

5.4 PRINT LINE
Function PRINT LINE processes data 1,J1,"?" as input producing J as output.

For information oni operation PRINTLXNE see chapter 4.

D-15

NSWC TR 87-181

CHAPTER 6 FTP

6.0 FTP
Function FTP processes data A,I as input producing J as output. It has 3

children.

6.1 GET CA5
Function GET CAS processes data A,X as input producing V as output.

Operation GET_CAS is a primitive operation.

6.2 EQ
Function EQ processes data V,"

*
" as input producing BOOL as output.

Operation EQ is a primitive operation.

6.3 Gi
Function Gi processes data A,IBOOL as input producing J as output. It has

2 children.

6.3.1 G2
Function G2 processes data A,I as input producing J as output. It has 3

children.

6.3.1.1 ADD INT
Function ADD YNT processes data I,0" as input producing Il as output.

Operation ADDINT is a primitive operation.

6.3.1.2 FF
Function FF processes data A,1I as input producing 12 as output. For

information on operation FF see chapter 5.

6.3.1.3 FTP
Function FTP processes data A,I2 as input producing J as output. Function

FTP is a recursive function. See above documentation.

6.3.2 CLONE1
Function CLONE1 processes data I as input producing J as output. Operation

CLONE1 is a primitive operation.

D-16

NSWC TR 87-181

CHAPTRR 7 FE

7.0 FE
Function FE processes data A,I as input producing J as output. It has 2

children.
It is required that RMKIEDTYPE) be of type

CAS' ((15)NODELCOMTAIXSVARIABLISOFUNDETzRxzZEDTTP)>.
It is required that > be of type

INT*(((14)PARENTOUTPUTISINPUTTOOFFSPRING)G.
It is required that 11,31 be of type INT.
It is required that OZO be of type CRAE.

7.1 al
Function G1 processes data A,I as input producing J1 as output. It has 2

children.

7.1.1 FT
Function FT processes data A,I as input producing 11 as output. For

information on operation FT see chapter 2.

7.1.2 FEP
Function FEP processes data A,I1 as input producing J1 as output. For

information on operation FEP see chapter 3.

7.2 PRINT LINE
Function PRINT LINE processes data 1,J,wE" as input producing 3 as output.

For information on operation PRINTLIN seae chapter 4.

D-17

NSUC TR 87-181

HIERARCHY OF MODULES

OPERATIONS CALLED BY FE

FT
Il-FT(A,I) (OPI

FtP
J1-FEP(A.I1) (OPj

PRINT LINE
J-PRZNT LINE(I,Jl,"E*)(OPI

OPERATIONS CALLED BY FT

FF
I1-FF(A,I) lOP,

FTP
JlsTP(A,I1) [0?]

PRINT LINE
J-PRIlNT LINE(IJl,"T")[OPI

OPERATIONS CALLED BY PEP

FT
12-FT(A,I1) (OPi

OPERATIONS CALLED BY PRINT LINE

NONE

OPERATIONS CALLED BY FF

FEF(A1)(P

PRINT LINE

J-PRZNT LINE I ,J1 , F") fOPJ

OPERATIONS CALLED BY FTP

FF
12-PF(A,I1) (OPJ

D-18

NSWC TR 87-181

OPERlATIONS CALLED 3Y FZ

FT
11-FT(AZ) COPI

VP
J1-FEP(A,I11 (02

PRINT LINE
J-PRINT-LINZ(XJ,31c5) (02

D-19

NSWC TR 87-181

APPENDIX E

THE TOWERS OF HANOI GAME

E. 1 MATHEMATICAL FORMULATION

The towers of Hanoi game can be viewed as a function of four arguments:
hanoi(n,ab,c) returns as its value the sequence of steps (xl->yl, ... ,

xk->yk) which moves all n discs from pole "a" to pole "b" using pole "c" as a
spare. The xi, yi are pole names. At no time can a larger disc be placed on
top of a smaller disc.

A standard solution [1) expresses hanoi(n,a,b,c) as a single step if n-l
or as a sequence of the solutions of three simpler games of the same kind if
n>l:

hanoi(n-l,a,c,b)
hanoi(1,a,b,c)
hanoi(n-l,c,b,a)

This leads to the following definition of hanoi:

hanoi(n.a,b,c) - if n-l then list(a->b)
else append(

append(hanoi(n-l,a,c,b),
list(a->b)),

hanoi(n-l,c,b,a))

For simplicity, the USEIT representation of hanoi does not compute the
sequence of moves as a list but prints each move via a call to step. Two ver-
sions of USEIT control maps are presented. For the first version USEIT recog-
nizes the non iterative nature of hanoi and refuses to "rat". For the second
version USEIT does not recognize the recursive nature of hanoi and generates
code for it which works only for n-1 and n-2 but goes into an infinite loop
for n2.

E-1

NSWC TR 87-181

E.2 USEIT CONTROL NAPS FOR HANOI, VERSION 1

The following control maps are a USEIT representation of hanoi. In this
version the control map of hanoi by itself appears as recursive.

4.--

Z :HANOI *N
S*A

• TERM

Iz IH1 IN BOOL IEQ IN
II JA 1 10
II Is I I

+ -.. +-..+c + - + -

AIITI"1 I
I-- -------- C-------------

I I TERM P
I BOOLI I

I - --------- CO--

II I
I+-------------O--------------

IZ IH2 IN Z ISTEP IA
I A I IS

II IS I ITERM
+I -- +- +c +- ------------- +

I TERM OP
I I

+I ---------------------------- CJ/CJ -----------------------
I I I I
I -------- -------- ---- +--

I Z IH4 IN Z1 ISTEP JA Z2 IH3 in
I I IA I IS I IA
I I IS I IZ2 I IB

+ -- +--+C + ----------- -----------+ +-+-
I zl OP I TERM

I I
+.-----C ----------- + +----------- CJ ------------.
* I " I

Z *HANOI *N1 NI +SUB_ in Z2 *HANOI *N1 Ni ISUB_ IN
A *C lINT I"" * A lINT I" I

I *B I * I

- ***" *'*A ---------- + **-**-*****--- +

R Z1 P R TERM P

*---

110-NOV-1987 15:29:27.01

I H(NUERI:HANOI:HANOI

E-2

NSWC TR 87-181

I s,- + II
Z ISTZP IA

I Is
II ITZRM

I
I .----- CJ------
I I I
I --- ---- --- -------

I z IDZSPLAY_ Is £1 IDISPLAY_ IA
I IrT Ini lIXT ITER II I I I I

I - + 4I......

P P

I 14.--

110-XOV-1987 15:29:45.86

I INNUDURI :ANolo3:sTP

E-3

NSWC TR 87-181

E.3 USEIT CONTROL MAPS FOR HANOI, VERSION 2

The following control maps are a USEIT representation of hanoi. In this
version the control map of hanoi by itself appears as non-recursive.

--
------------- +

z INANOZ IN I
I IA
I Is

I ---------- C I
I I TERM I

I I

2 Iii IN BOOL lEg IN I
I IA I I" I
I I I I I

I -- -, -------------- I
I z TE N 80L PQI I

I IooLI s

I I
I ----------- CO-------------I

I- -I- + - I
Z J2 IN Z ISTEP IA

I JA I Is
I I II TERM

I ---------- C -------------- I
II TERM OPI

I I
I--- -------------------- CJ/CJ----------------------I
II I
I -------- -------- --------- I
z IRC In 21 ISTSP IA Z2 IREC IN

I I IC I IS I IA
I I Is I IZ2 I IC
I -------------+A ------------- -------------- +

OP z1 OP OP TERN

I I
o--4-
I I
110-NOV-1987 15:30:29.65

I (NUBZRJ:HANOL2:UANOI
--

E-4

NSWC TR 87-181

Y IREC In

II isI ID

I

I ----------- CJ-+II I
I -------- J--------
InO IX IIS~a I I

I T IRANOX Jl 31 ISUS-. In
I I IA IINT I"i" I
I I I" I I
I ------- c ----------
I OP TIRN P

II
I

II
110-MOV-1987 15:30:47.03

I 1
HHUDBR]:NANIOI2:RZC

+--

E-5

NSWC TR 87-181

Z ISTEP IA

I Is
I ITERMI

I
+- - CJ -+

I I I
I .-... + ...- +--+ -- -

I Z IDZSPLAY_ la 21 IDISPLAY_ IA
I INT In IINT ITERM
I I I I I

+ ------ +------.

I P P

--------------------------------- +-
I
I10-NOV-1987 15:31:04.76
1 1
I (HHUSERI :HANOI2:STEP

+ +----------------------

E-6

NSWC TR 87-181

DISTRIBUTION

Copies
Strategic Systems Project Office
Attn: SP-23115 (C. Chappell) 1

SP-23423 (H. Cook) 1
Department of the Navy
Washington, DC 20376-5002

EG&G Washington Analytical
Services Center, Inc.

Attn. INC 2
P.O.Box 552
Dphlgren VA 22448-0552

Internal Distribution:
92 11 1
E23 1 10
K50 1
K51 2
K52 25
K53 2
K54. 4
K30 1 1

(1)

