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TOUGHNESS OF INTERFACES

A.S. Argon, V. Gupta, H.S. Landis*, and J.A. Cornie
Massachusetts Institute of Technology

, Cambridge, MA 02139

TRACT

The critical energy release rate for separation of thin
coatings from their substrate can be determined accurately in
many instances when the coatings are elastic, and are under a
state of residual stress. When the thickness of such coat-
ings reaches a critical value, so that the elastic strain
energy per unit surface area in them equals the specific work
of fracture of the interface, the coating will delaminate
from the substrate in quasi-static equilibrium. Through
analysis of such delaminations of SiC coatings from single
crystal Si substrates and Pitch-55 carbon fibers, the in-
trinsic toughness of Si-SiC and C-SiC interfaces have been
determined and are in the range of 5.5 J/mz.

INTRODUCTION :vs --=: -

In metal matrix composites, it is often necessary to protect the re-
inforcing fiber from damage resulting from fracture of surrounding fibers
or from misfitting reaction products between the matrix and the fiber.
It has long been appreciated that this is best accomplished by permitting
some slippage along the interface between fiber and matrix, or by control-
led delamination along this interface. Since other requirements must also
be met during the processing of the composite, such as proper wetting along
interfaces to avoid porosity, simultaneously controlling the interface
tougnness becomes very difficult. Therefore, we nave proposed that the
two functions be separated by the introduction of a second parallel inter-
face, the properties of which can be separately controlled [1]. This be-
comes possible, with little extra effort, when protective coatings are .
used on fibers to isolate them from reaction with the matrix. !n sucn
cases, the primary interface between the coating and the fiber can be
tailored during production of the coated fiber, and controlled to have
special toughness properties to govern the decoupling of the fiber from its
damaging surroundings, while maintaining full wetting contact along the
interface between the coating and the matrix. Thus, the primary interface
can be used as a mechanical fuse, as illustrated in Fig. 1. When a crack
impinging on a fiber from the outside, either caused by fiber damage in the
surrounding regions, or resulting from a reaction misfit wedge, as shown in
Fig. I, if the ratio of the fracture toughness of the primary interface to

that of the fiber in the plane of the crack is less than the corresponding
ratio of energy release from the surrounding stress field for virtual ex-
tensions of the crack along the interface vs. in its plane, the crack will
propagate along the interface, instead of going into the fiber. With well
bonded fibers, this is not likely to happen without special treatments for
the primary interface, requiring deliberate control of tne interface tough-
ness. Normally, this requires a decrease in the interface toughness.

*Now with GTE Laboratories, Waltham, Massachusetts
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FIG. 1. Sketch showing various possible paths of a crack impinging on an
interface between a coating and the underlying fiber.

Since the propagation of a crack either into the fiber or along the inter-
face is accompanied by more or less inelastic dissipation in the matrix or
in the fiber itself, the effective reduction of the interface toughness
could be achieved in principle by altering the inelastic properties of the
matrix or the fiber. This, however, may have other undesirable global
consequences. A much more successful procedure, following again along the
notion of considering the primary interface as a mechanical fuse, is to
control the intrinsic toughness of the primary interface. This should be
quite effective, since in such interface fractures, the actual mode of
separation is cleavage-like with or without surrounding inelastic dissipa-
tion, the latter affects the crack only through its shielding effect. In
suc,. instances, the overall toughness Gc of the interface is a sum of the
intrinsic toughness G 0 and the additional specific inelastic work of
separation Gp where, owever, the latter is directly scaled by the former
[2], i.e.,

Gc - Gco + Gp z Gco (1 + K) (1)

dG

where K 2 = d2)
dco

Thus, the task of protection of fibers from damage reduces to two
specific related requirements of tailoring the intrinsic toughness of the
primary interface between the protective coating and the fiber, and the
measurement of this interface toughness. Here, we will report briefly only
on special techniques for the determination of intrinsic toughness of
interfaces, wnich has become possible through the analysis of the phenome-
non ot spontaneous celamination of coatings from subtrates. A more ex-
panded discussion of the phenomenon and its special potential for interface
toughness determination can be found elsewhere E:].
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THE SiC SYSTEM

Vapor Deposition of SiC Coatings

The coating of choice to protect carbon fibers, such as the Pitch-B5
fibers, widely used for reinforcement in metal matrix composites, is SO.
it adheres well to carbon fiber and the surrounding metal matrix, and is
neutral in reactions with the metal matrix. In the experiments reported
here, SiC ccatings have been applied to substrates of single crystal Si
wafers and Pitch-55 fibers by a plasma-assisted chemical vapor deposition
process.

It was found that the ion bombardment energy is the most important
single parameter governing the properties of the coatings. Preliminary ob-
servations showed that during deposition of SiC on substrates, large con-
centrations of atomic hydrogen are entrapped in the coatings, which must be
removed by annealing the substrate-coating pair at a temperature of 600C
for about 30 minutes, if severe porosity problems are to be avoided during
the processing of the metal matrix composite. Associated with this problem,
it was discovered that the as-deposited hydrogenated SiC coatings are under
a state of bi-axial compression, which is relieved during the annealing
treatment, and is replaced with a residual bi-axial tensile stress of
similar magnitude. It is these residual stresses in the coatings which are
responsible for the spontaneous delamination and offer in the process the
means for determination of interface toughness. '-

Coatings with Tensile Misfit

The residual stresses, whether compressive or tensile in SiC coatings
on circular disk shaped thin Si single crystals with (111) planes parallel
to the plane of the disk were measured by measuring the curvature of the
combination of coating and disk. As shown in Fig. 2, if the coatings are
in tension, the curvature of the assembly is concave upward in the direction

,/ SC Coating

S, W f e r-

Coating in Tension Coating in Compression

7:G. 2. Bowing of a circular Si wafer with a thin SiC coating: in bi-axial
tension, and bi-axial compression.

of the coating, while the opposite is true when the stresses are comores-
sive. By elementary considerations, it is easy to snow that for thin
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coatings, the residual stress depends only on the thickness t of the coat-
ing, and the radius of curvature R of the assembly, but not on the elastic
oroperties of the coating. The residual stress c is given by an expression
[31,

S6(1 s )tR (3)

where Es and s are the Youngs modulus and Poisson's ratio of the substrate,
and n is the substrate thickness. The measured residual stresses in the
coatings in tension or compression are shown in Fig. 3. This established
that the residual stress depended only on the ion beam energy and not on
the thickness of the coatings.
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FIG. 3. Measured residual stresses in coatings as a function of ion beam
energy for as-deposited coatings in compression and annealed coatings in
tension.

In annealing experiments of coatings to drive out the entrapped hydro-
gen, it was discovered that the resulting coatings in residual tension re-
mained attached to the substrate indefinitely when they were of a thickness
less than 0.2 m. With larger thicknesses, the coatings developed two
families of parallel cracks: one set parallel to the <110> direction of
the Si substrate, the other family parallel to the <112> direction, ortho-
gonal to the first set. When thicknesses of the coatings exceeded 0.3 m,
delamination fronts spread out along the interface between coating and sub-
strate bounded by the parallel through-thickness pre-cracks. This produced
well delineated long delamination ribbons, which continued to lie flat on
the Si substrate, as the one shown in Fig. 4a. A large magnification view
of the detached end of the ribbon in Fib. 4b shows a readily measurable
gap, which represents the initial tensile misfit displacement in the now
delaminated ribbon. Through the measurement of such built-in misfit
strains, and the previously measured residual tensile stress, the Young's
moduli of the amorphous SiC coatings could be determined from Eqn. (4)
below, on the assumption that the Poisson's ratio of the coating is
0.3,
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F:G. 4. Example of rib ,on-like delamination of an 3--ealed coating in ten-
sion: ',a) low magnification view snowing extent of roton, b) highma'i

:aticn view snowing the initial tensile material --iit displacement.

e zalcjlated. -nod~li are shown in Fig. 5, and indic te that they too de-
Penc -.n the ion oeamn energy and not on any other oar_ eter.

7ne ooservations thus, indicate tnat *h'e telamina on is Ir~ven tv tre
elast~c stra-n energy in the coating. :n sucn :roolers of piaxial
stressed tnin coatings resulting from a coostant -iater'al mrisfit 'riceoena-
ent of triCkness, the elastic strain energy almost entirely res-,des in the
:cating, with only a negligible contribution coming from the -nucn tM',cker
suostrate [3]. Thus, for very thin coatings where the elastic strain
energ, per unit area of the interface is less than the 4nterface toughness,
*ne coating remains intact indefinitely. As tne thickness of t:"e coating
increases, the available elastic strain energy Der *jnit area -orotonically
noreases until it becomes equal to the intrnsc 'rnter'ace -actre seca--
ra:lcn jorK Der unit area Gro. Then, the coating can dela-mnate awav 11o,
t-e suostrate under ouasi-static conoitions, startrc Iror any -~eraze
.efect or Dre-crack. -or thicknesses greater than the o:'tical -:"'ness, %.
t-e ,elari-atisn oill ,ccur nith. .nc~eas'rg yelOCi.t'. rom elerer:ary zor-
-:erations, the cr':ical specific fracture separat on 6ork ]cO 's giver
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FIG. 5. Dependence of calculated modulus of coatings in tension on ion
beam energ; . LV"

ratio, and the critical thickness -- all of the coating. This work of
interface fracture is shown in Fig. 6. It is found to depend weakly on the
ion beam energy 2 and for large energies, reaches an asymptotic average
level of 5.1 J/m
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FIG. 6. The dependence of the calculated interface fracture work on ion
beam energy for coatings in tension.



^-,at-ngs mit ~ Comoressive Mjisfj

In the as-deposited coatings, the residual stress is cornpress've, as
stated above. There too, the elastic strain energy stored in tre :oat'%3
-er irit area of the interface increases monotonical'.y with thickness 0.
tne coating. The delamination of these coatings from the substrate, rOn-
ever, exhibits a very different form. Here, it is found that coatncs o'
considerably greater thickness remain attached intact to the substrate.
AJhen tney reach a new critical thickness in the range of 1.0 in, tne ' are
found to separate by 'orming a blister which lifts off the substrate in a re-

;ularly buckled form, as shown in Fig. 7, where a number of blisters 4n

.Q.7. Delamination blisters in an as-dePosited coating ini bi-axial cor-
Dression: (A) smallest size blister just lifting off, (8) large blisters
growing redially outward, with a self-similar and regular circumferert'ai
buckled front, (C) a blister Just large enough to ass,.;me a regular cirzcr--
lerential buckled shape.

various stages of separation can be seen. At (A), the blisters are just
l.a-ge enougm to produce two half waves of vertical buckling, at (B), , ar-,e 0
blisters have settled into a form where tney Prooagate racially outwarO 'n
z~asi static eouilibrium, with a self-similar circuimferent-,al OUC:!n , ave
len) tn 1. This wave length appears just establisned in tne s.~aU ost
snown at (C). 4

Detailed observations of the growth of the blister with Nor-arSKI
Inrterferernce contrast microscopy snowed that as the blister 1rcnt aova-ces
rac'a~ly outward, first tne radial residual stress is relieveo ,,y s!7coage
o trie c:ating radially inward over a ,rocess zone of several m',ocrs 'n

. ,1. -his is followed by the partial relief of tne circumferential stress
:y tne 'ormation of the circumferential buckles, with a wave 7enctn tha:
deoends on the initial bi-axial residual compressive stress 7 ivenio
Eoni. 1,) below :3],
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In Eqn. (6), E is the Young's modulus of the coating, t its thickness, and
,, its Poisson's ratio, which we take to be 0.3. Since the residual com-
pressive stress can be measured independently from the curvature of the
substrate attached to the coating, and Z can be measured from the micro-
graphs, such as Fig. 7, the modulus of the coating can be calculated from
Eqn. (6). When this was done for a coating of 1.1 zm thickness with a
measured z of 20 wm, and residual compressive stress of 2 GPa, E was found
to be 116 GPa.

Further elementary analysis of the remaining elastic strain energy Uf
per unit area of interface in the post buckled shape of the coating estab-
lishes it to be [3],

- TrEt (7)
Uf 9( 1 - v2)2 z

In the same fundamental parameters, the initial strain energy per unit area
of interface is [3],

ui  
4 - (8)g(l - V2 )2 (l - ,) 4

At the critical thickness t , the difference between (8) and (7) should
provide for the intrinsic facture toughness Gco of the interface, i.e.,

yr Etc 5

c 9(1 - ) (I - (9,

Evaluation of the typical case already referred to above gave an inter-
face toughness of Gco = 5.95 J/mz, which is 14% higher than the value de-
ternined for coatings in residual tension. The difference is attributed to
the additional slight disslpativework of slippage when relative 

sliding

occurs between coating and substrate during the release of the radial
stress.

THE SiC PITCH-55 CARBON FIBER SYSTEM U
The same phenomenon of spontaneous delamination also occurs with SiC

coatings on Pitch-55 carbon fibers. When such fibers were coated, followed

by the annealing treatment of 600C for 30 minutes, the coatings were found
to remain stable and intact, if their thicknesses were less than 0.33 _m
for coatings deposited at low ion beam energy. When coatings witn this
history were left in laboratory air with the usual relative humidity of 60'
for several months, they were found to undergo copious and complete de-
lamination by cracking and flaking, as shown in Fig. 8.

_
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cr-at :ne Posson's ratio remained at 03. the elast: 3train energy of tne
:cating :er init area could be calculated and ecuatez to the fracture
toughness of the interface to simo,.ly result in 73:.

co ,I - T
"or -coating thickness to fiber radius ratio t /'R '1. Evaliation of tnese
r-es 'lts for a typical case of coating with a modulus Of 15 2Pa, tnickness

zD.33 -r,, and a misfit strain of 2.7x1O - on a fiber with a rad4 -s of
-ne interface toughness was calculated to be Gco =5.4 72.~ 'This
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.fcoat'ngs ander resiual st-ess, from mnore -"assive sjtstrates occurs when
-e eiastic strain ene-g, of mrisf't oer init area eiuals tre "t's~ r~
D! ecaraticn of the zcat-rg from the 4nterface, delar''nation c3" ccczr

;.as'-stat,:aly The analysis of the condlt~ons of s~cm -ela-ration :-c-
-'es '"e -cn needed irfornation on the it'sc'atr c;~s
:~ te-face. Aoart fromr small d'fferences, which aocareniti are e a %
S 7tenergy lissipation during sl irpage of t~e coat- over the sL,.stra~e *~

as One raliaj stress is reli~eved first before :ne targen:'al st-ess, --e



case of the growth of the compression blister, the interface toughness is
independent of the state of stress in the coating. Furthermore, the tough-
ness of the interface between SiC coatings and carbon fibers is also quite
close to that measured for the SiC/Si pair.

Observation of such delamination events is not new. Earlier, Evans and
Hutchinson [4] have reported somewhat similar delamination phenomena for
interfaces between surface layers and substrates in computer interconnects,
but observed a rather different process in the delamination of the layers
in compression, which was less informative.

It must be noted that the simplicity of the phenomenon reported above
results from the sharply defined nature of the interface, and the condition
that the interface toughness is evidently less than the toughness of either
the coating or the substrate, so that delamination cracks remain in the
interface and do not wander into either of the two adjoining materials.
Under this condition, the nature of the stress intensity at the crack tip
for the interface crack, which has created quite considerable controversy
[5,6], is irrelevant, since the problem can be analysed by overall ener-
getics alone.

On the whole, we conclude that the interface toughnesses reported here
are quite meaningful and of an expected magnitude. How these reflect them-
selves in actual composites is a more complex matter, and require under- •
standing of the other accompanying dissipative processes [I].
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INTERFACES WITH CONTROLLED TOUGHNESS

AS MECHANICAL FUSES TO ISOLATE FIBERS FROM DAMAGE 0

V. Gupta, A.S. Argon, and J.A. Cornie

Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

ABSTRACT

A source of inadequate performance of Metal Matrix Composites has been 0

the Loss of strength due to the reaction layers between the fiber and the

surrounding metal matrix. Here, we propose that the traditional diffusion

barrier coatings on the fiber can be utilized to serve as mechanical fuses •

to isolate the impinging reaction zone cracks by interface delamination.

Requirements on the interface strength and toughness for the specific

tailoring of the fiber/coating interface are given. Special problems as- 0

sociated 'with the graphite/aluminum system are identified. A double canti-

lever beam exreriment has been developed to measure the work of seraration

of thin coatings (0.1 to 0.3 4m) from bulk substrates. This test has been S

successfully applied to measure the work of fracture of the interface

between a planar pyrolytic graphite substrate with the same chemistry and

3iose4 related microstructure as that of the 10 pm Pitch-55 graphite . er •

and SiC coatings on them. A value of 60 J/m2 was obtained for the cr't'*i

enera. release rate for the P0/S interface. Additiona measureents

enerry release rates in thin layers of glue used to model the um:num

matr ana in PC itsel, have given values which account -'or the h

t... ness of -he main interfaces through -he accompanin e 2e -

f acn 'work in the olue and the P3 while the crack tr-ve.e ,n ,:e 0

'rt.erace.
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I. INTRODUCTION

Composite materials are tailored combinations of materials constructed

to exploit the desirable properties of the component parts, while minimizing

their weaknesses. The points of particular interest are the attainment of

high stiffness and strength under both monotonic and cyclic loading, and

other improvements in associated properties, such as desired levels of thermal

expansion, damping capacity, resistance to environmental attack; all at mini-

mum weight and acceptable cost.

Since composites combine a multiplicity of component material parts,

they contain a high volume density of interfaces. The proper performance of

composites in service puts extreme and often conflicting demands on these

interfaces. In all of our considerations here, we will view composites as

heterogeneous media having a relatively coarse microstructural scale, for

which the elastic or plastic properties of the heterogeneities are governed

by representative volume elements on a much finer scale. This implies that

individual phases can be considered as continua, and that they interact with

each other only through their interfaces. Thus, the consideration of choice

is micro-mechanics, from which other macro-properties are assumed to be ob-

tainable.

In normal service, interfaces are required to transmit full traction

to assure that reinforcing phases such as fibers are fully load bearing to V

enhance the stiffness of the composite and to promote redundant deformations

in a ductile matrix that can markedly increase the overall deformation re-

sistance in it. The difference in the deformation resistance between fibers

and matrix results in the development of stress concentrations across the

interfaces. These concentrations can initiate cavitation and incipient

a R
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fracture phenomena, which sooner or later become unstable and result in the

premature termination of service by overall fracture. When such fracture is

inevitable, it is desirable that as much dissipative work be associated with

it as possible to result in tough and energy absorbing structures. Whether

that toughness has the clear characteristics of being associated with the

propagation of a single crack, and carrying conventional implications of

fracture toughness, or is more diffuse and widespread over the entire struc-

ture is important in design, but of secondary consideration here. In all of

these terminal phenomena, overall instability can be delayed by the system-

atic decoupling of the reinforcing elements that are on the verge of be-

coming critically stressed. To the extent that this can be successfully ac-

complished, subcritical damage can be spread over larger volume elements, to

result in a quasi-plastic response of the entire composite on the large

scale. This dcsired systematic decoupling of the reinforcing fibers or

other heterogeneities can be accomplished by controlling the terminal pro- 0

perties of interfaces, to have them act as mechanical fuses at appropriate

pre-determined levels of critical tractions. Such fine tuning or "tailoring"

of interface properties is in principle possible, but requires a high degree 0

of understanding of both the micro-mechanics of interfaces and the factors

that affect their cohesive strength and overall fracture toughness.

In metal matrix composites, where chemical reactions are also pos-

sible between the fibers and the metal matrix, forming reaction product

layers along interfaces, the positive material misfit that often accompanies

such reactions can initiate cracks in the fibers. To protect the fibers 0

from such reaction damage, it is customary to provide them with non-reactive

-: 1 I
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coatings. Since such coatings are introduced on the fibers under carefully

controlled conditions, they can also offer the opportunity for tailoring the

strength and toughness of their interfaces with the fiber, to achieve the

mechanical fuse action discussed above to isolate damage. Such damage may

have originated either among neighboring fibers, and is transmitted across

the matrix to the fiber, or it may have been generated by reaction products

forming on the outer interface between the matrix and the protective coating.

We report here the results of a combined experimental and theoretical

study on such key interfaces between the fibers and their protective coatings.

It should be emphasized that the concept of using such interfaces as mecha-

nical fuses is a very general one, and in principle, could be applied to any

composite system. However, in this study, we focus on its application to

metal matrix composites.

II. INTERFACE MECHANICS

2.1 Metal Matrix Compsite Systems

For metal matrix composites, a large number of fiber and matrix

systems have been explored. For structural applications at intermediate

temperatures, the light metals of aluminum, titanium, and magnesium have been

under primary consideration as matrices. While beryllium has most attractive

properties in its own right, even without any reinforcement, it has not re-

ceived much attention because of the difficulties associated with its proces-

sing. Of these, aluminum has been the matrix most widely considered. As a

f.c.c. metal, it exhibits exceptional ductility, and has a large number of

% -,
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well developed alloys with impressive properties. Of the various fibers

used to reinforce aluminum, such as, boron, Al203,SiC, and carbon, the one

that will be of primary interest to this investigation is the system of

meso-phase pitch base fibers obtained from spun polymer precursors by a

sequence of carbonization (1000 - 2000°C) or graphitization (2000 - 30000 C)

treatments. Such pitch base fibers have axial fiber Young's moduli that

range from 100 - 500 GPa with increasing molecular orientation, increasing

long-period of crystalline domains, and increasing density (1.9 - 2.2 g/cm 3).

In graphitized form, their tensile strengths are of the order of 2 GPa and

relatively independent of their stiffness El. Figure'la gives the micro-

structure of a Pitch-55 (Axial modulus 55 x 106 psi = 385 GPa) fiber, as

viewed in a cross section across the axis. The fibers are typically of 10 -m

in diameter, and are predominantly available in 500 - 10,000 filament yarns.

The long axial grooves along the external cylindrical surface and the micro-

structure of the transverse section indicate that the principal morphology of

the fiber is in the form of randomly corrugated and densely packed lamellae,

oriented parallel to the fiber axis. This suggests an idealized fiber

morphology, shown in Fig. lb, with "planes of weakness" terminating roughly

at right angles on the external surface. The consequence of this fiber

morphology is a very low transverse modulus (14 GPa for the Pitch-55 fiber),

and correspondingly low transverse tensile strength as well, estimated to be

around 75 MPa on the basis of the usual correlation between modulus and

strength. The particular morhpology of the fiber also results in low shear

stiffness and shear strength in longitudinal shear response to stresses ozr.

Although this has no important consequence in the normal service of the
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composite; it can have important benefitial effects in the spreading of

3
damage. Pitch-55 fibers have a density of 2.0 g/cm . The major advantage

of Pitch-55 fibers is their chemical intertness due to high carbon content,

high density, and high crystallinity. In the case of metal matrix composites

for space structures, the attractions of this are the combination of proper-

ties which promote thermal dimensional stability, i.e., high Young's modulus,

low and negative coefficient of thermal expansion, and high thermal conduct-

ivity.

The fibers are usually provided with a SiC coating of roughly 0.2 m 0

thickness, applied by a plasma-assisted chemical vapor deposition process

(PACVD) to isolate them from the matrix. The properties of such SiC coatings

and means for their placement have been investigated by Landis et al., S

and will be reported by them elsewhere [2]. Such coatings can be under sub-

stantial bi-axial misfit stresses, dependent upon their structure and levels

of entrapped hydrogen. These misfit stresses are compressive in the as-

deposited form of the coatings, but can be relieved and even turned into ten-

sile stresses upon thermal treatment. They are usually either maintained at

zero or slightly compressive levels. The coatings are generally amorphous and S

have isotropic Young's moduli of about 300 GPa.

As discussed earlier, the overall mechanical properties of the com-

posite are critically dependent on the properties of the key interfaces

between the fiber and coating. The general mechanics, and in particular, the

problems associated with Gr/Al systems involving the fiber-coating inter-

actions are of a generic nature, and are potentially applicable to many other

composite systems as well.

1% 1~ "v
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2.2 Fiber-Matrix interaction

In composites, certain conflicting requirements must be satisfied by

the interfaces between fiber and matrix. First, in a successful composite,

it is important to decouple the fiber from the matrix during fracture, so as

to prevent planar, low energy absorbing fractures. In fact, fiber fracture

at random levels, followed by fiber pull out is desirable. This demands

that the interfacial strength should not be too high. On the other hand,

adequate interfacial strength is required to provide good transverse proper-

ties of the composite. Hence, in order to tailor the interfaces to desired

properties for them to act as mechanical fuses, it is necessary to bound the

interface strength and toughness.

2.3 Transverse Behavior and Lcwer Bound to the Interface Strength

The interface strength is probed directly when the composite is stres-

sed in the transverse direction. Hence, the interface strength should be

high enough, so that transverse service stresses can be transferred to the

fiber. Because of the complexity of the stress field at the interfaces in a 0

bundle of fibers, the transverse loading problem has been approached chiefly

with numerical techniques. The interfacial stresses developed under trans-

verse tensile loading in composites of Pitch-55 fibers in pure Al matrices

has been studied to a considerable extent by Zywicz [3]. Figure 2,

relating to their work, shows the geometry of a typical close-packed array of
Pitch-55 fibers surrounded by an Al matrix. The relevant results for our

consideration are given in Table I, where the stress concentrations in purely

elastic and elastic-plastic behavior of the Al matrix are summarized as a
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function of volume fraction of fibers for two different modes of tensile load-

ing in the transverse direction, i.e., axx-, in the close-packed direction

and -yy,, mid-way between the close-packed directions. The table shows that

since the transverse modulus of the fibers is less than that of the aluminum,

the fibers have actually a deficiency in load carrying capacity in purely

elastic behavior of fibers and matrix, resulting in a stress concentration in

the matrix. This, however, is changed when the matrix can undergo plastic

deformation, and can continue to load the fibers by plastic drag. Thus, for

an equivalent plastic strain of even as small as 0.01, interface stress con- -

centrations ranging from 1.14 to 2.40 appear on the cylindrical fiber surface,

depending on fiber volume fraction and are governed by the equivalent plastic

resistance of the matrix. Based upon what the equivalent plastic resistance

of the matrix is, i.e., whether the matrix is pure Al or an Al alloy, the re-

sults in Table I provide a lower bound for the required interface strength,

i.e.,

0 i(lower bound) > ka (T)

Where k is the maximum stress concentration factor, and aT is the desired

transverse tensile strength of the composite.

2.4 JcntrolZed Delamination of Coatings and ' er Bcur- to -c

interface Strength

The nature of the interface cracking problem is of particular inter-

est, as depicted in Fig. 3, which shows a schematic view of a crack in a

SiC coating, terminating on the interface between the coating and the

% N
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Pitch-55 fiber. The crack could alternatively have resulted from a matrix

strain concentration produced by fractures in the surrounding fibers, a

surface notch, or as shown in the figure, by a reaction product produced

misfit wedge propping the flanks of the crack open. In all these cases, the

principal concern is to protect the fiber from fracturing by penetration of

the main crack into the fiber. This is to be achieved by decoupling the

fiber at the interface between the coating and the fiber by producing either

normal or shear failure at the interface using the concentrated interface

stresses a6e(Tr/2) or ar6 (7/2). The crack deflection process along the inter-

face requires the following conditions to be satisfied by the stress field

near the tip of the crack:

a) The ratio of the fiber tensile a* strength to the interface co- 0

hesive strength a should be greater than the ratio of the elastic

crack tip stresses probing the plane across the fiber to the stress

probing the interface to separate it in tension, i.e., the ratio

of a (at 8 = 0) to a,, (at e = 7/2). This will lead to the

delamination of the interface in tension, provided that such

tensile stress can be achieved. This condition leads to an up-

per bound for the interface cohesive strength.

b) The ratio of the fiber tensile strength to the interface shear

strength Ti shouldbe greater than the ratio of a (ate =0) to

zr5 at the interface (i.e., at 8 = 7/2). This will ensure the

separation of the interface in shear, and bounds the interface

shear strength. When the ratio of the interface cohesive S

strength to the interface shear strength is less than the ratio
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of Gee/are at the interface, tensile separation will be preferred.

Alternatively, for two possible directions of growth of the crack,

i.e., across the fiber vs. along the interface, if the ratio of

the energy release rate for growth across the fiber, to growth

along the interface is less than the ratio of the work of fracture

Gcft of transversely across the fiber to work of separation of the

interface Gci, then the fracture will follow the interface.

c) The work of separation of the interface Gci in any appropriate

combination of separation across aee and are along the interface

should be less than the work of fracture Gcfz of the fiber in the

longitudinal direction or the coating for the crack to continue to

travel along the interface.

Thus, it is of interest to determine the stress a e and a eacting across

the interface for a crack terminating at right angles on the interface, and estab-

I ish the energy release rates that result when the crack branches into the interface

to rel ieve these stresses. Furthermore, it is of interest to compare theseenergy

release rates with the relase rate for a crack going into the fiber.

Upon the initial successful diversion of the delamination crack along the

interface, continued preferential delamination, as opposed to the crack entering

the fiber, requires in addition, knowledge of the stress intensity associated with

cracks lying on the interface, to satisfy the condition under (c) above.

Although knowledge of tese stresses and energy release rates for cracks

terminating on the interface or lying along the interface in these bi-material

problems should be quite useful for purely elastic behavior, itwill be clear that

additional considerations will be necessary to understand the interface behavior,

when plastic deformation in the fiber or in the matrix outside the coating ac-

companies the propagation of the delamination crack.

• I.
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For isotroipc bi-material media with a crack terminating at right

angles on the interface, a very useful solution has been provided by Swenson

and Rau [4] for the Mode I loading of such a crack. As these authors show,

such cracks have a singularity which differs fundamentally from that of

cracks in homogeneous media, with singularity exponents either larger or

smaller than 0.5, depending upon whether the crack is in the stiffer or the

more compliant medium. The principal result of their analysis for the

changes in stress intensification around the crack tip in a bi-material with

semi-infinite extent is reproduced in Fig. 4 for plane strain, Mode I load-

ing, as a function of the shear modulus ratio for a pair of materials having

the same Poisson's ratio of 0.3. It is to be noted that, when the crack is

in the stiffer medium, as would be the case of interest in this study with

a crack in the SiC coating, the intensification of delaminating tensile

stress ae (7/2) decreases, while the delaminating shear stress are(r/2) in-

creases with increasing shear modulus ratiol/ 12. In fact, when 1/ ex-

ceeds 10, the opening mode stress a00 (Tr/2) across the interface drops to zero,

while the magnitude of a r(Tr/2) has doubled. It is to be noted that in the

case of interest here, the ratio between the modulus of the SiC and the axial

modulus of the fiber is 1.17, and thus differs only marginally from the iso-

tropic case. This implies that the ratio of the opening mode stress a9ee(r/ 2 )

across the interface to that in the fiber, i.e., uee(7/2)/aee(O) is roughly

0.35 (as is the ratio are (7/2)/a ee(O)). We note, however, that the Pitch-55

fiber is intensely anisotropic and has a transverse modulus that is only 4%"'

of the axial modulus. Thus, it can be expected that the fiber can readily I
flex in the transverse direction to release the transverse normal stress

0e (7/2); perhaps completely. This indicates that decoupling the fiber from

the coating may prove to be quite difficult, particularly if the interface

has no means of responding plastically in shear. Clearly, a full solution of
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this bi-material problem with the anisotropy of the fiber fully taken into

account is necessary.

The associated bi-material problem of a crack lying in the interface 0

of two elastic media that would be required to follow the path of the de-

lamination crack has been considered by a number of investigators [5,6], and

is plagued by oscillatory singularities, the origin of which is not under- 0

stood. Incorporation of geometrical and material non-linearities are pre-

sently being explored, but have so far not led to fully satisfactory results

[7]. Solutions of this type, however, will be necessary not only for the ,

problem of continued propagation of delamination cracks, but also in the

final interpretation of experimental measurements of interface toughness, as

we describe below.

Ill. CONTROL AND MEASUREMENT OF TOUGHNESS OF INTERFACES

3.1 General Strateqt S

To use the interface between the fiber and its coating as a reliable

mechanical fuse to protect the fiber from damage, requires both control of

interface strength and toughness in processing, as well as reliable methods

of measuring such strength and toughness. The process of producing high

quality coatings of SiC on Pitch-55 fibers and other substrates with the de-

sired properties of interfaces by plasma-assisted chemical vapor deposition

has been discussed by Landis, et al. [2]. The actual tailoring of the

properties of these interfaces between coating and substrate to place them

between the required lower and upper bounds discussed above, is still in

progress, and will be reported in the future. Here, we will discuss

110 111110
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primarily the procedures developed for the measurement of inter-

face properties. Of these, the interface cohesive strength and

shear strength are difficult to measure, since they will be very

sensitive to imperfections and are not likely to be of great value in govern-

ing the mode of the delamination of the interface to protect the fiber. For

this latter purpose, the work of separation across the interface will be of 0

greater value. From fundamental considerations, it is expected that the actual

fracture work of an interface could be dependent on the mixture of the

modes that are forcing it apart, i.e., the mixture of the applied Mode I

and Mode II, to which the interface crack is subjected. However, since the

nature of the singularity related to interface cracks separating two dis-

similar materials under any mode of loading is presently associated with un-

certainties discussed briefly in Section 2.4 above, we have concentrated at-

tention on the development of reliable and reproducible methods of measure-

ment of the fracturework of an interfaceby the most convenient means possible.

In this quest, however, two limiting approaches have been distinguished.

The interfaces which are of interest are expected to be relatively sharply

defined along a steep material gradient between the coating and the fiber.

The decohesion should then follow along a smooth surface, and have the appearance of

a typical cleavage fracture. Thus, the actual intrinsic toughness Gcot i.e.,

the release rate necessary for the decohesion is expected to be in the range

of only 3-5 J/m,2 which is typical for a cleavage-like fracture in a hard

inorganic solid. On the other hand, the energy release rateG for an actual

interface delamination in a composite is likely to be very much larger,

because of the presence of accompanying inelastic deformation in the fiber

30
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and in matrix surrounding the fibers. In such fractures where the eventual

separation process is of a cleavage type, the additional energy release rate

Gp that is associated with the surrounding inelastic dissipations will be S

scaled by the intrinsic toughness of the interface Gco [8], i.e.,

G = Gco + Gp = G co(1 + K) (2)

where K = Gp/Gco . (3)

Therefore, in spite of the much larger dissipations associated with delamina-

A' tions of interfaces in composites, the fundamental interface property to be

controlled is the interface toughness Gco, which is expected to be related direct-

ly to the reversible work of separation of the interface by the well-known relation S

G o XSiC + XC " Xi (4)

where ×SiC and XC are the surface free energies of SiC and C andi is the inter-

face energy of SiC and carbon. Hence, in the control of the fuse-like

action of the interface between coating and fiber, the reliable measurement

of Gco and how it may be affected by the processing conditions is of vital _

importance. Nyeertheless, of almost equal importance is the measurement of

the interface toughness in the actual composite itself.

In what follows, we will discuss the methods developed to measure

the overall toughness Gc of the interfaces in systems very similar to those

of the actual composite. The special methods necessary to measure the in-

trinsic toughness of the interface are discussed in an accompanying communication

[9].
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Measurement of CriticaZ Energy Release Rates cf in-erfaces

in ,-osit-es

Measurement of interface fracture work is not a new problem in thin film

and coating technology. The literature is replete with practical techniques

for the measurement of some average properties of thin film or coating inter-

faces, recently reviewed by Mittal [10]. Here, we shall develop some special

considerations and procedures necessary for the accurate measurement of inter-

face fracture work.

The preferred test for the determination of interfacial properties

should measure the state of adhesion directly using simple fundamental pro-

cedures of mechanics relatively free of artifacts relying on complex models,

based on unverifiable assumptions. For example, in the scratch test [11],

the process of scratch formation is complex and cannot be readily explained

in terms of pure models. Furthermore, there is no preferential failure at

the film/substrate interface, and the size and shape of the stylus can in-

fluence the mode of failure in an undeterminable manner. In the periodic

cracking technique utilized by Chow, Liu and Penwell [12] and by Davutoglu

and Aksay [13], the complex state of stress at the edge of the film in con-

tact with the substrate is not taken into account. More detailed stress

field modeling, such as that carried out by Yang and Freund [14] using

sliding stress intensity factors, are necessary. The indentation technique

of Chiang, Marshall, and Evans [15], requiring the presence of the interface

in the vicinity of a plastic zone, is also based on a fairly complicated model,

and does not measure the interface work of fracture directly. On the other

hand, the double cantilever beam test provides a simple and direct S
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method to measure the total adhesive fracture work, and has been used

earlier by Gilman [16] quite effectively to measure the work of cleavage

fracture of bulk materials. However, we have modified it to measure the

work of fracture of thin film interfaces in systems structurally and

chemically resembling those in the metal matrix composite itself.

IV. INTERFACES IN MODEL COMPOSITE SYSTEMS

4.1 The PyroZytic Graphite SiC Interface

An important prerequisite in the control of interface properties,

such as tensile cohesive strength and the work of fracture, is that these

properties should be measurable and the effectiveness of the crack deflec-

tion process should be demonstrable.

Performing experiments on actual interfaces in composites would be

best, but is very difficult because of the very small diameter of the fiber

(c.a. 10 microns). Therefore, it is desirable that the experiments be per-

formed on similar planar interfaces on a larger scale. This requires find-

ing material available in bulk, having the same chemical and morphological

,haracteristics as that of the fiber, which can then be adopted for macro-

scopic testing procedures.

For this purpose, pyrolytic graphite was chosen as a first approxi-

mation to the Pitch-55 fibers. Pyrolytic graphite (PG) is obtained by vapor

phase deposition of pure carbon in a temperature range of 1900 - 25000C. It

3has a density of 2.2 g/cm , which is approaching the theoretical density of

3graphitic carbon, i.e., 2.28 g/cm It grows in polycrystalline, nearly

planar spherulitic forms in a layer-like manner, but with a great degree of

- v,..' -
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anisotropy in the growth direction across which it is very compliant and

weak. Its isotropic Young's modulus in the growth planes is 28.5 GPa, and

in the growth direction across the layers is only 7 GPa. Figure 5 shows the

basis of modeling of the fiber surface with PG. The surface of PG parallel

to the C axis resembles the surface of the Pitch-55 fiber. It has the same

chemistry of Pitch-55, a somewhat higher density, and rather similar aniso-

tropic morphology that resembles that of the Pitch-55 fibers, as viewed in

the circumferential direction. However, the analogy is quantitatively quite

different. The Pitch-55 fibers have a stiff direction modulus 13.5 times

that of PG, but a compliant direction modulus that is only 2 times that of

PG. Thus, the fibers are both far more anisotropic and far stiffer than the

PG. Nevertheless, experimentation of relative interface properties and

general response of coatings on carbon substrates are far more readily in-

vestigated on PG than on individual Pitch-55 fibers, and permit simulation

of coating-substrate interactions in bulk.

4.2 The Double-Cantiiever Bea= Exveriment

This experiment was designed to measure the work of separation of a 0

SiC coating of 0.1 - 0.5 micron thickness, deposited on a planar PG sub-

strate. The specimen consits of strips of PG of 6.3 mm width, 3.2 mm thick-

ness, and 150 mm length with the layer planes oriented perpendicular to the

surface, as shown in Figure 6. The surfaces of these strips with the given

orientation of the planes were metalographically polished in a Syntron

vibratory polisher. These polished surfaces were then coated with SiC of

near stoichiometric composition, using a plasma-assisted chemical vapor de- _-

position process. The coated strips were annealed at 600 0 C in a vacuumIa I ,RW I I
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oven in order to relieve the residual stresses inside the films. Two of

these coated strips were then bonded together using a very tough Permabond

glue (ESP 109 and 110) over 75 mm of their length, so as to create an "

initial crack of 75 mm between the two strips. This laminate assembly was

heated to 200 0C to cure the glue. As will become clear below, the glue layer

between the two strips has mechanical properties close to those of pure •

aluminum.

A schematic diagram of the test apparatus is shown in Figure 6. The

free ends of the graphite strips were connected to tightly fitting metal o

cages, which were then connected to the Instron machine load train, as shown

in the figure. Load was transferred to the free ends of the cantilever

strips by 200 im thick tungsten wire. This wire was made taut prior to the o

testing, using a pin and set screw arrangement, shown in the figure. The

double cantilevers were pulled apart with a cross-head speed of 0.5 mm/minute.

A plot of load vs. load point displacement was obtained. By initial selection

of components, stable testing conditions were obtained, requiring that the un-

loading stiffness of the specimen is substantialy less than the stiffness of

the testing machine.

Treating the arms of the crack as cantilever beams and using simple

beam theory, the bending force F at the time of the crack propagation can be

related to the fracture work of the interface Gc, through the Griffitth

criterion by means of the formula:

G = F2L2/EIb , (5)

where L is the initial crack length, I is the moment of inertia, b is the
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width, and E is the modulus of elasticity of the PG strips.

4.3 Double Cantilever Experiment Resuts

Since the glue and the interface between the glue and the SiC coat-

ing is tougher than the interface between PG and SiC coating, the crack pre-

ferrentially propagates along the latter interface. In some instances, the S

crack was found to initiate in the glue layer, but jumped to the less tough

interface between SiC and PG. In such cases, the portion of the force,,°:rack-

length curve pertaining to this type of propagation was not considered.

Scanning electron microscopy, such as Fig. 7 of the fracture surface clearly

shows the plane of the crack and the regions where the crack deviated from

the interface, dipped inside the glue, and came back to the PG/SiC interface.

Additional stereo-images of the fracture surface helped to establish better

these occasional deviations of the crack path. Figure 8 shows an example

of such a stereo-pair. These observations established that the area of the

fracture surface through the glue is only a small fraction (about 0.1) of

the total fractured area along the interface. To make corrections for such

deviations, to obtain the actual energy release rate along the PG/Sic inter- 0

face, it is necessary to measure the fracture toughness of a comparably thin

glue layer. This was accomplished by bonding two high strength steel strips

together with the same glue of the same thickness, and prying the strips S

apart in a double-cantilever beam experiment. This gave a critical energy

release rate Gc = 244 J/m2 for the glue layer, which was used in making the

desired corrections.

In
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Figure 9 shows a typical load extension curve for a crack running

along the planar interface between SiC and PG. Three drops in the curve in-

dicate three stable jumps ahead of the crack. The average value of the

fracture work Gc (the critical energy release rate) for the interface

determined from such experiments, and incorporating corrections for devia-

2
tions of the path through the glue gave a value of 60 ; 6.85 J/m

The quoted value of the critical energy release rate Gc  along the

interface obtained from the double cantilever beam experiment is quite high

when compared to an expected level of 3-5 J/m 2 , based on interface energy for

hard inorganic solids. These high values must incorporate additional in-

elastic dissipation when the crack runs along the interface between SiC and

PG. Thus, the crack also probes the PG and the glue on both sides, and ]

forces them to undergo plastic relaxation. It is known that the tensile

yield strength of the glue is 64 MPa, while the intra-laminar shear strength

of the PG is 52 MPa, which translates into a Mises tensile yield strength of

90 MPa. Considering as a crude first approximation the interface cracking

to be occurring in a conventional homogeneous material under small scale

yielding conditions, we can estimate the inelastically affected layer depth 0

h of material near the fracture surfaces from the well known linear elastic

fracture mechanics relation of:

h - G ( (6)

Here, Gc = 60 J/m2 is the measured work of fracture, Y is the tensile yield

strength of the equivalent homogeneous material (take Y = 71 MPa as the

average for the glue and the PG), E is the elastic strain at yield ( 0.02 Uaverge fr th glu



S

-21-

for the glue and ^ 0.013 for the PG, take 0.015), and v is the Poisson's

ratio ( = 0.3). Evaluation of this expression gives a layer depth of about

10 microns. As a similar first approximation, the plastic work per unit

area of fracture, locked-up in the crack surface layers of thickness h,

should be of the order of 2YE yh, where a, which is a constant of integration

involving the plastic strain gradient into the surface in the deformed layers, m

is expected to be in the range of 2-3 (take 2.5). Using the above choices

for Y, ey and h, we estimate the dissipative component Gp of the energy re-
2p

lease rate to be 53 J/m2 , or quite close to what was measured.

In order to gain more confidence in the above explanations, the

critical energy release rate for fracture of the PG in the same orientation

as in the above tests (i.e. with its weak planes oriented perpendicular to 0

the fracture surface and running parallel to the crack growth direction) was

also measured using the double cantilever beam experiment. The measured

average value of Gc = 136 J/m2 is about twice as large as the critical energy re-

lease rates measured for cracks propagating along the PG/SiC interface.

Scanning electron microscopy of the fracture surfaces of the PG, as shown in

Fig. 10, revealed the layered structure of PG and indicated considerable

roughness in the forms of steps between lamina. The measured difference in

fracture work between the PG/SiC interface and the PG substrate itself is quite

large, indicating that the preferred delamination path should indeed be

along the PG/SiC interface, as was observed.

The toughness of the glue layer is worth more consideration. As

mentioned above, the thin glue layer exhibited a critical energy release

2
rate at fracture of the order of 244 J/m , and has a flow stress equal to
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64 MPa. This is close to the yield strength of unalloyed aluminum, which,

however, in bulk form, exhibits energy release rates in plane strain fracture

nearly two orders of magnitude higher, with deformation zones being correspond-

ingly thicker. But when tested in confined spaces in thin layers, the fracture

work of aluminum is likely to be no larger than what was found for the

glue. This indicates that the glue in many respects acts as a good model for

the aluminum matrix in the prototype composite. Therefore, we conclude

that the double-cantilever beam experiment for the fracture work of the PG/SiC

interface, being surrounded by a glue layer and a PG substrate, mimicks the S

behavior of the actual composite of SiC coated Pitch-55 fibers in an unalloyed

aluminum matrix. Table II summarizes all the measured overail critical energy re-

lease rates for fracturing along the interface and in the PG as well asin theglue

along paths shown in Fig. 11. From these measurements of the properties of

the PG/SiC interfaces, we conclude that the overall energy release rates Gc

are indeed made up of an intrinsic component Gc and a much larger plastic 5

dissipation component G in the surrounding material, as discussed in con-
p

nection with Eqn. (2), but thatG is still the fundamental quantity which
co

sets the scale of the overall fracture work.

Therefore, for the purpose of monitoring the toughness properties of

the tailored interface, it is essential to find reliable means of measuring

the intrinsic toughness levelGco alone. In an accompanying communication

[9], we discuss howtthis intrinsic work of separation of the coatings from

its substrate can be measured under nearly ideal conditions of quasi-static

delamination of residually stressed coatings under the driving force of the

locked-in strain energy of the coating, which produces only negligible
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inelastic effects in the substrate.

V. DISCUSSION

The delamination, or fracture toughness of interfaces play a key role

in all composites, but particularly so in metal matrix composites, where un-

wanted reactions between the matrix and the fiber can produce reaction pro- •

ducts with material misfit that can severely damage the fiber. This was ob-

served in elegant experiments of Metcalf [17] in the boron fiber aluminum

system. Since during the production of composites processing histories that -

give proper wetting of fibers by the molten matrix and good adhesion are

often in conflict with conditions to limit reaction damage, the proposal has

been made here to separate functions of proper wetting from careful control -

of interface mechanical properties. This can be accomplished by tailoring

the desired mechanical properties of the interface between the protective

coating and the reinforcing fiber, while accepting wetting related reaction

damage between the matrix and the outer surface of the protective coating of

the fiber. When properly controlled, this permits the pedigreed key inter-

face between the coating and the fiber to act as a mechanical fuse to de- -

couple the fiber from its surroundings by initiating delamination along it.

In this communication, we have discussed techniques for the measure-

ment of the fracture work of such interfaces in simulated conditions of local

environments representative of those in the composite itself. The double

cantilever beam experiment that was used to measure the fracture work

in symmetrical sandwiches of PG/SiC/glue/SiC/PG showed that very sub- ,

stantial inelastic deformation in the PG and the thin glue layer accompanies

P 0IIIP r
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the apparent cleavage-like separation of the interface between the PG and the

SiC. Since the PG has qualitatively similar inelastic behavior and morpho-

logy to that of the Pitch-55 fibers, and the glue has similar yield behavior S

to that of a pure Al matrix in the composite, the toughness measurements

reflect behavior that can be expected from the composite itself. Direct

meaningful measurements of fracture work of interfaces between SiC coatings and S

Pitch-55 fibers in prototype composites have so far not been carried out.

Clearly, additional developments are necessary both for the measure-

ment of intrinsic toughnesses of interfaces, and for the analysis of inter- 0

face cracks with accompanying inelastic behavior in the surrounding matrix

and fibers. In the accompanying communication, we present new developments

on the measurement of intrinsic toughness of interfaces [9].
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TABLE I - Transverse Stress Concentration for Pitch-55 Fibers in an

Aluminum Matrix (*)

Elastic Stress Concentration Factors k 
,

Vf 0.4 0.6 0.8 0

"rrmax/axx == 0.44 0.56 0.74

"rrmax/ayyO 0.60 0.82 1.04

Elastic-Plastic (_E = 0.01) Stress Concentration Factors k (*)

a / . 1 .14 1 .5 5 2 .4 0 ( O x )

arma/S 1.14 1.14 1.33 (o

0
(*) Zywicz and Parks [3].

(**) S is the Mises equivalent stress.
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TABLE II -Total Specific Fracture Work or Critical Energy Release Rate

Fracture Path G IC (J/m 2)

PG/SiC Interface 62.4 + 6.8

Permabond Glue 244

Pyrolytic Graphite 136

'.K
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FIGURE CAPTIONS

Fig. 1 - (a) Morphology of a 10 micron diameter Pitch-55 fiber revealed on

a transverse fracture surface, (b) idealized fiber morphology as

a set of corrugated parallel planes running parallel to the fiber

axis. The fiber yield strength is expected to be low in longi-

tudinal shear.

2 A hexagonal packing of aligned fibers in a meta. matrix. The

transverse plastic resistance differs in the y direction from

that of the x direction.

Fig. 3- Sketch showing a potential form of mechanical probing of a fiber

by a crack in the coating pried open by a misfit wedge produced by

a coating-matrix reaction. To protect the fiber,controlled de-

lamination at the interface is desired.

Fig. 4- The effect of shear modulus ratios on crack tip stresses for a

crack in one medium ending perpendicularly on the interface, under

plane strain loading (from Swenson and Rau [4], courtesy of

Pergamon Press).

F 5- (a) Scanning electron micrograph of the morphology of a smooth

layer plane perpendicular to the "c" axis in pyrolitic graphite

showing nodules, (b) idealized rendering of the layer planes in

PG.

- The double cantilever beam experiment for the measurement of

interface toughness.
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0

Fig. 7 - A SEM micrograph of the fracture surface between a SiC coating and

a PG substrate having its surface parallel to the c axis of the

PG. The crack propagation direction was parallel to the surface ]

markings: (a) fracture surface viewed toward PG, (b) viewed

toward SiC and glue layer.

Fig. 8 - A stereo-pair of SEM micrographs of the fracture surface between

a SiC coating and PG substrate. The crack propagation direction

was parallel to the markings.

Fig. 9 A typical load (displacement) curve recorded in a double canti-

lever beam experiment, showing 3 quasi-stable extensions of the

crack before it finally ran unstably.

Fig. 10 - A SEM micrograph of the fracture surface in PG running trans-

verse to the smooth layer planes.

Fig. 11 - Sketch showing the three possible paths of a crack running paral-

lel to an interface between SiC and PG. 0
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Fig. 5 - (a) Scanning electron micrograph of the morphology of a smooth
layer plane perpendicular to the "c" axis in pyrolitic graphite
showing nodules, (b) 'dealized rendering of the layer planes in
PG.
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INTRINSIC TOUGHNESS OF INTERFACES

BETWEEN SiC COATINGS AND SUBSTRATES OF Si OR C FIBER

A.S. Argon, V. Gupta, H.S. Landis*, and J.A. Cornie
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The critical energy release rate for separation of SiC coatings from

single crystal Si substrates or surfaces cf carbon fibers, along their well-

defined interfaces can be determined quite accuarately from analysis of the

spontaneous delamination of coatings under bi-axial stress, when such coat-

ings exceed a critical thickness. Direct. evaluations have been made of the

specific work of delamination along the interface for SiC coatings from

single crystal Si su. strates, for both the case of coatings under li- axial compre-

sion, as well as under bi-axial tension. The criticat energy release rate for coat-

ings in tension was 5.1 J/m2 , and that for coatings under compression was

5.9 J/m 2 . The higher valie of the Latter is attributed to relative slip-

page between coating and eub trate before lift-off of the former.

Corresponding determination of the critical energ?, release rate for

delamination of SiC coatings under bi-axial tension from surfaces cf aniso-
:toic ?itch-55 carbon fibers gave an answer of 5.5 J/m2.  .ese values

cc-:are ver, x wih exrectazions :ror surface eneroies : sran sois._
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I. INTRODUCTION

Relaxation of shear tractions across interfaces and eventual fracture

along interfaces are key phenomena affecting the performance of composites

reinforced with stiff or less deformable heterogeneities. Particularly, the

possibility of controlled delamination along an interface of a reinforcing

fiber or platelet before the stresses become too high in them to produce

fracture has been recognized for some time as a desirable condition to

achieve stable traction-displacement behavior, and to increase overall tough-

ness. In the composites field, key interface properties are usually measured

by simple operational procedures, such as a single fiber pull-out test or a

relatively macroscopic interlaminar shear test [1]. There have also been

other more indirect techniques, such as the periodic cracking of a brittle

fiber embedded in a matrix, plastically extended parallel to the fiber [2],

or initiating local interface fractures through very local deformations

produced by scratches [3] or hardness indenters [4]. In all of these cases,

either only average information is obtained for a delamination process in

which in reality a front of concentrated stresses and inelastic strain pro-

pagate along the interface, or the deformation is even more inhomogeneous and

produces local interface separation through the production of plastic misfit

which requires the solution of local elasto-plastic boundary value problems

for the evaluation of the critical interface conditions. In all of these

instances, the critical interface tractions that result in separation are

not accurately determinable, while the fracture toughness of the interface

itself is usually shrouded by much excess accompanying deformation, often

even absent in the failure process occurring in the prototype composite.

.' 2l
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In many interface fractures resulting in a clean cleavage-like

separation, the critical intrinsic energy release rate Gco for separation

of the interface (to be referred to here as the intrinsic interface tough-

ness), is accompanied by a much larger term, Gp, reflecting the dissipative

additional inelastic deformations in the layers immediately adjacent to the

separating interface. While this additional work, Gp, can dominate over

the toughness Gco, the latter still scales the much larger inelastic dis- 0

sipation work, so that any factor which affects Gco is directly reflected

in the magnitude of Gp in an amplified manner [5,6]. In an accompanying

communication [6], we have proposed that the toughness of interfaces

between protective coatings, such as SiC and fibers such as Pitch-55, can

be tailored to initiate controlled delamination to protect the fiber from

damage, and thereby act as mechanical fuses. There, we discussed an ex-

perimental technique based on the double cantilever beam to measure the

overall specific fracture work (Gco + G p) of model composite interfaces.

Here, we will discuss special techniques on how the much smaller, but key

intrinsic toughnesses G of interfaces can be measured, which must be
co

governed to control composite properties.

If. INTRINSIC MECHANICAL PROPERTIES OF INTERFACES

2.1 Toughness of Coating - Substrate Interfaces

During the study of vapor deposition of SiC coatings on various sub-

strates, it became clear that the intrinsic toughness of an interface

between a thin coating and a more massive substrate is directly measurable

through the controlled delamination of the coating from the substrate during

the relief of the residual stresses in the coating. Such delaminations and
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their potential for interface toughness measurement were recognized earlier 0

by Evans and Hutchinson for surface layers under residual compression [7].

Here, we will demonstrate how this technique can be generalized and used for

intrinsic interface toughness measurement in cases where the coating is 0

either in residual tension or residual compression, on both model systems

as well as on actual prototype interfaces betwee SiC coatings and Pitch-55

fibers. Before we present the details of such interface toughness deter- 0

minations, it is necessary to discuss some essential details of the coating

process which clarifies the origin of the residual stresses.

2.2 Vapor Deposition of SiC Coatings

Amorphous hydrogenated thin films of SiC were deposited in Pitch-55

fibers and on Si single crystal wafers using a plasma assisted chemical

vapor deposition (PACVD) process, the details of which are discussed by one

of us elsewhere [8].

It was observed that the processing parameters, especially the ion

bombardment energy play a critical role in determining the unique physical

and mechanical properties of the SiC deposits. These processing parameters

could be adjusted to obtain the necessary toughness properties for the

interfaces to optimize their desirable mechanical fuse action discussed in

the accompanying comunication [6].

Preliminary observations made on such PACVD coatings of SiC on

Pitch-55 fibers indicated that in the as-deposited form, the coatings en-

trap a large concentration of hydrogen, which leaves the coatings under sub-

stantial residual compressive stress. When such coated fibers are incorpo-

rated into actual metal matrix composites, molten AZ must be infiltrated



-4-

among them at or around 660°C. This releases the entrapped hydrogen, and

results in poor adhesion of fibers to matrix and in unwanted porosity. To

0 

O0

prevent this, coatings are given outgassing treatments at 600'C to remove

the hydrogen.

If this process is carried to completion in a period of about 30

minutes at 600*C, the coatings acquire a substantial level of residual ten- 0

sile stress. Thus, the type and magnitude of the residual stress in coat-

ings is an important element in the proper performance of composites, and

the factors which influence it are of direct interest. _

2.3 Measurement of Residual Stresees in Coatings

The levels of residual stress in SiC coatings applied by the PCVD

process were measured through the change of curvature they produce in a

1 inch diameter standard Si single crystal wafer with (100) surfaces and

250 ;m thickness when the coating is deposited on the wafer. An initially

flat and homogeneous circular disk shaped Si wafer acquires a convex shape

with a coating in residual compression on its top surface, as depicted in

Fig. lb, and a concave shape when the coating is in residual tension, as 0

depicted in Fib. la. Elementary considerations give readily that the re-

sidual biaxial stress ain the coating depends on the average in-plane elastic

modulus Es and the Poisson's ratio vs of the substrate, the thickness h of

the substrate, the thickness t of the coating, and of course, the radius of

curvature R of the substrate. Provided that the coating is very much thin-

ner than the substrate, i.e. t/h << 1, this residual stress is (Appendix I):
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= Esh 2  (1)

6t s)tR 0

The residual stress is tensile for a positive curvature (concave upward) and

compressive for a negative curvature (convex upward), and is not influenced

by the elastic properties of the coating. The thicknesses of the coatings

were measured using a Dektak II profilometer by masking portions of the Si

wafer with a layer of vacuum grease before the coating was applied. When

the masked areas were cleaned with a series of rinses of toluene, acetone,

methanol, and finally, ethanol, a sharp surface step emerged at the peri-

pheries of the coated areas left on the wafer. The height of these steps

was readily measured by the diamond stylus of the profilometer (under a

contact pressure of 25 mg) to an accuracy of 2.5 - 10 nm. Typical coating

thicknesses which were measured were between 0.1 - 1.0 vim, and were quite

reproducible through control of the deposition conditions. The curvatures

of the circular disk shaped wafers with the variously stressed coatings were S

also measured with the same profilometer. The deformation of the bowed disks

during themeasurements under the slight pressure of the styluswas negligible.

Since the maximum difference in the Young's modulus in the plane of the S

(100) wafer is only 16%, no important differences in curvature were detected

in any orientation by the profilometer for coatings of uniform thickness.

As shown in Fig. 2, the measured level of biaxial compression in

as-deposited fibers was found to be independent of the thickness of the de-

posit, but increased with increasing ion beam energy in the PACVD apparatus. -

Upon annealing of the as-deposited films for a period of 30 minutes S

at 600C, coupious hydrogen gas evolution from the films was observed, which
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resulted in substantial reduction of film thickness. This thickness reduc-

tion also increased with increasing ion beam energy, as shown in Fig. 3, in-

dicating that more energetic ion beams result in more built-in material mis-

fit in the films. Residual stress measurements on the wafers after the 30

minutes outgassing treatment at 600 0C indicated that in spite of the very

large reduction of thickness, the coatings also contract biaxically and

acquire a large bi-axial residual tensile stress. As Fig. 2 shows, the

measured bi-axial tensile stresses in the outgassed coatings increase with

initial ion beam energy in a manner symmetrical to the compressive stress in

the as-deposited coatings. Clearly, these residual stresses at around 2 GPa

are exceedingly high (around 0.5% of the Young's modulus of the SiC coating).

2.4 Delamination of Coatings from Substrates

It was observed that coatings, whether under a compressive residual

stress or a tensile residual stress, delaminated nearly spontaneously from

the substrate when their thickness exceeded a well-defined critical value. S

In both cases, delamination was initiated from interface flaws which appeared

to be of circular shape and were most probably a result of occasional local

surface contamination. The form of delamination in compression differed

significantly from that in tension. In the former case for coatings of

thickness substantially under 1 micron, the initially circular delamination

patches did not grow. However, when the coating thickness exceeded 1 micron,

slow delamination in quasi-static conditions could be observed, which

initiated with outward buckling of the coating into one or two fundamental

wave lengths, as can be seen in regions A of Fig. 4. These delamination S

patches grew by development of ever increasingly complex wrinkling patterns,

Sl
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but rapidly developed a regular delamination front, as shown for the blister

at C and for the relatively large blisters in regions B of Fig. 4. The

blister then grew, often in neutral equilibrium, as residually stressed 0

layers fed across the blister periphery into a circumferential strip with

regularly spaced radial buckling ridges. In the further radial expansion of

the delamination front, the principal buckling wave length in the circumfer-

ential strip immediately adjacent to the blister front remained unaltered,

as can be discerned from Fig. 4 readily by comparing the smallest buckled

blisters at A with the largest ones at B, as well as with the other inter- *

mediate sized blisters shown in the figure. Figure 4 shows other

circular patches, larger than those at A, in which no buckling has occurred.

These are likely to be interface flaws, in which the adhesion of the coating

to be substrate across the interface has not been fully impaired. No pro-

gressive delamination in such regions was observed.

In the outgassed samples, where the residual stress in the coating

becomes bi-axial tension, the delamination shows quite different features

with increasing thickness of the coating. Three different regimes of de-

lamination have been identified in the coatings deposited under inter-

mediate and high ion beam energies (75 - 150 e.V.), i.e., those in which the

measured residual tensile stress was above 2 GPa. In relatively thin de-

posits (less than 0.2 im thick) only circular blisters were found by the en- -

trapment of hydrogen gas evolving during the outgassing process. In some

instances, particularly for blisters of large radius, the caps of the

blisters were found detached from the sample. In samples where the thick-

ness of the coating exceeded 0.2 lim, blister detachment was followed by

', w*. ~. p .p ~p. - ~, ~ -
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formation of cracks in the coatings emanating from the edge of the detached

blister hole, as shown in Fig. 5. The initially radial cracks become paral-

lel to one of two perpendicular directions once they are about one diameter

away from the hole. The straight cracks away from the holes were

found to be parallel to the two <110> directions in the plane of

the Si wafer. These directions are the stiffest in the plane of

the (100) wafer, and produce the largest misfit stress, across

them in the coating.

In coatings that were thicker than 0.3 pm, delamination fronts spread

out along the interface between the coating and the substrate bounded by the

parallel pre-cracks in the coatings radiating away from the holes in the

mutually orthogonal <llO> directions, as shown in Fig. 6. In

samples with even thicker coatings, the delaminated fraction of the interface

steadily increases, as in the case of Fig, 7, until at thicknesses ex-

ceeding 0.75 jim almost the entire coating has delaminated from the substrate,

as is shown in Fig. 8.

Clearly, the driving force for the delamination in both cases of com-

pressive and tensile residual stresses is the elastic strain energy in the

coating. As discussed in Section 2.3 above, the residual stress in the coat-

ing depends only on the ion beam energy and the concentration of entrapped

hydrogen gas in the coating, that results in the bi-axial material misfit,

but not on the coating thickness. Furthermore, as is well known, and as we a

.demonstrate below, when the coating is very much thinner than the sub-

strate, nearly all the elastic strain energy of misfit between coating and

substrate is stored in the coating. Thus, as the coating thickness increases I
L,,.1
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the driving force for delamination increases nearly with thickness. In very

thin coatings, the stored elastic strain energy is insufficient to provide

for the required elastic energy release rate necessary to form the interface

delamination, and no delamination was found to occur in either vacuum or in

air. In an intermediate range of thickness, coatings could be preserved in-

tact when stored in a vacuum, but delaminated in time when exposed to the -

laboratory environment.

With even thicker coatings, delamination occurred very rapidly both

in vacuum and in air. Thus, it is expected that the delamination process

along the interface is aided by humidity and is subject to static fatigue,

well known in silica glasses [9]. This effect, however, will not be pursued

further in this communication. -

We will demonstrate in Section 2.6 below that the observed delamina-

tion phenomenon described above permits the rather accurate determination

of the intrinsic interface toughness between a sharply delineated coating and

its substrate, as is the case here between SiC and Si. In addition, the very

regular and ribbon-like delamination in the case with tensile residual

stresses also permits the determination of the Young's modulus of the

amorphous SiC coatings. We discuss this below in the following section in

preparation of the developments for interface toughness determination.

2.5 The Young's Moduli o" Amorphous _Xcainas iv* ?es-idua. 2ensicn

In samples exhibiting the very regular ribbon-like delamination, it

was observed that some of the loose ribbons remained perfectly flat upon delamina-

tion and in registry with the rectangular slots, in which they underwent the If
. V
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contractile strain resulting from the relief of the material misfit causing

the residual stress. A particularly clear example of this is shown in Fig.

9a and b. In Fib. 9a, the extent of the delamination ribbon is shown clear-

ly by the bordering parallel cracks in the coating terminating roughly 140

Am below the horizontal crack that initiated the delamination. The termina-

tion of the gray region inside the ribbon at the point of termination of the

parallel cracks indicates that the extent of delamination in the ribbon is

well delineated. The upper portion of the same ribbonpgiven at a larger

magnification in Fig. 19bshows a well defined gap which represents the over-

all contraction of the ribbon upon delamination. Observations of this type,

which could be made with equal precision at many places on the coating, per-

mitted the accurate determination of the initial bi-axial misfit strain in

the coating. The results of such measurements are shown in Fig. 10. They

indicated that while the tensile misfit strain was quite large in coatings

deposited at low ion beam energy, it was considerably smaller and independ-

ent of ion beam energy for energies above 75 e.V.

Since the residual tensile stress in the coatings resulting from this

misfit straincould bemeasured separately through themeasurement of the curva-

ture of the Si wafer before any cracks could develop, as discussed in Section 2.3

above, the Young's modulus of the coatings could then be calculated from the equation:

E (l- (2)

Cm

giving the dependence of bi-axial residual stress a on the bi-axial misfit

strain Em provided Poisson's ratio v is known. For an assumed Poisson's

ratio of 0.3, the calculated Young's moduli of SiC coatings are plotted in



Fig. 11 as a function of the initial ion beam energy. The modulus goes from

a rather low value of about 16 GPa to around 300 GPa for coatings deposited

at energies in excess of 75 e.V. -

The determination of the Young's modulus of coatings having compres-

sive misfit strain require a different procedure, which will be discussed in

Section 2.7 below.

2.6 Work of Separation of Interfaces between Substrates and Coatings

with Tensile Misfit

Although the stress intensity for delamination propagating along

interfaces between a coating under tensile residual stress and a massive sub-

strate of different elastic properties is complex and difficult to determine

rlO,11] the associated and far more useful, critical elastic energy release

rate Gco, which we have referred to as the intrinsic interface toughness can be
0

readily determined if the crack is constrained to remain in the interface. Thus, I

considering the elastic energy release from the coating and the substrate in re-

sponse to a quasi-static extension of the interface crack, the desired energy re-

lease rateavailable from the system can be calculated readilyby elementary 
0

methods from the theory of circular plates in bending (see Appendix I) to be:

Co 2Et 1- (1 Vs) (3)

where the second term in brackets gives the fraction of the energy released

from the substrate during delamination. In Eqn. (3), Em is the total misfit

strain between coating and substrate E, v, Es , Vs are the Young's moduli and
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Poisson's ratios of the coating and substrate respectively, and t and h are

the thickenesses of the coating and substrate. For the cases of interest

where << h, where the total misfit strain is nearly entirely accommodated

in the coating, i.e., where

2 W1.

m (5) A

Since a and E are separately measurable, as discussed in Sections 2.3 and -

2.5, the energy release rate is calculable uniquely, provided Poisson's

ratio of the coating is known. Thus, as the thickness of the coating in-

creases, the available energy from the system becomes larger. At a given

threshold thickness t of the coating, when the available strain energy is
c .

sufficient to provide for the total specific work of delamination in air,

such delamination will occur, and establishes the intrinsic interface tough-

ness Gco in air as:

a (1 - V4tc
Gco E (6)

Since the work of delamination in a vacuum will be substantially larger •

because of the absence of static fatigue, the critical delamination thickness . .'

in vacuum for comparable conditions should be proportionally larger. The

observed critical thicknesses for delamination in air are shown in Fig. 12,

while the calculated specific work of delamination is shown in Fig. 13.

Both of these terms depend somewhat on the ion beam energy. The average

value of this work of fracture for high ion beam energies is 5.1 J/m2 .  
_

.. ... %
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2.7 Work of Seraration of interfaces etween s t" roes d

wivh omroressive Mios

As is shown in Fig. 4 and in the sketch of Fig. 14a, once a suffi-

ciently large portion of the coating is delaminated from the substrate at an

initial flaw, it will undergo some release of elastic strain energy by buck-

ling. After undergoing some early and complex buckling shapes, the delamina-

tion process settles down into a self similar front, seen established for

the blister at C in Fig. 4. In this delamination front, sketched out in Fig.

14a, bi-axially strained coating feeds-in across the circumferential delamina-

tion front of the blister, and undergoes nearly complete release of the

radial stress. This is seen more clearly in Fig. 15, which shows a blister

of intermediate size viewed with Nomarski interference contrast microscopy %

that is capable of detecting very small changes in elevation by a color con-

trast. The figure reveals that the blister has an outer ring, which sur-

rounds the buckling front at a radial distance of 5-7 2m ahead of it. The

zone between the outer radius of this circular front and the average front

of the buckled zone could only be seen with the Nomarski contrast mode of

observation because of a slight decrease of elevation of the coating surface

different from its outer surroundings, which was still fully attached to the -.%

substrate. Such a change results through the release of the radial stress,

as postulated, which produces a differential radial strain r and a dif-[
ferential thickness Lz' given by:

Fr ( + ".)Em (7a)

I
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=E VQ8 V}Em (7b)

and a decrease in the tangential stress a by a factor of (l - v) from its

initial level of -.E/(l - v). As we will see below, the thinning of the

film upon the release of the radial stress is of a magnitude that can be de-

tected readily by the Nomarski interference contrast mode of microscopy.

Upon a critical radial displacement of the coating toward the interior

of the outer front of the blister, cohesion across the interface is com-

pletely lost, and the remaining tangential stress a0 ( ( - v)a) is relieved

further by the regular circumferential buckling of the film to a wavelength Z. % %-e*

The process of delamination with a self similar circumferential buckling

mode becomes self sustaining when for a radial increment of delamination, the

difference between the initial elastic strain energy in the coating and that

remaining in the regular post buckling shape is sufficient to provide for the

total work of delamination of the interface in this increment.

The key element of the delamination is the principal circumferential

buckling wave length Z, which is directly measurable from micrographs. It

relates to the initial tangential stress a that governs it by the Euler

buckling relation of thin strips, (for details of the analysis see Appendix

II) as:

zE , (8)3(I - v2)a(l - v) ."-

where E and v are the Young's modulus and the Poisson's ratio of the coating

as before, and a is the initial bi-axial compressive residual stress in the

coating. We note parenthetically that since the initial residual stress :-

ZZ Z Z ,_ - Zz , e
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is directly measurable from the curvature of the bent wafer and z from the

micrographs, the Young's modulus of the hydrogenated coating in its as-

deposited form in the PCVD process is calculable directly from Eqn. (8).

Since the substrate is massive and nearly inextensional, once strips

of coating traverse across the delamination front their initial displacement

misfit in the circumferential direction must be completely relieved by the

circumferential buckling. This permits calculation of the steady state post

buckling amplitude zo, sketched in Fig. 14b as:
0S

tz = t (9)z 3(I - ,2)

This then permits the calculation of the final elastic strain energy Uf per

unit area in the post buckling shape of the tangential strip, just on the

blister side of the delamination front to be (see Appendix II):

U 74Et5 (10)f z( - 2 7

Since the initial elastic strain energy Ui per unit area in the bi-axially

stressed coating in the same form of representation is:

.4 Et5  (11)Ui 2 2( )4 '( l1 9(1 l .2)2l -v)Z

the elastic strain energy release rate G by this special form of tangential -

buckling, available to provide for the specific work of delamination of the

interface becomes,
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G U 9 vr 4 Et5  
(

f = U - Uf 20) (12)

Once again, at a critical thickness tc, this energy becomes sufficient to

provide for the quasi-static propagation of the delamination front in

neutral equilibrium in air, establishing the intrinsic delamination toughness

of the interface Gco as:

G 0 cEtc (13)co -9( - v2 )2 (l - v)z4

As a specific case, we consider the delamination blisters of Fig. 4

of a coating deposited at high ion beam energy, expected to have a bi-axial

compressive residual stress of a = 2GPa, as shown in Fig. 2. The critical

thickness of this coating was measured to be 1.1 4m, while the average post

buckling wave length Z in the circumferential direction was measured to be

20 wm. Assuming as before a Poisson's ratio of 0.3, we calculate first the

Young's modulus from Eqn. (8) to be 116 GPa. Finally, using this value, the

critical energy release rate Gco (specific work of delamination) is

calculated from Eqn. (13) to be 5.9 J/m2. This is 14% higher than the

average value calculated from the delamination of the coatings under tensile

residual stress, and well within the scatter of measurements of that experi- I
ment. Thus, we conclude that the intrinsic toughness of the interface

between SiC and Si is uninfluenced by the "dehydrogenation" that converts

the coatings from having negative misfit to positive misfit. I

- -_
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III. TOUGHNESS OF INTERFACES BETWEEN SiC COATINGS AND PITCH-55 FIBERS

The total work of delaminating a SiC coating from a Pitch-55 carbon

fiber can also be determined by a technique very similar to that used for a

system of Si wafer and SiC coating under tensile misfit strain. Figure 16

shows a SEM micrograph of an outgassed fiber with a SiC coating of 0.33 '.m
S

thickness, initially deposited under conditions of low ion beam energy. The

coating showed some small through the thickness cracks, but no delamination

during several weeks of storage in air after the regularoutgassing treatment

of 30 minutes at 6000C. When it was examined again after several months of

further storage in laboratory air with the usual level of relative humidity,

in the vicinities of 60%, copious delamination of the SiC coating was found,

as shown in Fig. 16. The initial bi-axial misfit strain em between the

coating and the fiber could be determined from the ratio of the average gap

size between flakes to the dimensions of the flakes. With knowledge of this,

and the assumption that the Young's modulus of the coating was the same as

that for similar coatings on Si wafers deposited under the same ion beam ,,

conditions, the total energy release rate per unit area of interface could

be determined from the sample.

An elementary misfit analysis presented in more detail in Appendix III

gives the intrinsic interface toughness Gco of the interface to be

Gco 2tc F F (14)

where cm is the bi-axial misfit strain between coating and fiber, E the T,

Young's modulus of the coating, tc the thickness of the coating, and F and H
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are complicated functions of ratios of Young's moduli and the coating thick-

ness to fiber radius given as:

F 0 v +[(L -5v r + 6(1 r z

+11 - 2v)( -r)2+ 4(1 - v)(-) + 2(4- 7 v)(-L)( )] (

+ 2 [(1 - 2v)()( f-)(-- + r) (15)

H =(1- v) + [(1~ 2v)(E + 2(1l )(~ (t) + 2(1l E

(16)

In Eqns. (15) and (16), (E/E r) and (E/E ) are the ratios of the Young's

modulus of the coating to the transverse modulus of the fiber and the axial

modulus of the fiber respectively; v is the Poisson's ratio of both the

fiber and the coating (assumed to be the same), and t/R is the ratio of the

thickness of the coating to the fiber radius.

As a specific example, we evaluate the critical energy release rate of

the coating related to the case of Fig. 16 of a coating applied to a fiber -, ,

under low ion beam conditions in the PACVDapparatus. This should result in

a coating with Young's modulus of E = 16 GPa. The initial misfit strain, as

measured from the gaps between the fragments of the coatings was found to be

c =2.7xI0 "2 in the axial direction. Since the axial and radial Young's

moduli E and Er of the fiber were 385 GPa and 14 GPa respectively,
z r

ti
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20

E/Er = 114 and E/Ez : 4.16x0 -2. Furthermore, the thickness of the SiC

coating was 0.33 1im and the fiber radius 5 Lim, giving t/R = 6.6x10 "2. Thus,

for assumed Poisson's ratios of 0.3, the values of the functions F and H

can be calculated to be 1.53 and 0.734 respectively. This gives for the

intrinsic interface toughness Gco = 5.5 J/m2 , which is very close to the cor-

responding value measured for the delamination of the interface between SiC •

and a Si substrate, presented in Sections 2.6 and 2.7 above.

IV. DISCUSSION

In the preceding, we have demonstrated that the "spontaneous" de-
lamination phenomenon of thin misfitting coatings, from their substrates,

can be used very effectively to determine the toughness of the interface

between them. When the elastic strain energy per unit area due to the mis-

fit in the coating begins to exceed the intrinsic interface toughness, i.e.,

the specific work of separation of the coating from the substrate along the inter-

face, the coating delaminates from the interface flaws. Since no instability

is involved, the delamination, once started, can propagate under quasi-static

conditions. Observations indicate that the critical thickness of a coating

for delamination in vacuum is larger than the corresponding thickness for de-

lamination in laboratory air with the usual levels of relative humidity. Thus,

a static fatigue or stress corrosion cracking effect appears to be present in

the delamination. This aspect of the delamination still needs to be studied further.

When the coatings are in residual tension, the delamination occurs in. 1
a sequence of events, beginning with cracking of the coating in long paral-

lel rows, followed by delamination of the ribbons of coating between the

D •
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parallel cracks. Since the substrate Si wafers had {100} plane surfaces in

which the two orthogonal <110> directions are 16% stiffer than the <100>

directions, the resulting larger misfit stresses in the <110> directions 0

produce these orthogonal pre-cracks in the coatings. The misfit strain

could be measured quite accurately from the relaxed size of the delaminated

loose ribbon lying flat in the rectangular cavity of pre-cracking. This,

together with the independent measurement of the residual tensile stress

through the curvature of the sandwich of coating and substrate, permitted the

determination of the elastic modulus of the coatings, which is essential for

the determination of the energy release rate.

When the coatings are in residual compression in the hydrogenated

state, immediately upon coating, the delamination exhibited rather unusual -

and hitherto unreported forms. When the coating exceeded the critical

thickness required to provide the energy release rate, delamination occurred

by the enlargement of blisters having self similar circumferential fronts, ,

in which first, the radial stress is released by translation of the coating

relative to the substrate in the radial direction by an amount

LUr = r r (17)

where Lr is the width of the radial stress release zone of about 5 1m thick-

ness, shown in Fig. 15, and Lr is the radial strain difference between

coating and substrate in this zone, given by Eqn. (7a). For the typical

case considered in Section 2.7 above, where for a residual compressive

stress of 2 GPa and a coating modulus of 116 GPa, giving an initial misfit

-



.. ~, ~ - , mu WJTJN M JU13 , 'L' KJ TR Mal NF. 19 KI Nf 1U WIN NilE, XF P W R~ MA a^~ ILA T

-21-

2

strain of 1.21xlO 2 , the relative displacement in the inner border of the

radial stress release zone is obtained to be about 60 nm. The associated

reduction in thickness calculated from Eqn. (7b) is about 7.5 nm, which is

well within the range of detection of the Nomarski contrast mode of micro-

scopy. Since the color contrast in this radial strip of release of the ON

radial stress is uniform, it must be concluded that there is little shear

traction acting across the interface, but that the coating is still attached

to the substrate even after a relative slippage of about 250 interatomic

distances. If this interpretation is indeed correct, it must be concluded

that for flat interfaces, there is little reduction of the cohesive strength

of an interface due to large relative shear displacements across it.

Although this is quite natural for flat grain boundaries, it is surprising

for the interfaces between crystalline Si and amorphous SiC. Finally,

however, as the relative displacements across this strip mount, small

departures from flatness should produce normal stresses acting across the

interface to produce full delamination and the quite regular circumferential

buckling that is so readily apparent. It is interesting to note that the

buckled blisters require only one independent measurement for the complete , ,,

solution of the problem. Considering that the thickness of the coating and

the wave length of the circumferential buckling are readily determinable by

microscopy, only the residual compressive stress in the coating needs to be

measured separately by measuring the radius of curvature of the sandwich of

Si wafer and SiC coating. Then, the Young's modulus of the coating can be

determined from Eqn. (8), making the energy release rate determinable

uniquely from Eqn. (13).

0
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The measurement of real interest for metal matrix composites, however,

is the interface toughness between a SiC coating and a Pitch-55 carbon fiber,

which could be determined by a similar analysis, provided the modulus of the

coating depends only on the energy of the ion beam and not on any other pro-

perty of the substrate or condition of deposition. This point needs to be

verified further by additional experiments with planar surfaces of Pitch-55 0

type material in thin strips permitting residual stress measurement by

curvature change. Meanwhile, in the absence of this information, the de-

termined interface toughness of 5.5 J/m2 is, within experimental error,

identical to that between SiC and Si. Furthermore, in the latter case, there

was no effect on the interface toughness of substantial residual stresses in

the plane of the coating, whether tensile or compressive. The overall

average value of the interface toughness for the three experiments is 5.5

J/m2 It is interesting to note further, that the interface toughness in

the case of the Pitch-55 fiber is about 7% higher than that of the SiC-Si

interface with coatings in tension. Since some plastic flow could take place

in the fiber on planes parallel to the axis, this difference may be due to

this effect. Moreover, the interface toughness for the case of delamination e N

of coatings with compressive stress, where apparently considerable relative

translation occurs in the radial direction across the interface before lift-

off of the coating by buckling, the interface toughness is 17% larger than

that for the case with the coating in tension where such sliding apparently

does not occur.

We conclude that the interface toughness measurements are quite

meaningful and of the expected order. Thus, taking the overall average

'.*
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value of 5.5 JIm 2, we equate it to XSiC + XSi - Xint, where the symbols

stand for the specific surface energies of SiC and Si, and the interface
0

energy between SiC and Si respectively. The measured magnitudes of Gco are
well in the range of what can be expected from well-bonded strong solids.
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APPENDIX I - Residual Stress Measurements in Thin Coatings

1.1 Residual Stress

Consider a thin circular wafer with {lO0} plane surfaces, having a

thickness h , an in-plane isotropic modulus of Es , and a Poisson's ratio of 0

V s An amorphous isotropic coating of thickness t of SiC with modulus Ec

and Poisson's ratio v c is attached to the substrate. Due to the condition

of deposition, the coating incorporates a bi-axial misfit strain Em, which

we take to be tensile. This puts it under a state of residual tensile

stress ;r (= a ), which is of interest. As all elastic misfit problems,

the solution is obtained by detaching the coating from the substrate, as

shown in Fig. 1-1, and considering the deformations necessary to attach

them together again. Thus, considering the coating to be so thin as to be

under a uniform stress ar, by equilibrium, the substrate would be subjected

to a compressive stress ar (t/h) and a bending moment per unit length of

periphery of:

M = (art)(t + h)/2 , (I-l) 0

This bending moment produces a spherical curvature in the substrate wafer

given by:

1 M D E-h3  )
:D Ds(I + S)  " 12(1 _ vs)2 v(l-2a,b)

aa

and a surface strain at the interface of:
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h0

h- 
(1-3)

rS

The average compressive stress in the wafer produces an average radial com-

pressive strain of:

(I - s t
r -h s  (-4)

r sr

The sum of all radial strains at the interface in the coating and the sub-

strate must be equal to the initial misfit strain cm' i.e.,

(l - Vc( - s )Crt t(t + h)ha r5
m : Ec  hE s  4D s(I + VS)

where the first term is the radial strain in the coating. Thus,

- c) + 4 (1 E) (L 2 (1-6)
m : Ec  Eh "Es  h r

On the other hand, from Eqn- (I-2a and b), the bi-axial stress a ir the

coating is:

Eh3  E 2  (1 (1-7)

' r v6t(l )(t + h)R -6t( - v 7 (1 (1-7)

Thus, through the measurement of the radius of curvature of the bent wafer,

the residual stress in the coating is determinable from Eqn. (1-7).

1.2 Elastic Strain Energy S

The elastic strain energy stored in the sandwich of stretched coating,

and compressed and bent substrate is determinable in a straight forward way
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from the theory of thin circular plates.

The strain energy in the coating is:

( - , ) 2t
Ec

In the substrate, the elastic strain energy is partly in bending, of

a magnitude of:

3(1 - vs )t2

E (1 + 2(~), (1-9)s2

and partly in compression, of a magnitude of:

Es h2 (I-10). .

Thus, the toal elastic strain energy U in the sandwich is the sum of all

three terms, which for quantities including second order terms is: N
2Ect )] E

U -m (1 - s) EL (t1 ,)'-' -1-1

where the total misfit strain is I
(I - 1 ) (I - s Ec  de-")Em- E c 11 + 4 sl : c (ts (1-12) .. ,

In Eqn. (I-11), the second term in the brackets is the fraction of the

energy contributed to the total through the bending and compression of the a
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substrate. For tlh << 1, this contribution is clearly negligible. This

gives fo r the elastic energy release rate in delamination

em 2 Et
m U (1-13)

c

which was used in the interpretation of results.

%.~

I" d^ 'r rS

.. 12-
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APPENDIX II - Interface Toughness from Buckled Blisters

As explained in the text, the coating inside a blister lifts off S

through the propagation of a circumferential buckling front with a

characteristic circumferential wave length of Z.

Initially, under bi-axial compression, the stresses in the coating

are:

Ee E r  = E~E  Eem  7
r= = (l -E ) ( = (I - 7) (II-1)

where E and , are properties of the coating, and cm the total misfit strain.

Upon traverse of the outer fringe of the blister through an element

of coating, the radial stress is fully released; this reduces the tangential

stress down to: I.w

ae = EFs . (11-2

As the element of coating traverses through the buckling front, it

undergoes a characteristic Euler buckling that responds to the new level

of tangential stress, and establishes a circumferential buckling wave length -

of

3 (1 2 (11-3)3(I1 -2. r

In the post buckling shape, circumferential line elements in the coat-

ing become longer by an amount of Zem over a wave length of buckled coating

2 2
, -. (11-4)

3z(l ,)

•% .,

S. 5' Lis..
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This establishes the amplitude of buckling along a circumferential line ele-

ment. Thus, in reference to Fig. 14b,
S

1: + (dz-) 2  do 7 (11-5)

o

for a sinusoidal buckling shape.

z sin (11-6)

giving for the amplitude

_ t (11-7) .
Zo1 v

The final elastic strain energy in the post buckling shape per unit width in

the radial direction is:

SM 2  2

Uf E d .'. E4 d (II-8ab)
f~ ddZ t '

0

4 2 4 5

giving Uf -- Ez 9 t (11-9)

The initial elastic strain energy in the bi-axially strained coating per

strip of unit width and length Z is:

2 2 5
(1 - zt -Et5

i E 9(1 - v 0 )I 3

e r



-31-

where a, 1: 
(II-I)

3(l - V2)( - v)2 '

the initial tangential stress was substituted to obtain the final result.

Finally, the energy release rate (per unit area of coating) is obtained by

subtraction of (11-9) from (II-lO),and dividing by Z, i.e.:

G 4 Et5 (11-12)Gc° 90I 2 2( 0 V)z 4

(11

•0
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APPENDIX III - Interface Toughness of Coatings on Pitch-55 Fibers

Consider a Pitch-55 type fiber of radius R with an axial modulus E ,

a radial modulus Er, and Poisson's ratio v with an isotropic coating of

thickness t, with a modulus E and Poisson's ratio v, having a total tensile

bi-axial misfit strain Em relative to the fiber. As indicated in Fig. Ill-1,

we take the unknown misfit stresses in the coating to be a and az , and

since t/R << 1 will be the case, neglect radial stresses. The correspond-

ing stresses in the fiber that result from equilibrium are given in the

figure.

By straight forward analysis, the strains in the coating and the

fiber are:

5ec : %/E vaI/E a zc : /E - v/E , (III-la,b)

e= - (1 - )tae/Er R + 2vtaz/EzR , (III-2a)

Ezf 2,Vto/ErR - 2toz/EzR . (III-2b)

F:7
The matching of the fiber to the coating requires

Eec Eef Em " zc Ezf Em (III-3a,b) J '.d

This gives by elementary methods

S- [l + 2( E (III-4a)

ME- + Err ( ) (III-4b)
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where H 0 )+ 0 -2)L+20 -vL t

r z

The elastic strain energy in the fiber and coating per unit length are:

Uf = (,ef ef + 0zf Ezf/2)7R 2(III-6a)

Uc = (a e 2+ a z2- 2vae a z) TrRt/E *(III-6b)

By elementary methods, using the results above, the total elastic strain

energy per unit length of fiber can be readily obtained as:

- RtF-2m F,(M17

H2

where F =2(1- V) + [(3 - 5v)(~-L) + 6(1 - j)(-L)] 4)

+~ [E 7)E)(E+[1- 2,)) + 4(1l )F + 2(4 7 ) tr z r zJ

3 R'
2(1 - r z r 2yzp)(18

This gives finally the energy release rate per unit area of interface, if

delamination were to occur at the interface to completely unload both fiber

and coating:

S.
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£mEtF0

Gco U/2R -2H- " 
(III-9)

2H

This was used to evaluate the results of cracking and delamination of coat-

ings from fibers.

%

0

.. '
hm ,
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FIGURE CAPTIONS
S

Fig. 1 - Change of curvature in a circular Si wafer with a thin coating of

SiC in biaxial tension (a), or in biaxial compression (b).

Fig. 2 - Measured residual stress in a CVD SiC coating as a function of ion

beam energy in both as-deposited hydrogenated coatings (compres-

sion) and coatings annealed at 600 0C for 30 min. (tension).

Fig. 3 - Thickness strain (negative) in hydrogenated coatings upon annealing

at 600 0C for 30 min.

Fig. 4 - Blisters in the as-deposited coatings of SiC when the coatings are

of a critical thickness: (A) blisters just large enough to buckle

upwards, (B) large and growing blisters 
,ith well established buck-

ling fronts remaining self similar ingrowt., (C) smallest regular blister.

Fig. 5 - Detached blisters act as nucleation sites of through-the-thickness

cracks in the coatings under tensile biaxial 
stress, but of in- 0

sufficient thickness for delamination.

Fig. 6 - Delamination of ribbons from substrate, following the through-the-

thickness pre-cracking of coatings under biaxial tension when the

coating is thick enough for delamination to begin.

Fig. 7 - Regular delamination patterns in the form of long ribbons in a

coating of more than sufficient thickness for delamination to

occur relatively rapidly.

Fig. 8 Nearly complete and "spontaneous" delamination in a coating 
of

0.8 _m thickness.
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0

Fig. 9 Misfit strain in coatings with bi-axial tensile stress is

measurable by comparing the relaxed ribbon dimensions with those

of the frame into which they initially fitted: (a) long de-

lamination ribbon, (b) displacement of end of ribbon upon relief

of misfit strain.

Fig. 10 - Dependence of biaxial misfit strain on ion beam energy in annealed

coatings under biaxial tension.

Fig. 11 - Dependence of Young's modulus on ion beam energy in annealed

coatings under biaxial tension. .-.

Fig. 12 - Dependence of critical coating thickness for delamination on ion

beam energy in annealed coatings under biaxial tension.

Fig. 13 - Dependence of critical energy release rate on ion beam energy in

annealed coatings under biaxial tension.

Fig. 14 - Sketch of idealized circumferential buckling of a delaminating

coating in a blister in an as-deposited hydrogenated coating under

biaxial compression: (a) perspective view, (b) buckled coating

viewed in the radial direction.

Fig. 15 - A large buckled blister in a coating in the process of undergoing

delamination, viewed with the Normarski interference contrast mode

of microscopy. The outer ring surrounding the buckled center is

the zone in which radial slippage occurs to relieve the radial

stress.

Fig. 16 - An SEM micrograph of a fragmented and delaminated annealed coating

of critical thickness of SiC on a Pitch-55 fiber. The misfit

strain is determinable from the gaps between the flakes.
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Fig. 2 -measured residual stress in a CVD SiC coating as a function of ion
beam energy in both as-deposited hydrogenated coatings (compression)
and coatings annealed at 6000C for 30 min. (tension).
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Fi. - Blisters in the as-deposited coatings of SiC when the coatings are,. ,
of a critical thickness; (A) blisters just large enough to buckle.,'i
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Fig. 5 Detached blisters act as nucleation sites of through-the-thickness
cracks in the coatings under tensile biaxial stress, but of in-
sufficient thickness for delamination.
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6 - Delamination of ribbons from substrate, following the through-the-
thickness pre-cracking of coatings under biaxial tension when thecoating is thick enough for delamination to begin. S
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fi19 . 7 - Regular delamination patterns in the form of long ribbons in a
coating of more than sufficient thickness for delamination to occurrelatively rapidly.
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Fig. 8 -Nearly complete and "spontaneous" delamination in a coating of
0.8 -..m thickness.
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Fig. 9 -Misfit strain in coatings with biaxial tensile stress is measurable
by comparing the relaxed ribbon dimensions with those of the frame
into which they initially fitted: (a) long delamination ribbon,
(b) displacement of end of ribbon upon relief of misfit strain.
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Fig. 10 - Dependence of biaxial misfit strain on ion beam energy in annealed
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Fig. 14 - Sketch of idealized circumferential buckling of a delaminating coat-
ing in a blister in an as-deposited hydrogenated coating under
biaxial compression: (a) perspective view, (b) buckled coating
viewed in the radial direction.
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of microscopy. The outer ring surrounding the buckled center is

~the zone in which radial slippage occurs to relieve the radial
stress.



Fig. 16 -An SEM micrograph of a fragmented and delaminated annealed coating

of critical thickness of SiC on a Pitch-55 fiber. The misfit
strain is determinable from the gaps between the flakes.
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Mechanical Properties of Residually

Stressed a-SIC:H Thin Films

H. S. LANDIS, V. GUPTA and J. A. CORNIE

ABSTRACT

Amorphous hydrogenated silicon carbide produced by the glow

discharge deposition of silane and methane can exhibit

compressive residual stresses as large as 2.7 GPa. Vacuum

annealing below the crystallization temperature causes tensile

stresses of the same magnitude to develop as hydrogen is

liberated from the deposit. Independent measurements of the

residual stress and strain in the annealed coatings, and the

stress and Young's modulus in the as-deposited coatings, allow

determination of the strain energy density and the interfacial

work of fracture.
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I. INTRODUCTION

It is possible to produce thin films of a variety of materials at very low

substrate temperatures by plasma enhanced chemical vapor deposition

(PECVD) [1]. In particular, the glow discharge decomposition of silane and

methane produces crystallographically amorphous silicon-carbon alloys whose

stoichiometry can be controlled by the Si/C ratio in the feed gas [2-5].

As-deposited coatings exhibit compressive residual stresses, which can be

quite large if the coating has been subjected to energetic ion bombardment

during growth [6-17].

Deposits generally contain large amounts of hydrogen, on the order of 20

atom percent [2]. Depending on the composition, much of the hydrogen can be

liberated by vacuum anneals below the crystallization temperature. The effects

of dehydrogenation on the electronic and chemical properties of these

materials, particularly a-Si:H, have been investigated by other researchers

[18-32]. Hydrogen serves to saturate "dangling bonds" in the disordered

material, localizing defects and producing an effective mobility gap. The

liberation of hydrogen by vacuum heat treatments below the crystallization

temperature does increase the density of unpaired electrons, as measured by

electron paramagnetic resonance (EPR), but only slightly [33-38]. Proton

paramagnetic resonance (PPR) studies suggest that local reconstruction of the

amorphous tetrahedral network occurs, even though crystallization does not a
As might be expected, the liberation of 15 to 30 atom percent of the

coating also has a large effect on the residual stress state of these materials.

These stresses, and their influence on the mechanical behavior of the
ccoating/substrate composite, are the principal focus of this paper.

S
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II. EXPERIMENTAL

All depositions were performed in a custom plasma enhanced chemical 0

vapor deposition facility [40] at a base pressure of 2x1 0-6 Torr (figure 1). The

substrate temperature during deposition is always less than 100'C. Parallel six

inch diameter shielded electrodes are driven by separate 13.56 MHz power

supplies equipped with automatic matching networks. This configuration allows

independent control over the total power input into the plasma and the DC offset

on the substrate electrode.

The effective ion bombardment energy (IBE) during deposition is

determined as follows. The DC potential of the substrate electrode with respect

to ground is measured during deposition. The ion energy distribution with -

respect to ground is later separately measured with the substrate electrode

floating and all of the RF power applied to the upper electrode. This is done by

energy dispersive mass spectrometry, after Kohler et al [41,42]. The DC plasma

potential in volts is numerically equal to the peak in the ion energy distribution

in electron volts. The effective ion bombardment energy (in eV) during

deposition is approximated as the difference between the substrate and plasma _

potentials in volts (see figure 2). There are three main assumptions involved in

this technique. First, only singly charged ions are present in the discharge.

Second, ion/neutral collisions in the sheath have a negligible effect on the ion S

energy distribution. Third, the plasma potential depends on the reactor
geometry and the total RF power, but not on the patritioning of the power
between the electrodes. N

Semiconductor purity (99.9995%) gases are introduced into the chamber

at a total pressure of 50 mTorr. An argon discharge is first used to sputter the

native oxide from the (100) silicon wafer substrates. Silane and methane are 0

' 1



then added to the discharge while the pressure is maintained at 50 mTorr. After

the deposition is complete (five to ten minutes) the reactive gas flow is ceased

and the discharge extinguished. The silicon/carbon ratio was determined by

X-ray photoelectron spectroscopy, and is approximately 1:1 (±5%) for all of the

a-SiC:H coatings discussed. The deposition conditions used for three types of

coatings (high, moderate and low ion bombardment energy) are presented in

Table 1.

The film thickness is determined by use of a mechanical profilometer and

a second wafer that has been masked to produce a sharp step. The residual

stress in the film is determined by measuring the radius of curvature of the

wafer/coating couple and applying the relation 143]

2S
E 2 t22  Eqn. 1

6(1-v ) tlR

Here a is the stress, E the elastic modulus, t the thickness, v Poisson's ratio and

R the radius of curvature. The subscript 1 refers to the coating and 2 to the

substrate. The indicated simplification is valid for thick substrates (t2 ,t 1).

Deposits made by PECVD from silane and methane typically contain large

amounts of hydrogen [2,18]. The hydrogen content of these films is determined

by monitoring the pressure rise as the coatings are heated in a sealed

evacuated chamber of known volume [44].

The residual strain is determined by two techniques which will be

described in the next section. Other materials parameters such as elastic

modulus and the strain energy density were calculated from the standard

relations.

a lx(1-vl) a,y(1-v1) a1 (1-v 1 ) ,n
E -

=  = = Eqn. 2 •Elx Ely e1



) 1= 20-xx + 1y1yi air, 0"Eqn. 3

The subscripts x and y refer to the two orthogonal in-plane directions (z will refer

to the surface normal). By symmetry alx=ay-al and £1x=elyme 1 . In Equation 3,

o01 is the strain energy density in the coating. Stresses normal to the plane of

the deposit are neglected in this plane stress approximation.

The deposition rates (normalized with respect to the total RF power input)

for the three types of coatings are presented in Table 2, along with several other

deposition and materials properties. Vacuum anneals in the temperature range

300-935"C liberate large quantities of hydrogen from the deposit (figure 3). The

loss of such a large amount of material from the deposit causes a substantial

decrease in the coating thickness, as can be seen in figure 4 for the standard

anneal (600°C, 30 min. in vacuum). Although the shrinkage associated with

dehydrogenation is not isotropic, there are non-zero components in the plane of

the coating. This in-plane shrinkage causes the compressive residual stresses

that are found in the as-deposited coatings to be transformed into tensile

residual stresses. (See figure 5.)

Selected area diffraction by TEM (using a JOEL 200 CX) indicate that the

coatings are crystallographically amorphous in both the as deposited state and

after annealling. A typical diffraction pattern is presented in figure 6. The

primary charactaristics, a diffuse halo and no apparent bright spots, are found .

for all three types of coatings, both as-deposited and after the standard anneal.

This implies that the deposits remain amorphous even through the restructuring

associated with the 600 "C dehydrogenation anneal.

Optical microscopy provides much more information about the effects of

dehydrogenation on the mechanical behavior of a-SiC:H deposits. Tensile

residual stresses in annealed low IBE coatings thicker than about 0.35 I.tm

,



cause the deposit to break up into nearly equiaxed sections that can then

delaminate, as is visible in figure 7.

Moderate and high IBE deposits exhibit a much different behavior. The

circular defects in figure 8 are blisters that form during vacuum annealing as

hydrogen accumulates at the substrate/coating interface, particularly at areas

where the interface has been weakened by particulate contamination. The high

pressures that result cause the film to plastically deform into circular blisters.

(These blisters can be virtually eliminated by careful substrate cleaning and

slow ramp rates for the vacuum anneals.)

If the coating thickness exceeds about 0.1 gm these blisters act as

nucleation sites for through-the-thickness cracks. As can be si en in figure 8,

propogation is favored in the <110> directions, the crystallographically stiff

directions of the silicon substrate. As these cracks can extend over large

distances, the coating is effectively scribed into many long rectangular sections.

For annealed thicknesses greater than about 0.30 pam moderate and high

IBE coatings spontaneously delaminate at the substrate interface. The driving

force for this fracture is the release of stored residual strain energy. The critical

thickness for delamination depends on the residual stress state in the coating,

and thus on the ion bombardment energy and the dehydrogenation anneal.

(See Table 2 and figure 5.) Because delamination of a compressively stressed

coating is mechanically constrained and requires a Euler instability to be

reached [45,43] the critical thickness for as-deposited coatings is substantially

larger than the critical thickness for delamination of the corresponding coatings

under tensile stress.

By careful examination of dehydrogenated coatings just thicker than the

critical thickness for dehydrogenation, it is possible to determine the residual

strain in the coating. The rectangular section in the center of figure 9 is a region



of dehydrogenated moderate IBE a-SiC that has delaminated over a length L,

but still lies flat against the Si substrate. The distance AL represents the change

in length that results from the relaxation of the residual stress over the length L.

Consequently the residual strain in the coating (before delamination) is given

by the simple relation

AL
e1I --L- Eqn. 4

A similar sort of measurement is possible with annealed high and low

IBE a-SiC, although the generally equiaxed fracture pattern of the low IBE

material significantly increases the uncertainty in the measurement. (See Table

2 and figure 10.) Independent measurement of the residual stress and

residual strain in annealed coatings allows the calculation of the total strain

energy density in the deposit [40], using Eqn. 3. For thin coatings, or more

specifically for t1El<<t2E2, the strain energy in the substrate does not

significantly contribute to the total strain energy in the composite [40].

Experimental determination of the minimum, or critical thickness for

delamination, denoted tc, allows calculation of the intrinsic fracture toughness of

the interface. Variations of these techniques can be applied to other substrate S

materials, including small diameter fibers of use in composite materials. The

measurement the work of fracture of compressively stressed coatings requires a

different technique, involving a buckling analysis on areas of compressive 9

delamination. (See figure 11.) These matters will be discussed more

thoroughly in the following section.

III. RESULTS AND DISCUSSION

The residual stresses in the SiC coatings, as presented in figure 5, are

independent of the thickness of the deposit, but strongly dependent on the ion 0

Mi



bombardment energy and the dehydrogenation anneal. Tensile residual

stresses in annealed coatings on polished (100) silicon wafers cause

0delamination failure if the coating is thick enough to supply the strain energy

necessary for the work of fracture of the interface. This is illustrated in figure 9

for an annealed moderate ion bombardment energy film 0.35 p.m thick.

Similarly, a high ion bombardment energy specimen 0.28 pgm thick in figure 12a

shows a ribbon of SiC approximately 160 pgm long that has delaminated but

now lies flat against the substrate. Figure 12b shows that the relaxed length is

approximately 1.1 less than the original length, yielding a relaxation strain of 0

-0.69%. This implies that the strain in the intact areas of the coating is 0.69%.

Observations of many similar delamination failures, in annnealed low, moderate

and high ion bombardment energy coatings yield the strain measurements -0.

presented in Table 2. Through the measurement of these residual tensile

strains, and the previously measured residual tensile stress, the Young's moduli

of the dehydrogenated amorphous SiC coatings can be determined from Eqn. 0

2, assuming a value of 0.3 for vj, the Poisson's ratio of the coating.

The calculated moduli are given in Table 2, and have been found to be

generally independent of the thickness of the coating. Since the strain energy

in the substrate is negligible for coating thicknesses much less than the

substrate thickness [40], the stored strain energy in the substrate/coating system .

is a linear function of the coating thickness, and the critical specific fracture

separation work Gco (the intrinsic toughness of the interface) is given by [43]

a 1 (1-vl)t. Eqn. 5

El

and is presented in figure 13 for annealed low, moderate and high ion

bombardment energy a-SiC on (100) silicon substrates. The critical coating •• I



thickness tc, for a given set of deposition and annealing conditions, is

determined by observing the minimum thickness at which delamination occurs

in a specimen with copious through-the-thickness cracks already present.

In as-deposited coatings the residual stresses are compressive. The

delamination of these coatings occurs by the formation of a blister which begins

to lift off the substrate in a regularly buckled form, as in figure 11. These blisters

propogate radially outward in quasi static equilibrium with a self-similar

circumferential buckling wavelength X. Considering that the film completely :

relieves its radial stress as the blister grows radially outward and buckles under

the circumferential stress, the wavelenght X can be related the Young's

modulus and the initial biaxial residual stress a by Eqn. 6 [43].

A = r t Eqn. 6
3(1-v 12 ) 1(1-v,)

Again assuming a value of 0.3 for the Poisson's ratio of the coating, the Youngs

modulus of the as-deposited coatings can be determined by measuring X, t1

and a 1 . When this was done for an as deposited high ion bombardment energy

of 1.1 Iim thickness with a measured X of 20 lIm and compressive residual

stress of approximately 2 GPa, E was found to be 116 GPa.

Further, the intrinsic fracture toughness of the interface can be

determined by subtracting the strain energy stored per unit area of the interface

in the buckled coating from the initial strain energy in the biaxially stressed

coating. This leads to an expression for Gco, given by Eqn. 7 [44].

G co Eqn. 7
9(1 -v 12 ) 2(1-v 1);L

Evaluating this intrinsic toughness for the as deposited high IBE a-SiC:H

.4' ... ,.'.
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coating described above yields a work of fracture of 5.9 J/m 2. The difference

between this value and the 5.1 J/m 2 for the annealed coating could be due to

the difficulty of determining the critical coating thickness, or a slight additional

dissipative work associated with sliding of the coating over the substrate during

the release of the radial stress, or could be a real effect from the atomic

rearrangements associated with dehydrogenation [33-39].

The same phenomenon of spontaneous delamination also occurs with

a-SiC:H coatings on Pitch-55 carbon fibers. For low ion bombardment a-SiC:H,

annealed for 30 minutes at 600 "C in vacuum, coatings less than 0.33 im were

found to remain intact for periods of months, while thicker coatings were found

to undergo copious delamination by cracking and flaking, as in figure 14. The

residual strain was determined from the ratio of the average gap size between

the flakes to the average dimension of the flakes. This technique yields a value

for El of 2.7%, which is not too different from the value obtained for similar

coatings on silicon (Table 2). Assuming that the elastic modulus of the coating

is not a function of the substrate material but only the deposition and annealing

conditions, the intrinsic interfacial fracture toughness for this fiber/coating

system can also be rigorously determined [43]. Assuming that E1 is indeed 19

GPa, the Poisson's ratio of the substrate v, is 0.3, the critical coating thickness

is 0.33 gtm, and the fiber is 10 gm in diameter and has the reported mechanical

properties [43,46] one cl-tains Gco = 5.5 J/m 2.

V. APPLICATIONS

In many ways, the techniques and procedures outlined in the previous

sections are more important than the specific measurements made in the

a-SiC:H system. Of the many parameters influencing the microscopic fracture



behavior of composite materials, the most fundamental and the most

inaccessible is the intrinsic interfacial work of fracture. It is largely this quantity

that determines the magnitude of the stress field about the crack tip, and thus

the plastic zone size. The size of the plastic zone ahead of the crack tip,

together with the intrinsic interfacial toughness, determines the total, or extrinsic

work of fracture. It is this extrinsic quantity that is mesasured by conventional

techniques [47].

Specifically, due to the very local nature of the strain field which drives Z

the crack tip in the residually stressed coatings , the plastic zone size in the

vicinity of the crack tip will be quite small, and hence the Gco obtained from the

delamination process described in the previous sections is essentially the

intrinsic toughness of the interface. Consequently, for modelling purposes, we

can use this interface toughness as a fundamental materials parameter in any

system where failure occurs at such an interface. One such class of materials is

metal matrix composites. Fiber coatings are often utilized to prevent chemical

reaction at the interface [48,49], promote wetting during matrix infiltration

[49,50], and improve the fracture properties of the composite [51]. Amorphous

hydrogenated silicon carbide is a promising coating material in all of these

regards [40]. It is much more than an additional bonus that the most

fundamental parameter affecting the microscopic fracture behavior, the intrinsic

toughness of the failing interface, can be independently determined in the

manner discussed above.

VI. CONCLUSIONS

The residual stress state in amorphous hydrogenated silicon carbide U
produced by plasma ehanced chemical vapor deposition is strongly influenced

............................................. 3 4



by the ion bombardment energy during deposition and subsequent thermal

treatments. These stresses, both tensile and compressive, can be determined

from the curvature of the substrate/coating couple. The residual tensile strain

can be determined if a partially delaminated region can be found that lies flat

against the substrate. Independent measurement of the stress and strain allows

calculation of the coating elastic modulus, if a value is assumed for Poisson's

ratio. Knowlege of the residual stress and strain, coupled with the critical

coating thickness for interfacial delamination, allows calculation of the

interfacial work of fracture. If it is assumed that the elastic modulus does not

depend on the substrate used, then the interfacial work of fracture can be

determined for coatings under tensile stress on other substrates. In addition,

the interfacial work of fracture of compressively stressed amorphous coatings

on thick, flat substrates can be determined by an inverse buckling analysis, as is

described elsewhere by Argon and Gupta [43].
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Figure 1. Schematic diagram of the Plasma Enhanced Chemical Vapor
Deposition System used to fabricate the thin films.
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Figure 7. Low IBE annealed a-SiC:H, 0.42 gm thick. Residual tensile
stresses in the deposit cause fracture and delamination if the
coating thickness is greater than about 0.35 im.



Figure 8. High IBE annealed a-SiC:H, 0.13 g~m thick. The circular defects
are blisters formed by the accumulation of liberated hydrogen at
the substrate/coating interface. These defects act as nucleation
sites for through-the-thickness cracks, which propogate in the
<1 10> directions of the silicon substrate.
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Figure 9. Moderate IBE annealed a-SiC:H, 0.32 gm thick. The delaminated
length L is 355 Im, and the change in length AL is 2.3 im. The
strain in this specimen is approximately 0.66%.
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Figure 10. Low IBE annealed a-SiC:H, 0.35 g~m thick. The absence of
through -the-thickness cracks running along orthogonal <110O> directions makes
the determination of the residua! strain more difficult in these specimens.
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Figure 11. Measurement of the circumferential buckling wavelength X allows
calculation of the Young's modulus of compressively delaminated
coatings.

-e



W.SWrK.WNVns9ywy WV.-.- WV M~WX - N -

a.

S

S

0

<Pp

S

b.
0

S

Figure 12. High IBE annealed a-SiC:H, 0.29 p.m thick. The delaminated
length L is 145 p.m (a) and the change in length AL is 0.97 p.m (b).
The residual strain in this specimen is 0.67%.
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Table 1. Deposition conditions

low moderate high
11BE IBE IBE

gas flow
silane 4.2 scorn 4.2 scorn 4.2 scorn
methane 6.7 scorn 6.7 scrn 6.7 scorn
argon 10.9 scorn 10.9 scr 10.9 scorn

pressure 50 mTorr 50 mTorr 50 mTorr
6650 Pa 6650 Pa 6650 Pa

RIF power
target 100 W 100W 100W
substrate gnd 25 W 50 W

IBE 8 ±3 eV 90 ±10 eV 135 ±15 eV



Table 2. Materials Properties of a-SiC:H

low moderate high
IBE IBE IBE

stress, GPa
as-depos. -0.55±.20 -1.9±.39 -2.1±.32
annealed 0.58±.19 2.6±.42 2.7±.33

tcrit, p4m
annealed 0.35±.05 0.30±.04 0.28±.03

strain, %
annealed 2.1 ±.4 0.65±.03 0.68±.03

E, GPa
annealed 19±7.2 300±51 285±37

GC' Jim2

annealed 4.3±1.8 5.1±1.1 5.1±.9
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In Situ HVEM Study of Fracture in the SiC Coated Graphite Fiber/
Aluminum Composite

J. MEGUSAR, Q. LI, AND J. A. CORNIE, 0
Massachusetts Institute of Technology, Cambridge, MA

K. H. WESTMACOTT
University of California, Berkley, CA

Presented at the 12th Annual Confeiene on Composites and Advanced Ceramics
Cocoa Beach, Florida. January 17-20,1988

A SiC coated graphite fiber/ aluminum composite was processed by

plasma enhanced chemical vapor deposition (PECVD) of silicon carbide

followed by the aluminum pressure infiltration. Miniature tensile

specimens were tested in-situ in the high voltage electron microscope at

the NCEM. Prelimina-y studies showed that fracture in the SiC coated

graphite fiber/ aluminum composite advances by decohesion of the

graphite fiber/ amorphous SiC interface. These studies on deformation

and fracture will serve, in addition to data on interface composition and

structure, as a basis for modeling interface properties.

In-situ high voltage electron microscopy (HVEM) study of fracture in the SiC coated

graphite fiber/aluminum composite is a part of the ongoing research on tailoring and

modeling of interfaces in metal matrix composites. These observations will serve, in

addition to data on interface composition and structure, as a basis for modeling interface

properties.

As a model system, graphite fibers were coated with a layer of the amorphous SiC by

using plasma enhanced chemical vapor deposition (PECVD) and embedded in the pure

aluminum matrix by pressure infiltration. Miniature tensile specimens of the SiC coated

AGR/ composite were tested in-situ in the high voltage electron microscope at the NCEM,

Lawrence Berkley Laboratory. Observations on fracture initiation and propagation were
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video recorded. In this paper, we will present and discuss these observations as they relate

to the interfaces in the SiC coated GR/A composite. Further more, we will discuss other

experiments in progress which are also aimed at advancing our understanding of deformation

and fracture behavior in metal matrix composites.

EXPERIMENTAL PROCEDURE

Processing of the SiC coated GR/AI composite included coating the graphite fibers and

pressure infiltration of the metal matrix. Graphite fibers, grade Pitch 55, were coated with a

thin layer of silicon carbide by plasma enhanced chemical vapor deposition. The process of

the PECVD system used has been described elsewhere [1]. Coated graphite fibers were

annealed for 0.5 hour at 873 K to remove hydrogen. Graphite preforms were preheated to

623K and pressure infiltrated by pure aluminum (99.9%) at 3.6 MPa over a period of 1.5

minutes. The temperature of the liquid aluminum prior to infiltration was 963K. Details of

the pressure infiltration technique used have been described elsewhere [21.

Microstructural characterization was carried out by using JEOL 200CX transmission

electron microscope. TEM discs were prepared by dimple grinding technique, followed by

ion thinning at 4KV and at a liquid nitrogen temperature.

Miniature tensile specimens were tested in-situ in the KRATOS 1.5 MeV high voltage

electron microscope at the National Center for Electron Microscopy (NCEM) at the Lawrence

Berkiey Laboratory. Straining experiments were carried out at room temperature and at 1.5 0

MeV accelerating voltage. Miniature tensile specimens had the following dimensions: 9mm

length x 1 mm width (gauge section) x 0.1 mm thickness. Several tensile specimens were

prepared, with the gauge section reduced to several microns by subsequent ion thinning.
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RESULTS

Figure 1 is a low magnification TEM micrograph showing the graphite fiber, SiC

coating and the aluminum matrix in the SiC coated GRIAI composite. The SiC coating is

-0.13 jun thick and its structure is fully amorphous under the given processing conditions.

There are two interfaces of interest: a) Interface 1, between the polycrystalline graphite fiber

and the amorphous SiC coating, and b) Interface 2, between the amorphous SiC coating and

the aluminum matrix. High resolution electron microscopy studies to characterize the

structure of these interfaces are in progress [3]. Analytical electron microscopy [3] showed

no evidence of appreciable diffusion occurring during plasma enhanced chemical vapor

deposition of the SiC layer on graphite fibers. Pressure infiltration, on the other hand,

resulted in an interdiffusion layer, approximately 40 nm wide, at the amorphous SiC/

aluminum interface.

In-situ HVEM observations on fracture in the SiC coated GR/AI composite were video

recorded and the important results are shown in Figures 2, 3 and 4. A relatively low

magnification (2,500x) was chosen for this preliminary study in order to obtain an overall

view, inclu ing several graphite fibers, of the fracture process. Figure 2 (top) shows the

initiation of the fracture, with graphite fibers oriented perpendicular to the tensile axis.

Specimen thickness was - 1 }m. The fracture path in a fully separated specimen is shown

Figure 2 (bottom). It is evident that crack advanced along the graphite fiber/aluminum

interface. Electron diffraction of the aluminum side of the fracture surface revealed a broad

halo around the central spot, indicative of the amorphous SiC. This suggests, that

separating took place along the graphite fiber/ amorphous SiC interface rather than along the
0

amorphous SiC/ aluminum interface. Figures 3 and 4 are dark-field micrographs showing

crack initiation and early stages of crack propagation in the SiC coated GR/Al composite. In

particular, Figure 3 shows several touching fibers which are inclined to the tensile axis. ( In
0

this case, foil thickness exceeded 5 p.m and it resulted in a somewhat lower resolution.) %=

Graphite fibers shown in Figure 4 are perpendicular or inclined to the tensile axis.

page 3
- 7*J;



Observations from Figures 3 and 4 confirmed that fracture in the SiC coated GR/AI

composite propagated along the graphite fiber/aluminum interface rather than through "0
graphite fibers. Graphite fibers in the present study were either perpendicular or inclined to

the tensile axis, and their distribution in the aluminum matrix varied from single and well

separated fibers to clusters of touching fibers. 0

AES survey scans were taken on a graphite fiber in one of the fracture specimens.

Figure 5 (top) is a SEM fractograph of the specimen shown in Figure 3 and it indicates the

location (A) where the AES scans were taken. A strong carbon peak and a small oxygen

peak in Figure 5 (bottom) confirm the TEM observations, namely, that the decohesion took

place along the graphite fiber/ amorphous SiC interface.

DISCUSSION

In general, properties of the composite materials depend critically on the properties of

interfaces. In optimizing the mechanical behavior of the metal matrix composites, for

example, one has to consider a transfer of load from the metal matrix to the reinforcing fibers

to maximize strength and, on the other hand, a deflection of crack at the fiber/ metal matrix

interface in order to maintain the composite integrity [4]. This requires a careful tailoring of

the interface properties. Such tailoring should be based on a detailed knowledge of the

interface structure and composition and on a thorough understanding of the deformation and

fracture processes.

Preliminary in-situ HVEM studies reported in this paper showed that, under the given

processing conditions, the fracture in the SiC coated GR/AI composite advances by

decohesion of the graphite fiber/ amorphous SiC interface. These experiments also showed
that crack propagation in the SiC coated GR/Al composite is sufficiently slow to allow an I
experiment in which the specimen is strained incrementally and the microstructure (i.e.

dislocation structure) then examined by tilting the specimen to establish appropriate
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diffraction conditions. In this way, it should be possible to study deformation processes

associated with fracture initiation and propagation. There is also evidence of thermo-

visco-plastic residual stresses in the as-cast graphite fiber/ aluminum composite [5] leading to

dislocation generation in the aluminum matrix. New specimens of the SiC coated GR/AI

composite have been processed, with the inter-fiber spacing increased up to ten times the

fiber diameter in order to avoid overlapping of the deformation fields associated with

individual graphite fibers. An in-situ HVEM straining experiment is being planned to study

dislocation generation in these specimens.

An independent straining experiment has been initiated in which the JEOL 200CX

electron microscope is operated in a scanning mode [6]. Plastic strains at the aluminum/ fiber
S

interface and the extent of the plastic zone are being studied during the stepwise straining of

the miniature tensile specimens. The results of these studies will be integrated with the

in-situ HVEM observations on dislocation generation and will serve, in addition to data on

interface structure and composition, as a basis for modeling interface properties.
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FIGURE CAPTIONS

Figure 1 - TEM micrograph showing the graphite fiber, amorphous SiC coating and aluminum
matrix in the SiC coated GR/AI composite.

Figure 2 - TEM micrograph showing a fracture path in the SiC coated GR/AI composite, with
graphite fibers oriented perpendicular to the tensile axis.

Figure 3 - TEM micrograph showing initiation and propagation of fracture in the SiC coated
GR/A composite, with graphite fibers inclined to the tensile axis.

Figure 4 - TEM micrograph showing initiation and propagation of fracture in the SiC coated
GR/A composite, with graphite fibers perpendicular or inclined to the tensile axis.

Figure 5 - SEM fractograph (top) of the specimen shown in Figure 3; AES survey scan on a
graphite fiber (bottom).
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Figure 1 - TEM mnicrograph showing the graphite fiber, amorphous SiC
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ABSTRACT

Interfaces in metal and ceramic composites differ from interfaces in polymer matrix composites
inasmuch as: (i) fiber degradation due to chemical reaction with the matrix at processing
temperatures is frequent and (ii) bonding at the interface is generally chemical in nature (i.e.
features primary chemical bond formation across the interface). Elementary analysis of
requirements placed on the interface for mechanical property optimization indicate that, for
toughening by fiber debonding and pull-out, very weakly bonded interfaces are needed.
Sufficiently weak interfaces can be obtained by using interfacial layers of materials such as
graphite or boron nitide which feature strongly anisotropic chemical bonding. Several tough
inorganic composite utilize such interfaces. With large fibers in ductile matrices, however,
strong interfaces are desirable if the matrix can provide sufficient resistance to crack propagation.

1. INTRODUCTION

The interface in polymer matrix composites is at this day engineered to a level of sophistication
that is rather impressive in comparison with what is generally achieved with inorganic matrix
composites. The chemistry of thermosetting polymer resin bonding to hydrophilic glass fiber
surfaces via silane coupling agents, as well as the various oxidative ueatments that are applied to
carbon fibers, have been shown to influence processing and properties of polymer matrix
composites to a significant degree via complex chemical tailoring of the bond between the matrix •
and the fiber (Plueddemann 1974; Hull 1981; Knox 1982; Chawla 1987). Reasons for this state
of affairs are numerous and include the head-start research on polymer matrix composites has
had, as well as composite processing temperatures that are much lower and do not present
fiber-matrix chemical compatibility problems. There are, however, a few other differences
between these two types of composites which may point to a slightly different approach in
chemical tailoring of the interface for inorganic composites.

Since the volume on interfaces in metal matrix composites edited in 1974 by Metcalfe, no review
of interface chemistry nearly as extensive has been published for either metal or ceramic
composites, in spite of the fact that such a work would presently be very different in scope and I
content. Many of the concepts, of the chemical processes, etc. described in that volume still are
true and relevant today, such as the recurrent concern with excessive fiber-matrix reactivity in
inorganic composites, which places severe restrictions on possible materials systems and S
processing conditions. New reinforcements, new processing methods and novel characterization
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techniques, coupled with a better understanding of the requirements placed on the interface in
composites have however emerged since then, justifying a summary of the topic that would be
both more extensive, more multidisciplinary and longer: a task much beyond what is attempted
here. The present article will therefore seek to briefly summarize in very broad terms where the
question stands at present. Specifically, the logic underlying some of the most successful
inorganic composites produced to date will he outlined, to provide some indication of how the
properties of inorganic composites can be improved by proper chemical engineering of their
interface. For simplicity, the discussion is limited to the case of parallel fiber reinforced
composites.

2. MECHANICAL REQUIREMENTS AT THE INTERFACE

The first requirement we place on the interface is evidently that the strength of the fibers be
preserved. This requirement precludes chemical reactions between the fibers and the matrix that
lead to the formation of too thick a reaction layer of low strain to failure, or to the creation of
notches on the fiber surface. This requirement, although rather obvious from the point of view
of the mechanics of -he interface, may be far from obvious from the point of view of processing,
as illustrated for ex.anple in SiC whisker reinforced RBSN (reaction bonded silicon nitride,
Haggerty 1988), Fig. 1. Fiber degradation by chemical reaction with the matrix is still the most
frequent cause ;-)r poor inorganic composite properties.

.',"suwing now that fiber strength is preserved, we can place several conflicting requirements on
the interface.

2.1. The interface must not be too stron if a strong composite in which toughening
mechanisms specific to composite materials and opposing fracture perpendicular to the fibers are
to be exploited. This principle has been theoretically and experimentally proven by numerous
authors, as summarized in various articles and monographs (Hull 1981; Kelly 1970, 1971; Kelly
and Macmillan 1986; Wells and Beaumont 1985 a&b; Evans and McMeeking 1986; Chawla
1987). Resulting fracture energies are very high: polymer matrix composites can feature
apparent fracture energies as high as those of unreinforced metals (Ashby and Jones 1980).

PP
Fig. 1 SiC VLS-whisker reinforced laser derived Si-RBSN (right), compared to the.a
same material, nitrided with oxygen and iron impurities present (left). Shortening of
processing time by using high purity materials allowed for the transition from a
completely degraded fiber (left) to a well preserved fiber with a relatively sharp
interface in the bonded composite. Photograph courtesy of Dr. J.Haggerty, M.I.T.
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Interface chemistry of inorganic composite materials

The dependence of strength and toughness on the interface varies according to the system and its
modeling. One can simplify the role of the interface by consideration of two parameters: the
resistance of the interface to initial fracture and its resistance to sliding motion of the matrix
against the fiber after debonding. The latter parameter, ', is mostly a function of physical
properties of the interface, in particular its smoothness after debonding. Although T. as well as
other parameters (such as fiber flaw size and distribution) that intervene in composite toughening
mechanisms can be varied by chemical tailoring of the interface, the connection between these
parameters and interface chemistry is not obvious and has to date not been extensively exploited.

Composite toughening mechanisms are dependent on initiation of debonding at the fiber-matrix
interface. Initiation of such debonding has been analyzed by Kendall (Kendall 1975 & 1976,
Kelly and Macmillan 1986) in terms of an energy balance, leading to the result that for crack
deflection to occur at a planar interface perpendicular to a short crack in an elastically
homogeneous material, the fracture energy gi of the interface must be less than a value given by:

gi 1

g 4 7 (1-v2)

where g is the fracture energy of the material, and v its Poisson ratio. This relation has been
modified by Kendall (1975) to account for the effect of crack length as well as differences in
modulus accross the interface, all effects resulting in variations of this ratio by a factor
significantly less than an order of magnitude. Agreement with experimental work by Kendall
(1975,1976) on model samples of rubber was very good. Equation (1) may be an
oversimplification of the problem (the effect of elastic inhomogeneity across the interface on
crack tip stresses is appreciable, as discussed by Swenson and Rau 1970; Erdogan 1972,
Shorshorov, Ustinov, Zirlin and Olefirenko 1979; Erturk, Gupta, Argon and Cornie 1987), but
it does indicate that very low values of the interfacial fracture energy gi are required for crack
deflection to occur.

There is little question that for tough brittle matrix composites, these energy absorption
* mechanisms that are specific to composite materials and rely on weak interfaces are important.
*With ductile matrix composites, however, the desirability of weak interfaces is less evident since

the matrix itself can contribute significantly to the work of fracture by plastic deformation. In
W-Cu and B-Al composites, fracture energy has been shown to increase with increasing fiber
diameter, matrix volume fraction and matrix ductility. Data clearly indicate that the main
contribution to fracture energy in these composites emanates from matrix deformation (Cooper J
and Kelly 1967; Olster and Jones 1974; Prewo 1976, 1980; McDanells and Signorelli 1976;-o ,
Kelly and Macmillan 1986). However, most fibers that are present candidates for low cost metal
matrix composite reinforcement are rather small in diameter, usually below 20 gm. From data
by Cooper and Kelly (1969), the fracture energy of copper reinforced with 50 volume per cent
tungsten fibers 20 gm in diameter would be below 10 kJ/m2, which is already in the low range
for metals (Ashby and Jones, 1980). A weak interface for initiation of crack deflection may
therefore also be desirable in a large number of fiber reinforced metals of current interest,
because fiber diameters are now usually small.

2.2. The interface must not be too weak. This requirement is primarily dictated by the desire to
preserve off-axis strength. Otherwise, the composite will fail at the interface, much as the
carbon fiber reinforced aluminum sample in Fig. 2. An illustration is provided by comparing the
transverse strength of two aluminum matrix composites: one, in which the reinforcement was 35
Vol% Fiber FP alumina fibers and the matrix AI-3Li, exhibited a transverse strength of 142
MPa with fracture mainly through the matrix, indicating a very strong interfacial bond (resulting
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Fig. 2 - Interrupted transverse tension test in Pitch 55 carbon fiber
reinforced 2024 aluminum. Fracture initiated at the interface, which is
weak in this composite. Average fiber diameter is 10 jim. Photograph
courtesy of Prof. T.Erturk, University of Lowell and Dr. J. Comie, MIT. -

from reaction of Li with the AI 20 3 fibers, Page and Leverant 1985); the other, where aluminum
alloys were reinforced with 43 volume percent Pitch 55 carbon fibers, exhibited much lower
transverse st-engths between 42 and 14 MPa, with fracture mostly through or near the interface
as in Figure 2 (Erturk, Cornie and Dixon 1986). Variations of such magnitude can also resultr,,-OI
from variations in fiber distribution, in particular by suppression of fiber to fiber contact points
(Towata and Yamada 1986 a & b), or from differences in matrix strength. Whether fracture
takes place along a row of touching fibers as in Fig. 2 or involves some crack propagation

i through the matrix, analysis of the problem when the interface is weak must again include gj
: ~(neglecting here any dependence of gi on crack propagation mode). Low gi results in low_ i

composite transverse strength.

It is realized that the present discussion is centered about a simplified description of the incidence
of interface properties on composite strength and toughness. On this most elementary level,
however, it is clear that for many inorganic composites, there exists an optimum in the bond
strength that is desired at the interface, and that the nature of this optimum will vary significantly ]
with the matrix (assuming fibers are brittle). With matices unable to contribute significantly to
composite toughening, that optimum will be at a very low value of gi • When the matrix can
blunt cracks and increase the work of fracture, a strong interface is desired. Chemical tailoring
of the interface will therefore hinge upon attainment of a wide range of values of gj for the
various composites discussed here. It therefore is of interest to address the general character of
bonding at the interface in inorganic composites._ 0

3. CHEMICAL NATURE OF INTERFACES ,

3.1. Sham interfaes. Interfaces that are sharp on the atomic scale are generally"
classified into several categories, according to the nature of the bond across the interface. The ]

i classification more or less follows that of chemical bonds in general, and distinguishes between
physical and chemical bonds. The nature of the bond is important in determining the work of

' adhesion, i.e. the energy expenditure that is necessary to break the bond at the interface. ThisII
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work of adhesion is equal to gi if the interface is brittle, i.e. if no other energy expenditure is

necessary to break the interface.

Physical bonding has been shown to be the principal mechanism for cohesion at the interface
formed between numerous substrates and low surface tension liquids such as water and organic
solvents. The work of adhesion and wetting angles have been quantified, based on various
analyses of van der Waals attraction between two surfaces. Theoretically, the treatment of the
bond is well established, and its energy can be calculated by use of the London formula, or more
complete continuum approaches that have been reviewed by several authors (Krupp 1967,
Naidich 1981; Adamson 1982; Delannay, Frozen and Deryttere 1986). The resulting bond
energy is lower than 0.6 J/m2, and is temperature independent (Naidich 1981). This type of
bond is reversible in that debonding and bond formation can be obtained any number of times at
the same interface. Hydrogen bond formation can also be included in this category, since
resulting works of adhesion are not much higher than with dispersion forces, and since the bond
is also reversible (Pritchard 1969). According to Plueddeman's analysis (1974) of silane sizings
on glass fibers, the bond between the silane coupling agent and several types of fiber is of the
hydrogen bond type when water is present at the interface, which correlates well with observed
mechanical properties of these composites and the fact that the fiber-matrix bond has indeed been
observed to be reversible (Hull 1981).

Chemical bonding, on the other hand, involves the formation of primary chemical bonds across
the interface. The work of adhesion that results is an order of magnitude or two higher, and is
temperature dependent. Extensive experimental data has been gathered to prove that wetting and
adhesion between ceramics and metals is strongly dependent on primary chemical bonds that are
broken or formed in the process, even in cases where no interfacial reaction products are formed
(Pask and Fulrath 1962; Naidich and Kolesnichenko 1964; Naidich 1981; McDonald and
Eberhart 1965; Ramqvist 1965, 1966, 1969; Warren 1968; Samsonov, Panasyuk and Kozina
1968; Rhee 1970; Goretzki, Exner and Scheuermann 1971, Pepper 1976; Petzow, Suga. Elssner
and Turwitt 1984; Old, Choh and Hibino 1985; Choh, Kammel and Oki 1987). The nature of
the bond itself and hence the work of adhesion vary considerably with the materials forming the
interface, and theoretical treatments are thus more system-specific ( McDonald and Eberhart
1965; Gubanov and Dunaevskii 1977; Miedema and den Broeder 1979; Warren 1980; Naidich
1981; Delannay et al. 1987).

A contribution to adhesion can arise from electrostatic forces resulting from electron exchange O
between the two solids (Krupp 1967; Deryagin, Krotova and Smilga 1978). The magnitude of
this contribution to the work of adhesion (which could rigorously be viewed as a form of
chemical bonding) varies considerably from system to system, and is estimated by Krupp (1967)
to be generally negligible because of the high charge densities needed. Experimental work by
Mendez, Finello, Walser and Marcus (1982) has, however, demonstrated the importance of
electrostatic attraction pressures across an A]A120 3/carbon interface.

Whereas for polymer matrix composites, physically bonded interfaces of low adhesion energy
are attainable, chemical bonding is generally found with systems and temperatures involved in
metal and ceramic matrix composites fabrication. Examples of interfaces where bonding
between metals or ceramics can be attributed solely to van der Waals interaction exist, but are
rare. These include bonds formed between carbon and metals such as copper, silver, gold, lead
or tin that are inert with respect to carbon (Naidich 1981), bonds between sapphire and silver
(Pepper 1976), or bonds between ceramic substrates and thin metallic films (Benjamin and
Weaver 1959, 1960, 1961, 1963). An example of a sharp boundary across which bonding is
chemical in nature is given in Fig. 3. The calculated work of adhesion of the interface between

an amorphous silicon carbide coating and a carbon fiber is about 5.5 J/m2 (Argon, Gupta,
Landis and Comie 1988), clearly higher than can be obtained by physical bonding alone.
Another example of a sharp chemically bonded interface can be found with (21Mg composites,
where no pull-out was observed in squeeze-cast carbon fiber reinforced magnesium composites,
indicating strong bonding at an interface that was sharp when examined in the transmission
electron microscope (Diwanji and Hall 1986).

.S
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Fig. 3 - Interface between Pitch 55 fiber and an amorphous coating of SiC deposited
on the fiber by plasma enhanced chemical vapor deposition. Measurement of bond
strength by Argon et al. (1988) gave a work of fracture gi = 5.5 J/m2. Photograph
courtesy of Dr. J.Megusar and Mr. Q.Li, M.I.T.

3.2. Thicker interfaces. These result from prolonged interaction of the two phases, with
formation of diffusion layers or chemical compounds at the interface. As mentioned above,
because matrix and reinforcement are generally reactive and their fabrication involves exposure to
elevated temperatures, they very often react to some degree. Such interaction will generally
result in a strong interface, and may weaken the fiber either through formation of notches (as is
the case with aluminum carbide platelet formation on carbon or silicon carbide fibers), or by
formation of too thick an interfacial coating of low strain to failure that adheres well to the fiber
(Metcalfe 1974; Shorshorov et al. 1979; Ochiai and Murakami 1979 & 1981; Ochiai, Urakawa,
Ameyama and Murakami 1980). A comprehensive case by case review of the problem of
fiber/matrix reactions is beyond the scope of this article, and references on the subject can be
found elsewhere (Metcalfe 1974; Chawla 1987; Mortensen, Comic and Flemings 1988).

In summary, interfaces in inorganic matrix composites are generally strong because they tend to
involve chemical bond formation. Another characteristic is that the bond strength is therefore .,
tine and temperature dependent sometimes even in systems that do not form extended interfacial
reaction layers. If the kinetics of chemical bond formation are sluggish, the strength of the
interface may then be varied as a function of time, which has in some cases been exploited to
control the properties of the composite. Examples of time dependent bond strengths with no
concomitant interfacial reaction layer formation include work of adhesion of thin metallic films
on ceramic substrates (MacDonald and Eberhart 1965; Benjamin and Weaver 1960, 1961), and
electroformed and annealed tungsten-copper composites (Cooper and Kelly 1967; Ochiai et al. I
1980). Examples of interfaces featuring time dependent bond strengths in which a reaction layer
is formed are, however, much more numerous. A last characteristic of the interfaces in
inorganic composites is that in most (but not all, Pepper 1976) cases, bonding is irreversible.
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4. CONSEQUENCES FOR COMPOSITE PROPERTY OPTIMIZATION

To obtain debonding at the interface, adopting the simplified analysis of equation (1), it becomes
clear that if g is not very high, a very weak interface is indeed necessary to obtain a tough 0
composite. Roughly, gi should be at least ten times smaller than g, which is low to begin with

if we equate this term with the fracture energy of a generally brittle fiber. A lower bound on gi

is given by the work of adhesion at the interface Wa = 7fa + Yma - Yfm, where y denotes surface

energy and subscripts f, a and m denote fiber, ambient atmosphere and matrix respectively.
With formation of a chemical bond at the interface, its work of adhesion will be at least on the
order of 1 to 10 J/m2, which is within an order of magnitude of g for most brittle ceramic
materials (Kingery, Bowen and Uhlmann 1976; Ashby and Jones 1980). Any ductility in one of
the two neighboring phases at the interface will furthermore increase gi significantly (Petzow,
Suga, Elssner and Turwitt 1984). Because most interfaces in inorganic composites comprise a
chemical bond, it is unlikely that a satisfactorily low gi can be obtained without resorting to
deliberate tailoring of the interface properties. This can be accomplished by introducing, at the
interface, a thin layer of a third phase with low intrinsic toughness, or such that bonding with
matrix or fiber will be very weak. Using the relationship

E b 
(2)

for true brittle fracture toughness where E is Young's modulus and b is the interatomic spacing
(Cottrell 1964; Kelly and Macmillan 1986) it is seen that an order of magnitude's difference
between gi and g would require a bond strength within such an interfacial layer that is unusually
low for the materials under consideration: the scale over which Young's modulus for inorganic
materials varies is hardly more than one order of magnitude (Ashby and Jones, 1980), and b
varies over an even smaller range. It seems therefore that the most attractive materials for
interface optimization are to be found among those for which the bonding structure is highly
anisotropic: graphitic or turbostratic carbon, boron nitride or perhaps sapphire. A thin layer of
graphite at the interface, with basal planes oriented parallel to the surface of the fiber, is ideal in
that it provides very low bond strength transverse to the interface ( E - 10 GPa; Riggs, Shuford
and Lewis 1982), with very high bond strength parallel to the interface (E - 1000 GPa; Riggs et
al. 1982). This layer will be intrinsically weak, and will also be likely to form a weak bond with
neighboring phases. Interfacial layers of carbon, either graphitic with basal planes parallel to the
interface or in one case, amorphous, have been used in several of the most successful inorganic
composites produced to date:

1 - It has been found that the strength of SiC filaments fabricated by chemical vapor deposition j.
on a substrate fiber can be doubled by depositing a thin layer of approximately pure carbon on
the surface of the fiber. This finding forms the basis for the remarkable properties of AVCO's
SCS series of silicon carbide monofilaments (UTS > 4 GPa). The increase in strength that
results from this thin (< 1 pm) layer of carbon has been attributed to the healing effect it exerts
on uncoated SiC filament surface defects (Conie, Suplinskas and DeBolt 1981; Nutt and
Wawner 1985). The structure of the fibers and their coating has been investigated in detail by
Nun and Wawner (1985), who found that the carbon layer consisted mostly of pyrolytic type
graphite with its basal planes oriented parallel to the fiber surfaces. These fibers thus contain,
before incorporation into any matrix, a very weak crack-deflecting surface layer, and should
yield elevated values of fracture toughness so long as this layer is not degraded by interfacial
chemical reactions with the matrix. With various protective bamers over the carbon layer (most S
often in the form of carbon-rich Si-C coatings), these fibers have been combined with aluminum
alloys (Cornie et al. 1981, Nun and Wawner 1985), titanium alloys ( Naslain, Pailler and
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0

Fig. 4 - Debonded SCS-2 silicon carbide filaments in a cast aluminum alloy 357 ma- 0
trix composite. The matrix side of the fracture surface (left) is still bonded to a
thin crazed layer of the fiber coating, indicating that fracture was through the fiber
coating. A denuded fiber from the same sample (right) displays uneven cracking
through the SCS coating. 20 im

Quenisset 1979; Smith, Froes and Cammett 1982; Quenisset, Soumelidis and Naslain 1985;
Martineau. LePetitcorps, Pailler and Naslain 1985), titanium aluminide (Brindley 1987), glass
matrices (Prewo 1980; Prewo, Brennan and Layden 1986) as well as reaction bonded silicon
nitride (Corbin, Rossetti and Hartline 1986). In cases where the carbon layer survived
processing, fiber debonding was observed on fracture surfaces, which took place at the
interfacial carbon-rich interfacial layer as seen in Fig. 4. In ceramic matrix composites, the
presence of this carbon layer resulted in composites with high strength and toughness. In metal
matrix composites, such interfacial debonding is, however, less essential for high toughness
since matrix ductility can contribute significantly to composite toughening with these rather large
diameter filaments (d-140 l.).

2 - The structure of carbon fibers varies depending on the diverse heat-treatments that have been
used in their production. Detailed examination by transmission electron microscopy of PAN S
(polyacrylonitrile-derived) carbon fibers heat treated at various temperatures have shown that
type I fibers (high modulus, elevated heat treatment temperature) contain a skin layer between
150 and 250 nm thick of highly oriented turbostratic graphite with relatively large crystallite sizes
and basal planes parallel to the surface. This skin layer is absent in type 1H fibers (lower
modulus, lower heat treatment temperature; Bennett and Johnson 1979; Johnson 1980).
Differences in surface structure, in particular in the type of exposed bonds, influence the initial
chemical reactivity of the fibers. Their chemical affinity to oxygen, silicon carbide or aluminum
decreases as the modulus of the fibers increases (Amateau and Dull 1977; Baker and Bonfield
1978; Kohara and Muto 1986; Maruyama and Rabenberg 1986; Chawla 1987; Katzmann 1987).
This can be explained by a higher degree of perfection in the orientation of basal planes as the
modulus of the fiber increases, especially at the fiber periphery where basal planes become more

* parallel to the surface. As the number of exposed graphite plane edges is reduced, fiber
reactivity decreases. After infiltration by aluminum using the TiB process, it has been found
that fiber pull-out increases, transverse strength decreases and longitudinal composite strength
increases as fiber modulus increases in PAN carbon-aluminum composites (Amateau 1976;
Amateau and Dull 1977; Goddard 1978; Shindo 1986; Honjo and Shindo 1986; Shindo and . '
Honjo 1986; Murakari, Nakao, Imataki, Shindo, Honjo and Ochiai 1986). Depositing a layer
of pyrolytic carbon on PAN II fibers, thus creating a surface skin similar to that in type I fibers,
has been shown to increase fiber strength and to render PAN Hl fibers essentially similar to PAN
I fibers in aluminum: rule of mixtures longitudinal strengths are observed, with increased 0
pull-out and decreased transverse strength. Interpretation of the results is complex and involves

0
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consideration of several phenomena other than the weakness of bonding with and within the
outer skin of the carbon fibers: (i) the fibers react with aluminum and the extent of fiber
degradation will vary with the orientation of the basal planes at the surface of the fibers; (ii) as
the modulus of the fiber is increased, the requirements placed on the interface vary (for a -
simplistic analysis, combine equations (1) and (2)). Nonetheless, the presence of a layer of
carbon with basal planes parallel to the fiber surface, whether initially present in the fibers or
deposited onto their surface, has invariably resulted in longitudinal strengths in agreement with
rule of mixtures predictions, as well as extensive debonding and pull-out of carbon fibers in
aluminum.

3 - In ceramic matrix composites, toughening mechanisms must rely on crack deflection. Weake
interfaces are therefore essential for attainment of high longitudinal composite strength and
toughness in these composites. Extremely good properties have indeed been achieved on such
materials by several authors, in particular by researchers at UTRC, using SiC fibers or whiskers
to reinforce several glass or "ceraming" glass matrices (Prewo and Brennan 1980, Brennan and
Prewo 1982; Prewo et al. 1986; Brennan 1986, 1987; Prewo 1986,1987). Detailed studies of
the interface by Brennan (1986,1987) have shown that achievement of high strength and S
toughness, with extensive fiber debonding and pull-out, was contingent upon the presence of a
thin layer of carbon at the interface which either resulted from fiber-matrix interaction when
using non-stoichiometnc polymer precursor derived fibers and appropriate matrix compositions,
or by deliberate coating of the fibers with carbon. Exposure to air at temperatures at or above
1273 K results in brittle composites, due to degradation of this carbon-rich layer and replacement
by a strongly bonded interface (Prewo 1986, Luh and Evans 1987, Grande, Mandel and Hong
1988). Chemical reactions leading to formation of the carbon layer are complex, and result in
multilayered interfaces as seen on Fig. 5. The very low values of gi < 0.4 J/m 2 measured by
Marshall and Evans (1985) on these composites from debond lengths observed after matrix
cracking are on the order of the value derived from equation (2) with b = 3.4 A and E - 10 GPa
typical of the weak bond in graphite (the carbon rich layer in these composites contains other
elements and is reported to be amorphous, however). Use of alumina or silicon nitride
reinforcements with similar matrices by the same authors led to brittle failure in the absence of a
carbon rich layer (Prewo et al. 1986) *.

Such composite property optimization via a weak interface is not a valid approach for all
inorganic composites, however. As pointed out earlier, a price must be paid when using weak
interfaces for crack deflection along the fiber, principally in the form of significantly reduced
off-axis properties. In several metal matrix composite systems with large fiber diameters,
increased interface bond strength has led to increased composite strength and fracture energy,
until fiber degradation began due to fiber/matrix chemical reactions (McDanels and Signorelli
1976; Zaboletskii, Salibekov, Kansevich, Lyuttsau and Fadyukov 1978; Naslain et al.1979;
Quenisset et al. 1985). In these cases, the limit in permissible interfacial strength is much higher
than with composites that rely on crack deflection for longitudinal toughness. Coatings of
interest for such composites should mainly aim to preserve the strength of the fibers and facilitate _ 0
processing of the composite. Numerous examples of such coatings exist, such as the outer Si-C
coating on AVCO's SCS fibers (Cornie et al. 1981; Nutt and Wawner 1985). Other approaches
to the problem involve slowing down the kinetics of fiber degradation via judicious choice of
processing methods. Some fabrication methods use solid metal, preferably coated with its
oxide, in conjunction with processing methods that preserve this oxide and use low
temperatures. The diffusion bonding process for Al-B is an example (Metcalfe 1974; Hall,
Kyono and Diwanji 1987). Other approaches include casting liquid metal around cold fibers, a

With carbon fibers in glass, the differences found in aluminum matrices between highI
strength and high modulus fibers have not been observed. In fact, the high strength fibers gave
somewhat better results in work by Phillips (1974). Phillips interprets these data on the basis of
mechanical keying effects with no chemical bond at the interface, due to tensile residual stresses
at the interface. This interpretation fits the data nicely, and indicates that differences between the
fibers in these composites are probably linked more to their coefficients of thermal expansion
than to their interface chemistry. IA
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Fig. 5 - Interface between a lithium aluminosilicate matrix and a Nicalon 4 fiber in a
composite produced at United Technologies Research Center. The carbon layer (white)
contains some Si, and smaller amounts of Nb, Al and Mg. Some Al and Mg has diffused
about I OOOA into the fiber. Diffraction patterns indicate that the fiber is microcrys-
talline, while the interfacial zone appears to be essentially amorphous. Photograph
courtesy of Drs. Brennan and Prewo, UTRC.

*, 0.4 .m

method that has been pioneered by Fukunaga and Goda (1985) with 99.99% aluminum and
NicalonTM silicon carbide fibers. S

It must be emphasized that tailoring of interface chemistry is also strongly dictated by the
processing of 'he composites. For cast composites, for example, wetting of the fiber by the
matrix is a critical issue, to lower pressures involved in the process and to fully infiltrate the fiber
preform, in particular at fiber contact points (Mortensen and Comic 1986, Mortensen et al.
1988). Composite processing may in certain instances place requirements on interface chemistry
that conflict with optimization of composite properties. For example, chemical reactions between
ceramic fibers and molten metals aid wetting, which most often will result in poor composite
properties due to fiber degradation or too strong an interface. It is also emphasized that the
present analysis of the interface is simple, and that all fundamentally important aspects of
processing-structure-property relationships in inorganic composites that are not directly related to
interface chemistry have been ignored in this review. Residual stresses in the composite, the
complexity of a proper mechanical treatment of the interface, as well as the influence of 0
geometrical distribution of the fibers should all be taken into account in a less concise treatment
of the problem.

5. CONCLUSION

For strong and tough fiber reinforced inorganic materials, the interface must presently seek
satisfaction of several requirements:
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1 - The properties of the fibers must be preserved, i.e. extensive chemical reactions between
fiber and matrix must be prevented;

2 - Where fiber debonding is necessary for longitudinal strength and toughness, a weak interface
is desirable.

3 - A strong interface is desirable for good transverse properties;

4 - Ease of fabrication, including good wetting of the fibers if the matrix is combined in the
liquid state, depends critically on interface chemistry for most economical processing methods.

The criteria to be satisfied will vary, depending on the fiber, the matrix and the application of the
composite. There is, therefore, no given set of rules dictating chemical engineering of the
interface for optimized properties. However, the bond at the interface is generally chemical in
nature, i.e. primary chemical bonds are formed across the interface. This rather general feature
of the bond in inorganic composites dictates certain current approaches for interface chemistry
control in these composite materials:

(i) where a weak interface is necessary for composite toughness, the strong anisotropy in
bonding of certain materials, especially graphite, offers a solution to the problem of crack
deflection at the interface. Thin layers of such materials are presently used at the interface of
several inorganic composites.

(ii) where the matrix contribution to composite toughness is important, a strong bond is
desirable. This category includes that of metal matrix composites with large fibers. In cases
where fiber degradation may occur due to chemical reaction with the matrix, protective coatings
at the interface and/or careful processing methods are used.

There is at present a surge of interest in the characterization of interfacial properties in inorganic
composites (Marshall 1984, Grande et al. 1988, Argon et al. 1988), which will hopefully
elucidate on a more quantitative level the requirements we place on the interface. These
characterization methods, coupled with a more sophisticated understanding of the interplay
between the various processing-structure-property relationships in inorganic composites, will
hopefully point to novel ways of controlling and optimizing the interface chemistry of these
materials.
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Abstract

The asymptotic elastic behavior of interfacial cracks occurring between two dis-
similar isotropic media is reviewed. Distinct solutions, based on differing assumptions
regarding crack-tip boundary conditions, can be generated. The assumption of traction-
free crack-tip faces generally leads to oscillatory singular asymptotic fields which math-
ematically cause crack-face interpenetration, an inconsistency which can be alleviated
by alternatively assuming asymptotic (frictionless) contact. Both cases produce singu-
lar crack-tip stresses which cannot be sustained in materials capable of limited plastic
flow, and small scale yielding (SSY) should be considered.

Conditions for SSY within surrounding dominant elastic regions of both traction-
free and frictionless contact are considered, and the subset of admissible loads producing
physically realistic conditions are identified for each crack-tip idealization. Approxi-
mate closed form expressions for the plastic zone size and shape are obtained as the
locus of points where the elastically-calculated Mises stress equals the tensile yield
strength, o,. In defining elastic and plastic traction-free crack-tip fields, both a mag-
nitude and phase angle are required. The SSY interfacial load phase angle (ILPA),
defined as o = /K + en (K /,7rcosh(7re)) where /K is the phase angle of the o
complex traction-free stress intensity factor K and c is the bi-material constant, nat-
urally arises when calculating the approximated plastic zone and conveniently defines
the phase angle of the inelastic traction-free fields. The traction-free crack-tip plastic
zone size and shape as well as Co periodically evolve as IKI increases, while the closed
crack-tip plastic zone shape differs little from the homogeneous mode 1H shape and only
depends functionally on the closed bi-material stress intensity factor Ker and weakly
on the bi-material constant.

Precise SSY numerical calculations for an elastic/perfectly-plastic material atop a
rigid or elastic substrate indicate that the plane-strain asymptotic traction-free crack-
tip stress fields in the plastically-deforming material are composed of various elastic
and plastic sectors. Deep within the plastic zone, no oscillatory stress variations oc-
cur, however, a cusp in the slip-line field couples portions of the stress state to the
radial distance for certain loads. Generally the maximum interfacial tractions occur
for negative C0 when inelastic sectors completely surround the crack-tip. For positive 0
an Plastic crack-face sector grows as the Co increases, and the interfacial shear strains
in the plastically deforming medium are small, independent of the actual interfacial
sector type. Crack-face contact within the plastic zone may occur at values of o when
elastic contact outside the plastic zone does not occur. The closed bi-material crack-tip
asymptotic stress fields in plane-strain for an elastic/perfectly-plastic material bonded
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to a rigid substrate are composed of two fan and two constant state sectors in the de-
forming region. Compressive crack-face tractions persist even when contained inelastic
deformation is included.

Asymptotic interfacial and crack-face tractions appear constant in the crack tipregion, but both normal and shear tractions jump at the crack-tip. The asymptotic
elastic potential for the lower-elastic stress state is logarithmically singular for non-
zero asymptotic interfacial shear tractions, thus inelastic crack-tip deformation in the"elastic" region is anticipated for deformable media. Validity conditions regarding use S
of an elastic lower half-space and linearized kinematics and the formation of a blunted
crack-tip are presented.

Thesis Supervisor: Dr. David M. Parks

Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction and Statement of
Problem

1.1 Introduction

Efforts in the creation, design, and manufacturing of advanced materials, such as metal

matrix composites (MMC), laminated composites, ceramics, and metallic polycrys-

tallines, which may or may not contain second phase particles, have been hampered,

from the viewpoint of mechanical performance, due to a lack of knowledge about the

processes occurring along the interfaces separating the individual constituents or mi-

crostructural boundaries. It is widely recognized that laminated materials can have _

unique failure modes attributable solely to their layered structure. For example, multi-

layered electronic boards are known to fail from thermal cycling along their lamination

joints. In MMC, the fiber-matrix interface is the controlling factor in overall composite

strength and toughness (Cooper and Kelly, 1969; Ochiai and Murakami, 1981). The

approaches used to assess the interfacial stresses have been either: to assume a per-

fect mathematical interface, which allows the evaluation of the necessary interfacial

tractions to preserve overall integrity of the interface; or to postulate the existence of

a crack-like defect and analyze it using conventional linear elastic fracture mechanics
(LEFM) approaches (e.g., in MMC see Buchholz and Herrman, 1983; loakimidis and a
Theocaris, 1979). No extreme analytical problems are typically encountered in investi-

gating ideal interfaces, but that approach sheds little light on the actual chain of events
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in the failure process. On the other hand, LEFM does describe the strength of the sin-

gularity, but it also predicts infinite interfacial stresses upon extrapolation to'the crack

tip. Additionally, the linear material behavior and infinitesimal strain assumptions

may be violated near the crack tip. From the mechanical property design viewpoint

(e.g., types and thicknesses of fiber coatings in MMC, desirable second phase particles

in metallic alloys, binder properties for ceramics), knowledge of the actual interfacial

stresses are important, especially in front of a crack, in order to prevent catastrophic

material failure or to control the failure mode. •

Since the exact failure sequence of bonded dissimilar media remains as yet not fully

understood, two major issues pertaining to interfacial separation remain. Of course the

primary question is: "what are the interfacial bi-material crack-tip tractions leading to

separation?" Because crack deflection is also a possibility, identifying the local crack-tip

stress and strain fields are important, especially when non-linear material constitutive

relations are used.

1.1.1 Interfacial Fracture Mechanics Length Scales

The size scales associated with problems in which some form of interfacial separation

is experienced span a very large range. The geophysical size scale in plate tectonics 0

represents a reasonable upper bound. Here the crust of the earth, which is made up

of plate-like structures floating atop a viscous jelly-like mantle, continuously moves,

causing massive quantities of potential energy to be stored up as elastic strain energy
~..

and released at local premordial fracture or fault sites (Hobbs, Means, and Williams,

1976). In these circumstances the transition or interfacial zone between the two plates

may be many meters wide and consist of a variety of different geomorphic media. *.

At more common engineering size scales are the fracture phenomena associated with

welding metal structures together. In the welding process two separate pieces are I
joined together by fusing their common boundary, possibly introducing a filler agent.

Due to the melting and solidification process during fusing, the material properties of

11



the weld usually differ substantially from that of the surrounding bulk material, and

flaws may be introduced and embedded into the weld. (Attention is specificly focused

upon those flaws which are in or adjoint to and lay parallel to the weld.) The size of the

interfacial zone is the weld thickness, which may or may not be small compared to the

surrounding structure or flaw. For many diffusion type interfaces, such as seen in Gr/Al

MMC, where reactive fiber or coating material is consumed by the matrix, the fracture

path is thought to follow the weakest portion of the deteriorated interface. In these

cases the interfacial size is governed by the diffusion and product reaction kinetics of the

coating and matrix species, and the interface size may be relatively small. For example,

Everett et at. (1986) determined that a thin aluminum coating, applied by physical

vapor deposition to a polycrystalline pyrolitic graphite sample, creates an "intermixing

zone" approximately 70 to 80 nm thick. A slightly smaller interfacial zone length is

obtained for brittle intergranular fracture, as often occurs in polycrystalline metals and

ceramics. In metallic polycrystallines there often exist grain boundary defects, such as

decoherent boundaries, carbides or sulfides, which weaken the boundary. In ceramics,

the consolidation process never yields perfectly dense ceramics, thus many voids exist

along the grain boundaries which act as nucleation sites. The size of the interfacial

zone in intergranular fracture is approximately the size of the grain boundary, and for ]

metallic polycrystallines the grain boundary is typically on the order of ten Burger's

vectors (approximately 2.5 nm). At about the same size scale are the initial phenomena

associated with certain types of ductile fracture in metals. Here a second phase particle,

such as a carbide or oxide, embedded in the matrix acts as a nucleation site for void

formation. When sufficient tractions exist along the particle surface or the necessary

deformation accumulates in the matrix, the boundary between the particle and the

matrix separates, and after sufficient additional loading, gives way to a completely

separated particle and a micro void. Again, the interfacial zone thickness may be on
- ,,- .

the order of several Burger's vectors.

The ability to resolve the fracture phenomena is limited to the minimum size scale

12
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chosen to describe the individual constituents. In continuum mechanics, a representa-

tive volume is chosen whose macro-response sums up all the individual micro features

within it (Fung, 1977). For inelastic deformation in metals, the nature of discrete slip

events requires a representative volume which has a characteristic dimension of several

hundred to several thousand Burger's vectors. (For metals, an average Burger's vector

is approximately 2.5 x 10- 10 m.) This means that deformable metallic or intermetallic

based interfacial zones which are only several Burger's vectors thick cannot be accu-

rately represented by the usual continuum models and require add. ional considerations

to be properly modeled. For thicker interfaces, such as in the Gr/AI system discussed

earlier, an average material response may be obtainable and used to define a "thin",

but finite, transitional layer between the constituents. However, defining the material

constitutive behavior across this diffusion zone must be accomplished by use of a dis-

crete "averaged" layer, rather than by a continuous boundary layer. As the thickness

of the interfacial zone increases, the use of continuous "continuum interfaces" becomes

justifiable.0

1.1.2 Considerations of Interface and Crack-Tip Idealizations

For many physical situations, several continuum modeling simplifications can be made.

If the interfacial constitutive behavior is not substantially different from that of either

one of the adjoint media, it can be approximated by using the properties of that ad-

joint medium and by merely extending that material's domain. The interface can be

idealized as a perfect zero-thickness mathematical interface which is required to carry

the interfacial tractions and maintain the local strain compatibility requirements. For

weaker interfaces, interfacial sliding or opening may be allowed after sufficient traction

or strain levels are achieved. An alternative approach to interfaces is to prescribe a N

traction-displacement relationship along the interface, which allows for different shear 0%

and normal traction-displacement behavior and allows the interface to separate (Nutt

and Needleman, 1987). Use of these continuum models requires that the flaw mod-
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eled and the limit of stress and strain resolution be very large compared to the actual

interfacial thickness and the appropriate continuum length scale.

For relatively "thin" and "strong" interfaces, a perfect zero-thickness mathematical

interface can be used to obtain "upper" limits to the stress and deformation in the crack- S

tip vicinity. An upper limit is produced in the sense that in order for the interface and

surrounding regions to maintain their integrity, they must be capable of withstanding

these stresses and deformations. Although such interface models are not capable of

accurately describing the entire crack-tip deformation process, they do provide some

insight into the conditions just prior to crack growth.

In the study of homogeneous fracture mechanics, attention is typically focused upon

the asymptotic behavior of the fields as the crack tip is approached. Under certain

conditions the crack-tip fields are described for a wide range of loadings, materials,

and geometries by a single set of field equations whose ma'nitudes are scaled by the

material properties and a stress intensity factor. Small scale yielding (SSY) is the most

commonly referred class of crack-tip loading conditions for materials capable of inelastic

deformation. In SSY use of asymptotic solutions is acceptable as long as the extent of

non-linear deformation is contained within a region which is "small" compared to the

next characteristic geometrical dimension in the problem. Crack and ligament length,

specimen thickness or width, and distance to the point of load application are just a few
examples of characteristic geometrical dimensions in a problem. In SSY the fields far
away from the inelastic crack-tip deformation, but at distance small compared to the

geometrical dimension, are well reproduced by the elastic asymptotic solutions (Rice,

-t 1974). Within the SSY crack-tip idealization, a variety of work describing the fields

within the inelw*;c zone has been performed.

In continuum fracture mechanics, the crack tip is commonly modeled as mathemati-

cally sharp. In actuality, crack-tip opening and blunting occurs in many microscopically e''e

ductile materials (e.g., cast iron, aluminum, and copper), resulting from continuous de-

formation or discrete slip steps. For strain hardening materials in SSY, McMeeking
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(1977) showed that the crack-tip opening displacement (CTOD) is linearly dependent

upon the strength of the surrounding singularity, as measured by the J-Integral (Rice,

1968a). McMeeking also showed that by normalizing the radial distance from the

crack-tip by the CTOD, the steady state values of the normalized stress and strain

distributions are independent of J. In general, at radial distances large compared to

the blunted CTOD, the crack-tip stress and strain behavior appears as if the crack tip

is mathematically sharp, even though local crack-tip blunting may be occurring.

1.1.3 Homogeneous Fracture Mechanics

In conventional homogeneous fracture mechanics, the next step after LEFM in de-

termining continuum crack-tip stresses has been to account for contained material

non-linearity effects. For the homogeneous mode III case, Hult and McClintock (1956)

solved exactly the small scale yielding continuum crack-tip stress field for an elastic/

perfectly-plastic material idealization. They analytically calculated the actual size and

location of the plastic zone along with the stress and strain distribution in the crack-tip S

plastic zone and in the surrounding elastic region. Recognizing that similar behavior

should occur in the planar modes I and I, various approximate methods were developed

in an attempt to account for crack-tip plasticity. In order to correct the plane-stress

mode I stress intensity factor for local crack-tip inelastic deformation, which mathemat-

ically lengthens the apparent crack size, Dugdale (1960) postulated that the crack-tip

yielded region could be idealized as a concentrated zero-thickness yield strip extend-

ing from the crack tip. He postulated that the only non-zero stress component was

the stress normal to the crack face and that its value was equal to the tensile flow

strength of the material. To determine the actual crack-tip stress intensity intensity

factor KI, Dugdale first calculated the size of the yield strip, c, and defined an effective

crack length, I., to be equal to the original crack length, 1, plus the length of the yield

strip(s); i.e., [I. = l + ci. To model the yield strip, he imposed the appropriate closing

tractions on the effective crack tip(s) over a distance which corresponded to the yield

.. f JI
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strip length (c). By superimposing the actual far-field loads, he was then able to de-

termine the elastic stress intensity factor for his crack model. Using different crack-tip

plasticity idealizations, others [Barenblatt (1962); Bilby, Cottrell, and Swinden (1963)]

have used similar "matched asymptotic boundary layer" approaches to alter the ef-

fective crack to achieve better elasticity solutions. For an in-depth explanation and

historical review of crack-tip "strip" models for contained inelastic deformation and

their physical interpretation, the reader is referred to Kanninen and Popelar (1985).

To describe the continuum crack-tip fields deep within the actual crack-tip plastic

zones, other methods were utilized. Based upon various assumptions, Rice (1968b)

postulated that the Prandtl (slip-line) distribution represented the stress state at a

plane-strain mode I crack tip, and numerical calculations performed by Rice and Tracey

(1973) showed that the crack-tip stress distribution for an elastic/perfectly-plastic mode

I crack was indeed well characterized by the Prandtl distribution. The Prandtl slip-

line model assumes the material is perfectly plastic and that a stress potential can be

constructed which satisfies the necessary boundary conditions (traction-free crack tips)

and equilibrium requirements. Although this model allowed for determination of the 4"

finite stress field, the strain field is undefined. However, in certain regions of the stress

field, a portion of the strain field behavior could be inferred. For example, in a fan

region the behavior of the -y,* strain component is found to be singular (y're 1/r,

where r is the radial distance from the crack tip). Thus, the inclusion of material

non-linearities was not sufficient to remove all crack-tip stress and strain singularities.

Hutchinson (1968) and Rice and Rosengren (1968) considered the continuum struc-

ture of the planar crack-tip fields for power-law strain-hardening materials using de-

formation theory strain oc (stress)". (These fields shall henceforth be referred to as

HRR fields.) From the compatibility, constitutive, and equilibrium relationships, the

necessary requirements for the existence of a strain potential and a stress potential

were established. By using the boundary conditions and assuming a separable form, an

eigenvalue problem emerged whose solution determined the radial dependences of the
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stress, displacement, and strain fields. Using the characteristic root, a fourth order dif-

ferential equation was numerically solved to determine the actual angular dependences

of these fields. The overall magnitude of the stress and strain fields were determined

by their radial and angular dependences and scaled by the strength of the crack-tip

singularity, as measured by the path independent J-Integral (Rice, 1968a). For finite

values of the strain-hardening exponent, both the stress and strain fields were found

to be singular as the crack tip was approached, and as observed previously, the inclu-

sion of non-linear material constitutive behavior does not remove all singularities at S

the mathematically sharp crack tip. Although perfect plasticity can be considered by

taking the limit as n -+ oo, no unique strain field was identifiable.

Development of HRR type singularity fields involves several key assumptions. A

total deformation theory of plasticity is used along with linear kinematics (small strain

theory) and a monotonically increasing stress-strain relationship. For deformation the-

ory to accurately describe the constitutive behavior, no local stress unloading is admis-

sible and the loading at all material points must be nearly radial. Thus the application

of deformation theory is generally restricted to proportional loading. Since small strain

theory is used, these solutions do not incorporate any field characteristics which are

attributable to crack-tip blunting, and they are only applicable at limited, finite dis-

tances from the crack tip. Also, it should be noted that the HRR fields are obtained

by retaining only the dominant term in the stress and strain potentials.

1.2 Statement of Purpose

The basic interfacial SSY crack tip characteristics for a specific set of loading and geo-

metric conditions and material idealizations will be provided. The stationary crack-tip

fields for specific material idealizations will be represented via closed form expressions,

based upon natural dimensional and dimensionless variable groupings. First, a general

non-linear idealized bi-material boundary value (BV) problem will be identified, includ-

ing specific constitutive relationships. Known solutions to the linear elastic BV problem
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will be reviewed and implications concerning the non-linear BV problem behavior and

associated natural groupings will be extracted from the asymptotic elasticity solutions.

From this assembled parametric framework, far-field loadings which produce the ge-

ometrical idealizations considered in the BV problem (traction-free crack-tip faces or 0

closed crack-tip faces) will be stated. Next, a discussion of the solution technique for

solving the non-linear problem will be presented. Representative forms for the general

crack-tip fields will be presented and assembled to construct the complete crack-tip

fields for various material choices. Inferred trends of the constructed fields, as func-

tions of material variables, will be identified. Limitations regarding the applicability

of these results, will be expressed in terms of the mathematical assumptions made in

solving the BV problem and in terms of physical material characteristic associated with
interfacial crack problems. Finally, speculative implications, relevant to all interfacial

fracture mechanics problems, concerning separation mechanisms will be made.

1.2.1 Statement of Boundary Value Problem

The mechanics problem considered herein is a plane-strain interfacial crack between two

isotropic solids, as depicted in Figure 1.1. The interface or diffusion boundary layer be-

tween the two solids is idealized as having zero thickness. The constitutive response for

the material in the upper half (Region 1) is idealized as being elastic/perfectly-plastic,

and the material in the lower half is considered to have a linear elastic constitutive ,

relationship. Far-field applied loads are restricted to SSY and to those which result

in either traction-free crack faces or crack faces which have (frictionless) contact over

a large region, compared to their plastic zone size. (This restriction is enforced only

from the edge of the plastic zone outwards away from the crack tip.) The far field

loads are assumed to produce a set of displacements near the crack tip which can be

represented by a continuous family of self-similar modes whose magnitudes are scaled

by the crack-tip singularity. Hence, the family of boundary condition modes which

are considered are limited to those which satisfy the general isotropic bi-material crack

18



problem with either traction-free crack faces or closed crack-tip faces.

The objectives of analyzing these BV problems are: (a) to determine the size,

shape, and growth characteristics of the plastic zone in Region 1; (b) to identify the

SSY asymptotic elastic and plastic fields deep within the plastic zone; (c) to identify

the evolution of strains near the interface as well as the evolution of interfacial tractions

with applied load.

1
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Figure 1.1 Schematic traction-free bi-material interracial crack-tip region, including
.polar (r, 9) and Cartesian (z, y) coordinates and domain numbering convention. ,'
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Chapter 2

Elastic Interfacial Cracks

2.1 History and Solution Discussion

Applied mechanics can provide a framework for modeling interfacial cracks. Within this

framework, there currently exist two specific geometric idealizations which are used to ,

investigate the local interfacial crack-tip fields around a mathematically perfect zero-

thickness interface. Both idealizations require continuity of interfacial tractions and

displacements, with the basic difference between the two being the physical interpre-

tation given to the near-tip crack faces. The first model assumes that the crack faces

are "traction-free" while the other assumes that the crack faces are in "contact," but

free to slide relative to one another (frictionless). The following sections review the -,

important aspects of each crack-tip model. .

2.1.1 Traction-Free Crack Faces

The asymptotic solution for a traction-free crack tip located between two elastically

dissimilar isotropic media was first addressed and partially solved by Williams (1959).

He used for the Airy stress function a general power series expansion about the crack

tip of the form

A = 2, (2.M)

where r is the radial distance from the crack tip, 9 is the angle measured from the

interface, A, and , are admissible constants, and F(O, A,) is an admissible function.

21
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Enforcing displacement and traction continuity across the interface and traction-free

crack-tip faces lead to an eigenvalue problem composed of eight simultaneous equa-

tions from which Aj and acceptable forms of F (9, A,) were determined. Williams first

assumed that Aj was a real number and was unable to obtain a solution to the char-

acteristic equation. He concluded that A, must be a complex number and found that

two possible series solutions exist:

j ± A coth-(D)A, = ( + ) ±ijt -f() s = 0, ±1, ±2, ±3,..., (2.2)

where for plane strain
2 1A, 1 (1 -1 -_,,,)

D. 2A1 _2i (2.3)

Here It is the shear modulus, v' is Poisson's ratio, and the subscript k is 1 in the upper

domain and 2 in the lower domain. In Eq. (2.2), both sets of roots exist only when D = 1,

and both have infinite imaginary components (coth-(±l) = tanh-(±l) = ±oo). For

commonly used engineering materials (i.e., those with positive Poisson's ratio less than 0

1/2), 1 < 1/2; thus, only the series associated with tanh-'(D) is defined. Since coth -

is not defined for arguments with a magnitude less than unity, the set of roots with

integer real portions (&(A,) - j) must be excluded from the total solution.

In deriving the characteristic equation for the case of purely real roots, it is specu-

lated that at some point Williams incorrectly divided through by sin(7rA,). This lead

him to conclude erroneously that no purely real roots [(,(Ai) = A,] exist, when, quite

to the contrary, the solution to sin(ixA,) = 0 actually produces an acceptable set of
whole integer roots. (Note, division by sin(ir,) is only valid if sin(7rA,) $ 0!) Thus,

the complete solution to the bi-material interfacial crack problem with traction-free

crack tips consists of half-integer complex powers of r, termed "Williams type," and

real whole integer powers of r. For cracks with D = 0, the complete set of roots for the

homogeneous crack problem is recovered.

Rice (1988) has subsequently assembled the asymptotic expansion of a complete I

interfacial crack solution consisting of the Williams series [with eigenvalues A, = (j +

22
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1/2) +i (1/7r) tanh-1 (D)J and a material dependent constant multiplying the real whole-

integer power series (A,j . In terms of standard Muskhelishvili (Muskhelishvili,

1953) functions the general solution is given by

3 ~2C2
4(z) = et"z4 EXGNZN + Z 1 +0~~AJ 24

1)'~(z)1 + C2CI EaNMN 2C (2.4)
N C1 l2

O4l (Z) = +N' (2.5)
NV C1 +C2MW

0,2 (Z) e= z I-" _NN+j 2C(.7
N +' C'2 bMM (2.6

aNin[ 2C (2.8)

27r + 1

Ch (k 1, 2). (2.9)

Here z = x + iY r e" is the location measured from the crack tip, 171= 3 - 4i for

plane strain and i~j, = (3 - 5k(1+ "k,) for plane stress, and the subscript k is used

again to refer to the material in the upper half when equal to 1 and to the material

in the lower half when equal to 2. The individual stress components are related to the

Muskhelishvili stress potentials by the following relationships:

as+ a0v = 2[01 +,f (2.10

and N

a - a.. + i2a, =2 [z-) /-4 + fl'j (211
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Discarding infinite energy terms and retaining only the most dominant term as r 0,

the local crack-tip stresses behave as follows:

a(r,) r2 {A(9)cos[B(O) +Eln- "-]+C(O)sin[D(O) +elnI r (2.12)
0 2

where r/2a is the radial distance from the crack tip normalized with respect to crack

length, 9 is the angle measured from the interface, and A(9), B(O), C(O), and D(O) are

functions dependent upon loading, material constants, and angle 9.

Complete solutions to various problems concerning cracks between dissimilar me-

dia were obtained by England (1965), Erdogan (1965), and Rice and Sih (1965) using

Kolosov-Muskhelishvili and other transformations to express the stress potentials. Ad-

ditionally, Rice and Sih calculated stress intensity factors for a semi-infinite crack with

point loads and for a finite crack between two semi-infinite media loaded by wedge

forces or remote far-field loads.

The in-plane two-dimensional bi-material stress intensity factor, K, as defined by

Hutchinson, Mear, and Rice (1987), is given by

K = limV2- [av,(r, = 0) + ia.Y(r, = 0)] (2.13)

where a,,(r,9 = 0) and ao,(r,9 = 0) are the interfacial normal and shear stresses,

respectively. Note, the elastic material properties enter into the stress intensity factor

via the bi-material constant, unlike the homogeneous case. Since K is a complex

number, it can be written as

K =K +iKi, (2.14)

where KI and K11 are the real and imaginary components of the stress intensity factor,

respectively. Using the definition

K = (k, + ikir)V7cosh(ir), (2.15)

Rice and Sih's (1965) original stress intensity factors, k, and k,, are interpreted in aI

consistent manner. Table 8.1 contains the stress intensity factors for several geometries

(Shih and Asaro, 1987).
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Crack Geometry Stress Intensity Factor Reference
Infinite Plate 0

K = T (1 + i2e) x England,
/LL 1, / 

1  V (2a)" 1965

T

r2a

/Y2, .2

Semi-Infinite Plate .

K = (P + iQ) cosh (7rE) x Rice and Sih,

/1, V1v (2a)" //'ra 1965

QLQ

P
2, V*

Infinite Plate
q77 " For crack tip at z = a, Rice and Sih,

L____ " K = (1 + i2e) (a,, + ia.,) x 1965
v 7i (2a)-"

Al."
*xx_2" O'xx_2

)42, V'3

Table 2.1 Bi-material stress intensity factor for various interfacial crack geometries. . -
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Using Griffith's virtual work argument, Willis (1971) formally calculated the incre-

ment of elastic energy dissipation associated with an increment of crack-face advance-

ment for the general anisotropic crack. (He evaluated the elastic energy release rate.)

Willis did this by formulating a "stress concentration vector," whose components are

K1 , Kli, and Kil, and equated it with the the specific surface energy to establish

a "stability relationship." For the planar isotropic case, Rice (1988) gave the energy

release rate in terms of the complex stress intensity factor as

C, + c, (2.16)
16 cosh'(re)

where 9 is the energy release rate per unit thickness.

Although the asymptotic stress fields and stress intensity factors are easily cal-

culated, their interpretation is not straightforward as in the homogeneous case. For

example, the elasticity solution for the bi-material traction-free crack-tip problem pos-

sesses some unusual characteristics. Asymptotically, the stress, strain, and displace-

ment fields oscillate with radial distance, and this oscillation in the displacement field

causes the crack faces to contact and mathematically interpenetrate. England (1965),

using the asymptotic solution for an internally pressurized Griffith crack with length

2a, calculated the crack-face contact length, 6, by determining the distance from the

crack tip to where crack-face interpenetration would occur. For this geometry he found

that

6a 1.26 x 10-. (2.17)

Since England's calculation was evaluated for e = 0.1748, the maximum value of the

bi-material constant in plane strain for materials with positive Poisson's ratio, he con-

cluded that for more realistic property choices the contact distance would be even

smaller. For the same Griffith crack geometry but loaded by remote tensile and shear

tractions, Rice (1988) calculated values of 6/2a which were appreciably larger than I
Eq.(2.17) for certain loading conditions.

Additional complications exist in the definition of the stress intensity factor K. Rice

(1988) pointed out that the interpretation of K, and K,, is ambiguous since K, and K,,
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individually do not correspond physically to a pure opex.ing mode or a pure shear mode.

Furthermore, the choice of p'iysical units used in determining the numerical value of

the stress intensity factor affects the ratio of Kr and Krr for any given boundary value

problem. Using the definition of K given by Hutchinson, Mear, and Rice (1987) in

Eq.(2.13) results in the following generic stress intensity factor: 0

K = urCe"'n'V-i, (2.18)

where g' is a resultant traction expressed as a complex number with the dimensions

of stress, C is a non-dimensional complex geometric constant, and I is the characteristic

geometric length of the problem, such as crack or ligament length, distance from the

crack tip to point of load application, etc. Examining Eq.(2.18) reveals that when

different length units (e.g., m, inches, cm) are assigned to 1, /K changes. [Here L( )

refers to the phase angle of the complex argument ( ), and the LK is chosen such

that -w < LK < r.] Thus, an infinite number of stress intensity factors, all with

different ratios of K, to KI1 (and different units), could exist which all yield identical 0

stress states. This implies that the decomposition of K is meaningless since only in

the degenerate case, when e = 0, does modal decomposition of K1 and K11 take on any

unique or significant meaning.

The units associated with the bi-material stress intensity factor are unique in that

they differ from the homogeneous stress intensity factor by I". For example, typical

units of K may be MPa(m)° 's '. To remove this uncommon dimension, (m)-°',

Shih and Asaro (1987) defined a stress intensity vector Q such that, as r - 0 on 9 = 0,

oa, + io,, - Q(r/l)i"/v2-'. This expression differs from Eq.(2.13) by the factor L".

This approach uniquely identifies /K, and when used in Shih and Asaro's elasticity

expressions produces, at a fixed point, the identical stress state as compared with the

previous definition. However, several problems arise in using Shih and Asaro's stress

intensity vector Q. The choice of I becomes ambiguous when several geometric lengths

exist. For example, in a compact tension specimen (CTS), at least three lengths exist

which could be used, namely the thickness, the width, and the crack or ligament length,
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and uncertainties clearly exist regarding the appropriate choice of the normalizing

length dimension. Second, Shih and Asaro's definition may yield confusion because two

different loadings which produce identical stress intensity vectors only produce identical

crack-tip stress fields when e is the same for both cases. Although the definition of

Hutchinson et at. requires additional unusual dimensions to be carried along; the

possible non-uniqueness problem is totally circumvented. Therefore, for convention,

the definition given by Hutchinson et at., Eq.(2.13), is used in the remainder of thisstudy.

2.1.2 Closed Crack-Tip Faces

In an attempt to eliminate the unsatisfactory aspects of the oscillatory singularity in

the traction-free crack-tip model, various other crack-tip models have been proposed.

Comninou (1977a) included a frictionless contact zone at the crack tip of a Griffith crack

which transmitted only compressive normal tractions and required both traction and
0

displacements to be continuous over the intact interface. Comninou then formulated

a singular integral equation to describe the dislocation density which was necessary

to produce closed crack tips. She also used the Williams technique of express;- - a

general power series Airy stress function, Eq.(2.1), about a closed crack tip w K-

face friction (Comninou, 1977b) and without crack-face friction (Comnino" a).

By enforcing continuity of tractions and displacements across the interface and by

requiring continuous (compressive) normal tractions and normal displacements on the

closed crack face, an eigenvalue problem of eight simultaneous equations arose from

which acceptable values of A, and forms of F(8, Aj) were determined.

The results of her numerical solution of the singular integral equation and her

frictionless crack-tip expansion agreed, demonstrating that as r - 0, the dominant

stress field around the closed crack tip is given by

or, -5 (1== ) sin (2.19)
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S( Oin 0) + (3 i (2.20)

and

o,,= , T 0(1 ) 1)coos + (3 ±,)coo , (2.21)
' 2 2J'(.)

where, using Comninou's convention for numbering material domains,

8= JA (11) JA (173 (2.22)

A2 (17, + 1) + At (17 + 1)

Here K"1 is the strength of the singularity, and the upper and lower signs are used in

the lower and upper material domains, respectively. To ensure compressive tractions

in the contact zone, loadings are restricted such that K', > 0 for 1 > 0 and KII < 0

for 0 < 0.

A note of caution: Coninou reversed the ordering of the material domains as

compared to the convention used by Williams (1957), and others. Figure 8.1 shows the

crack-tip geometry Comninou assumed. In her work the material in the upper domain

is referred to by the subscript .0, and the material in the lower domain is referred to by

the subscript 1. Switching the ordering of the material domains changes the sign of the

bi-material constants # and c. For convention, in the present work 8 will be defined

with the subscript 1 in the lower domain, and c will be defined with the subscript I in

the upper domain. Using this convention, P is related to e via

C n [--1.(2.23) .
2w 1+13

Along the interface, the shear component is the only dominant asymptotic stress NE
term that is non-zero, and it behaves as o,#(r,9 = 0) = K',/V . This implies that the

additional load carried by the interface, which results from the presence of the crack,

is asymptotically only supported by interfacial shear tractions. Note that the interface II
still supports normal tractions which arise from the far-field loading and from the
complete local solution, even in the crack-tip vicinity, and these normal tractions may be

on the order of 25 times the tensile far-field opening traction (Comninou, 1977a). The
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p Figure 2.1 Schematic closed bi-material interfacial crack-tip region, including polar
(r,90) and Cartesian (z, y) coordinates and domain numbering convention.
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(compressive) normal traction in the contact zone is singular - avy = -K I /f as

the crack tip is approached - and is bounded as the crack opening (gap) is approached.

To be precise, Comninou mathematically requires the normal traction to be equal to

zero in the contact zone at the point where crack opening initiates. [A standard moving

Hertzian contact boundary condition (Johnson, 1985).1

The complete set of admissible roots for Comninou's Williams type crack-tip ex-

pansion contains two series with real values. The two admissible series of roots which

produce finite crack-tip strain energy and no concentrated crack-tip forces are

+ I (2.24)

where j is a non-negative integer. (Note, this spectrum of admissible roots is the

same as that found for the homogeneous crack problem.) The other roots of interest

are A = 0, which corresponds to a uniform (domain wise constant) stress field, and

A = 1/2, which represents a positive square-root stress field (a oc v/'). The constraints

on the uniform stress field are that a,,, a.., and e.. are continuous along the interface.

To satisfy these conditions a "stress jump across (the) interface" (Rice and Sih, 1965)

is generally required, and because the crack faces are free of shear traction, a., = 0.

It is interesting to note that all half-integer roots (A - j + 1/2) in the closed crack-tip

expansion, produce no normal interf~cial tractions [o r,(r, 9 = 0) = aos(r, 0 = 0) = 01.

Comninou calculated a stress intensity factor, K I, for her model. It is obtained by

taking the limit as r -+ 0 in the crack-tip region, and is given as

K !im -- { v' (r, = 0)}. (2.25)

Note, Eq.(2.25) produces stress intensity factors having the same dimensions as in

the homogeneous case, but differs from the usual homogeneous stress intensity factor

definitions by a factor of Vw/. (Comninou (1977a) actually calculates two stress intensity

factors for her model, however the stress intensity factors are always proportional to
each other for 0 $ 0 and are used nearly interchangeably to scale a single set of 0

crack-tip field equations.) Excluding the compressive contact tractions, the crack-tip
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fields can be regarded as being quasi-homogeneous "mode II." In other words, for the

homogeneous case, / -0, the stress state expressed in Eqs.(2.19) to (2.21) reduces to

that found for homogeneous mode II loading (Comninou, 1977a).

Gautesen and Dundurs (1987) were able to solve exactly an additional integral

in Comninou's formulation for the case of remote tensile loading of a Griffith crack

geometry. By writing equivalent series expansions and using some appropriate small

argument approximations, they found that, for 8 > 0 (e < 0), the total normal stress

directly ahead of the closed crack tip is equal to 0

oa€0.0 2+o ) [1 + 0 (,k2)],
a.,(r 0+ 0 0)~L 0+01O~~ (2.26)

where

/o -In[il-=] = -2we (2.27)

and

k2 16ep 70 [ tan-, + 1]. (2.28)

Here a; is the far-field opening stress. They show that for opening loads, as / -- 0
(or alternatively as e --+ 0), the extent of the crack-tip contact vanishes. Additionally, 0

the stress intensity factor KI, for 6 > 0 (e < 0) of such a Griffith crack loaded by the

far-field stress aO* is given by

Ker 1=o~/ IvO' 1 + O(k, (2.29)0

where 2a is the crack length. For the range 0 < < _ 0.5 (0 > e > -0.175), K'/('/)

varies by less than 6%.

When the contact zone is small compared to crack length, results from Comninou's

model are consistent with those found by others. For remote tensile loading, she de- I
termined that the contact zone is smaller than the maximum first contact calculated

by England. She further found that the global stress field away from the immediate
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crack-tip region still contains the oscillatory singularity and is not significantly differ-

ent from the stress field previously obtained. Also, the inclusion of contact zones in

Comninou's model eliminates the oscillatory nature of the singularity in the very near
crack-tip field.

For arbitrary far-field shear, cv, and normal, c, , loading of a Griffith crack geom-

etry, the crack-face contact length is not always small compared to crack length and

the oscillatory stress field may never be recovered, even at relatively large distances I
from the crack-tip. Comninou and Schmueser (1979) found that for a Griffith crack

geometry with 3 > 0, at fixed values of ag, the contact length at the right hand crack

tip increases when positive remote shear is applied, and for fixed values of o, increases

as the level of remote normal stress decreases to compressive levels. Simultaneously, as

the contact length at the right hand crack tip increases, the contact length at the left

hand crack tip decreases. Table 2.2 lists the right hand contact length 6 for various

combinations of far-field loads applied to a Griffith crack geometry. (The notation used

is the same as that used previously to define K for the infinite plate in Table -0.1.) For

a pure far-field shear load (a' = 0) and for a compressive normal load, substantial

contact lengths exist. Any predictions based upon a "traction-free crack-tip" model

for the right hand crack tip under positive shear, with even modest levels of applied

normal stress (say for / 0.5, a; _5 3a:), are ill-founded and clearly unjustifiable,

since the contact length is so large (e.g., for / = 0.5, 6/2a > 0.1).

a0 00 /b2a
0.50 0.068
0.25 0.23

0 0.33
-0.25 0.60
-0.50 0.78
-0.75 0.88
-1.00 0.92

Table 2.2 Contact lengths at the right hand crack tip of a Griffith crack geometry

loaded by far-field stress; / - 0.5 and a' > 0 (Comninou and Schmueser, 1979).
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In addition to Comninou, others have included various crack-tip models in an at-

tempt to remove the oscillatory singularity and accurately account for contact. For

certain geometries and loadings, Atkinson (1982) showed, by several examples, that

the elastic energy release rate is virtually unaffected by the precise details of the very

near crack-tip model used. In general, such crack-tip modeling may remove the oscil-

latory behavior locally, but does not remove all the singularities at the crack tip. As

with all infinitesimal elasticity solutions, they are only valid in the region where the

assumptions of linear material response as well as small strains and rotations, are notv 

violated.

2.2 Inferred Plastic Behavior

From the expressions for the local elastic asymptotic crack-tip stresses, it is clear that

unbounded stresses axise as the crac, tip is approached. The applicability of linear

elastic models must therefore be examined in terms of the mathematical assumptions

and the material idealizations used in deriving them. Based upon the tensile behavior

of most polycrystalline metals, it is clear that linear elasticity is not an appropriate

idealization very near the crack tip, where unbounded stresses are predicted, because

nonlinear deformation is anticipated. The inclusion of continuum non-linear material

behavior, such as power law strain-hardening or elastic/perfectly-plastic, allows for

better representation of the actual material response for many materials and situa-

tions. When continuum length assumptions apply, local crack-tip plasticity is typically 0

found embedded within the singular elasticity fields and separated by a transitional

"boundary layer." The parametric framework which describes the non-linear to linear

material transition should be obtainable by considering the elastic field along the tran-

sition boundary. The aim of this section is to describe the boundary characteristics

of the continuum non-linear zone in terms of far-field loads and material propertiesU

by assuming that the non-linear zone boundary can be approximated by the loci of

points whose elastically-calculated Mises equivalent stress, d, is equal to the tensile

34



yield strength of the material, oa,. Using this assumption and the two asymptotic

elasticity solutions, Eqs.(2.4) to (2.7) and Eqs.(2.19) to (2.21), a consistent parametric , L

framework for describing the plastic-zone characteristics is assembled.

Several quantities are needed in this framework. First, a representative plastic zone

characteristic dimension rs, given in terms of the far-field applied load and material

properties, is required in order to determine if SSY conditions are satisfied. It will be

shown that a natural choice for the characteristic dimension is rp = KfK/ca2,7r cosh 2 (gre)

for the traction-free crack-tip model and rp, = 3K1, 2 /2a for the closed crack-tip face 0

model. In general, a., is the tensile yield strength of the material in either domain, but

henceforth shall refer to the tensile yield strength of the plastically deformable material

in the upper domain of Figures 1.1 and S.. Next, it is necessary to determine the size

and shape of the plastic zone, in terms of the applied load. It will be shown that

traction-free crack-tip plastic zone growth occurs in a periodic manner with respect to

increasing stress intensity factor K, and the tractions along the plastic zone boundary

also change in a periodic manner, because the tractions simultaneously evolve with

the plastic zone. In the closed crack-tip model, it will be shown that the plastic zone

growth is self-similar, and that the size of the plastic zone can be scaled by the closed

crack-tip characteristic plastic zone dimension rp. Because a single unique plastic zone

shape does not exist during loading for the traction-free model, as it does for the closed

crack-tip model, an additional quantity describing the phase of the plastic zone will be

introduced. The interfacial load phase angle (ILPA), CO, defined as

C= LK + cln (2.30)
a3 rcosh'(we)

accounts for all possible loading combinations while it compensates for plastic zone

growth within the oscillatory field. It uniquely characterizes the plastic zone shape,

plastic zone tractions, and determines whether crack-face contact is occurring at the

plastic zone edge.

Finally, and most importantly, conditions defining the applicability of each model as

well as any possible combination of models, will be identified. It will be assumed that
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the traction-free crack-tip model is the governing model, in regards to identifying when 0

each model is appropriate. It is chosen because it analytically exists in closed form and

all necessary quantities used in the closed crack-tip face model can be approximated

from it when the contact length is small compared to crack length. For certain loading

conditions, it will be shown that the closed crack-tip face model is applicable because

significant crack-face contact exists. Based upon the value of the ILPA, explicit domains

for which the characteristic plastic zone dimension in each model is acceptable, as

compared to the length of the crack-face opening or closure, will be identified.

It will be shown that these two continuum interfacial crack-tip models will describe

most, but not all, possible crack loadings. For certain circumstances, even when the

size of the plastic zone is small compared to crack length, neither of these interfacial

crack-tip models will appropriately describe the actual crack-tip behavior. Justification

for use of this framework will be made by comparing its elastically based predictions

against various precise solutions for actual strain hardening materials. This agreement

will warrant the use of this framework for all monotonically increasing strain hardening

constitutive relationships (strain o (stress)"] which include an initial linearly elastic

(n 1) range. •

2.2.1 Traction-Free Crack Faces

The following section is a paper submitted to the Journal of Applied Mechanics by the I
author and Prof. D. M. Parks which derives an approximate expression for the plastic

zone from the asymptotic Williams type oscillatory elasticity solution. It discusses .-

predicted plastic zone size, shape, and growth characteristics, introduces various key

bi-material interfacial variables, and gives formal validity conditions, in terms of K,

material properties, geometry, and bi-material interfacial variables, for the applicability ,I

of the traction-free crack tip BV problem outlined in Chapter 1.

For consistency, all equations, figures, and sections referenced from this paper will

be identified using the prefix (P2.).
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ELASTIC YIELD ZONE AROUND
AN INTERFACIAL CRACK TIP

by

Edward Zywicz

and

David M. Parks

Department of Mechanical Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139 USA

Abstract

A closed form approximate solution for a small scale yielding (SSY) plastic zone
around a planar interfacial crack-tip, occurring between two dissimilar ideally-bonded

elastic half-spaces, is obtained by equating the elastically-calculated Mises equivalent
stress with the material yield strength, av. The dimensionless parameter 5(0), which
is defined as c(6) = LK + e In r,(8), where /K is the phase angle of the complex stress
intensity factor K, e is the bimaterial constant, and rp(d) is the polar representation of
the plastic zone radius, naturally arises. The SSY interfacial load phase angle (ILPA),
defined as co = LK + eln (K/a2,rcosh(7re)), leads to periodic zone growth. The

ILPA characterizes the overall applied load phase by combining the oscillatory radial

phase shift, attributable to the increase in zone size due to increased loading, with I
LK. At a particular angle 0o from the uncracked interface, the plastic zone radius thus
calculated is independent of LK, proportional to KI, and has no oscillatory radial -

phase dependence. The derived plastic zone expression reproduces the shape charac-
teristics, and it modestly reproduces the zone size when compared with solutions for
an elastic/perfectly-plastic solid adjoint to an elastic solid. As the strain hardening
exponent in the plastically deforming medium decreases, agreement between the ap-
proximation and various accurate numerical solutions improves. In the limiting case

when e = 0, the well-known homogeneous elastic solutions for pure mode I and mode I
II are recovered, as well as all possible mixed mode combinations. Approximate valid-
ity conditions for the existence of Williams type asymptotic fields (traction-free crack

faces) are presented.
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1 Introduction

Much effort has recently been focused on interfaces which exist between dissimilar me-

dia, with specific attention being directed toward media separation or fracture events.

Publications on the subject, such as Shih and Asaro (1987), Hutchinson et al. (1987),

and Rice (1988) clarify several aspects of the original oscillatory stress solution ob-

tained by Williams (1959) for an interfacial crack and attempt to apply or further

extend traditional (homogeneous) fracture mechanics approaches to interface cracking

phenomena. Elastic interfacial crack-tip fields between isotropic media are well charac-

terized, although only a limited number of geometries have had their stress fields and

stress intensity factors solved exactly. Ting (1986) has presented a rigorous framework
for determining the degree of singularity and the asymptotic characteristics for the

general interfacial crack between two elastic anisotropic materials. When non-linear

material responses are included, no explicit unifying characterization presently exists %

to unite the various fracture parameters. However, dimensional analysis by Rice (1988)
and by Shih and Asaro (1987) lead to symbolic functional relationships consistent with

the present results.

Insight concerning contained crack-tip inelastic deformation zones (in the small
scale yielding, SSY, sense) can be obtained by considering the characteristics con-

tained within the elasticity solution. One approximate method which has been used

to determine the plastic zone shape and size around a crack tip in a homogeneous

medium is equating the elastically-calculated Mises or Tresca equivalent stress with

the yield stress of the material (McClintock and Irwin, 1965; Rooke, 1963). The locus
of all points satisfying this condition is considered to be the plastic zone boundary

which separates the exterior elastic region from the interior plastically yielding region.

The changes in plastic zone size and shape with respect to the applied load or stress

intensity factor(s) can then be estimated from this expression.
The goal of this work is to present a closed form approximate plastic-zone solu-

tion for an interfacial crack between isotropic linear elastic media, and propose various

dimensional and dimensionless quantities, which naturally arise in the derivation, as

interfacial fracture parameters that uniquely characterize the interface crack-tip region.

Comparisons will be made between the approximate solution and various precise nu-

merical solutions to demonstrate its accuracy. Conditions which determine the validity r.

of this expression will be stated.
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2 SSY Plastic Zone Approximation

The problem considered is a planar interfacial crack, as shown in Figure 1, whose

constituents have shear moduli juj (j = 1, 2) and Poisson's ratios mi. (Subscripts 1 and

2 refer to the upper and lower domains, respectively.) Far field loads produce a local

elastic stress field which is well characterized by the complex stress intensity factor K

and asymptotic interfacial crack-tip stress fields. Following Hutchinson et al. (1987),
the stress intensity factor is defined such that as, as r --+ 0 on 0 = 0, aw + iac.Y - +

Kr'/V2-'r. For the interfacial "Griffith" crack configuration, this definition for K

differs from that given by Shih and Asaro (1987) by the complex term e - .Insa (See

Rice (1988) for calculated examples of K for various geometries and for the interfacial

stress fields.) The bimaterial constant, e, which modulates the stress and displacement

oscillation period, is defined as

1 -r +

where icy = 3 - 4u for plane strain and oci = (3 - mi)/(1 + zi) for plane stress.

The general stress field for an isotropic elastic solid can be represented by the

Muskhelishvili potential representation (Rice, 1988),

Cyx + o7 = 2 [' + (2)

and

o - o, + i2o., = 2 [(2 - Z)O" - 0' + n']. (3)

Retaining only the dominant asymptotic term as r -- 0, the plane strain elastic poten-
tials in the upper domain are

a aoe- r ez--i', (4)

fl aoe"z-j+1. 5).

Using Eqs.(2) to (5), an expression for the Mioes equivalent stress in region 1 can be

obtained. (Appendix A contains the complete general series potential functions and

39 ~ Wq*~f*



RTK~~1EW1IX~

0

0

0

0

S

S
U

U

4-
S..
4)

U

E
4)

U

- N
N L4)

I
40

0

4
-I



formally calculates the Mises equivalent stress.) Equating the Mises equivalent stress,

0, Eq.(A.27) with the material yield strength, a,,, and solving for the radius yields

K K 1Kr2i 1

r,(o) : ~. 7r cosh'(7r) 
{cos 2C() [-3(1 + cos 29) - 6e sin 29 + (8D - 6)e" (O- ) cos ]

+ sin 2C(0) [3 sin 20 - 6e(cos 20 - 1) - (8D - 6)e'('-') sin 0]

+h 21(Oi) [(3 - 6 2 ) (cos28-1)+6esin29 +(D-3)] + 3e2(f)}j,(6)

where

D V, -V/+ 1 (7)

and

() = LK + enr.,(). (8)

Here 9 is the angle measured from the interface, rp(9) is the plastic zone radius from

the crack tip, and /K is the phase angle of the (complex) stress intensity factor defined

with a branch cut at 9 = 7 such that ir > LK > -s. (1K = arctan(FK/.RK), which

in the homogeneous case, e = 0, reduces to LK = arctan(Krr/Kr)). For plane stress

conditions, Eqs.(6) and (8) are still valid; however, Eq.(7) is redefined as D = 1 and

the plane stress value for e must be used.

This approximation is valid only when a dominant elastic crack field exists and the

maximum extent of the plastic zone is small compared to crack length (1) or other

characteristic dimensions (maximum r. < 1). Further clarification will be stipulated in

section 3.4.

3 Discussion

3.1 Mathematical Considerations

Several interesting mathematical features arise from Eq.(6). Foremost, the dimension-

less c(f) is naturally obtained in the derivation. It removes the dimensional problems
associated with assigning length units in K definitions (Rice, 1988) since c(0) is invari- I
ant as long as rp(d) and K are expressed with the same length units. Recall the generic 0

K,
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K = g¢Ce-ivfl 7, (9)

where q is the far field load expressed as a complex number, C is a dimensionless

complex geometric constant, and I is the characteristic dimension. Examination of
Eq.(9) reveals that when different length units are used to express 1, the LK changes.

Eq.(9) can be rewritten as

K -el _11 x IICIle ' 1(#-C)VrI, (10)

where 11 11 denotes the magnitude of a complex expression, •

0 =/e +- zC, (11)

and

ZK = - t. (12)

Substituting Eqs.(6), (II), and (12) into Eq.(8) yields

C(O C- en+ eln{ HK - 0 , ,c() (13)

where g (0, e,D, c (0)) is a non-dimensional function. Using Eq.(1O), KK can be ex-

pressed as

KR = Ig'11' x IlC' irL. (14)

Furthermore, Eq.(13) can be rearranged and simplified by using Eq.(14), and it reduces

to

(6) = + 2eIn f"ll 1 C ( (0,e,D, )) . (15),

From Eq.(15) it is clear that c(O) is dimensionless and independent of length units used

to express K. This in true as long as a single length measure is assigned to all I used
when evaluating K in, e.g., Eq.(10).

For a wide range of engineering interface material properties, an angle Oo exists for
which the coefficients

P = -3(1 + con 20) - 6c sin 29 + (8D - 6 )ekc( - r) coS 0 (16)

and
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P = 3sin2G-6(cos29- 1) - (8D-6)e24('-r) sin8, (17)

which multiply the trigonometric functions of 2'(O) in Eq.(6), are both zero. Alterna-
tively, a single expression for determining G0 is obtained by requiring the magnitude of

the coefficient multiplying the term JJ in Eq.(A.22) to be zero. Thus, when 9 = 80,

4(8D - 6)e 2 ('O-')(-3cos Oo- 6esindo) + (18 - 72c) cos 0 -

+72e2 sin 20o + (8D - 6)2e/'°-') + 72c2 + 18 = 0. (18)

Figure £ shows the plane strain 0, numerically obtained from Eq.(18), for various i

from 0 to 0.5 for the complete range of e, assuming non-negative v in each material.

Note that, 0 is generally not the same under plane strain conditions as it is under
plane stress conditions since, under each condition e and D have different definitions.

The existence of 0o indicates that radially, at angle Oo:

(a) Plastic zone growth is independent of the applied loading phase, /K.

(b) The elastically-calculated Mises equivalent stress does not oscillate.

(c) The plastic zone radius is proportional to KK.

Substituting Eq.(6) into Eq.(8), and defining the SSY interfacial load-phase angle

(ILPA), o, as

S= 4K +cn 2 ( (19)
Opr cosh2 (we)'

yields

c(f) = co +en {cosc(f) [-(l + cos 2) -6 6sin 20+ (8D - 6)e('-') cos a]
+sin2C(9) [3sin29 - 6e(coe2 -1) - (8D - 6)e2('-' sinG l

+e2(#-r) [(3 -6e 2)(coo 29- 1) +6e sin 2 + (8D- 3)]

+3"O-0)} - e n(8). (20)

Eq.(20) reveals that "(f) can be additively decoupled into a load-phase dependent

quantity, Co, and a transcendental angular dependent function. Alternative definitions

of CO, differing trivially by a pure constant, are possible. Such a constant could be
chosen, e.g., to approximately normalize the angular function to unity. Eq.(19) is a
convenient expression for the SSY ILPA since it is an explicit single term representing

43



00

0.)

'4-)

0

00

0 L0
-4 00

C))

00
0

00

'4 0

L0 0

p 0
I..N

11 CI[ iM 90 00 ol I Ii I I



the total load-phase angle and is common in all C(O). The ILPA totally describes the
phase angle of the load by summing the loading phase shift, which is attributable to the 0

change in zone size due to increases in loading, and the load-phase angle (/K).
Another useful expression is obtained by evaluating Eq.(20) at 0 = 9o, in which case

'(Oo) = Co + e In {(3e2c( - °)

+e2d(O1-) [3- GO)(cos 20, - 1) + 61sin 2 0o + (OD - 3)])} (21)

This expression may prove to be beneficial in investigating the effects of various material
dependent parameters, since it does not contain any radially oscillatory terms, and it

represents a real value of C(O).

3.2 Zone Growth Considerations

From the above expressions, the overall plastic zone growth characteristics with respect
to increasing applied load (K) during SSY, can be outlined. After sufficient initial
loading has been applied to produce a continuum size plastic zone, the expressions

for rp become valid and applicable. Examination of Eqs.(6) and (20) shows that zone
growth is quasi-proportional to (KR/a2 ), and that the zone shape periodically repeats
itself with every 7r increase in Co. For (very) large cracks, it is possible that the plastic
zone may repeat its shape during loading. For every discrete value of Co, a unique
zone shape and a unique set of tractions along rp exist. Figure 9 shows the plastic 0
zone at various values of C0 for e = .170 and iv = .342. This suggests that CO uniquely

describes the very local crack-tip fields within the zone as long as all previous loading
experiences affect the current plastic state in the same manner. For the loading case
where several cycles of o have occurred, this would appear to be true. Since two
loadings with unequal tractions can produce identical plastic zones, (e.g. Co = 900 and

=O = -900 produce tractions with opposite signs), a full 27r evaluation of Co is required

to determine all the local fields.

3.3 Comparisons

In the limiting homogeneous elastic case (e = 0), comparison with numerical solutions
(Shih, 1974) indicate that the plastic zone shape and size for pure mode I and mode
II, as well as for various mixed modes, are recovered. Comparing the approximate

homogeneous plastic zones with plastic zones numerically obtained for strain hardening
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material shows that as the strain hardening exponent, n, increases (strain oc (stress)"),

the elastic approximation overestimates the plastic zone size behind the crack tip and

underestimates it ahead of the crack tip. This is accompanied by slight distortional

effects which tend to rotate the strain hardening plastic zone lobes toward the region

in front of the crack as compared to the elastic approximation.

Figures 4 to 7 show finite element (FE) calculations of SSY plastic zones for an in-

terfacial crack tip with an elastic/perfectly-plastic medium adjoint to an elastic medium

(Zywicz, 1988), and the approximate plastic zones for several values of e, '1, A,, and

LK. Although the precise shape is not reproduced, the general size and distribution of

the lobe(s) as well as their position(s) are well represented by the simple approxima-

tion. Examining Figure 5 shows that the size scale is significantly different from that

of the other figures, demonstrating the accuracy of the approximation in predicting

overall size. Figures 4 to 7 represent the worst case comparisons since perfect plasticity •

formally represents a strain hardening exponent of n = oo. The jaggedness of the finite

element calculated plastic zones is attributable to extrapolation/approximation errors

and mesh discretization. Thus, the jaggedness should only be interpreted as an artifact

of the discretization and plotting procedure. Figure. 8 and 9 show FE calculations of

plastic zones for a Ramberg-Osgood strain hardening material, with strain hardening

exponents n = 3 and n = 10, respectively, adjoint to a rigid material (Shih and Asaro,

1987), and the approximate plastic zones for several load levels. These FE calculations

were performed for a Griffith type crack, similar to the one shown in Figure 11, with

e = .0935, 2a = 2m, and i'v = .3, where the stress intensity factor for the geometry

and loading is K = 1.803v°e°'12°"i(m)J-0.0sr . Here orOO represents the remote stress

normal to the crack face (the o, stress as shown in Figure 11), and 0 is the refer-

ence stress (or yield stress). The overall sizes and shapes are well characterized by the

(asymptotic) approximation. As in the homogeneous case, when the strain hardening

exponent is decreased, the elastic approximation becomes more precise. (Recall, the
Ramberg-Osgood material idealization produces a linear elastic response for n = I.) q
Although the plastic zone radii are not all identically the same at 00, the extent of the

plastic zone in the vicinity of 0o is indeed approximately the same for all loadings (o).

3.4 Valid Solution Domain

The plastic zone approximation is based upon the assumption that a dominant (Williams S

type) field exists, as defined in Eqs.(4) and (5), near the crack tip and transitionally

47



T-I I r

CN
r- CQ

m0

I I\I

C6 C ~ 1

gjz~zsoou o

48-

0~Ai



m CQ
0 -

CC-,

494



coFEr IJ~ '* ~ -~-'

coS

0.t

050

On -cU -



* rn ~ i~i ~A? ~ ~ *~W l vr I~-~~~ ~-~-'~wiiv w ~...........- -

CV A

cq C6

C)Z4

w -4- 0

0

-0).

OP
w Wu ~l MU



00

- 4

SI /F

0 11

0~~ cnI

0 0

I k 'II I'll 0

V o 0

I I X

X xx ' 0--

0 0
00 b

8 3 8 0

'70-0

52

or0



000

tic
-r 0)

x X

I II / r ' C.

II II I ,, I

C) 0 C , )"o=
00 0- -

I,., . - o

b b b

I I I' Z ' .10

5.3.-_

S ' I II I ' -, 0r,

00 0

liii II U 0

000

- N



along the plastic zone boundary. This section develops a methodology, based upon

exact elasticity solutions for a Griffith crack, for determining approximately when such

a Williams type field exists, and thus defining the valid domain for the characterization

of the plastic zone in terms of so, K, and material parameters.

In examining the exact elasticity solution for an interfacial crack between two semi-

infinite media (Rice and Sih, 1965), the stress potentials can be additively decoupled

into singular terms and homogeneous far field terms, and reduced to obtain the domi-

nant asymptotic potentials. Consider 0, the 0, stress potential for the Griffith crack,

given by Rice and Sih (1965) which is,
S=(z -i2ca) z + a ic r:;- 'V:

V1 /IP -az - a) 1 +er

4 1 + e 1 +1e21m 1 + X

Here the crack tips are located at z = ±a, and wc* is the far field rotation in Region 1.

In the region near the crack tip, the stress potential can be represented by

1 , z -2e (Z + a, (23)

where

P lf- c.0 (24)I + e"M "

To obtain the asymptotic potential, substitute z = a + z in to Eq.(23) and assume

UIIl < a which yields

[a(1- i2a) /2a\] -1z 1
1r 1 + e2j

= r-a /2 10 (5

Using Eq.(A.23), Eq.(25) can be shown to be identical to Eq.(4).

By considering one potential of the exact elasticity solution for a Griffith type

crack, Eq.(22), an error parameter can be constructed which represents the discrepancy

between the exact solution and the (Williams type) dominant asymptotic solution,

Eqs.(4) and (5). Normalizing Eq.(25) by the singular portion of Eq.(22), Ec.(23),

yields

N I++ ty"- 265)
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Here I = z/2a is the normalized distance with respect to crack length, and N represents

the portion of the singular potential term represented by the asymptotic potential, given

by Eq.(25). Evaluating Eq.(26) along the interface at I = 0.1 yields N = 0.874 for

e = 0 while for the extreme values It = ±0.1748 (positive v), N = 0.889e± .°e 94i. For

all e, as I --- 0, N --- 1. This, in conjunction with the previous observations, indicates

that the asymptotic expression reproduces the singular term reasonably well over the

entire domain where the singular potential term dominates. (From Eq.(22), it can be

shown that at 1 % 0.13, the singular term contributes to the total stress potential an

amount, equal in magnitude, to that of the homogeneous term. For 1z: < 0.13, the

singular portion dominates.)

Based upon the previous discussion, the asymptotic representation, Eqs.(4) and (5)
or Eq.(25), is representative in the crack-tip region where

1 N ,
- > r >0. (27)
10- -

Here I is the characteristic dimension. (Note, a slight modification has been made for

convenience, and that is to limit the domain to 1/10 instead of 1/8.) Such a conculsion

is also typical of homogeneous crack solutions.

A second condition must also be satisfied if Eqs.(4) and (5) are to depict the actual

dominant asymptotic behavior; namely, that any perturbations within the dominant

asymptotic solution domain must be small compared to that domain and occur near the
crack tip. Using a St. Venant's type argument, this can be expressed mathematically

as

3p/rturbtion... < 31 (28)

Such perturbations could include plastic zones and crack-face contact and interpene-

tration, if present. (Note, Williams type fields, Eqs.(4) and (5), are based upon the

condition that the crack faces are traction-free.) Eq.(28) represents a very conservative

restriction and, depending upon the actual conditions, it may be appropriate to relax

it somewhat.

The asymptotic crack-tip opening displacement (CTOD), Au, as a function of r

(Hutchinson et al., 1987) is

Au(r) = u(r, = r) - u(r, = )= (C + C2)Kr (29) 0
2v I(l + i2e) cosh(7re)'

where
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u(r) = ts,(r) + its.(r), (30)

and C, are defined according to Eq.(A.7). Following Eq.(A.24), is introduced and is

defined as

I=LK+ cnr. (31)

Substituting Eq.(31) into Eq.(29) yields

Aur)=(C 1 + C,) IlK 1~i' (32)I
2v/27-cosh(7re) (I + i2e)'

Crack face interpenetration occurs when, Au.1 <0 :O RAu < 0 or,

cos + 2esinC < 0. (33)

The critical values 0, the beginning and ending points of interpenetration, occur when

cos C,+ 21sin C = 0 (34)

or,

tang = 2e (35)

Note that for the homogeneous case, the condition represented by Eq. (33) occurs any

time a negative mode I loading is applied.

The previous condition on r, Eqs.(27) and (28), coupled with the oscillatory crack

face behavior, can be restated as valid solution domain conditions in terms of (via

Eq.(31)), K, and material parameters. Thus, Williams type fields, Eqs.(4) and (5), willa

exist transitionally along the plastic zone boundary if and only if

cos + 2esin > 0 1E> 0 Co :5 C :5 Cg (36)

and

~< oh(r) .031, (37)

where

/LK + c In(. 11). (38)
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The condition depicted by Eq.(36) requires that no crack face contact or interpenetra-

tion occurs between the plastic zone boundary and the maximum valid extent of the
dominant asymptotic domain. It also assumes that the size of the plastic zone along
the crack face can be approximated by the characteristic length, KR/o' rcosh 2(7re).
Figure 10 shows for plane strain the values of C, as a function of e, which will not pro-
duce crack face interpenetration. For Eq.(36) to be true, both CO and , as well as the
entire path which connects them, must be in the unshaded region of Figure 10. Note
that for e = 0 (homogeneous case) the admissible range is JI0j < r/2, corresponding to

Ki >0.
Conditions represented by Eqs.(36) to (38) are necessary, but not sufficient con-

ditions for a Williams type field to exist. Crack closure beyond 1/10 is possible and

must be ruled by other considerations such as global geometrical and loading factors
or by other solutions. However, for a (remotely loaded) Griffith crack, Comninou and

Schmueser (1979) showed crack closure is continuous from the crack tip outwards; thus

if closure exists beyond 1/10, it will occur within 1/10 (with respect to one crack tip).

Henceforth, Eqs.(36) to (38) are also sufficient validity conditions for a Griffith type

crack.

4 Conclusion

An approximate expression for the plastic zone around an interfacial crack-tip has been

presented. It modestly reproduced the characteristic size and shape, as compared to
various precise numerical solutions, with increasing accuracy as the strain hardening

exponent approached unity. The overall crack-tip plastic zone size was found to be
quasi-proportional to (K3/o,). Plastic zones were found to change shape with applied

load in a periodic manner dependent upon interfacial load-phase angle (ILPA), o. The
ILPA was identified as a comprehensive single load-phase angle which determines the

zone shape and tractions along the zone boundary, and may uniquely identify the
behavior within the zone. Conditions for determining applicability of this expression
were stated in terms of co and C, , where , is dependent upon the characteristic

length in the problem.

From the previous derivations it appears that the ILPA ( o), e, (possibly v), and I
the magnitude of K (expressed as KK or J, where J is the J-Integral), are the local

interfacial fracture mechanics variables needed to describe interfacial SSY behavior.
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Following homogeneous fracture mechanics, it seems natural to construct interfacial
S

fields analogous to HRR or slip-line fields, utilizing the same material idealizations and

similar framework, but with the degree of local (plastic) mode mixity being now depen-

dent upon o. Using o and the magnitude of the singularity as conditions describing the

plastic zone boundary, the characteristics deep within the zone should be identifiable.

To familiarize the readers with the application of these concepts to interfacial frac-

ture mechanics, a hypothetical example is included in Appendix B. It demonstrates

how to determine various local crack-tip quantities.
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Appendix A Mises Equivalent Stress Derivation

An asymptotic expression for the Mises equivalent stress around an interfacial plane

strain crack tip, as a function of r and 0, is derived.

The general series potential functions for an interface crack, as expressed by Rice

(1988), are

0,1 = c'z"- f(z) + 2C 2 g(z)/(Cl + C2), (A.1) S

4 = C,'-z"- f'(z) + 2CIg(z)/(CI + C2), (A.2)

01 = ",'z-i'7(z) - 2C, (z)l(Ci + C,), (A.3)
0

and

fl' = e-"z-I+"7(z) - 2Cjg(z)/(C + C2 ), (A.4)

with

f(z) = a a,,,", (A.5)

g(z) = bz.z" (A.6)
0

and

Cj = (1 + ,c,)/,. (A.7)

Here A, are the shear moduli, P = 3 - 4v for plane strain and xj - (3 - ivj)/(I + My)

for plane stress, uY are the Poisson's ratios, and the subscripts I and 2 refer to the

domains above and below the interface, respectively.

From Eqs.(2) and (3) the individual stress components can be expressed as
1 ?

0,, = (B +D) (A.8)

S(A + A) (A.9)

and 

I
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-3v (s-a) (A.1O) 1

where

A = (- z)O" + 4,' + n', (A.11)

and

B = 2,' + .'-fn'- - 5)4,". (A.12)

Here i = Vr- and a bar denotes the complex conjugate. For plane strain isotropic

elastic solids, the Mises equivalent stress is

as = (osZ, + o,)D + ( u,,y)F + Uoz,, (A.13)

with

D=v -V + 1 (A.14)

and

F = 2,2 - 2v - 1, (A.15)

where v is the Poisson's ratio of the solid. For plane stress is. -ropic elastic solids

Eq.(A.13) is still valid, but Eqs.(A.14) and (A.15) are redefined a; ) = 1 and F = -1,

respectively. After substituting Eqs.(A.8) to (A.10) into Eq.(A.13) and doing some

comnplez algebra, Eq.(A.13) is written as

02 13t{(D-3)AA+(D+3)AA+DBD +DBB+FAB+FAD} (A.16)

Further simplification is obtained by using Eqs.(A.11) and (A.12), so that Eq.(A.16)

becomes N7'

02 = R 13(l - z)(z - I)O" -6(2 - z)e9' + 6(2 - I)efr'
+(8D - 6)0#0# + (8D - 3)0, '' + 3n'(!'- 6n'%'}. (A.17)

The asymptotic potential functions for the upper domain, Eqs.(4) and (5), are

obtained by considering the dominant term in Eqs.(A.1) and (A.3) as r -- 0. At this
point attention shall be focused upon the solution in the upper domain since the lower
domain solution is obtainable by substituting -e for e. Differentiating Eq.(4), using

z - rci, expanding out Eqs.(4) and (5), and defining
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J =47 (A.18)

we obtain

6,= J'~e7,(A.19)

= e'')"r-(-! - if), (A-20)

and

Substituting Eqs.(A.19) to (A.21) into Eq.(A.17) yields

+ J [e2~(' ') (I - coo20)(2 +6c 2 -e e()(-3 - i6e)(e' 2 ' - 1)

+c(S-r(D - 3) + 3eU(r-)J } (A.22)

The constant a0 is related to the complex stress intensity factor K (Rice, 1988) via

o= I(A.23)
20-w cosh(re)

Defining C as

C =ZK + elnr, (A.24)

and using Eq.(A.18), we find N

(cos2 -sin C) ,(A.25)

and _

= wcs 2 (e (A.26)

The complete expression. for the Mises equivalent stress is obtained by substituting

Eqs.(A.25) and (A.26) into Eq.(A.22) and is

= rscomh 2 (rd) {coe2C[-3(1 +co 29) - 6esin 2 + (8D -6)cs(w-) cos e]
+ sin 2C [3 sin 20 - 6e(cos 20 - 1) - (8D - 6)e2(1 sin 8]

+e2c((-V) [3- 6c')(coo20 1) + 6e sin 20 (8D - 3)1
+3uw* 3(A.27)



Appendix B Interfacial Crack Example

A detailed hypothetical example demonstrating the procedures to characterize a

plane strain interfacial Griffith-type crack between 1100-0 Aluminum and 1080 Steel is

presented. The geometry considered is shown in Figure 11, and the material properties

are listed in Table 1. From Eq.(1), e = .03373. For this geometry, with the appropriate

o., imposed such that the interface remains straight, the stress intensity factor for the

right hand crack tip in terms of the far field stresses is (Rice, 1988)

K = (o,, + io3 1 ) (1 + 12e) (2a)-" Vw*

The stress intensity factor for the left hand crack tip is the same as for the right hand

crack tip because the applied load is symmetric. Substituting in for the numerical

values a., = 1 MPa, e = 0.03373, and 2a = 0.0508 m yields,

K = .2831e-°o-1MPa(m) I-0.033M.

Using Eq.(19), the ILPA is Co = -. 33982 radians (-19.47*). The characteristic plastic S

zone length K1/o,.wcosh2 (7re) = 1.577 x 10-1m. Evaluating Eq.(37) indicates that

the characteristic plastic zone length is sufficiently small compared to crack length.

(Alternatively, from Eqs.(6), (19), and (20) the maximum size of the plastic zone is

8.88 x 10-6 m and occurs at 0 = 122. Comparing r, to the crack length gives, rp/2a =1

1.748 x 10-4.) From Eq.(38), C,,, = -. 2113 radians (-12.11*). Checking Eq.(36)

indicates that no crack face interpenetration is anticipated. Thus, at this loading all

the SSY conditions and the assumption of no crack face interpenetration are satisfied.

Material IA (GPa) v- a,. (MPa)
1100-0 Al 26.1 .342 42.t
1080 Steel 80.7 .300 585.

Table 1 Material properties for 1100-0 Aluminum and 1080 Steel (Hertzberg, 1976).
tBrown et al., 1987.
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Additional Discussion

Several additional comments can be made concerning the traction-free crack-tip plastic

zone approximation. The oscillatory characteristic plastic zone dimension (rp) is chosen

to be equal to KI/o ,Ircosh2 (ire). This choice of rp for the plastic zone size is a

compromise because it roughly corresponds to twice the size of the smallest plastic

zone (i.e., Co ft 0*) and half the size of the largest plastic zone (i.e., co ±900). This

compromise in the choice of r. affects the definition of CO, Eq. (P2.19), and the admissible

loading conditions expressed in Eqs.(P2.36) and (P2.37). As pointed out earlier, t]

precise additive decomposition of C into o and the transcendental angular function is

arbitrary. Altering the chosen characteristic dimension rp only adds a constant to CO for

fixed values of c. The actual choice of C0 appears rather insignificant because changes

in loading conditions (i.e., altering the ratio of far-field shear stress to normal stress)

and zone growth show up as relative changes in Co.

Since Co is used in Eq. (P2.36)' to define the extent of the plastic zone along the crack

face, any overestimation of r, may allow elastic contact to occur between the edge

of the actual plastic zone and the radius identified by the (overestimated) nominal

plastic zone. Based upon the elastic approximation for c = 0.1748, the maximum

difference in O between using the characteristic plastic zone dimension rp and the

maximum actual rp(O) from the elastic approximation is less than 7* . For smaller

magnitudes of e, the difference in ;o is less. Additionally, the inclusion of a strain-

hardening material idealization, n> 1, produces plastic zones which are greater than

the elastic approximation. For example, when an elastic/perfectly-plastic constitutive

idealization is used, the maximum "actual" plastic zone calculated is nearly equal to

rp for values of Co near 0*. (See Figures P2.6 and P2.7.) Thus, overestimation of rp

may not pose a problem in all circumstances. Finally, when loading conditions produce

an elastically predicted plastic zone size which marginally does or does not satisfy the U
non-contact crack-face conditions, Eq. (P2.36), a more accurate determination of plastic

zone size and actual contact length is necessary.
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In consideration of the actual plastic zone size predicted by the elastic approxima-

tion, the maximum plastic zone limitation expressed by Eq.(P2.37), is not as conser-

vative as might first appear. The maximum size of the plastic zone for o = 00 and

Co = 60° , from Figure P.., is approximately O.Srp and 2rp, respectively. Because little

difference exists between the actual maximum plastic zone size and rp, use of r, is ac-

ceptable in the condition requiring the plastic zone size be small compared to the size

of the zone where the asymptotic elastic field is valid, Eq.(P2.37).

2.2.2 Closed Frictionless Crack-Tip Fields

Following the derivation of the approximate plastic zone for the asymptotic traction-

free crack-tip (Williams type) elastic field, an asymptotic elastic approximation for

the plastic zone around a closed frictionless crack tip between two dissimilar isotropic

elastic media will be derived. From it, growth characteristics and validity conditions

will be obtained and expressed in terms of KI1, material properties, and geometry.

Plastic Zone Approximation

The problem considered here is a planar interfacial crack, as shown in Figure 2.1,

whose constituents have shear moduli s (j = 1,2) and Poisson's ratio Vy. Note that

in the definition of fl, the subscripts 1 and 2 now refer to the lower and upper material

domains, respectively. Far-field loads produce a closed crack-tip region, and the closed

crack-tip field is well characterized by the dominant asymptotic stress field given by

Comninou (1977a), Eqs.(2.19) to (2.21).

For isotropic linear elastic plane-strain conditions, the second invariant of the stress

tensor, the Mises equivalent tensile stress, 5, is expressed as

2 = (a,' + O,)D + (a,,o#,)F + 3a,, (2.31)

where, as before,

D = v 2 _ V + 1 (2.32)
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and

F -2 21/ - 1. (2.33)

Since the stress field for the upper region is obtained by substituting "-3" in place of

"P" into the expressions for the lower region, attention is focused upon the lower region

only. Substituting the dominant stress expressions, Eqs.(2.19) to (2.21), into Eq.(2.31)

yields

where P, the Dundurs constant, is given by Eq.(2.22). The approximate plastic zone

shape is taken to be the locus of points satisfying a = a,,, where ,. is the tensile yield

strength of the material. The polar description of the plastic zone shape is given by

7(9~( - P,13)2[3(64D -48) sin2 (!)] + 3(3 +,0)' .(.5,.,(.) 31 1 X +6 (1 - P) (3 + #) cos (20)

Here 9 is the angle measured from the intact interface. For plane-stress conditions,

Eq.(2.35) is still valid, but Eq.(2.32) is redefined as D = 1 and the plane-stress value

for P must be used.

In deriving the plastic zone approximation, Eq.(2.35), it is assumed that the stress

state along the plastic zone boundary is completely characterized by the dominant

asymptotic stress field, given by Eqs.(2.19) to (2.21), and that all other stress con-

tributions are negligible compared to the leading asymptotic term. At the tip of a

Griffith crack loaded by remote tension, large normal interfacial tractions, as high as

25 times the remote far-field tensile stress, are obtained (Comninou, 1977a; Gautesen

and Dundurs, 1987), and the presence of the normal interfacial traction is thought to be

attributable to the admissible constant stress field (A = 0). Evaluating the dominant 0

asymptotic radial stress, Eq.(2.19), at 0 = 90% and using the value of K I for a Griffith

crack loaded in remote tension, Eq.(2.29), the dominant asymptotic stress component

behaves as

r= a (2.36)

68

L lzi ii M (1



where 2a is the crack length. Assuming that the observed normal interfacial tractions

represent the magnitude of the or, stress component in the constant stress field, the

constant stress field contribution to the overall stress field is small for radial distances

_/r > P, where P is the maximum normal interfacial traction normalized by u. In

light of these possibly high normal interfacial tractions, the validity of Eq.(2.35) in SSY

may be limited to loadings where > P, for o,,, 0. Inclusion of the

A = 0 term in the description of the crack-tip fields, as described in the homogeneous

case by Larsson and Carlsson (1973) and Rice (1974), could significantly enlarge the S

range of load amplitudes for which SSY analyses remain accurate.

Mathematical Features

The mathematical features describing the plastic zone are relatively simple and straight-

forward, as compared to those describing the oscillatory traction-free crack-tip plastic

zone. Plastic zone growth is self-similar with similarity length scale Krri1/u., and no

oscillatory effects exist within the plastic zone region. The plastic zone shape and

growth characteristics for the bi-material closed crack-tip solution are nearly identical

to the well known homogeneous mode II solution, and in fact, in the degenerate case,

= 0, the asymptotic homogeneous mode II solution is completely recovered. Figure

2.2(a) shows the approximated plastic zone shapes for various values of fl, with fixed

Poisson's ratio, while (b) shows these shapes for several values of the Poisson's ratio, for

= -0.20. The approximated plastic zone shape differs little from that obtained in the

homogeneous case, even for the extreme cases of ± = 0.5. From Figure LO, it appears

that the plastic zone shape and growth characteristics are only weakly dependent upon I
,8and P.

Valid Solution Domain

The plastic zone approximation is based upon the assumption that a dominant field,

as defined by the asymptotic expressions Eqs.(2.19) to (2.21), exists near the closed
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Approximate Plastic Zone
Closed Crack-Tip Face

A=-0.24 --- v~=.342
S1.0 ~S0

jS=0.25

Cq 0 . P-. ---

--------------------------
M--

0.0 I
-1.0 0.0 1.0 .j~

x/(3Kuo 12ay2)
(a)

i.=0.0 #-2

i 0.1 -----

1.0 v= 0.2
0.3Z =0.4 ...

0.0

-1.0 0.0 1.0
x/(3K 04 £/2 S

(b)

Figure 2.2 Approximate contact SSY plastic zones [Eq.(2-35)J (a) for various values ofI
03 with vi 0.342 and (b) for P3 -0.20 with &, ranging between 0 and 0.5.
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crack tip and transitionally along the plastic zone boundary. For this to be true, two

conditions must be satisfied. First, crack-tip closure must exist and the crack-tip closure

length must be the relevant characteristic dimension. Using the CTOD expression for

the oscillatory stress field given in Eq.(P2.32), crack-face contact is estimated, in terms

of C, by assuming that it occurs whenever Au. :5 0 or

cos r + 21 sin r < 0. (2.37)

The second condition which must be satisfied, if Eqs.(2.19) to (2.21) are to describe

the actual field existing transitionally along the plastic zone, is that any perturbations

within the field must be small and be centered about the crack tip. Again, such

perturbations include non-linear crack-tip zones. Using a conservative restriction, this

is mathematically expressed, via a St. Venant's type argument, as

7 p.t36tw~ (2.38)

where 6 is the length of the closed crack-tip face. The numerical value used in Eq.(2.38)

is based upon the same assumptions as Eq.(P2.28), namely we suppose that the dom-

inant asymptotic solution is appropriate for radial distances r < 6/10 and restrict

perturbations within this dominant field to at most - 1/3 of the latter dimension.

The characteristic plastic zone dimension r' chosen for the closed crack-tip model is

3K' 1 /2o,, which roughly corresponds to the approximated maximum radial extent of

the plastic zone.

The previous conditions of closure and (plastic) perturbation zone length are now

restated in terms of C. Closed crack-tip fields exist transitionally along the plastic zone

boundary if and only if

cos + 2esin C 0 e> 0 (2.39)

and

K11 <36 (2.40) 0

100'
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where

--LK + )n(_a (2.41)

and

j =LK + E In(6). (2.42)

The conditions expressed in Eq.(2.39) require that continuous crack-face contact exists

from the edge of the plastic zone to the end of the contact length. Eq.(2.39) assumes

that the plastic zone, along the crack face, can be appraximated by the closed crack-tip

plastic zone dimension rI. For a more consistent and convenient relationship in small

scale contact (SSC), but a somewhat more conservative restriction, Co can be used in

place of ! in Eq.(2.39). (SSC will be discussed in Section 2.3.) Use of co in SSC is more

conservative because the oscillatory characteristic plastic zone dimension rp is smaller

than the closed crack-tip characteristic dimension r;, thus requiring that crack-face

closure exist, theoretically, deeper within the plastic zone.

Comparisons
0

Plastic zones for precise solutions of an elastic/perfectly-plastic material idealization

and for the elastic approximation correlate reasonably. The location of yielding integra-

tion points, obtained from a finite element calculation for an elastic/perfectly-plastic

medium bonded to a rigid medium, and the associated approximated plastic zone are

shown in Figure 2.3 for a closed interfacial crack tip. In the figure, the yielding points

near the crack-tip are not plotted. The approximation does not reproduce the exact I
shape, but the general size and distributions of the various features are well repre-

sented. The scale of this figure shows that the closed crack-tip characteristic plastic

zone dimension of re = 3K n /2V2 is indeed appropriate. Since perfect plasticity for-

mally represents a strain hardening exponent of n = o, Figure 2.3 depicts a 'worst

case" comparison. As observed previously in the traction-free crack-tip case, an elas-

tic approximation increasingly overestimates the plastic zone behind the crack tip and
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underestimates the plastic zone size ahead of the crack tip as the strain hardening r

exponent, n, increases [strain cc (stress)"]. For materials with smaller values of n, the

discrepancy between the elastic approximation and the exact solution should be less.

Contact Length Approximation

At this point no attention has been given to determining the exact length of the contact

zone, 6. An estimation of 6 can be made using the definition of , Eq.(P2.31), and the

critical value a, Eq.(P2.34), which represent the beginning and ending points of inter-

penetration. By setting C = !a and assuming contact occurs any time interpenetration

is predicted, the contact length is estimated to be

6 =exp [ tan - ' (I-) + m r - LK}, (2.43) -

where m is an integer determining the branch cut used for the tan- ' function, which is

obtained by considering the sign of e and the length of 6. Verification of the branch cut

can be made by checking if C satisfies the contact closure conditions given in Eq. (2.37).

Conclusion

An asymptotic planar appraximation for the plastic zone around an interfacial crack tip

with closed frictionless crack-tip faces has been presented. This approximation captures

the general plastic zone characteristics with increased accuracy as the strain-hardening

exponent approaches unity. Under SSY assumptions, plastic zone growth was found

to be proportional to the characteristic plastic zone dimension 3K' 2 /2a2, and the

plastic zone shape was uniquely determined by the bi-material constant e, expressed in

an alternative fashion as P, and the Poisson's ratio of the yielding material. Conditions

for determining the applicability of this plastic zone expression and for approximating

the crack-tip closure length 6 were derived from the traction-free crack-tip model.

Explicit conditions for the existence of closed crack-tip zones and their associated

inelastic crack-tip behavior were assembled. However, no analytical relation between

K', and the far-field loads or K was made. This means that for a particular geometry,
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the characteristic crack-tip field is identifiable, but the magnitude and extent of any

non-linear behavior can not be quantified. Thus, the precise conditions necessary for

SSY for a particular geometry were not determined. (Section 2.3 formulates explicit

relationships between KI1 and K for a limited subset of loading conditions for which

SSC exists.)

Based upon this derivation, it appears that the governing local interfacial fracture

mechanics variables needed to investigate SSY behavior for closed crack-tip faces are e

(or 0), the ILPA (CO), the magnitude of K 1 , and possibly P. Because the magnitude

of Kr, enters only in determining the plastic zone size and appears as Kc1
2 , it can

be replaced by J, where J is the value of the J-Integral. Using the same parametric

framework assembled here to approximate the plastic zone and the conditions along

the plastic zone boundary, the SSY behavior deep within the plastic zone should be

addressable.

2.3 Small Scale Contact

Thus far the traction-free crack-tip model and the closed crack-tip model have been

analyzed separately. There exist circumstances for which the elastic (and plastic) closed

crack-tip model exists embedded within the traction-free crack-tip model. Under the

appropriate loading conditions, the crack-face contact is appropriately small such that

the traction-free crack-tip model describes the fields within a small proximity near the

crack tip. The actual asymptotic crack-tip fields are defined by the closed crack-tip face

model. Separating the two crack-tip models is a boundary layer which transmits the

surrounding traction-free crack-tip stress field as "pseudo far-field" loads to the local

closed crack-tip model. This section formally addresses small scale contact (SSC) and

the correspondence of the various individual model parameters for such a circumstance.

I
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2.3.1 Loading Restrictions for SSC

The requirements for SSC are that the elastic oscillatory traction-free crack-tip field

exists in a region surrounding the crack tip and that the resulting contact is small

compared to the distance over which that the oscillatory elastic field dominants. It

was established in Section P2.3.4 Eqs.(P2.26), that the asymptotic oscillatory elastic

field represents the actual crack-tip behavior for radial distances r from the crack tip

[Eq.(P2.27)] such that

7pvtrrn<... C 7 < 1/1O. (2.44)

where I is the characteristic geometric length dimension in the problem. Eq.(2.44) is S

applicable if all perturbations within the crack-tip vicinity are small. Expressing this

perturbation limit in terms of the contact length size 6, yields

6 < .31 (2.45)
-100

The previous SSC conditions, Eqs.(2.44) and (2.45), are now restated in terms of ,

K, and the material properties. First, no (additional) contact may exist from the end

of the contact zone, r = 6, to the outer edge of the oscillatory field, r = 1/10. Using

the definition for the value of C at the outer edge of the elastic field, Cn.. [Eq.(P2.38)J,

and the definition of c at the end of the contact length, Co [Eq.(2.42)], SSC exists if and

only if

1 C0 S: : . . -

and Eq.(2.45) is satisfied. Although multiple crack-tip contact zones do not actu- %

ally occur [Shield (1982) showed that Comninou's solution for the contact length was

unique.], the approcimate asymptotic expression for Au, Eq.(P2.32), predicts multiple

contact zones as r -+ 0, and thus Eq.(2.46) is a necessary mathematical condition when I
Eq.(P2.32) is used an a closure criterion.

Within the framework of SSC, the admissibility of SSY is not excluded. The SSY

requirements established for the general closed crack-tip model must be met in addition
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to the SSC requirements. [i.e., The characteristic plastic zone size rp must be small

compared to the contact length 6, Eq.(2.40).] For SSY to exist during SSC, Eqs.(2.40),

(2.45), and (2.46) must all be satisfied. Using the relationship between K, and K

derived in the next section, the characteristic plastic zone sizes in SSC are related to

one another by r;/rp = (3/2) cosh2 (7re). Also, for SSY in SSC, the maximum difference

between CO, Eq.(2P.19), and g, Eq.(2.41), is less than 7*.

2.3.2 Correspondence of K"1 to K

Unfortunately, since the singular integral formulation presented by Comninou cannot

be totally evaluated in closed form, no connection between the elastic K and Ke1 has

been made, under any conditions. However, for a Griffith crack under far-field tensile

stress, K", can be directly related to K by using the exact solution of Gautesen and

Dundurs (1987), Eq.(2.29), and the expression for K from Table 2.1. Solving for a'

from the stress intensity factor K and substituting it into Eq.(2.29) results in

KV1 + (b 2 (2a)'-
Ke' I 5 a1 + (1+ i2) + 4C2, (2.47)

for 0 < P: 0.5. [The predicted contact length 6 for this geometry is 6/2a < 1.2 x 10- 4

(England, 1965; Comninou, 1977a), thus SSC conditions exist for this geometry.)

Connections between the elastic K and KI1 can be made for other SSC cases by

taking advantage of the path independent nature of the J-Integral (Rice, 1967). For

the Griffith crack geometry it has been shown that, with sufficient loading to produce a

small contact zone compared with crack length, the oscillatory stress field is recovered

sufficiently far away from the contact zone (Comninou, 1977a; Atkinson, 1982); i.e.,

SSC conditions exist. Since both crack-tip models have path-independent J-Integrals

and both fields dominate over some distance, a direct evaluation of Kj1 is obtainable

from K by evaluating the J-Integral in regions where each model is dominant, and
equating them. Recall that for elastic materials the J-Integral is equal to the energy
release rate S. After some manipulation of material constants, the energy release rate

given by Comninou (1977a) for the closed crack-tip face model, is

77

- * -- -



K 1I (C + C2) (
= 6cosh (2.48)

Recalling the energy release rate given by Rice (1988) for the traction-free crack-tip

model, Eq.(2.16), and assuming that such a crack-tip configuration as just described

exists, we find that for SSC

K= I !;' -Kfi, (2.49)
X

where the sign of K , must be determined by other conditions. [See discussion following

Eq.(2.22).]

To verify Eq.(2.49), the Griffith crack described above was considered. The stress

intensity factor K 1 was evaluated by Eq.(2.29) and then used to calculate the energy 0

release rate via Eq.(2.48). Simultaneously, K was evaluated using its value for a Griffith

crack from Table 2.1, and then the energy release rate was calculated with Eq.(2.16).

The two energy release rates were identical, proving that Eq.(2.49) was indeed correct

for a Griffith crack in SSC.

Using this approach, a generalization of Eq.(2.47) to include far-field shear loading

of a Griffith crack in SSC is made. First, all assumptions regarding SSC must be met.

Using Eq.(2.49) and the value of K for a Griffith crack from Table 2.1, the closed

crack-tip stress intensity factor for the right hand crack tip of a Griffith crack in SSC

is

K - ± fc~2 + x) (1 + 402 ) a. (2.50)

The sign of K , is determined using the conditions for compressive normal crack-face

tractions on the right hand crack tip of a Griffith crack, namely Kc, < 0 for e > 0 and

K', > 0 for e < 0. Observe that for a, = 0, Eq.(2.50) reduces to Eq.(2.29). Verification

that the contact zone length is small compared to crack length is done by using the

approximation for 6, Eq.(2.43), and the contact conditions given by Eq.(2.39).

Unfortunately, due to the non-uniqueness in defining LK, obtaining K from from

K', is not as simple. If KI, and 6 are known and 6/2a is "small," K can be estimated
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by determining IIKII from Eq.(2.49) and by determining LK by inverting Eq.(2.43).

For certain geometries, K can be estimated at one crack-tip, and then inferred values

of K for the other crack-tip can be obtained by consideration of the stress intensity

factor for that geometry. However, further work on closed form definitions of (Kc1 , 6)

will allow for more complete relationships between Kc, and K.

Finally, due to the unfortunate numbering of material domains describing/3 in the

closed crack-tip face model and e in the traction-free crack-tip model, various minus

signs may enter into the analytical solution when converting from one model to the

other. Extreme caution must be used to prevent accidental sign errors, as the author

discovered.

2.3.3 Accuracy of Contact Length Estimation

This section considers the accuracy of the asymptotic prediction for crack-face contact,

as expressed by Eqs.(P2.33), (2.37), and (2.43). Using the stress intensity factor K for

a Griffith crack (geometry and loading) from Table 2.1, Eq.(P2.33), and the condition

represented by Eq.(P2.35), the crack-face contact length for the right hand crack tip,

normalized by crack length, is given by

6 _epMr+(2.51)0
2a

where S

tan= (-T (2.52)

and m is an integer. The actual branch cut, which determines the value of m, is
obtained by considering the sign and magnitude of 0 and e, and the range of 6/2a of I.
the crack tip being investigated. (The restriction on admissible values of k is chosen

so that approximately I/KI < 7r.) Figure 2.4 shows the crack-tip contact length for

-0.1748 (0 = 0.5), as a function of p[p = (2/i-) tan1 (aO'/a) for the asymptoticI

traction-free crack-tip approximation (with branch cut m = 0) and for Comninou's

solution (Comninou and Schmueser, 1979). Agreement between the two solutions is
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Crack-Face Contact
Right Crack Tip

E=-0.1748 (8=0.5)

0.5

Asymp. Solution Eq.(2.51)
(Traction-Free Crack-Tip Faces)

0.4

Comninou's Solution
(Closed Crack-Tip Faces)

0.3 -

' 0 .00.2 - '- 0.

/

/

0.1 ,,' .

0.0 0.5 1.0 1
7r=tan -  (o , ,o' ;

Figure 2.4 Normalized crack-face contact length 6/2a for the right hand crack-tip of a
Griffith crack geometry with far-field positive shear (a') and tensile normal (o',) 4
loads. The solid line is the back extrapolated contact length from the traction-free
crack-tip model [Eq.(2.37)] and the dashed line is the solution the for frictionless
closed crack-tip model from Comninou and Schmueser (1979). % -
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clearly sufficient to justify using the approximation for p < 0.85. Since the asymptotic

expression Eqs.(2.43) and (2.51) overestimate the contact length, the validity condition

represented in Eq.(P2.33) is also conservative with respect to crack-face contact.

Based upon the previous comparison, the contact length approximations, Eqs.(2.43)

and (2.51), yield reasonable results for e = -0.1748 when 0 or t (4b = {tan-(I/ -

2e) + mr - ZK - e ln(I)}) are greater than 0.24 (13.50). For this range, the previous

comparison shows that the predicted contact length only overestimates the "actual"

contact length by less than a factor of two. For values of 4 and i less than 0.24,

closure length predictions for e = -0.1748 are no longer reasonable. However, for 0

and 0 less than 0.24 and e = -0.1748, a minimum contact length of 6/2a = 0.13

exists. For e = +0.1748 with branch cut m = -1, 0 and 0 must be greater than

-0.24 (-13.5*) in order for Eqs.(2.43) and (2.51) to yield reasonable overestimated

contact lengths (within a factor of two). As the magnitude of the bi-material constant

e approaches zero, the minimum (or maximum) angles of 0 and 0, for which reasonable

overestimated contact lengths are obtained, also approaches zero. If loading conditions

produce a plastic zone size which marginally violates or satisfies the restriction given by

Eq.(P2.36) or Eq.(2.39), or the contact conditions in Eqs.(2.45) and (2.46), more precise

solutions for 6 should be consulted, e.g., Comninou (1977a, 1978) and Comninou and

Schmueser (1979).

2.3.4 SSC Summary

Explicit conditions which produce SSC were formally identified in terms of , K, and

material properties. Under SSC conditions, an explicit relationship between the closed

crack-tip face stress intensity factor, K*1 , and the traction-free crack-tip stress intensity

factor, K, was derived for a specific geometry. Based upon equal energy release rates,

a more general extension of this relationship was given. Finally, the accuracy of the

predicted contact length, in terms of the oscillatory traction-free crack-tip field, was I
compared against that of precise full-field closed crack-tip solutions. This comparison
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identified the loading range for which the contact length approximation, Eq.(2.43), was

sufficiently accurate to provide useful results and define SSC.

2.4 Overview

2.4.1 Load Map

To help visualize when crack-tip conditions exist for each model, with or without plas-

ticity, consider the load map shown in Figure 2.5 (conceived by Prof. D. M. Parks).

This map denotes the various model domains for the right hand crack tip of a Griffith

crack geometry, as a function of the far-field loading combinations. The appropri-

ate crack-tip model for monotonically and proportionally increasing far-field loads is S

obtained by constructing a ray from the origin the desired load point. For all load

excursions which terminate in the SSY traction-free crack-tip domain, an undefined

intermediate state exists when the plastic zone r. is less than, but nearly the same size

(order of magnitude) as, the contact length dimension 6. The crack-tip beha- ior in this

intermediate state is not defined by either model. Although not clearly visible in Figure

8.5, all traction-free crack-tip loadings produce SSC unless plasticity is included.

In the load map, the loadings which produce acceptable SSY conditions are those

contained within the r,/2a = 0.03 circle. The line separating the SSY traction-free

crack-tip region from the intermediate undefined region, rp = 3b, is the locus of points

producing plastic zones three times larger than the accompanying elastically predicted S

contact length. The corresponding boundary of the closed crack-tip SSY region is
defined by the rp/2a = 0.03 circle, where rp is approximated by rp, and the rp = 0.36

line. (The closed crack-tip boundary is defined by rp = 0.36 instead of rp = 0.03b, as

suggested by Eq.(2.40), because K' 1 is not explicitly known nor is the extent that the

Ke-field represents the far field solution known.) Between the r. = 36 and rp = 0.3b .
lines is an "uncertain" region where it is unclear whether sufficient plastic deformation

would occur under the dominance of either elastic crack-tip model.

The precise location and distribution of each sector in the load map is significantly
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Load Map
E=-O. 1748 (p=o.5)

SSY Limit Traction-Free Crack Tip

rp/2rp-O1a0

"SSC
-0.20

\Closed Crack Tip

p 0

-0.20 -. 02 0.20

Figure 2.5 Load map for right crack-tip of a Griffith crack geometry with far-fieldI
normal (u ) and shear (o) loads, showing approximate SSY limits for traction-

free and closed frictionless crack-face conditions; 3 = 0.5 and c = -0.1748.
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influenced by the value of e. For smaller magnitudes of e, the family of boundary-

contact lines compress toward the abscissa, eventually coinciding there for e = 0. For

positive values of e, the family of boundary-contact lines appear as mirrored reflections

across the ordinate axis. For all values of e, the SSC region is a very small subset of

the closed crack-tip domain with the SSC SSY domain being even smaller.

The load map is constructed in the following manner. The characteristic plastic zone

size r. is obtained, as a function of far-field load, by substituting the stress intensity

factor for the Griffith crack, from Table 2.1, into the characteristic plastic zone size

rp = KR/o2 r cosh2 (ire). This yields

r I =I ( + . (2.53)
2a ay 0o,1 2cosh2 (ire)

To maintain SSY conditions Eq.(P2.37) requires rp < 0.03 2a. The set of points which

satisfy Eq.(2.53) when rp/2a = 0.03 defines the SSY limit, to within the approximation

that r. can be used to define the maximum extent of the plastic zone. The boundary

lines are obtained by determining the appropriate loads which produce a characteristic

plastic zone size f times the contact length (rp/2a = f x 6/2a), for a fixed ratio of

o~/cro. Using the contact length approximation for a Griffith crack, Eq.(2.51), and

Eq.(2.52), the equation describing the boundary lines is given by

2f coah2 (7re) 2~ (2.54)
l+4e exp I 1 (1) u )

In Figure 2.5 the branch cut is chosen to be zero since e < 0.

It was noted by Rice (1988) that for a Griffith crack, the behavior at the left hand

crack tip with negative applied shear stress is identical to that at the right hand crack
tip when an equivalent positive shear stress and normal stress is applied. By considering
the work of Comninou and Schmueser (1979) and the observation made by Rice, it is

concluded that for e < 0 the contact length at the right hand crack tip, &, decreases as
negative shear stress is applied, but the left hand crack-tip contact length, 61, increases. U
This increase in b, reduces the actual open crack length to an effective crack size of

2a.l = 2a - 61. The (modified) SSY boundary for a., < 0 shown in Figure 2.5, is
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constructed by determining the locus of points which satisfy rp/2a,ff= 0.03. [When

o0* < 0, the value of 6 used is based upon the more precise values of Comninou and

Schmueser (1979).] Additionally, when o., = 0 and a., < 0, the crack is completely

closed and no singularities exist at either crack tip.

Finally, in constructing the load map, 100 was added to the actual value of 0 used in

Eq.(2.54) to calculate 6/2a. For small angles of 0, the additional 100 produced contact

lengths which were closer to those determined by Comninou and Schmueser (1979) and

allowed for a better representation of the closed crack-tip and SSC boundaries. For 0

large angles of ik, no noticeable effects were produced in the load map because of the

actual size of 6/2a.

2.4.2 Conclusion

From examination of the elasticity solutions for the two crack-tip models considered

and the load map, it is evident that a single crack-tip model is not completely capable

of capturing the linear elastic portion of crack-tip behavior under arbitrary loading

conditions. Rather, one must first identify the relevant characteristic dimensions in

the problem; i.e. crack length, contact length and plastic zone size, and then choose a

model which gives the correct physical interpretation on these size scales. As pointed

out earlier, both models produce physically unrealistic predictions when extrapolated

outside their applicable (linear elastic) domain. For example, under the appropriate

far-field loads, the traction-free crack-tip solution produces crack-face interpenetration.

Additionally, singularities exist at the crack tip in both models, clearly invalidating

their linear elastic material assumptions in the very near crack-tip region; i.e., isotropic

linear elastic material response, small strains, and small rotations. Obviously additional

crack-tip models are necessary to bridge the gap between these two elasticity models,

such as closed crack-tip models with crack-face friction, as well as other models which

incorporate more physically realistic material idealizations.

At this juncture, plastic zone growth for two continuum crack-tip models has been
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investigated by using elastic approximations for the plastic zone. Loadings have been

only loosely restricted to those which produce a plastic zone that is small compared to

the next relevant characteristic dimension (e.g., contact length or crack length) in the

problem and to those which have crack faces continuously apart or in continuous contact

from the plastic zone edge to the end of the next relevant characteristic dimension.

(Henceforth, the set of admissible planar interfacial cracks is limited to those which

fit the two models discussed.) Plastic zone size, shape, and growth characteristics,

with respect to applied increasing loads, have been identified and parametrized into S

convenient dimensional and dimensionless quantities. In terms of these quantities,

explicit conditions which approximately determine the applicability of each model have

been given. In fact, these models remain appropriate outside their identified domains

providing the underlying conditions on which the governing assumptions are based

(i.e., contacting or traction-free crack-tip faces), are not violated. Since the validity

conditions are based upon asymptotic or approximate formulae, certain geometries may

warrant more precise analyses.

The elastically-calculated yield zone and associated inelastic characteristic lengths

are based on a Mises yield criterion, but the mathematical approach of determining

the loci of points in an elastic field which satisfies a yield criterion is not limited to _

the Mises criterion. Any other yield criteria, such as the single crystal Schmid criteria,

the generalized (anisotropic) Hill criterion, or pressure sensitive transformation criteria,

that describes the initiation of an inelastic deformation mechanism, like transformation

plasticity, micro-cracking, single crystal slip, and Coulomb friction controlled sliding (in

granular materials), can be used to estimate the extent of non-linear behavior contained U
in an elastic field and qualitatively correlate far-field and local-field quantities. This

approximate approach may be quite useful in investigating other phenomena like bi-

crystal grain boundaries, micro-delamination or damage in fiber reinforced composite g
laminates, and any other system where difficulties arise in precisely determining the
complete exact response.
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Chapter 3

Description of Solution Technique

In this chapter, the individual components which are assembled together to solve the

BV problem outlined in Chapter I are described. The first section discusses the numer-

ical model in terms of imposed boundary conditions, elastic and plastic domains, and

the governing global variational principle, along with modeling simplification-reduction

techniques. The second section presents the elastic/perfectly-plastic constitutive rela-

tionship along with discussion concerning notation, kinematics, and the constitutive

integration operator used. The final section discusses the details of the actual finite

element (FE) procedures and meshes used for each of the crack-tip models.

3.1 Crack-Tip Model Formulation

The asymptotic local crack-tip behavior of all numerical models are numerically inves- I
tigated using, to some extent, the FE approach proposed by Hilton and Hutchinson

(1971) for cracks in homogeneous media. Consider the schematic crack-tip region shown
in Figure $.I. Near the crack tip, as compared to the characteristic geometric dimen-
sion, unique "K-fields emerge, that asymptotically describe the elastic stress, strain,

and displacement fields (within the limits outlined in Section 2.2). The core region is

defined to lie within r, such that the value of K, along with Eqs.(P2.2) to (P2.5), or

the value of K' 1, along with Eqs.(2.19) to (2.21), completely characterizes the linearly

elastic fields in the region enclosed by r.. The core region is then extracted by cutting
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Figure 3.1 Schematic bi-material interfacial crack-tip region, showing core region and
domain numbering convention.

Figure 98 Schematic traction-free bi-material interface crack-tip core region, including •
rc 0

Figur 3.crematic tronfre8 bimtra ntraecakti oergon nldn
the elastic (R) and plastic (S) domains and the crack-face (r,), plastic (rP1., i),
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along r,, as shown in Figure 3.1. By imposing tractions along r. of the extracted

core region consistent with Eqs.(P2.2) to (P2.5) or Eqs.(2.19) to (2.21) and scaled by

the appropriate K or K'1 , the fields within the core region are totally recovered. Al-

ternatively, displacements can be imposed on r., to yield the same results. For the

traction-free crack-tip model, the displacements are obtained using Eqs.(P2.4), (P2.5), S

and the following (Muskhelishvili, 1953)

2 j b (u. + iut) = mtok + (2 - z)4k' - v,. (3.1)

where z = z + iY = re" is measured from the crack tip, us and uY are Cartesian 0

based displacements, and the remaining terms have the same meaning as before. For

the closed crack-tip face model, the dominant asymptotic displacement field can be

obtained from the power series expansion (Comninou, 1977a), and in polar coordinates

is given by

U, Kv(2 (2n - 1) (1 :F ) s in (3.2)

and S

8#e UO (nj 1) 1 : 0)coo 3 co ,r~r - a(3.3)

where the upper and lower signs are used in the lower and upper material domains,

respectively.

This approach eliminates the need to model the entire structure containing the crack

and allows more mesh refinement in the immediate crack-tip vicinity. Local crack-tip

material non-linearities are acceptable, via a St. Venant type argument, as long as

they are confined to a zone which is small (-- 10%) with respect to r. (Larsson and %X
.

Carlsson, 1973; Rice, 1974).

3.1.1 Traction-Free Crack-Tip Faces: Boundary Layer Ap-
proach

In addition to the model reduction technique proposed by Hilton and Hutchinson,

a further model simplification was used for the traction-free crack-tip model. What

follows is a theoretical interpretation and description of this additional method.
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Theoretical Considerations

Additional model reduction and computational savings were obtained for the traction-

free crack-tip model using Sham's boundary layer method (Sham, 1983). Figure 3.2

shows a schematic crack-tip core region where r. and rPLtiC denote the outer edge

of the model and the maximum extent of the plastic zone, respectively. The region R,

by definition of rpft., remains elastic during the entire analysis. The boundary layer

method reformulates this problem while maintaining the stress, strain, and displace-

ment fields and taking advantage of the elastic region R. For brevity, a short outline

of Sham's boundary layer method follows, and the reader is referred to Sham (1983)

for a more complete description.

The boundary layer method recasts the simplification proposed by Hilton and _

Hutchinson (1971) by altering the physical model depicted in Figure 9.2. Consider the

boundaries r, and rapt, to be circles of radii r. and rpIlatic, respectively, centered

about the crack tip. For any value of ro, chosen such that r.o > rpl.oti, the elastic field

within r., is reproduced by enforcing Eqs.(2.4) and (2.5) via Eq.(3.1) along r.. For

convenience, the boundary r , will be relocated to r. = oc. Therefore the restriction

that r;,.o be located at a distance close to the crack tip, with respect to r,, shall

be trivially satisfied for all finite values chosen for rp,,,i..

To describe the elastic region between r. and r,,,,, additional series terms which

account for the non-linearities altering the fields within rp.t, must be included in

addition to Eqs.(P2.4) and (P2.5). Using the general series potential identified by 0

Rice (1988), Eqs.(P2.A.1) to (P2.A.4), an inner or Laurent series expansion for the

potentials can be constructed. This is accomplished by redefining Eqs.(P2.A.5) and

(P2.A.6) to be
0

f(z)= E aNZN, (3.4)

and
-2

g(z) M-, bmz m . (3.5)
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Note that an outer series expansion would produce unbounded stresses, strains, and 0

displacements as r --+ oo, while an inner series yields terms which are bounded or tend

to zero as r --+ oo. Also, the first term, M = -1, for the g(z) expression is excluded

since it physically represents point loads applied at the crack tip. For convenience,

Eq.(3.4) additively decomposes into

f(z) = fK(z) + f(z) = ao + fT(z), (3.6)

where

-1
f T (z)= Z aNZN. (3.7)

N=-oo

Since Eq.(3.5) contains no terms associated with the K-field, Eq.(3.5) should be inter-

preted as the definition of gT(z); i.e., gT(z) = g(z). All terms with the superscript

K shall refer to quantities, which assume that only the K-field is present (terms of

order r(- /2)*E in stress) and those with the superscript T shall be used to identify all

the quantities associated with the remaining outer expansion of the inner series terms.

Using the potentials represented by Eqs.(P2.A.1) to (P2.A.4), along with Eqs.(3.4) and .
(3.5), and the displacement relationship, given by Eq.(3.1) the complete field in S can
be expressed in terms of the coefficients aN and bN.

The boundary layer method requires solving the field equations within r., by min-
imizing the modified rate potential function, given by Sham (1983) as

f f (j)dS + / $(jT)dS - f (n" bK(t)). d. (3.8)

Here 9 is the strain rate potential, _ is the strain tensor, n is the unit outward normal

vector, oK(t) is the stress rate tensor attributable to the K-field, and fu is the velocity

vector.

The modified potential can be interpreted on a term by term basis. The integral
f t *(j')d$ corresponds to the elastic strain rate energy in the region between 17pl., ,

and r.. attributable to the lower order terms. It can be given explicitly in the form
1qaTSqiT, where qeT is the vector of generalized degrees of freedom [the unknown
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coefficients aN and bM from Eqs.(2.2) and (2.3)], 1' is time derivative of qeT, and S is

an appropriate stiffness matrix. Since the region R is elastic, the stiffness matrix S is

independent of time and is more conveniently evaluated from the associated relationship

IqeTSq*T = f-- 4(J)dS where 0 is now the strain energy density function. In Appendix

A.1 the stiffness matrix S is calculated using the known analytical expressions found in

Eqs.(P2.A.1) to (P2.A.4), (3.4), and (3.5). (Note, in Appendix A the stress potential

X is used instead of fl. The two stress potentials are related via X" = it - o' - zOI.)

An equivalent line integral along the boundary r,,, rpti,, and the crack face (r,), 0

Eq.(A.7), is used to evaluate the surface integral. In evaluating the line integral, it

can be shown [Eqs.(A.13) and (A.14)] that the only non-zero contribution arises along

the pti, boundary. The next integral in Eq.(3.8), frp..,o(n bK(t)) • fiTds, can be '

explicitly expressed as lT](t), where F'(t) is the vector of integrated work conjugate

forces to the (T-terms) generalized degrees of freedom. The time derivative of the work

conjugate force vector, F(t), can be written in component form as

= j. &(t))uT ds, (3.9)

where (s(r, 0, e) is the jth component of the known velocity mode shape vector; (i.e.,

the components of the velocity mode shape vector are related to the velocity vector via

J(r, 9, e) = ql ((r,(0, e), with no summation on j.) The term Or(t) is dependent only

on time via the scaling variable K(t) and is otherwise known. Since Ik(t) is known,

and is chosen to be of the form Ik(t) = KoL(t), where i(t) is a real scalar function of

time, Ft(t) need only be evaluated as F. at K(t = 0) = K0 and then scaled by L(t) as

P"(t) = F L(t). The remaining integral in Eq.(3.8) corresponds to the standard rate

potential such that b = a0(j)/8j within the region inside rpI..j,, and is evaluated

using finite elements.

To maintain a well posed mathematical BV problem, the additional lower order

terms in R must be accompanied by additional mode shapes along the rpiti, boundary. ii
In region R, 2(N + M - 1) additional unknowns, contained in the vector q'T, are added

to give the complete representation. The addition of these terms compensates for any
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deviations from K-fields which may occur in R due to nonlinearities within S. At the

same time, 2 (N + M -1) additional constraint equations are imposed along rPLt..,, thus

making it a well posed mathematical problem. As the behavior in region S deviates

from the asymptotic dominant field, Eqs.(2.4) and (2.5), lower order mode shapes are

activated by making amplitude coefficients in qeT non-zero. However, this occurs at

the expense of adding additional strain deformation in region 2 such that equilibrium

and compatibility between the two regions is achieved via Eq.(3.8).

By consideration of the previous observations, the modified potential energy func-

tion was incorporated into the FE code ABAQUS (Hibbitt, 1984). At the outer edge of

the FE boundary, taken to be (rpi,.), constraint equations, written in the form of a

user-defined multiple point constraint (MPC) subroutine, were used to enforce nodally

the admissible displacement eigenmodes in accordance with Eqs.(P2.A.1) to (P2.A.4),

(3.1), (3.4), and (3.5). The amplitudes for the dominant singular (K-field) modes

were externally prescribed, K = KoL(t), while for the other modes, the coefficients

(generalized degrees of freedom - qeT) were considered solution dependent unknowns.

Connected to the lower order coefficients, qT, was a spring-element network which had

equivalent stiffness S. The complete boundary condition and spring network derivation

is formally given in Appendix A. The actual MPC subroutine is listed in Appendix C.

The integrated work conjugate forces FO were obtained from the reaction forces of an

initial elastic FE analysis, which had all the lower order generalized degrees of freedom I
zeroed (qIT = 0) and an appropriate K0 value imposed. The vector of generalized

reaction forces required to sustain qeT = 0 was taken as Fo.

Boundary Layer Verification

To verify the boundary layer method implementation, two homogeneou8 test problems

were first performed. These were the same two problems considered by Needleman and

Sham (1980): (a) a semi-infinite crack with point loads applied normal to the crack'

face at z = -a; and (b) a semi-infinite crack with the crack tip translated such that it 0
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was located at z = a. Figures 3.9 and 3.4 show the two geometries.

An equivalent inner series expansion about the origin (z = 0) which exactly repre-

sents their potentials can be explicitly given for these geometries. For the point load

the stress potential functions are given by

P + P a(-1/ 2 ) (3.10)
2' = + a) = i( / , -

By comparing these potentials with those used in Eqs.(A.1) to (A.4), the series coeffi-

cients are related to the components in qeT via

eT P a 2(-1)n+3
n 27r2(n,- 1)(n,- 1)' 

(3.11)

for n = 1 to oo. For the translated crack tip the stress potential functions are 0I= f tK , K I n _ a n  
6-r

2 2 r(z - a) - 2 + v 2, i h"12/ (3.12)

where fn are known constants. Again, by comparing these potentials with those used

in this analysis, Eqs.(A.1) to (A.4), the coefficients qT can be obtained in terms of fn.

Unlike Eqs.(2.4) and (2.5), neither of these expansions contain any whole powers of z.

To verify the boundary layer implementation, homogeneous elastic FE analyses

were performed and comparisons between the analytically determined coefficients and ',--

the FE calculated coefficients, qT, were made. Table 8.1 lists the analytical and FE

determined coefficients for the two geometries. In both problems the outer boundary of

the FE mesh had a radius of 1.0(m). Thus the ratio of a/IzI in the series expansion was

0.3981 for the point load example and was 0.10 for the translated crack tip example.

The FE determined coefficients shown in Table 3.1 are in good agreement withI the analytically determined coefficients for the higher order terms, but the agreement

diminishes for lower order terms. (Note that lower order terms correspond to compo-

nents in q~T with "larger" subscripts.) For the translated crack, this deterioration is

attributed to inaccuracies in determining F(t), mesh construction, series truncation,

and numerical noise. The reaction forces F' for the translated crack were obtained by

sewing up the crack face such that the crack tip was artificially located at z = 0 and by

s g t a a c a
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Figure 9.9S Schematic homogeneous crack-tip region with opening crack-face point loads
(P) applied at a distance a from the crack-tip.

K K,

Figure 9.4 Schematic homogeneous crack-tip region and coordinates, showing trans-

lated crack tip at z = a. l
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applying K• in an initial elastic analysis. Since, in the translated crack case, the mesh

was designed to have the crack tip at z = a, and no refinement of the mesh existed

at z = 0, inaccuracies in Fl may have arisen. Similarly, the mesh used in the point

load case was not refined where the point loads were applied. (This will not be an

issue during the actual SSY analysis because the forces FO will be found for the actual

unsewed and untranslated meshes.) It was assumed that since the higher order terms

matched, the implementation was performed correctly and the dominant behavior was

captured even though numerical noise existed.

Coefficient Analytical [Eq.(3.11)] FE
q- .2008 -. 20084
q2 -2.6559E-2 -2.6651E-2
qs 2.0731E-3 2.1220E-3 0

q4 -3.2279E-4 -3.6204E-4
qs 5.6005E-5 8.0071E-5
q6 -3.3130E-6 -2.0285E-5

(a )

Coefficient Analytical [Eq.(3.12)] ] FE

q, -1.9394E-2 -1.9947E-2
q2  4.6966E-4 4.9868E-4
q3 7.2501E-6 8.3145E-6
q4  6.5413E-8 3.1183E-7
qs -1.2820E-8 1.5594E-8

(b):

Table 3.1 Analytical and numerical coefficients for a plane-strain crack-tip prob-
lem with: (a) opening normal point loads applied at z = -0.3981; (b) the crack tip
translated to a = 0.1

To verify that the bi-material portion of the boundary layer formulation was cor-

rectly implemented, various independent tests were conducted. First, several (bi-

material) elastic cases with various material combinations were loaded by prescribing

a specific value of K and setting all inner series coefficients equal to zero (q T = 0).
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Boundary node displacements, which correspond to the dominant asymptotic solution,

were compared with the known analytical solution. Because the user written MPC

subroutine, used in prescribing the displacements, was coded in a manner such that

one index determined all the powers of the root being imposed (i.e., A, = (j + 1/2) + ic

where j is the index of interest), it was felt that, the coding for that entire family of

roots was performed correctly, as long as the limits on this index were chosen correctly

and one specific index value yielded the correct results. In a similar fashion, the whole-

integer (real) root set [IR(Ai) = A, - j] was verified by prescribing K and setting all

but one value of q'T equal to zero. The coefficient not set equal to zero was the one

producing a domain-wise uniform stress parallel to the interface (M = 0 term). (In the

actual potentials used, Eqs.(A.1) to (A.4), the constants multiplying the coefficients
(qeT) in the displacement relationship were not trivially zero when M = 0.) Again,
since the results of this one specific case were correct and the coding was written in an

unbiased manner with respect to indices, it was felt that the coding for the entire set

of whole-integer real roots was performed correctly.

In a similar spirit, the spring stiffness constants were verified. For the homogeneous

case, several specific spring stiffnesses were analytically and numerically integrated

to ensure proper coding. Once again, a single index was used to generate the stress

potentials, thus guaranteeing that the entire set of spring stiffness coefficients were

determined correctly. Compiez FORTRAN coding was utilized in such a manner that

if the homogeneous case was performed correctly and the bi-material potentials were V..F,

correct, then the bi-material spring constants would also be determined correctly. Ad-

ditionally, several spring constants were integrated via other methods to provide an

additional check. All homogeneous tests were performed using the actual bi-material

subroutines and programs, but with identical elastic properties in each domain.

A crack-face point load elasticity problem, similar to the one used previously, was .S

considered to ensure that the boundary layer extension for bi-materials was imple-

mented correctly. Figure 9.5 shows the crack-tip geometry and the direction and loca-
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Figure 5.5 Schematic bi-material interfacial crack-tip region with crack-face opening .
(P) and shearing (Q) point loads applied at a distance a from the crack-tip, -
showing coordinates and domain numbering conventions. "
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tion of the crack-face point loads P and Q. From Rice and Sih (1965), the 44 stress

potential function for this configuration is given by

, P-Q 1 -(ai"
27 e" z+a (z) (3.13)

and the equivalent inner series expansion about the origin (z = 0) is expressed as

I = e' E -i) (3.14)

By comparing this expansion of the 0' potential with the general potential used in

Eqs.(A.1) to (A.4), the series coefficients qT in the general potential, Eqs.(A.1) to

(A.4), are determined to be

qT= P - 'Q [cos(eIna) + isin(elna)] a"+ J (-)", (3.15)
4wre" (I- n) - lE] [(_n 1) n (3.15

for n = 0 to oo.

A plane-strain FE analysis was used to evaluate the bi-material point load problem.

It used the elastic properties of aluminum in the upper region and steel in the lower

region, and the bi-material constant was e = 0.03220. (See Table 4.3 for the elastic

constants used.) The crack face was loaded with several different combinations of points

loads P and Q, while maintaining K = 0, and only positive values of P were considered.

The values of the analytical and FE determined coefficients for the case where loads

of magnitude P = Q = 1 are applied at z = -0.3981 are listed in Table 3.2. (The FE

mesh had a radius of 1.0(m) which yielded a ratio of a/z = 0.3981.) The discrepancy

between the coefficients can be attributed to the coarse mesh, lack of mesh refinement

near the point loads, and the fact that the Laurent series expansion was truncated after

only six terms. It was assumed that since each individual component and the complete

implementation was verified for both homogeneous and bi-material cases, the boundary

layer method was extended and implemented correctly for the bi-material problem.
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Coefficient Analytical (Eq.(3.15)] FE S

q ' -.17456 + i.18557 -0.1747 + iW.1855
q2 -2.0939 x 10-02 + i2.6627 x 10-02 -21073 x 10- 02 + i2.6346 x 10-02
q3 1.7809 x 10- °3 - i2.0330 x 10 - 03 1.7875 x 10 - °03- il.9540 x 10 - 03

q4 -3.0828 x 10- 04 + 0.4306 x 10-04 -3.1094 x 10-04 + s2.9619 x 10-04
qs 6.8632 x 10-05 - i7.5474 x 10- 05 6.3699 x 10-06 - i5.2252 x 10-'
q6 -1.7453 x 10-0 + il.9061 x 10-06 -1.4279 x 10-05 + i3.4650 x 10- 06

Table 9.8 Analytical and numerical coefficients for a plane-strain bi-material crack-
tip problem with point load, P = Q = 1, applied at z = -0.3981.

3.1.2 Closed Crack-Tip Faces

The asymptotic local crack-tip behavior for the closed crack-tip face model was nu-

merically investigated with the FE method proposed by Hilton and Hutchinson (1971).

Since no parametric study was to be performed and no numerically difficult oscilla-

tory stress fields exist in the closed crack-tip elasticity solution, Sham's boundary layer

approach was not utilized. The displacements were obtained via Eqs.(3.2) and (3.3), ]

rotated into a Cartesian coordinate frame, and imposed along r., the FE mesh bound-

ary. For the FE analysis, the displacements, Eqs.(3.2) and (3.3), were incorporated into

a user-written MPC subroutine and nodes along r,, were constrained with a free node,

whose displacement was associated with the value of K~r, via the MPC. As before, the

magnitude of Ker was scaled with L(t). Appendix C contains a listing of the MPC
~subroutine used.

0

3.2 Elastic/Perfectly-Plastic Constitutive Relation-
ship

This section describes the constitutive relationship used, as well as the integration

operator and the associated notation. The material relationship was incorporated in

the FE analysis via a user-written subroutine called UMAT. A listing of the UMAT

subroutine is included in Appendix C. •
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3.2.1 Kinematics 0

It is assumed that infinitesimal strain theory (linearized kinematic theory) is used. It

is therefore assumed a priori that all strains and physical rotations are small such that

all rotation tensors can be approximated by the identity tensor and that the symmetric 0

part of the (spatial) velocity gradient can be approximated by the strain rate.

3.2.2 Notation

Using Gurtin's notation convention (Gurtin, 1981), the evolution equation and the

definition of various relevant variables are as follows. The Cauchy stress rate tensor,

6, is given by

= [i -_i,], (3.16)

with the fourth order elasticity tensor Z, defined as,

=2juA + (ic - 2 ) &1,(.7 #)1 ® I,.(3.17)
3

where j is the total strain rate tensor, e' is the plastic strain rate tensor, I is the fourth

order identity tensor, 1 is the second order identity tensor, and re is the bulk modulus.

(Note that the strain tensor is designated with f since the usual symbol associated with

it is used to define the bi-material constant.) The deviatoric stress rate tensor, O', is

given by

6r' = o -- tr(&) 1. (3.18)
3

Similarly, the strain rate tensors can also be decoupled into deviatoric and hydrostatic ,' -

parts. The Mises equivalent stress, a, is defined as
-6'.

2 /o•o,(3.19) -0

and N, the instantaneous normal to the yield locus at the current stress state, is given

by

0
N= 3 a'(3.20) ",*% 'p
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3.2.3 Constitutive Relationship 0

The elastic/perfectly-plastic continuum constitutive relationship is based upon several

assumptions. It assumes that elastically, as well as plastically, the material is isotropic

and that all plastic deformation is volume preserving (incompressible). The yield locus,

in the 7r-plane, is spherical (i.e., not pressure sensitive) and does not translate or change

size with plastic flow (i.e., no isotropic or kinematic hardening). All plastic flow occurs

only in the direction instantaneously normal to the yield locus, at the current point. 0

The flow rule, A, is defined as

A I If a and N{[ 0(3.21)
S-~ 0 Otherwise.

where Oy is the tensile yield strength of the material. The interpretation of the flow

rule is that iP is non-zero only when A = 1. The portion of this constitutive relationship

describing plastic straining, written in rate form, is

iP = A {N 9 N} [j]. (3.22)

The stress rate 6r is obtained by substituting the definition for _p, Eq.(3.22), directly

into Eq.(3.16) as

0 [{,T - N (9NJ [ill. (3.23)

To facilitate the incorporation of this constitutive relationship into the numerical model,

an incremental form is utilized. This incremental form is exact only in the limit that

im (A) At =jA t. (3.24)

3.2.4 Constitutive Integration Operator

The elastic/perfectly-plastic material response is numerically integrated using the Rice-

Tracey Mean Normal integration operator (Rice and Tracey, 1973). The material

response is integrated under the assumption that during an increment in time, At,

between the nth and (n + 1)th state, i remains constant such that
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n+ 1
: idt At= A. (3.25)

The deviatoric stress an+l at the (n + 1) state is given by

V.+t = 1+ An (3.26)
+ Aa'

and, when A = 0,

ao' = 2uAe', (3.27)

where o', is the deviatoric stress at the nth state, Aoa is the deviatoric stress increment, 0

and Ae is the postulated deviatoric strain increment tensor.

An increment in stress where the initial stress state is elastic and the final state

is yielding (A = 1) is now considered, and Figure 3.6 schematically shows such a

stress state in the 7r-plane. The initial elastic stress state an does not satisfy the yield

condition and lies within the R = a,. sphere. The increment in deviatoric stress, AoT,

is obtained by traveling form the original stress state along the path of the elastic

predictor, 2pAj', until the yield surface is reached. The fraction of the total elastic

predictor which must be traveled to reach the yield surface is a, and a is given by

.'. )a± [- at,
a(Al') = ( &e'A) (3.28)

The correct root of a is the one that lies between 0 and 1. Once the yield surface is

reached, an intermediate state T* is constructed using the remaining portion of the

elastic predictor (1 - a)21A ' and the stress state at the yield surface, a,, + a2iAf'.

The intermediate state T' is defined as

T*(Af) = 2an + (1 + a)2pA{', (3.29)

where N, the normalized direction of T, is defined as

N(A(A) (3.30)
2 ~T-(A) To(A -)

The deviatoric stress increment Ao' is then obtained by projecting (I - a)2sAe, the

remaining fraction of the elastic predictor, onto a vector normal to N' such that O
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Figure 5.6 Schematic ir-plane representation of a stress increment obtained by the Rice-
Tracey mean normal integration operator; showing the various vectorized (tensor)
stress states and the yield sphere.

7.
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Aa' - 2 A {. - (1 - a)2N" N} [A]. (3.31)

This operator always places a,, exactly on the yield surface for any strain increment

with a < a,,. and elastic predictor state having V! (e,, + 2,A~) -(a'" + 2ML') > a,,.

To obtain the updated total stress, oa,+,, the hydrostatic stress must also be integrated.

Since f.+, is postulated as being known (given), the hydrostatic stress is trivially ob-

tained and is

O,+i- or. 1 = {,X 1 ® 1}[),,]. (3.32)

Using Eqs.(3.26), (3.31), and (3.32), the total (n + 1)th stress state, when A = 1 during

an increment, is given by

1 2, (I-)a (A))I2N*(Al) (3N3 (At))e + (3.33)

Eq.(3.31) is general and valid for all stress states except when both a,, and a,+ lie

within the yield radius. In conjunction with Eq.(3.27), Eqs.(3.28) to (3.33) describe

the stress state for all possible loading increments.

In addition to calculating the final stress state, a material Jacobian, defined as

aAaJ =- 5-, (3.34)

is also required for the global Newton-Rapson (FE) iteration procedure (Hibi t Karls-

son, and Sorensen, 1987). The Jacobian for this operator is given by,

J=GI+(r.- ILi + G,N'@(&N'+ G3N'@o -
3= C3

+G 4N" 0 AJ + GsAJ @9 (3.35)

where, ""

G, = 2;s - (1 + a)(I - a)-; (N'. AJ), (3.36)

G2 = 4i.(@ -1)- (1+ a)(l - a)16-- (N. Ac'), (3.37)'ro - A

G = 4p(N At') + (1 - a)- (N'. A ')2 - (1 - s)- (As'" At') (3.38)
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4.2c,= -I+ , ) 4p2---, (3.39)

Gs = (1 - o) 4-A-2 (N*. A.), (3.40)

7 + (3.41)"= -2;,a(A ,. -1& + (,-. - )

and

/!T. T*. (3.42)

Use of the mathematically exact (generally) non-symmetric Jacobian would require

that the FE procedure solve the complete set of equations, as opposed to a symmetric

subset. This procedure would be considerably more costly, and thus a symmetrized

(approximate) Jacobian is used (Bathe, 1982). The symmetrized Jacobian, J,,,, is

defined as

1 1

+G 4 2(N" & Ae_ + Ae_ ®N*) + G5 (y @ A ' + A_' ®-,). (3.43)

The use of this Jacobian yielded nearly quadratic global convergence, as would be

expected in a Newton-Raphson method. (Aside: A radial return operator [Krieg and

Krieg, 1977] was also tried, but yielded very poor convergence. It is speculated that

because the Jacobian for the Mean-Normal operator is based upon an intermediate j!1
stress state halfway between a' and a, it does not result in the same sort of radial

softening that would be predicted using a radial return Jacobian. This (relative) radial

stiffening is thought to retard small to modest changes in the direction of o', during

iterations.) I
3.3 FE Model Considerations

This last section is divided into three parts. The first part discusses the "simplified," I
but efficient, FE model used to obtain the characteristics of the traction-free crack-tip

model for different loadings (LK) and material combinations considered. Since this
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mesh would subsequently be used many times and each run represents a substantial 0

investment in CPU time (due to the complexity of the oscillatory elastic fields), much

effort was spent on designing it. The second FE model discussed is again a traction-

free crack-tip model, however, the purpose this model was to unequivocally determine

whether or not oscillatory stress fields, analogous to those found in the elastic solution,

exist within the elastic/perfectly-plastic deformation zone. Material properties were

chosen and the mesh design was performed in such a manner to yield the maximum

amount of information with only a relatively modest investment in computational time.

Although many of the same details from the first model were utilized, the goal was to

maintain simplicity and thereby ensure an unquestionable result. The third section

concerns itself with the FE model assembled to investigate the closed crack-tip face 0

model. Since little complexity was anticipated based upon the elastic solution, a simple,

but sufficient, FE model was assembled.

3.3.1 Traction-Free Crack-Tip Face Model

Boundary Layer Implementation

Various common features were incorporated in all the traction-free crack-tip FE models

that used the boundary layer method. The FE code ABA QUS (Hibbitt, 1984) was used

with the user-added subroutines UMAT and MPC. Slight modifications when needed I
were made in the UMAT to obtain only an elastic response. The boundary layer
formulation series were truncated after the first seven half-integer (Williams type) terms 0

(N = 0,-1,-2,... ,-6), and after five even-integer terms (M = -2,-3,-4,... ,-6),

where the variables N and M refer to the indices in Eqs.(3.4) to (3.7) or Eqs. (A.1) to

(A.4). The term N = 0 corresponds to the dominant asymptotic power, and the power

M = -1 was excluded from the formulation since it represents an applied concentrated

crack-tip force and produces infinite far-field elastic strain energy in the boundary layer

formulation. The vector qT was represented by 24 degrees of freedom (12 "free" nodes

each with two active degrees of freedom). These free nodes, which actually behave as
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Lagrange multipliers in the FE program, were the vertices in the spring network and

the nodes to which all outer FE boundary nodes were constrained.

FE Mesh

Prior to elaborating on the actual meshes used, the procedure used to evaluate mesh

accuracy will be outlined.

In order to judge the capability of the FE meshes to reproduce at least the elastic

K-fields, elastic test runs were performed on each mesh by imposing assorted values of.-

K with qeT = 0. The averaged nodal stresses were then examined in the radial and cir- ,-

cumferential directions and compared to the dominant asymptotic stress expressions.

To evaluate the radial dependence, the stress components were plotted against the

natural logarithm of the radial distance r. Excluding the first and last elements, the

numerical and analytical results were usually indistinguishable. For a better compar-

ison, the stresses were normalized (multiplied by V) and plotted against the natural

logarithm of the radial distance. In this way, any discrepancy existing in the phase

or period between the analytical and numerical solutions would be immediately ob-

vious. One particularly beneficial result emerged from this plotting procedure. The '4'.

numerically obtained stresses alternatively overestimated and then underestimated the

analytical solution, from node to node, with a mean value which was coincidental with

the analytical solution. The magnitude of these oscillations (lor,7d maximum to mini-

mum) decreased as the number of elements used in the radial direction increased. The

oscillation magnitude is thought to represent the actual discretization error attributable

to the inability of the element to reproduce the approximate 1/Vr stress distribution.

This parameter was used to estimate when sufficient mesh refinement was achieved. In

addition to this measure, the interfacial tractions between the domains were examined

to ensure continuity. Finally, numerically obtained elastic energy release rates were

compared against theoretical values.

All traction-free crack-tip models had the same geometrical mesh design. An act ,al
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mesh is shown in Figure 3.7 without the inner core elements. All crack-tip elements 0

were collapsed into a triangular geometry. To maintain physical significance, interface

elements were incorporated into the crack-face region, as necessary, to prevent crack

face interpenetration during the transient portion of the analysis. (Prior to "steady-

state.") The mesh contained 18 and 25 elements circumferentially in the elastic and

elastic/perfectly-plastic regions, respectively, with a high concentration of elements

around the interface. The mesh contained five logarithmically spaced elements per o

each of its three concentric rings. Each ring spanned a decade, with the inner ring

extending all the way to the crack tip. The outer mesh boundary was located at R = 1.0

m in order to circumvent computational difficulties associated with the boundary layer

formulation. Plane-strain elements were used.

Two different meshes, differing only in element type, were employed. The initial

mesh consisted of 8-node isoparametric elements with full 3 x 3 Gaussian integration

in the elastic region and 8-node isoparametric fully integrated linear pressure hybrid

elements in the elastic/perfectly-plastic domains. This mesh was run on ABAQUS,

version 4.5.174, and was used for almost all o and material combinations considered,

since it was relatively small (645 elements) and efficient to run. (Each iteration required

approximately 8 minutes per iteration on a FX-8 Alliant mini-supercomputer running

on one computational element. Typical job times were around 100 CPU hours.) If

sufficient global convergence or resolution of stresses was not achievable, which often

happened due to oscillatory pressure noise, the following alternative model was used.

This FE model used plane-strain 9-node isoparametric elements with selective in-

tegration in both domains. Full 3 x 3 Gaussian integration was performed on the

deviatoric stresses along with 2 x 2 Gaussian integration of the pressure, values of '

which were interpolated-extrapolated to the 3 x 3 Gaussian points. This model was

analyzed with ABAQUS, version 4.6.160, and reduced the time per iteration to about

4 minutes on the Alliant FX-8 mini-super computer. Use of this model significantly

reduced the pressure noise as compared to the hybrid 8-node elements used previously.
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Representative Mesh

Crack - Interface

Figure 3.7 Representative finite element crack-tip mesh (excluding actual crack-tip el-
ements), showing circumferential element distribution, crack-face and interface
locations, and radial spacings of elements.
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Due to the substantial time savings, this model completely replaced the initial model

described above.

Procedures

The procedures used in all analyses performed with the boundary layer method were

identical. An initial linear run, in terms of constitutive and kinematic theories, was

done with the appropriate K0 applied to determine the reaction force vector F' and

to check the assemblage of the model. Comparisons between the numerically obtained 0

J-Integral by the virtual crack extension method (VCEM) and the theoretical value,

Eq.(2.16), were made and typically only differed by 0.1%. The actual non-linear anal-

ysis used a "STATIC" time procedure with infinitesimal strain theory (HKS, 1987).

Loading was accomplished by prescribing "displacements" to the K-term free nodes,

in a square root fashion with respect to internal analysis time, to achieve quasi-linear

plastic zone growth. The reaction forces from the initial elastic run were imposed as

concentrated loads on the T-term free nodes and were scaled using the same amplitude-

time function as the K-term displacements. The static parameter CYCLE, which is

the maximum number of iterations that can be performed during a time increment

before a smaller time increment is tried, was set to 9. This parameter also controls .

the increase in time increment size by reviewing the number of iterations in the pre-

vious two increments necessary to achieve an acceptable solution, and if the number . -.

of iterations is less than ([CYCLE/2] - 1), the time increment size is increased. An

initial suggested time increment size was provided such that at no time during the first

increment was the yield condition satisfied anywhere in the mesh. The error tolerance

PTOL, which is the maximum acceptable residual nodal force after all element contri-

butions and applied loads are summed up, is set to 1.0 x 10- 5 MN. This value of PTOL

corresponds to 0.02% of a,. .• . t, where I and t are the radial length and thickness of %

the smallest (radial) element, respectively. The solution procedure iterates until the

PTOL condition is satisfied throughout the mesh, cutting back the time increment S
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size as necessary. Loading was done until the plastic zone nearly touched the FE mesh

boundary.

3.3.2 Traction-Free Crack-Tips: Existence of Stress Oscilla-
tions Within The Plastic Zone

This section describes the FE model used to investigate the extent of stress oscillations

occurring within the plastic zone of a traction-free crack tip. It was assumed that the

lower region was rigid (A2 = oo), and that the upper material had the elastic properties

of aluminum [,s = 26.1 MPa and v, = .342 (Hertzbreg, 1976)] with a yield strength of

32.5 MPa. This results in a bi-material constant of c = 0.07796. Based upon this value

of E, a mesh spanning 36 decades in the radial direction would be required to achieve •

one complete period of elastic stress oscillation. It was felt that plastic deformation

extending one-quarter of the elastic period would be sufficient to determine the extent,

if any, of plastic stress oscillations. Therefore, mesh spanning 12 decades, which allowed

for 3 decades of elastic material outside the plastic zone, was utilized.

Since this model considered the bottom medium to be rigid, only the upper re-

gion needed to be modeled. To simulate the rigid lower region, all nodes along the

intact interface were pinned. The mesh has 25 elements spanning the circumferential

direction, with the same distribution as shown in Figure S. 7. Because of the appre-

ciable radial extent of this mesh, only three logarithmically spaced, 9-node selectively I
reduced elements spanned each of its twelve concentric rings. Crack-tip element ge-

ometry, identical to that described previously, was used at the crack-tip. To avoid

numerical solver problems associated with large differences in element stiffnesses, the

boundary layer method was not employed. Instead, displacements consistent with the

dominant asymptotic K-field were imposed along the r.. boundary. The F. boundary

itself was located at r = 1.0 x 10' m. All nodes along this boundary were constrained

via a user written MPC to prescribe the nodal displacements.

The procedural aspects of this model were basically the same as before. Again,

the elastic/perfectly-plastic material behavior was incorporated with the same UMAT.
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The error tolerance PTOL used for this analysis was set to 5.0 x 10- 8 MN and was

0.7% of a,. •I . t. The value of CYCLE was varied between 7 and 9, depending upon

the progress of the analysis. Loading was applied by scaling the displacement of the

K-field node in a square root fashion with respect to internal analysis time, to achieve

quasi-linear plastic zone growth. The /K prescribed was chosen to be LK = 35.00. 0

This was necessary to keep the value of fO within the valid domain during loading; i.e.,

o always satisfied the no crack-face contact conditions predicted by Eq.(P2.33).

3.3.3 Closed Crack-Tip Faces

The FE model used to investigate the crack-tip fields around the closed crack tip

utilized many of the same features as the previous FE model. The subroutines UMAT

and MPC were included in the analysis. The material in the lower region was assumed

to be rigid (t'2 = oo), thus only the upper crack-tip region was modeled. The actual

mesh used 25 9-node isoparametric elements in the circumferential direction. Radially,

the mesh had four concentric rings with five logarithmically spaced elements per each

of its four rings. Again, the outer boundary of the mesh was set at r = 1.0 m. Since

the lower half was rigid, the edge of the mesh corresponding to the intact interface

was clamped. Along the crack face, interface elements were attached, thus allowing for

possible gap formation. The nodes along the outer edge of the mesh were constrained

in accordance with Eqs.(3.2) and (3.3) by a closed crack-tip user-written MPC. Loading

was accomplished by prescribing the displacement to the Kgrterm node in a square

root fashion with respect to internal analysis time. The FE model was loaded until the

maximum extent of the plastic zone reached r = 0.1 m. Since the "STATIC" analysis ,

procedure was used, the CYCLE parameter was set to 9, and the error tolerance

parameter PTOL was set to 1.0 x 10- 6 MN (0.02% of a., • t).
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Chapter 4

Elastic-Plastic Interfacial Crack-Tip
Fields

In this chapter the results obtained from the various numerical crack-tip calculations

for the BV problem stated in Chapter 1 will be described. The behavior of each

crack-tip model will be outlined along with the assumed material idealizations. In

order to organize the vast quantity of numerically obtained information into a more

manageable format, explicit representation forms will be used which reconstruct all or

portions of the actual solution in terms of only a few variables. The characteristics

and notation of the representative forms will be introduced and discussed. The local

crack-tip fields for all the various material combinations and loadings will be presented

via these representative forms and in terms of the dimensional framework outlined in

Chapter 2. "Geographical" inner bounds of inelastic crack-tip fields are established

from evaluating limitations imposed by the underlying mathematical assumptions.
' : "..q-J

4.1 Asymptotic Crack-Tip Forms

The purpose of this section is to present the anticipated asymptotic crack-tip forms

by reviewing in detail those forms obtained for the cases of a homogeneous stationary

crack and for homogeneous quasi-static crack growth. This review is focused solely upon I
isotropic elastic/perfectly-plastic media whose yield criteria are described by the Mises

yield condition. In general, the only restriction placed on the value of the Poisson's
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ratio is that it must be positive (0 < v < 0.5). Anticipated differences between the

homogeneous and bi-material behavior of the crack-tip forms is discussed along with

the conditions necessary to properly assemble these forms into the complete crack-tip

fields. Finally, because slip-line theory is used extensively to describe various deforming

portions of the crack-tip regions, a brief review of slip-line notation is made.

4.1.1 Summary of Slip-Line Theory

To familiarize the reader with slip-line theory and to assign notation, a short summary 0

follows. The reader is referred to Hill (1983) and Kachanov (1974) for a more complete

description and comprehensive derivation.

For a plane-strain rigid/perfectly-plastic material state, two families of curves, re-

ferred to as a-lines and f-lines, uniquely describe the material stress state and are

derived from equilibrium arguments and the yield criterion. (Slip-line theory is loosely

analogous to stream functions used to describe inviscid flow in fluid dynamics.) Along

an a-line

p+ 2ko = C,, (4.1)

while along a 1-line

p - 2k6 = C,. (4.2)

Here p is the mean pressure [p = -(1/3)tr (a)], k the material yield strength in shear a
0

k = ajv/3), 0 is the angle measured from the positive x-axis to the a-line in an

anti-clockwise direction, and C, and Cp are constants associated with each a-line and
1-line, respectively. The stress components are obtained by considering the angle 0 of U
the a-line or 3-line at the material point of interest and are given by Hill (1983) as

o+, = -p - k sin 20, (4.3)

= -p + k sin 20, (4.4) 40

and
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aX, = k cos 2,. (4.5)

The value of p is determined from Eqs.(4.1) and (4.2) and by the slip-line constants,

C. and Cp. Once the constants C. and Cp along an a- and a 1-line are determined

at some point, usually via boundary conditions, the complete stress state within the

slip-line field can be evaluated. Figure 4.1 shows a representative element with respect

to a family of slip lines along with the associated stress state. Although slip-line theory

does not completely describe the strain state in a body, it does describe certain features •

of the deformation. The a and P characteristic slip-lines are orientated parallel to the

direction of maximum shear stress, and they represent directions of zero extension.

(i.e., no normal strain is produced in directions parallel to slip lines.

Rigid-plastic slip-line theory is often used to describe elastic/perfectly-plastic ma-

terials capable of compressible elastic deformation (v A 0.5) and incompressible plastic

deformation. To use Aigid-plastic slip-line fields for these materials, it is assumed that

the effect of elastic strains are negligible. This assumption is only valid in the asymp-

totic sense that

p= li T(4.6)
- li p_.,- I

where iT is the total strain rate, and 1P and ' are the total plastic strain and strain

rate components, respectively. In general, the use of slip-line theory and accompanying

representative forms for elastically compressible materials does not necessitate that the

elastic strain components are zero.

4.1.2 Stationary and Quasi-Static Crack-Tip Forms ,.

The admissible plane-strain asymptotic crack-tip fields have been reviewed extensively

for stationary and quasi-static homogeneous cracks in isotropic elastic/perfectly-plastic

media; e.g., Rice (1982), Rice, Drugan, and Sham (1980), Rice and Tracey (1973), and

Nemat-Nasser and Obtata (1984). For a stationary crack with v = 0.5, Nemat-Nasser

and Obtata identified that three distinct crack-tip sectors may exist; namely an elastic
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Figure 4.1 Schematic slip-line field element, showing the normal pressure (P) and shear
(k) stress states, the orientation of a- and ~-lines and the inclination angle
with respect to the coordinates.;V
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sector, a yielding constant state sector, and a yielding centered fan sector. (Nemat-

Nasser and Obtata showed all the admissible combinations of these sectors, but their

asymptotic analysis does not determine which assemblage is appropriate for a specific

problem.) An elastic sector which has not experienced any prior plastic deformation -

is representable by a planar elastic wedge with constant, but not necessarily identical,

tractions on each of its sides. To produce finite stresses at the crack-tip and to eliminate

any net crack-tip forces, the angular function associated with the singular radial stress

component is taken to be zero; i.e., o,,(r,9) = P(0) + Q(0)/r =o. Q(0) = 0. Appendix

B contains the Airy stress potential and stress distribution for such a wedge. The

yielding sectors, formally identified by Rice and Tracey (1973), are obtained from the

equilibrium equations and the yield criterion. The stress distribution in the constant

state is ciracterized as having stress components a3., o,,,, and 0.y constant everywhere

in the sector such that the yield criterion is satisfied. Generally, in constant state

regions a## (r, 9) 96 or, (r,9). In centered fan sectors, however, the stress distribution is 9

,.(r,9) = o,,(r,O) and ar = constant, where in the absence of the other deviatoric

stress components, a,# alone satisfies the yield criterion. When elastic strains are

negligible compared to plastic strains or when v = 0.5, the stress distribution in a

centered fan is given by o, = ±k, and a,(r,9) = a,(r,9) = (A - 0/,3)cr,,, where A

is a constant. In terms of rigid-plastic slip-line theory (Hill, 1983), a centered fan is a

sector where a-lines emanate iadially from the crack tip with circular and concentric

O-line arcs (or vice versa), while in constant state sectors the a- and #-lines are

straight and normal to each other. Thus in a fan region 0 = + b, where b is a

constant.

Rice (1982) summarizes the asymptotic distribution of velocities and strain rates for

quasi-static crack growth in each of the three previously identified sectors. By setting

the crack-tip velocity equal to zero, the predominant behavior of each sector is obtained I
for the stationary case. Excluding rigid rotations, the non-zero velocity components in

a stationary centered fan are I
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V = f(,t) (4.7)

and

V - (0,t), (4.8)

and the only non-zero strain rate component is

1. (8 2 f (0,t) + f (0,t)) (4.9)

Here V, and V# are the radial and hoop velocity components, respectively, t is time,

and f(0, t) is a function whose form cannot be determined from an asymptotic analysis.

Integration of the strain rates over a finite period of time produces finite strain for all

strain components except for the F,, component. Integration of Eq.(4.9) with respect 

to time yields

(,r) = lr,(rO) A(, t) - + C(). (4.10)

In this equation, A(#, t) is defined such that aA(9, t)/8t - [(12f(e, t)/, 2 ) + f (O, t)]

and represents the unknown angular distribution of shear strain, while "yo is the shear

yield strain of the material, C1 (8) is a bounded constant of integration usually taken

to be equal to zero, and R = r/rp, where rp is the characteristic plastic zone dimension -

and r is the radial distance froum tbe crack tip. In a centered fan f.# cc 1/r as r -- 0.

At the plastic zone bounday, R = 1, the shear strain must be approximately equal to N
-yo, thus A(O,t) is of order unity.

The non-singular yielding constant state sector behaves in a significantly different

manner. It is best described in an auxiliary (in, n) coordinate system whose axes are

chosen to lie parallel to the a- and 6- lines and whose origin is at the crack tip. The

z and y components of the (z, y) coordinate frame, shown in Figure 4.1, are related to

the components in the rn - n coordinate frame by

z = mcos o - nsino (4.11)

and
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y = msin + nfcol. (4.12)

As r -* 0, the constant state velocity components in the m and n directions are given

by

V. = g(n) (4.13)

and

V. -- h(m), (4.14)

respectively. Here g(n) and h(m) are functions whose precise forms cannot be deter-

mined from an asymptotic analysis. In a constant state region, the only non-zero strain

component as r -- 0 is ,,, and it is related to the velocity field via

1(8 = n) + 5M ). (4.15)

Integration of the strain rates over a discrete time interval produces finite strains for

all components. Plane-strain conditions require that f = 0, but for elastically corn-

pressible materials (those with v 5 0.5) a transient period exists for which ej..,6tic $ 0.

During this transient period finite plastic strains accumulate, and therefore in a con-

stant state region it is generally expected that g- ' M 00.

The strain rates in an isotropic elastic sector are obtainable from the elastic wedge S

potential, given in Appendix B, by interpreting the boundary tractions H, T, Q, and

K as applied traction rates; i.e., H, T, Q, and k. From Eqs.(B.9) to (B.11) and by

use of the elasticity tensor C defined in Eq.(3.17), the non-zero strain rate components

for an isotropic elastic wedge are

(1-Z k - 2T 7- - 242 (cos 2-1 + 1) - 2 (sin 2-f + 2-1)}wl

(vl+ v)) {k - 2T-y + 242 (cos2y - 1) + 2 (sin 2-y - 2-y)} (4.16)

= 1 . 2 ) {k - 2iT-1 + 242 (cos2-y - 1) + 262 (sin 2-1 - 2-y)}

(v zI{k- 2iTy 22 (coo2y + 1) - 2 (sin 2- + 2-f)1 (4.17)
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and_

((+ ~){26 (Cos 2-1 - 1) - 22 s in 2-y (4.18)

In these expressions the coefficients 42 and 2 are given by Eqs.(B.7) and (B.8) when

H, T, Q, and K are interpreted as k, t, Q, and k. Integration of the strain rates,

Eqs.(4.16) to (4.18), over a finite time interval produces finite strains in elastic sectors.

Having identified the three basic admissible sectors, asymptotic crack-tip behavior is
obtainable by assembling a combination of these sectors in a manner consistent with the ,

far-field conditions. Rice (1982) states that the necessary requirements for assembling

these sectors are that "a,., ao, and uo must be continuous along radial lines emanating

from the crack tip and that any discontinuities in yielding sectors must be consistent

with the flow rule." An additional constraint, given by Kachanov (1974), is that "the

[energy] dissipation be positive everywhere in the slip-line field."

Before proceeding, several additional observations regarding the behavior and P.s-

semblage of the sectors should be made. In yielding regions with incompressible plas-

ticity where the plastic strains are large compared to the elastic strains, the "apparent" N

Poisson's ratio is v. = 0.5; i.e., (1/3)tr(o) (a,, + o,,)/2. In general, fan sectors have

large plastic strains as r -. 0 (,* oc l/r); therefore in a fan region the apparent Pois-

son's ratio is v. %: 0.5, and C,.e % ±k. Compressible elastic sectors in which there are no

residual strains cannot be adjacent to fan sectors (when, at the border, A(9, t) 0 0 in

the fan region). If a,# is equal to ±k at the elastic sector boundary, the requirement of

continuous a9H produces an Mises equivalent stress greater than the yield stress in the -

elastic sector. This is true even if a jump in a,, is allowed between the fan and elastic

sector. In general, it is necessary to have a constant state sector between an elastic

sector (with no residual strains) and a fan, and the apparent Poisson's ratio across this t.

constant state varies from v. 0.5 on the elastic boundary, where plastic strains are

negligible, to L, = 0.5 on the fan border, where plastic strains dominate.

To verify that an elastic sector with no residual strains and v y 0.5 cannot exist

next to a fan which has an apparent Poisson's ratio of v'. 0.5, consider the following
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argument. Evaluate the Mises equivalent stress in the elastic sector at the postulated

elastic-fan border. At such a point a,$ must be equal to ±k. Substituting this value

into the expression for the Mises equivalent stress, Eq.(2.31), yields

r= a$+ o,,)D + (Orao,)F + 2, (4.19)

where D(&,) and F(,) are given in Eqs.(2.32) and (2.33), respectively. For a < o,. (
for as j 0),

+ F (,1<U. (4.20)

For positive values of P, the ratio FID varies from -1 to -2, and the condition required

by Eq.(4.20) has real solutions only when F/D = -2 (v = 1/2) and a, = asp

Prior to discussing the bi-material asymptotic crack-tip fields, it is useful to exam-

ine several additional features present in the homogeneous analysis. For a stationary

homogeneous plane-strain crack subjected to tensile opening loads (mode I), the crack-

tip field is that of the classic Prandtl distribution (Hill, 1983). In the Prandtl field, all

crack-tip material points are in either yielding constant states or centered fan regions

and remain in their respective sectors during the entire loading history. Additionally,

the Prandtl stress distribution is independent of the far-field load magnitude as long as

SSY conditions exist, although the actual extent of the distribution is dependent on the 0

load magnitude. In the growing quasi-static (opening) case, the crack-tip distribution

remains constant with respect to the moving crack tip; however, any material point

which does not lie in the plane of the advancing crack front accumulates strains in each

of the four quasi-static crack-tip regions (Rice, 1982). Therefore, it is necessary to ac-

count for these accumulated residual strains when assembling the crack-tip fields from

an instantaneous stress distribution. In general the instantaneous stress distribution

of a plane-strain elastic sector with fixed tractions is different for regions which do or

do not have out-of-plane residual strains. (In plane strain the out-of-plane stress must

account for any residual out-of-plane strains.) I
It is anticipated that the major difference between the homogeneous and traction-

free bi-material crack-tip fields will result from the continuous shift, in plastic zone
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shape and tractions along the plastic zone boundary, which arises with increasing load.

The shift between solutions should occur in a continuous fashion with respect to so, in a

manner analogous to the continuous shift observed in homogeneous crack-tip fields by

Shih (1974) for mixed-mode loading between pure mode I and mode II. A continuous

evolution with increasing applied load has the potential to alter residual strains and

thereby significantly influence stresses in elastic sectors. Also, such continuous evolution

may produce oscillatory plastic bi-material crack-tip fields, as observed by Shih and

Asaro (1987) for nonlinear elastic strain hardening bi-material interfacial cracks.

Thus far, discussion has been limited to asymptotic forms which are typically in-

terpreted as occurring "at" the crack tip. This interpretation is only a first order

approximation and does not address the possibility that away from the crack tip a cusp

may form between different sectors. Although such cusps are not found in stationary I

homogeneous crack solutions, recent work by Narasimhan, Rosakis, and Hall (1987) in-

dicates that a cusp forms ahead of a growing plane-stress homogeneous crack tip, and

that the boundary of the cusp separates the regions in which the equations of stress

are hyberbolic and elliptic, respectively.

4.2 Traction-Free Crack-Tip Model

The numerical results for the traction-free crack-tip model will be presented in this

section, and in conjunction with the previously identified asymptotic forms, approxi- N

mate local crack-tip fields will be assembled. Discussion will be initially focused on the

"high resolution," quarter wave-length model so that the transitional period of plastic

flow can be quantified from the elastic-plastic boundary towards the crack-tip to the

establishment of a "steady-state," and so that the extent of oscillatory behavior, if

any, can be identified. Interfacial tractions and strain distributions will be tracked as

a function of 0, as well as the finite crack tip opening displacement, 6CTOD. A general a

elastic potential which describes the lower elastic domain will be identified, although

not directly from the quarter wave-length model. All results will be analyzed at an
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instantaneously fixed value of o. In general, steady state and transitional behavior

shall refer to spatial and not chronological (analysis or loading time) behavior.

4.2.1 Deformable Upper Half-Plane

Asymptotic Crack-Tip Behavior

The behavior within the deforming bi-material crack-tip zone is similar to that found

in homogeneous crack-tip plastic zones. Figures 4.2 to 4.6 show the location of yield-

ing integration points (a > 0.99av,), as a function of angle 9 from the interface and

normalized radial distance R - r/r, from the crack tip, at several values of O be-

tween 1.34 ° and 30.04° for e = 0.07796 and v = 0.342. In these figures, the location

of integration points whose stress state is that of a fan sector, namely la,,I _ 0.99k

and 1(0,, - a,,)/c, I< 0.02, are identified by + marks. The fan region dominates the

yielding crack-tip fields at small values of R, and once a fan ha. developed, the stresses

along a ray are independent of radial distance. Radially as R --- 0, oscillatory stress

fields do not exist after a fan sector develops. As is common in the homogeneous fields,

a transitional layer exists between the plastic zone boundary and the steady-state fan

region. Figure 4.7 shows the development of stress as a function of R at 9 = 3.10 from

the elastic region (R > 1) to deep within the plastic zone (R < 1) for co = 30.04° . As

seen from Figures 4.2 to 4.6 and 4.7, the establishment of a fan usually occurs only

deep within the plastic zone at radial distances smaller than approximately 1% to 5%

of the actual plastic zone radius at that angular location. The behavior of the inelastic 0

transition region between the plastic zone boundary and the establishment of fans or
"steady-state" constant state sectors is similar to that of a constant state region, how- Y

ever in such transition regions the associated a- and #- lines have a large but finite

radius of curvature. Henceforth, regions where the curvature of a- and 3-lines is very

small with respect to unity shall be identified as "quasi-constant state regions."

All features seen in the bi-material fields are not present in the homogeneous asymp-

totic fields. A large elastic sector exists from the crack face (9 = 180 ° ) to 9 f 135 ° for .
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Figure 4 .4 Locations of actively yielding (a > 0.99a..) integration points around a

traction-free bi-material crack-tip for e = 0.07796 and f0 = 1.34*; elastic/ perfectly-.'
plastic material bonded to a rigid substrate. Locations indicative of a fan stress '
state (a,,* I 0.99k and .(o - a,/)/, < 0.02) are shown by a+.125



Bi-material Crack Tip
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Figure 4.9 Locations of actively yielding (d > o.99o,,.) integration points around a
traction-free bi-material crack-tip for e = 0.07796 and CO = 8.72°; elastic/perfectly-
plastic material bonded to a rigid substrate. Locations indicative of a fan stress
state (Iaw _ 0.99k and 1(o,, - O)/v,.j < 0.02) are shown by a
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Figure 4.4 Locations of actively yielding (a > O.99Ugra) integration points around a

traction-free bi-material crack-tip for e = 0.07796 and CO = 18.2; elastic/ perfectly- '4
Plastic material bonded to a rigid substrate. Locations indicative of a fan stress
state (101,# 0.99k and (a## - or,)/Ia.. < 0.02) are shown by a "~
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Bi-material Crack Tip
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Figure 4.5 Locations of actively yielding (a > 0.99ao.) integration points around a

traction-free bi-material crack-tip for c = 0.07796 and o = 25.70; elastic/perfectly-
plastic material bonded to a rigid substrate. Locations indicative of a fan stress
state (la,#l > 0.99k and I(Ol,, - o-)/uI < 0.02) are shown by a
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Figure 4.6 Locations of actively yielding (a > 0.99a,.) integration points around a
traction-free bi-material crack-tip for e = 0.07796 and Co = 30.00; elastic/perfectly-
plastic material bonded to a rigid substrate. Locations indicative of a fan stress
state (1I, > 0.99k and 1(c,, - a,,)/a.I < 0.02) are shown by a "+".
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= 1.340 and to 0 ;v 730 for o = 30.00. Such elastic sectors are not observered in sta-

tionary homogeneous crack fields nor are they predicted from the elastically-calculated

plastic zone boundary derived in Section 2.2.1. The location of actively yielding in-

tegration points and the corresponding elastically-calculated plastic zone shape [from

Eq.(P2.6)] for e = 0.07796 (v = 0.342) at o = 1.340 and o = 30.00 are plotted in 0

Figures 4.8 and 4.9, respectively. (Due to the presence of the crack-face elastic sec-

tor, the plastic zone shape predicted by the elastic approximation when > 0 is less

representative of the actual zone shape, especially near the crack-face region.) Recall

that for e > 0, C0 increases at fixed /K when lKII increases. At material points in the

crack-face elastic sector which are very near the crack tip, prior plastic deformation

would produce residual strains. At radial distances far from the crack tip relative to

the characteristic plastic zone size, no residual plastic strains accumulate in the crack-

face elastic wedge. Furthermore, an unloaded elastic sector exists along the interface

spanning a maximum of about 220 for Co = 1.34* and approximately 80 for CO = 8.72*.

The interfacial elastic sector is small and barely visible in Figure 4.8, but is more easily

seen in Figures 4.e and 4.3. (Again, this feature is not predicted by the elastically-

calculated plastic zone; however, for o f 0, the approximated plastic zone does have

a local minimum or rounded "kink" in its shape near 9 s 300, and this rounded kink

may be related to the development of the interfacial elastic wedge.) Active plasticity

exists both radially ahead and behind this elastic sector, indicating that the material

points within this elastic region once reached yield, deformed plastically, unloaded to

an elastic state, and will again yield and deform plastically.

The presence of a cusp in the crack-tip field is another feature of the bi-material

fields which is not observed in the stationary homogeneous asymptotic fields. At small

to modest angles from the interface, the length of the transition region from the elastic-

plastic boundary to the fan region increases with decreasing 0, producing a cusp in the

slip-line field. The cusp itself is not a characteristic slip-line, but merely a boundary

line separating two regions. The characteristic a- and 3- lines appear continuous and
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Bi-material Plastic Zone
'o= 1.340 E=0.07796

0.60 -

0.40 .
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X(0O* 2 7TCOsh (i-re))1(K1K)
Figure 4.8 Approximate plastic zone, along with the location of actively yielding in-

tegration points, from a finite element calculation of traction-free SSY in an
elastic/perfectly-plastic material atop a rigid substrate; e = 0.07796 and o =
1.340.
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smooth across the cusp. The behavior of the material between the interface and the fan

sector; i.e., the material between the cusp and interface, behaves as a quasi-constant

state region or, for values of 0 between 1.340 and about 11, as an unloaded elastic

sector. (The value of 110 is obtained by linearly extrapolating the maximum angular

extent of the elastic sector as a function of o from data at O = 1.340 and CO = 8.720.)

Even with a cusp present, the local angular stress distribution at a given value

of R is reconstructed by properly assembling the three asymptotic forms identified in

Section 4.1.2. Figure 4.10 shows a schematic crack-tip field for a traction-free crack-tip.

The crack-tip distribution deep within the plastic zone is determined by the values of

the slip-line angles C, -y, q, a, and el as a function of R. From Figure. 4.2 to 4.6, it

appears that the slip-line angles C and -y are independent of R for R < 1, but due to 0

the presence of the cusp, the slip-line angles a, q7, and e1 are dependent upon R. In the

limit as R --+ 0, it appears that a = 0, suggesting from a purely mathematical point of

view, the asymptotic crack-tip fields should be constructed with a = 0.

At this point, a definition of "asymptotic SSY bi-material crack-tip field" is neces-

sary. In homogeneous fracture mechanics, the asymptotic fields are those which emerge

as r tends toward zero, with the restriction that r remains large as compared to the

CTOD. [This restriction on r is necessary because at radial distances smaller than sev-

eral times the CTOD, the asymptotic field around the now blunted "circular" crack-tip

is that of the logarithmic spiral (Rice, 1968b; Kachanov, 1974).] Furthermore, it is

implicitly understood that such asymptotic fields are only valid in regions where their

fundamental assumptions of linear kinematics and a mathematically sharp crack tip

are not violated. It will be shown in Section 5.1 that use of linear kinematics is only U
valid in fan sectors for radial distances R > -y0, where -yo, the initial she-X yield strain,

typically ranges from 10 - 4 to 10-2 for polycrystalline metals. For values of R smaller

than -10, the resulting strains are no longer small; i.e., less than unity. Henceforth, I
asymptotic SSY bi-material crack-tip fields shall be defined as those which emerge as

R -1o.3
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0' t0

Elastic Wedge,-T IF

Figure 4.10 Slip-line field at a traction-free interfacial crack for an elastic/perfectly-
plastic upper region bonded to a rigid (or elastic) substrate. See Table 4.1 and
4.5 for numerical values of indicated angles.
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Assemblage of Crack-Tip Fields

The asymptotic crack-tip fields are assembled from the numerical results in the following

manner. The elastic wedge coefficients a2 and c2 along the crack face are obtained

by matching the analytical elastic wedge expressions for stress and pressure with the 0

numerical results over the range of 0 where no prior inelastic deformation has occurred.

With these coefficients, the elastically predicted location where a = ar, is identified,

and the corresponding angle is taken to be f. The stress state at f in the elastic

and constant state sectors are assumed to be equal, and from the elastically predicted

stress state at f, a Mohr's circle calculation is performed to estimate the rotation

in the constant state region necessary to achieve a state of pure shear (q, = ap,)

This rotation angle is interpreted as -y - f. In making this estimate, it is assumed

that a, is continuous from the elastic-wedge/constant-state border through the entire

constant state sector, up to the constant-state/fan border. To determine the angle q,

the pressure distributions in the fan and the adjacent constant state sectors are fit to

linear expressions (with respect to 0), and their extrapolated intersection defines the

angle ql. This approach circumvents problems associated with a lack of mesh refinement

and numerical noise at boundaries between constant state and fan sectors. The angle

a is then back calculated as a = r - -y - q, and is compared to the angular location of

the last node or integration point whose stress state is indicative of a centered fan.

In assembling the assumed asymptotic fields, the stress distribution in the unloaded

elastic sector is obtained by projecting the stress distribution from the "virgin" elastic y .

sector. Although such an extrapolation is not strictly acceptable since it does not

account for the residual/, strain, modest agreement between the numerical and

elasticity solutions does exist for the aj and a,, components. This extrapolation is

done for several reasons. For the smaller values of CO, it is not clear that the initial I

(numerical) transient period accumulates the same amount of strain as it would have

had the analysis been initially started from a smaller value of o. Second, if o uniquely

defines the assemblage of the asymptotic crack-tip fields independently of v and c, then
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these results are directly applicable for negative values of c. (For c < 0, o decreases as

IlK!! increases, and no prior plastic deformation would occur in the elastic sector.)

Interfacial Tractions and Crack-Tip Fields
S

Due to the elastic/perfectly-plastic constitutive assumption, the interfacial tractions are

bounded and are constant as R -- 0. The maximum magnitude of the shear traction,

t., is It.! I k, and for a fully plastic crack tip the maximum value of the normal traction,

t., is t,, 3.298a,. The development of the asymptotic interfacial tractions is identical

to that of the azymptotic crack-tip fields. At normalized radial distances several times

greater than R = 1, the elastic interfacial tractions are recovered, and the asymptotic

interfacial tractions are fully established at radial distances less than 2% to 10% of the

actual plastic zone radius along the interface. The interfacial tractions appear to reach

their steady state values slightly faster than the crack-tip fields, except when a cusp or

an interfacial elastic sector is present. The stress state shown in Figure 4.7 is indicative

of the transient period necessary to establish asymptotic interfacial tractions when a

cusp is present.

The assembled asymptotic crack-tip fields for six values of Co ranging from 1.340 to

30.04* are summarized for R = -to in the Table 4.1. Included in the table are the far-field

values of the J-Integral, the numerical values of the slip-line angles a, q, -y, , and 1,

the elasticity potential coefficients a and c2 for the interfacial elastic sectors denoted

by the angle t, and the normalized hoop [H - a,,(O = i - C)/o,.] and shear stress S

[K - c,,( = 7r- e)/o,,] components at = -1. The first value of q corresponds to the

value obtained by the previously described procedure, and the value of 1 in parentheses I.
represents the value based solely upon the last node or integration point whose stress

state is that of a centered fan. Also included in the table are the normalized interfacial

traction coefficients P and S which are related to the interfacial shear, t,, and normal, * 2
t,,, tractions by 0

t,(R = -Yo) Po,, (4.21)
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and

t.(R =-yo) So... (4.22)

From Table 4.1, the schematic bi-material crack-tip configuration shown in Figure 4.10,

and the elasticity potential given in Appendix B, the stress distribution in the de-

formable upper half-plane is completely described.

Co J MPa m a -" ___1

1.340 1.12 x 10- 5 400 900 (820) 500 450 230 ,
8.72 5.83 x 10- 6 260 880 (790) 660 610 60
18.20 4.49 x 10- 4  140 68* (740) 98* 92' 00

25.70 2.63 x 10-3 130 58- (590) 109 79 00

30.00 6.90 x 10 - 3 6* 640 (57 ° ) 1100 870 00

_o a2 C2 P S H K
1.340 -0.234 -0.0348 2.89 0.103 2.71 0.448
8.720 -0.104 -0.113 2.86 0.298 2.77 0.372
18.2 0.063 -0.136 2.41 0.462 - -
25.70 0.157 -0.133 1.99 0.524 -

30,00 0.185 -0.115 1.74 0.546 .

Table 4.1 Crack-tip slip-line angles, crack-face elastic wedge and interfacial traction co-
efficients, and the stress state at the interfacial elastic-wedge/constant state boundary;
R - "0, e = 0.07796, and v = 0.342.

Comparison

The accuracy of the slip-line angles identified in the manner discussed previously is

very good when no elastic sectors are nearby, however, the accuracy is significantly

reduced when elastic sectors are present. The transition from an elastic sector to a

fan sector usually spans only 2 to 4 elements (each element covers approximately 80)

and seldom occurs at an element boundary. Sector boundaries which occur within

an element are poorly resolved because the deviatoric and hydrostatic stress states %Ile

within an element are only bi-quadraticly and bi-linearly represented, respectively.

Consequently, accurate data from constant state sectors needed to precisely determine

the elastic/constant-state/fan boundaries is not available.
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The numerical and analytically inferred stress states are compared for '0 = 30.00

at R = -10 (e = 0.07796) and are plotted in Figure 4.11. Substantially away from the

fan/elastic-wedge transition, little discrepancy exists between the inferred analytical

solution, represented by solid lines, and the FE calculations, whose values at integra-

tion points are plotted with symbols. Near the constant-state elastic-wedge transition,

accumulated residual strains influence the stress state, especially the o., component,

and the inferred stress state is not continuous at the actual boundary. In the con-

struction of this figure, rigid-plastic slip-line theory is used in the plastically deforming S

regions, and the pressure distribution is arrived at by matching a point within the

fan region. The constant-state elastic-wedge transition shown in the figure is not ac-

curate because it fails to reflect the elastically compressible material behavior in the

constant state region and the effect of residual strains in the elastic sector. Also, the

stress states in elastic and plastic regions are matched from different conditions, and

therefore continuity of stress is not guaranteed. Furthermore the apparent "almost

continuous" stress state at 9 = r - -y results from the technique used to approximate

-7. Overall, the asymptotic crack-tip fields reproduce the stress distribution accurately

near a fan/elastic-wedge transition, with the exception of the or, component

Asymptotic Strain Distribution and CTOD

At plastically deforming crack tips, knowledge of the stress distribution is not sufficient

to completely characterize the crack-tip regions because the strain distribution is not

uniquely defined from the stress distribution. Unfortunately, convenient asymptotic

forms to describe the strain distribution do not exist as they do to describe the stress

distribution. Due to the asymptotic nature of deformation in a centered fan sector (i.e.,

is the only non-zero strain rate component) 1-y,,I is generally large compared to all

other strain components. In constant state regions, large strains are not anticipated

since they must occur uniformly throughout the region or along crack-tip rays where

a, = ±k (Rice and Tracey, 1973), and, in general, strains in constant state regions are

139



T- IM .Lrww ;Kww r6 Alr~wTwh nwrkxrA rNM r '1 EnM

040

-q~ oA6

1.4

coC

Q) I O

Joo9

140-



small compared to those found in centered fans. For these and other reasons, the most 0

significant strain component in the crack-tip region is the 1, component, and therefore

-yo is the only strain component considered.

The -y,0 strain distribution is normalized by considering its functional form within a

centered fan sector. From Eq. (4.10), the shear strain distribution is given approximately

by R-y,,/-yo f A(O), when R < 1. Figure 4.12 shows the normalized distribution

of -y, for e = 0.07796 at six values of Co between 1.34* and 30.0. Comparing the

radial shear strain distributions with the asymptotic crack-tip forms, the largest strains ,

occur in fan regions approximately 150 away from the fan-elastic boundary, and from

Figure 4.12, the maximum shear strain increases as Co increases. Although not shown,

the normalized shear strain distributions deep within the plastic zone (R < 0.01) are

independent of R. Thus the presence of a cusp strongly influences the entire asymptotic

crack-tip deformation, even in regions where the cusp is not present.

An additional quantity directly related to the strain field is the CTOD. The bi-

material CTOD is defined as

bCTOD =_ u(R = 0, 0 = 7r) - u(R = 0, 9 = -r), (4.23)

where u is the displacement vector. The CTOD physically represents the displacement

of the crack faces relative to one another and also represents an integrated vector sum

of the strain field on a path about the crack tip. To uniquely define 6CTOD, both its

magnitude and orientation are required. In Figure 4.13 a schematic crack tip and the

associated coordinate system used to define 6CTOD are sketched. Figure 4.14 shows

the normalized magnitude of bCrOD and w, the angle of bCTOD, for e = 0.07796 as a

function of o. Also plotted in the figure is the angle wz;.., which is the angle of 6 CTOD

obtained from the elasticity solution by evaluating Eq.(P2.32) at Co = and r = rp.

The difference between w and wrg.N, is less than 150 for the range of Co shown. The

corresponding elastically-calculated magnitude of 6 CTOD, defined as

bcTrODy, 4 v(2- (4.24)w Vr_ _ 4 e

is I6 CToDa,./JiZ... -- 1.779 for e - 0.07796 and is independent of ¢.
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0 FE Solution

------------- Elastic Approx.- Eq.(P2.32)
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Figure 4.14 Traction-free bi-material 6CTOD from a finite element calculation of an
elastic/perectly-plastic upper region atop a rigid substrate for Co between -200
and 30*; le = 0.07796. (a) shows the magnitude normalized with respect to yield
strength and the far-field elastic J-Integral and (b) shows the crack-tip angle w
from the finite element calculations and from Eq.(P2.32) evaluated at r = rp and

C *Ob.I
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Path Dependence of J-Integral

The J-Integral is evaluated within the asymptotic crack-tip fields by considering the

contributions to it from each of the various sectors. Rice (1968b) states that since the

strains are bounded as R -+ 0 in a constant region, constant state sectors produce no

contribution to J. Extending this rationale, it is concluded that no contributions to J

are made from either the rigid lower half or from any of the (non-singular) crack-tip

elastic sectors. Therefore, the entire local contribution to J comes from the centered "

fan region(s) and is given by (Rice, 1967)

J f =f rj, .(r,) [k cos + a,,(r,9) sin 0 df.

Here the integration path is chosen to be a circular arc about the crack tip, and in

terms of the schematic slip-line field shown in Figure 4.10, the upper and lower limits

of integration are 9 = in and 9 = a + 17, respectively.

Local J-Integral estimates were calculated by the virtual crack entension method

(VCEM). The VCEM uses the divergence theorem to convert the contour integral of J

to a surface integral and then calculates the change in energy associated with a virtual

extension of the crack front. The J estimate is interpreted as J -Ar/Aa, where Ar

is the change in energy and Aa is the virtual increment of crack advancement. Table

4.2 summarizes the local JVCZM normalized by JImG , the far-field elastic J-Integral, a

for e = 0.07796 and C0 between 1.340 and 30.0. Included in the table are the average

values of the second, third, and fourth contour values of J. A considerable amount of

non-proportional loading occurs, especially with the presence of the cusps and growth a

of the crack-face elastic wedge, thus local J values which are appreciably lower than the

far-field J are expected. The contour values of J typically decreased slightly from the -

second contour to the ninth contour. Growth of J as R --- 0 is not anticipated, but may

be attributable to both the stress and strain distributions asymptotically approaching

a steady state as R --+ .
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30.0 0.86
25.70 0.75
18.20 0.61
8.720 0.49
1.340 0.41

Table 4.2 Local J-Lntegral estimates, normalized by the elastic far-field value of J,
obtained by the VCEM for various values of Co with e = 0.07796.

4.2.2 Solution in the Lower Elastic Half-Plane

Due to the use of a rigid material adjoint to the elastic/perfectly-plastic material in

the quarter wave-length calculation, no results are obtained for the lower elastic half-

plane. The nature of the elastic half space is instead obtained from one of the other,

less focused, analyses. Because contact between the upper and lower half-planes is

made only via the interface, the behavior of the asymptotic interfacial conditions very

deep within the plastic zone, described previously, are reflective of the stress behavior0

in the elastic half-plane.

Unlike the upper yielding region, no significantly different behavior is observed in

the elastic region at rr, the plastic zone radius along the interface [r, = rp($ = 00)1, and0

at distances much closer to the crack-tip, r ft ri/10, certain dominant features begin

to emerge. Consider the results obtained for the material combination of yielding

aluminum in region 1 and graphite in region 2, (e = -0.07923) loaded until =

-2.70*. (Table 4.4 contains the elastic properties of all material used.) Figure 4.15

shows the normalized stress components in the elastic interfacial region as a function

of the logarithm of the normalized radial distance R, (RI = r/rj,). The normalized

hoop and shear components experience a transitional period from 1og 10(R,) = 0 up to

log10(R,) = -1.0, at which point they level off and achieve a steady state behavior asI
R-+ 0. The normalized radial stress experiences a similar transitional period, but

it increases linearly in the region where the other components reach their steady-state0

values (R, < -1). This indicates that the radial stress component is logarithmically
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singular. Figure 4.16 shows the normalized elastic stress components plotted versus

normalized radial distance R at 9 = -860. At this angle, all the stress components

experience some transitional behavior at R1 > -1 before they reach a linear region.

In Figure 4.17 the angular distribution of the normalized stress components at R =

0.00551, R = 0.0138, and R = 0.0.0551 are plotted. It is obvious that the asymptotic

stress distribution does not generally reach a steady-state as R -- 0 (or R, -- 0),

as is observed in the upper domain, nor does it reach a self similar distribution as

is observed in homogeneous asymptotic elastic and plastic crack-tip fields (Rice and

Rosengren, 1968; Hutchinson, 1968).

Formulation of an Elasticity Potential

To describe the stress field very near the crack tip, beneath the region where the solution

in the upper domain has achieved a steady state, a closed form elasticity solution will be

formulated. The planar elasticity solution will describ- "he asymptotic characteristic

as R --+ 0 in the lower field and will be expressed in the form of an elasticity potential.

It has been shown that any planar stress function, 4(z, y), which satisfies the dif-

ferential equation

C-"0 a4, a4 0
-+2 +-=o, (4.26)
X 4 8zX2ay2 + 4 0

also satisfies the basic equations of isotropic linear elasticity, namely the constitutive,

equilibrium, and the compatibility equations (Timohenko and Goodier, 1970). In

addition to satisfying Eq.(4.26), the stress function must also satisfy all accompanying

boundary conditions. The individual stress components for a body with stress function,

S(with negligible body forces) are:

Co23(zY) = a'O,(z,y) (4.27)

. ( 2(Z Y) (4.28)

and1I
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o,(x, = y) (4.29)

The strain field is found by inverting the appropriate isotropic elasticity tensor, Z, I.

defined in Eq.(3.14), and using it to operate directly on the stress field. Assumptions

regarding plane-strain (or plane-stress) conditions are necessary to fully define the stress

and strain fields. Integration of the strain field uniquely determines the displacement

field, to within a rigid body motion. Therefore, the determination of 0, in conjunction

with the planar assumptions and two elastic material properties, completely describes

the elastic fields.

The stress function 0 need not be expressed in Cartesian coordinates. It can be

found in any coordinate frame and, via the proper coordinate transformation, trans-

formed into any other coordinate frame. For example, it is more convenient to express •

the stress components around the crack tip in a polar coordinate frame. The polar

stress components can be obtained from 0 by (Timoshenko and Goodier, 1970):

C1 610(r,9)=(4.30)

o',(r,9) = a- 18k , (4.31) .
8r Cie -

and ]

1,,(r 1 a4(r,0) I alo(re) (4.32)
-r 8r +-ji 526

where r is the radial coordinate and 9 is the angular coordinate.

In general, the stress potential 0 is obtained by considering the assorted boundary

conditions and the desired asymptotic behavior. In an attempt to find 0 for the problem

at hand, the contributions to 0 from the local crack-face and interfacial tractions are U
first examined.

The major factor which governs the behavior of the elastic domain is the interfacial
traction. Because of the elastic/perfectly-plastic material idealization used in the upper
domain, and to within the limits discussed previously, the asymptotic crack-face and

interfacial tractions, t, as R -. o, assume constant values of:



9 = = 0 (4.33)t, 1 0 0 =- 180*,

ands 
a e 0 *

t9 = 0 0 -180". (4.34)

Here a., refers to the yield strength of the material in the upper domain a,.,, and the

subscripts n and a designate the normal and shear components, respectively. Although

these asymptotic interfacial tractions extend only over a "short" distance within the o

plastic zone, the actual traction distribution is approximated by considering that these

tractions exist over the entire interface within the plastic zone. Outside the plastic

zone region, the asymptotic elastic stresses are small with respect to a.. and decay

rapidly as the radial distance r increases. To describe the asymptotic behavior in the

crack-tip region it is assumed that the interfacial tractions in the elastic portion of the

upper region are negligible. The interfacial tractions are idealized as being equal to

zero everywhere beyond the plastic zone and within the plastic zone are equal to t,

and t., as given by Eqs.(4.33) and (4.34). This idealized traction distribution around

the crack tip is drawn in Figure 4.18.

By consideration of this idealized interfacial traction distribution, an elasticity po-

tential is assembled which asymptotically reproduces the stress and strain state in the

elastic lower domain as r --+ 0. From the known solutions for semi-infinite bodies with

constant normal and shear surface tractions across half of their free surface (Timo-

shenko and Goodier, 1970), the stress potential, 0, for the lower crack-tip domain is -

assembled by superposition of the various known solutions and is expressed as

s a. + 2 2 I + Y2 + zy arctan

+ (z- r ) yarctan (
\Z + r1/J_

"L [Z2 +y 2) arctan(Y) -Y + (Z + r) y

(+ ,) +Y 2) arctan ( 7 )] (4.35) 0
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Figure 4.18 Idealized interfacial traction distribution for a traction-free crack-tip in 4d

SSY conditions, showing interfacial normal (t) and shear (t.) tractions, plastic <zone radius of upper material (rr), and polar (r, -y) and Cartesian (x, y) coordi-

nates.
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Here r, is the plastic zone radius along the interface. (The stress potential for a semi-

infinite body is a special cue of the general wedge solution with the enclosed wedge

angle equal to 180".) Since only the asymptotic crack-tip elastic stress field is desired

and the traction distribution outside the crack-tip region is only approximate, attention

is focused upon the very near crack-tip field. By dividing Eq.(4.29) by rl' , defining

two new relative coordinate measurements X = x/rI and Y = y/rr, and by assuming

X < 1 and Y < 1, the local asymptotic stress potential is obtained, as RI -, 0 (where

Rj = X2 + Y2), and it is given by S

Sao's 1

"Y2 ln(X2 +Y2) +XYarctan (L)Y2

+ fV (X2 + Y2)arctan (-)xY]. (4.36)

At small distances along the interface relative to the interfacial plastic zone radius,

rj, the tractions appear to remain constant for increasing or decreasing z. Thus, by

observation of the traction behavior, the stress potential for a semi-infinite body with

constant normal and shear surface tractions across half of its free surface could be

obtained directly. Note, Eq.(4.36) is the stress potential for such a semi-infinite body,

except that the coordinates X and Y are normalized by the plastic zone radius along

the interface.

Timoshenko and Goodier (1970) pointed out that prescribing only the surface trac-

tions and determining their resultant stress potential does not always uniquely charac-

terize the stress field. Stress fields which require no surface tractions or displacement

boundary conditions on the free surface (y = 0) can be arbitrarily superimposed. Due

to these boundary constraints, certain restrictions are imposed on the otherwise arbi-

trary fields. Since no free-surface shear tractions are allowed in these fields,

o3 (X,Y = 0) = 0 =* Y t(XY = 0) = 0, (4.37)

and because no normal tractions are admissible,

812o,,(X,Y =0) =0 2 O4 XY=0) 0. (4.38)
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For small values of X and Y as Ri 0, the most dominant field which satisfies these

conditions is that of a uniform stress field parallel to the interface, defined such that

O =S - Ta,,. The stress potential for this uniform field is given by

q= I Tay, Y]. (4.39)

The total asymptotic stress potential for the elastic lower domain as R,-+ 0 is

now assembled. Sumnming the various stress potentials, Eqs.(4.30) and (4.33), the total

stress potential, expressed in a polar coordinate frame, is

l0 " R n(R,) sin2 (-y) + R'- sin(-y) cos(-I) - Rl'sn-)

M[R-y - R sin(y) cos (-y)] + TawI. [RI sin2(-y)]. (4.40)

Asymptotic Characteristic

The stress components are obtained from Eq.(4.40) using Eqs.(4.30) to (4.32), and

are converted to the polar coordinate frame used shown in Figures 1.1 and 2.1 (via

9 -y - 7r). The normalized stress components are expressed as

-- [( + 2 I (R)) sin'($) + (wr +90) smn(29)j

+- w + 9 - uin(9) cos(O)] + T lsin'(f)] , (4.41) '

Cr? S

Url V[2In (R) cos'(0) - (wr +0) sin(29) - sin2(0)] (.2

+-P [v + 9 + sin(9) cos(8)J + T [cos2(9)] ,(.2

and

r -Si (1 +2 In (R)) sin(20) + (w +90) coe(29)]

P' Lin (0)] - T [sin(9) coos(0). (4.43)

It is assumed here that the plastic zone radius along the interface, rj, can be approxi-

mated by the characteristic plastic zone dimension, rp such that RI gz R. 0



WU . -a W.

The total stress state at any point in the elastic domain can be decomposed into

the three individual components which describe the entire field. From both a physical

and mathematical point of view, the uniform T-stress produces no startling or unusual

features. The field which results from a uniform normal interfacial traction (Pa.,)

produces normalized stress components of order P/7r which are solely a function of

angular location. The third field which arises, due to the uniform interfacial shear

traction, is logarithmically singular as R -+ 0 (and mathematically as R - oo+). The

stress components behave as a - [(S/ir)o1. In (R)] as R -. 0, indicating that large _

stresses are present and that yielding in the lower material domain is expected near

the crack tip. This meana that the inclusion of non-linear deformation in the upper

region does not completely eliminate the stress singularity at the crack tip; rather it only

changes the relative degree of singularity at the crack tip.

The actual asymptotic stress field is completely defined by substituting in the ap-

propriate numerical values for S, P, and T. The numerical values of S and P are

solely determined by the deformation pattern of the upper domain; however, the value

of T is a function of the local asymptotic deformation and the far-field loads. In the

traction-free crack-tip analyses the M = 0 "T-term" and associated eigenmode directly

correspond to the uniform in-plane T stress. (In the boundary layer formulation the 0

coefficient of the T-term is set to zero.) The value of T arrived at here does not include

far-field loading effects and only reflects the interaction of the local crack-tip elastic-

plastic fields with the elastic K-fields. The elastic far-field contribution in homogeneous

cracks is typically small compared to the yield stress, but as pointed out by Larmson

and Carlsson (1973), a non-zero T-stress does alter the local plastic fields.

The individual elastic stress fields are completely characterized when the precise

numerical values of P, S, and T are determined from the numerical analyses. From the

slip-line model used to describe the plastically deforming upper region, the interfacial

traction coefficients P and S are extracted, and the value of T is obtained by matching

the predicted behavior in the lower elastic region with the actual numerical results. S
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To determine the value of T, any number of matches can be made which theoretically

should produce identical results; e.g., matching the radial strain, E,,, along the interface.

In the work described herein, T represents the average of matching cr, at 0 = 0* and

0 = -180*, typically at R = 0.01. This is done in an attempt to minimize the effects

of numerical noise.

Comparison

Comparisons between the asymptotic fields based upon the elasticity potential and

those numerically calculated are now made. Figure 4.19 shows the angular distribution

of the normalized stress components for the case of a deformable aluminum medium

atop a graphite substratum loaded with LK = 0 until Co = -2.70 ° (e = -0.07923). In

judging this comparison, one should bear in mind that ce. and a,* are mathematically

required to match by definition of the boundary conditions imposed in obtaining the

stress potential. The radial strain along the interface as a function of the In R is

plotted in Figure 4.20 for the same conditions as in Figure 4.19. Here development

of the asymptotic "logarithmically singular" solution is evident. The fields described

by the elasticity potential, Eq.(4.40), represent the actual crack-tip fields at radial

distances where R, < 0.05 or (in terms of the normalized radial distance R) where R <

0.01. The additional restriction on R, as compared to RI, is necessary to compensate
for any overestimation that the assumption rr ,- rp causes, since the characteristic
dimension in the lower hatf-plane is r1 , not rp. Clearly, sufficient agreement exists

between the numerical result and the stress potential to justify use of the stress potential

for describing the lower half-plane asymptotic crack-tip fields in SSY.

4.2.3 Parametric Study

This section explores the dependence of the SSY asymptotic crack-tip field on the ILPA

(co) and on material properties, namely c and z. The stress intensity factor angle (LK)

is varied in an attempt to cover the full range of admissible ILPA for several values
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of e. Various materials and material combinations are used to span nearly the entire

plane strain range of e for positive Poisson's ratio (-0.170 < e < 0.170). By use of six

materials, whose isotropic elastic properties are listed in Table 4.3, the various values of

e obtained by pairing the materials are shown in Table 4.4. It is not possible to isolate

the dependence upon the Poisson's ratio £11, since varying v, simultaneously alters e,

except in the degenerate case e = 0.

,u (GPa) E (GPa) oc (GPa) v Reference
"Soft" 1.00 2.04 0.708 0.02
Graphite 5.48 13.7 9.13 0.25 Chamis, 1984 t
Aluminum 26.1 70.1 73.9 0.342 Hertzberg, 1976
Steel 80.7 210.0 175.0 0.293 Hertzberg, 1976
"Stiff" 249.2 722.7 2409.0 0.45
"Rigid" oo oo o 0.0 _

tApproximate isotropic (transverse) properties from a Pitch-55 fiber.

Table 4.9 Idealized elastic material properties.

E Region 1 Region 2
Upper Domain Lower Domain

-0.1700 0.4885 "Stirf" "Soft"
-0.07923 0.2439 Aluminum Graphite

0 0 Aluminum Aluminum
0.03320 -0.1039 Aluminum Steel
0.07796 -0.2400 Aluminum "Rigid"
0.07923 -0.2439 Graphite Aluminum
0.1700 -0.4885 "Soft" "Stiff

Table 4.4 Material combinations used in analyses to obtain the various e.

For all the cases considered, the evolution of steady-state solutions, interfacial trac-

tions, and strains are fundamentally the same as discussed previously. In the upper do-

main, the plastic zone boundary separates the elastic and yielding regions. The shape,

size, and growth characteristics of this boundary, along with its dependence upon C, ZK,

and vi are essentially represented *" the plastic zone approximation, Eq.(P2.6), and

thus the ILPA, Co. The plastic zone grows in a periodic fashion with respect to 0, which,
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along with e, completely determines the plastic zone shape. Figures P2.4 to P2.7 show

the actual numerically calculated plastic zones for the various values of o and E along

with the elastically approximated plastic zone shapes. The actual plastic zone features

are always elongated ahead of the crack tip, as compared to the elastic approximation,

while the features in the region along the crack face are "stunted" as compared to the

elastic solution. In combinations of CO and e in which the elastic approximation predicts

small crack-face plastic zone lobes (usually Co > 0), the elastic/perfectly-plastic material

idealization totally suppresses the formation of any crack-face lobes. The suppression

of these crack-face plastic zone lobes has a pronounced effect on the asymptotic SSY

crack-tip fields, as elaborated upon earlier. Subsequent discussion is, therefore, limited

to describing the asymptotic fields via representative forms and discussing unique or

unusual features that arose in specific cases.

Plastic Crack-Tip Fields and Interfacial Tractions

The tensile yield strength used for all analyses is 32.5 MPa, however, the numerical

value used for a, is irrelevant in slip-line representation, because all stress components

are linearly dependent upon a,. In the interpretation of these results, it is the initial

shear strain to yield, -70, which is important, since -1o is used to judge where the

elastic strains are small relative to total strains, thereby defining the domain where the

asymptotic slip-line solution accurately represents the stress field. In this parametric

study the initial tensile yield strain ranges between 1.6% for the elastically "soft"

material, and 0.0045% for the elastically "stiff" material.

The asymptotic crack-tip field can now be assembled for each individual case. From

Figure 4.10, the schematic slip-line field, and Table 4.5, which lists the slip-line field

angles, all the asymptotic stress fields considered are defined. As alluded to earlier,

an elastic wedge with uniform surface tractions along its sides is necessary to complete

some of the slip-line fields. Included in Table 4.5 is the elastic far-field value of J.

The stress potential and stress components for the elastic wedge are given in Appendix
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B. Table 4.6 contains the values of the elastic wedge coefficients a2 and c2 required

to match the numerical stress states. Although the general stress potential for such

a wedge, Eq.(B.4), allows for singular radial stresses (or,, 1/r), no such behavior is

found in the numerical calculation. Because of this, the coefficients a, and c, in the

potential, Eq.(B.4), are zero.

/-___ K J MPa m ati-

-0.07923 29.10 26.60 7.713 x 10-2 0 830 (760) 970 840
-0.07923 4.620 00 4.853 x 10-2 00 1350 450 00 0
-0.07923 -25.00 -26.6 ° 9.552 x 10 - 3 0 1350 450 00
-0.07923 -41.4o -45.00 6.094 x 10-2 610 740 450 00
-0.07923 -57.20 -63.40 3.428 x 10- 1 800 550 450 00
-0.07923 -81.80 -90.00 2.191 x 10-2 900 450 450 0

0 00 00 5.066 x 10 -2 0 1290 (1150) 510 490
0.03320 0.1270 00 2.986 x 10- 2 0 1230 (1170) 570 560
0.03320 -46.20 -45.00 1.453 x 10- 2 880 470 450 00
0.07923 -0.980 00 0.1159 47ft 83 0 (770) 500 440
0.1700 -1.080 0 0.7291 1740 61' 450 00

Co P S T
-0.07923 2.91* 1.83 1/V3 0.42

-0.07923 4.620 3.22 1/V -0.48
-0.07923 -25.0 3.22 1/V3 -2.3
-0.07923 -41.40 1.99 -0.31 -0.9
-0.07923 -57.20 1.88 -0.54 -1.2
-0.07923 -81.80 1.48 -1/v'3 -0.95

0 0 3.21 1/V/3 -1.10
0.03320 0.1270 3.14 1/V3 -1.56
0.03320 -46.2 1.69 -0.57 -0.68
0.07923 -0.980 2.68t 0" -0.96
0.1700 -1.08J 2.11 -0.49 -0.55

Table 4.5 Traction-free crack-tip slip-line angles and traction coefficients for various .' .
values of e and applied K. The slip-line angle e1 = 0 except as noted; t - 1 20 ° .

Hydrostatic noise present in the deforming constant state sectors limited the anal-

yses resolution for certain cases. Crack-tip fields which contained interfacial elastic

wedges or interfacial constant state sectors (with a < 900), probably contained cusps.
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The stress state weakly depended upon R along the interfacial constant-state/fan bor-

der (8 = a), however conclusive verification of a cusp presence was not possible due to

the limited extent of the mesh. For some cases hydrostatic noise in interfacial constant

state regions perturbed interfacial normal tractions and stresses in the lower elastic

region appreciably, and this limited the resolution of the T-stress. It should be noted

that in inelastic sectors hydrostatic noise alone did not severly restrict identification of

asymptotic crack-tip fields because deviatoric stresses and the shear strain, which were

unaffected by hydrostatic pressure, were used.

The asymptotic traction-free crack-tip fields and interfacial tractions for an

elastic/perfectly-plastic media adjoint to an elastic substratum are qualitatively identi-

fiable for the full range of admissible CO, and are outlined for the material combination

where the upper region is aluminum (v& = 0.342). The following discussion is only

schematic, and based upon the data, the actual asymptotic slip-line fields are (only)

mildly dependent upon P and e. Figure 4.21 qualitatively depicts the anticipated slip-

line angles as a function of CO and (selective) known data points are represented by a

"+". The associated assemblage of asymptotic crack-tip sectors, sketched schemati-

cally in Figure 4.22, shows the evolving generic crack-tip behavior with respect to the

ILPA and simulates the crack-tip evolution for monotonically increasing proportional

loading. For positive values of e and fixed LK, the crack-tip fields evolve with increas-

ing load in the direction of increasing Co. The arrows on the sector boundaries indicate

the direction that each boundary moves as CO increases.

f C0 a2  C____

-0.07923 29.10 0.153 -0.113
0 0 -0.221 -0.053

0.03320 0.1270 -0.185 -0.080
0.07923 -0.980- -0.228 -0.040

Table 4.6 Interfacial elastic wedge coefficients. 'II
A natural separation in the asymptotic crack-tip fields occurs at C f 00. For negative

ILPA (Co < 0) the crack-tip fields are fully plastic and consist of only fan and constant
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c.s.
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Figure 4-22 Schematic evolution of asymptotic slip-line, fields as a function of o, for
an elastic/perfectly..plastic material bonded atop an elastic or rigid substrate.Figure based upon data for c -0.07923 when c :5 0 and e =0.07796 whenCo > 0 with t, 0.342.
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state sectors. To meet the traction-free crack-face boundary condition, a constant state

sector always exists along the crack face which extends 450 ( /-'-450). For o between

-90 ° and -30, an interfacial quasi-constant state region is present whose angular

extent (a) varies from 900 when o = -90 to 00 when O -300. The interfacial

tractions vary from their minimum (t. = -k and t,, = 1.48a,,) at 0 -- 900 to their

maximum (t, = k and t,, = 3.22a..) when o equals -30 ° . The interfacial tractions and

assemblage of crack-tip sectors remain unchanged as the ILPA increases from -- -30*

to some critical value near zero. 0

When the ILPA is positive, the crack-tip fields consist of both elastic and plastic

sectors. It is speculated that as o increases and approaches zero, the stress state

everywhere in the crack-face constant state region falls simultaneously below the yield

stress, and this produces a crack-face elastic wedge which extends a minimum of 45' .

Along the interface an elastic sector, with a quasi-constant state sector adjacent to it,

emerges and whose appearance is speculated to be linked with formation of a local

plastic-zone boundary kink. [From Eq.(P2.6) it appears that both o and the angular

location at which this kink forms are dependent upon v and c.] Adjacent to both elastic

wedges are constant-state regions which in turn border opposite sides of a centered fan.

Near the interface, a cusp boundary separates the fan and the constant state region.

The angular extent of the interfacial constant-state region approaches zero (a -- 0)

as R -* 0 and as Co increases to approximately 35 . The crack-face elastic wedge size

increases with the ILPA from C = 450 at Co f 1 to 6 = 87* at o = 30, and it is

speculated that the size of the crack-face elastic wedge increases toward C = 180* as

o approaches 900. Because various interfacial zones emerge, the interfacial tractions

fluctuate appreciably over the range of positive ILPAs. The smallest interfacial shear

traction, t, = 0.10a.., appears near Co = 1V, and then increases to its maximum value,

t, = k, for values of the ILPA equal to or greater than 35° . The normal interfacial

traction decreases from its maximum value at Co = 00 as the ILPAs increase.
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Strain Distribution and CTOD

The strain fields are again represented by the "1,# distribution. The normalized strain

distributions at six values of 1c between -81.8 ° and 21.9 are plotted in Figure 4.23

at R = o for e = -0.07923. To accommodate plotting, the minimum value on the

ordinate axis is set to -15, which truncates two strain distributions. At 0 = 00 the

values of -y,#(R/-yo) are -899 and -49.8 when the ILPA (Co) equals -57.2' and -81.81,

respectively. Drawn in Figure 4.24 are the normalized strain distributions for four

values of e at R = 10 and O ; 00. Figure 4.24 (b) shows the strain distribution

for E = 0.03220 when the ILPA equals -46.2*. In this figure, the truncated value of

'YrO(R/fyo) at 9 = 0- is -41.5.

To further summarize the strain fields, Table 4.7 contains the numerically calculated

magnitude of 6 CTOD, normalized by o,/J, and its associated angle w. (J is the far-

field elastic J-Integral value.) For comparison, the elastically calculated CTOD angle,

obtained by evaluating Eq.(P2.32) at r = r., is also given. The difference between w

and wErj,,, is typically less than 300, and w is always less than wo,,.

LK J MPa m OvbCTOD/JI W IWEatic
-0.07923 29.10 26.60 7.713 x 10-2 1.008 21.40 56.70

-0.07923 4.62 0 4.853 x 10- ' 0.489 42.50 76.70
-0.07923 -25.00 -26.60 9.552 x 10-3 0.621 83.10 108.40
-0.07923 -41.40 -45.00 6.094 x 10-' 0.815 98.90 130.10
-0.07923 -57.20 -63.40 3.428 x 10-2 1.086 107.20 151.6
-0.07923 -81.00 -900 1.867 x 10-2 1.246 165.30 179.90 0

0 00 00 5.066 x 10-2 0.598 81.20 900

0.03320 0.1270 00 2.986 x 10-2 0.668 88.80 93.70

0.03320 -46.70 -45.00 1.152 x 10- ' 1.364 130.70 136.50
0.07923 -0.9800 00 0.1159 0.759 98.30 99.90

0.1700 -0.568- (0 0.8387 0.876 107.30 109.2,

Table 4.7 Traction-free crack-tip CTOD and CTOD angle (w) for various values of E I
and applied K.

From the information in the quarter wave-length analysis and this parametric study, 0

the strain distribution in an aluminum upper region (v = 0.342) is qualitatively de-
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scribed for the full admissible range of the ILPA. When the ILPA is between -900

and -50*, the largest strains (in magnitude) occur at the interface [-y,(R/-yo) < -401,

while modest positive strains [yye (R/-yo) _, 4] are produced in the fan region near the

crack-face constant-state sector (0 % 1300). As CO approaches zero, negligible interfacial

strains are present and the location of maximum strains j'-y(R/'yo) 3] migrates from

0 = 1300 to approximately 0 = 90*. For positive o, the location of maximum strains

is in the centered fan, about 150 to 200 away from the crack-face elastic wedge, and

moves toward the interface as the fan region shrinks. Finally, the maximum strains for

o between 0° and 300 are relatively small [-y,#(R/-yo) - 2].

When e > 0, large residual plastic shear strains would appear to accumulate and

reside in portions of the non-singular sectors due to the continuously changing angular

extent of the fan region. In centered fans the angular locations of the largest radial shear

strains generally exist 10* to 150 away from the crack-face elastic-fan transition border,

and for small to modest values of c the asymptotic fields and ILPA change slowly with

increasing magnitude of K (A 0/AIIKI = 2E/1jKJ) as compared to the plastic zone size

(Arp/AIIKII = 2rp/IIKII). Thus, by the time an elastic sector is positioned in a region

previously occupied by a centered fan (where large strains existed), the plastic zone size

and blunted crack-tip opening size would have grown by at least one order of magnitude

or more. As the plastic zone size and CTOD grow, the inner limit of the radial extent of

the "asymptotic crack-tip field" (r = rp-fo), also grows. Therefore only a small portion

of the elastic sector which is very near the crack tip could potentially contain large

(previously singular) residual shear strains (-ye, oc 1/r), and, mathematically, these

residual singular strains would be those that accumulated at r > "7orp.

Path Dependence of J-Integral

In the parametric study, local crack-tip J-Integrals were only estimated by the VCEM.

Nine contours centered about the crack tip were evaluated, and the average of the

second to fourth contours are tabulated in Table 4.8 for various o and c. The nine J
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estimates typically vary by less than 5%, and except for the case where o = -57.2,

no discernible trends are evident; i.e., J does not consistently increase or decrease as

R -+ 0. In the case where c = -0.07923 and 0 = -57.2*, the J estimate increases by

89% from the ninth to the first contour (as R - 0). However it is thought that this

increase reflects the limited radial extent of the steady-state solution, and therefore it is

insignificant. In general, the degree of crack-tip shielding or intensification is strongly

dependent upon Co.

[ e {~ , ~jJVCEM/JEI.iti
-0.07923 29.10 0.43
-0.07923 4.620 0.77
-0.07923 -25.00 0.94
-0.07923 -41.40 1.06
-0.07923 -57.210 1.11
-0.07923 -81.80 0.25

0 0 0.90
0.03320. 0.1270 0.92
0.03320 -46.20 0.68
0.07923 -0.9800 0.97
0.1700 -1.080 0.92

Table 4.8 Local J-Integral values, normalized by the elastic far-field value of J,
estimated by the VCEM for various values of o and e.

Conclusion

The bi-material traction-free crack-tip fields for an elastic/perfectly-plastic material

atop an elastic (or rigid) medium are represented by perfectly-plastic slip-line theory in

the upper region and by an elasticity potential in the lower region. This representation

is accurate at radial distances less than 1% to 5% of the characteristic plastic zone

dimension rp. The local stress and strain fields are strongly dependent upon the ILPA

( o) and modestly dependent upon the bi-material constant (c) and the Poisson's ratio U
of the plastically deforming media. No oscillations exist in elastic/perfectly-plastic bi-

material crack-tip fields, however, cusps are found in some crack-tip fields which couple S

portions of the stress state to the radial distance from the crack-tip.
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In the upper region, plastic deformation completely surrounds the crack tip for most 0

values of E when the ILPA is negative, thus the interfacial tractions are bounded between

t, < k and 1.48 < t,,oav. < 3.22. In loadings where the ILPA is less than -50 ° ,

extremely large shear strains accumulate near the interface. The crack-tip behavior

is significantly different for positive ILPA in the sense that elastic sectors are present.

Interfacial elastic wedges are found embedded within the plastic zone, and a crack-face

elastic sector grows (for E > 0) in angular extent as IKI increases. Interfacial tractions

vary between 0 < t, _5 k and 1.7 < tnlav , < 2.9, however, the interfacial strains are

typically very small.

The asymptotic fields in the lower elastic region are represented by the superposition

of three individual stress fields. The three stress fields are represented by a semi-infinite S

body with uniform:

1. Shear tractions (t, = Sa,,) across half of its free surface.

2. Normal tractions (t. = Pa,.) across (the same) half of its free surface.

3. Uniform stress (of magnitude To..) in the direction parallel to the free surface.

The free surface tractions simulate the conditions existing along the postulated intact

interface in the immediate crack-tip proximity. Due to the jump in interfacial shear

tractions, the elastic fields in the lower region are logarithmically singular and crack-tip

yielding is expected. The radial strain along the interface is not zero, even though the

interface is a line of zero extension (according to rigid-plastic slip-line theory).

The elastically-calculated and numerically obtained CTOD, the J-Integral, and theii

plastic zone shapes can differ appreciably. The CTOD angle W was smaller than its

elastic estimate, and no crack-face contact occurred over the range of o explored. How-

ever, prior to establishing steady-state asymptotic crack-tip fields, oscillations present
during initial plastic deformation may induce crack-face contact within the plastic zone
for values of o less than the elastically predicted critical values 1, [Eq.(P2.35)]. Al- 0

though plastic deformation reduces the range of admissible "traction-free crack-tip"
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loadings, for many load states it also helps shield the crack-tip. The local J values are

lower than the far-field elastic J-Integral by as much as 58%, but the significance of

this is unclear.

4.3 Closed Crack-Tip Model

The local behavior around a closed bi-material crack tip varies much less than the local

behavior around a traction-free crack tip. The approximated plastic zone shape in

Figure 2.2 is relatively independent of the precise values chosen for # and V. Because

a large lobe extends along the crack face, it is anticipated that the actual plastic zone

in the upper medium will always completely surround the crack tip. Even if the same

degree of plastic zone suppression occurs along the crack face, as seen in the traction-free

model, the plastic zone should still completely engulf the crack tip. Figure 2.3 shows

the approximated plastic zone along with the location of actively yielding integration

points from the numerical calculations, represented as black dots. To accommodate

plotting, not all of the actively yielding integration points near the crack tip were

drawn.

4.3.1 Plastic Fields

The transition from the remote K' 1-field to the asymptotic plastic field is similar to

that observed in the traction-free crack-tip model. A steady-state solution is achieved

at radial distances less than 1% to 5% of the characteristic plastic zone dimension rp.

During this same transition period, the interfacial tractions and the now non-zero crack-

face tractions also establish themselves. Similarity profiles of the normalized crack-face

and interfacial tractions are shown as functions of the normalized radius, R = r/rp,,

in Figure 4.25. (The sign convention for positive normal traction is tensile stress, and

shear traction has the same sign as ore.) No gaps open along the crack face, and the

minimum crack-face traction occurs prior to reaching its steady state value near the

plastic zone boundary.
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Figure 4.26 Slip-line field at a closed SSY interfacial crack for an elastic/perfectly-
Plastic upper region bonded to a rigid substrate. See Table 4.9 for numerical
values of indicated angles.
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As r -. 0, the asymptotic interfacial and crack-face tractions t take on constant

values of
{pays 0 =0 °

= Q :V' 0 - 1800, (4.44)

and
{save. 0 =00

, o -1800. (4.45)

The asymptotic crack-tip stress state is completely constructed from fan and con-

stant state regions. A schematic closed crack-tip slip-line field is sketched in Figure

4.26, while Table 4.9 lists the schematic slip-line angles and the crack face and inter-

facial tractions obtained from the numerical calculations. (The slip-line angles for the

closed crack-tip case were extracted from the numerical calculations in the same way

as the traction-free crack-tip slip-line angles were.) Due to the crack-face contact, it

is necessary to know the precise value of the normal traction on either the crack face

or interface in order to construct the stress field in the upper domain. In this closed

crack-face case, the crack-tip displacement represents sliding parallel to the interface,

w = 180 ° , and has a normalized magnitude of I6CTODa ,/JI = 1.914.

1al I 1-y I a2 y2I P S TI Q
-0.2401 0.07796 291 1190 160 450 0.131 -1/,/3 - 0.183

Table 4.9 Asymptotic SSY slip-line angles and traction coefficients for closed crack-
tip model; elastic/perfectly-plastic material atop a rigid substrate.

Computationally, the shear strain at the fan near the crack face extends slightly

beyond its purported angular extent. This is likely an artifact of the mesh discretization

in this region, since the crack-face constant-state zone has no shear traction and there

is no indication of an elastic wedge (see Figure 2.9). Thus the transition from constant

state to centered fan must occur at 8 = 1350. Indeed, the circumferential extent of the

elements is nearly equal to the amount by which the shear zone in Figure 4.27 extends

beyond the fan/constant-state boundary. The numerical and assumed asymptotic stress
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distributions plotted in Figure 4.28 differ only near the fan/constant-state borders,

again over angular distances which correspond to the angular span of several elements.

Excluding mesh discretization error, the assembled and numerically calculated crack-tip

fields are in excellent agreement.

It is enlightening to compare the slip-line field, plastic zone shape, and the shear

strain distribution. In Figure 2.8, the radial lines emanating from the crack-tip rep-

resent the slip-line field boundaries, and Figure 4.27 is a plot of the asymptotic shear

strain distribution. The shear strains are largest (in magnitude) at 0 = 0' (negative)

and 1300 (positive), which correspond to local maximum plastic zone radii. Near the

center of the constant state regions the plastic zone radius exhibits a local minimum

and the shear strain are nearly zero. It is evident that the radial shear strain distri-

bution significantly influences the plastic zone shape and, to some extent, the local

asymptotic stress field, and vice versa.

4.3.2 Elastic Field

Although the lower region was idealized in this work as being rigid, certain features

of adjacent elastic fields can be ascertained in the same fashion as they were for the

traction-free crack-tip model. Consider the conditions that exist along the common

boundary of the elastic and plastic regions. The traction distribution beneath the

plastic zone can be idealized such that they are described by Eqs.(4.22) to (4.23) and

zero elsewhere. Figure 4.29 is a schematic representation of the assumed traction

distribution. The elastic stress potential for the closed crack-tip model is obtainable

by superimposing an additional stress field, attributable to contact traction [t'(9 =9

7r) = -Qc,,], to that previously obtained for the traction-free model Eq.(4.40). The

total stress potential from the three individual traction contributions and the general

uniform parallel stress field is

7r 2 (x + rl)' + y=' + zartn£

+ (x - r) arctan
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Figure 4.29 Idealized crack-face and interfacial traction distributions for a closed fric-
tionless crack-tip in SSY, showing plastic zone radius along interface (re) and
crack-face (r,) and polar (r, -y) and Cartesian (x, y) coordinates.
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paX 2 + Y2 rca - XY + (X + r)

r
27r ( )zrtn 2+

~((X + 42 +YI) arctan (zY
x+ TI

27 artn + x r)
((x - r,)+ y)arctan ( 2Y + [y2]. (4.46)

Here rc is the size of the plastic zone along the crack face (0 = 1800) and rz is the size

of the plastic zone along the interface (d = 00).

The asymptotic crack-tip behavior, as r -+ 0, is found by defining X = 2/rI and

Y = Y/r, assuming r % rr, and assuming X < 1 and Y < 1. The asymptotic stress

potential, as R, - 0, is given by

q C=---- In (X2 X+ y2)+X arctan - _Y2
7r 12

+2-ffv 1- [W +Y2) XItn

Q°"' [(xI+ y2) arctan Y + YI + 1Tor, [y2], (4.47)

or when expressed in a polar coordinate frame is given by

=b - $ o [Ri ln(R)sin2 ( y)+ R'-ysin(-y)cos(-y) - Rlsin('y)]

27r [R) (7r - -) + R sin(-)cos(-y)) + 2TTa, [R) sin'(-y)]. (4.48)

The individual stress components can be obtained directly from the potentials via the

relationships in Eqs.(4.2) to (4.4) or Eqs.(4.5) to (4.7).

In general, the elastic stress and strain field for the closed crack-tip model differs

fundamentally only slightly from that derived for the traction-free crack-tip model. The

addition of the crack-face tractions only contributes to the individual stress component _

terms of order Qoa,/r. For non-zero values of S, the stress field is logarithmically

singular.

Comparison between the stresses based upon the elastic potential and the numerical

calculations are not possible because the lower domain was idealized as being rigid. For
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the same reason, explicit values for T were not expressed. As for agreement between

the two solutions, one can only speculate that it would be comparable to that achieved

in the traction-free crack-tip model (i.e., very good) and would be accurate at radial

distances less than 1% of R.

4.3.3 Conclusion

The asymptotic stress field around a closed bi-material crack tip are completely repre-

sented by deforming slip-line fields in the upper domain and by an elastic potential in

the lower domain. The asymptotic solution has interfacial shear tractions equal to the

shear yield strength of the material (k) and small tensile normal tractions (- 0.13oay).

On the frictionless crack face, the asymptotic compressive normal tractions is also small

(~ 0.18a,.). The resulting plastic zone shape reflects certain features of the shear strain

distribution and stress distribution.

Although no parametric study was performed, it is anticipated that asymptotic

closed-face slip-line fields for an elastic/perfectly-plastic medium adjoint to a dissim- 0

ilar elastic material are only weakly dependent on /3. As discussed previously, the

elastically-calculated plastic zone is rather insensitive to the precise values of /3 and v

used. In the degenerate case /3 - 0, the far-field elastic homogeneous mode II solution

is recovered, it is therefore expected that as #3 - 0, t,,(6 = ±r) -. 0. Finally, the

homogeneous mode II slip-line field, whose slip-line angles are al = 36.80, yl1 = 126.80,

a2 = 8.20, and -Y2 = 45 ° for 9 > 0 (Hutchinson, 1968), does not differ substantially

from the asymptotic field obtained for /3 = -0.2401.

4.4 Limitations

In this work the term "asymptotic crack-tip fields" has been extensively used to de-

scribe local crack-tip phenomena, but what are asymptotic fields? Webster (1979) I
defines an asymptote as "a line which continually approaches nearer to some curve,

but, though infinitely extended, would never meet it." Fracture mechanics commonly
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uses expressions to reproduce the dominant features and near-tip behavior which it

terms as asymptotic. However these relationships are not truly asymptotic by defini-

tion in that they are only representative over a discrete interval because their underlying

assumptions simplify and exclude a portion of the physics and mechanics. This section

defines the limits for which the asymptotic characteristics are appropriate by identify- 0

ing length scales for which the simplifications or omissions made in the mechanics are

admissible.

In Chapter 2 it is established that the asymptotic elastic field equations [Eqs.(2.4)

to (2.7)] represent SSY traction-free crack-tips for radial distances between 3rp and

1/10, where rp is the characteristic plastic zone dimension and I is the characteristic

geometric length. The outer limit defines the point where the local solution reproduces

only 90% (in magnitude) of the full elasticity stress solution. (This happens because

the asymptotic solution excludes the homogeneous far-field contribution.) The inner

limit represents the point where the solution is significantly influenced by the exclu-

sion of inelastic deformation. Deep within the plastic zone "steady-state inelastic"

behavior appears at r m 0.01r,, where deformation in plastic sectors is dominated by

incompressible plasticity and the affects of compressible elasticity are generally negligi-

ble. Therefore inelastic (SSY) asymptotic crack-tip fields composed of some perfectly- _

plastic sectors describe the actual fields at radial distances less than 0.01rp. (Recall,

it is necessary to account for compressible elasticity in constant state sectors when an

elastic-wedge/fan transition exists.) Thus by examination of the mechanics or physics

excluded, both bounds of the asymptotic elasticity solution and the outer bound of

the inelastic asymptotic crack-tip solution have been quantified for SSY conditions.
The minimum radial distance at which inelastic asymptotic crack-tip fields depict the
actual crack-tip behavior is dependent upon various material attributes, mathematical

assumptions, and micro or macro phenomena.

The discussion of limiting length scales, used to define the inner bound of the

inelastic crack-tip fields, is divided into two parts. The first part identifies physical ma- S
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terial attributes in view of the necessary continuum assumptions to model them, and

it qualitatively elaborates upon their associated mathematical length-scale restrictions.

Quantitative results are not formally stated because the actual size varies consider-

ably between different material systems. The second part quantitatively determines

limitations imposed by modeling assumptions made and by the evolution of crack-tip

features. The largest feature or mechanism is assumed to be the minimum distance for

which inelastic asymptotic crack-tip fields are appropriate.

4.4.1 Physical Attributes

The physical material structure limits the representative element size necessary for

continuum constitutive relationships to homogenize and accurately describe material

behavior. For example, in crystalline materials deformation is produced by discrete

movement of dislocations which each translate the crystal lattice by the interatomic

distance. When many slip systems are active many discrete slip events must be averaged

over a representative volume which is several hundred or thousand Burger's vectors

per side, to achieve a continuum. Isotropy, as used in these analyses, poses additional

restrictions because no macro preferential slip directions are allowed. Although many

slip systems exist in metals [i.e., aluminum (FCC) has 12 possible independent slip

directions], the representative volume must usually span many grain diameters to yield

an isotropic response. Second phase and intermetallic particles restrict the minimum

continuum volume size, when they exceed the primary grain size or if they preferentially

impede directions of deformation. In non-metallic systems the minimum volume size is 'A

a function of some characteristic material dimension. For example, in particle reinforced

composites the particle diameter or mean particle spacing is the characteristic material

dimension, while in ceramics and polymers the characteristic dimensions are the grain-

size and length of the molecular chains, respectively.
In addition to the constraints associated with the bulk materials are those con- I

straints which arise from the interfacial thickness and properties. Use of an ideal-
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perfect interface assumes a priori that interfacial mechanical properties are equivalent

or stronger and stiffer than the surrounding bulk media and that perturbations in-

troduced by the actual interface, such as local crack-tip separation, are confined to a

small region. As discussed in Chapter 1 the interfacial make-up and size scale varies

widely and the interfacial resolution limits imposed must be assessed individually for

each material system.

4.4.2 Mathematical and Evolutionary Limitations

When not restricted by physical attributes, it is anticipated that the inner range of the

asymptotic solution is limited by:

1. The formation of a blunted crack-tip and the emergence of the CTOD as the

characteristic length in the inelastic (SSY) asymptotic field.

2. The use of linearized kinematics.

3. The idealization that the lower domain behaves elastically.

To ascertain the limitations that these impose, an estimate for the critical length scale

of each is made.

For planar homogeneous cracks, the CTOD ( 6CTOD) is typically estimated to be

(Hellan, 1984)

J
6 CTOD = 0.6 y' (4.49) S

and an estimate of 6 CTOD for interfacial cracks is made by evaluating Eq.(P2.32) at

= 0 and r = r. which yields

16CTODI = J (4.50)

Equation (4.50) overestimates the homogeneous bCTOD by a factor of three, and, based

upon the other data in Chapter 4 for an elastic/perfectly-plastic material atop an

elastic medium, typically overestimates the actual I6 CTODI by a factor of 2 to 3. For
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comparison purposes, it is convenient to compared bcToD to rp. Division of Eq.(4.50)

by rp and by a factor of 2 (to account for the overestimation) gives

I,-. ,,,1t 1 2 - + - (4.51)

or

bCTOD _ ___ rM1[ r--'- == 1/ " '-+ 4 O / 1 - V1 + !-(l - /2) .(4.52)

Here -yo is the initial yield strain of the material in the -per region and the sub-

scripts 1 and 2 refer to the upper and lower domains, respectively. For many material

combinations the normalized magnitude of the CTOD is of order I6cToDz/rp 1 0 (YO).

Use of linearized kinematics fails when strains and rotations are no longer "small."

To estimate the size of the strains and thereby infer the relative size of the rotations,

the behavior of the largest strain component in a fan region, ',., is considered. From

Eq.(4.10) the asymptotic shear strain behavior in a fan region is approximately

,YO (4.53)

where R is the normalized radial distance from the crack-tip and A(8, t) is the angular

distribution of shear strain. As stated previously, A(9, t) is of order unity because at

the edge of the plastic zone (r = rp or R = 1) the shear strain must just equal the

yield shear strain (I,= -y "yo). With the assumption that A(O, t) _- 1 and by use of the

rather loose definition that strains of order unity are no longer small, the assumption

of linearized kinematics is valid for radial distances such that 0

r > yorp or R > 0 . (4.54)

For reference, a typical value of "Yo for aluminum is 7.2 x 10 - (Hertzberg, 1976).

In the lower domain use of an elastic material idealization is acceptable as long

as the stress state is not sufficient to cause inelastic deformation. At the crack-tip

the shear traction jumps by Saa I from the crack-face to the interface, and this step-

function jump in t. produces logarithmically singular stresses in the elastic domain
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whenever S 0 0. Plastic deformation is anticipated in the elastic half-plane for all

non-zero values of S.

A "rough" interfacial plastic zone size is estimated by evaluating the elastic stress

components at e = 00 and by determining the radial distance where the Mises equivalent

stress equals a,, , the yield stress of the "elastic" lower material. Substituting the stress 9

components, Eqs.(4.41) to (4.23), into the Mises stress expression, Eq.(2.31) (retaining

only the logarithmically singular portion of O,,), and solving for the radial distance rP2

at which 02 = a,2 yields (for S 6 0) -

__2 r FP ± V(F p)2 - 4D (3S2 + D P 2 - (ay.2/Glay.)2)
rp ~, exp /2DS/r (4.55)

Here F and D are defined in Eqs.(P2.A.14) and (P2.A.15), respectively. For Eq.(4.55) 0

to have physical significance, it is required that

( )> 3S 2 +P 2 ( D- ) (4.56)

When P and S take on their maximum observed values of P = 3.27 and S = 1/V,/

the actual elastically inferred [not estimated by Eq.(4.55)] size of plastic deforma-

tion along the interface for v = 0.3 is rp,/rp Ps 1.08 x 10- 2 for a 2/.,,, = 3.0 and

rp,/rp ft 3.38 x 10- 5 for o , = 4.0. A more intuitive understanding is obtained

from examination of Figure 4.30. By use of the stress expression, Eqs.(4.41) to (4.23)

the elastically-calculated plastic zone in the lower half-plane is plotted for P = 3.27,

S = l/v/3, and T = -0.5 for several ratios of aY,2 to a'°; t.e., ("y,/(' = 2.5, 3.0, 3.5, 0

4.0, and 4.5. The characteristic plastic zone size of the upper domain (r,) is used to nor-

malize the scale of this figure. Because the stress fields are logarithmically singular, the

size of the plastic zone decays rapidly as a,,2 /oI, increases. The elastically-calculated

plastic zones for Oap.2/Op. 3.5 are not resolvable on this size scale. For material

combinations where ry0f/ol is greater than 3, the maximum plastic zone radius ex-

tents less than 0.1% of r. for the extreme interfacial conditions and, for many metallic

polycrystallines, rP2rp < 7o.
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Figure 4.90 Elastically calculated yield zone for lower elastic half-space with constant

normalized shear (t, = 0.57) and normal (t,, = 3.27) tractions applied on y = 0U
for x > 0. Scales are normalized with respect to the characteristic traction-free
plastic zone radius.
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When the specific material structure is excluded, it is evident that the SSY asymp-

totic crack-tip fields presented in sections 4.2 and 4.3 are usually applicable over the

normalized radial range of "yo < R < 0.05. At radial distances smaller than this the

assumptions of linearized kinematics and a mathematically sharp crack tip are vio-

lated, and the use of an elastic lower half-space may be inappropriate. When material

structure is considered, the restrictions arise from the minimum representative element

size necessary to model the material behavior as a continuum, and the actual limiting

factor are only established after particular materials and their properties are identified.
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Chapter 5

Summary and Discussion

In this final chapter, a brief sun mary qualitatively highlighting the major features of

the two interfacial crack-tip models will be presented. It will touch on the major aspects

of both the elasticity and plasticity solutions. Observations regarding some solution ,,

aspects and associated implications will also be discussed. This includes observations
regarding crack-face conditions and the ILPA, and the anticipated effect that altering

material combinations would have on interfacial separation. Finally, some suggestions
~regarding the direction of further work will be made.

~~5.1 Summary

Before reviewing specific details of the interfacial fracture mechanics, ant overview of ,

the various analyses and components which interconnect, forming a complete interfacial

crack framework, is presented. Reviewing of the two commonly accepted interfacial

crack-tip elasticity solutions identifies the parameters which quantify the asymptotic/, =
elastic fields, their admissible ranges, and the dominant features present in each. When, ,.,

",' appropriate, corresponding relationships between various elastic variables present in

each idealization provide a link between the two models. Using the elasticity solutions,, .]

approximate descriptions of contained inelastic deformation embedded in a dominant--,.

q..

asymptotic elastic crack-tip field (SSY) are given, along with the parameters needed g,.s

to describe the plastic zone boundary. Presumably, the same variables which uniquely

190

Su m r n D s u so .. .... ... %:
A

Jc0



__IVMMMVVV RVV.VWW~rTV~rLWV'7VVWj 1'WNW~jr'VVVVIWJUJWUW aUKVV WW wwuv

relate the plastic zone shape to the asymptotic elastic solution also uniquely relate the

asymptotic (inelastic) crack-tip behavior to the asymptotic elastic solution. Far-field

loads producing physically admissible elastic crack-tip conditions are determined by

excluding the crack-face behavior in regions where inelastic deformation is anticipated.

Corresponding limits on the inelastic crack-tip parameters are then formulated, thereby S

reducing the spectrum of admissible inelastic crack-tip loadings. Finally, for a specific

constitutive idealization, the complete range of asymptotic inelastic crack-tip fields is

quantified as a function of the inelastic parameters. The discussion which follows details

this schematic overview.

The asymptotic elastic behavior of interfacial cracks which occur between dissimilar

isotropic media is reviewed. Traction-free crack-face boundary conditions result in os-

cillatory elastic fields as well as crack-face contact and mathematical interpenetration.

Use of the complex traction-free bi-material stress intensity factor K requires defin-

ing both a magnitude and phase angle. (Two parameters are necessary to describe

the elastic singularity of a traction-free interfacial crack.) Some ambiguity exists in

expressing K because the phase angle of K changes when different length units are

used. Physically inadmissible crack-face interpenetration is eliminated by considering

a closed (frictionless) crack-tip model. This model contains no oscillatory fields, and

its asymptotic nature is similar to that of the homogeneous mode II solution. The

sign of the (scalar) closed bi-material stress intensity factor, K' 1 , is restricted to en-

sure compressive normal crack-face tractions. When defining the elastic singularity of

a closed frictionless interfacial crack, only one parameter is required. Finally, both

elastic crack-tip models predict unbounded stresses as the crack tip is approached.
For both crack-tip models, approximate SSY elastically-calculated plastic zones are

obtained as the locus of points where the elastically-calculated Mises stress equals the

tensile yield stress. This is the first time such an approach has been used to "semi-

formally" extract the inelastic behavior around interfacial crack tips. From this ap-

proach, it is found that traction-free crack-tip plastic zones grow in a periodic manner,
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with respect to the ILPA, go = ZK + e In 2 K , and scale approximately with the

characteristic plastic zone dimension, rp = KR/(2.Iircosh2 (?re)); however, the plastic

zone shapes change continuously as IlKII increases since o also changes with increasing

IIKII. The elastically-calculated plastic zone expression modestly represents the overall

size and features of the plastic zone for strain hardening and elastic/perfectly-plastic

materials atop rigid or elastic substrates.

For positive 0, the elastically-calculated plastic zone expression predicts crack-

face plasticity; however, for elastic/perfectly-plastic materials bonded to an elastic or 0

rigid substrate, no crack-face plastic deformation is observed. (This is an unexpected

feature since in homogeneous plane-strain stationary and quasi-static growing crack

tips, active plastic deformation occurs on the crack flanks.) The closed crack-tip plastic

zone approximation weakly depends upon the bi-material constant and scales with

the characteristic closed plastic zone dimension, r; = 3K_ 2 /2 2 . No changes in the

closed plastic zone shape occur with increased load, and the homogeneous mode II

characteristics are completely recovered when the bi-material constant is equal to zero.

It is learned from the elastically-calculated plastic zone expressions, that it is necessary

to have both a phase angle and a load magnitude to describe the inelastic traction-free .

crack-tip fields, while only a load magnitude and the assurance that a sufficiently large

contact length exists are required to quantify the closed crack-tip fields.

The crack-tip loads which provide traction-free or closed crack-tips are approxi-

mately identified by determining when crack-face contact occurs outside the elastically-

calculated SSY plastic zone. Previously, discussions concerning the admissibility of the

two elastic crack-tip models usually eliminated one crack-face idealization based upon

so called "physical" reasons; e.g., "the crack must be traction-free because the contact

length is extremely small waid on the order of the interatomic spacing distance," or "the

crack tip is closed since interpenetration is predicted and is physically inadmissible."

This unified approach shows that both interfacial idealizations are admissible for SSY,

and provides explicit mathematical expressions to define the loads producing traction- _
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free or closed crack tips. For the right hand crack tip of a Griffith crack geometry, the

far-field loads which produce open or closed elastic crack-face conditions are mapped.

A region, termed SSC, exists where, simultaneously, the contact length is small com-

pared to the crack length and the plastic zone size is small with respect to the contact

length. Explicit relationships between K and K I are established for SSC based upon 0

equivalent energy release rates. In general, determination of the appropriate elastic

crack-tip model can be made for most geometries, however, the precise contact length

and closed form stress intensity factors are only known for a few geometries.

The numerical procedure used in identifying the SSY asymptotic interfacial crack

fields between an elastic/perfectly-plastic material and an elastic or rigid material re-

quired implementation of an effective inelastic constitutive integration operator and

extension of the boundary layer formulation to bi-materials. These numerical reduction

techniques were necessary, especially when one considers that each parametric analysis

represents an investment of one hundred to three hundred computational hours, and

the quarter wave-length analysis consumed more than seven hundred computational

hours on one computational element of an Alliant FX-8 mini super-computer. To

demonstrate that the boundary layer formulation had indeed been extended correctly

for bi-materials, an example point load elasticity problem was performed.

The asymptotic (inelastic) traction-free crack-tip fields contained some very unusual

features. The cusp and elastic sectors found in the SSY traction-free crack-tip solutions

have not been observed before in homogeneous plane-strain (stationary or quasi-static)
crack fields. These cusps couple the stress state in the quasi-constant state sector to

the radial distance from the crack tip and propagate as o changes or, for proportional

monotonic loading, as 1IKII increases. The elastic crack-face and interfacial sectors

evolve with o and may or may not contain residual plastic strain depending upon O 0

and the sign of e.

Qualitatively, the traction-free SSY asymptotic fields for the complete range of

admissible o are assembled, and from this the crack-tip behavior for proportional
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monotonically increasing loads is described. At fixed radial locations deep within the

plastic zone, the SSY asymptotic fields are assembled from centered fans, constant 0

state, quasi-constant state, and elastic sectors. Excluding the cusp effects, the crack-

tip stress and strain fields are not oscillatory for an elastic/perfectly-plastic material

bonded to an elastic or rigid material, unlike those obtained by Shih and Asaro (1987) S

for deformation theory based strain hardening materials. The asymptotic crack-tip

fields continuously evolve with 0, and, in general, only contain elastic sector(s) for

positive 0. Crack-tip shielding lowers the local J-Integral, as compared to the far-

field elastic J, by as much as 75%, but the degree of shielding varies considerably

with 0. Moreover, for some values of fo the local J is actually larger than the far-

field elastic J. As is anticipated, finite crack-tip opening displacements occur for all

cases analyzed. However, the CTOD angle is always less than the elastic estimate,

indicating that crack-face contact may occur within the plastic zone when no crack-face

contact exists outside the plastic zone. Near the crack tip, deep within the plastically

deforming interfacial region, the triaxiality, defined as akk/3a, may exceed that of the 0

Prandtl stress distribution and reach 3.22. Because of this, the interfacial tractions are

bounded; i.e., 0 < t/a v. < 3.22 and It.I :5 k, but depend strongly on o.

No unusual features appear in the closed crack-tip model for a rigid medium beneath

an elastic/perfectly-plastic medium. The asymptotic crack-tip fields are composed of

two constant state and two centered fan sectors whose angular extent and arrangement

are similar to homogeneous mode II fields. Compressive crack-face tractions extend

from the elastic asymptotic fields, through the plastic fields, all the way to the crack-

tip. Appreciable interfacial shear strains develop in the deforming medium.

For both crack-tip idealizations, asymptotic crack-tip fields in the lower elastic % .,.

medium are completely described by the elastic potential for the closed crack-tip case.

This potential is constructed by idealizing the interfacial tractions as constant beneath .. ,.J,

.Ae plastic zone and zero elsewhere. It is also assumed that uniform compressive trac- n

tions exist along the crack-face within the plastic zone (the magnitudes of which are
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zero in the traction-free crack-tip model). A uniform tensile field, oriented parallel to

the interface, is superimposed to complete the potential. Due to the jump in shear

traction at the crack-tip, the resulting field is logarithmically singular, and local crack-

tip yielding is anticipated. However, for "elastic" materials with a yield strength three

or more times greater than the yield strength of the perfectly-plastic material, "elastic"

yielding does not restrict the application of these results. V.

The method used to identify the crack-tip idealization, in conjunction with the

parameters necessary to define elastic and SSY inelastic crack-tip deformation, rep-

resents a rigorous framework usable in systematically quantifying interfacial crack-tip

behavior. Via this framework one can determine the asymptotic stress, strain, and

interfacial behavior, based upon the far-field loads and constitutive assumptions, and

(by inference) provide the requisite interfacial properties necessary for sustaining the

integrity of interfacial cracks. Evaluating the interfacial crack-tip conditions for a par-

ticular geometry (whose components' constitutive behavior can be idealized as elastic

and elastic/perfectly-plastic, respectively) is made as follows. First the elastic crack-

tip singularity and contact length must be quantified by either determining K or K'J

(and/or g) and 6 via numerical solutions, tables containing known solutions, etc. Some

parameters may not be directly obtainable, however their values might be inferred by

using the approximations and relationships identified in Chapter 2; e.g., approximat-

ing 6 from K by Eq.(2.43). Based upon this information, the bi-material constant,

and the yield strength of the material, the characteristic plastic zone dimension can

be compared to the contact length, thereby establishing if and when either of the two

models are appropriate. Alternatively, for certain geometries and loading conditions

a load map might be consulted to determine the appropriate crack-tip idealization. I
If the crack tip is closed (and frictionless), the asymptotic crack-tip fields are those

associated with the particular values of 8 (and v). On the other hand if a traction-free

crack tip exists, 0 must be evaluated, and then, based upon the values of 0, e, and v,

the asymptotic crack-tip fields can be "looked up." Section P2.B contains a numerical
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example showing how SSY traction-free crack-tip conditions are established and how

'0 is evaluated for a particular geometry.

5.2 Discussion

As discussed in Chapter 1, the purpose of doing this work is to quantitatively describe

the material state surrounding an interfacial crack tip. It is believed that since the

largest stresses and strains evolve in this area, interfacial separation or crack deflec-

tion is completely governed by the behavior within the immediate crack-tip proximity. •

By analyzing and identifying the deformation patterns accompanying the maximum

stresses, strains, and interfacial tractions, insight might be gained into the mechanisms

and conditions which initiate separation. Unfortunately, this work only provides the

conditions which must be substained prior to unstable crack propagation and is limited

to only one constitutive idealization. However, in conjunction with this study and ex-

perimental observations and measurements, the feasibility and admissibility of specific

failure mechanisms postulated to be active in certain materials can be systematically

evaluated.

Independent of the many observations and classifications made in regard to inter-

facial cracks, the present work is far from conclusive, even for elastic/perfectly-plastic

materials bonded to elastic or rigid substrates. Some final comments will be made

regarding interpretational aspects of the analyses, modifications to various quantities

and definitions, and areas which warrant further investigation.

5.2.1 Crack-Face Contact

Various issues pertaining to the elastic and plastic crack-tip fields have been identi-
fied, with considerable attention to excluding the physically inadmissible phenomenon .

of crack-face interpenetration. In SSY the complete asymptotic elasticity solution is

recovered sufficiently far away from regions of inelastic crack-tip deformation, inde-

pendent of whether the crack-faceo are open or closed in the plastic zone. Therefore,
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crack-face contact within the plastic zone has no consequence upon the elastic crack-

face conditions since it is the elastic solution which drives the inelastic deformation

in SSY, and not vice versa. For proportional monotonically increasing far-field loads,

conclusions based solely upon the asymptotic elasticity solutions are valid at distances

larger than several times the characteristic plastic zone size, but still small compared to

the next relevant characteristic geometric dimension. Within the limitations discussed

in Section 2.3.3, the actual elastic crack face is open whenever crack-face contact or

interpenetration is not predicted, independent of the crack-face conditions within the

plastic zone.

In this study only frictionless closed bi-material crack-tips were considered. In

actuality, frictionless crack-tips rarely occur in nature, and friction significantly al-

ters crack-tip behavior. In the bi-material case Comninou (1977b) found that friction

reduced the order of the elastic stress singularity for "closed" interfacial cracks. Ob-

viously, the assumption of frictionless closed crack-tip faces represents a simplification

which is inappropriate for many situations, and further studies which include crack-face 0

friction are warranted.

5.2.2 Unifying ILPA

The ILPA (c0) is a naturally-arising parameter which is convenient for studying and

classifying plastically deformable traction-free crack tips, but it is not comprehensive in

that it does not automatically compensate for different values of E and v. For example,

in the elastic approximation for crack-face closure, the critical value of fo is different for

different c. Similarly, the asymptotic inelastic crack-tip fields, for given values of fo and

v, differ with e. Deformation near open interfacial cracks is only periodic with respect

to o; i.e., it is not harmonic. (This is apparent when the additive decomposition of 14

f, Eq.(P2.21), is substituted back into the plastic zone approximation, Eq.(P2.6), and
the trigonometric functions are expanded. Although o appears only as the argument a
of trigonometric functions, the coefficients which multiply the functions of fo change
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(periodically) as o changes.) Thus a relative shift in o is not expected to relate the

crack-tip fields' evolution (with o) for different values of e. The ILPAs of the results in 0

Chapter 4 were modified in an attempt to compensate for the dependence of crack-face

closure on c, however, this procedure failed to unify the asymptotic crack-tip fields

(probably for the reason just discussed).

5.2.3 Anticipated Experimental Observations

To aid in experimental identification of bi-material crack-tip behavior, a qualitative

overview describing the anticipated visible crack-tip features follows. Upon application

of load, the extent of crack-face contact should become evident. The contact length

will depend upon the direction of the applied far-field load, the characteristic geometric

dimension and material properties, and it should be independent of the applied load

magnitude. Experimental techniques capable of resolving elastic stress or displacement

states should allow for detection and identification of the elastic asymptotic crack-tip

fields and crack-face displacements. Because the period of oscillation in the traction-free

crack-tip model is so large and experimental resolution and specimen size are limited,

the experimentally obtained near crack-tip fields will appear as having the conventional

square-root dependence on radial distance, whether or not crack-face contact occurs. In

materials capable of inelastic deformation, as the load magnitude is increased the next

resolvable feature should be the plastic zone. Again, due to the large oscillation period

and limited realistic specimen size, the plastic zone shape will appear independent of the
0

applied load magnitude, however, varying the direction of the load on different specimen . .

sizes should produce different plastic zone shapes. For materials whose constitutive

behavior is similar to that idealized within this study, plastic zone shapes extending .W.

only partially around the crack-tip (in the deforming medium) could be expected for

certain loadings.

Resolving the asymptotic inelastic fields is not a realistic expectation at this time.

Some materials may localize, i.e., Fe-Si, polycarbonate, leaving traces indicative of the
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asymptotic inelastic field. In addition, experimental observations of surface deformation

are likely to reflect plane-stress conditions, rather than the plane-strain conditions

primarily studied.

In designing experiments, it is important to keep in mind both the types of loads

being applied (usually to simulate some real physical situation) and the particular ma-

terials, because altering either of these can drastically change the crack-tip conditions.

For example, consider the ramifications of evaluating interfacial separation by an inter-

facial Griffith crack geometry loaded by far-field tension. Sketched in Figure P2.11 is

such a geometry. (To facilitate discussion, allow the magnitude of the far-field tensile

load, cr, and material properties to be unspecified.) Following the example shown in

Section P2.B, both K and o can be evaluated for a specific set of material combinations

and load level. Note that because no far-field shear tractions are applied, K and o are

the same at both crack tips. For convention, the material with the lower yield strength

is always located in the upper region, and its yield strength is used in evaluating o.

The evolution of o with monotonically increasing SSY loading is shown in Figure 5.1 ,

for several different values of e. For material combinations whose constitutive behavior

can be idealizied as an elastic/perfectly-plastic material atop an elastic medium, the

crack-tip fields are those which correspond to the particular values of 'o, (v',) and e.

Note the large range of o produced from this one "simple" test configuration, and that

the actual value of o is strongly dependent upon the actual value of c for a specific

load level of a/o,.

In light of the above example, experimentalists who simulate interfaces by using al-

ternative material models, must insure that not only chemical similitude exists between

the actual and model systems, but that mechanical properties (namely the elastic con-

stants) are also scaled appropriately. Using only one model material which is elastically

softer than its counterpart in the actual system can change E, possibly even changing

its sign, and produce asymptotic crack-tip fields in the model which differ drastically

from those produced in the actual system. Figure 5.1 clearly indicates how sensitive
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ILPA Map
Griffith Crack Loaded

100 by Normal Stress 0o*0

e=0.0

0 0

00

0.11oay> 0

Figure 5.1 LLPA map for a Griffith crack geometry loaded with far-field tensile normal
load o,,,, for various values of e.
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the crack-tip parameter f0 is to load levels and material combinations.

5.2.4 Influence of Material Properties on Separation

On the basis of the limited parametric study considered, it appears that particular ma-

terial combinations do not alter the nature of the asymptotic fields produced, rather, 0

they shift the fields in the same way that a change in f0 would, and they distort

the strain distribution. For an elastic/perfectly-plastic material bonded to an elastic

substrate, the phase angle of the applied load, measured by o, appears to affect the

asymptotic crack-tip fields more than the choice of elastic material properties. How-

ever, for a specific set of traction-free loading conditions, altering the elastic material

properties and changing the sign of e can significantly alter both the asymptotic crack-

tip stress and strain states, as demonstrated previously. This is extremely important

when interfacial separation criteria are evaluated, because, for certain load states, it

might be more advantageous to bond to a stiffer substrate or to orientate an anisotropic

substrate in a different direction.

Generally, the material combination with the lowest perfectly-plastic flow strength

produces the lowest tractions, since the asymptotic stress state scales with the flow

strength. For a specific flow strength, minimum normal tractions occur when the

material combination is subjected to the largest (positive) f0 or when the crack-tip is

closed. When the normal tractions are at their minimum level, substantial inelastic

radial shear strains, which scale as "yr oc 1/R, localize in a small band parallel to or

slightly inclined from the interface. It is somewhat ironic that the minimum interfacial

shear strains are present when normal interfacial tractions are at their maximum values

and vice versa. Interfacial separation criteria for deformable media, which are only

traction or (interfacial) strain based, may seem inappropriate in light of this trend. S

In this crack-tip idealization, the resulting interfacial tractions are bounded. This

implies that separation criterion for materials with strong interfaces, i.e., those capa-

ble of sustaining tractions greater than the maximum asymptotic crack-tip interfacial

201



tractions, must be strain controlled. (If the controlling mechanism is only a maximum

traction criterion, and the tractions are less than the critical traction value, separation

would never occur in SSY.) However, it is impossible to predict separation without a

specific criterion in mind because most separation criteria require the traction and/or

strain level to reach or exceed some threshold value over a critical distance before 0

separation is said to commence.

Micro fracture mechanisms occurring in the interfacial proximity may be indistin-

guishable from interfacial decohesion. One can easily visualize small particles, whose

size might be 10-8 to 10-1m, embedded in continuum crack-tip fields and whose pres-

ence does not alter the continuum idealization. The high triaxiality near the interface

which accompanies the maximum tractions will promote (ductile) micro-void formation

and growth in the near crack-tip field. For traction-free crack-tip loadings the maxi-

mum triaxiality always occurs at or within (+)400 of the interface, while in the closed

crack-tip case, the region where the triaxiality is the highest extends from 0 % 300

to 0 1200. Cleavage of brittle particles, which can initiate macro-voids, and micro-

cracking are typically thought to be governed by the maximum principal stress and its

associated direction. The maximum principal stress occurs along the interface [when

Oa.(0 = 00) = kl and its direction is orientated approximately 450 from the interface.

Therefore, in the plastically deforming interfacial region one might expect to find mi-

crocracks and the direction of cleaved particles inclined (+)1350 from the interface. In

the lower elastic region failure associated with a maximum principal stress criterion

may deflect the crack into the lower elastic medium. At radial distances very close

to the crack tip such a failure criterion predicts crack deflection at an angle inclined

approximately -90* from the interface, while at larger radial distances the deflection

angle would be larger (- -45").

N
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II

5.2.5 Suggested Additional Work

Several avenues need to be explored to establish concisely the complete bi-material

crack-tip behavior even for the case of an elastic/perfectly-plastic material adjoint to

an elastic or rigid material. An analytical expression defining the cusp in terms of the

far-field load parameters is essential to fully ascertain the evolution of the interfacial

tractions. Incorporation of finite deformation would allow identification of the crack-

tip fields all the way to the blunted crack tip and extend the mathematical range for

which asymptotic inelastic fields are appropriate. Of course, the material restrictions 0

acknowledged earlier would still limit the applicability of the results from such analyses,

but additional insight may suggest a mathematical bound for the singular interfacial

and the crack-tip strains.

Finite element solutions such as these "roughly" estimate the actual slip-line an-

gles, and are severely limited by mesh fineness. Analyses which use discretized repre-

sentations must carefully refine and focus these representative elements to ensure that

important details are not systematically excluded from the solution. For example, in

this study, no jumps in a were resolved. It is unclear, however, whether jumps existed

or were just unresolved. To this extent a more precise asymptotic numerical solution

would resolve the issue of stress jumps.-0

In this study, incremental plasticity is utilized as opposed to deformation theory, as

used by Shih and Asaro (1987). For the constitutive idealization of an elastic/perfectly-

plastic medium atop a rigid or elastic substrate, unloading usually occurred in asymp-

totic crack-tip fields whenever e > 0 and o > 0. In light of this, utilization of de-

formation theory in investigating interfacial cracks which have large strain hardening

exponents must insure that all "plastically deforming" material points do not unload;i .e., ?t+ ,At) 2! 1() =1,e
As is usually the case, parametric studies are only of limited value, and there U

always exist additional material combinations and loadings for which information is

sought. The major issues unresolved in this study which still need be addressed are how
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and when does the crack-face constant-state sector become an elastic wedge; how and
why does the interfacial elastic wedge and accompanying constant state region evolve; -

and what are the elastic and inelastic asymptotic crack-tip fields when the elastically-

predicted crack-face contact zone is approximately the same size as the plastic zone.

In addition to analyzing more material combinations, extending the assumed material 0

idealization to include anisotropic material behavior (both elastic and inelastic), and

strain-hardening would also be useful.

Although much attention has been focused upon determining the characteristics

of fields very deep within the plastic zone (specifically, for the traction-free crack-tip

model - nine orders of magnitude smaller than the plastic zone), such information is 4,
of little more than academic use unless it reveals the complete asymptotic structure.

0
From a purely physical point of view, structures larger than geophysical plates must

be considered before the characteristics of fields which are nine orders of magnitude

smaller than the plastic zone would have meaning. [Picture the structure that would

require the twelve orders of magnitude of resolution considered by Shih and Asaro 0

(1987)!] Additionally, the limitations identified previously, (Section 4.4) would require

very unique material properties in order to achieve a valid solution at that size scale.

For most common engineering applications, resolution and identification of continuum

fields three or four orders of magnitude smaller than the plastic zone should provide

sufficient and (hopefully) meaningful information at that size scale.
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Appendix A

Boundary Layer Formulation

In order to impose Sham's boundary layer formulation (Sham, 1983), it is necessary

to calculate consistent energy conjugate stiffnesses and boundary displacements. The

first section derives the far-field stored energy, due to the lower order terms, and for- -. -

mulates an energy equivalent spring network to represent it. Appendix C contains the

actual FORTRAN program used to determine the spring stiffness for a given material

combination. The second section derives the imposed displacements in terms of the

admissible eigenfunctions and coefficients (generalized degrees of freedom). These dis-

placement constraints are then enforced on the FE boundary nodes via a user-written

MPC subroutine. Again, Appendix C contains the actual FORTRAN coding used for

the MPC subroutine.

In this appendix, the two stress potential functions used are and X instead of the

stress potentials 0 and fl, as used in the body of the text. Since X is related to and

f] by

X 0X"= fl 1 - '- "," :

they produce equivalent results. However, the unknown coefficients a,, and b, of

Eqs.(3.4) and (3.5) are not the same. All Appendices, subroutines, and FORTRAN

coding use B(N) and D(N) as the unknown coefficients, with the B(0) term being adjusted

so that it is interpreted as B() = K.,
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A.1 Energy Considerations
A.1.1 Formulation of Equivalent Stiffness Matrix

Implementation of Sham's boundary layer formulation requires the evaluation and in-

clusion of the far-field energy, which is attributable to the T-field terms. This section

evaluates the second term in Eq.(3.8) from its associated strain energy potential rela-

tionship.

The general series potential functions given by Sih and Rice, (1964) and Rice (1988),

which satisfy the bi-material crack, are

1 2C, D Z+, AkCz) = 2z - - j[(N + -) - ]B(N)ZN + (m) M+1 (A.1)
N 2 C 1 +C 2 M M+1

2* 12 (z) 1:c~z~~ [(N + 1) ifIB(N)Z N + 2C, D~m z (A2)
C1 + C 2  M M+

x(z) = 2ez "  B(N)ZN - 2z-" [(N - ) - iEIB(N)Z

N N 2

C2  2C2  D A3'D -DMz 2 C - / (M) ZM+2, (A.3)

and C + C2 E+(M)CZ M +2-
and r

X2(z) = 2z +'" E B(N)zN - 2e2 'zi-" -[(N - ]B(N)ZN
N N 2

-- 2 _ 2C, D(m) J2

+ 2 DmzM+2, jj-C2 (A.4)
M C M+2

with

%C - + (k =1,2) (A.5)'"

In these expressions the subscripts (1,2) indicate material domains, c is the bi-material

constant, Y'b = 3 - 4vz. for plane strain or r/ = (3 - a')/(I + Pj) for plane stress, j""

and vi are the appropriate shear modulus and Poisson's ratio, respectively, and z is

the complex variable measured from the crack tip. The desired lower order Laurent

series displacements, uT, and the associated stresses, aT , are obtained by letting

N = -1,-2,-3,... and M = -2,-3,-4,.... The M = -1 term is excluded from the
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formulation since it represents an applied concentrated crack-tip force and produces

infinite far-field elastic energy in the boundary layer formulation. For the 0 and X

stress potentials, this represents the same modifications to the 0 and fl potentials as

were made in Eqs.(3.4) and (3.5). From these potentials, the far-field elastic strain

energy due to the lower modes, O(J), can be evaluated and incorporated directly. 0

Since uT is an equilibrium solution in the far-field (Region R of Figure 3.2), p

2f[(u) =2f (J)dS =ftJ.uTdg. (A.6)

Here fl is the total strain energy in R, 0 is the strain energy density, r represents the

entire boundary around R (too, rplo°tic, and r,), and tT is the resultant traction due

to the lower order modes. Dividing the boundary into regions yields

2 f1 (u T) =tT u ds+ tT. J. UT ds + tT J. UT da. (A.7)

Recall the Kolosov-Muskhelishvili stress formulas (Sih and Rice, 1964),

oa, + o,, = 4 R[4'] = 210' + i'], (A.8)

and

o0 - ar + iio2, = 2e"°[z" + x"], (A.9)

where a bar indicates the complex conjugate, and 9Z signifies the real portion of the

argument. Subtracting Eq.(A.8) from Eq.(A.9) gives

-2a,, + i2o,, = 2e'[J* + x"] - 2[ ' + i']. (A.1O) 'V

The displacements obtained via Koloeov-Muskhelishvili transformation are ..! .

u +iv [ 7 ~ - -z'- XJ, (A. 11)

where the shear modulus, ti, Poisson's ratio, v, and q7 are those associated with the

individual material domains. Transforming to a polar coordinate frame, Eq.(A.11)

becomes •
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tL, + tug -[770) 4'-X] (A. 12)

Examination of the potential functions shows that the stresses, CF.T and aOrT, behave

as -i + z-2' P and the displacements, u,T and uT, behave as zI- -" + z- t- q,

where p = 0, -1, -2,..• and q = 0,-1, -2,... In general, the term tT .uT behaves like

zP+q-2-21 + z- 3 - P- 9, while for large z the dominant component, p = q = 0, acts like

z-(2+'2').This means that as r --+ oo on

J UT u din = 0. (A. 13) v

By the problem definition, "traction-free crack-tip faces," tT - 0 on r,, so that Eq.(A.7)

can now be written as

T) J.U

2 = J t uda. (A.14)

The traction, tT, is by definition

tT .n, (A.15)

where n is the unit outward normal. Choosing rp,, to be a circle of radius r, ds

becomes rdO, and the cylindrical components of n are (-1,0,0). Eq.(A.14) then becomes

2T(u r _- ,TUT -,#T Irde. (A.16)

For convenience, C in Eq.(A.12) is defined as

C = - Z ' - U, + ;u,, (A.17)

and D is defined by dividing the complex conjugate of Eq.(A.10) by two, which results

in the following:

= - + "J- [' + ] = -,rr - iar,, (A.18)

Eq.(A.16) can then be rewritten as

2 f(UT) = [(C)R(P) + Q(C)!(D)Jrd8, (A.19)

213



or

2fl(uT) = f R(rCD)dO = fr p..,° R(rCD)de, (A.20)

where R and ! designate real and imaginary parts, respectively. I is convenient to

factor out the coefficients B and D (these are the vectors which contain B(N) and D(m)

as their components, respectivley), and to express the potential functions, Eq.(A.1) to

Eq.(A.4), in terms of their individual components as

N+M

= 4 ,(A.21)

and
N+M N+M

X= P_, ,,- ( t, A.22)

where

B(I)

{P}N+M-1 - B(N) (A.23) 0

D(M)

and the terms 40, Rj, and U. correspond to the functional parts of Eq.(A.1) to Eq.(A.4).

More specifically, this means that the functions (N NN..., 4w), (,.., wv), and

(U,.-. ,UN) all correspond to the functions associated with the B coefficients and the

functions (N+1,.-. ,00N+M-,), (RN+,, ,tN+M-1), and (U,.. -,UN+M-1) correspond

to the functions associated with the D coefficients. (The subscripts indicating the

material domains are implied by the value of z chosen.) Further, four matrices, B B,

B B, B B, and B B, are defined whose components are given by
BB, = [-, No + zO'O' + o - f,-?], (A.24)

BB, + z~je2 'U! + z O + Je2.,j

-Of _0,,F - ,F , (A.25)

BAR2.: 10~l 7~e2R + R= 1- r/je70 + je.] (A .26 )
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0 0

+ ei2 u + 'O, l. (A.27)

By using Eq.(A.17), Eq.(A.18), and Eqs.(A.20) to (A.27), Eq.(A.16) reduces to

21rj (UT) = 1 1 I[PB Bp + p b + pb + PHP']dO. (A.28)

Rplaviie 2

At this point, the integral ft I(JT)d$ has been recast in terms of the complex vector

P, which represents the unknown coefficients, and four matrices containing functions of

the original stress potentials. The remaining formulation consists of various algebraic

manipulations used to recast Eq.(A.28) into an expression which, when integrated,

contains real numbers only. First, the real vector qeT is defined as

lRB(I)

IRB(lv)

{(P} eT R RD(M) (A.29)

9B(N),, '

ID(M)
!00(m0

Next, the stiffness matrix S is introduced and is defined such that

fl(UT) = q'T SqT. (A.30)
2

Using the convention that PI = e,+ if,, factoring out the real components, and equating 0

Eq.(A.28) to Eq.(A.30), we can express S as

1 B~(8BB~~A (B- + A B) 1id.(A. 3 1*s - .,..,,u a.(BB + BS _ 98 - 88) R(-BB + BO + BB - BB) .,,

After integration of Eq.(A.31), the integral fR O(J)dS can be replaced by !q'SqeqT.

215

0z



A.1.2 Evaluation of Spring Constants

To incorporate this energy into the finite element code, a spring network, with apprc-

priate stiffness, was constructed. The spring network vertices corresponded to "free"

nodes and the displacements of these free nodes were governed by the value of the

generalized coefficient vector qeT. It was observed that, since qeT both pre- and post-

multiplied the stiffness matrix S [in Eq.(A.30)], a new upper triangular stiffness matrix

C can be used to reduce the number of individual stiffnesses. When constructed cor-

rectly, C replaces S in Eq.(A.30) to produce identical results. The new stiffness matrix

C is related to S (after evaluation of S) via
I Siy i =j i =1, 2,3,...,2(N + M-1)

Ciy- Sqy+ Siy i <j j =i,i+l1,i +2,..,2(N+ M -1) (A.32)

0 otherwise. 0

The energy associated with a spring is calculated in the finite element code as ICj (q -

qy) as opposed to 1Cjyqjqj, as assumed in Eq.(A.30). To rectify this situation, a further

modified spring stiffness matrix C' is defined whose components are

S --- 1,2,3,. ,2(N +M (A.33)

I Ek1 Cj + i i-,= It j =i,i+1,i+2,...,2(N+M-1).

Finally, the far-field elastic strain energy can now be expressed in terms of spring
constants, Ct, as

.!s(uT) = !(qj - q,)Ci (q - qj), (A.34)
2

with the clarification that the term (qt - q,) is interpreted as q,, when i = j.

The actual spring stiffnesses for a particular choice of material properties were

obtained by numerically integrating Eq.(A.31) using Simpson's 1/3 Rule with AO =

?r/100. The rpj,,. boundary was chosen to be a circle, with radius rpl.StiC = 1.0 m,

centered about the crack tip. This prevented numerical noise associated with evaluating

rpias,,i raised to large power. To reduce other numerical noise, the integration path was

divided and integrated from 9 = ±ir to 0 = 0 simultaneously. The complez FORTRAN

coding used to evaluate C' is included in Appendix C. I216
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A.2 Boundary Considerations

The boundary conditions required for Sham's boundary layer formulation are those of

the general bi-material crack problem. Using the general series potential functions,

Eqs.(A.1) to (A.4), and the Kolosov-Muskhelishvili relation Eq.(A.11), the displace-

ments can be expressed in terms of the complex coefficients B(N) and D(M), and the

location z = re". To maintain the K-field dominance at the boundary, again only the

series terms corresponding to N = 0, -1, -2,... and M = -2,-3, -4,..., are used to

determine the displacements. After some algebra, the displacements for the upper half

can be written as:

rQ CrM+I
N/A(elve + J'C~NJN) E(Geclpm, + Gekmdm) (A.35)N 21

and

rQ ~CrMf~
v= -(Fe3NeN + Fe4NfN) + E +(Ge3MC2 + Ge4MdM), (A.36)NAM 21A

where (subscripts dropped for brevity),

P N + 3/2, (A.37)

Q N + 1/2, (A.38) S

R PQ- 2 , (A.39)

S -E(P + Q), (A.40)

Ti cos(eln(r)lcos(Q) + sin[eln(r)lsin(Qe), (A.41) -

T2 cos[E ln(r)] sin(Qe) - sin[e ln(r) cos(Qe), (A.42)

T3 cos[e ln(r)] cos(2Qe) - sin[c ln(r)] sin(2QO), (A.43) ..

T4 cos[eln(r)]sin(2Qe) +sin[cln(r)]cos(2Qe), (A.44)

T5 - cos{,Eln(r)lcos(QO) - sin[,Ein(r)lsin(QO), (A.45)

T6 cos[c In(r)] sin(QO) + sin[c ln(r)] cos(QO), (A.46)

Fel = le"[PxTl+ exT21-e"(R xT3- S xT41
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-e 2vteCO(P x TS +ExT61 + eg'fx Ti + S xT21, (A.47)

Fe2 = 7ekx T - P xT21 - e S x T3 +RZxT41

-e'rded [PX T6+cxT5]-e R[) x T2- S x Tll, (A.48)

Fe3 = ie'[P xT2- e x Tl- e"[S x T3+,R x T41

+e2 "e 'O[P xT6 + exT5] -ec[,R x T2 -S x Tll, (A.49)

and

Fe4 = ie[P xT +E x T2)I+ ee[p x T3 -S xT41

-ce'[P xT5 - exT6]J- e'[) x Tl+ S x T21. (A.50)

The coefficients of the integer powers are defined as

D~)= %) + id(,), (A.51)

and the accompanying terms associated with the integer powers are

ni + M + 1

Ce2 = 7 +M + sir4(M + 1)0], (A.53)

Ge3 M + 1 sin[(M + 1)81 + 2sin((M - 1)01, (A.54)

(A.55)

and

Ge4 = 7 - M- 1 cos[(M + 1'81 + 2cos[(M - 1)81. (A.56)

By using the definition proposed by Rice and Sih for the stress intensity factors and

the convention Bf(o) = e(o) + i1(o), B(o) can be expressed in terms of K as

e(o) = R(7 - J) +!M~2e (A.57)4,ef'2ir[.75 + UE21 cosh(7re)

and ___

1)= !Me -!£SK(.75 - 2)(A.58)
4e 27[.75+ 302] cosh(7r) %M
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It should be noted that the original Rice and Sih (1965) work docs not give the ap-

propriate energy release rate unless the definition relating ki and k11 to K, given by

Hutchinson et al. (1987) [Eq.(2.15)], is used.

The displacement relations (A.34) and (A.35) were "coded up" as constraint equa-

tions and used along the rpta.tic-model boundary of the finite element mesh. Appendix

C contains the user MPC which was used to enforce the nodal displacement boundary

conditions in terms of imposed the K(t) and the unknown vector qT.

2

D .-
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Appendix B

Elastic-Wedge Stress Potential

The elastic stress potentials for a semi-infinite wedge loaded by constant tractions on

each of its faces is given. The individual stress components are obtained from 0, the

stress potential, by using the definitions (Timoshenko and Goodier, 1970)
a2 , 

(B.1)

a 0 ao)(B2

and

T Fh e aY (B.3)

The stress potential for a wedge loaded along its faces by constant tractions is found

from the general solution given by Timoshenko and Goodier (1970):
r2 + dor2,y + L'rsin - - -ci + a2rcos 2- + C2 r2 sin 2-y. (B.4)

2 2

For the specific problem shown in Figure B.1, the stress potential constants are

w = -a2(B.5) IV
OQ 2

do = -2c 2 - T, (B.6)

(H + 2TO - W)sin20 - (K - T)(cos20 - 1) (B.7)
and = 2(cos 20 - 1)2 + 2(sin 20) x (sin 20 - 20) (

and

(H + 2Tk - W)(cos 2t - 1) + (K- T)(sin 2tk - 20) (B.8)

a, = 2(cos20 - 1)2 + 2(sin20) x (sin 20 - 20) "B.8
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Using Eqs. (B.1) to (B.3) and Eq. (B.5), the stress components are

a,, = 2a2(cos2y- 1) + 2c 2(sin2-y- 2) + W - 2T-y, (B.9)

a,.y = 2a 2sin2--2c2(cos2,y-1)+T, (B.10)

and ]

a,, = -2a 2 (cos 2 -y+ 1) - 2c 2(sin2-+ 2-y) + W - 2T-y

+ I (a, cosy + ci sin '). (B.11)
r

The a,, component is singular with respect to r, and that two constants a, and cl

remain unspecified from the boundary conditions prescribed. The values of these two

constants are determined by matching the o',, stress, and for non-zero values of a, and

c, concentrated forces must exist at r = 0.

A note of caution, when the coordinate frame is rotated to coincide with the crack-

tip coordinate frame (via - =r - 0), the sign of the a,# component must also be

changed.

N

221

6mm



mom

0

U
1 01 Y

I

1 ki

I

I
I

i°RJ

I

' 
e !T

t( = 0)1 tractions on its lower surface, constant normal [H = t( = )] and

shear K = t( = ¢lon its upper surface, and polar (r,') coordinates.
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Appendix C

User- Written Software

This appendix contains the the FORTRAN coding for the user-written elastic/perfectly-

plastic constitutive relationship subroutine UMAT as well as the program used to cal-

culate the spring coefficients for the traction-free crack-tip model derived in Appendix

A. The user-written MPC subroutines which impose the boundary displacements are

included for both the traction-free and (frictionless) closed crack-tip models.

C.1 Elastic/Perfectly-Plastic UMAT

This rountines original framework was written by Allen Lush. The author modified the

original subrountine from its radial return operator to the Rice-Tracey mean normal 0

integration operator.

C >
C ABAQUS USER MATERIAL FOR >
C RATE INDEPENDENT PERFECT PLASTICITY >
C > J"

C >
C Properties common to all material models: >
C PROPS(1) s yield stress TAU Tensile >
C PROPS(2) - MU >
C PROPS(3) a KAPPA >

C>

C Notes:>
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C>
C 1. Compile with FORTRAN 77 only.>

C 2. Do not use this version for plane stress.>
C 3. Use with the *STATIC procedure.>
C>

SUBROUTINE UMAT(STRESS .STATEV.DDSDDE .SSE .SPD .SCD .STRAN .DSTRAN. 0
1 TIME ,DYINE.*TEMP.*DTE4P , PRFDEF,*DPRED .MATERL,*ND I.*NSHR *NTENS,

2 NSTATV.*PROPS,*NPROPS .COORDS)

I14PLICIT REALS8B(h-H.O-Z)
REAi ?4U,KAPPA
DIMENSION STRESS(NTENS) .STATEV(NSTATV) .DDSDDE(NTENS .NTENS). 4
1 STRAN(NTENS) ,DSTRAN(NTENS) ,Stressf (8) .Sn(8) .Gamua(8).
2 COORDS(3) .PREDEF(1) ,DPRED(1) ,PROPS(NPROPS)

C
DATA ZERO,ONE,Onep.TWO,THilREE/O.ODO.l.OOO0OO0D0,1.O2OOOOODO

* *2.000000ODO,3.0000OODO/
C

NDIPL1*NDI.1

C
TAUu32. 5D0 IPROPS(1)
MU-S .48D3 IPROPS(2)
KAPPA-9. 1333333333D3 1PROPS(3)

C Calculate the beginning state SIGI and P1.

C Note that UMINY converts STRESS to its deviatoric part.

CALL UMINV (STRESS.PISIG1,NDI.NTENS)0

C Calculate the trace of the strain increment.

TRACE-ZERO
DO 10 I1.NDI

10 TR.CETRAkCE.DSTRAN(I)

C Convert to deviatoric tensor strain components.

15 DSTRAN(I)oDSTRAN(I)-TRACE/THREE
DO 20 IoNDIPLI.NTENS

20 DSTRAN(I)-DSTRAN(I)/TWO N
C Calculate the new trial stress. Pm

A-
DO 30 1*1.NTENS
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30 SN(I).TWO*MU*DSTRAN(I)+STRESS(I) 
'J

********** S ** ** ** * * * *5************************************C Calculate SIGTRL.

CALL UMINV (SN. PDUN?4T ,SIGTRL ,NDI,.NTENS)

C Calculate the pressure at the end of the increment.

P2=Pi-KAPPA*TRACE

C Determine the state of the initial and final conditions.

If lag-a
Close-C .9gggg99Do*Tau)
If (Sigtrl.L . Close) Then

C The final state is elastic.
ETA-ONE
Cl -TWOst4U 0
C2=KAPPA-C1/THREE
C3=ZERO

C Check if the initial state is non-yielding, but the final state is.

Else IF (SIGTRL.Gt.Close.and.SIGI.Lt.Close) then

Iflag-i

Else
C Both initial and final states are plastic. (Use Rice-Tracey)

If lagu2

End if

C Decide what method should be used to calculate the stresses and the
C Jacobian. The following section is used if the final state is

C elastic.

If(Iflag.Eq.0) Then

C Calculate the deviatoric stress at the end of the increment.

DO 100 I-I.NTENS
100 STRESS(I)-ETA*Sn(I)

C Calculate the Jacobian.

DO 200 I-I.NTENS I
DO 200 J=lNTENS

200 DDSDDE(I.J)=-C3*STRESS(I)*STRESS(J)
DO 210 I-l,NDI
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DDSDDE(I.I)=DDSDDE(I,I)+C
DO 210 J=1,NDI

210 DDSDDE(I,J)-DDSDDE(I.J)+C2
DO 220 I-NDIPL1.NTENS

220 DDSDDE(I.I)-DDSDDE(I,I)+CI/TWO

C Convert deviatoric stress to complete stress.

DO 225 I=INDI
225 STRESS(I)=Stress(I)-P2

Else If (Iflag.Eq.2) Then

C This section is used to implement the Rice-Tracey Mean Normal Operator

C Calculate the trail stress and the needed direction.

Do 230 Iml.Ntens
230 Sn(i)=Two*Stress(i)+Two*Mu*Dstran(i)

C Normalize the trail stress and the needed direction.

Call Euminv(Sn.TaustarNdi,Ntens)

C Calculate the dot product between the strain increment and stress
C direction.

RNdotE=Zero
Do 240 I=.Ndi

240 RNdotE=RNdotE + Sn(i)*Dstran(i)

Do 250 I-(Ndi+l).Ntens
250 RNdotE-RNdotE + Sn(i)*Dstran(i)*Two

C Calculate the final stress state

Do 260 1-1,Ntens

260 Stresef(i)nStress(I) + Two*1u*Dstran(i)
* - Two*Two*Mu*RNdotE*Sn(i)

C Calculate the Jacobian - It is syametric.

Alpha=Two*Mu*(One-Two*u*t NdotE/Taustar)

Do 290 J1l,Ntens
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Ddsdde(ij)= -Two*Alpha*Sn(i)*Sn(j)
* -(Mu/Taustar)*Sn(i)*(Stresaf(j)-Stress(j))

-(Mu/Taustar)*Sn(j)*(Stressf(i)-Stress(i))

If(I.Le.Ndi.and.J.Le.Ndi)
* Ddsdde(i.J)- Ddsdde(ij) + Kappa - Alpha/Three

If(I.Eq.J.and.I.Le.Ndi)
* Ddsdde(ij)= Ddsdde(i,j) + Alpha

If(I.Eq.J.and.I.Gt.Ndi)

Ddsdde(i,J)= Ddsdde(i.J) + Alpha/Two i
290 Continue

C To prevent numerical drift, the stress will be normalized and the
C equivalent stress scaled to be exactly the yield stress, Tau. 0

CALL UNINV (StressfPug,Scale.Ndi,Ntens)
Factor=Tau/Scale

C If the new stress is not close to the yield surface, signal it)

If (Factor.lt.(.99).or.Factor.Gt.(1.01)) then
Print *,'Scaling factor is ',Factor,

* 'and Initial Equiv. stress is '.Sigl

End if
Do 295 Iml.Ntens

295 Stress(i)=Stressf(i)*Factor

C Convert deviatoric stress to complete stress.

DO 300 I=I.NDI
300 STRESS(I)i=Stress(I)-P2 1

Else

C This section is used to implement the Rice-Tracey Mean Normal Operator %

C when the initial solution is elastic and the final is plastic.

C Calculate the dot product between the strain increment and itself.

DEdotDE=Zero "-".

Do 305 Inl.Ndi
305 DEdotDE=DEdotDE + Dstran(i)**Two

Do 310 I-(Ndi+l),Ntens
310 DEdotDE-DEdotDE + Dstran(i)*Dstran(i)*Two

C Calculate the dot product between the strain increment and initial

C stress.
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DEdotSuZero
Do 315 lI=Ndi

315 DEdotSmDEdotS *Stress(i)*Dstran(i)
Do 320 I=(Ndi~i).Ntens

320 DEdctSsDEdotS + Stress(i)*Dstran(i)*Two

C Calculate the dot product between the initial stress and initial
C stress.

SIdatSI=Sigl*Dsqrt (Two/Three)

C Find beta, the traction of the elastic strain needed to cause yield
C In the text beta is called alpha.

Quad2sDsqrt ((DEdotS**Two)
* -DEdotDE* (SIdotSI-Two*Cloae*Close/Three))

Quad3uTvo*Mu*DEdotDE
Ibetal-O
Ibsta2-0
Betalm(-DEdotS -Quad2)/Quad3

Beta2-(-DEdotS *Quad2)/Quad3
c Logic to find maximun exceptable root.

If (Betal .Lt .Zero. or.Betal .Gt .Onep) Ibetalmi fUnexceptable value
If (Beta2 .Lt .Zero. or .Beta2.Gt .Onep) Ibeta2u1 lMnexceptable value
If(Ibeta1.Eq.1.and.Ibeta2.Eq.1) Then
Beta-One
Print *,'Beta roots exceed the allowable range. Betal ',Betai
. ' Beta2 ,.Beta2

Else I1(Ibetal.Eq.i.and.Ibeta2.Eq.O) Then

Beta-Bet&2 U
Else If(Ibetal.Eq.0.and.Ibeta2.Eq.1) Then
Beta-Betal

Else0
BetanBetai
If (Beta2. Gt .Betal) Beta=Beta2

End if

C Calculate the star stress state.

Do 325 in1.Ntens
325 Sn(i)oTvo*Stress(i) + (One.Beta)*Tvoi'Mu*Dstran(i)

C Find the N star-bar direction and it's magnitude. Normalization is
C done in the subroutine.
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Call Euminv(Sn.Taustar.Ndi .Ntens)

C Calculate the dot product between the strain increment and N star-bar

SNdotDE-Zero
Do 330 I-1,Ndi

330 SNdotDE-SNdotDE+ Sn(i) *Dstran(i)
Do 335 I-(Ndi+1),Ntens

335 SNdotDE-SNdotDE+ Sn(i) *Dstran(i) *Two

C Calculate the final stress state.

Do 340 I-1.Ntens
340 Stressf(i)*Stress(i) + Two*tMu*Dstran(i)

* -(One-Beta) *Tvo*Tvo*Mu*Sn(i) *SNdotDE

C Calculate the Gamma, tensor. Determines the change in beta wrt. Dstran

Gammac on* (TvoBeta*Mu*DEdotDE+DEdotS) *(-One) .

Do 345 I1iNtens
345 Gaama(i)-((Two*Mu*(Beta)**Two)*Dstran(i)

* Beta*Stress(i) )/Gammacon

C Calculate the Jacobian - It is symmetric.

C Useful constants for the JacobianI

C1=SNdotDE

DIo(One-Beta)*Two*Mu 1 r
E1-D 1*Two*Mu/Taustar
F1-DEdotDE
GluTvo*Mu-E1*Cl* (One+Beta)0
G2uTwo*Twoe (1u* (Beta-One) 4EI*Cl* (One.Beta))
G3uTwo*Two*fu*Cl+Two*Two*CI*Cl*El E1*F1

G4-(-EI)*(One.Beta)
G5-(-CI*EI)
Do 390 IliNtens
Do 390 JoaiNtens
Ddsdde (i.J)-

* G2*Sn(i)*Sn(j) ~ '. '

" *G3*Sn(i)*Gamma(j)/Two
" *G4*Sn(i)s'Dstran(j )/Tvo
" *G5*Dstran (1)*Gamma( j )/Two
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" +G3*Sn( j) *Gamaa(i) /Two "
" *G4*Sn(J)*Dstran(i)/Two

* +G5*Dstran(j )*Gamma(i)/Two

If(I.Le .Ndi.and.J.Le.Ndi)
* Ddsdde(i.J)- Ddsdde(i.j) + Kappa -GI/Three

If(I.Eq.J.and. I.Le.Ndi)
* Ddsdde(iJ). Ddsdde(i.J) + G1i

If(I.Eq.J-and. I.Gt.Ndi)
aDdsdde(i,j)u Ddsdde(i,j) + Gi/Two

390 Continue

C To prevent numerical drift, the stress will be normalized and the
C equivalent stress scaled to be exactly the yield stress, Tau.

CALL UMINV (Stressi .Pug.Scale.NdiNtens)

Factor-Tau/Scale
C fthe new stress is not close to the yield surface, signal itl

If (Factor.lt.(.99).or.Factor.Gt.(1.01)) Then
Print *.'In mod R-T: Scaling factor in '.Factor,

* 'and Initial Equiv. stress is '.Sigi

End if

Do 396 Inl,Ntens
395 Stress(i)-Stressf (i)*Factor0

C Convert deviatoric stress to complete stress.

DO 400 I-I .NDI
400 STRESS(I)wStress(I)-P2

End if

RETURNaaaaaaaasaaaaaaaasaaaa~aaaaaaaaaa

END

SUBROUTINE UI4INV (X . IYVI.*XINV2, NDI ,NTENS)
IMPLICIT REAL*8 (A-HO-z)
DIMENSION X(NTENS)

C This subroutine calculates:>
C IINVlu-(1/3)*trace(X),>
C converts I to its deviatoric part 1'. and calculates>
C XINV2=DSQRT(l.5*X'*X') >
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NDIPLlmlfDI.1
XINV1*0 ODO
XINV2-0.ODO

C

DO 10 IwmiNDI
10 XINV1=xINV1-I(I)

DO 20 Im1,NDI
20 z(I)wI(I).XINVl

DO 30 Im1,NDI
30 XINV2mXINV2+0. 5D0*X(I)*I(I)

DO 40 IoNDIPL1,NTENS
40 IINV2.UINV241(I) .1(I)0

XINV2-3 .ODO*XINV2
IINV2-DSQRT (XINV2)
RETURN
END

SUBhROUTINE Euminv (X.Iinv2NDINTEIS)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(NTENS)

C This subroutine calculates:>
C XiJ *XiJ /(2.0 *(.5 l ij Dot Xij)-.5)>

NDIPL1uNDIe1
XINY2-O. ODO

C
DO 10 I.1,NDI

10 XINV2-XINV2+0. 5D0*X(I)*X(I)I

20 XINV2-XIN'12.X(I)*X(I)

XINV2inDsqrt (IINV2) 4

Xinvn2 .OOOOOOODO*Xinv2
Do 30 I-i .Ntena

30 X(i)mX(i)/XinvI
RETURN ENI

0
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C.2 Traction-Free Crack-Tip Model

C.2.1 Spring Coefficients

Program Mod-Stiffness

C This program calculates the stiffnesses in terms of the eigenmodes.

C It uses the assumption that twice

C the integral of the traction tines the displacement is equal to*
C the potential energy of the body. The potential energy is then

C just the product of the stiffness matrix and the coefficient vectors.

C This version used the square-root

C oscillatory terms and the integer homogeneous terms.

C This program has been modified to give the spring format in a 0

C a manner consistent with ABAQUS 4.8 version.

Complex*16 Phi(20).PhiI(20).PhiII(20).11(20),.II(20).11(20)

Complex*16 BB(20.20).BcB(20,20).cBcB(20,20),cBB(20,20).Cposs

Complex*16 X2(20),X21(20).12II(20),ZI

Complex*16 Conl,Con2,Con3.Con4,Con5.Con6.Z,Zb,Dthe,Ans

IMPLICIT REAL*8 (A-HO-Z)
DIMENSION AiAj(20.20).AiBJ(20,20).BiAJ(20,20).BiBJ(20.20)
DIMENSION C(40,40).D(40.40),E(40.40)

C The material identification is such that material-1 is on the

C upper half and material-2 is on the lower half.

Open(Units3O.File="Springs")

C Set up the material properties

Em2=2.04D3

Eml=7.2267D5
P2=. 020000000000000000000D0,

Mterms=11 IThis is the number of terms desired.

Nterms-5 IThis is the number of integer terms desired.

Isec=20 INuaber of the node corresponding to the KII term.

Zero=O.0DOTwo=2.0000DO000000

Three-3.0OOOOOOOOOOOOOOOODO"

Zeposl.OE-12 )Minimum stiffness for stiffness to be printed.

Determine the bi-material Constants and Moduli
GImEml/((1.OOOOOOOODO+Pl)*Two) IShear Modulus

G2-Em2/((I.OOOOOOOODO+P2)*Two) IShear Modulus
Fl-(3.OOOOOOOOODO-(Two*Two*P1))/GI

F2-(1.OOOOOOOODO/G2)

F3-(3.OOOOOOOOODO-(Two*Two*P2))/G2

F4-(1.0OOOOOOOODO/G1)

Epsilu(1.OOOOOOOOOODO/(Two*3.14159265358979DO))
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* *Dlog( (F1.F2) /(F3+F4))
Ps1-3.OO000OOD0-VTwo*Two*P1) M~ain strain Poisson's ratio
Ps2u3.000000000D0-(Two*Two*P2) IPlain strain Poisson's ratio
C1w(Ps1+1.OOOOOOOODO)/G1 IConstants needed for the integer terms.
C2u(Ps2,1 .00000000D0)/G2
Cc 1.Two*C2/(Cl+C2)
Cc2=Two'C1/ (C1+C2)
Epitheta=Dexp(8. 28318530717958D0*Epsil)
R-. iQOOQOODi

C This sets up the integration rules for Simpson's 1/3 Rule.
Ninv-50 INumber of intervals per half/should be even
Nsteps-(Ninv*2)+1 INumber of steps
Tinc-3.i4i592C536897gD0/Dble(Ninv*2) )Integration step size.

C The Integration step is one-half the interval size.
Do 50 i-1.Mterus !Zero out the matrix
Do 50 j-1,Mterms
AiAj Ci.j)oDcmplx(Zero,Zero)
AiBj(i.j)sAiAj(i.j)0
BiAj(i.j)-AiAj(i~j)
BiBj(i~j)mAiAj(i.j)

50 Continue
Do 300 KKK=1.Nsteps IBegin the major do loop of the intergration
Do 300 111,2

c This loop i& set to integrate the lower half from -pi to zero
c while at the same time integrate the upper half from pi to zero.
c The 'logic' of this is that terms of similar magnitude will be
c accumulated at the same time so that in the case of an anti-
c symmetric term it should contain less error. I hope!

If (M1.Eq.i) then ILower half first.
Theta s(-3.i4isg2es358g7gD0),((Dble(KKK-I))*Tinc)
G=G2
Cposs=Dcmplx(Ps2 ,Zero)
Cc-Cc2A

Elste lUpper half second.
Theta *(3. 14159285358g7gD0) -( (Dble(KKK-1) )*Tinc)

CpossuDcmplx(Psl ,Zero)
CcUCci

End if
Dth@uDcmplxC (Dcos(Two*Theta)).

* (Dain(Two*Theta)))

ZoDcmplx((R*Dcos(Theta)) ,(R*Dsin(Theta))) I
Pm. 500000000D0.(1-i)
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Q-(1-i)-.5000000000D0
ConluDcuplx(p.(-1.OOOOOOODO*Epgil)) IP-ie 0
Con2-Dcaplx(P. (Epsil)) IPie

Con3=Dcupzc(Q.(-l.OOOOOOODO*Epsil)) 'Q-ie
Con4mDcuplX(Q Epsil) Qi
Con6=Con3-Dcsplx( 1. OOOOOODO. Zero) IQ-i-ie
Call Power (t. Theta.*Con3 . ns)
Phi (i) -Dcaplx(Two ,Zero) *Conl*Ans

If (M1.Eq.1) Phi(i)aPhi(i)*Dcaplx(EpithetaZero)
C IThis adjusts for the lower half potential function.

Phil (i)uPhi(i)*Con3/Z
PhilI(i)uPhil(i)*Cons/Z
Call Power(ft.Theta.Con2.Ans)
X1(i)sDcmplx(Two.Zero)*

* Dcaplx(Epitheta .Zero) cAns
Call Power(ft,Theta.Conl .Ans)
X2(i)-Dcmplx(Two .Zero)*Con3*Ans
If (J41.Eq.1) then

11(i)nIl (i)/Dcmplx(Epitheta.Zero) I This adjusts the potential
12(i)m12(i)*Dcuplx(Epitheta.Zero) Ifunctions f or being on the
End If Ilower half.

XII(i)-Il (i)*Con2/Z
X21 (i)=12(i)*cConl/Z
XII~I)W-XI I W).Cozn4/Z
X211(i)=12I(i)*Con3/Z
If(i.GT. (Mterms-Nterms)) Then

c This section calculates out the terms associated with the integer
c powers of the series expansion starting out at n--2.

j juNterus-1-i
Call Power (R,Theta, (Dble(jj.1)) ins)
1I(i)nDcuplx(-Cc.Zero)*Conjg(Ans/Z)*Z

121(i)-Dcsplx(Cc ,Zero)*Ans -

1211(i)'mDcmplx((Dble(1jj-1)) .Zero)*X21(i)/Z
Phil (i)-Dcaplx(Cc .Zero) *Ans/Z
PhiII(i)-Dcmplx((Dble(jj)).Zero)*PhiI(i)/Z
Phi(i)uPhiI(i)*Z/Dcaplx((Dble(jj41)) .Zero)
End if

100 Continue
Do 200 i-1.tterms IThe following are the individual terms

c associated with the complex variable bb and is conjugates.

Do 200 jul.MtermsI
BB(i~j)=Zb*( 14
* (Z*Dconjg(PhiI(i)*PhiI(j)))
* -(Z*Dconjg(PhiI(i))*Dthe*X1II(j))
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* -(Dconjg(121(i)*PhiI(j)))
* +(Dconjg(X21(i))*Dthe*XIII(j)))

BcB(i J )aZb*(
* (Z*Dconjg(PhiI(i) )sDthe*1211(j))
* -(Z*Dconjg(PhiI(i))*Dthe*Zb*PhiII(j))
* *(Z*Dconjg(PhiI(i))*PhiI(j))
* *(Dtho*Zb*Dconjg(121(i))*PhiII(j))

* ~ -(Dthe*Dcon~jg(121(i))*12II(j))
* -(Dconjg(X21(i))*Phil(j)))

cBB(i.J)=Zb*(
* (Phi(i)*Dthe*X1II(J )*Cposs)
*-(?hi(i)*Dconjg(Phil(j))*Cposs)

* -(Dconjg(XII(i))*Dthe*XiII(j))
* *-(Dconjg(II(i)*PhiI(j))))

cBcB(i .J)=Zb*(
* ~(Phi (i) *Dthee'Zb*PhiII i) *Cposs)

* -(Phi(i)*Dthe*X2I1(J)*Cposs)
* -(Phi(i)*PhiI(J)*Cposs)
* -((Dconjg(XII(i)))*DtheeZb*PhiII(j)) IThe Problem Term.
* *(Dconjg(X1I(i))*Dthe*X2II(j))
* +(Dconjg(XII(i))*PhiI(j)))

200 Continue
C This section adjusts the weighting factor applied to each point.
C This is in accordance with Simpon's 1/3 rule.

If (KKK.Eq.1.or.KKK.Eq.Nsteps) Then
Rinc *Tinc /Three

Else
K1*KKK/2
K2-Kl*2
If (K2.Eq.KX) Then IKICK is an even number
ftinc .Two*Two*Tinc /Three
Else
ftinc .Two*Tinc /Three

End If
End I
EDo 30iflMem
Do 300 Jiu,Mterms

AiAj (i~j)-Dreal(BB(i.j)+cBD(i.j)4BcB(i.j)*c~cD(i.j))*Rinc/(G*Two)
* + Aikj(i.j)

* + Bi~j(i.J)
Bikj(i,j).Disag(BB(i.j)4BcB(ij)-cDBB~cBcB(Di.))*tinc/(G*Two)
* + B±Aj (ii)

AiBi (i,j)mDisag(BB(i~j)-BcD(iJ,).cBB(i,j)-c~cD(i,j))*Rinc/(G*Two)
* + AiBj(i.j)
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300 Continue lEnd of the integration.
Do 400 iml.Mterms IForm the global stiffness matrix. 0
Do 400 jol.Mterms

C(i.j)uAiij(i~j)
C(i, (J+iterms)).AiBj (i~j)
C((i+Mterns) .J)BiAj (i,j)
C((14Mteru) . (JeMterms))uBiBj (i~j)

400 C~ntinue
Do 600 isl.(2*teras) lUpper triungularize the global stiffness
Do 500 Joi.(2.teras) Imatrix. Use only one spring per node set.
D(i.j)oC(J.i).C(i.j) IThe other half is being filled in for
If(i.Ne-j) D(j,i)oD(i.j) 1convenience only. -
If(i.Eq.j) D(J.i)sD(J,i)/Two

500 Continue

C This section adjust. for the springs working on the difference
C between the two degrees of freedom, instead of the degree's
C of freedom's product. It becomes very important to determine
C at this tine how many terms are actually going to be used.

Do 550 i.(2*?4terms)
Do 550 J-i.(2*Mterms)

If(i.Ne.j) then
E(i,J)a(-.500OOOOOOODO)*D(i,J)
Else
E(i~j)-D(i~j)*(.5OOOOOOOOODO)
Do 525 Kul.(Mterms*2)

E(i~j)=E(i.j).(.500000000D0)*D(i~k)
525 Continue

End If
550 Continue

Ncount=8999 5set up seet numbering counter. N
Do 600 iml.Mterms C- '

Do 600 Jui.Mterms
NcountaNcount+1
II~i41

If (Dabo(E(i.j)).Gt.Zepo) then
If(i.Ne-j) then
Write (30,1012) Ncount.Ncount,II.JJ
Write (30.1018) NcountE(i,J)

Else

Write (30,1011) Ncount.Ncount.II U
Write (30.1015) Ncount.E(i.j)

End If
End If
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80 Continue
Do 700 i-1.tMterms
Do 700 J-(Mterms.1),(2*Mterms)
NcountwNcount+1
'I-i,'
JJSJ -Mterus+1+Isec

If (Dabs(E(i.j)).Gt.Zepo) then
Write (30,1012) Ncount.Ncount.II,JJ
Write (30,1018) Ncount,E(i,j)
End If

700 Continue

Do 800 i-(Mteras+1).(2*tMterua)
Do 800 J-.(2*totras)
Ncount=Ncount+l
II a i.1-Mterms + Isec
JJ - J.1-Nterms + Isec
If (Dabs(E(i.j)).Gt.Zopo) then
If(i.Ne.j) then
Write (30.1012) Ncount.Ncount,II.JJ
Write (30,1018) Ncount.E(i.j)
Else
Write (30.1011) Ncount,Mcountjl 0

Write (30.1015) Ncount.E(ij)
End If

End It
800 Continue
1011 Foruat('*ELE.ENT.TTPEmSPRING1.ELSETu5P .14,/.315
1012 Foraat(.*ELEMNT.TTPEPRING2.ELSETuSP .I4,1.315)
1015 Format('*SPRING.ELSETSP'.I4 ,.11E7l.
1018 Format(C*SPRING,ELSET=SP'.I4*/1,'/E.1,)

End

Subroutine Power(t. Theta. Con.ins)

C This subroutine calculates a complex number Z.( ft.Theta), .

C raised to a another complex number Con.I
Coaplex*18 Z .Con,Ans
IMPLICIT REAL*8 (A-HO-Z)

AnswDcsplx( ( R**Dreal(Con) ) ,0.OOOOOOOOOOOODO)
" *Dcuplx( (Dexp(-1 .OOOOOOODO*Theta*Diaag(Con))) ..OOOOOOOOOOOODO)
" *Dcsplx((Dcos(Diuag(Con)*Dlog(R))) .(Dsin(Dimag(Con) *Dlog(R))))

" *Dcaplx( (Dcos(Dreal(Con)*Theta)),.(Dain(Dreal(Con)*Theta)))

237

5p, B' q



C.2.2 MPC Subroutine
Subroutine MPC (Ue.A,Jdof,N.Jtype,X,UNmpce)
IMPLICIT REAL*8 (A-H.O-Z)
DI MEN SION A(n) .JDOF(n) ,X(6,n) .U(6.n)

C This program imposes the asymptotic bi-material crack tip
C displacements as an MPC. The order of the MPC as it should

C appear in the deck in ?dPC#,Node#,KnodeKnode. Here P4PCS
C should be I for dot I and 2 for dot 2 in the upper half.
C While 11 should be used for dot l and 12 for dot 2 in the
C lower half. Note, this means that for every node to be tied
C it has to be entered in twice; once for each dot. Node* is
C the number of the constrained node while Knode is .he number
C of the extra node. The desired Ki strength should be given
C as Knode's dot I displacement while the Kui should be given
C as Knode's dot 2 displacement. The subscript 1 and 2 refer to
C the upper (1) and lower (2) materials respectively. The
C Liode numbering are arranged with the first Iinteg minus one
C terms corresponding to the square-root order terms while the
C following terms correspond to the integer terms. (Starting from
C the no-2 term.)

Iintegn7 1# of square-root terms including the K terms.
lone *(-1.OOOOOOOOOOOOOODQ) IUseful constants
Zone a1.OOOOOOOOOOOOOODb
Two *2.OOOOOOOOOOOOOODO
Threen3 . OOOOOOOOOOOOODO
Pie .3. 14159285358979DO

C Determine the Rt and theta. coordinates.
Theta-Datanu2( X(2,1),X(1.1))0
If (I(i.i).Lt.(O.ODO).and.Dabs(X(2.i)).Lt.(O.OOO1DO)) ThetanPie
Theta aDabs(Theta) I This always gives a positive theta.
If(Jtype.Eq.iI .or.Jtypo.Eq. 12) Theta=Theta*Rone
ftuDsqrt(X(i.1)*X(1 .i).X(2,i)*X(2.1))

C Set up the material properties
Em2TO0. D03

Emi-13 .7D03
P2=. 342D0

C Determine the bi-material displacements

G1*EaI/ ((Zon@.PI) *Two) I Shear Modulus
G2wEn2/( (Zone*P2)*Two) I8hear Modulus

F1*(Throe- (Two*Twoa'P1))/G1a

F3w(Three- (Two*Two*P2) )/G2
F4=(Zone/Gi)
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Epsiln(Zone/ (Two*Pie) )*Dlog( (F1.F2) /(F3+F4))
C1wF1.F4 IThese are constants used in the integer0
C2nF34F2 Ifunction expansion.
Ccl=Two*C2/(C1.C2)
Cc2uTwo*CI/ (CI.C2)
If (Jtype.EQ.11.aR.Jtype.EQ.12) then

G=G2 IThis adjust for the material being on the down side.
RnJ *Three- (Two*Two*P2)
Cc=Cc2

Else
G-G1 I Assume that the node is on the upper half
RziJ*Three-(Two*Two*Pi) M~ain strain Poisson's ratio
CcCc 1

End If
Uit-0.ODO llnitialize the displacements before the do ioop.
Vit*TUit
A(1)Zone
MM=(N-1)/2 lAdjuatnent for the due ioop0
Coshpe* (C(Dexp(Epsil*Pie) ) (Dexp(Epsil* (Rone*Pie) ))) /
& Two) ICorrection of Rice's original solution.
EthetainDexp (Epsil*Theta)
EpithetawDexp (Two*Pi.*Epsil)
ResEpsil* (Dlog(R))0
Con3u(Three/(Two*Two)) - Epsil*Epsil
Con4w Two * Epsil
Con7olO.028513D0 * Dexp(Pie*Epail)

* ( Con4 * Con4 + Con.3 * Con3)
Do 200 Im1.MN I The number of terms involved is the second limit
If CI.LE.Iinteg) then IThese terus are used for the square-

Iroot expansion.
11-2-1
P-Dble (II) +(Zone/Two)
Q=DblO (II) -(Zone/Two) 0
CRe=DCos (Re)
SRe=DSin(Re)
CQt-DCos (Q*Theta)
SQt=DSin (Q*Theta) 4
CQ2teDCos ((Two-Q) sTheta)
SQ2toDSin( (Two-Q)*Tmeta)
Teral-CRe*CQt4SRe*SQt
Tera2mCR@*SQt -Sl.*CQt
Torz3-CRo'CQ2t -SRe'eSQ2t
Tera4sCR**SQ2t+SRe*CQ2t
Tera5inCRe*CQt-SRo*SQt0
TormainCR@*SQt+SRe*CQt
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Con1*(P*Q) -(Epsil*Epsil)

Con2u (P.Q) sEpsil
End If

CThe terms Fel and Fe3 are associated with the e.-n term in my expan.a

C The terms Fe2 and Fe4 are associated with the f-n term in my expan.
If(CJtype.EQ.i1.or.Jtype.EQ.12) .and.I.LE.Iinteg) then

c Theme are done for the lower half.
Felin(P*Teral + Epsil*Tera2)*(Etheta)*Rnj*Epitheta -

* (Conl*Tern3 - Con2*Term4)*(Etheta)*Epitheta -

* (P*Teru5 - Epsil*TeruG)/Etheta +

* (Conl*Terml + Con2*Ters2)*Etheta*Epitheta
Fe2n(Epsil*Terul - P*Tera2)* Etheta*Rnj*Epitheta -

* (Con2*Ter3 + Conl*Teru4)* Etheta*Epitheta -

* (P*TermG + Epsil*Tern5)/Etheta -

* (Con1*Term2 - Con2*Terul)aEtheta*Epitheta
Fe3u(P*Tern2 - Epail*Ternl)*(Etheta)*Rnj*Epitheta -

* (Con2*Term3 + Conl*Tern4)*(Etheta)*Epitheta +
* (PitTeruG + Epsil*Term5)/Etheta-
* (Conl*Tern2 - Con2*Terml)* Etheta*Epitheta
Fe4u(Epsil*Terz2 + P*Term1)*(Etheta)*Rnj*Epitheta +
* (Conl*Tern3 - Con2*Term4)*(Etheta)*Epitheta
* (P*Teru5 - Epsil*TersG)/Etheta -

* (ConisTerni + Cozn2*Tera2) *(Etheta) *Epithet&
Rconw(Zone/(G*Coshpe) ) *(R**Q)

Else If ((Jtype.EQ.1.or.Jtype.EQ.2).and.I.LE.Iinteg) then
I These are done for the upper half.

Fel.(P*Terul + Epsil*Ters2)*(Etheta)*Rnj-
* (Con1*Terz3 - Con2*Teru4)*(Etheta)-
* (P*Teru5 - Epsil*Terme)*Epitheta/Etheta +
* (Conl*Teral + Con2*Tera2)*Etheta

* (*eu EpiTeu)Eiet/tta(nser3*onTe4) EttaFe2w(Epsil*Terml - P*Tern2)* Etheta * Rnj U
* (Conl"'Teru2 + Con1*Ters4)* Etheta

* (P*Tern6 + Epsil*Teru5)'sEpitheta/Etheta(Cn'er3*onsr4)Etta U
* (Conl*eTeru2 - Con2*Tera1)s Etheta
Fe4=(*(EsTer2 PsTers1)e'(Etheta)*Rnj

* (Con2*Term3 + ConlsTern4)*(Etheta) +
(P*Term6 + Epsil*Tern5)*Epitheta/Etheta %

(ConisTerml + Con2*Ter&2)*(Etheta)
Rcona(Zone/(G*Coahpe) )*(R**Q)

Else If (I.GT.Iinteg) Then IThis begins the integer
I section of the expansion.
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Mno=Iinteg- I-i
Rmnol-Dble(Mno-1) .

Rmno3=Dble(Mno+1)
Rcon-Cc* (R*B.no3)/(Two*G)
Argp=Theta*Rmno3

Argn=Theta*Rtmnol
Fel=( (Anj +Rano3)/Rmno3)*Dcos(Argp) S

Fe2n(" (-(Rnj tno3)/R1no3) *Dsin(Argp)
Fe3-((RnJ -Rano3)/Rmno3)*Dsin(Argp) + Two*Dsin(Argn)
Fe4=((RnJ -Rano3)/Rmno3)*Dcos(Argp) + Two*Dcos(Argn)

Else
Print *.'Tour are in deep ...........

End if
C The U(*e*) are the stress intensity factors. Therefore an adjustment
C must be made to convert then into the proper form. What follows are
C the derivatives of the displacements with respect to the Stress
C Intensity factors. Or the unknown degrees of freedom.
C The conversion to the Stress Intensity Factors only occurs for W
C the square root term. The remaining terms are left as the unknowns
C a+ib. This is done because the evaluation of the far-field is such
C easier using aj~ibj instead of KlJ+iK2j. Another separation is
C given to the integer terms and the square-root order terms.

If(I.Eq.1) then

UKI= Rcon*(Fel*Con3 + Fe2*Con4)/Con7
UK2- Rcon*(Fe2*Con3 - Fel*Con4)/Con7
VK Rcon*(Fe3*Con3 + Fe4*Con4)/Con7

V'K2U Rcon*(Fe4*Con3 - Fe3*Con4)/Con7
Else If(I.Gt.Iinteg) then 0

UKlocon*Fel
UK2=Rc on*Fe2

VKI=Rcon*Fe3 a
VK2=Rcon*Fe4 4-

Else

UK2= Rcon*Fel*Coshpe

UK2 Rcon*Fe2*Coshpe
VK1= Rcon*Fe3*Coshpe
VK2U Rcon*Fe4*Coshpe

End If
Jdof(2*I.l)*l I node in the expansion.
Jdof(2*I)ul tGive the correct degree of freedom for each free

IF (Jtype.Eq.1) then

JDOF(1) -1 .-

A (2.I1) =fone**UK2
A(2*141)o.Hane*UK20

Else IF (Jtype.Eq.11) then
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JDOF(1)=1

A(2 I) =Rone*UK1 S

A(2*I+1)=Rone*U2
ELSE IF (Jtype.Eq.2) then

JDOF(1)=2
A(2*I)i=Rone*VK1

A(2*I+1)ulone*VK2 S
ELSE I (Jtype.Eq.12)

JDOF(1)-2

A(2*I)m=tone*VKI

A(2*I+1)inRone*VK2
END IF
Uit=Uit+(U(1.(2*I))*A(2*I) + U(2,(2*I+1))*a(2*I+I))
Vit=Vit+(U(1,(2*I))*A(2*I) + U(2.(2"I+1))*A(2*I i))

200 Continue
C Figure out which dot is being sought and is it in the upper or
C lower half. Also, give the total displacement.

IF (JTTPE.EQ.1.OR.JTTPE.EQ.11) THEN
JDOF(1)-I
UE=Uit

ELSE !IF (Jtype.Eq.2.or.Jtype.Eq.12) THEN
JDOF(1)=2
UE-Vit

END IF
Return
End

C.3 Closed Crack-Tip: MPC Subroutine
Subroutine MPC (Ue.A.Jdof.N.JtypeX.UNmpceKstep,Kinc.Time)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(n).JDOF(n) .X(6.n) ,U(6,n)

C For ABAQUS - VERSION 4.6 0
C This program imposes the asymptotic bi-material crack-tip
C displacements as an MPC. This is the rountine used to enforce
C the CLOSED crack-tip model. The order of the MPC as it should
C appear in the deck is MPC#,Node#,Knode. Here MPC#
C should be 1 for dot I and 2 for dot 2 in the upper half.
C While 11 should be used for dof 1 and 12 for dof 2 in the

C lower half. Note, this means that for every node to be tied
C it has to be entered in twice; once for each dot. Node# is
C the number of the constrained node while Knode is the number
C of the extra node. The desired Ki strength should be given
C as Knode's do! 1 displacement. The subscript 1 and 2 refer to
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C the upper (1) and lover (2) materials respectively.
Rone -(-i.OOOOOOOOOQOOOODo) 1 Useful constants
Zone i1.OOOOOOOOOOOOOODO
Two w2. OOOOOOOOOOOOODO
Threein3 .000OOOO0oooODo
Pie =3. 14159286368979DO

C Determine the Rt and theta coordinates.
Theta-Datan2( X(2.1).X(1.1) )
If (X(1i).Lt. (O.ODO) .and.Dabs(X(2.1)).Lt. (O.OOO1DO)) Theta-pie

Theta oDabs(Theta) IThis always gives a positive theta.N
If(Jtype.Eq.11.or.Jtype.Eq.12) ThetawTheta*Rone
RmDsqrt(X(1. 1)*X(1 .1).X(2. 1)*X(2. 1))

C Determine the bi-saterial constant. Caution: use Comninou's
C ordering. Give Beta with 1 in the lover regiont

Beta--O. 240120000D0
C Set up the material properties

Eal-70. 1D03

Ex2-211 .418
P1-. 342D0
P2-.30030

C Solve for the shear modulus
GlinEal/((Zone+Pl)*Two) IShear Modulus upper domain
G2=Em2/((Zone+P2)*Two) IShear Modulus lower domain
If (Jtype.EQ.11.OR.Jtype.EQ.12) then

0-02 IThis adjust for the material being on the down side.
RznJ-Three- (Two*Two*P2)

Else
G-GI I Assume that the node is on the upper half
fnjsmmzee-(Two*Two*Pl) )Plain strain Poisson's ratio

Bet&=Beta*Rone ]Adjust for Beta in the upper domain.
End IftI
Fi-oneCCsqtToR)(wTvTo*)
F2- (Two*Rnj -Zone) *R(ZoeBta)*DsinTheta/T)
F3-(ThoRee.B e ) (sinTjeeseta/ inTo) /wo
F1 (F2-F3Be)*s (Tr*heawo

UF (o 2n-F o) s on - ta D s (T e / w )
F5 (Tho*Ree. neZoeBeta) *Dos Thre Theta/Two)
UF~S (F4-F5Bo)*c (Tr*heawo

C o e t h i s l c e e t s i t o t e C a t s i n C o r i n t f a e
C otteth (rdiospl(Thet -(ointheCatesaoodntefae

Uy- (Uo.Dcos (Theta) ) (Ur*Dsin(Theta))
Jdu(ofD(2i llmposingDOF ofK..I node

I dF (2 m (( ty e. q. o singJtype ofq.11 ) nth e .

JDOF (1)-i
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1(2)-Rone*Ux
ELSE IF ((Jtype.Eq.2).or.(Jtype.Eq.12)) then
JDOF(i)-2
AC2)-Rone*Uy
ELSE
Print *. "You goofed up!'
END IF
Uits U(1.2)*A(2) IGet the actual displacement
Vit- U(1.2)*A(2)

C Figure out which dof in being sought and is it in the upper or
C lover half. Also, give the total displacement.

IF (JTTPE.EQ.1.OR.JTYPE.EQ.11) THEN
JDOF (1)-i
UE=Uit

ELSE 1IF (Jtype.Eq.2.or.Jtype.Eq.12) THEN
JDOF(1)-2
UE-Vit

END IF
Return
End
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