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ABSTRACT

We discuss some aspects of implementing the finite element method on parallel
computers with local memory and message passing. In particular, we compare the
costs of using high order and low order elements, and of direct and iterative solvers
for solving the linear systems that occur. Our model of parallel computation is a
two-dimensional grid of processors chosen to be similar in shape to the underlying
grid. Our main conclusions are that sparse direct solvers generalize naturally to
methods based on high order elements, and that direct solvers are adequate for
two-dimensional problems, especially for multiple load vectors. We also demonstrate
that high order methods achieve higher accuracy at less cost on some typical model
problems.
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Abstract. We discuss some aspects of implementing the finite element method on
parallel computers with local memory and message passing. In particular, we compare
the costs of using high order and low order elements, and of direct and iterative solvers
for solving the linear systems that occur. Our model of parallel comput .tion is a two-
dimensional grid of processors chosen to be similar in shape to the underlying grid. Our
main conclusions are that sparse direct solvers generalize naturally to methods based on
high order elements, and that direct solvers are adequate for two-dimensional problems,
especially for multiple load vectors. We also demonstrate that high order methods achieve
higher accuracy at less cost on some typical model problems.

1. Introduction

The finite element method is a major computational tool of engineering. However,
large problems, especially in three dimensions, are not practically solvable on present-
day serial computers. Improvements in computing technology, based on the emergence of
large-scale parallel architectures, offer the possibility of expanding the set of problems that
can be solved effectively. Such machines appear particularly attractive for finite element
algorithms, in which the local elements provide a natural decomposition of the problem

*into (partially) independent sets. The efficiency of any numerical algorithm implemented
on a parallel computer depends on both arithmetic and communication, and many aspects
of finite element computations, most notably those involving linear algebra, are not fully
parallel. In this paper, we address the issues associated with finite element analysis on
parallel computers in a simplified way, hoping to get insight into how to use such machines
effectively. We focus on two basic issues:

1. a comparison between high order and low order basis functions;
2. a comparison between direct methods and iterative methods for solving the linear

algebraic systems that arise.
We consider three versions of the finite element method: the standard h-version, which

uses low order basis functions and achieves accuracy by refining the mesh; the p-version,
which uses a fixed mesh and achieves accuracy by using high order basis functions; and
the hp-version, which combines these two approaches. See [21 for a survey of results for
the latter two methods. All these techniques produce a set of one or more linear systems -

of equations where the coefficient matrix is the global stiffness matrix. Our strategy for (
solving these systems in parallel is to partition the problem among the available processors "'s'

and apply local elimination inside each processor, sr that unknowns "interior" to processors
are decoupled from the system. For computing the other unknowns, we examine both direct
solvers based on the parallel nested dissection method [5,6,17] and parallel versions of the
conjugate gradient method (CG). The latter strategy is related to domain decomposition
methods, for which parallel implementations using "fast direct" local elimination have been --

considered in [9,101 .
For all these techniques, we perform an analysis of the computational complexity

of their parallel implementation, and we perform a series of numerical experiments that
determine the accuracy of finite element solutions of model problems for various choices------..
of basis functions. Combining the analytic and numerical results gives estimates of the

* Ai



overall parallel costs. Our model of parallel architecture is a two-dimensional k x k grid of
processors with nearest neighbor connections. Each processor has access to its own local
memory, and data can be communicated only between neighboring processors.

An outline of the paper is as follows. In Section 2, we describe the model problem and
the finite element methods used for discretization, and in Section 3, we give an overview
of the computations needed for solution. In Section 4, we present a cost analysis of the
solution techniques, including direct local elimination and global elimination by both direct
methods and iterative methods. In Section 5, we combine these results with the results
of numerical experiments determining the effectiveness of various finite element methods
and iterative solvers to assess the overall costs of solution techniques, and in Section 6 we
draw conclusions.

2. The Model Problem and Finite Element Discretizations

Consider the model problem

- - ajk- f on 0, i-1,...,s, (2.1a)

S-g on 40l, (2.1b)

where (2 is a square domain, aik = ak' and the multiload fi, gi satisfy the usual solvability
conditions. We will cast the problem into the standard variational form: to seek ui E
H 1 (l) so that

B(ui, v) = F (v) (2.2)

holds for all v E H1(0), where

2 au49V
B(u, v)= aik '--.dz, (2.3a)

j,k=1

S(v) ffvdz+ gvds, i1,... (2.3b)

The solution exists and is unique up to an additive constant. We pose (2.1) on a square
domain, but our arguments apply in general to any domain that is topologically a square.

The finite element method consists of the selection of the subspace S C H 1 (0") and
computation of approximate solutions us(S) E S that satisfy

B(u,(S),v ) = F,(v) Vv E S. (2.4)

The goal is to obtain u,(S) such that

IIU(s) - ,llz < r, (2.5)

2
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Figure 2.1: The standard square S.

where 11uIE = B(u,u)1/2 is the energy norm and r is an a priori given tolerance. One
strategy is to use a sequence of spaces S(), = 1, 2,... and compute 0) until the result
satisfies (2.5). We restrict our attention to the energy norm, although other measures are
sometimes more important in practice.

The quality of the finite element solution u,(S) and the computational work to com-
pute it depend on the regularity of u, and properties of S, including its dimensionality,
which determines the size of the linear system to be solved. For solving (2.1) on a k x k grid
of processors, we will divide fl into k2 quadrilateral "super-elements" Dij, 1 < i,j ! k.
Each super-element Lij is the image of the standard square S = [-1, 11 x [-1, 11 with
vertices Ai and sides ',, i = 1,... ,4, see Figure 2.1. Let M i denote the mapping from
S onto Di, which we assume is smooth. We associate with S a finite dimensional space
'1 which is the span of basis functions {0} = {0 ( ° ) 1 U {ko)} u {0(2)}. Here {0 (0)} are
nodal shape functions associated with the vertices {Ail, {0(')} are side shape functions
associated with the sides {ri} and {0(2)} are internal shape functions associated with the
interior of S. A nodal shape function associated with A, is zero on the opposite sides r,
ri+2, a side shape function associated with r, is zero on ri, j 3 i, and the internal shape
functions are zero on uri. These functions determine a basis for D i under composition
with Ms i . The basis functions are chosen so that S C H1(f0).

Some examples of basis functions O() are as follows:
(a) Shape functions for the h-version. S is divided into triangles as shown in Figure 2.2,
left. The shape functions are the piecewise linear "hat functions;" some examples of the
supports of such functions are shown in the figure. In an analogous way, we can divide S
into squares and use piecewise bilinear shape functions (Figure 2.2, right).
(b) Shape functions for the p- and hp-versions. For the p-versions, there are 4 nodal shape
functions which are bilinear. For p 2 there are 4(p- 1) side shape functions. For example,

for the side q = -1 the shape function of degree j in is 0(1) ( , 17) = (f-, L (t)dt)(1 -t)/2
where lj is the Legendre polynomial of order j. The internal shape functions are given by
the tensor product of the nodal and side functions. It is possibie to restrict the number of
internal shape functions to , (p - 2) (p - 3) for p _: 4 (and zero otherwise), so that the span
contains the complete set of polynomials of degree p. This set is used in the commercial
code PROBE [16,18]. Hence, there is a total of 4p+ (for p 2 4) 1(p - 2)(p - 3) basis
functions. For the hp-version, S is first divided into squares, and the p-versic.i shape

3



Figure 2.2: Supports of some shape functions for the h-version with triangular and square
elements.

functions are used on each square.
(c) Shape functions for spectral methods [13,15]. On every side of S, define p + 1 Lobatto
quadrature points i and polynomials e1(t) such that 9i(Cj) =6 i, the Kronecker 6. The
shape functions of 0 are then the tensor product functions kO.(C, 7) = 8iW0,()7). It is
straightforward to divide these functions into groups of nodal, side and internal shape
functions.

Using the basis functions of $, we can easily construct basis functions of S from those
defined on {D1i}. Let these be denoted {tik}, so that u1 (S) = E- x'), F(tki) =- )

and (2.4) reduces to a system of linear equations

G -
0 = Y(, (2.6)

where G is the Gramm matrix [Yi] with "Tij = B(0b,t'k). The unknowns x(') can be
visualized as located in the nodal points, sides and interiors of Di . as in Figure 2.3.

]* * * * * * .r* 0_ _ XNodal

.. . . .. . . .. . . . U Side

4 * , 0 0 * * *
internal

•* 0 [ 00 * 0 0 0¥i

Figure 2.3: Distribution of unknowns on super-elements.

3. Overview of Computations

We would like to compute u,(S) to the desired accuracy at the lowest possible cost, in
terms of work and storage. Thus, we wish to understand the connection between the error

4 I.



lu,(S) - uillv and the cost of computing ui(S). This will depend on the choice of S and
its basis, the regularity of the solution ui, the method of linear system solution, and the
computer architecture. In this section, we give an overview of the required computations.
They can be divided conceptually into the following four steps:
(1) Computation of local stiffness matrices and local load vector(s). The Gramm matrix
and load vectors of (2.6) are linear combinations of local stiffness matrices (or local load
vectors), defined on the individual super-elements D i . The local stiffness computations
entail quadratures to evaluate B(u,v) and F(v) on D 3 . We will not consider global
assembly of G, but instead will examine local eliminations prior to assembly. Hence, these
computations are fully parallelizable.
(2) Local elimination. The local matrices and load vectors can be written in block form

\BT C c 3.1

A corresponds to the connections among internal unknowns in a super-element, except for
those adjacent to the boundary of 0, where A also includes connections among all side
and nodal unknowns not associated with other super-elements. C corresponds to connec-
tions among unknowns on the boundary (i.e. nodal and side) Di, and B corresponds to
connections between interior and boundary unknowns. The structure, e.g. sparsity, of A,
B and C depends on the choice of shape functions. For example, the h-version produces
sparse matrices and the p-version leads to full matrices. For any methods, the interior
unknowns can be decoupled from those on the domain interfaces by computing the Schur
complement

C - C - BTA-IB, (3.2)

and modifying all local load vectors similarly by

c +- c - BTA- b. (3.3)
1.

All these computations are fully parallelizable. For the h-version, explicit local elimination
is performed using the serial nested dissection method [7,81, and for the p-version, dense

4 elimination is used.
*(3) Interface solution. We define the global interface matrix G to be the coefficient matrix of

the linear system for the unknowns on the domain interfaces after the interior unknowns are
decoupled from the system. Interface load vectors g are defined analogously. G is computed
explicitly by adding components of the local stiffness matrices after local elimination (3.2).
The result is one or more systems of linear equations of the form

6v = g (3.4)

which must be solved for the interface unknowns v corresponding to the load vector g.
(4) Local backsolves. For any super-element Di, let vi3 denote the component of v on the

*l boundary of D,, determined from the solution of (3.4). The interior values uj are then
obtained by solving (in parallel for all super-elements) the local system Augi = b - Bv i .
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(5) Postprocessing. After determining all solutions corresponding to different load vectors,
it is usually necessary to determine the values of interest. This is done on an interelement
level, and we do not consider it here.

4. Cost Analysis.

In this section, we give a detailed cost analysis for the two-dimensional model prob-
lem. For the finite element method, we compare the h-version, the p-version, and the
hp-version as discretizations inside super-elements, with m 2 quadrilateral elements for the
h- and hp-versions. For solving on the domain interfaces, we compare the costs of direct
solution based on a parallel implementation of the nested dissection method, with those
of iterative solution using the conjugate gradient method. We will examink. CG without
preconditioning (although the local elimination could be viewed as a preconditioner), and
use of a submatrix of the interface matrix as a preconditioner. We will also distinguish
between the cases of one and more than one right hand side.

In our analysis, we state the cost of arithmetic in terms of number of floating point
multiplications/divisions. (Additions/subtractions are essentially in one-to-one correspon-
dence with these.) For interprocessor communication, we assume that a processor can

*communicate with all of its neighbors simultaneously, but at any given moment, data can
move in only one direction between two processors. Communication costs are specified
in terms of "items of data." We make the simplifying assumption that blocks of data of
arbitrary size can be sent (sizes will be chosen to fit algorithms), but each send entails a
startup cost. We do not consider overlapping arithmetic and communication.

4.1. Local Computations.

The fully local computations, local stiffness computation (step 1), elimination (step
2), and backsolve (step 4) are performed simultaneously in every processor. For simplicity,
we assume that the same discretization is used in every super-element. Let D denote
one super-element. For the h- and hp-versions, D is divided into an m x m grid of local
quadrilateral elements, and for the the p-version, no subdivision of D is made.

The local stiffness matrix and load computations are performed by quadratures on D.
The complexity depends on the choice of basis functions, but it also depends strongly on the
cost of evaluating the coeficients ajl and loads fi, gi of (2.1), and, if curved quadrilaterals
are used, the Jacobian JM,,. Since these costs cannot be stated too precisely, we limit our
attention to orders of magnitude.
(a) The h-version with bilinear elements. The local stiffness matrix is sparse, symmetric
and of order (M + 1)2, with 9 diagonals. Each entry comes from 0(1) quadratures, so
a total of cm 2 operations is needed, where cl is strongly dependent on the coefficients
and Jacobian. Similarly, computation of the load vector requires c2m operations where C2
depends on f and g. We estimate that reasonable values of cI and c2 are 50 - 100. In
special cases (such as constant coefficients), the operation count reduces to essentially zero
because the same stencil appears in all elements.
(b) The p- and hp-versions. For the p-version (p 4), D is not subdivided, and the
local stiffness matrix is full of order Q = 4p+ (for p 4) I(p - 2)(p- 3). Practical
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values of p are about 6 - 10. To achieve reasonable accuracy when the coefficients aij
or Jacobian is not close to a constant, Gauss quadratures with (ap)2 quadrature points
are used where a > 1. The computation of the one-dimensional shape functions on ap
points needs C3p 2 operations, and using the tensor product form of the shape functions,
the construction of the local stiff matrix needs c4 p4 operations, where c4 =z L to 1. In
addition, there are 3p2 evaluations of coefficients aj and Jacobians, resulting in a total
cost of c 4 p2 + cSp 2 operations. It it often the case that c~p2 is larger than the first term,
so a reasonable estimate for the total cost is cp4 where c ; 1. For the hp-version, these
costs are multiplied by n , except in the special case of constant coefficients.

The local eliminations are performed by some version of Gaussian elimination, e.g.
making use of a factorization A = LLT. It is possible to give precise specification of the
costs. For the p-method, local elimination can be described as a set of dense block matrix
operations, where the blocks are as in (3.1):

Algorithm 1: Local elimination and backsolve.
Elimination:

a) Cholesky factorization A = LLT,
b) Block forward solve b - L- B,
c) Update C , C _ fTf3,

d) Forward elimination for each load vector b: b i L-lb and c - c - bT,

Backsolve:
e) Given boundary values v, compute interior values u *- L-T(b - Av).

Steps (a) - (c) are independent of the number of load vectors; steps (d) and (e) are per-
formed for each load vector. Note that this algorithm must be combined with computation
of the interface unknowns, which takes place between steps (d) and (e).

For the h-version, the matrices A, B and C are sparse, and we consider use of the
nested dissection method, in which the rows and columns of A are symmetrically permuted
to minimize fill-in, see [7] for details. (See also Section 4.2 for a parallel version used
for elimination on the super-element interfaces.) Formally, the main modification of
Algorithm 1 is that step (a) is applied to PAPT, where P is a permutation matrix that
implements the reordering. For the hp-method, Algorithm 1 is applied in serial to each
element of D to decouple the internal unknowns of local. elements from those on local
interfaces, and then it is applied using a nested dissection ordering to eliminate the local
interfaces.

The following result summarizes the floating point multiplication counts for internal
elimination. A proof is given in the Appendix.

Theorem 1: The high order multiplication counts of the local elimination used for two-
dimensional problems are

/15 35174 3413 p371 371 22
m 2 1p + -. p + - p + r-mnp3 -- M 2p 3 - 17m2p2 log 2 M)

k48r 16 16 481 12 12/

for factorization, and

M2(p4 +2 PI) + (m2p2 1og 2 m - 26m 2p+2m2) (4.1)
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for forward- and back-substitutions.

For both the expressions of this result, the first term in the sum comes from treating the
internal unknowns on each of m2 local elements in D, and the second term comes from
treating local element interfaces inside D. Note that the factorization is performed only
once, whereas the forward- and back-solves are performed once for each load vector. Also
note that for practical values of p, the 0(p 6 ) term is not the governing one.

On a serial computer, all computations are local and costs are summarized the fol-
lowing result.

Theorem 2: The high order multiplication counts for serial factorization are
n2( 1 6 3 5 17 4 3413 + 267 33 _ 371 2 "3 1722

8p +j-p -- " ) + 12 48 28 -12g~

The costs are slightly lower than those obtained by replacing m with n in Theorem I
because the serial algorithm achieves some savings near the boundaries (see [7]). The
proof is essentially the same as that of Theorem 1.

4.2. Parallel Direct Solution for Interfaces

After the internal unknowns are decoupled from the system, the result is one or more
systems of equations of the form (3.4) whose unknowns are associated only with super-
element interfaces. This situation is depicted in Figure 4.1. To simplify the analysis, we
assume that the number k of processors in each dimension is a power of two. If D denotes
a super-element associated with some processor, let d denote the number of unknowns on
each side of D, including one nodal unknown. Thus, each (interior) super-element has 4d
unknowns associated with it, where unknowns lying on a node are associated with four
super-elements, and those on an edge are associated with two. Conceptually, whether these
unknowns come from the h-, p- or hp-versions of the finite element method is irrelevant; we
simply have d = mp for all methods. The order of C is then N = (2d- 1)k2 +2kd+ 1. If the
unknowns are labeled from 1 to N, then an entry GC. is nonzero iff unknowns i and j are
associated with a common subdomain. It has been shown in [5,6,17] that these unknowns
can be computed with 0(1) efficiency using the parallel nested dissection method. In this
section, we give a high-level description of this algorithm and summarize its costs. A
detailed description is given in the Appendix.

The method consists of log12 k steps, dcribed loosely as follows. At the t'th step, a
set of four domains from step t - 1, each containing 46 t boundary unknowns, is merged
into a larger domain DM , and a Kt x rct processor grid is used to decouple the interior
unknowns of D() from the boundary unknowns. (See Figure 4.2 left.) This procedure is
repeated recursively, with t+l = 26 and rct = 2*. For example, the original k 2 super-

element domains {D) 11 < i,j k} (one per processor) each contain b, = d boundary

unknowns on each edge. These k2 domains are grouped into (k/2)2 square sets containing
four domains each, where in each set the four domains are contiguous at one node. Then,
simultaneously for each set, the four domains are merged into a larger domain, resulting
in a set of (k/2)2 new domains {D ) ' 1 < ij <_ k/2} each containing 2b, boundary
unknowns per edge and residing on a Kc x K, = 2 x 2 grid of processors.

8
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Figure 4.1: Configuration of unknowns after local elimination.

Algebraically, "merging" of subdomains means assembling four stiffness matrices local

to the subdomains {D(t - )} into a new stiffness matrix for D(t) (and analogues for load
vectors). As in [5], let the unknowns for the merged domain D(t) be divided into pt sets

each of size approximately 5 t, where for 1 < t < log 2 k - 2, pt = 12. The distribution
of unknowns is as in Figure 4.2, left. In the last two steps, there are fewer boundary

unknowns (or none at all): Plog k-i = 8 and Plogk = 4. In this discussion, we focus on the
case t < log 2 k-2. Let the interior unknowns be labeled with the integers 1 through 4, and

the the boundary values labeled 5 through 12. The stiffness matrix for D(t) is then a block

12 x 12 matrix, denoted by S(t) (Figure 4.2, right). Contributions to each of the blocks of

S(t) come from the parts of the local matrices from the previous step whose subdomains

are associated with that block. For example, St ) contains contributions from the local

matrices for subdomain D( and subdcmain (t-) Merging consists of redistributing
the four local stiffness matrices from four separate ict-1 x /t-l grids to one it x Ict grid,
and then summing the contributions to S(t).

1 2 3 4 5 6 7 8 9 101112

10 3. .

4

6 _ _

1 2 7 _

412 47 8 ___

9 -
10

5 6 11~12 i1 [i

4 Figure 4.2: A merged domain D(t) and the approximate nonzero structure of its local
matrix S(t).

As usual for the nested dissection method, the interior unknowns of each merged

domain D() form a cross (Figure 4.2, left). To examine the decoupling of the interior

4 points of D(t) from its boundary, we temporarily drop the index t from the discussion,

letting D represent a domain at some step t < log 2 k - 2. The decoupling is based

9

4



on parallel block Gaussian elimination. In an implementation, it would be necessary to
identify the twelve sets of unknowns precisely, specifying in particular how points on the
boundary of two or more sets (such as the center of the cross) are labeled. We avoid
this precise identification, instead deriving an upper bound for the costs by considering a
matrix S with a simpler structure: we take S to be a block 12 x 12 matrix with square
blocks whose nonzero blocks are those explicitly identified in Figure 4.2. These blocks are
taken to be dense of order 6.* Algorithm 2 is a version of the factorization, block forward
solve and update steps (analogues of steps (a)-(c) of Algorithm 1) used to eliminate the
first four blocks of S. At each step, it is applied simultaneously to all the local matrices S
associated with domains D for that step. The algorithm takes advantage of sparsity and
symmetry by operating only on nonzero entries of the block upper triangle of S. At the
end of this computation, the lower right 8 x 8 block is to be merged with three others at
the next step.

Algorithm 2: Eliminate a cross for nested dissection.
for i = 1 to 4

factor Sii into LiiLT Cholesky factorization
for j = i + 1 to Pt

if (Sij $ 0) Sj 4- L- 1 S~i Block forward solves
end S

for j = i + 1 to Pj
for k = j to pt

if (Si, j4 0 and Sik $6 0) S, - - Sih Matrix-matrix product
end (for update)

end
end

The factorization step of the parallel nested dissection is now described by the follow-
ing algorithm, each step of which is performed on a xt x ict grid of processors:

Algorithm 3: Factorization by parallel nested dissection.
Fort = 1 to log 2 k

Local assembly: Assemble S(t): merge the four subdomains from step t - 1
by redistributing and adding four local submatrices.
Eliminate the interior cross: Apply Algorithm 2 with S - S(t) .

end
The costs are determined from the individual costs of the merge and the large scale compu-
tations of the factorization (Cholesky factorization, block forward solve and, matrix-matrix
product) on a Ixt x ict processor grid. In our complexity analysis (here and in the remainder
of the section), we assume that mp > 2 and k > 4. The first assumption means that the
problem is not very small relative to the number of processors, and the second means that

* The true local matrix for D resembles S, but some diagonal blocks have order 6 -

1 instead of 6, and some other off-diagonal blocks have nonzero rows or columns. For
example, if the center of the cross is placed in set number 1, then there is a nonzero row
in the (1,6) block. It is straightforward to show that the operation counts are higher for
this simplified matrix S.

10



the processor grid contains some interior processors. The following result gives an upper
bound for the costs of Algorithm 3; a proof is given in the Appendix.

Theorem 3: The global matrix G can be factored using the parallel nested dissection
algorithm with cost

3m 3 P3 k - M3  log 2 k - LM arithmetic,
161-m 2p 2k - L3mp 2 log2 k - m-S r 2p2  communication,

322k - 326 log 2 k - 275 startups.

As in steps (a)-(c) of Algorithm 1, this computation is independent of the number of
load vectors. It remains to specify the costs of the global forward elimination and back
substitution, which we assume are performed in serial order, once for each load vector. For
a single load vector b = b(t) local to D(t), the forward elimination and back substitution
are as follows:

Algorithm 4: Forward elimination and back substitution.
Forward elimination. Back substitution
fori=lto4 fori-4tol

bi- L-'bi b,- 0
forj=i+ltopt forj=i+1topt

if (Si3 $ 0) b, b- STbj if (S i $ 0) bi - bi - Sijbj
end end

end bi - L T bi
end

The global eliminations consist of log2 k steps of these two computations. We discuss only
the forward elimination; the costs for the back substitution are identical.

Algorithm 5: Global forward elimination.
Fort=1 tolog2 k

Local assembly: Assemble b(t): merge the four load vectors from step t - 1.
Eliminate the interior cross: Apply Algorithm 4 with S = S(t and b = b(t) .

end

The following result gives the costs of the forward- and back-solves; see the Appendix for
a proof. Note that the asymptotic cost of arithmetic is O(n 2 p2 /k), which is suboptimal.
(The serial cost is O(n 2 p 2 log 2 n), as in the second term of (4.1) with m = n.) See e.g.
[12] for discussions of efficient parallel triangular solution schemes.

Theorem 4: The cost of forward solves and back substitution for the parallel nested
dissection algorithm applied to a load vectors is

6m 2p 2 k + 33&-6M 2p2 log2  k - (18. + 6)m2 p2  arithmetic,
2

33mpk - (38s - 30)mplog 2 k - (28. + 26)rp communication,

66k + (76. - 60) log 2 k - (56s + 52) startups.

Finally, the storage requirements for local elimination and parallel nested dissection
are outlined in the following result.

11
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Theorem 5: The high order storage requirements per processor for local elimination
combined with global elimination by parallel nested dissection are

(kmnp4 + 3mp3 ) + 1n0p92 og2 m for local elimination,

30m 2 P2 log12 k for global elimination, .
where the parenthesized term applies only for p 4.

Proof: The local cost comes directly from expression (4.1) of Theorem 1. For the global
factorization, it is necessary to store each filled-in version of S(M) computed by Algorithm
2. For all t, the nonzero blocks of S(t) are dense of order bt, and they are distributed on a
Xt x xt grid, so each block requires ( 6L)2 = d2 /4 locations per processor, where d = mp.
The number of such blocks is 126 for 1 < t _ og12 k - 2, and 54 and 14 for t = og12 k - 1
and t = og02 k, respectively. Since both S(t) and [S(t)]T are used (see the note in the proof
of Lemma 1), little advantage is taken of symmetry; the only exception is on the diagonal,
where just the lower triangular factor Lii must be stored. Hence,

d2(1260l 2 k -2) +54 +14) - d2(120l 2 k -2) +8 +4) 30d 2 og92 k -44.5d 24 ()-2 4 (

storage locations are needed in each processor. Q.E.D.
Here, we are ignoring pointer overhead and some temporary storage that facilitates pipelin-
ing in Algorithm 2 (see the proof of Lemma 2 in the Appendix).

4.3. Parallel Conjugate Gradient for Interfaces

In this section, we outline the costs of a parallel implementation of the conjugate
gradient method for solving the global system (3.4). Given an initial guess vo, CG consists
of the following iteration, whose major computations are listed at the right.

Algorithm 6: The preconditioned conjugate gradient method (PCG).
ro 4- g - Gvo, io 4-- M-ro, po io, ro - ro;0
For i = 0 until convergence do

w - Gvi Matrix-vector product
17i pw, cli x-ri/'i Inner product
zi+1 zi + aip, Scalar-vector product
ri+ I ri - aw Scalar-vector product

4+ 1- M Preconditioning .
4ri+ - ri+, +, A ri+ / Inner product

pi+i - ri+ z + ,3Pi Scalar-vector product 0
Thus, each iteration requires one (parallel) matrix-vector product, one preconditioning
solve MF = r, two inner products and three scalar-vector products. We consider unpre-
conditioned CG (i.e. where M is the identity operator), as well as using preconditioning
by by a sparse approximation of 0.

Our strategy for distribution of data (except the preconditioner) is depicted in Figure
4.3. Each processor P is associated with a super-element D. For any vector v associated

12
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Figure 4.3: Data distribution and local matrix structure for the conjugate gradient method.

with the boundary of D, P contains in its local memory the entries of v on the north
and east boundaries, excluding the northwest and southeast entries. For most processors
there are 2d - 1 such values, where d = rnp. (Exceptions are the top row and right
column of processors in the grid, which contain no north boundary and no east boundary,
respectively. They perform less work than the other processors and are idle some of the
time.) The vector v is divided into four disjoint components: vt for the 2d - 1 entries stored
locally in P, and v,, v. and v.,,, for the elements of v stored in the processors to the left,
below and below left of P. Let A denote the local matrix for D after local elimination.
A is a dense 4d x 4d matrix, but we adopt the convention that the block diagonals of A
are assembled to reflect the locations of unknowns. That is, the (s,.s), (w, w) and (aw, aw)
blocks of A are set to zero, so that there are actually 14d 2 - 1 nonzeros in A.

The costs of the matrix product and vector operations are as follows (here d = rnp):
Matrix-vector product y -- Ax: 7d 2 arithmetic and 4(d+1) communication, with 4 startups.
This is determined from the following steps of arithmetic and communication, whose costs
are listed on the right:

(1) In parallel: send x. east, z north and z,,, north. 1 startup, send d words
(2) Send x.,,, east. I startup, send 1 word
(3) Compute y - Ax 14d 2 - 1 arithmetic
(4) Send y.,,, west. 1 startup, send 1 word
(5) In parallel: send y.. west, y. south and y.,, south 1 startup, send d words

Inner product r - AII domains xTy: 2d - 1 arithmetic, and 2k communication and 2k
startups to accumulate the sum and distribute it to all processors.
Scalar-vector product y ,- ax for scalar a: 2d - 1 arithmetic and no communication.

For the preconditioner M, we consider a symmetric permutation of the matrix

0 ( ), (4.2)

where C is a global interface matrix corresponding to a subset of the unknowns on the
boundaries of the local interfaces. For example, one could choose the corner unknowns
of all super-elements, plus one unknown from each side of every super-element, so that
G has the form of a low order operator approximating 6. The permutation maps the

13
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specified unknowns to the lowest indices in the natural way. Suppose d < d unknowns
per side are used to define the preconditioner. Then the costs of applying and storing
the preconditioning operator are obtained by replacing rnp with d in Theorems 4 and 5.
Hence, the costs of the conjugate gradient method are as follows.

Theorem 6: The cost per step for CG without preconditioning is

14m 2 p2 + 10rp - 6 arithmetic,

2mp + 4k + 6 communication,

4k + 4 startups.
The additional cost per step for preconditioning by (4.2) is (for d > 2)

6 V2 k + 12 log k - 24 arithmetic,

33dk - 8dlog 2 k - 54 communication,

66k + 16 log 2 k startups.
The storage requirements (not including those for local elimination) are 14m 2 p2 + 20mp
without preconditioning (for A, z, r, p and w), and an additional 30m 2 log 2 k + 4rnp with
preconditioning (for G in factored form and F). Q.E.D.
There is also a preprocessing cost for factoring G, obtained by replacing mp with d in
Theorem 3. Note that the efficiency of the unpreconditioned algorithm approaches one as
the problem size grows.

An implementation of unpreconditioned CG (with benchmarks on a hypercube) that
computes an extra inner product but decreases the startup overhead of inner products is
presented in [11].

5. Numerical Experiments

In this section, we describe the results of numerical experiments for solving a model
problem, and we combine these results with the cost analysis of the previous section to
estimate parallel costs. Consider the model problem

-Au = 0 on fl = [0,1] x [0,1], (5.1a)

'n = (0n(, z 2 ) = 0, -(z,1) =gi(XI),-(1, Z2)=92(X2), (5.1b)

where gi are determined so that the solution is

u(zI,x 2) = Re((a2 + z 2) - 1 + (a2 - z 2)- 1 ) - 2 a> 1, Z X1 + iX2.

Note that u is a harmonic function with a singularity at z = ±a, z = ±ia so that the
solution becomes less smooth as a -. 1. The parameter a characterizes the regularity of
the solution. This model problem is a characteristic one for many problems in structural
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Figure 5.1: Accuracy of the finite element solutions.

mechanics. We consider two versions of this model: Problem 1, with a = 1.1, and Problem
2, with a = 1.05.

Figure 5.1 shows the accuracy 1lu(S) - uIIE/IluilE obtained using elements of degree
p and n x n element grids with n = 2, 4, and 8, to solve (5.1) for the two choices a = 1.1
and a = 1.05. The finite element computation was made by the code PROBE [16 on
an Apollo 3000D in double precision. For use with the parallel analysis of the previous
section, we extrapolated these results in two ways to get data for finer grids. First, we used
the asymptotic values of the slopes of these curves to extrapolate to values for n = 16 and
n = 32. In the figure, the extrapolated results are indicated by dotted lines. Second, we
treated this problem as though it is a subproblem of a larger one discretized on a 4n x 4n
element grid, in which fl is - of a larger domain. That is, our operation counts are for
a problem posed on a domain with four times as many elements in each direction, but in
which the accuracy is as in Figure 5.1. In the following, we consider n x n element grids
with n = 8, 16, 32, 64 and 128. Figure 5.2 graphs accuracy as a function of cost for serial
computations, for direct solves using several choices of finite element method and the two
values of a.

For examining parallel costs, unless otherwise specified, we fix the costs of arithmetic
and communication as follows. A floating point multiplication is normalized to take one
unit of time. Communication is 10 times faster than arithmetic but incurs a startup cost
equal to the time required to perform 10 floating point multiplications (or send 100 words).
Thus, n words of data can be sent to a neighbor in 10 + .In units of time. (These choices
are rough approximations to observed times on both the Intel iPSC and Ncube hypercube
parallel processors [121.)

Figures 5.3 - 5.6 show the costs of parallel direct solves for several values of available
parameters. Figure 5.3 shows accuracy as a function of cost for direct solution on 64
processors arranged in an 8 x 8 grid (k = 8), for a = 1.1 and a = 1.05. Comparison
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Figure 5.2: Serial costs of finite element solutions.

0 of Figures 5.2 and 5.3 shows that the relative advantages of choice of basis function are
essentially the same in the i-.erial and parallel case, i.e. that high order basis functions

* achieve greater accuracy. Figure 5.4 shows the costs to achieve accuracy of both 10% and
1%, for values of k ranging from 1 to 64. This figure shows that addition of processors
results in decreases in cost until the local problem size becomes too small, after which
startup overhead begins to dominate.
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* Figure 5.3: Parallel costs of finite element solutions, k =8.

* Figure 5.5 shows the speedups achievable for different choices of finite element dis-
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Figure 5.4: Parallel costs for fixed accuracy and varying k (Problem 1).

cretization, for k = 8 and k = 32. The upper bound on speedup, k2, is indicated by dashed
lines. The maximal speedup is slightly greater than half these upper bounds (giving ef-
ficiency of about 50%). There are two reasons that the asymptotic speedup is less than
this bound. First, symmetry is not fully exploited in the parallel computations: during the
Cholesky factorization of Algorithm 2, computations are duplicated in the upper and lower
triangle of the processor grid, and during the block forward solves, only about half the
processors are actually computing. (See the Appendix for details.) Second, the parallel
dissection cannot take advantage of lower costs near the boundary as well as the serial
version; this is reflected in the difference between the coefficient of m 3p3 in Theorem 3
with that of n3p 3 in Theorem 2. We also observe that by our convention, more computa-
tions are fully local for higher values of p, so that maximal speedup is achieved for smaller
element grids for these values.

In Figure 5.6, we vary the relative costs of communication and startups for the same
problem considered in Figure 5.3, left (a = 1.1). For Figure 5.6, left, communication speed
is decreased to the same speed as arithmetic, with no change in startup cost. For Figure
5.6, right, communication speed is made 10 times faster than arithmetic (as above), but
startup cost is decreased to the cost of one multiplication. Comparison with Figure 5.3,
left, indicates that the (relatively high) cost of startups significantly degrades performance,
even though startups are a lower order overall cost, whereas the cost of communication is
less of a factor. This agrees with observations made in [101, although it is also known that
for very large problems, communication costs, which are of lower order than arithmetic
costs, will be negligable [111.

For the conjugate gradient method, the standard bound on the error at the j'th step
has the form [1] Ile')IIE -2(1 - i)jJe(0 ) lE. (5.2)

Here, Ie()lIE = Ilu(') - u(S)IIE, the energy norm of the discrete error at the j'th CG
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Figure 5.8: Costs for two other models of parallel costs, k = 8.

iteration, and the decay factor 1 - o depends on the iteration matrix. (For uniform
eigenvalue distributions, 1A (condition number)-1/ 2.) We study the performance of CG
and PCG by examining its performance for u E (0,1), for solving the two model problems
with an accuracy comparable to that achieved with a direct solver.

In particular, let the desired accuracy be 1%. From the data used to produce Figure
5.1, we find that this accuracy is achieved for Problem I when (for example) p = 2,
n2- 1024, or p = 6, n' = 64, and for Problem 2 when p = 4, n 2 = 1024 or p = 8,
n= 100. As in our analysis of direct methods, we simulate a finer grid by replacing n
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with 4n. Therefore, we examine the conjugate gradient method for the four choices
Problem 1: p = 2, n = 128 andp=6, n=32
Problem 2: p = 4, n = 128 and p = 8, n = 40.

From (5.2), approximately. j = (log e)/ log(1 -p) iterations are needed to bound the relative
error I]e(Dj'JE/I1e(°)IIE by . We use this estimate on iteration counts, with the choice
e = 10- 3 , to determine the costs of achieving approximately 1% accuracy. Multiplying
these iteration counts by the cost per step (taken from Theorem 6) gives the overall cost of
the conjugate gradient method. For a preconditioner, we consider the use of a submatrix of
the global interface matrix G corresponding to the nodal unknowns on the super-elements,
plus one side unknown from every side of the super-elements (so that d - 2 in Theorem
6).

Figure 5.7 compares the cost of CG and PCG with those of the direct solvers, for
solving the two problems with one load vector on an 8 x 8 processor grid. The results
show that if the decay factor I - p is much less than one, then CG and PCG will be more
efficient than direct solvers, but that the two classes of methods become comparable in
cost as p --* 0. They also indicate that the overhead for low-order type preconditioners is
not a significant extra expense. (For the problems considered, the number of points mp
on each interface boundary is at least 40, much larger than d = 2.) Figure 5.8 compares
the cost of CG and PCG with those of the direct solvers, for solving the two problems
with thirty load vectors on an 8 x 8 grid. Here, the factorization for the preconditioner is
counted only once. These results suggest that in the case of multiple load vectors, parallel
direct solvers will be highly competitive for two-dimensional problems, even if the rate of
convergence of CG or PCG is independent of mesh size. (We remark that synchronization
costs for the CG inner products are of low order for the problem sizes considered here.)

1 .e9 1. e9

1l.e8 1l.e8
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Figure 5.7: Comparison of conjugate gradient and direct solves for one load vector, k = 8.

It is known that for p = 1, y behaves like 1/v/n'k [4], so that in this case the unpre-
conditioned algorithm will have values of 1 - p near one. We expect I - p to be smaller
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Figure 5.8: Comparison of conjugate gradient and direct solves for thirty load vectors, k = 8.

(even without preconditioning) for larger p. To get some insight into this point, we esti-
mated the values of 1 - /A for CG for applied to the discretization of (5.1), both without
preconditioning and with a particular low order preconditioner, for several values of n and
p. (These estimates are based on the experiments (I31.) For each p, the elements and
super-elements are the same, and local elimination of the internal unknowns is performed
in each element. G is the global interface matrix corresponding to the remaining side and
nodal unknowns, and the preconditioner G is the submatrix of G corresponding to p = 1.
The results are shown in Table 1. The entries are the average values of Ile( j ) II E/I W I) 1 I E,
taken over the first ten iterations of CG, using a zero right hand side and smooth initial
guess. The left-hand table is for unpreconditioned CG, and the right-hand table is for pre-
conditioning of the p-version interface operator by the h-version interface operator. Note
that the preconditioning is different from that considered above, where local elimination
is also applied to unknowns coming from side and nodal unknowns inside super-elements.

p=2  p=4 p=6 p=8 p=l0  p=2 p=4 p=6 p=8 p=IO

n=2 .383 .521 .572 .616 .635 n=2 0 .473 .537 .574 .614

n=4 .595 .644 .672 .699 .714 n=4 .335 .470 .514 .571 .623
n=6 .673 .689 .721 .743 .749 n=6 .357 .475 .516 .563 .609

n=8 .744 .762 .765 .770 .775 n=8 .354 .472 .512 .554 .600
n=10 .794 .808 .805 .804 .806 n=10 .355 .470 .506 .547 .591

0

Table 1: Average decay factors for CG applied to the p-version interface operator, without
preconditioning (left) and with preconditioning by the h-version interface operator (right).
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8. Conclusions

We have considered some issues associated with parallel solution of linear problems
arising from finite element analysis. Although the quadratures required to set up these
systems often occupy a substantial portion of the computational time, these computations
are fully parallel; consequently, our focus has been on the costs of linear system solution.
The general strategy considered is to divide the problem among available processors, and
perform local elimination wherever possible. The unknowns corresponding to "processor
interfaces" are then computed using either direct solvers or iterative solvers. Some of the
conclusions we've reached are:

1. Sparse direct solvers based on nested dissection are applicable to systems arising
from both the h- and hp-version of the finite element method, and the factoriza-
tion achieves maximum efficiency of approximately 50%.

2. The use of high order elements appears to be a natural way to increase the amount
of local computation and achieve accuracy.

3. Sparse direct methods are highly competitive with preconditioned conjugate gra-
dient methods, especially in the case of multiple load vectors. This is despite the
fact that triangular system solution does not achieve optimal order speedup.

We have not addressed two critical issues of finite element analysis here, namely three-
dimensional problems and adaptivity. Hierarchical direct solvers of the type considered
here can be used for three dimensional problems, although the global data movements will
be more complex. We speculate that high order methods will be of use in this regime,
again by making more of the computations local in a natural way, at the possible cost
of increased local storage requirements. A very useful methodology would be effective
low order preconditioners for the conjugate gradient method. Adaptive methods are less
amenable to the type of analysis considered here, but we believe that methods based on
hierarchical use of high order elements would require richer interconnection schemes than
the processor mesh considered here.

Appendix

In this section we present proofs for the cost analyses of Sections 4.1 and 4.2. The
costs of local elimination are derived from standard analyses of serial direct methods.
Proof of Theorem 1: The operation counts are written in the form m 2 X (cost of p-
version) + (cost on local interfaces). The costs for the p-version are derived from the
standard analysis of dense elimination [8]: it is known that the number of multiplicationsa 3 

+ -La 2 
_2a h eutflosfo

required to factor a dense matrix of order a is 2 + - a. The result follows from
the facts that in most elements, A has order a - (p - 2)(p - 3) and B is a full matrix
with 4p columns. The result for local interfaces follows directly from George's original
analysis of nested dissection [71. We only consider the case of k > 4, so that the costs
are determined by the (internal) super-elements, which have four boundaries. Hence, in
George's terminology, the operation counts are those for elimination of "interior subsets"
in the dissection, as in [71, p. 360, Lemma A.2. At the j'th step, for I < j _< log2 m, these
counts are (M)2(171 x 23jp3 - 17 x 22p9 - 2 x 2ip + 3), and the number of nonzeros in

23 23
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the j'th section of the factors is 2 ( ) 1 x 22 P2 - 13 x 2ip+ 3). The total is obtained by
summing these expressions for j = 1 to log12 m. Q.E.D.

Now consider the parallel global matrix factorization (Algorithm 3). The analysis ,
presented is a generalization of the analysis of [5]. Data is arranged as follows. Prior to
the elimination of the interior cross at the t'th step, S(t) is a block pt x pt matrix, where
for 1 < t < log 2 k- 2, pt = 12. S(t) has the the nonzero pattern of Figure 4.2, and only the
block upper triangle is needed. Each block of S(t) has order bt = 2t - ld (where d = rp),
and its b entries are distributed on a Pct x rct grid of processors, where rCt = 2t . When
it is convenient, we use the symbols S, x %nd 6 and omit the counter t. The following
result summarizes the costs of the large scale computations (Cholesky factorization, block
forward solve and matrix-matrix product) that are performed one or more timet during
each of four steps.

Lemma 1: If the matrix S of Algorithm 2 contains blocks of order 6, and each of the
blocks is equidistributed on a r. x r. grid of processors, then the individual large scale
computations used in a parallel implementation of Algorithm 2 can be implemented with
the following costs:

r factorizations: (r + 2)x - 2 arithmetic steps
(r + 2)x - 3 communication steps

r block forward solves: (r + 2)K - 2 arithmetic steps
(3r + 2)x - (2r + 3) communication steps

r matrix-matrix products: rc arithmetic steps
2r3 - 2r communication steps,

where an arithmetic step consists of (1)3 multiplications, and a communication step con-

sists of sending (1)2 items of data to a neighboring processor.

Proof: We consider the factorizations, block forward solves and matrix products sepa-
rately. In the proof, individual matrices distributed on the processor grid are indexed
according to their locations in the grid, i.e. if A is any such matrix, then A,,, refers to the
portion of A stored in the processor indexed by (G, ), 1 < j, v < i. The symbols S and L
are reserved to refer to the matrices of Algorithm 2, i.e. S i is a block of S, equidistributed
among the processors.

Cholesky factorization. Let A = MMr denote the Cholesky factorization of a block Sij,
1 < i < 4. The factorization moves in a series of waves across the grid where each wave
computes one column of M in the lower triangle of the processor grid and, simultaneously,
an (identical) row of M r in the upper triangle (see [141). The first wave is shown in Figure
A.1. Simultaneous steps of arithmetic (as) and communication (ci) are identified by diag-
onal lines. The steps are synchronized as in the figure, so that the costs of arithmetic are
determined by the matrix-matrix products, which require (A) multiplications; similarly,

the communication cost is (-)2 words with one startup. The last step of this wave, which
takes place in the (r., x) (bottom right) processor, is completed after 2r. - 1(-- 7) steps of
arithmetic and 2U - 2( = 6) steps of communication. The second wave is performed on the
lower right (r. - 1) x (r. - 1) grid of processors, beginning in processor (2,2) at step a4 .
The factorization is completed after 3U - 2 arithmetic and 3K - 3 communication steps.
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When r factorizations are pipelined (we are concerned only with r = 1, 2), it is necessary
that the waves of each factorization do not collide with any from an earlier one. This is
achieved by having each factorization begin k steps after the previous one, in the (1, 1)
processor. The cost of r factorizations is then (r + 2)n - 2 arithmetic steps and (r + 2)r. - 2
communication steps.
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Figure A.1: The first wave of a Cholesky factorizaton on a 4 x 4 processor grid.

Block forward solve. There are r computations of the form B = M- 1 A, where M is the
lower triangular factor distributed in the lower triangle of the processor grid, and A and B
are square matrices equidistributed among the processor grid. (In Algorithm 2, M = Li1
and A = Sji for some appropriate ij.) The block solve requires one sweep across the grid
for each column of A. Figure A.2 shows the computation of {Bl 11 < As _ ic}, with the
result stored in the diagonal processors. 2x - 1 arithmetic steps and 2x - 2 communication
steps are needed. If all the block columns of A have been positioned in the left processor
column, then this step can be pipelined the computation for the i'th column begins at
(arithmetic) step i and ends at step i + 2r. - 2. Similarly, the computation for r block
matrices A requires (r + 2)x - 2 arithmetic steps and (r + 2)ic - 3 communication steps.

As above, the cost of each step is (2)3 multiplications and (q)2 communication with
one startup. There is a preprocessing cost of r(IC - 1) communication steps to position the
columns of A, and a postprocessing cost of r(c- 1) to correctly place the computed columns
of B.* The total is (r + 2)r. - 2 arithmetic steps and (3r + 2)r, - (2r + 3) communication
steps.

• In the postprocessing step, Bi3 is moved (horizontally) from the diagonal processor

(i,i) to processor (ij). Since B Tis required for the matrix-matrix product of Algorithm
2, Bj is simultaneously moved (vertically) to processor (j, i).
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Figure A.2: The block forward solve for the first column on a 4 x 4 processor grid.

Matrix-matrix product. These computations have the form BTA, which requires a bidi-
rectional horizontal communication of all columns of BT (see the footnote in the previous
paragraph) and, simultaneously, bidirectional vertical communication of all rows of A.
This is followed by the block matrix sum C = " I(BaIA)TA , , in processor (p, v). The
cost is ric arithmetic steps and 2r(k - 1) communication steps. Q.E.D

1 < t < log 2 k- 2 t = log 2 k - 1 t = log 2 k

2 factorizations 2 factorizations 2 factorizations
i 1 and 2 12 solves 8 solves 4 solves

42 matrix products 14 matrix products 6 matrix products

1 factorization 1 factorization 1 factorization
i = 3 9 solves 5 solves 1 solve

45 matrix products 15 matrix products 1 matrix product

1 factcrization I factorization 1 factorization
i = 4 8 solves 4 solves

36 matrix products 10 matrix products

Table 2: Number of instances of large scale computations in Algorithm 2.

Table 2 shows the number r of times each of the large scale tasks is done. The rows of
the table correspond to places where the factorizations and forward solves can be pipelined.
Substitution of the values of r from Table 2 into the expressions of Lemma 1 then gives
the number of steps required to perform Algorithm 2:
Lemma 2: Under the hypotheses of Lemma 1, the number of steps needed in a parallel
implementation of Algorithm 2 is as follows:
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Arithmetic steps: Communication steps:
168t - 12 349ct - 322 1 <t < log 2 k - 2
72xt -- 12 145t - 130 t =log2 k - 1
26#t - 10 43ct - 39  t log 2 k.

Let T(t) denote the lower right square submatrix of S(t) below row 4; for t < log 2 k,
T(t) is an 8 x 8 block matrix. After the elimination, the block upper triangle of the lower
right of T(t) has filled in. Prior to this computation, four such 8 x 8 block matrices on four
separate xt-I x ot-i processor subgrids are redistributed to the t'th grid and merged into
S = S(). The cost of this operation is summarized by the following result.

Lemma 3: For the matrix S of Lemma 1, the number of communication steps needed to
merge the local matrices at step t of Algorithm 3 is

20rt t = 1

24)t-4 2<t<log 2 k-1
8t - 4 t = log 2 k.

Proof: For t < log 2 k - 1, let T = T(t) denote the 8 x 8 matrix from step t - 1 as above,
and let the four subdomain quadrants be denoted {Dii 11 < i,j <_ 2} (see Figure 4.2).

is associated with one of the quadrants, wiog, Dj,1 . Each block of T has order 26 and
is distributed on the 51 x 5L grid. Now let T be relabeled as a block 4 x 4 matrix in
which each new block is square (of order bt) and contains four old blocks. Let U denote
one of these new blocks of T; by definition, U can also be thought of as divided into four
quadrants. The data movement needed for merging is to move each quadrant of U to the
corresponding quadrant of processors for the subdomains. The relocation of U can proceed
in the following four steps:

1. Move UI, 2 from quadrant (1,1) to quadrant (1,2) (clockwise).
2. Move U2,1 from quadrant (1,1) to quadrant (2,1) (counterclockwise).
3. Move U2,2 from quadrant (1,1) to quadrant (1,2) (clockwise).
4. Move U2,2 from quadrant (1,2) to quadrant (2,2) (clockwise).

There are 10 nonzero blocks of the form of U in T, so that 40 movements of this type are
needed to relocate all of T. At each step, data must be inoved across 51 processors, so
that the number of communication steps is 20t. Data from the other three quadrants is
simultaneously relocated in an analogous manner. This is all the communication required p
for t a_ logs-1, except that prior to these steps, the lower left quadrant of the (new)
diagonal blocks of T (in the (2, 1) position) are not explicitly represented when t > 1;
these quadrants can be madleavailabe at cost 4(nt - 1). The same analysis applies for
t - log 2 k, except in this case T is a 4 x 4 block matrix, or 2 x 2 after relabeling, and only

two transpose blocks must be computed. Q.E.D. P

Proof of Theorem 3: The result is obtained by summing the expressions of Lemmas 2
and 3 for t = 1 to log 2 k, and using the values bt = 2td/2, Kt = 2t , and the facts that

each arithmetic step requires (L) 3 
- d3/8 multiplications and each communication step

requires one startup plus sending of (_)2 = d2 /4 words. Q.E.D.

25



1<tlog 2 k - 2 t = 1og2 k - 1 t = log 2 k

i = 1 and 2 2a solves 2a solves 2. solves
12 matrix products 8a matrix products 4a matrix products

i = 3 a solves a solves a solves
9a matrix products 5. matrix products a matrix product

i = 4 a solves a solves a solves
8. matrix products 4. matrix products

Table 3: Number of instances of large scale computations in Algorithm 4.

The analysis of the global forward and back solution steps is similar. We consider only
the forward solve, for which the large scale computations are lower triangular matrix solves
and matrix-vector products. Table 3 shows the number of such computations required for
a load vectors. Every right hand side b = b(t) at step t is (for t _ log 2 k - 2) a vector with
12 blocks of size 6t; assume that each of these blocks is distributed among the diagonal
processors of the ict x oct grid. If there are a such right hand sides, then the cost of the
forward elimination is determined from the following result. 0

Lemma 4: On a r x ic processor grid, the individual large scale computations of Algorithm
4 can be implemented with the following costs:

ra forward solves: 2)c + ra - 2 arithmetic steps
4x + 3rs - 7 communication steps

rs matrix-vector products: rs arithmetic steps S

2x + a - 2 communication steps (i = 1,2, 3)
2n + r. - 2 communication steps (i = 4).

where an arithmetic step consists of (1)2 multiplications and a communication step con-
sists of sending items of data to a neighboring processor.
Proof: The operations and costs required for rs forward solves are as follows.
(1) Relocate ra vectors from the diagonal processors to the leftmost processors in the grid.
With pipelining, the cost is x + ra - 2 communication steps.
(2) Compute r. solves of the form b - M-'b. Here, M is some triangular factor LI,
produced by Algorithm 3 (see the proof of Lemma 1). The cost is 2r. + ra - 2 arithmetic
steps and 2n + 4s - 3 communication steps. Each resulting b is located in the diagonal
processors.
(3) Distribute each b across processor columns, i.e. move a copy of the part of b in the
(p, ,) processor to each processor (I, v), I < v < x. The cost is x + ra - 2 communication
steps.

The ra matrix-vector products then require rs arithmetic steps, using the matrices S7:
constructed by Algorithm 3. The results must ultimately be summed across the processor
rows and stored in the diagonal processors. At step i of Algorithm 4, 1 < i < 3, it is only
necessary to do this for each (of s versions of) bi+ 1, which requires X: + S - 2 communication
steps. At step i 4, rs accumulations are required, at cost ic + ra - 2 communication
steps. Q.E.D.
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Lemma 5: The number of steps needed in a parallel implementation of Algorithm 5 is as
follows:

Arithmetic steps: Communication steps:
6#ct + 33s - 6 15xt + 22s - 27 1 < t 5 log 2 k - 2
6#t + 21 - 6 15t + 189- 27 t = log 2 k - I
61ct + 9s - 6 141ct + 14s - 23 t = log 2 k.

Proof: Substitute the values of r from Table 3 into the expressions of Lemma 4. Q.E.D.
Lemma 6: The number of communication steps needed to merge s local load vectors at
step t of Algorithm 5 is

3rt/2+16.9-3 1<t<log2 k-1
3o4t/2 + 88 - 3 t = log 2 k.

Proof: We only discuss the case 1 <t < log 2 k - 1. Before the elimination step there are
four quadrants of x processor grids. For every load vector b, there are eight blocks
{bi .2 distributed among the diagonal processors in each of these quadrants. The stategy
for merging is to move the even numbered blocks b6 , bs, bl0 , b12 down, to the diagonal
processors of the lower (southern) quadrants, and the odd numbered blocks bs, b7 , bg, b11
up (north). The cost is 2(-SL + 4s - 1) communication steps for the bidirectional move.
Then, in the north quadrants, all eastern data is moved west to the diagonal blocks, and in
the south quadrants, all western data is moved east. The cost is a + 8s - 1 communication
steps. Q.E.D.
Proof of Theorem 4: Sum the expressions of Lemmas 5 and 6 for t = 1 to log12 k, where
each arithmetic step requires (,L)2 - d2/4 multiplications and each communication step

requires one startup plus sending of A = d/2 words. Q.E.D.
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