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ABSTRACT

We discuss some aspects of implementing the finite element method on parallel
computers with local memory and message passing. In particular, we compare the
costs of using high order and low order elements, and of direct and iterative solvers
for solving the linear systems that occur. Our model of parallel computation is a
two~dimensional grid of processors chosen to be similar in shape to the underlying
grid. Our main conclusions are that sparse direct solvers generalize naturally to
methods based on high order elements, and that direct solvers are adequate for
two~dimensional problems, especially for multiple load vectors. We also demonstrate

that high order methods achieve higher accuracy at less cost on some typical model
problems.
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Abstract. We discuss some aspects of implementing the finite element method on
parallel computers with local memory and message passing. In particular, we compare
the costs of using high order and low order elements, and of direct and iterative solvers
for solving the linear systems that occur. Our model of parallel computation is a two-
5 dimensional grid of processors chosen to be similar in shape to the underlying grid. Our
i main conclusions are that sparse direct solvers generalize naturally to methods based on
high order elements, and that direct solvers are adequate for two-dimensional problems,
especially for multiple load vectors. We also demonstrate that high order methods achieve
higher accuracy at less cost on some typical model problems.

"

,:: 1. Introduction

'

'-E: The finite element method is a major computational tool of engineering. However,

. large problems, especially in three dimensions, are not practically solvable on present-

o day serial computers. Improvements in computing technology, based on the emergence of

RY, large-scale parallel architectures, offer the possibility of expanding the set of problems that

::: can be solved effectively. Such machines appear particularly attractive for finite element

::: algorithms, in which the local elements provide a natural decomposition of the problem

into (partially) independent sets. The efficiency of any numerical algorithm implemented

;'n',: on a parallel computer depends on both arithmetic and communication, and many aspects

::, of finite element computations, most notably those involving linear algebra, are not fully

:'.; parallel. In this paper, we address the issues associated with finite element analysis on

::: parallel computers in a simplified way, hoping to get insight into how to use such machines
effectively. We focus on two basic issues:

".: 1. a comparison between high order and low order basis functions;

.‘:' 2. a comparison between direct methods and iterative methods for solving the linear

:\.: algebraic systems that arise.

“! We consider three versions of the finite element method: the standard h-version, which

0 uses low order basis functions and achieves accuracy by refining the mesh; the p-version,

K\ which uses a fixed mesh and achieves accuracy by using high order basis functions; and

I the hp-version, which combines these two approaches. Seé (2] for a survey of resulits for

‘ the latter two methods. All these techniques produce a set of one or more linear systems . '

D of equations where the coefficient matrix is the global stiffness matrix. Our strategy for [ \

:, solving these systems in parallel is to partition the problem among the available processors % s :

.:,' and apply local elimination inside each processor, sc that unknowns “interior” to processors \

:::} are decoupled from the system. For computing the other unknowns, we examine both direct

o solvers based on the paraliel nested dissection method [5,6,17] and parallel versions of the

s conjugate gradient method (CG). The latter strategy is related to domain decomposition .

:, ' methods, for which parallel implementations using “fast direct” local elimination have been

62 considered in (9,10].

Y B For all these techniques, we perform an analysis of the computational complexity

' of their parallel implementation, and we perform a series of numerical experiments that

"' determine the accuracy of finite element solutions of model problems for various choices

= of basis functions. Combining the analytic and numerical results gives estimates of the
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overall parallel costs. Our model of parallel architecture is a two-dimensional k x k grid of
processors with nearest neighbor connections. Each processor has access to its own local
memory, and data can be communicated only between neighboring processors.
An outline of the paper is as follows. In Section 2, we describe the model problem and
‘W the finite element methods used for discretization, and in Section 3, we give an overview
of the computations needed for solution. In Section 4, we present a cost analysis of the
Y solution techniques, including direct local elimination and global elimination by both direct
' methods and iterative methods. In Section 5, we combine these results with the results
of numerical experiments determining the effectiveness of various finite element methods
h and iterative solvers to assess the overall costs of solution techniques, and in Section 6 we
st draw conclusions.

N 2. The Model Problem and Finite Element Discretizations

! Consider the model problem
N u

o E 6_ = fion ], t=1,...,s, (2.1a)
k:

G du.
2 — =g an 2.1
gi on 91,
:‘: on ( )
iy where (1 is a square domain, a;x = ax; and the multiload f;, g; satisfy the usual solvability

conditions. We will cast the problem into the standard variational form: to seek u; €
H!'(N) so that

B(us,v) = Fifu) (22)
U <s holds for all v € H(), where

o du Jv
:::,. B(u,v) = / ’kaz 32, dz, (2.3a)
AN Jrke=1 .

° | Fi(v) =/ f;vd:r+/ guds, t1=1,...,s. (2.35)
' v) an

The solution exists and is unique up to an additive constant. We pose (2.1) on a square
o domain, but our arguments apply in general to any domain that is topologically a square.
N The finite element method consists of the selection of the subspace § ¢ H!(fl) and
® computation of approximate solutions u;(S) € S that satisfy

XX B(ui(S),v) = Fi(v) YveS. (2.4)

o The goal is to obtain u;(S) such that

R |lui(S) — uille < 7, (2.5)
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i‘:: Figure 2.1: The standard square §.
L
* where ||ullg = B(u,u)!/? is the energy norm and 7 is an a priori given tolerance. One
" strategy is to use a sequence of spaces S(),! = 1,2,... and compute u( ) until the result
e’,: satisfies (2.5). We restrict our attention to the energy norm, although other measures are
'.:t sometimes more important in practice.
::n The quality of the finite element solution u,(S) and the computational work to com-
' pute it depend on the regularity of u; and properties of S, including its dimensionality,
I which determines the size of the linear system to be solved. For solving (2.1) on a k x k grid
;:‘ of processors, we will divide Q into k2 quadrilateral “super-elements” Dij, 1 <4, <k
R Each super-element LJ;; is the image of the standard square § = [-1,1] x [—1,1] with
:: vertices A; and sides I';, 1 = 1,...,4, see Figure 2.1. Let M;; denote the mapping from
' S onto D;;, which we assume is smooth. We associate with § a finite dimensional space
i ® which is the span of basis functions {¢} = {¢(D} U {¢(V} U {¢(?)}. Here {¢(?)} are
o nodal shape functions associated with the vertices {A;}, {¢(})} are side shape functions
4 associated with the sides {I';} and {¢(?)} are internal shape functions associated with the
:: interior of §. A nodal shape function associated with A, is zero on the opposite sides I'; _;,
Ti4+2, a side shape function associated with I'; is zero on I';, j # ¢, and the internal shape
o functions are zero on UT;. These functions determine a basis for D;; under composition
with M . The basis functions are chosen so that S C H!().
( ; Some examples of basis functions ¢(*) are as follows:
' (a) Shape functions for the h-version. § is divided into triangles as shown in Figure 2.2,
® left. The shape functions are the piecewise linear “hat functions;” some examples of the
::: supports of such functions are shown in the figure. In an analogous way, we can divide §
o into squares and use piecewise bilinear shape functions (Figure 2.2, right).
::‘ (b) Shape functions for the p- and hp-versions. For the p-versions, there are 4 nodal shape
s functions which are bilinear. For p > 2 there are 4(p—1) side shape functions. For example,
o : for the side n = —1 the shape function of degree j in £ is ¢(l) (&,n) (ff l;(t)dt)(1—n)/2
‘,: where [; is the Legendre polynomial of order j. The mternal shape functlons are given by
. the tensor product of the noda.l and side functions. It is possibie to restrict the number of
. internal shape functions to 3 (p—2)(p— 3) for p > 4 (and zero otherwise), so that the span
- contains the complete set of polynomials of degree p. This set is used in the commercial
code PROBE (16,18]. Hence, there is a total of 4p+ (for p > 4) 1(p — 2)(p — 3. basis
i functions. For the hp-version, § is first divided into squares, and the p-versic.i shape
:'
P 3
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Figure 2.2: Supports of some shape functions for the h-version with triangular and square
elements.

functions are used on each square.
(c) Shape functions for spectral methods [13,15]. On every side of S, define p + 1 Lobatto
quadrature points §; and polynomials ;(t) such that 8;(&;) = é;;, the Kronecker §. The
shape functions of ® are then the tensor product functions ¢,;(£,n) = 6,(£)8;(n). It is
straightforward to divide these functions into groups of nodal, side and internal shape
functions.

Using the basis functions of ®, we can easily construct basis functlons of S from those
defined on {D;;}. Let these be denoted {t,}, so that u;(S) = 2,7 )tﬁ,, Fi(¢,) = yJ ,
and (2.4) reduces to a system of linear equations

Gz = 40, (2.6)

where G is the Gramm matrix [vi;] with v;; = B(¥;,%;). The unknowns z() can be
visualized as located in the nodal points, sides and interiors of D;; as in Figure 2.3.

® Internal

Figure 2.3: Distribution of unknowns on super-elements.

3. Overview of Computations

We would like to compute u;(S) to the desired accuracy at the lowest possible cost, in
terms of work and storage. Thus, we wish to understand the connection between the error
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l|#i(S) — ui||g and the cost of computing u;(S). This will depend on the choice of S and
its basis, the regularity of the solution u;, the method of linear system solution, and the
computer architecture. In this section, we give an overview of the required computations.
They can be divided conceptually into the following four steps:

(1) Computation of local stiffness matrices and local load vector(s). The Gramm matrix
and load vectors of (2.6) are linear combinations of local stiffness matrices (or local load
vectors), defined on the individual super-elements D;,;. The local stiffness computations
entail quadratures to evaluate B(u,v) and Fi(v) on D;;. We will not consider global
assembly of G, but instead will examine local eliminations prior to assembly. Hence, these
computations are fully parallelizable.

(2) Local elimsinatsion. The local matrices and load vectors can be written in block form

(#2). ()

A corresponds to the connections among internal unknowns in a super-element, except for
those adjacent to the boundary of {2, where A aiso includes connections among all side
and nodal unknowns not associated with other super-elements. C corresponds to connec-
tions among unknowns on the boundary (i.e. nodal and side) D;;, and B corresponds to
connections between interior and boundary unknowns. The structure, e.g. sparsity, of A,
B and C depends on the choice of shape functions. For example, the h-version produces
sparse matrices and the p-version leads to full matrices. For any methods, the interior
unknowns can be decoupled from those on the domain interfaces by computing the Schur
complement

C~C-BTA !B, (3.2)

and modifying all local load vectors similarly by
c—c¢—BTA™ . (3.3)

All these computations are fully parallelizable. For the h-version, explicit local elimination
is performed using the serial nested dissection method [7,8], and for the p-version, dense
elimination is used.

(3) Interface solution. We define the global interface matrix G to be the coefficient matrix of
the linear system for the unknowns on the domain interfaces after the interior unknowns are
decoupled from the system. Interface load vectors g are defined analogously. Gis computed
explicitly by adding components of the local stiffness matrices after local elimination (3.2).
The result is one or more systems of linear equations of the form

Guv=yg (3.4)
which must be solved for the interface unknowns v corresponding to the load vector g.
(4) Local backsolves. For any super-element D,;, let v;; denote the component of v on the
boundary of D;; determined from the solution of (3.4). The interior values u,; are then

obtained by solving (in parallel for all super-elements) the local system Au;; = b — Buv,;,.
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(8) Postprocessing. After determining all solutions corresponding to different load vectors,
it is usually necessary to determine the values of interest. This is done on an interelement
" level, and we do not consider it here.

4. Cost Analysis.

In this section, we give a detailed cost analysis for the two-dimensional model prob- - )
o lem. For the finite element method, we compare the h-version, the p-version, and the ;
hp-version as discretizations inside super-elements, with m2? quadrilateral elements for the
h- and hp-versions. For solving on the domain interfaces, we compare the costs of direct
solution based on a parallel implementation of the nested dissection method, with those
of iterative solution using the conjugate gradient method. We will examin. CG without
preconditioning (although the local elimination could be viewed as a preconditioner), and
use of a submatrix of the interface matrix as a preconditioner. We will also distinguish
between the cases of one and more than one right hand side. )

In our analysis, we state the cost of arithmetic in terms of number of floating point
multiplications/divisions. (Additions/subtractions are essentially in one-to-one correspon-
dence with these.) For interprocessor communication, we assume that a processor can
communicate with all of its neighbors simultaneously, but at any given moment, data can
move in only one direction between two processors. Communication costs are specified i
in terms of “items of data.” We make the simplifying assumption that blocks of data of
arbitrary size can be sent (sizes will be chosen to fit algorithms), but each send entails a
b, startup cost. We do not consider overlapping arithmetic and communication.

et e -
.,

G L (W e,

o 4.1. Local Computations. ‘
i)
o The fully local computations, local stiffness computation (step 1), elimination (step N

2), and backsolve (step 4) are performed simultaneously in every processor. For simplicity, ,
we assume that the same discretization is used in every super-element. Let D denote
one super-element. For the h- and hp-versions, D is divided into an m x m grid of local ;

> quadrilateral elements, and for the the p-version, no subdivision of D is made. ]

N The local stiffness matrix and load computations are performed by quadratures on D. :

N The complexity depends on the choice of basis functions, but it also depends strongly on the 3
cost of evaluating the coeficients a;x and loads f;, g; of (2.1), and, if curved quadrilaterals

are used, the Jacobian Jjy,;. Since these costs cannot be stated too precisely, we limit our ]

: attention to orders of magnitude.

(a) The h-version unth bilinear elements. The local stiffness matrix is sparse, symmetric g
and of order (m + 1)2, with 9 diagonals. Each entry comes from O(1) quadratures, so
a total of c;m? operations is needed, where ¢, is strongly dependent on the coefficients '

-
-

. . . . . . » \l
: and Jacobian. Similarly, computation of the load vector requires ¢c;m operations where ¢,

K depends on f and g. We estimate that reasonable values of ¢; and ¢ are 50 — 100. In .'
! special cases (such as constant coefficients), the operation count reduces to essentially zero

because the same stencil appears in all elements.

° (b) The p- and hp-versions. For the p-version (p > 4), D is not subdivided, and the

) local stiffness matrix is full of order Q = 4p+ (for p > 4) 1(p — 2)(p — 3) . Practical :
:; 6 l:
) ~Q‘
)
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W
values of p are about 6 — 10. To achieve reasonable accuracy when the coefficients a;; ':',‘
or Jacobian is not close to a constant, Gauss quadratures with (ap)? quadrature points uz:z
are used where a > 1. The computation of the one-dimensional shape functions on ap ’_,i
points needs c3p? operations, and using the tensor product form of the shape functions, S
the construction of the local stiff matrix needs c,p* operations, where ¢4 = } to 1. In o,
addition, there are 3p? evaluations of coefficients ai; and Jacobians, resulting in a total N
cost of ¢4p? + csp® operations. It it often the case that csp? is larger than the first term, :"'

so a reasonable estimate for the total cost is cp* where ¢ =~ 1. For the hp-version, these f
costs are multiplied by m?, except in the special case of constant coefficients. ®

The local eliminations are performed by some version of Gaussian elimination, e.g. -
making use of a factorization A = LL7. It is possible to give precise specification of the
costs. For the p-method, local elimination can be described as a set of dense block matrix

»

[y 'r. 1, :. .

operations, where the blocks are as in (3.1): .'::-
Algorithm 1: Local elimination and backsolve. °
Elimination: -

a) Cholesky factorization A = LLT, !

b) Block forward solve B «— L~!B, ::

¢) Update C — C — BTB, .

d) Forward elimination for each load vector b: b — L~1b and ¢ — ¢ — BT), o
Backsolve: (o

e) Given boundary values v, compute interior values u «— L‘T(a - év)

Steps (a) - (c) are independent of the number of load vectors; steps (d) and (e) are per- i
formed for each load vector. Note that this algorithm must be combined with computation i
of the interface unknowns, which takes place between steps (d) and (e). .

For the h-version, the matrices A, B and C are sparse, and we consider use of the .'.:E
nested dissection method, in which the rows and columns of A are symmetrically permuted o
to minimize fill-in, see (7| for details. (See also Section 4.2 for a parallel version used Y
for elimination on the super-element interfaces.) Formally, the main modification of bl

Algorithm 1 is that step (a) is applied to PAPT, where P is a permutation matrix that %]
implements the reordering. For the hp-method, Algorithm 1 is applied in serial to each s
element of D to decouple the internal unknowns of local elements from those on local ity
interfaces, and then it is applied using a nested dissection ordering to eliminate the local :
interfaces. '.
The following result summarizes the floating point multiplication counts for internal o
elimination. A proof is given in the Appendix. o
Theorem 1: The high order multiplication counts of the local elimination used for two- 4
dimensional problems are A
@
1 3 17 341 371 371 Pt
2 6 5 4 3 3.3 2.3 2 2

G P P g ?) + (e - Somis - 17m?plogy m) >
"'(48” 167 T16? TP ) T M T gm e tlimiptlogm A
w4

I
for factorization, and s
1 3 31 ®

mz(-p‘ + —pz) + (—mzp2 log,m—26m2p+2m2) (4.1) R

4 2 2 ’
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for forward- and back-substitutions.

For both the expressions of this result, the first term in the sum comes from treating the
internal unknowns on each of m? local elements in D, and the second term comes from
treating local element interfaces inside D. Note that the factorization is performed only
once, whereas the forward- and back-solves are performed once for each load vector. Also
note that for practical values of p, the O(p®) term is not the governing one.

On a serial computer, all computations are local and costs are summarized the fol-
lowing result.

Theorem 2: The high order multiplication counts for serial factorization are
17 341 267 371
s L0 4 o4l 3)+(————n3 3_20 2

n’(i6+—3— +
a8? 716 T16? T 18 ? 28" P T 12

p® —17n3p? log, n) .

The costs are slightly lower than those obtained by replacing m with n in Theorem 1
because the serial algorithm achieves some savings near the boundaries (see {7|). The
proof is essentially the same as that of Theorem 1.

4.2. Parallel Direct Solution for Interfaces

After the internal unknowns are decoupled from the system, the result is one or more
systems of equations of the form (3.4) whose unknowns are associated only with super-
element interfaces. This situation is depicted in Figure 4.1. To simplify the analysis, we
assume that the number k of processors in each dimension is a power of two. If D denotes
a super-element associated with some processor, let d denote the number of unknowns on
each side of D, including one nodal unknown. Thus, each (interior) super-element has 4d
unknowns associated with it, where unknowns lying on a node are associated with four
super-elements, and those on an edge are associated with two. Conceptually, whether these
unknowns come from the k-, p- or hp-versions of the finite element method is irrelevant; we
simply have d = mp for all methods. The order of G is then N = (2d—1)k? +2kd+1. If the
unknowns are labeled from 1 to N, then an entry G;; is nonzero iff unknowns ¢ and j are
associated with a common subdomain. It has been shown in [5,6,17] that these unknowns
can be computed with O(1) efficiency using the parallel nested dissection method. In this
section, we give a high-level description of this algorithm and summarize its costs. A
detailed description is given in the Appendix.

The method consists of log, k steps, described loosely as follows. At the t'th step, a
set of four domains from step ¢ — 1, each containing 46; boundary unknowns, is merged
into a larger domain DM and a k¢ X k¢ processor grid is used to decouple the interior
unknowns of D{*) from the boundary unknowns. (See Figure 4.2 left.) This procedure is
repeated recursively, with 6., = 26; and x, = 2¢. For example, the original k2 super-
element domains {D,(?) |1 < 1,5 < k} (one per processor) each contain §; = d boundary
unknowns on each edge. These k? domains are grouped into (k/2)? square sets containing
four domains each, where in each set the four domains are contiguous at one node. Then,
simultaneously for each set, the four domains are merged into a larger domain, resulting
in a set of (k/2)? new domains {D‘(!) |1 < 1,7 < k/2} each containing 26, boundary
unknowns per edge and residing on a k; X k1 = 2 x 2 grid of processors.
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Figure 4.1: Configuration of unknowns after local elimination.

Algebraically, “merging” of subdomains means assembling four stiffness matrices local
to the subdomains {D(!~1)} into a new stiffness matrix for D(*) (and analogues for load
vectors). As in [5], let the unknowns for the merged domain D(*) be divided into p; sets
each of size approximately §;, where for 1 < t < log; k — 2, pt = 12. The distribution
of unknowns is as in Figure 4.2, left. In the last two steps, there are fewer boundary
unknowns (or none at all): piog k-1 = 8 and piogx = 4. In this discussion, we focus on the
case t < log, k—2. Let the interior unknowns be labeled with the integers 1 through 4, and
the the boundary values labeled 5 through 12. The stiffness matrix for D(®) is then a block
12 x 12 matrix, denoted by S(!) (Figure 4.2, right). Contributions to each of the blocks of
S(t) come from the parts of the local matrices from the previous step whose subdomains

are associated with that block. For example, Sx(:) contains contributions from the local

matrices for subdomain Dgtl—” and subdcmain Ditz 1), Merging consists of redistributing
the four local stiffness matrices from four separate x;_, X x;—-; grids to one x¢ x x; grid,
and then summing the contributions to S (®),

123458789101112

11}
10 9 g .
11 D.. 3| D 8 ;
21 72 :
1 2 7
| Dy4 Dy |7 g
5 6 i(l) .
12 |

Figure 4.2: A merged domain D) and the approximate nonzero structure of its local
matrix S(*).

As usual for the nested dissection method, the interior unknowns of each merged
domain D) form a cross (Figure 4.2, left). To examine the decoupling of the interior
points of D() from its boundary, we temporarily drop the index ¢ from the discussion,
letting D represent a domain at some step t < log,k — 2. The decoupling is based
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on parallel block Gaussian elimination. In an implementation, it would be necessary to
identify the twelve sets of unknowns precisely, specifying in particular how points on the
boundary of two or more sets (such as the center of the cross) are labeled. We avoid
this precise identification, instead deriving an upper bound for the costs by considering a
matrix S with a simpler structure: we take S to be a block 12 x 12 matrix with square
blocks whose nonzero blocks are those explicitly identified in Figure 4.2. These blocks are
taken to be dense of order §.* Algorithm 2 is a version of the factorization, block forward
solve and update steps (analogues of steps (a)-(c) of Algorithm 1) used to eliminate the
first four blocks of S. At each step, it is applied simultaneously to all the local matrices S
associated with domains D for that step. The algorithm takes advantage of sparsity and
symmetry by operating only on nonzero entries of the block upper triangle of S. At the
end of this computation, the lower right 8 x 8 block is to be merged with three others at
the next step.

Algorithm 2: Eliminate a cross for nested dissection.

fortr=1to 4
factor S;; into L;;LY, Cholesky factorization
forj =1+ 1tope
if (Sij #0) Sij — L;'Sy; Block forward solves
end
forj=1+1top;
for k = j to p¢
if (Sij # 0 and Six # 0) Sjx — Sji — S',%«'S;k Matrix-matrix product
end (for update)
end
end

The factorization step of the parallel nested dissection is now described by the follow-
ing algorithm, each step of which is performed on a x; x x; grid of processors:

Algorithm 3: Factorization by parallel nested dissection.
Fort =1tolog, k
Local assembly: Assemble S(*); merge the four subdomains from step t — 1
by redistributing and adding four local submatrices.
Eliminate the interior cross: Apply Algorithm 2 with S = (1),
end
The costs are determined from the individual costs of the merge and the large scale compu-
tations of the factorization (Cholesky factorization, block forward solve and, matrix-matrix
product) on a k¢ x k¢ processor grid. In our complexity analysis (here and in the remainder
of the section), we assume that mp > 2 and k > 4. The first assumption means that the
problem is not very small relative to the number of processors, and the second means that

* The true local matrix for D resembles S, but some diagonal blocks have order § —
1 instead of é, and some other off-diagonal blocks have nonzero rows or columns. For
example, if the center of the cross is placed in set number 1, then there is a nonzero row
in the (1,6) block. It is straightforward to show that the operation counts are higher for
this simplified matrix S.
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the processor grid contains some interior processors. The following result gives an upper
bound for the costs of Algorithm 3; a proof is given in the Appendix.

Theorem 3: The global matrix G can be factored using the parallel nested dissection
algorithm with cost

Bm3pk — 3m®p log, k — l—g-zm"’p3 arithmetic,
‘g m2p?k — 18m?p?log, k — 28m?p? communication,
322k — 326log; k — 275 startups.

As in steps (a)-(c) of Algorithm 1, this computation is independent of the number of
load vectors. It remains to specify the costs of the global forward elimination and back
substitution, which we assume are performed in serial order, once for each load vector. For
a single load vector b = b(*) local to D(*), the forward elimination and back substitution
are as follows:

Algorithm 4: Forward elimination and back substitution.

Forward elimination. Back substitution
fors=1to 4 fori=4to1l

b — L;lbi bi—0

forj=1+1top;: forj=t+1top;

if (S,',‘ # 0) b; «— b; — Sg-'b;' if (S{j #0) by — b; — S;5b;

end end

end b — L; Tp;
end

The global eliminations consist of log, k steps of these two computations. We discuss only
the forward elimination; the costs for the back substitution are identical.

Algorithm 5: Global forward elimination.
Fort =1 to log; k
Local assembly: Assemble b(*): merge the four load vectors from step ¢t — 1.
Elimsinate the interior cross: Apply Algorithm 4 with S = S(*) and b = b(¥),
end .

The following result gives the costs of the forward- and back-solves; see the Appendix for
a proof. Note that the asymptotic cost of arithmetic is O(n?p?/k), which is suboptimal.
(The serial cost is O(n?p? log, n), as in the second term of (4.1) with m = n.) See e.g.
[12] for discussions of efficient parallel triangular solution schemes.

Theorem 4: The cost of forward solves and back substitution for the parallel nested
dissection algorithm applied to s load vectors is

6m?p?k + 32=8m32p? log, k ~ (18s + 6)m?p? arithmetic,
33mpk — (38s — 30)mplog, k — (28s + 26)mp communication,
66k + (76s — 60) log, k — (565 + 52) startups.

Finally, the storage requirements for local elimination and parallel nested dissection
are outlined in the following result.
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Theorem 5: The high order storage requirements per processor for local elimination
combined with global elimination by parallel nested dissection are

( tmipt + -:-3m2p3) + 8mpllog,m  for local elimination,

30m?2p? log, k for global elimination,
where the parenthesized term applies only for p > 4.
Proof: The local cost comes directly from expression (4.1) of Theorem 1. For the global
factorization, it is necessary to store each filled-in version of S(*) computed by Algorithm
2. For all ¢, the nonzero blocks of S(*) are dense of order 6;, and they are distributed on a
K¢ X ¢ grid, so each block requires ({‘;)2 = d?/4 locations per processor, where d = mp.
The number of such blocks is 126 for 1 <t < log, k — 2, and 54 and 14 for t = log, k ~ 1
and t = log, k, respectively. Since both S(*) and [S(*)]T are used (see the note in the proof
of Lemma 1), little advantage is taken of symmetry; the only exception is on the diagonal,
where just the lower triangular factor L;; must be stored. Hence,

d? 1d? 2 2
o (126(1032 k—2)+54+ 14) -5 (12(1og2 k-2)+8+ 4) = 30d2 log, k — 44.5d

storage locations are needed in each processor. Q.E.D.

Here, we are ignoring pointer overhead and some temporary storage that facilitates pipelin-
ing in Algorithm 2 (see the proof of Lemma 2 in the Appendix).

4.3. Parallel Conjugate Gradient for Interfaces

In this section, we outline the costs of a parallel implementation of the conjugate
gradient method for solving the global system (3.4). Given an initial guess vo, CG consists
of the following iteration, whose major computations are listed at the right.

Algorithm 6: The preconditioned conjugate gradient method (PCG).

ro « g — Guo, Fo — M~1rg, po « 7o, 70 — rT70

For i = 0 _until convergence do .
w; — Gy; Matrix-vector product
ni — pTw;, a; «— 1i/n; Inner product
Ziy) & Ti + aip; Scalar-vector product
Pit+l & F{ — Qiw; Scalar-vector product
Fivi — M lri Preconditioning
Titl & f'?...l"iﬂ, Bi — Ti+l/7'i Inner product
Pi+1 +— Tiv1 + Bipi Scalar-vector product

Thus, each iteration requires one (parallel) matrix-vector product, one preconditioning
solve M7 = r, two inner products and three scalar-vector products. We consider unpre-
conditioned CG (i.e. where M is the identity operator), as well as using preconditioning
by by a sparse approximation of G.

Our strategy for distribution of data (except the preconditioner) is depicted in Figure
4.3. Each processor P is associated with a super-element D. For any vector v associated
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Figure 4.3: Data distribution and local matrix structure for the conjugate gradient method.

with the boundary of D, P contains in its local memory the entries of v on the north
and east boundaries, excluding the northwest and southeast entries. For most processors
there are 2d — 1 such values, where d = mp. (Exceptions are the top row and right
column of processors in the grid, which contain no north boundary and no east boundary,
respectively. They perform less work than the other processors and are idle some of the
time.) The vector v is divided into four disjoint components: v; for the 2d — 1 entries stored
locally in P, and v,,, v, and v,,, for the elements of v stored in the processors to the left,
below and below left of P. Let A denote the local matrix for D after local elimination.
A is a dense 4d x 4d matrix, but we adopt the convention that the block diagonals of A
are assembled to reflect the locations of unknowns. That is, the (s, s), (w,w) and (sw, sw)
blocks of A are set to zero, so that there are actually 14d2 — 1 nonzeros in A.

The costs of the matrix product and vector operations are as follows (here d = mp):
Matriz-vector product y «— Az: Td? arithmetic and 4(d+1) communication, with 4 startups.
This is determined from the following steps of arithmetic and communication, whose costs
are listed on the right:

(1) In parallel: send z,, east, z, north and z,,, north. 1 startup, send d words

(2) Send z,, east. 1 startup, send 1 word

(3) Compute y — Az 14d? — 1 arithmetic

(4) Send y,, west. . 1 startup, send 1 word

(5) In parallel: send y,, west, y, south and y,, south 1 startup, send d words
Inner product 7 —~ Y Al domains Z'¥: 2d — 1 arithmetic, and 2k communication and 2k
startups to accumulate the sum and distribute it to all processors.

Scalar-vector product y — az for scalar a: 2d — 1 arithmetic and no communication.

For the preconditioner M, we consider a symmetric permutation of the matrix

(Cg (I)) , (4.2)

where G is a global interface matrix corresponding to a subset of the unknowns on the
boundaries of the local interfaces. For example, one could choose the corner unknowns
of all super-elements, plus one unknown from each side of every super-element, so that
G has the form of a low order operator approximating G. The permutation maps the
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specified unknowns to the lowest indices in the natural way. Suppose d < d unknowns
per side are used to define the preconditioner. Then the costs of applying and storing
the preconditioning operator are obtained by replacing mp with d in Theorems 4 and 5.
Hence, the costs of the conjugate gradient method are as follows.

P -
- -

Theorem 6: The cost per step for CG without preconditioning is
14m?2p? + 10mp — 6 arithmetic,
2mp + 4k + 6 communication,

4k + 4 startups.
The additional cost per step for preconditioning by (4.2) is (for d > 2)

6d%k + 2?7&2 log, k — 24 arithmetic,

- e .

-
L XK

33dk — 8d log, k — 54 communication,

66k + 16log, k startups.

The storage requirements (not including those for local elimination) are 14m?p? + 20mp
without preconditioning (for A, z, r, p and w), and an additional 30m? log, k + 4mp with
preconditioning (for G in factored form and 7). Q.E.D.
There is also a preprocessing cost for factoring G, obtained by replacing mp with d in
Theorem 3. Note that the efficiency of the unpreconditioned algorithm approaches one as
the problem size grows.

An implementation of unpreconditioned CG (with benchmarks on a hypercube) that
computes an extra inner product but decreases the startup overhead of inner products is
presented in (11].

5. Numerical Experiments

In this section, we describe the results of numerical experiments for solving a model
problem, and we combine these results with the cost analysis of the previous section to
estimate parallel costs. Consider the model problem

-Au=0 onl1=[0,1]x[0,1], (5.1a)

du du d 0
= (1,0) = n(o z3) =0, -a-%(zl,l)=gl(zl), 5%(1,::2)=g2(1:g), (5.15)

where g; are determined so that the solution is

u(z1,z2) = Re((a® + 2%)71 + (a? - 2%)71) - a>1, z=1z;+1iz,.

a?’

Note that u is a harmonic function with a singularity at 2 = +a, z = *ia so that the
solution becomes less sraooth as a — 1. The parameter a characterizes the regularity of
the solution. This model problem is a characteristic one for many problems in structural
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Figure 5.1: Accuracy of the finite element solutions.

mechanics. We consider two versions of this model: Problem 1, with a = 1.1, and Problem
2, with a = 1.05.

Figure 5.1 shows the accuracy ||u(S) — u||g/||u]| g obtained using elements of degree
p and n x n element grids with n = 2, 4, and 8, to solve (5.1) for the two choices ¢ = 1.1
and a = 1.05. The finite element computation was made by the code PROBE [16] on
an Apollo 3000D in double precision. For use with the parallel analysis of the previous
section, we extrapolated these results in two ways to get data for finer grids. First, we used
the asymptotic values of the slopes of these curves to extrapolate to values for n = 16 and
n = 32. In the figure, the extrapolated results are indicated by dotted lines. Second, we
treated this problem as though it is a subproblem of a larger one discretized on a 4n x 4n
element grid, in which Q1 is 1—16 of a larger domain. That is, our operation counts are for
a problem posed on a domain with four times as many elements in each direction, but in
which the accuracy is as in Figure 5.1. In the following, we consider n x n element grids
with n = 8, 16, 32, 64 and 128. Figure 5.2 graphs accuracy as a function of cost for serial
computations, for direct solves using several choices of finite element method and the two
values of a.

For examining parallel costs, unless otherwise specified, we fix the costs of arithmetic
and communication as follows. A floating point multiplication is normalized to take one
unit of time. Communication is 10 times faster than arithmetic but incurs a startup cost
equal to the time required to perform 10 floating point multiplications (or send 100 words).
Thus, n words of data can be sent to a neighbor in 10 + .1n units of time. (These choices
are rough approximations to observed times on both the Intel iPSC and Ncube hypercube
parallel processors [12].)

Figures 5.3 - 5.6 show the costs of parallel direct solves for several values of available
parameters. Figure 5.3 shows accuracy as a function of cost for direct solution on 64
processors arranged in an 8 x 8 grid (k = 8), for a = 1.1 and a = 1.05. Comparison
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1
' of Figures 5.2 and 5.3 shows that the relative advantages of choice of basis function are
essentially the same in the serial and parallel case, i.e. that high order basis functions
, achieve greater accuracy. Figure 5.4 shows the costs to achieve accuracy of both 10% and
;: 1%, for values of k ranging from 1 to 64. This figure shows that addition of processors
g results in decreases in cost until the local problem size becomes too small, after which
- startup overhead begins to dominate.
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[N
® cretization, for k = 8 and k = 32. The upper bound on speedup, k2, is indicated by dashed
;!: lines. The maximal speedup is slightly greater than half these upper bounds (giving ef-

ficiency of about 50%). There are two reasons that the asymptotic speedup is less than
b this bound. First, symmetry is not fully exploited in the parallel computations: during the
K Cholesky factorization of Algorithm 2, computations are duplicated in the upper and lower 3
. triangle of the processor grid, and during the block forward solves, only about half the
}'." processors are actually computing. (See the Appendix for details.) Second, the parallel f
o dissection cannot take advantage of lower costs near the boundary as well as the serial
% version; this is reflected in the difference between the coefficient of m3p® in Theorem 3
W with that of n3p® in Theorem 2. We also observe that by our convention, more computa-

tions are fully local for higher values of p, so that maximal speedup is achieved for smaller
o element grids for these values.

f In Figure 5.6, we vary the relative costs of communication and startups for the same ,
A problem considered in Figure 5.3, left (a = 1.1). For Figure 5.6, left, communication speed :
v is decreased to the same speed as arithmetic, with no change in startup cost. For Figure
® 5.6, right, communication speed is made 10 times faster than arithmetic (as above), but
) startup cost is decreased to the cost of one multiplication. Comparison with Figure 5.3,

left, indicates that the (relatively high) cost of startups significantly degrades performance,
even though startups are a lower order overall cost, whereas the cost of communication is
less of a factor. This agrees with observations made in [10], although it is also known that y
for very large problems, communication costs, which are of lower order than arithmetic
costs, will be negligable [11].

For the conjugate gradient method, the standard bound on the error at the j’th step
has the form (1]

Ik W 1

e e
RN O

o

A leDllg < 201 — u)[|e!V] g (5.2)
K Here, |leD||g = ||ul) — u(S)||g, the energy norm of the discrete error at the j'th CG
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K
’;: iteration, and the decay factor 1 — u depends on the iteration matrix. (For uniform
eigenvalue distributions, u = (condition number)"‘/ 2)) We study the performance of CG
and PCG by examining its performance for x4 € (0, 1), for solving the two model problems
with an accuracy comparable to that achieved with a direct solver.
y In particular, let the desired accuracy be 1%. From the data used to produce Figure
: 5.1, we find that this accuracy is achieved for Problem 1 when (for example) p = 2,
' n? = 1024, or p = 6, n? = 64, and for Problem 2 when p = 4, n? = 1024 or p = 8,
N n? = 100. As in our analysis of direct methods, we simulate a finer grid by replacing n
' 18
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with 4n. Therefore, we examine the conjugate gradient method for the four choices
Problem 1: p=2,n=128 and p =6, n = 32
Problem 2: p =4, n =128 and p = 8, n = 40.
From (5.3), approximately j = (log ¢)/log(1—u) iterations are needed to bound the relative .
i ' error ||| g/|e(®||g by e. We use this estimate on iteration counts, with the choice
™ ¢ = 1073, to determine the costs of achieving approximately 1% accuracy. Multiplying
these iteration counts by the cost per step (taken from Theorem 6) gives the overall cost of
- the conjugate gradient method. For a preconditioner, we consider the use of a submatrix of
b the global interface matrix G corresponding to the nodal unknowns on the super-elements,
plus one side unknown from every side of the super-elements (so that d = 2 in Theorem

b 6).

Figure 5.7 compares the cost of CG and PCG with those of the direct solvers, for

e
,::: solving the two problems with one load vector on an 8 x 8 processor grid. The results
::; show that if the decay factor 1 — u is much less than one, then CG and PCG will be more
::o efficient than direct solvers, but that the two classes of methods become comparable in
. cost as u — 0. They also indicate that the overhead for low-order type preconditioners is
I not a significant extra expense. (For the problems considered, the number of points mp
i:: on each interface boundary is at least 40, much larger than d = 2.) Figure 5.8 compares
::i the cost of CG and PCG with those of the direct solvers, for solving the two problems
*:5' with thirty load vectors on an 8 x 8 grid. Here, the factorization for the preconditioner is
i . counted only once. These results suggest that in the case of multiple load vectors, parallel
e direct solvers will be highly competitive for two-dimensional problems, even if the rate of
;:, convergence of CG or PCG is independent of mesh size. (We remark that synchronization
:::: costs for the CG inner products are of low order for the problem sizes considered here.)
C". )
:i. L.e9 1.e9 1
i
.l
.E"" Le8 1 LeS 1
» .
‘ Work Work p=+ / Direct
. -4/ PCG r =4 /CGC

A LeT 1e7 1 e
4 N p=2 / Direct ! : , p=8 / Direct
: S I
e le6 { 5=37 cc\ """" Tl Leb -
o ‘ !‘:‘J?CB—-——\‘ -e

.' -
;‘ p=8 / CC pm2 / PCG
::" l.e5 +—r—r—r—r—r—v—r—T— 1.e5 +—r—r—r—r——y—ep—p—peye—

X 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

U Decay Factor Decay Factor
R Figure 5.7: Comparison of conjugate gradient and direct solves for one load vector, k = 8.
' ','
::,: It is known that for p = 1, u behaves like 1/v/nk [4], so that in this case the unpre-
i conditioned algorithm will have values of 1 ~ u near one. We expect 1 ~ u to be smaller
.l
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Figure 5.8: Comparison of conjugate gradient and direct solves for thirty load vectors, k = 8.

(even without preconditioning) for larger p. To get some insight into this point, we esti-
mated the values of 1 — u for CG for applied to the discretization of (5.1), both without
preconditioning and with a particular low order preconditioner, for several values of n and
p. (These estimates are based on the experiments [3].) For each p, the elements and
super-elements are the same, and local elimination of the internal unknowns is performed
in each element. G is the global interface matrix corresponding to the remaining side and
nodal unknowns, and the preconditioner G is the submatrix of G corresponding to p = 1.
The results are shown in Table 1. The entries are the average values of |[e!)||g/|[e" "] £,
taken over the first ten iterations of CG, using a zero right hand side and smooth initial
guess. The left-hand table is for unpreconditioned CG, and the right-hand table is for pre-
conditioning of the p-version interface operator by the h-version interface operator. Note
that the preconditioning is different from that considered above, where local elimination

is also applied to unknowns coming from side and nodal unknowns inside super-elements.
p=2 p=4 p= p=8 p=10 l p= p= p= p= p=10
n=2 383 .521 572 .616 .835 n=2 0 473 537 574 - 614
n=4 .595 .644 672 .699 714 n=4 335 470 514 571 .623
n=6 873 .689 721 743 749 n=6 357 475 .516 .563 .609
n=8 744 762 .765 770 a75 n=8 354 472 512 554 .600
n=10 794 .808 .805 .804 .806 n=10 .355 470 .506 547 .591

Table 1: Average decay factors for CG applied to the p-version interface operator, without
preconditioning (left) and with preconditioning by the h-version interface operator (right).
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. 6. Conclusions )

perform local elimination wherever possible. The unknowns corresponding to “processor

interfaces” are then computed using either direct solvers or iterative solvers. Some of the
conclusions we’ve reached are: )

1. Sparse direct solvers based on nested dissection are applicable to systems arising

from both the k- and hp-version of the finite element method, and the factoriza-

R We have considered some issues associated with parallel solution of linear problems h
‘ arising from finite element analysis. Although the quadratures required to set up these )
systems often occupy a substantial portion of the computational time, these computations '

I are fully parallel; consequently, our focus has been on the costs of linear system solution. .
The general strategy considered is to divide the problem among available processors, and X

’

U

4

Vo e et

PR R R X

tion achieves maximum efficiency of approximately 50%. '
2. The use of high order elements appears to be a natural way to increase the amount !
of local computation and achieve accuracy. :
3. Sparse direct methods are highly competitive with preconditioned conjugate gra- :j

dient methods, especially in the case of multiple load vectors. This is despite the
fact that triangular system solution does not achieve optimal order speedup.
We have not addressed two critical issues of finite element analysis here, namely three- t
dimensional problems and adaptivity. Hierarchical direct solvers of the type considered
here can be used for three dimensional problems, although the global data movements will
be more complex. We speculate that high order methods will be of use in this regime,
again by making more of the computations local in a natural way, at the possible cost
of increased local storage requirements. A very useful methodology would be effective
low order preconditioners for the conjugate gradient method. Adaptive methods are less f
* amenable to the type of analysis considered here, but we believe that methods based on
hierarchical use of high order elements would require richer interconnection schemes than
the processor mesh considered here.

PN @D IR

In this section we present proofs for the cost analyses of Sections 4.1 and 4.2. The
costs of local elimination are derived from standard analyses of serial direct methods.
Proof of Theorem 1: The operation counts are written in the form m?x (cost of p-
version) + (cost on local interfaces). The costs for the p-version are derived from the
standard analysis of dense elimination (8]: it is known that the number of multiplications p.
required to factor a dense matrix of order a is }a® + 1a? — 2a. The result follows from
the facts that in most elements, A has order a = 1(p — 2)(p — 3) and B is a full matrix
with 4p columns. The result for local interfaces follows directly from George’s original 3
analysis of nested dissection [7]. We only consider the case of k > 4, so that the costs !
are determined by the (internal) super-elements, which have four boundaries. Hence, in
George’s terminology, the operation counts are those for elimination of “interior subsets” X
in the dissection, as in (7], p. 360, Lemma A.2. At the j’th step, for 1 < j < log, m, these

counts are (5)?(3% x 2%p% — 17 x 2%p? — ¥ x 27p + 3), and the number of nonzeros in
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the j’th section of the factors is ()?(3L x 2%7p? — 13 x 2/p + 3). The total is obtained by E
summing these expressions for j =1 to log, m. Q.E.D. 3
(|

0,

Now consider the parallel global matrix factorization (Algorithm 3). The analysis ®
presented is a generalization of the analysis of [5]. Data is arranged as follows. Prior to
the elimination of the interior cross at the t’th step, S(*) is a block p; x p¢ matrix, where :::
for1<t<log,k—2,p: =12. S(t) has the the nonzero pattern of Figure 4.2, and only the o

-
Tl

block upper triangle is needed. Each block of S(*) has order §; = 2¢~'d (where d = mp),
and its 62 entries are distributed on a x; x x; grid of processors, where x; = 2. When
it is convenient, we use the symbols S, x ind 6 and omit the counter t. The following :
result summarizes the costs of the large scale computations (Cholesky factorization, block N

forward solve and matrix-matrix product) that are performed one or more times during :
each of four steps. o
Lemma 1: If the matrix S of Algorithm 2 contains blocks of order §, and each of the .
blocks is equidistributed on a x x x grid of processors, then the individual large scale 3
computations used in a parallel implementation of Algorithm 2 can be implemented with 4
the following costs: A
r factorizations: (r+2)c—-2 arithmetic steps i
(r+2)c-3 communication steps o
r block forward solves: (r+2)c -2 arithmetic steps 5
(3r + 2)x — (2r + 3) communication steps &
r matrix-matrix products: rg arithmetic steps 'i
2rx — 2r communication steps, ®
where an arithmetic step consists of (;6‘-)3 multiplications, and a communication step con- '::
sists of sending (%)2 items of data to a neighboring processor. . :
Proof: We consider the factorizations, block forward solves and matrix products sepa- -
rately. In the proof, individual matrices distributed on the processor grid are indexed )
according to their locations in the grid, i.e. if A is any such matrix, then A4,, refers to the 2
portion of A stored in the processor indexed by (u,v), 1 < p,v < k. The symbols S and L ;_’
are reserved to refer to the matrices of Algorithm 2, i.e. S;; is a block of S, equidistributed A 2
among the processors. N
Cholesky factorszation. Let A = MMT denote the Cholesky factorization of a block Si, .
1 <1 < 4. The factorization moves in a series of waves across the grid where each wave -
computes one column of M in the lower triangle of the processor grid and, simultaneously, l:'_.'
an (identical) row of M7 in the upper triangle (see {14]). The first wave is shown in Figure 0
A.1. Simultaneous steps of arithmetic (a;) and communication (¢;) are identified by diag- \J
4 onal lines. The steps are synchronized as in the figure, so that the costs of arithmetic are ®
determined by the matrix-matrix products, which require (%)3 multiplications; similarly, N
the communication cost is (%)2 words with one startup. The last step of this wave, which -&
takes place in the (x,«) (bottom right) processor, is completed after 2x — 1( = 7) steps of N
arithmetic and 2x — 2( = 6) steps of communication. The second wave is performed on the Q3
lower right (x — 1) x (x — 1) grid of processors, beginning in processor (2,2) at step a4. -
The factorization is completed after 3x — 2 arithmetic and 3x — 3 communication steps. "
e,
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.: ; When r factorizations are pipelined (we are concerned only with r = 1,2), it is necessary
3': that the waves of each factorization do not collide with any from an earlier one. This is
‘I:‘ achieved by having each factorization begin k steps after the previous one, in the (1,1)

processor. The cost of r factorizations is then (r +2)x — 2 arithmetic steps and (r +2)x -2
communication steps.

W, (M'A12)T A Ay - AT,A1x 413 A — AT A ATs  Agq— AT, A1y cs
b.,' / / /
b
::: My, / A3 / A Ad /66
;0:0 T Ay = A / —

Als / az . / . ]

) = Azq =
’ (M'A1a)T AL g - ATsAl/'A'A” Aaz — Ay Als Age - Aﬁ}‘/ce
z MH// Al / A3 / Aie ar
R AT, = /442 = /A43 = /444 =

:‘ (M['A14)T AT Ag - AT, Ay, AT Ag - AT A3 ATe - Aw - AT AL

:;{ Figure A.1: The first wave of a Cholesky factorizaton on a 4 x 4 processor grid.
;. Block forward solve. There are r computations of the form B = M~1 A, where M is the
R, lower triangular factor distributed in the lower triangle of the processor grid, and A and B
R are square matrices equidistributed among the processor grid. (In Algorithm 2, M = Ly;
A and A = S;; for some appropriate ,5.) The block solve requires one sweep across the grid
) N for each column of A. Figure A.2 shows the computation of {B,;|1 < u < &}, with the
o result stored in the diagonal processors. 25 — 1 arithmetic steps and 2x — 2 communication
‘,‘ steps are needed. If all the block columns of A have been positioned in the left processor
° column, then this step can be pipelined the computation for the i’th column begins at
s (arithmetic) step ¢+ and ends at step i + 2« — 2. Similarly, the computation for r block
o matrices A requires (r + 2)x — 2 arithmetic steps and (r + 2)x — 3 communication steps.
. As above, the cost of each step is (%)3 multiplications and (%)2 communication with
i‘: one startup. There is a preprocessing cost of r(x — 1) communication steps to position the
° columns of A, and a postprocessing cost of r(x —1) to correctly place the computed columns
7 of B.* The total is (r + 2)x — 2 arithmetic steps and (3r + 2)x — (2r + 3) communication
hea steps.

.

E: * In the postprocessing step, B;; is moved (horizontally) from the diagonal processor
° (+,1) to processor (i,7). Since BT is required for the matrix-matrix product of Algorithm
S 2, Bi; is simultaneously moved (vertically) to processor (7,1).
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Figure A.2: The block forward solve for the first column on a 4 x 4 processor grid.

Matriz-matriz product. These computations have the form BT A, which requires a bidi-
rectional horizontal communication of all columns of BT (see the footnote in the previous
paragraph) and, simultaneously, bidirectional vertical communication of all rows of A.
This is followed by the block matrix sum C,, = 35 (B,,.)TAW in processor (u,v). The

o=1
cost is rx arithmetic steps and 2r(k — 1) communication steps. Q.E.D
1<t<logy k-2 t=log, k-1 t =log, k
2 factorizations 2 factorizations 2 factorizations
t=1and 2 12 solves 8 solves 4 solves
42 matrix products 14 matrix products 6 matrix products
1 factorization 1 factorization 1 factorization
1=3 9 solves 5 solves . 1 solve
45 matrix products 15 matrix products 1 matrix product
1 factcrization 1 factorization 1 factorization
1 =4 8 solves 4 solves
36 matrix products 10 matrix products

Table 2: Number of instances of large scale computations in Algorithm 2.

Table 2 shows the number r of times each of the large scale tasks is done. The rows of
the table correspond to places where the factorizations and forward solves can be pipelined.
Substitution of the values of r from Table 2 into the expressions of Lemma 1 then gives
the number of steps required to perform Algorithm 2:

Lemma 2: Under the hypotheses of Lemma 1, the number of steps needed in a parallel
implementation of Algorithm 2 is as follows:

24

. . % - W, TR RAAR TR A AT KA A T R A A e . am
LR A ﬂ."l,‘!l-‘?'-‘?m.'-‘Jah'. Wt HCHOHOALI00NCN _¢.o AR AN RN e X OIS RN R T




S a gt N e e 2B 0ad o3 VaW Vol Yal ? 0,8 00 at Y2 428"k R T N R T VT NV FLURL FUWUNUN g s atl bR 0 ats R ata avp ol nUA TR ¥4 2t 2t et oyt Bg  Ne”

S o

b
Arithmetic steps: Communication steps: :
168x¢ — 12 349, — 322 1<t<log k-2 !
T2k — 12 145k, — 130 t=log, k-1 '
26x¢ — 10 43k — 39 t = log, k. »
.:
Let T(!) denote the lower right square submatrix of S{*) below row 4; for ¢ < log, k, “:
T(t) is an 8 x 8 block matrix. After the elimination, the block upper triangle of the lower \
right of T(*) has filled in. Prior to this computation, four such 8 x 8 block matrices on four \
separate x¢_) X K¢—) processor subgrids are redistributed to the ¢’th grid and merged into b
! S = S, The cost of this operation is summarized by the following result. x
y (
Lemma 3: For the matrix S of Lemma 1, the number of communication steps needed to ::
merge the local matrices at step ¢ of Algorithm 3 is "
p 20K.¢ t=1
1 24K — 4 2<t<log, k-1 ::
8xy —4 t = log, k. ::
Proof: Fort <log, k—1,let T = T(t) denote the 8 x 8 matrix from step ¢t — 1 as above, ::
: and let the four subdomain quadrants be denoted {D;;|1 < 1,7 < 2} (see Figure 4.2). '
T is associated with one of the quadrants, wlog, D, ;. Each block of T has order %‘ and 1
- is distributed on the %t x 5t grid. Now let T be relabeled as a block 4 x 4 matrix in . ::
which each new block is square (of order §;) and contains four old blocks. Let U denote ::
one of these new blocks of T'; by definition, U can also be thought of as divided into four "
quadrants. The data movement needed for merging is to move each quadrant of U to the -
corresponding quadrant of processors for the subdomains. The relocation of U can proceed &
in the following four steps:
{ 1. Move U, 2 from quadrant (1,1) to quadrant (1,2) (clockwise). !
/ 2. Move U,,; from quadrant (1,1) to quadrant (2,1) (counterclockwise). ot
' 3. Move U, ; from quadrant (1,1) to quadrant (1,2) (clockwise). .
4. Move U3z from quadrant (1,2) to quadrant (2,2) (clockwise). \
There are 10 nonzero blocks of the form of U in T, so that 40 movements of this type are N
X needed to relocate all of T. At each step, data must be moved across %t processors, so :0":
X that the number of communication steps is 20x;. Data from the other three quadrants is A
i simultaneously relocated in an analogous manner. This is all the communication required >
X for t < log; —1, except that prior to these steps, the lower left quadrant of the (new) .';
diagonal blocks of T (in the (2,1) position) are not explicitly represented when ¢t > 1; N
these quadrants can be made available at cost 4(x: — 1). The same analysis applies for '
t = log, k, except in this case T is a 4 x 4 block matrix, or 2 x 2 after relabeling, and only g
q two transpose blocks must be computed. Q.E.D. ]
: 3
Proof of Theorem 3: The result is obtained by summing the expressions of Lemmas 2
and 3 for t = 1 to log, k, and using the values § = 2'd/2, k¢, = 2%, and the facts that »
each arithmetic step requires (%‘;)3 = d3/8 multiplications and each communication step .
requires one startup plus sending of (,—‘z*‘-)2 = d? /4 words. Q.E.D. :
E 2 3
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1<t<log k-2 t=log; k-1 t=log, k ~

$=1and 2 2s solves 2s solves 2s solves 'E:
12s matrix products 8s matrix products 4s matrix products v

1=3 s solves 8 solves s solves W

9s matrix products Ss matrix products s matrix product :::'.'

D

t=4 s solves s solves s solves :‘:E

8s matrix products 4s matrix products

Table 3: Number of instances of large scale computations in Algorithm 4. |'$

A

The analysis of the global forward and back solution steps is similar. We consider only ot

the forward solve, for which the large scale computations are lower triangular matrix solves L
and matrix-vector products. Table 3 shows the number of such computations required for LV,
s load vectors. Every right hand side b = b(t) at step ¢ is (for ¢t < log, k — 2) a vector with )
12 blocks of size 6;; assume that each of these blocks is distributed among the diagonal )
processors of the x; x x¢ grid. If there are s such right hand sides, then the cost of the WHY
forward elimination is determined from the following result. 2
Lemma 4: On a x X & processor grid, the individual large scale computations of Algorithm ‘7»
4 can be implemented with the following costs: <3
rs forward solves: 2k +rs—2 arithmetic steps e

4k +3rs -7 communication steps i

rs matrix-vector products: rs arithmetic steps

2k +s8—-2 communication steps (i = 1,2, 3)

2k +rs —2 communication steps (i = 4). ':)"

where an arithmetic step consists of (%)2 multiplications and a communication step con- i
sists of sending % items of data to a neighboring processor. .
Proof: The operations and costs required for rs forward solves are as follows. F
(1) Relocate rs vectors from the diagonal processors to the leftmost processors in the grid. S
With pipelining, the cost is k + rs — 2 communication steps. o
(2) Compute rs solves of the form b «— M~!5. Here, M is some triangular factor L :'_:-
produced by Algorithm 3 (see the proof of Lemma 1). The cost is 2x + rs — 2 arithmetic ‘e
steps and 2« + 4s — 3 communication steps. Each resulting b is located in the diagonal o
processors. N
(3) Distribute each b across processor columns, i.e. move a copy of the part of b in the 9

of 2 >

(14, u) processor to each processor (u,v), 1 < v < x. The cost is x + rs — 2 communication
steps.

o

]

The rs matrix-vector products then require rs arithmetic steps, using the matrices S;’; ".5"

constructed by Algorithm 3. The results must ultimately be summed across the processor h
rows and stored in the diagonal processors. At step ¢ of Algorithm 4, 1 < ¢ < 3, it is only h
necessary to do this for each (of s versions of) b, 1, which requires x + s — 2 communication N
steps. At step + = 4, rs accumulations are required, at cost x + rs — 2 communication PS

steps. Q.E.D. N
o,

-.’N

L% L

26 a{':

;v (

L2

e

patet

) DAD 0 DOAIA) A O ! iy "
O A O T T SR R D N DA T T LA T GO A O s T DX T N

™ R T M ™ M W R MY N AN
oW ,’ !l’. { .‘. .."... W, NN .0‘\‘

A At b




]
Lemma 5: The number of steps needed in a parallel implementation of Algorithm 5 is as !

follows:
:: Arithmetic steps: Communication steps: 3
6r¢ +33s—6 15x¢ + 228 — 27 1<t<logyk~2 )
R 6x¢ +21s—6 15x; + 188 — 27 t=log, k-1 ;
v 6k¢ +9s— 6 14k, + 148 — 23 t = log, k. b
'.: , Proof: Substitute the values of r from Table 3 into the expressions of Lemma 4. Q.E.D. X
:3 ' Lemma 6: The number of communication steps needed to merge s local load vectors at \

step t of Algorithm § is )
3x¢/2+16s—3 1<t<log k-1 )
3k¢/2+8s—3 t=log,k.
Proof: We only discuss the case 1 <t < log, k¥ — 1. Before the elimination step there are
four quadrants of 5t x %t processor grids. For every load vector b, there are eight blocks
{b;}}24 distributed among the diagonal processors in each of these quadrants. The stategy
for merging is to move the even numbered blocks bg, bg, b1, b12 down, to the diagonal
processors of the lower (southern) quadrants, and the odd numbered blocks bs, b7, bg, by,
up (north). The cost is 2(5 + 4s — 1) communication steps for the bidirectional move.
Then, in the north quadrants, all eastern data is moved west to the diagonal blocks, and in
the south quadrants, all western data is moved east. The cost is 5t +8s— 1 communication
steps. Q.E.D.
Proof of Theorem 4: Sum the expressions of Lemmas 5 and 6 for ¢t = 1 to log, k, where
each arithmetic step requires (;‘6-"-)2 = d?/4 multiplications and each communication step

requires one startup plus sending of {f = d/2 words. Q.E.D.
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