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ROBUST ALGORITHMS FOR DETECTING A CHANGE IN A
STOCHASTIC PROCESS WITH INFINITE MEMORY

by

Rakesh K. Bansal and P. Papantoni-Kazakos
Department of Electrical Engineering

University of Virginia
Charlottesville, VA 22901

Abstract absence of any deviation whatsoever from the assumed
structure). Before we proceed further, however, let us state
our generalized observation model in a precise manner.

We present and discuss a class of continuous opera-

tions on the family of discrete time stochastic processes, Let Yj be the observation taken at time instant j where
which serves as a guide to construct qualitatively robust Yj = (I-Aj)Wj + Aj Z, jl. (I)
operations for a given class of processes, namely the one Here W is governed by the nominal measure o or g, and
induced by a nominal process and a substitutive contam- HeJr is g oe byith in ar e and or is a
inating process. Our results are general enough to help (Zj) is an i.i.d. process which is arbitrary and (Aj) is a
develop any robust statistical procedure, but we have con- binary i.i.d. process with

centrated our attention on detection of a change from one Pr[Aj = 1) = I-Pr{Aj = 0) = E
class of processes to another (disjoint) class of processes, Essentially each nominal random variable W1 is replaced
while both classes consis, of not necessarily Markov by an arbitrary random variable Z with frequency (proba-
processes and satisfy certain mixing conditions in addition bility) r before we get to observe it. wZ1) is the contaminat-

to stationarity and ergodicity. Two quantitative measures ing process and (Aw ) determines the contamination law. In
of robustness, breakdown point and influence functions am th e a nce of contaminating pa pe
also developed for few examples. the absence of contaminating process (e=), we have perect

observations and then we can apply our optimal algorithm

Bansal et al (1986). However, under contamination, the
0. Introduction optimal algorithm becomes totally unreliable in the sense

that just a single bad observation can overwhelm the evi-
dence provided by other good observations and upset the

Consider two stationary and ergodic processes decision. This will become apparent the moment we see
[p0,X0,R] and [1±,X 2,R], where po and gt, are the two the optimal test, which is defined as follows.
distinct probability measures on (R, B.) or (R:.., B!:..) Given the (uncontaminated) data sequence
as the case may be, X, and X2 are their names and R is the
real line on which both processes take their values. As w-(w , w2,...) and letting w denote the finite sequence
usual (R-, B.) and (R.:., B.) denote respectively the (Wl, w2,..wn) stop at
one sided and two sided infinite product of real line with Ng(w) = inf(n: T0(w;)>logS) (2) '-A
itself with their corresponding product a-algebras. Let where log S is the logarithmic threshold chosen and
W, j~i denote an observed sequence. Suppose we start f  i  I
observing at time instant one and suppose initially the pro- TO(wn) A a logft(w 1  )
cess p is active. Suppose at some time instant ta1, pro- =n = mia (3)
cess po becomes inactive and it becomes active and o(wwI Wk

remains so. Our objective is to formulate a meaningful test is the test statistic with appropriate end conditions and
to detect this shift from po to ILI. To attain this objective a fi('/') ; i=O, 1 denote the conditional densities of ±i with
number of algorithms have been proposed, developed and respect to an appropriate a-finite measure, whose existence
studied in literature. Most widely studied ones are the we assume. See Bansal et al (1986) for other necessary
Page's algorithm, Page [1954] and Shiryayev-Roberts' regularity conditions and complete details. Notice from the
algorithm, Shiryayev (1963) and Roberts (1966). Page expression of T°(w' , a single term inside the summation
developed the algorithm under i.i.d. set up and Lorden can make T°(wn) too large or too small if i and p0 do(197 1) studies it and proved its asymptotic optimality using not have compact support. And therefore N2(w) can be too".>
a minimax criteria. Bansal and Papantoni-Kazakos (1986) small or too large and in essence the test may became

modified it and proved it's optimality under non i.i.d. unreliable. This is invariably the problem with all the clas-
setup. sical parametric tests or estimators, many of which are

But suppose our description of the two measures optimal in an appropriate sense. Lately (from the last "
under consideration is imperfect or perhaps our observa- twenty five years or so) we have become "more" aware of
tions are vulnerable to contamination by another unknown our inability to model a phenomena accurately and the vul-
measure then we need to develop robust/outlier resistant nerability of our observations to gross errors and have
algorithms in order to achieve relatively stable perfor- focused our attention to the development of robust pro-
mance possibly by sacrificing the efficiency of the algo- cedures by sacrificing efficiency or the optimality. Natur-

rithm that is achievable at the ideal model (i.e. in the ally one would like to quantify robustness in order to evalu- 'rN
ate the tradeoff, which opens the new area of optimal
robust procedures. However often because of the complex-
ity of the observation model it becomes (or at least appearsThu wOu rid by th Air FOm Officc Of Saeiufic Resab mdr to be) impossible to design optimal robust procedures. In

fth gri-: AFOSR-T7-224.
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our problem at hand we perceive this handicap. Therefore, in mixture form, based on nominal conditional densities of
we have attempted to look for intuitively meaningful pro- the two measures g, and p< and the other being a strict
cedures and examine their performance in terms of effi- enlargement of (1). using the variational metric and an
ciency (or loss thereof) and the breakdown point and the additional assumption of 0-mixing on the nominal meas-
influence function. The structure of the optimal algorithm ures. Then Huber's operations were applied and the
is used as the starting point and the guide to the develop- corresponding pairs of least favorable conditional densities
ment of such procedures. Before we discuss our approach were used to obtain a test stastic, which we denote by
it is important to consider the special cases of the observa- T"(w') here. These results were developed and reported
tion model in (1) and what procedures have already been in Bansal and Papantoni-Kazakos (1987a) in detail and in
studied in literature. This will serve two purposes. One, Bansal and Papantoni-Kazakos (1987b) in part and in con-
offer insight into what we could reasonably expect from densed form. Under the Markovian assumption of the
our robust algorithms for the general case and two, the nominal measures g, and po, the conditional likelihood
inapplicability of the existing robust algorithms under those ratios in (3) have finite memory. Huber's operation
special cases which we are about to discuss. induces uniformly bounded conditional likelihood ratios,

Note from (1), that if all three component processes where the lower and upper bounds both depend on the fin-
(Wj), (Aj) and (Zj) are i.i.d. then the process (Yj) is ite number of 'past' observations. Moreover, if the nomi-
i.i.d. and then it suffices to develop procedures that are nal conditional densities are continuous functions of the
based on one-dimensional marginal distribution alone. In observation block, then the modified densities are also con-
fact then, [Yj ) could have this alternative description tinuous. Boundedness of each term under the summation,

it's continuity as a point function and its dependence on
fy1 (y) = (l-e)fw, (y) + oh(y) (4) only finite number of variables suffices to ensure the quali-

where h(y) is the density function of Z. Also (Wj) being tative robustness of the test statistic T'(w'.), the
i.i.d. under g, and Po both, means corresponding stopping variable and the sequence of func-r n f(w 1)' tionals E,{n-1 T(wt)). Here E.,{') denotes the

To (w') = max n log (5) expected value under the measure i-. Readers are referred
.kSn-t i-ik fo(w 1) J to Boente et al (1987) and Papantoni-Kazakos (1987) for

Under these stricter conditions on tie process {Yj) it seems extensive discussion of qualitative robustness for stochastic

natural to replace the pair (fl(wi), f0 (wi)) by a least favor- process. However the moment we relax the Markovian
able pair (ql(wi), qo(wi)) where ql(), q0() minimize the assLmption, our nominal conditional densities depend on
Kullback distance. See Huber (1965) for details. Notice the entire past which grows to infinity as sample size goes

that (4) and (1) both describe two distinct classes of to infinity. Then the quantities under the summation will

processes obtained by two nominal measures g, and Po. have unbounded number of arguments and the functional
S ulim E;4 Tn(wn)/n 1 ) will depend on the entire process
Let us denote the new test statistic by Tn(Wn) and the n-

resulting stopping varriable by N (w), where and not just on f'iite order marginals of the process. Under
these circumstances, boundedness of n-1 T,'(wn) is not

n q1(wi) enough to guarantee qualitative robustness in general.
T,(wI) =m . (6) Counter examples to illustrate this phenomenon in case of

i.n+1 I qo(w) J estimation of the parameters of a moving average process

Notice that Nj(w) is the stopping variable resulting from are given in Martin and Yohai (1986) and Boente et al
Page's test, applied to the least favorable pair of (i.i.d.) (1987). The phenomena is explained in different ways in
processes, which detects the change from p,, to pq, in an the above two works but we will provide our own explana-
optimal manner as shown by Lorden (1971). And since tions toward the end of this section.
this test resulted from the minimax robustification of the However, the robustness of the 'Huberized' condi-
test for p0 to g, shift, it becomes the optimal minimax tional log likelihood ratios used in Tn(w') can be restored
robust test, which we prefer to call optimal in super if we limit the memory being used in the likelihood ratios
minimax sense. This was quite straightforward because of in an artifical manner. But we need to make a judicious
the i.i.d. structure of all the component processes, which in choice of that because too large a memory will result in
turn induced an i.i.d. structure on the observation process. weaker robustness (as measured through breakdown point

But suppose that our nominal measures are not i.i.d., for example) and higher efficiency and too small a memory
but they are Markovian (Note that the observation process would result in stronger robustness and lower efficiency.
is no more Markovian even though the component This approach will suffer from another weakness, that is
processes are). Then again one is tempted to robustify the resulting algorithm will not reduce to the optimal one
To(w) in (3) by applying suitable transformation on unless we let the size of the memory being used, depend on

f w) the design parameter e such that it goes to infinity as £ 10.
f (w/wr-) In order to apply the approach used for i.i.d. We intend to report the work on this issue elsewhere. The

results we are going to report in this paper are obtained bycase we need to obtain two classes of conditional densities using an alternative approach. But before we discuss these,
similar to the ones given in (4). It turns out that it is impos- it is profitable to discuss some of the limiting properties of
sible to obtain an exact description of the model in (1) in the algorithm based on T"(w .
the mixture form given in (4). Note that (4) and (1) are
equivalent under i.i.d. setup, but otherwise (4) is a strict By definition,
enlargement of (1). But (4) by itself does not enable us to
obtain suitable replacement of the conditional log likeli- Aqo(w~Iw')
hood ratios. To overcome this problem we have used two T'(w) may log.
approaches, one leading to approximate description of (1) n 15ksn+t iwiwk-k)j

MON5



For convenience, we had proposed the minor modification on the space M and in particular continuous linear function-
of T,"(wn) in Barisal et al (1987 a, 1987b) als on M, because most test statistics or estimators induce a

of T(w~ inBanal t al(197 a 197b)linear operation on M itself in general or in special cases on

ml qn(wi/i) the restrictions of M to an n dimensional Euclidean space,
tsktn+1 l log q0 (wi/w'- 1 ) J the later denoted by Mn. To ensure robustness, our choicecenters then on the functionals which are continuous with

= max g" (w (8) respect to the weak star topology on M or its restriction Mn= ax ." (wi) (8) as the case may be. For example, when we form our atten-
t_ 1k tion only on those members of M which generate i.i.d.

where processes, then our statistical operations induce functionals
cwE(wr 1); In ft(wi/w - ) (often linear) on M, and for a class of finite order (m say)

ti c < (W -  Markov process class, they induce functionals on Mm
fo(w/wE'I alone. Robustness of operations in these two cases is suffi-

ft (wi/w - tI) - f (wwI- ) ciently well understood. Regarding the justification for the
In fo(wwiwt) ; )c<(w -)-1) choice of weak star topology on Mn, one can see Hampel

gi(wi) fo(wi/w) (1971), Boente et al (1987) etc. A weak star neighborhood
< co.e (w I ) (since it's metrizable by Prohorov metric) captures both the

i-t(w~) ln f1 (wi/w _t) .kinds of deviations from the nominal, namely small
f0(wi/wilE) > c.(w-) number of gross errors (outliers) and small error in largenumber of observations. And weak star topology on M

(9) itself will induce weak star topology on M. Knowing the
fact that weak star topology can be generated by the

and cl.c(wti-) and co.,(wr-) are the lower and upper thres- Prohorov metric, it is important in this case to have a
holds determined by applying Huber's operation. These proper choice of the distortion measure itself on the data
thresholds depend on w 'I at stage i, but are uniformly sequences. In fact, the usual Euclidean metric suffices for

nbelow and above by - and 1- Rn, but there is no equivalent of that on R-. There are
b e three natural ways however. One, the so called uniform

tively. metric 0

Compare T,, Tn" and T." in (6), (7) and (8) respec-
tively. Note that if the observation process is i.i.d. Tn' and pu(x,y) = max p(xi, yi) ; p = lim n- t  p(xi, yi)
Tn" both reduce to T, which was seen to be optimal in -. t

super minimax sense. Next, as e10, our two classes of where x = (x1,..), y = (yI,..) c R- and p is a bounded
processes described in (1) reduce to a single pair (po,gt) metric,..generating the usual topology on R1. Incidently
and then Tn (w t ) reduces to T°(wn) which has been proved Pu and p both are so strong that they make our usually esti-
to be optimal. Seeing these two features of our proposed mators like mean robust. It's because they induce a strong
algorithm in the two extreme (or limiting) cases, we hope topology on R- which in turn induces strong topology on J'-"

to have achieved good robustness without sacrificing a lot M. In fact, the right choice turns out to be product topol-
of efficiency. Therefore, in whatever we suggest and study ogy which is weak enough to correspond to our desired
next, we would like to retain these two attractive features. notion of robustness. And it can be induced by a metric of
This is used as the basic guideline to develop robust algo- the following form
rithms under the most general set of assumptions on the - P(x~yi)
nominal measures. pp(n,y) = a L (I0

Here then is the brief outline of the rest of the paper. l+p(xi,yi)
In section 1. we discuss the nature of qualitative robustness where aj>0 and Ct converges. p is a metric which
for stochastic processes from function analytic approach,
describe a convenient class of qualitatively robust opera- induces the usual topology on R1.
tions and provide a simple counter example to illustrate The above justification leads us to concentrate on the
that boundedness and pointwise, coordinatewise continuity class of continuous, linear functionals on M where M is
is not enough to ensure robustness in general. Then in sec-
tion II, a simple approach is described to obtain meaningful endowed with weak star topology induced by continuous

robust substitutes for the nominal likelihood ratio, which functions (with respect to pp or the product topology). ,.

works for a pair of linear processes as nominals. In section Symbolically we are interested in linear functionalsworksforapafitoelfollowingefsrm
II, we investigate the approach in detail on an example of T:M--R of the following form
first order moving average processes and evaluate the effi- TW(A) = f W (x) g. (dx) x R, .cM (11)
ciency, the breakdown point and a version of influence where %: R - R, 4is continuous and bounded on R.

function. Finally in conclusion, other interesting possibili- It's va to see that for a which is continuous (coordi-

ties for further research are pointed out. natewise) and bounded, its restriction to Rn induces con-
tinuous functionals on Mn . It's possible to have W bounded I
and continuous (coordinatewise) which are not continuous

I. Qualitative Robustness for Stochastic Processes in product topology on R. An example:

Consider the space of measures M defined on '41(x) max min (Ixi1 , 1)

(R-, B.). Let w = (wt,..) denote a realization of the pro-
cess. We are interested in robust (continuous) functionals

6
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Therefore, T( m ) itions of the entire one-sided sequence (w°...). And, there-
Therefoe T ) maxmin(Ixil , 1)(dx) is not con- fore, g°(w.), (n- ' L2 w ),, will all be continuous and

tinuous with respect to ig, even though (x) I R- is continu- bounded functions on their respective demains. As a result,
ous and bounded and therefore, T. (A I R) is continous on the functional
MI.

Now adapting the general discussion above to our T(p) f g'(w L) p d(wL) (16)

observation model in (1), we notice that we are considering will be continuous, where
the narrow class of stationary and ergodic members of M as A
described by (1). We will assume that the classes in (1) g (wo) = g (w.) (17)

inherit the subspace topology from M. and the new rate will be determined by

11. Linear Processes T(gt) = Eg, (g'(w 2 .)) (18)

Consider the following pair of nominal measures. A simple approach to construct w from wi is by
using Huber's operations on the marginal loglikelihood

I ratio which leads to fixed lower and upper bounds on W,P W=t IiW- +Un(f, (wi)/f0(wi)). These bounds can be mapped back to wi

(12) space to obtain wj. Some C' can be used as the design
g:W.= bi w~+ Vparameter. The advantage of this approach is that as

e' .I.0, wf - wi , that is we return to the ideal case and also

when gt and o both are i.i.d., we return to the optimal

where {ai) , {bi) ; i2:l are distinct sequences of real robust operation.
numbers and (U.) and (Vn) are i.i.d. sequences of Gaus- For the breakdown point and the influence function
sian random variables, with identical variance o2 . Let we will use the following definitions which are same as the

E Un = mo; E Vn =mt . ones used in our previous studies Bansal et al (1987 a,b).
Note that the above class is general enough to contain Suppose ti,, denotes the measure induced by the
ARMA processes. nominal ;4 and an i.i.d. sequence of outliers occuring with

ARMA processes. frequency (probability ) and magnitude z.

Define A(wi)=-i (bi-ai) w + (mt-mo)] Our measure of efficiency and credibility both is the
L~t quantity E, {g'(w 9 .)) because E,, (g'(wL)) determines

the asymptotic rate with which our algorithm detects the
wIi) =- l a13 change. In the absense of contamination F., (g'(w°.)) isB(wI l = o-t (bi+ai) wa-i+(m+mo (13)•o

=1 positive and E {g'(wL)) is negative. In the presence of
Then the optimal stopping rule N2(w) is strong contaminating measure either or both may reverse

their sign and then our algorithm becomes useless. So it's
Ng(w) = min {L2(w7) + k-1 / k-I ,2,3,...) of interest to find the largest percentage of outliers (for

(Bansal et al (1986) example) that our algorithm can withstand. Formally,
(Definition) Breakdown point is the largest frequency

where of outliers such that E. (g'(w_..)) still retains its nomi-
nal algebraic sign for i=0,1. Here z will be chosen such

= f nthat it leads to worst case or earliest breakdown.
i (14) Next, the influence function measures the normalized

influence of a single observation at a particular value z onand the quantities of interest, which are againg(wi) =2 - 1 A (w i- l ) 2a w - B (wi-I . E. (g'(wO)) , i=O,1. Formally,

Asymptotically as the number of observations increases we (Definition) The influence function IF., (z), is

have E (.g'I(w.0j -Ep {g (wo.)
eg (wi) D gO (w ) I F, (z) = limit (19)99--,o D (o9) , ;_+

A (wF') D A (w2.) (15)
III. An Example

B(w - ) D B(w ° )
Let po U - a Un-I

Also the rate at which a shift from o to g, is detected is
determined by EL, (go (w2O)). %i :U,-aU- 1 +0 (8>0) . (0),

A (w!.) and B(w O.) are not continuous functions of
(w0 , w-,,.. .) e R2-. However, a simple trick will make Un - N (0,1) and 0 < a. N (.,) referes to Gaussian distri-
them continuous and bounded at the same time. If we bution. Alternatively,
replace (wi} hy say (wf) where w' are u-iformy•
bounded, then under usual conditions on (aj} and (bi, 0 :Wn= -Xa W- +Un

A(w!0) and B(w!_) will be continuous and bounded func- t

7t
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Comments
91 -. ai W.-i + V.

t (21) (1) As e' 1l.0, d(E') T ' , -* w, ,,

E , g'(w..) - Eg, g0 (w2_) = 82
where V4 - N (0/1-a, 1). (1-a)2

Also, W, - N(0, I + a2) under p, and W - (2) As e' T (to it's maximum allowable value), which may
N(, l+a 2) under g.. Note that po, i, both have infinite be less than 1/2,

memory. - 20(0/2)-(
, f (w) 0 O8 (30)

in w [w- (22) 20(-)fo(w.) 1+a 2  "2]2)
And then if 0 t a0, - 1/2. the maximum achievable

For a given e', Huber's operation transforms the likel- breakdown point.
ihood ratio as shown in the picture.

From Fig. 1 we obtain the following description of wn (3) If we use the memoryless robust algorithm, that is in
fi

(14) if we replace gi(w') by In- (w.), I . then again

= wnon -d(1+a2)/ + , d(l+a2)/O + 2 we have same breakdown point. But our algorithm is more
efficient because

w'(w ) = -d(I+a 2 )/ + W2 on Wn < -d(I+a 2 )/0 + {l WIW..WJ=(a)['2 E L, In -(WO I .= .1 = 2 E., w' - (
8 8

= WM = d(l+a
2)/e + -t on w, > d(+a

2)/O + ---

Thus 2(1-a) 2 E1 w 2

g,(w o ) A g (wt) (23)== E , (g'(w .. )) (31)

10; - a w 2(-)I (24) and l+a2  t (1-a) 2 = 1+a2- - 2a for a > 0. However if a < 0,I-a 2(1'a])then one should use the memoryless algorithm for higher

Therefore efficiency for the same breakdown point.

E , g" (wE.) , w' - . (25) The influence function
(1-a) 1 2

Recalling that p, , z denotes the measure induced by the From the definition 'n (19),

nominal M4i and i.i.d. sequence of outliers occuring with fre-
quency (probability ) and magnitude z, we have IF,, (z) = limit 2 (1-) E., w; + w; (z) -

;-,,o (1-a)2L 2
E. {w' ) = (1-;) E, w6 + _ w8(z).

-a ), w;) - 2 0(26) 0 (w; (z)- Ep w;)

or (I-•) Wo 8 0 Since I wd(z) I < max (I w m I, w ) and w (z) is continu-
E w0 +2 ous function of z,LF (z) is continuous and bounded.

[(l a2) r ' 2Because of space limitations, we can not present
or IE/, w - d(')-' (27) another example, the numerical results and a comparison ofJ the suggested algorithm with the one studied for Markovian

Similarly breakdown can occur when situation as it would be meaningful to apply the suggested
algorithm to Markov processes themselves.

which gives the breakdown at
9 IV. Conclusion

I/ I +s d(l+a2 )/8(-t - E,, w;) (8/ d a ( - )) (28) We have discussed the issue of robustness in time series

from an abstract point of view and pointed out the general
Therefore, the overall breakdown point failure of operations designed to be robust under i.i.d. and

= min (', ") (29) Markovian set up. A stronger notion of continuity of the
ooint function of W(x) was needeO , achieve robustness of 9
operations which make use of entire distribution of the pro-
cess. A simple technique based on Huber's approach was



used to obtain the pseudo observations which replaced the
true ones. One could benefit by using higher order densi- ,,
ties to achieve the same goal. This of course needs further %
study as one can numerically (if not analytically) optimize %
with respect to the order itself.

Another approach for designing robust operations
would be to put a bound on breakdown point and maximize
the efficiency or vice versa.

Ideally one would like to extend the minimax optimal-
ity results under i.i.d. set up to non i.i.d. set up. This seems
to be a formidable task, One should perhaps start from
Markovian set up first.
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