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PART A

A HIERARCHICAL REGION-BASED APPROACH

TO AUTOMATED PHOTOINTERPRETATIONt

%:. J. W. Modestino
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute

Troy, New York 12180

I. Introduction:
AA,3  For the past year we have been evolving an approach to the development

of an expert system for automated photointerpretation. This has included an

extensive literature review, the development of some new and improved low-

* level image processing concepts, consideration of appropriate data and

* control structures and the evaluation of promising inferencing mechanisms.

A major part of our work has been directed toward the development of a

testbed which will serve the role of allowing demonstration of well-defired

and developed concepts while at the same time serving as a development tool

in exploring and testing new concepts. This testbed is being de,,eloped on

the RPI Image Processing Laboratory (IPL) PRIME-750 System. It is our

. intent to gradually transition this testbed to one of the recently acquired

IPL TI-Explorer Systems. However, this must await the incorporation of an

* interactive image processing and display capability into the Explorer.

In order to facilitate future development efforts and, in particular,

to help guide evolution of the testbed, it's important at this point that a

clear statement of present technical directions be provided. The purpose of

the present note then is to provide a summary of the technical approach

being considered at this time and to indicate future directions. This note

can then be considered a working paper which can be amended or modified as

work progresses.

t This work was supported in part by RADC under Contract No. F30602-S5-C-0008.
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II. Background:

There have been a number of attempts to develop limited-domain vision

systems which provide semantic interpretations of raw image data. A good

survey of somc of the more promising techniaues can be found in [1]. In

most cases there are vast differences in the domain (i.e., aerial images,

outdoor scenes, mechanical parts, etc.), the nature of the raw image data

(i.e., resolution, monochrome or color, depth information, etc.), the

purpose (i.e. , industrial inspection, robot vision, aerial

. photointerpretation. etc.) and the use of world knowledge (i.e., simple

* constraint relations, 3-D geometrical models, 2-D template models, etc.).

It's important then to define the precise nature of the problem at

hand, describe what we hope to accomplish, indicate the nature of the raw

data dnd world knowledge we expect to have available and, finally, indicate

potential future developments. We will attempt to accomplish this in the

present section.

We expect to be working with medium to high altitude monochrome aerial

imagery data. This imagery will include a variety of industrial,

agricultural, military, residential, commercial, natural and man-made

objects. Wc desire to be able to consistently segment the raw image data

into distinct regions and provide a semantic description of these regions.

This semantic description will specifically designate regions corresponding

to a relatively small number of relevant objects together with a number of

more general categories corresponding to objects which are either

irrelevant, or for which no unambiguous interpretation can be provided. The
,.y

relevant objects will include: roads, rivers, bridges, oil tanks, houses,

• aircraft, cars, runways, fields, forests, etc. For each of these relevant

objects we will maintain an evolving knowledge database which not only

0M
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contains pertinent information on each relevant object, but also the spatial

relationships between them. As new relevant objects are added to our list

the knowledge database will have to be appropriately updated.

While initial development efforts will include only relatively

primitive world knowledge, we hope to provide some flexibility for future

expansion. For example, our present raw image database does not include any

ground truth. In future work we might want to include map data to help in

the photointerpretation process. Another possibility might be to use a

previously interpreted image of the same scene as a guide in interpreting

* changes from one image to the next. Finally, we would not like to rule out

the future possibility of using models, either 2-D or 3-D, of relevant

objects to aid the photointerpretation process.

III. Technical Discussion:

In this section we will describe the current status of our automated

photointerpretation system, review the pertinent details of the evolving

testbed whicn will support it and iilust~aCe some typical results obtianed

so far.

A block diagram of the overall testbed structure is illustrated in Fig.

1. The main function of the preprocessor is tc nn,71d q ;cgmentation of

the image into disjoint regions which are homogeneous within a region but

differ in some sense from adjacent regions. We will be more specific on how

this is accomplished later. It's important to note, however, that in order

to be effective this segmentation does not make use of raw image data alone,

but makes use of feedback from the interpretation process. In this sense we

are implementing an interpretation-aided segmentation process.

as Once a segmentation is obtained, however preliminary, the regions are

labeled and region maps are stored in the image database. That is, the

3
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actual pixel values associated with a region are stored separately for each

VA region. In addition, various attributes associated with each region are

stored. This includes such parameters as area, perimeter, boundary,

elongation, etc. In addition, the spatial relationships between the various

regions are maintained. This is most easily done by using an adjacency

graph where the nodes correspond to regions and the connectivity indicating

spatial relationships. In particular, two nodes are connected by an arc or

edge if they are in some sense spatial neighbors. We will be more specific

',. in defining what we mean by neighbors as we proceed. At any rate, the

values associated with arcs can include mutual information corresponding to

the connected nodes. This information might include: mutual boundaries,

spatial distances, strength of mutual edges, etc. Image interpretations are

provided by the inferencing mechanism which has access to the region

information stored in the image database, as well as the world knowledge

stored in the knowledge database. Feedback to the image preprocessor is

through the inferencing mechanism.

It ehould be noted from Fig. 1 that the testbed allows operator

intervention through an interactive image processing and display terminal.

More specifically, the operator can manually extract regions using a

0 joystick or trackball and, if desired, actually provide interpretation of-.A

the various extracted regions. Once the disjoint regions are outlined by

the operator, the various region attributes are automatically extracted and

0 stored in the image database in exactly the same format as if they were

automatically extracted by the image preprocessor. Furthermore, in cases

where the operator provides region interpretations the relevant spatial

*- relationships are provided to the knowledge database allowing updating of

our world know-'ge.

A4
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The use of operator intervention then serves several purposes:

a.) It can be used to isolate the image preprocessing from subsequent
semantic interpretation by providing good segmentations.

b.) It can be used as an aid in a partially automated system by
resolving ambiguous segmentations or interpretations.

c.) It can be used as a performance benchmark in assessing the
efficacy of a fully automated photointerpretation system.

d.) Finally it can be useful in developing and updating our knowledge

database by providing correct interpretations of images.

Now let's describe how the interpretation-based segmentation scheme

works. First we must recognize that very large images generally contain too

much detail to be appropriate for automated photointerpretation, at least in

early development efforts. This is illustrated in the reasonably large

1024x1024 image illustrated in Fig. 2 which contains much detail and many

different types of distinguishable objects. In Fig. 3 we illustrate three

* 256x256 subimages extracted from the original image in Fig. 2. Each of

these three subimages contains many more localized features and/or objects

and are thus more suited to our early d-velopment efforts since we can

maintain a much smaller knowledge base for each image and its associated

relevant objects.

* Suppose now that we obtain an initial segmentation of each of these

test images. This segmentation can be effected on the basis of tonal or

' texture properties, or a combination of the two. As an example, we consider

the tonal segmentation approach described in [2]. This scheme is based upon

a clustering approach and requires a priori specification of the number of

distinct region types or classes. In Fig.'s 4-6 we illustrate the results

-. of this initial segmentation for our three test images and for both three and

5 *
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six classes. For comparison purposes we also include corresponding manually

extracted segmentations.

Note that using six classes we tend to get reasonably good

segmentations except in textured regions where a large number of very small

regions are generated in each case. This could be improved somewhat by

employing texture measurements in the segmentation or, alternatively, by

attempting to merge these small regions with surrounding regions. Using

three classes, on the other hand, gives a much coarser segmentation although

the information provided is still useful. Unfortunately, it's not powerful

*enough to distinguish major objects from surrounding areas. For example, in

Fig. 6 with three classes, we do not get good segmentation of the top of the

oil tank from the surrounding ground area. Using 6 classes, on the other

hand, we do get good segmentation of the oil tank from the surrounding

ground, but now the vegetation area at the top of the figure produces a

large number of somewhat irrelevant small areas.

Our approach has been to provide a crude initial segmentation employing

three classes as a way to focus attention on large meaningful regions. The

segmentation procedure is then repeated on individual regions and

this process is continued until meaningful segmentations no longer are

obtained. With individual regions silhouetted against dark backgrounds,

this procedure can result in an individual region segmented into, at most,

two regions. Since the scheme is based upon a clustering approach, we

4continue until either the ratio of the distance between cluster centers

. normalized to the geometric mean of the intraclass standard deviation is

less than some prescribed threshold Tc, or the area of a region is below
6C

some threshold, T

'N.
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An illustration of this procedure is provided in Fig. 7. Here we begin

with test image 3 in Fig. 7a which is segmented into the three classes in

% Fig. 7b and is identical to Fig. 6c. A connected region resulting from this

segmentation which includes the tops of two oil tanks, as well as some of

the ground area between them, is illustrated in Fig. 7c. This region is

further segmented as indicated in Fig. 7d.. Now the tops of the two oil

tanks are separated from the grc.ind area. This procedure should result in

reasonably good initial segmentations. Additional segmentation results are

illustrated in Fig. 8. More work needs to be done to determine appropriate

threshold levels, T c and T s, in order to implement this stopping criterion.

While this hierarchial region-based segmentation procedure is quite

simple, there are several areas where it can be improved considerably.

Texture information should help with clustering now performed in a multi-

9 dimensional feature space which includes texture as well as tonal features.

Also edge information should be useful in splitting two regions along a

strong mutual edge. Furthermore, there are a number of possibilities which

include feedback of interpretation information to help in splitting or

-- merging regions to form visually meaningful segmentations.

Now suppose that an appropriate initial segmentation is obtained. Let

the distinct regions be labeled R1 ,R2 ..... R as, for example, in Fig. 9

, where N=7. The corresponding first-order adjacency graph associated with

this segmented image then appears as indicated in Fig. 10. By first-order

• adjacency we mean here that regions are adjacent, or are neighbors, if and

only if they are spatially contiguous. This concept of first-order

adjacency should suffice for initial efforts although we should note that

* there are more general concepts of a neighborhood system that could be

applied here. At any rate, the problem is now: given an initial

7
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segmentation, to provide a global interpretation for each of the nodes given

measurement attributes associated with each node, context information

associated with the mutual relationships specified in the adjacency graph

and world knowledge as prescribed in the knowledge database.

-%%. Before proceeding with a description of how this global interpretation

is to be accomplished, one more comment is in order concerning the

appropriate spatial size of our subimages. Consider, for example, the test

image 2 as illustrated in Fig. 11. In Fig. lla we illustrate the original

.- , image with a large manually extracted region, representing a road netowrk,

* illustrated in Fig. llb. One of the important characteristics of roads, at

least locally, is that they are elongated and for this reason one of our

important region measurement attributes is elongation. Unfortunately, the

road network illustrated in Fig. llb does not exhibit any elongatedness

properties; the problem lies in the fact that the spatial scale is too large

to observe this basically local property. In such cases it may make sense

to further subdivide the extracted region until the elongatedness lies

within certain ranges, or the area of the subdivided regions falls below
*5. %*

some threshold. More specifically, we first extract the region possessing

the largest area. If the elongation of this area, ei, satisfies e.>T or• ' . eu

e i<Te then we consider the spatial scale as appropriate; otherwise we

divide the image in four quadrants and split the original region into at

most, four parts corresponding to the quadrant in which the subregions fall,

as illustrated in Fig. llc. At this point a new adjacency graph is created

for each of the resulting new regions. The process is then repeated until

the elongation criterion is satisfied or the area of a subdivided region

falls below some threshold, T . A typical result of this spatial

subdivision process is illustrated in Fig. lid where, in addition, we

8
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'I illustrate a final subregion which meets the elongatedness criterion

together with its surrounding or neighboring regions. This spatial

subdivision process is then continued for all subsequent regions whose area

is above some threshold, T
a

Once regions have been spatially subdivided in this fashion, we then

proceed to provide global interpretations. However, rather than provide a

global interpretation over the entire image, we attempt this interpretation

only over individual subquadrants which have resulted from the spatial

subdivision process, e.g., for typical regions as illustrated in Fig. lld.

* •More specifically, we begin with the largest area region and initiate the

spatial subdivision process. Take the region corresponding to the largest-

sized subquadrant which results from the spatial subdivision process. We

will initially focus attention upon this subquadrant in making a global

interpretation. Any unambiguous interpretations that can be made in thi-

subquadrant will then be propagated to neighboring subquadrants as initial

conditions. We then proceed to the next largest subquadrant and repeat the

global interpretation process with appropriate backtracking to previously

explored regions to resolve inconsistencies. Much work needs to be done in

defining how this is to be accomplished. Nevertheless, assuming that a

global interpretation has been completed in the vicinity of the largest area

region, we then proceed to do the same for the next larger region, etc.,

until this procedure has been completed for each region whose area is larger

than the threshold, Ta .  In this process we will propagate previous

interpretations as initial conditions to newly explored neighboring regions.

M Also we must implement a backtracking scheme to insure that new

interpretations do not result in inconsistencies with previous

interpretations. At the conclusion of the process there may be some

9
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uninterpreted regions. These can either be merged with neighboring regions

for which unambiguous interpretations have been found or, at this point, an

overall global interpretation can be attempted using as initial conditions

the available interpretations of the large area regions and their immediate

neighborhoods.

Suppose that within some subquadrant the regions are labeled

R1, R2.. RN and let I 1 2'.... IN  be the corresponding global

interpretations given to each of these regions where Ii ({,i,2. K). Here

we have K specific object types whose labels are to be assigned to each of

*C the regions plus the ambiguous or irrelevant object type represented by the

label or symbol . Suppose we define the region information as -

(RI,R2 ... ,RN) and the interpretation vector I-(,1  
2 .''.'''IN). Note there

are at most (K+l)N possible interpretation vectors although, in reality,

there are many fewer than this since a valid global interpretation should

not allow neighboring, or adjacent, regions to carry identical labels except

for the uncertain symbol, 0. The exact number of interpretation vectors

will then depend specifically upon the spatial arrangements of regions and

Ais thus a random variable.

At any rate, our criterion will be to choose the estimated global* *

interpretation i-i0 iff

p(I0 R,K,X} - max p(.IJR,K,X) (1)
I

Here, R represents information describing the partitioning into regions,K

represents information in the knowledge database and X represents the

corresponding adjacency graph which includes all measurement information,

" - both for each region separately as well as mutual measurement information

0~
-. between regions. The quantity p(1I R, K, X) represents the conditional

'i"
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probability of .1 given R, K and X. This quantity may be difficult to

specify theoretically, but it should be possible to approximate it

empirically. The maximization in (1) is then over all legitimate

interpretation vectors; the resulting estimate is called the maximum a

posteriori (MAP) estimate and is well-founded in statistical decision and
,.

estimation theory [3].

At this point we will make the assumption that, conditioned on R,K and

Sthe interpretation vector I is a Markov random field (MRF) defined on the

corresponding adjacency graph. The concept of a MRF defined on a 2-D

lattice has provided a useful model for images and, for example, has been

used as a texture model in [4]-[7]. However, as pointed out in [8], the

concept of a MRF need not be restricted to lattices but can be defined on

more general structures such as graphs. Thus, it appears quite natural to

define the interpretation vector, I, as an MRF defined on the associated

* adjacency graph.

Under the assumption that I is then a conditional MRF it's well-known,

through the equivalence of MRF's with Gibbs random fields (GRF's), that the

conditional probability must be of the form

-U(1; R, K, X)
p(I K, ) - e , (2)

where U(I; R, K, X) is the associated Gibbs energy function and Z is the

* ' corresponding partition function which serves the role of a normalization

constant. More specifically, we have

Z e U e-U<1; RK,, 0(3)

where the summation is over all legitimate interpretation vectors. The

* energy function must then be designed to take into account the information

represented by R, K and X. Before defining the precise nature of the energy

11



function, U(I;R,K,X), we will describe how the maximization in (1) is to be

. achieved.

As can be seen from (1) and (2), the MAP estimate is obtained by

minimizing the energy function. This is a difficult combinatorial problem

N
* since, as we have noted previously, there are as many as (K+l) possible

Sinterpretation vectors I. For example, with just 9 object types, we have

as many as 1ON possibilities which can become impractically large for

exhaustive search when we consider N can be as large as several hundred,

even by employing the previously discussed spatial subdivision scheme which

tends to keep N small by focusing attention in specific regions.

Fortunately, there exist good, although heuristic, combinatorial

optimization procedures which are ideally suited to this problem. In

particular, we propose to use simulated annealing as first applied in [9] to

combinatorial optimization problems.

Initially we choose an interpretion vector at random and a sufficiently

high temperature parameter, T, which serves as a control parameter of the

algorithm. We then perturb this initial interpretation vector in some well-

defined way and measure the resulting energy difference, AU. If the energy

has decreased (i.e., 6U<O) we adopt the new configuration; otherwise we

adopt the new interpretation vector with probability exp(-AU/T). After

sufficiently many iterations, the process tends to stabilize at one of a

number of possible interpretation vectors which may represent only locally

optimal solutions. The temperature is then lowered according to a

prespecified so-called annealing schedule. Note that at high initial

temperatures, exp(-AU/T) is close to one for all positive AU so we tend to

I adopt the new interpretation with near certainty. For low temperatures, on

the other hand, exp(-AU/T) is close to zero for positive 6U with the result

12
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that we are not likely to adopt a new interpretation vector which increases

the energy. Thus, we tend to make frequent changes for high initial

temperatures and tend to be much more selective as the temperature

decreases. The iterated sequence of solutions as T decreases tends to a

global optimum in a number of steps much less than required by exhaustive

search.

Now consider the choice of a Gibbs energy function. Again, it's well-

known (cf.[8]) that this must be of the form

•o U ; R, K, X) V C v (1c;R, K, X) (4)

c

6 where V (Ic; R,K,X) is called a clique function and the summation in (4) is

over all possible cliques with Ic the restriction of I to the clique c. A

clique is basically a set of nodes all of which are neighbors of each other.

Unlike the case of a MRF defined on a lattice,where each node has identical

connectivity (except possibly on the boundary), the connectivity of each

*node on a graph may be different. In particular, since the adjacency graph

is determined by segmenting the image, the connectivity of each node

4-' representing a region can be highly variable. As a result, the cliques

associated with each node may be quite different.

As an example, the cliques associated with region R1 in Fig. 10

consists of the singleton (R1), the couples tRI ,R2), (RI,R 5) and the triple

, (R 1 R2,R5 ). Similarly, the cliques corresponding to region R2 are [R2),

R {R2,R1),(R2,R3 ), (R2,R4),(R2,R5) , {R2 ,R 1,R5 ),(R2,R3,R4), 2R 2'R 4R5. A

summary of the distinct cliques associated with each node, or region, in the

adjacency graph of Fig. 10 is illustrated in Table 1. The convention

employed here has been to associate the first appearance of a given clique
with the lowest indexed region to avoid double counting. For example, the

13
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clique (RI,R 2 ) is associated with region R I and does not appear associated

with node R2 since it carries a larger index. In essence, we are exploiting

the fact that (RIR 2) and (R2 ,R1 ) are identical cliques and to include both

of them would result in double counting. In this manner we can partition

the distinct cliques into disjoint sets associated with each region. Thus,

the summation in (4) can be rewritten as

N
u(!;R,'K,X) - X Z VcIc;R,K,X) (5)

i-i ceC i

Here, the outer sum is over the individual nodes while the inner sum is over

the set of distinct cliques, Ci, associated with node i-1,2,.. .,N. The

outstanding problem at this point then is in the determination and

specification of an appropriate set of clique functions.

'- As an extremely simple illustration of how it's possible to assign

clique functions, consider the simple schematic image in Fig. 12a, which is

intended to illustrate a car on a road bordered on each side by fields and

all under a clear sky. Our semantic object set is then I-{sky, road, car,

field), or alternatively I-(1,2,3,4) where now the object types are

identified with the first four ordinate integers. The corresponding

adjacency graph is illustrated in Fig. 12b with the associated distinct

0 cliques provided in Table 2. There are relatively few distinct clilques in

this case and regions R3-R5 only require consideration of singletons.

Region R2  requires consideration of cliques composed of singletons and

couples while region R1 requires consideration of triples as well. Clearly,

the correct interpretation vector in this case is 10-(1,2,3,4,4).

Suppose that the measurement information X and knowledge K arp very

* simple in order to illustrate this approach. More specifically, assume X

consists of

14
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A.) Region Attibute :

i.) Area A., i-l,2,...,N

2.) Average Gray Level Gi, i-i,2,....N

B.) Mutual Attibutu :

1.) Common Boundaries B. for neighboring Ri,R.,

2.) Contrast C ij-IG.-G.I for neighboring RiRj.

Furthermore, suppose that the knowledge database information,

consists of the following:

A.) Region Knowledge:

1.) Cars generally have area less than A and average gray level
equal to G. C

2.) Sky generally has area greater than A and average gray
level less than G .

3.) Roads generally have area equal to A and average gray level
requal to G .

4.) Fields generally have area equal to Af and average gray
level greater than Gf.

5.) These quantities are related by Ac_ <A<A s and Gs<Gr<G c<Gf.

B.) Mutual Knowledge:

1.) Sky and car do not share a common boundary.

2.) Field and car do not share a common boundary.

3.) Sky and road generally share a small common boundary of
length less than B and typically possess contrast equal to
C sr
sr

4.) Car and road typically have a common boundary equal to B
and small contrast less than Ccr.

5.) Sky and field typically have a common boundary equal to Bsf
and a large contrast greater than Csf.

0 6.) The road and field share a large common boundary greater

than Brf and a contrast equal to Crf*

7.) These quantities are related by B <B <B s<Brf and
Cc <Crf<Cs<Csf. srcrsf-rf
ccr rf- 'sr <sf*

.* C.) HigheA-OrdeA Knowledge:

1.) The only valid set of three adjoining regions is sky, road
and field.

15



It's easy to begin by dispensing with the choice of a clique function

V (Ri,R. ,Rk) (Ii~Ij,Ik;R,K,X) for each triple so let's start here. However,

for notational convenience we will write this as V3 (11,12 ,13 ) where we have

-' dropped the functional dependence upon R, K and X and do not specify the

particular clique (Ri,R Rk ) but assume this is implicitly understood. The

7-* quantities 111 2 and 13 are then the interpretations to be given to regions

, R.,R., and R, respectively, and the subscript 3 is a reminder that this is

the clique function defined for triples. We will employ a similar notation

for V(RR)(Iilj R, K,X) and V(R (Ii:R,K,X) replacing them by V2 (11,12)1 ( 12

and V1 (1), respectively. At any rate, using the higher-order knowledge in

K, which is the only information available for triples, a possible choice for

3 V3 (Ii,12 ,13) is

0 ; ( 1 ,12,13)-P~sky, road, field)~V 3(II,1 2,13) -

C otherwise. (6)

Here P(sky, road, field) means any permutation of the enclosed

interpretations.

-' For V1(e) and V2 (.e.) we must make use not only of the knowledge

available in K but the corresponding measurement information in X. The

region knowledge given previously is summarized in Table 3 together with an

appropriate choice for Vl(e). Here, the clique function evaluated for a

particular object type is defined on the row of Table 3 corresponding to

that object type. For example,

[ Vl(1) - P ]2 I I-car, (7)
l+(A /Ai)2

c°i
%where r and are appropriately chosen scale parameters. The quantities A.

and G. are the measured area and average gray level, respectively, of the

underlying regions R.. Note that the value of Vl(car) is small only for

11



areas, A smaller than A and for gray levels, Gi, close to G

characteristics associated with cars. Analogous comments apply to the

values of Vl(1) for Iel-(sky, road, car, field).

In Table 4 we summarize the mutual information available in K and also

illustrate a possible choice for V2 (e,e) in the same format as provided for

VI in Table 3. Here, a' and 0' are scale parameters and Bij. and C .. are

the mutual boundary length and contrast, respectively, corresponding to the

underlying regions. Again, it can be seen that Lne contributions to the

w overall Gibbs energy function, are minimized only under the correct

interpretation. Finally, in Table 5, we summarize the available higher-

level knowledge and the corresponding clique function V

In no way are we suggesting that the choice of clique functions

described here are optimum in any sense. Rather, we have attempted to

illustrate at least one way of choosing them in a consistent fashion for an

admittedly simple, contrived problem.

IV. Summary and Conclusions:

We have attempted to describe in some detail a hierarchical region-based

approach to automated photointerpretation. This approach has evolved from

the past year's effort to develop and implement an expert system for

- automated photointerpretation. Much more work remains to complete the

development of this system and to provide a complete evaluation of its

performance in realistic photointerpretation tasks. Nevertheless, the work

0 -described here has provided a useful focus for out efforts and should

" provide a meaningful context for future investigations.

" Among some of the research issues that we will be investigating in the

• future include the following:

17
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1. Additional and more powerful features have to be incorporated into
the segmentation procedure.

2. More effective stopping criterion for the iterative region
segmentation procedure needs to be employed.

3. Object detection and boundary extraction procedures need to be
~* ,,..incorporated.

4. More comprehensive region and mutual attributes need to be

employed.

5. The manual segmentation procedure needs to be improved and
interfaces with knowledge database worked out.

6. Our raw image database needs to be expanded.

7. More effective procedures for localizing search in the spatial
* subdivision process need to be developed.

8. General procedures for designing the clique functions need to be
worked out.

9. Annealing schedules for effecting the simulated annealing search
procedure need to be developed.

10. Propagation of interpretations from one region to the next needs to
be investigated.

11. We need to provide feedback from the interpretation process to the
segmentation process to improve its performance.

12. Flexible and effective data and control structures need to be
developed.

13. We have to investigate how map data and/or archival, previously
interpreted, image data can be utilized to improve the
photointerpretation process or to implement change
detection/interpretation procedures.

18
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Node or Region Associated Cliques

R R 1  {R 1}, {RIR 2}, {RI,R 5} ,  {RIR 2,R5 }

R2 {R 2, {R2 R 3}, {R R 4 }

{R2 R , { R2, R ,R} RR

. , R4 {R4 R} , {R 2 1,R5}, {R6 ,{R4,R 7},

{R , R ,R

R 3R {3 R3 R}4, 3RR 2R 4}

* R {Rs}, {R,R6}, {R5,R}, {Rs,R}4 4 495 416 417

R 6  {R6, 6 {R6 , R 7 }

R7 {R 7

• Table 1

,- .. Distinct Cliques Associated with the

-w- Adjacency Graph of Figure 10
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Region Knowledge

Object Average
Type Gray Level

Type rea ray evelClique Function V (.)

Car <A =Gc ai 1+(A /Ai)2]+ 8[Gi-Gc] 2

C

Sky >A <G CL 1 + B I+( Gs/21

-s - S 1+(AI/A s)2 1)2

Road =A =G [A i-Ar ]2  + a[Gi-Gr12
Sr r iri

Field =Af >G f(A i-A f2 + 2

Assumptions: A c<Ar <A <As

G <G <G <Gf

s--r-.c-

Table 3

Summary of Region Knowledge and

Associated Clique Function V

.?:..
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~Mutual Knowledge

Object Boundary Cnrs lqeFnto
Type Length CnrsClqeuntn 2('•

SSky, Car 0O

i iField, 0O
Car

' ' Sky,
.. Road <B =C 1 , 2.-- sr sr a Ll+(B sr /B ij71 + a [C ij- Csr]

-. -

bjCar, B <C o r Cu ]2 +'ti
"-"Road cr - cr [ij-Bcr-2

'-"'- .,..Ll+(Ccr/Ci* ) 2

Sky, >C B B 1 2

?,' Field Bsf >Csf ij- s2+6l+(C ij /C sf)2

Road, " 1+Bi/Brf 2] [Cij-Crf]2Field >B =C ,ri' + ' 2

rfr Ll+(Bsrij) J sr+

RoAssumption: B <B cr <B r [<B -_

%[ C~cr_<Cr fsr<Csf

ha,

- Table 4

"%' Summary of Mutual Knowledge and

Assupti: Associated Clique Function V2

# 23
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Object High - Order Clique Function
Types Knowledge V3( •,)

Sky,car, impossible combination CD

field

Skycar, impossible combination aD
road

Sky,road,
field valid combination 0

Road,car, impossible combination aD
field

Assumption: Not all combinations
of triples possible.

Table 5

I,, Summary of Higher-Order Knowledge and

Associated Clique Function V (,,).
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Figure 1

Automated Photointerpretation Testbed.
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- a.) Original Test Image 1 b.) Manually Extracted Segmentation

cj Three-Class Segmentation d.) Six-Class Segmentation

Figure 4

Segmentation Extracted from Test Image 1.
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Figure 7

Illustration of Iterative Region Segmentation Procedure.
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* a.) Original Test Image 2 b.) Manually Extracted Road Network

,..c.) Subdivision of Original d.) Final Subregion with
•Region into Quadrants Neighboring Regions

!G-: Figure 1 1

• Illustration of Spatial Subdivision Process.
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a.) Schematic Image.
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b.) Corresponding Adjacency Graph. V

Figure 12

A Schematic Image and Its
Corresponding Adjacency Graph.
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PART B

APPLICATION OF AI TECHNIQUES TO IMAGE SEGMENTATION
AND REGION IDENTIFICATION*

Dr. G. Nagy
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, New York 12180

- I. Introduction:

This report covers the portion of the PRI-NAIC project under supervision
during the period January 1-December 30, 1986. I was charged to the project
.25 FTE during the academic year until my resignation from the project
effective September 30, 1986 (i.e., 5.5 months at quarter time) and five
weeks during summer 1986. Other participants in the project were the
following:

Prof. M. Krishnamoorthy, RPI CS Dept., 3 wks. summer 1986; 0.1 FTE. Jan.-May
'86;

Prof. T. Spencer, RPI-CS Dept., 3 wks. summer 1986; 0.1 FTE, Jan.-May '86;
Prof. S. Seth, UNL CS Dept., consultant, 10 days, summer 1986;
Mr. J. Kanai, grad. student, RPI-ECSE, 2 mos. summer 1986; .5 FTE, Sept.
'86;
Mr. J. Yu, grad. student, RPI-ECSE, 4.5 MOS.; .25 fte, fall '86;
Mr. D. Allen, grad. student, RPI-ECSE, .25 FTE, 9 months.

The amount charged to the project was just under one man-year of effort
during the period under consideration. Unfunded contributors to the project
include Mr. N. Ferraiuolo, a recent graduate of RPI, and Professor D. Embly,
BYU CS Department.

The principal theme of the research was the application of AI techniques-
knowledge representation, heuristic search, and expert systems--to coupling
image segmentation with the identification of isolated regions of an image.

* Two subsidiary themes also pursued were (1) the classification of
4topographic terrain features using global rather than local cues, and (2)
4 the integration of digital irages and ancillary information into existing,

commercially available, relational database management systems. None of
these projects was completed, since our initial plans were based on the
expectation of three additional years of funding at the 1985 level.

* This work was supported in part by RADC under Contract No. F30602-85-C-
0008.
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II. Digital Image Segmentation Using a Knowledge Base:

From the reports of other investigators of automated photointerpretation, it
appeared clear from the outset that a frontal attack on the problem, using
available tools, would result at best in a demonstration of object location
in a few selected photographs whose structure and content were incorporated
into the software. To our knowledge, no one has succeeded in building a
system capable of processing photographs even in a small problem domain (for
example, airports), under the condition that the photographs are completely
new to the system and to the research team.

Accordingly, the approach chosen was to work initially with a simpler class
of images--digitized documents--and to concentrate our efforts on developing
a system capable of extracting the structure of many and diverse images of
this type. The interpretation of a 2000 x 2000 pixel array representing a
digital document requires, in fact, a considerable degree of expertise, and
is by no means a trivial task for an automated system. It is expected,

* however, to be easier than the interpretation of arbitrary aerial
photographs, at least partly because of the high contrast and the dominance
of crthogonal straight-line features rather than curves and shaded regions.
Furthermore, the knowledge base is one shared by all readers of technical
material and layout editors, and does not require a highly specialized and
rare (particularly in a university environment) skill as does
photo4nterpretation. Since our primary objective is the development of
improved interaction between segmentation and classification, rather than
improved techniques for either segmentation or classification in vitro, we
consider the above task an ideal vehicle for our research.

Restated in terms of digitized documents, the interpretation problem is the
following: given a set of digitized pages from a particular technical
journal, demarcate each member of a class of application-dependent items
such as title, author, first and second level subtitles, figure captions,

- abstract, acknowledgments, tables, photographs, line-drawings, program
segments, and equations. It is assumed, of course, that the system has no
recourse to optical character recognition: each component must be

9, identified only on the basis of its size, shape, and geometrical relation to
other components. The knowledge base consists of two parts: one is
generic, and represents general information about technical document layout;

the other one is publication-specific, and represents the layout practices
and conventions shared by a family of digitized pages. It is expected that
as the utilization of generic layout knowledge becomes more sophisticated,
less and less data will have to be entered and stored for specific types of

i" publications.
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In this framework, the problem can be divided into a series of subproblems:

local segmentation method;

structural representation for a particular segmentation pattern;

operators that alter a specific segmentation pattern in a given
direction;

representation of generic knowledge in terms of segmentation
patterns;

representation of publication-specific knowledge in terms of
segmentation patterns;

'> labeling schemata for specific regions based on the current
segmentation pattern and the stored knowledge;

means of utilizing the layout knowledge to alter the segmentation
pattern of a given document until a consistent set of labels can be

4,. assigned to each component of interest;

evaluations of the results.

Our progress during the last year will now be discussed under these
headings.

Local Segmentation

The objective of the pixel-neighborhood based segmentation scheme is to
divide the image into a set of nested rectangles in time linear with the
product of the total number of pixels and the number of nesting levels. A
further desideratum is to have the segmentation method operate on a
compressed (e.g., RLC with Huffman coding) representation. A family of
algorithms using different neighborhood sizes was investigated, but the

* simplest, based on thresholded black/white and white/black transitions in
the projected profile of each rectangle, was deemed sufficient to allow
further investigation of the more important problems.

The algorithm, coded in C for an IBM PC and a VAX 11/780, was used to
segment CCITT Test Document #5 (appended), a two-column technical article

* with some figures and equations, down to the character-segment level. The
image array consisted of 1728 x 2048 pixels. The code generated 8345
rectangular segments in about 7 minutes on a 6 MHz PC/AT. Methods of
improving and speeding-up the algorithm were investigated but not
implemented.
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Structural Representation of the Image

S. " The properties of a hierarchic data structure, the X-Y tree, were defined.
The X-Y tree is similar in concept to the widely used quad-tree and its
aerivati'es, with the important difference that vari.able location of the
nested divisions of the X-Y tree allows representation of the structural
components of the image. Further processing then involves only the X-Y
tree, rather than the original pixel array. Since many operations involve
only higher levels of the tree, this represents an important degree of
abstraction.

Concrete representations of the X-Y tree were written in Pascal, C, and
BASIC. A number of sample documents, including the CCITT test document
mentioned above, were coded. The CCITT document resulted in about 8000
nodes, most of which were, of course, leaf nodes.

It is expected that the segmentation scheme will generally result in correct
leaf nodes, but the structure of the document will not be appropriately
represented, without feedback from the labeling phase, by the X-Y tree
configuration. The original tree, resulting from "uninformed" segmentation,
is called a physical tree. The corrected tree is called a logical tree.

Tree Operations

Kanai, Krishnamoorthy and Spencer were able to demonstrate a set of
operations that are sufficient to transform incrementally any given X-Y tree
into another X-Y tree with the same leaf nodes. The computational
complexity of the algorithm is still under study, and the transformation
algorithms have not yet been developed to a point that would warrant
implementation. The operators were presented by Kanai at the Electronic
Imaging Conference in Washington in October 1986.

Kanai has also investigated the performance of a number of other algorithms,
including various types of neighbor-finding operations, on the X-Y tree.
One algorithm was implemented in Pascal. His current view is that these
algorithms are not computationally more complex than the corresponding

,~.operations on quad-trees, though the multiplicative constants are larger.

Generic Knowledge Representation

The development of a set of generic document constraints in terms of X-Y
* trees was undertaken. Such constraints govern the general structure of

printed technical reports and articles. For instance, the horizontal
composition of characters leads to words; horizontal composition of words
leads to lines; vertical lines of approximately the same length constitute
paragraphs; paragraphs and single-column figures are assembled into columns,
and so forth. Detailed definitions are also required for line-drawings,
equations, and tables. All of these notions can be coded into predicates
where the variables are the contents of the nodes of an X-Y tree.
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The generic knowledge represents all of the logical X-Y trees that would
constitute representations of valid printed documents from any source.

Some idea of the amount of data necessary to specify generic layout features
may be gainc ty inspecting the source -ode of general-puLpose document
formatters such as TeX or TROFF. We are only in the first stages of this
task, but Yu coded a few simple rules for words and lines in EXSYS, a PC-
based expert system. He demonstrated that generic labels could be assigned
to a small fragment of the CCITT document.

Publication-Specific Knowledge Representation

The development of a set of publication-specific constraints was also
undertaken. Specific constraints take into account the consistency of the
layout of a class of documents, such as pages of the "Research
Contributions" sections of C. ACM. They include the placement of the title,
topic, author(s)' affiliations, author(s)' research interests,

* acknowledgment, responsible editor, abstract, date, page, number, copyright
notice, subtitles, figure placement, and so forth.

The publication-specific constraints thus represent all the logical X-Y
trees that could be considered legal for a given family of documents.

Labeling Schemata

Among the most difficult tasks facing us is the automation of knowledge
acquisition. Although we have discussed a number of approaches, including
the use of learning techniques from sample pages, "reverse engineering"
document preparation macros, and translating the layout-editor's style book,
we have not made progress in this direction. Therefore, we extracted the
necessary information from human experts as a prerequisite to coding it in a
form suitable for the labeling process.

In order to avoid having to develop our own inference engine, we have used

available expert systems to label document components according to the
constraints (rules) specified in the knowledge base. Krishnamoorthy coded
in OPS-5 several dozen publication-specific rules (for the Research
Contributions section of C. ACM, 1983) detailing the layout of single and
multiple line titles and single multiple authors. The rules were coded by
detailed examination of 5 selected articles. A blind test was then
conducted using 5 other articles not previously seen by the coding and rule-
writing team. Although this was a minuscule sample, we were encouraged by
the fact that the titles and authors were correctly identified on the test
document without any modification of the code.

Yu examined a number of commercially available expert systems compatible
with the RPI computing environment. This work is documented in his thesis.
Two systems, M1 and EXSYS, were purchased. Since entering the X-Y tree for
a specific document proved cumbersome in Ml, a test on a segment of the
CCITT document was conducted on EXSYS. In this test some generic rules were
coded
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to recognize low-level layout constructs. The main result of the test was
recognition of the amount of effort involved in writing generic rules in the
expert system's specification language. If automatic methods of
establishing the knowledge base (from sample pages, style manuals, or
document formatter macros) cannot be established, then it will be necessary
to develop a high-level specification language to expedite this task.

Tree Transformation

The naive segmentation scheme described above will not generally group
document components according to their semantic value. However, Spencer and
Kanai demonstrated that given correct segmentation at the leaf level (which
is quite realistic), a physical tree can be transformed into a logical tree
with the same leaf nodes using only two types of operations. Furthermore,
this transformation can also be performed on any subtree. Our goal now is
to use feedback from the expert system (i.e., an indication that a given
subtree is not a valid entity) to carry out transformations of the physical
tree until a valid configuration is obtained. We intend to carry out this

approach according to both a top-down strategy, using publication-specific
rules, and a bottom-up strategy, using generic rules.

The alternative to tree transformations would be to resegment any portion of
the digitized image that cannot be labeled by the inference engine. The
advantage of using tree transformations is that there is no need to access
the image at the pixel level. In the CCITT document, for example, the
manipulation is carried out in terms of the 8000 or so nested blocks rather
than the 3,500,000 pixels. Furthermore, the X-Y tree provides the structure
to formulate the knowledge base at a relatively high level compared to the
video.

Validation

We are not at the point yet where we are ready to validate our results, but

we have designed a series of experiments to do so. Our intention is to
generate documents using a high-quality document formatter such as TeX or

0 TROFF and a laser-printer. The resulting document will then be scanned on
an Eikonix printer in the RPI Image Processing Laboratory, and segmented and

a. labeled according to the methods described above. The description of the
document produced in this manner will then be compared to the macro calls in
the formatter.

In order to separate the effects of scanning alignment and inaccuracies from
that of the analysis, we also intend to submit the pixel array sent to the

laser printer to the same processing steps (except, of course,
digitization). We have already used this technique to produce mock-ups of
documents at a lower resolution (with a 100 lpi dot-matrix printer). This
allows us to generate realistic document images under completely controlled
conditions, which would be very difficult with aerial photographs.
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Another important tool that we are developing is interactive segmentation of
real (digitized) documents using a mouse and a high-resolution display. The
facility to edit and label X-Y trees will provide us with an end-to-end
document processing facility that will, in principle, allow us to make the
LransiLion gradually frum compieteiy manual to completely automated
analysis. This technique is, of course, directly applicable to photographs.

Relevance to Automated Aerial Photointerpretation

Does the research discussed above have relevance to aerial surveillance for
intelligence purposes? Although digitized document analysis has some
valuable applications on its own, which we are pursuing in concert with
Xerox, IBM, Nippon Telephone, and SUNY Buffalo, here we will consider only
its implications for photointerpretation.

First of all, it is clear that natural scenes do not obey the rectilinear
constraints imposed by the X-Y tree. However, the important feature of the

* X-Y tree for the downstream processing is its hierarchical nature. It is
not far-fetched to conceive of segmentation methods for aerial photographs
that result in multi-level nested regions. Furthermore, it is possible to
devise tree transformations that would preserve the hierarchical nature of the
data structure under regroupment of the lower levels. This is essential for
carrying out operations at the highest possible level of abstraction.

The generic knowledge base for images would include such common-sense items
as continuity and uniform width for long linear features (roads, rivers),
square corners for rectilinear objects (buildings, most street corners, even
crop fields), consistency of shadow directions, orthogonality for
"crossings" (bridges, overpasses), row structures and road access for
agricultural areas.

The specific knowledge base could be as detailed as a map of the area, or
more general like attachment of cloverleafs to highways, periodicity of
urban areas, proximity of control towers to runways, roughly equal size of

*- cars and parking spots, circular symmetry of fuel containers, terraced
* fields in a given geographic area, features of desert landscapes, branching

linear structure of railroad terminals, etc. Initially, sufficient
challenge would be provided by very specific scenes such as photographs from
different points of view and time of day and year of a single airport,
university campus, or harbor installation. Therext step would be to attempt
to expand the knowledge base to describe a family of scenes with similar

* semantic content, such as a group of small urban airports.

What we hope to gain from our work with documents are:

(1) a better understanding of the nature of data structures suitable to
represent the results of low-level segmentation;

(2) tools for interfacing a complex geometric segmentation structure with
an inference engine;

43

04 '



(3) ideas for a descriptive language for compiling an image-oriented
knowledge base in terms of segmentation primitives;

(4) a theory of background-foreground relationships;

(5) insights and methodology on using feedback from the labeling or
classification phase to rearrange the segmentation boundaries without
resegmenting at the pixel level.

All of these represent difficult research problems. We believe, however,
that any advances that we can make on the document problem will bear
benefits for automated image interpretation.

III. Visibility-Oriented Criteria for Terrain Characterization:

The "visibility region" of a viewpoint on a surface (a single-valued real
* function of two independent variables, z = f(x,y) is well defined. It

contains all of the points that can be joined to the viewpoint by means of a
line-segment that does not pass through the surface. The visibility region
is, in general, neither convex nor singly-connected. In principle, the
visibility region of every point on the surface can be computed. In
practice, to case the computation and storage of visibility regions, the
surface can be approximated by a triangulated irregular network (TIN) as a
set of piecewise-linear surface patches, and the viewpoints confined to the
nodes of the network. In this case, the horizontal projection of the area
visible from a viewpoint consists of polygons.

In a TIN, the terrain surface is represented by irregularly-spaced data
points, each consisting of triples (x, y, z). A triangulation of the data
divides the data into disjoint triangles by introducing edges between the
vertices (data points). Each edge is adjacent to exactly two triangles,

I . unless the edge is on the convex hull (i.e., the boundary) of the data set.
Because of its favorable properties for interpolation, Delaunay
triangulation (the dual of the Voronoi tessellation of the projected data

0 points) is the accepted standard. In the sequel, it is assumed that the
surface has been Delaunay-triangulated, and the vertices and edges are
represented in a suitable data structure.

f, Computed visibility regions have at least five different interesting types
,A of applications:

1. Visibility for its own sake. Examples are the determination of the
minimum number of observation points (e.g., firetowers) necessary to view an

ft entire region. One might also be interested in scenic locations, or in
paths with maximum or minimum visibility between origin and destination
points.

2. Line-of-sight communications. One can determine the locations for the

minimum number of television transmitters for an area, or the optimal
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location of receivers. With portable transceivers, one might be interested
in the locus of travel of a party, each of whose members must remain in
uninterrupted communications with the others. The location of radar, laser,
and sonar surveillance systems also belongs to this category.

3. Orientation and navigation. The profile of the horizon is a natural and
simply extracted measurement that can be readily used by an observer to
locate him/herself with respect to a topographic map. Orienting oneself in
this manner is a prerequisite for successful navigation.

4. Data compression. In order to reduce the number of data values in a
digital elevation model, one may be able to use visibility considerations to
determine which points to keep and which to discard.

5. Extraction of significant terrain features. This class of applications
is more speculative: we conjecture that the location and relation of
visibility regions provides adequate information for determining important

* topographic terrain features, such as peaks, ridges, and valleys. Hence
visibility information could be used both for the extraction of sketch maps
from digital terrain models, and for the gross characterization (i.e.,

P mountainous, hilly, alluvial, mesa) of terrain types.

U, The purpose of this research is to formalize such problems, investigate
methods of solution, determine the computational cost of alternatives, and
develop algorithms for specific applications.

Prior work

Digital terrain models are discussed in (Mark 1978 and Nagy 1979). Precise
classifications of local topographic features are formulated in (Peucker
1975, Johnston 1975, Grender 1976, Nackman 1985, Frank 1986), and similar
definitions are applied to grey-scale images in (Paton 1975, Watson 1984).
Peucker advocated the notion of surface specific points, and Nackman
developed a formal structure based on critical point configuration graphs:

* both are based on partial derivatives.

" The relation between the "empty circle" criterion for triangulation and
Voronoi diagrams was first demonstrated in (Delaunay 1934). Peucker is
generally credited with developing triangulated irregular networks (Peucker
1978): the important notion of ordering the triangles with respect to a

* node was introduced in (Gold 1978). A survey of Delaunay algorithms and
"* data structures may be found in (De Floriani 1985b)

There are three ways to relate the visibility problem on TINs to previous
literature: by expanding 2-D visibility results, by modifying grid-based
2 1/2-D results, or by simplifying 3-D visibility results. Several
researchers have examined visibility in planar polygons (El Gindy 1981 and
1983, Burton 1982). However, these algorithms depend on the 2-D assumption
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that an edge closer to the viewpoint necessarily hides one further away in

the same direction.

Grid-based meLhods are used mainly in generating perspective views of

single-valued functions of two variables (Kubert 1968, Wright 1973, Anderson

1982). The algorithms are discretized to take advantage of the uniform
sample spacing; removing the uniformity destroys the ordering property on
which the algorithms are based. In a DTM based on such a grid rather than
upon TINs, these methods would solve the visibility problem adequately.

Largely due to interest in computer graphics, there has been a great deal of
worK on visibility in three dimensions. A clear distinction, however, must
be made between image space and object space visibility algorithms.

Algorithms of the first type (image space) determine only how an image of
the model will appear from a given viewpoint. They report the limits of
visible areas as coordinates on an image and not on the model; therefore,
they are not appropriate for this application.

The remainder, object-space algorithms, label surface patches according to
their visibility from the selected viewpoint (Sutherland 1974, Weiler 1977,

Sechrest 1983). These could be used with no modification to solve the 2
1/2-D problem. There are, however, sufficient simplifications possible with
very little computational cost to warrant a new approach. The most
immediate simplification is to note that there are no BOTTOM surfaces;
therefore, any triangle observed from the underside must be invisible.

Recent bounds on worst-case algorithms are presented in (Devai 1984, 1986a,
* 1986b), and in (McKenna 1986). It is generally believed, however, that

hidden-line and hidden-surface algorithms with optimal worst-case
performance are inferior to non-optimal algorithms in the "average" case.

It is apparent that once visibility regions have been extracted, the choice
of the best observation points is related to the facilities location and set
covering problems of operations research (Handler 1979). The importance of
visibility criteria for site location is discussed in the context of

0 geographic information systems in (Creamer 1985), and for a military
application of expert systems, nap-of-the-earth helicopter flights, in
(Garvey 86). Our approach was presented at the Second Symposium on Spatial
Data Handling (De Floriani 1986): in brief, during the year David Allen
completed a Pascal program to extract the visibility regions from a surface

0 approximated by triangular planar patches.

Discussion

The computation of visibility regions on a surface is an interesting problem
in itself. As we have seen, it is related but not identical to widely
researched tasks in computational geometry and computer graphics. The 2 1/2
dimensional problem we consider is intermediate between the full 3-D problem
considered in the display of solid objects and the 2-D visibility problems
posed by Toussaint and El Gindy. A potentially important new aspect is the

46

0 N



spatial coherence between adjacent viewpoints, over and above the spatial

4coherence of adjacent areas seen from the same viewpoint.

Our attention was originally drawn to computational geometry (in 1979) by a
line-of-sight communication problem: what would be a good data structure
for storing the topography of Italy for computing good locations for

transmitter stations? In addition to television signals, many other
electromagnetic signals used for communications, ranging and imaging
propagate in straight lines. Particularly challenging is the determination
of the locus of the trajectories of multiple agents interested in maximum

dispersal of the party subject to preservation of line-of-sight
communications.

The problem of locating an observer by means of observations taken with a
digital imaging or range-finder instrument is complicated by the
uncontrollable variability in ambient illumination and in the directional
surface reflectance of the terrain. It is therefore advantageous to

* consider methods which depend only on the relatively easily determined
visual horizon of the observer. We propose to investigate this problem with

respect to both orientation and autonomous navigation.

Data compaction in digital terrain models eludes simple solution. The

principal investigator and his colleagues have developed an algorithm for

this purpose. The algorithm was based on hierarchical subdivisions into
smaller and smaller triangular patches (De Floriani 1984, 1985a). This

. algorithm exhibited very good performance in terms of average vertical

- deviation from the original data. However, the resulting terrain visually
appeared quite different from the original! The problem with the
hierarchical subdivision was the introduction of ridge and valley lines that
simply did not exist in the original but had a strong visual impact in the
approximation. It was this experience, in fact, that lead us to consider
visibility criteria as a means of preserving important features of the data.

Peaks, ridges, and valleys are universally recognized as significant terrain
features. The significance of such features is usually determined in terms

* of their size relative to other such nearby features. As mentioned,
however, digital elevation models normally represent the elevation of the
terrain to a given degree of accuracy, without special emphasis of prominent
terrain features. Such models that do attempt to extract significant
features tend to approach the problem from a localized perspective,
essentially applying discrete approximations to methods derived from the

* differential calculus for finding extrema. We propose, however, to
represent such features at the expense of accurate reconstruction of the
terrain at other points. In other words, our model will provide an

a% abstraction based on prominent features.

How much of the surface one can see from any given point on that surface isS
an important topographic characteristic that one tends to observe
subconsciously. Nevertheless, it is difficult to sketch the visibility
regions of specific points on even a simple terrain model. Furthermore,
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although it is easy to identify terrain features such as ridges and valleys
using a 3-D physical model, it is considerably harder to sketch them on
contour plots. We will try to use our program for extracting the visibility
regions of selected points from location and elevation data for the purpose
of determining such terrain features. The extracted features may be used
either for the automatic generation of sketch maps or as key points and
ccyxstraint edges for economical triangulated irregular networks.

Some connections between visibility and topography are the following.
Points where the immediate neighborhood is invisible are convexities: many
adjacent convexities constitute a dome. Large, multiply-connected vistas

are properties of dominant peaks and ridges. In pits and valleys, the
prospect is singly-connected and tends to change gradually. Thus visibility
considerations suggest where the valley ends and the mountain begins--one
can argue that one is out of the valley as soon as new vistas, over adjacent
ridges, open up! If two points have the same region of visibility, then

Vthey are in the same valley; if they do not, then there is a ridge between
* them. Horizons that form the common boundary of the visibility regions of
. many observation points are usually significant ridges. The shape,

orientation, and symmetries of regions of visibility also provide valuable
clues to geological formation.

Of course, in addition to identifying features, one must ascertain the
relations between them. These relations are locally hierarchical, but
globally form a network.

Most of the methods found in the literature for topographic feature

extraction ("geomorphology" or "topographic morphometry") are based on

characteristic slope angles, local relief, spectral coefficients, or
direction and strength of azimuthal trends. Our contention is that
visibility models offer a better chance to extract significant terrain
features than do methods based on local extrema and curvature.

For some types of terrain the model, as described, is undesirably fine-

grained. Observation points may be established for every mole hill and

gopher hole. It is possible to increase the grain size by the simple
expedient of allowing the observer to view the terrain from a certain preset
height, as from an observation tower. This height then becomes a key
parameter of the model. Note that if too large a value is chosen, then the
features become obliterated; from a high-flying airplane, the topography is
barely observable.

Current Research Tasks

1. A critical component of the entire project is the algorithm for
extracting the visibility region of a viewpoint. Although we already have
developed and tested one algorithm for this purpose, we know how we can

- improve it in several significant aspects.
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a. Implement an efficient method (including the necessary data
K' structures) for sorting triangles according to their visibility

precedence with respect to the viewpoint. In particular, determine
whether Delaunay triangulation guarantees being able to grow star-
shaped regions one triangle at a time (the resulting spatial ordering
is of considerable interest in itself).

b. Attempt to find heuristics that will take advantage of the fact that
the visibility regions of adjacent vertices are usually almost
identical. This should have a dramatic impact on the average-case

performance of region finding, and is essential for processing large
digital terrain models.

c. Compare experimentally (using USGS DEMs), and if possible
theoretically, the average-case performance of our algorithms with
that of the more general hidden-surface methods used in graphics.

* d. Investigate the performance of algorithms that compute only an
approximation to the visibility region by considering a triangular
facet either entirely visible or entirely invisible.

2. We shall investigate direct applications of visibility to locating a
minimal set of observation points and a maximal set of hiding places.

a. Develop a data structure suitable for determining the union and
intersection of visibility regions to serve as input to available
facilities location programs.

b. Develop an algorithm to find the minimal set of observation points
and the maximal set of hiding places.

-: c. Examine the dependence of the number of observation points/hiding
places on the "tower height"parameter for various terrain types.

3. We shall assess applicability of pre-computed visibility maps to line-

* of-sight communication problems.

a. Find the minimal number of transmitters for a given distribution of
receivers and vice-versa (this is similar, but not identical, to 2b).

b. Develop an algorithm to compute a "visibility metric" (i.e., the
* number of necessary intermediate relay points) between any two
% surface points. Study the properties of this distance measure.

c. Determine the locus of coverage of a communicating party of n members
,v.. moving from point A to point B.

0 d. Formalize the concept of visibility region to a curve on the surface
and use it to compute maximum and minimum visibility paths between
two points.
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4. We shall study the applicability of visibility methods to orientation
and navigation. This is strictly an exploratory venture; we will
collaborate with Professor C.N. Shen, who has worked for many years on
navigation problems connected with the Mars Rover.

5. We will attempt to extract significant topographic features.

a. Extract peaks by considering i) the size and connectivity of the
visibility regions of vertices relative to what they would be if they

,% were at a lower elevation; ii) the inclusion relationships between
the visibility regions of adjacent vertices; iii) the location of
vertices relative to ridges.

b. Extract ridges as the boundaries of multiple regions of visibility.

c. Extract pits and valleys by considering i) the peaks and ridges on
the obverse surface; ii) regions of minimum visibility.

d. Formulate a data structure that behaves hierarchically in a local
neighborhood, (i.e. define the mutual relation of a peak or ridge
dominating or being dominated by another peak or ridge) but behaves
as a network globally (i.e., it partitions the regions of influence
of distant features of the same importance). One possibility is to
apply the concept of structured graphs, which las been extensively
studied by our colleague De Floriani.

e. Compare empirically our methods with those obtained by methods based
on the generalization of local extrema, i.e., surface-specific points
and critical point configuration graphs. Seek the opinion of

geographers and cartographers on the usefulness and validity of the
features extracted by our methods.

0
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Conclusions

It is argued that the global nature of visibility criteria offers promise of
their eventual application to the automatic identification of topographic
features. Several other potential applications of visibility models were
discussed; the most immediate, determination of a minimal set of points of
observation, is equivalent to the generic set-covering problem.

The basic step, determination of visibility regions, is computationally
intensive even with a simplified piecewise linear terrain model. However,
we can accelerate the computation of the region of visibility of each vertex
through heuristic preprocessing and edge-ordering methods. We can also
accelerate the selection of the observation points by approximating the! visibility region as a set of elemental surface patches that are either

hcompletely visible or completely invisible.

* The next step is to exploit the smoothness of the terrain relative to the
sampling interval to link the computation of the visibility regions of

. neighboring points. Only with an efficient algorithm can we hope to test
our ideas for topographic feature extraction on data representative of
actual topographies.

Only slightly more difficult than the optimal location of observation points

are a set of problems associated with line-of-sight transmission. We are
confident that once we have a good algorithm for the determination of
visibility regions, these problems will prove tractable. An interesting
aspect is that of multiple-hop transmissions, which leads to the concept of
a visibility metric.

Finding the location of an observer by comparing the observed visual horizon
with that computed from a stored model is the inverse problem of computing
the visibility regions. Under what circumstances can the location of the
observer be determined uniquely? Furthermore, there must be more effective
methods for determining the location than by computing the horizon from all

* possible viewpoints and perfo-ming a comparison.

Data reduction in digital terrain models has a long history of research and
is closely related to the theory of numerical approximation of functions.
Least-squares and maximum deviation approaches are common. However, if one
wishes to display the resulting approximate model, it seems reasonable to

• take into consideration aspects related to the visual features of the
terrain.

The reduction of a topographic map to a sketch map is, in a sense, the
ultimate data compression. However, the extraction of topographic features
depends strongly on the definitions adopted for such objects. We will test

0 the conjecture that visibility-based definitions of topographic features
exhibit good correspondence with both intuitive notions and with accepted
geographic nomenclature.
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decroissant Iir'eaircment avec la friquence f suivant

) Fe~I'xpression Sii

T
Tot= To+(fo-f)-.. (Avec T>T) 1

*(voir fig. 4). T 1 o

On saisit physiquement It phenomeine de com-
pression en realisant que lorsque le signal S(t) entre

S t.*v ~--clans la ligne i retard (LAR) la trquence qui entre
Ia premi~re i l'instant 0 cist la rrquence basse Jo,

'~ -~qui met un temps TO pour traverser. La friquence f

Fic 4entre a l'instant I.(f -.f,) - ct elke met un temps
T -(f -1f) Tpour traverser, cc qui )a fait ressortir

V. i l'instant T. 6ialemen, Ain-Li dnnc. Ie -tional wji

CCT etDouet1
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MISSION
Of

* Rome Air Development Center

RADC plans and executes research, development, test and selected
Sacquisition programs in support of Command, Control, Communications

and Intelligence (C3) activities. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of d31 systems. The areas
of technical competence include communications, command and control,

Sbattle management, information processing, surveillance sensors,
intelligence data collection and handling, solid state sciences,

- electromagnetirs, and propagation, and electronic, maintainability, and
SRcompatibility.
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