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B-Spline-Bezier Representation of Tau-Splines
Dieter Lasser

Fachbereich Mathematik, AG3
Technische Hochschulc Darmstadt

6100 Darmstadt, West Germany

*Abstract: We present a B-spline-Bezier representation of r splines, curvature and
torsion continuous quintics which have been introduced in CAGD by Hagen in
1985. Explicit formulas are gven for the conversion of the B-spline-Bezier represen-
tation to the r spline representation and vice versa, and conditions and certain ranges
of tension values are derived which insure the positivity of the design parameters.

0. Introduction
In 1974 Nielson [Nielson 74] gave a piecewise polynomial alternative to splines under tension
[Schweikert 66], [Cline 74], the so-called v spline. The v splines are curvature continuous in-
terpolating cubics and they are the solution of the minimization of

2 IV 2
X"(t)N dt + v2 ,1X'(t1) , v1>0 (>)

over the space

H2 = { X: X" e L 2[t0 , tN] , X'absolutely continuous on [to ,N] }

subject to interpolation conditions and certain end conditions. [Nielson 74, 86]
In [Boehm 85] a B-spline-Bezier representation of v splines was given, the -y spline, and Boehm
also pointed out the close relation to Barsky's fl splines. [Barsky 81] Some details on this relation
can be found in [Fritsch 86] especially conversion equations between /? splines and v splines.
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In 1985 Hagen [Hagen 85] generalized Nielson's approach by using
N K-I

fN ¢ ,IiX~()/)I[2 dt + I L jjIx(L)(rI)I2 dt , vl,L 0 (2)

ro 1=0L=1

(K > 2), rather than (1), minimizing now with respect to

H K (X: X(K) e L2 [to, tN], X(K- 1)absolutely continuous on [t0 , tNj] }

and satisfying interpolation and generalized end conditions. Hagens's concept of 'geometric spline
curves' includes for K = 2 Nielson's v splines and yields for K = 3 to curvature and torsion con-
tinuous quintics, the r splines.

The aim of this paper is to give a B-spline-Bezier representation of r splines. We also derive the
V conversion equations between the Bezier and the originally given Hernite representation in [Hagen

85]. We discuss positivity conditions on the design parameters of the Bezier representation and
value ranges for the point weights, the vt's.

Because we like to find a B-spline-Bezier representation of r splines, we first introduce the Bezier
representation of segmented curves. In section II we give a short discussion of Nielson's v splines
while Hagens's -r splines are discussed in section III.

L Bezier representation of segmented curves
Let X(t) be a planar or spatial parametrized curve defined with respect to a partition of the domain
space by 'knots'

to0< ti< ... tN .

The parameter space segmentation induces a curve segmentation in Segments
Xj: [t,, tj.,] - Rd (d = 2,3). A local parameter u e [0, 1] can be introduced such that

1=0,..., N- 1 X(t) = X1(u) for te [t,, t1. 1]

by the linear interpolation of t, and t1 ,,:

t = (I- u) t1 + u tt+1  , where u e [0, 1].

The derivatives have to be calculated now by the chain rule, i.e.

X )() r dru dr I dr
x() - - - X(t) = Xt(u) - X (u)

dtrdt dur r d

.. where A, t1+1 - ti

Now the segments might be given in Bezier representation, that means

Xj(u) = E bnl+k Bk(u) (3)
k=O

where b,,+, e R (d = 2,3) , u e [0,1] and

Bkn(u) =()k lufk

• are the (ordinary) Bernstein polynomials of degree n in u. The coefficients b, are called Bezier
points. They form in their natural ordering given by their subscripts the vertices of the so called

.. Bezier polygon.

B-Spline-Bezier Representation of Tau-Splines 2
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The derivatives of X,(u) with respect to u are given by
d r  n ! ? P r-r(-

dur  = (n-r) I Ab +k Bk u)

where

Arb - Ar-(ba +I - ba)

so that in X(t,) = X,_,(l) = X,(0) , the common boundary point of X1l-(u) and of Xl(u) we have
for the left sided derivatives of X(t)

X(r)(tT) = li X(r)(t) -n! r b
tA (n - r)!

and for the right sided derivatives

X(r)(t) -li X(r)(t) n! A b[! t--, t;A, (n -'r) rb "

II. Nu-splines
I

Nielson's v splines are solutions of the minimization of (1) over the space H2 subject to the in-
terpolation conditions

I = 0.... N X(tl) = X,

and one of the following end conditions

A i.) Xt(to) = X6 , X'(N) = xM,

ii.) X"(t+) = VO X'(to) X"(t) VN X'(tN)

iii.) X(t 0) = X(t), X'(t0 ) = X,(tN), X"A(t) - X"(tN) = (VO + vV) X'(t0 ).

v splines fulfill at any knot t, (I = 1, ... , N - 1) the continuity conditions

X(t + ) = X(t) (4)

X '(t;) = X'(t7) (5)

X ' ( t ') = X '( tT ) + v X ' ( t ) ( 6 ) (. ., .

what can be written in matrix form as

The + A X- For
- The (r+ I)' matrix A, is caled connection matrix and the 'vector' X1 with r + I elements of k&I

Rd (d > r, here is r = 2) is sometimes called the r-jet of X. El

Because the curvature of a planar resp. spatial curve is given by ,k,,

_ x', x-l tiX x X l ... .
X-resp. K = Xt /(7)fiX'fin IIX'lla ;tion/ .. ...

we see that a v spline is curvature continuous. I Codes

ala. aid/or
B-Spline-Bezier Representation of Tau-Splines 3 Special



A Bezier representation of v splines can be derived by inserting (3) for n = 3 into (4) to (6). We
,7et as continuity conditions of the Bezier representation (Figure 1)

4 (I + qt) b, = qtb 3 1- 1 + b31+1

(1 + y q1) b3 1 -1 = y1qlb 31 - 2 + s1

(YI + ql)b 3 1+1 = ql 1s + ylb 3i+ 2

w.'here
'=lJ

V" ,' and

%1V=. ,='1'A (8)

1 + qt 2

I = 1, . N - 1 . (8) allows the evaluation of the y, 's of the Bezier representation of a v spline,
i.e. the evaluation of the y, 's for gven v values. On the other side, the corresponding v spline
to a given curvature continuous cubic Bezier spline, a so-called y spline, has v, values gven by

. = - I v- (I +ql)(-- (9)A t J

(9) was first given by Boehm in [Boehm 85]. He also presented a B-spline representation for cur-
vature continuous cubics, and pointed out the relaton to Barsky's uniformly-shaped fl splines.
[Barsky 81] The connection to general f# splines, sometimes called explicit, discrete or discretely-
shaped fl splines [Hoellig 86], [Bartels et al. 87], was also pointed out by Nielson and given by
Fritsch (see [Fritsch 86]).L In fact, looking at the connection matrices of y splines, v splines and
(general) f# splines [Dvn et al. 85] we see that fl, y and v spline are nothing else than different
representations of curvature continuous cubics.

- SI

.4q,'1 b b b
31-131_M

-:5: b
-"b31+2

Figure 1. Construction of the Bezier polygon for v splines

* Dyn and Micchelti [Dyn et al. 85] have shown that the existence of non-negative local support basis
functions which sum to one follows - for geometrically continuous spline curves, i.e. spline curves
with continuous differential geometric invariants like curvature, torsion, etc. - from the total
positivity of the connection matrix. For v splines the total positivity of A, has the meaning
v, -> 0 and that is exactly the range for the tension parameters vt covered by the minimum norm

The first local basis for GO splines was developed by Nielson and Lewis in 1975. [Lewis 75] A local
basis for uniformly-shaped fl splines was given in [Barsky 81] and for discretely-shaped fP splines in
[Bartels et al. 84], see also [Cohen 87].

--4 , B-Spline-Bezier Representation of Tau-Splines
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characterization of v splines. [Nielson 74, 86] For v, > 0 we obtain from (9) the y range:
y, < I (remark: v, = 0 y y = 1 is the usual C2 cubic spline). But working with y splines we know
that yt > I are possible as well. Indeed. if we request positive design parameters, i.e. y, > 0. so that
such important properties like the convex hull and the variation diminishing property are given, (S)
yields to

2
"" =I, N-IvI >  - " (I+q,,). (10)

Hence not only positive tension values but v, values in the range given by (10) guarantee positive
design parameters (remark: v, < 0 yields to y, > 1) and therefore properties like the two mentioned
above. This result goes conform with work done by Barsky [Barsky 84] who extended the theory
of v splines by identiing certain ranges for the v,'s that guarantee a unique solution of the in-

V terpolation problem. In the special case of a uniform, an equidistant parametrization, i.e. q, = 1,
Barsky gives the range v, > -4 which is also given by (10).

'

III. Tau-spiines
Hagens's r splines are sol'utions of the minimization of (2) over the space HK for K 3 subject

to the interpolation conditions

SI = 0, ... ,N X(tl) = X i

and one of the following end conditions (L = K, ... 2(K - i))

i.) x(2K L)(t 0 ) = xK1 x(2K- 1-L)(t&) ,KL)
)(t") v 0 2K--.LX 2 -t-L)( =V

,(L +i. (2 - (to), x(t)(t-) = -I L(tv),

iii.) X(t 0 ) = X(t), x( 2 -- L)(tO) = x( 2K- 1 -L)()

x(L)(4) X (L)(tN) = (V,2K-1-L - VN,2K1L) X(2K-L)(to)

T splines fulfill at any knot t, (I = 1, ... , N - 1) the continuity conditions

X(t,) = X(1t) (11)

X'(t,) = X(t') (12)

- x"(t+) = X"(tf) (13)

'.)i- = X" (tt) + V1,2 X'(tT) (14)

X (t+) = X"'(t7) - v1., X'(t7) (15)

Because the curvature of a spatial curve is given by (7) and the torsion by

:2 tlX, x X,112

we see that a r spline is curvature and torsion continuous.

R-Spline-Bezier Representation cf Tt--Sp ines 5



The connection matrix of a general torsion continuous contact of two curve segments of
% , d (d > 3) of degree n (n > 4) - we speck about geometric C' continuity . briefly GC' continuity

- is Wven by [Dy'n et al. 85], [LasserEck i8]:

1 0 0 01
0o; (Oil "0 03A CC 0 a) W I 0 3

.,- ; 13 ' 11

Comparing Ac,3 with (11) to (14). we see that r splines do not take advantage of all shape pa-
rameters offered by the concept of torsion continuity. They rather form a subset of the set of GO
continuous curves.
Furthermore we like'to mention that r splines and visual C' continuous curves, briefly VC1 con-

[ 'rtinuous curves, i.e. curves having contact of order r [Geise 62] with r = 3 , are spanning two 'almost
total4,; separated' subsets of the set of GO continuous curves. The connection matrix of two curve
semnents having contact of order 3 is given by [Dyn et al. 85], [Lasser 88]:

0 0 01AV'°. 33 )

- 0 3 3010 2 U1-%-,

and therefore. comparing AVC3 with AGc3, Va continuous curves form a subset of the set of
GO continuous curves. and, comparing Ayes with (11) to (14), we see that the only curves beeing
-r splines as well as VO continuous curves are the usual 0 continuous curves.

4 .%

To find a Bezier representation of T splines we insert (3) for n = 5 into (11) to (15) and get as
,S ' continuity conditions of the Bezier representation (Figure 2)

(1 + ql) b, = q1b 51_1 + b5 l+l (16)

(1 + -Ilql) bl-l = ylq;b 51 _2 + S
1  (17.1)

(yt + q1)b 51+1 = qtsl + yIbs 1 2  (17.2)

(1 + 61ql)b51 _2 = 31qlb 5 1 -.3 + e7 (181

* (o + -Iql ) s, = clqle7 + 6e(18.2)

(el + ql) b5t+ 2 = qle' + lb 51+3  (18.3)

(1 + plql) b5 l_3 = plqlb5 l...4 + f7 (19.1)

(Pt + atqt) el = alqt1  + pltt (19.2)

(al + 1 ql ) e+ = Tlql tj + 7l (19.3)

(7l - ql) b5s+ 3 = qlf7I + rb 5l+4. (19.4)

% B-Spline-Bezier Representation or Tau-Spiiim c 6
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i whcre

A1-

and
U1 =

and

2= ()

I A[

1+ q"3

and

_= '.p (22)
3q,- R,

i'.al = ql" (23
I~fl .. T1  3 +(T - SI) 7

= q, (24)
3/ - T

with
3

3q,- I + 1

,. R (1 + q,)3  24 V
/,

1+ A1

+(1 + q) 3  3

--- A
2(-q) + (1+ q) 24 v

S1 = + 2q A,

+ (1 + q1)
3

' -q 1  A1

*1e 3- (1+q 1)
3  24 (

1 Tq2 A1

(I~ ~ ( - ql)3l q3 + It q)

4,

* (20) to (24) allows the evaluation of the desig parameters of the Bezier representation of a 7 splne~~and byv tis the Bezier representation is given. The design parameters are of course not independent
of each other anyv longer. This is obvious because two shape parameters are given by (11) to (15)

, . but five are given by (16) to (19). The dependences are

,6 t =-l~ resp. t = ~ 1q) 1 (25)

• ~~~1 - (1- q) lq + (- l

.B-Spinc-Bezier Representation of Tau-Splines7
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IO

, 24 (1+ q - -(+!1) 1 ( -3)

q, (1' 3)7

and so on.

The - splines form a subset of the set of GO continuous quintics. The B-spline-Bezier represen-
tation of Tau splines is therefore identical with the B-spline-Bezier representation of GO contin-
uous quintics which was ziven in [Eck 87], [Lasser.Eck 88], ,,ith the restriction that for a -r spline
the design parameters y, 1 . "J. PI, a7 and r, can not be chosen independently of each other as in
case of the GO continuous quintic spline curve. We rather have to set y = 1 and have to choose

p 7 and T, according to the delendeaces given by (25) to (28).

Let's discuss now the positivity of the design parameters for r splines. The dependences (25) to
(2S) imply the following:

Because of (25), positivity of 6, = 6,(&,) needs

. < < q, in case of q,<l A, < A,

r > 0 in case of q,>l A, > A,_

On the other side, positivity of e = &j(6) needs

6 > 0 in case of q, 1  A, _ A,,

0 <6< - in case of qt > I A, > Af

Because of (27) and (28), positivity of p, = p,(-1 ) and of r = 1 ('r1 ) needs

.,'.t ( :+ qj)(r, + ,51)

.5'. > 3(1 + q1)81

* On the other side, because of (26) and (27), positivity of p, = p,(ac,) and of r, = -r(C) needs
*5-7

5. (. 51 + qIlI
a>

, 3(1 + q1 )

and because of (26) and (2S), positivity of a, = a;(p ) and of r, = T(,) needs

S(I + qp/5)(Ej 4 61)

P > 3(1 + q1),51

B-Splinc-Bezier Representation of Tau-Splines 9



The m.nimum norm characterization of -r splines works for non-negative tension parameter ,,
and vj: only. As for v splines we can extend the theory of -r splines by requesting th- positivity
of the design parameters.
Because of (20) and (21). for &> 0 and 6,> 0 the tension parameter v 1 2 has to be within the
ranLe

v32 > max + 3 + l 3 (29)
,~~~~q f ( .2Z .

that means

(1±+q) 3
q,' if q, > I . A , > A ,-,

v12 >  -,12 if q1=1 =, = A1-1

v2 > -(I +q)2--3 ifq< I A I < A,-

Thus not only non-negative but also certain negative V1. values are allowed.

Because of (22) to (24), for p, > 0, at > 0 and rt > 0 the tension parameter v, has to be within
the ranges given by (30).

- < 4 [(i + q,) + qlAlVj,2] (30.1)/ A!

24 (I +q) 3 + 2(1 -q + q12) -- '(.2VIl (30.2)

2 +i
Fo .1.30 iedsfoeaml 2+ I.q, 3 V1,2

First Vr.2 has to be chosen such that e, > 0 and 6t > 0 is fulfilled, i.e. Vy.2 has to be chosen within
the range !iven by (29), than v1, can be chosen within the range given above.
For q, = 1 (30) yields for example to

,*.- 4 24 < Il< 24 ( ~I2'..
A4 3 V 3 2±

BarskV [Barsky 84] extended the theory of v splines by identifying certain ranges for the v,'s that
Iguarantee a unique solution of the interpolation problem. This idea allows especially the consider-
ation of different end conditions. The same can be done for T splines, and is indeed the topic of
actual research.

Furthermore the idea of [Sakauskas 75] and [Foley 86,87] of introducing interval weights can be
- picked up to create interval weighted geometric spline curves' minimizing

N . K-I

Z.Pt IlXI(t)1I2 dt + VjL IX(L)(t,)1I
2 dt

*U l=0 L=I

For K = 3 we 2et interval weighted r splines. Actually we are working on this too.

2 These interval veighted peomeiric spline curves are in general not curvature, torsion. etc. continuous.

N B-Spline-Bezier Representation of Tau-Splines 10
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