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B-Spline-Bezier Representation of Tau-Splines

Dieter Lasser
Fachbereich Mathematik, AG3
Technische Hochschule Darmstadt
6100 Darmstadt, West Germany

Abstract: We present a B-spline-Bezier representation of r splines, curvature and
torsion continuous quintics which have been introduced in CAGD by Hagen in
1985. Explicit formulas are given for the conversion of the B-spline-Bezier represen-
tation to the T spline representation and vice versa, and conditions and certain ranges
of tension values are derived which insure the positivity of the design parameters.

0. Introduction

In 1974 Nielson [Vielson 74] gave a piecewise polynomial alternative to splines under tension
[Schweikert 66], [Cline 74], the so-called v spline. The v splines are curvature continuous in-
terpolating cubics and they are the solution of the minimization of

N
!
[Teofa + D vt =0 (M)
,0 I=-’0

over the space

H? = {X: X"e Lz[to, ty], X'absolutely continuous on [ty ty]}

subject to interpolation conditions and certain end conditions. [Nielson 74, 56]

In [BoeAm $5] a B-spline-Bezier representation of v splines was given, the y spline, and Boehm
also pointed out the close relation to Rarsky’s f splines. [Barsky 8/] Some details on this relation
can be found in [Fritsch 86] especially conversion equations between £ splines and v splines.
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In 1985 Hagen [Hagen 85] generalized Nielson's approach by using

N K-1
iy
J' XO@Rde + DY v KPR de, v 20 @)
fo I=0L=]

(K = 2), rather than (1), minimizing now with respect to
HX = {(X: X% ¢ Lz[ro, tvl, X(K_l)abso/ule/y continuous on [y, ty]}
and satisfying interpolation and generalized end conditions. Hagens's concept of ‘geometric spline

curves’ includes for K =2 Nielson's v splines and yields for K= 3 to curvature and torsion con-
tinuous quintics, the < splines.

The aim of this paper is to give a B-spline-Bezier representation of r splines. We also derive the
conversion equations between the Bezier and the onginally given Hermite representation in [Hagen
85]. We discuss positivity conditions on the design parameters of the Bezier representation and
value ranges for the point weights, the v,’s.

Because we like to find a B-spline-Bezier representation of t splines, we first introduce the Bezier
representation of segmented curves. In section Il we give a short discussion of Nielson's v splines
while Hagens’s = splines are discussed in section IiI.

I. Bezier representation of segmented curves

Let X(f) be a planar or spatial parametrized curve defined with respect to a partition of the domain
space by ‘knots’

g <t < . ly.

The parameter space segmentation induces a curve segmentation in Segments
X, [4) t14] = Be (d=2,3). A local parameter u e [0, 1] can be introduced such that

I=0,..,N-1 X() = X, (w Sfor te[t,t,,]
by the linear interpolation of ¢, and ¢,.:
t = (l-w + utyy,, where ue[0,1].

The derivatives have to be calculated now by the chain rule, i.e.

r r 's dr
Xy = Loxo = 44 L x4y = L dx
O = X0 = ar M = 35 M
where A;=¢,—-¢.
Now the segments might be given in Bezier representation, that means
n
X = ). by BIW) 3)

k=0
where b, ,eR? (d=23),ue[0,1] and

Bl = (f)u*(—w™

are the (ordinary) Bernstein polynomials of degree n in u. The coefficients b, are called Bezier
points. They form in their natural ordering given by their subscripts the vertices of the so called
Bezier polygon.

B-Spline-Bezier Representation of Tau-Splines 2




The derivatives of X,(4) with respect to u are given by

n—r
) r

d -
: Y X/w) = Z A'byy ek By (W)
i where
“ Ab, = A'(b, +1—by)
4
f so thatin X(¢) = X,_,(1) = X,(0) , the common boundary point of X,_,(«) and of X/(u«) , we have
i for the left sided denvatives of X(¢)
q .
X0 = im XO() = —— —L_ A,
- @) = Jm X0 = g Gy
i and for the right sided derivatives
g 1 !
- X = tm X = — —2— A'b,,.
( (1) t_,:;' () AIr (n_’.)! nl
7
N II. Nu-splines
q
. Nielson's v splines are solutions of the minimization of (1) over the space H? subject to the in-
i, terpolation conditions
. 1=0,..,N X)) = X,
! and one of the following end conditions
- i) X(t) = X§.  X'(ty) = Xy,
-~
ii.) X)) = v X)),  XUR) = vwX'(ta)
Y v splines fulfill at any knot ¢, (/=1,.., N — 1) the continuity conditions
‘ Xt = X() @
[ X = X(p) (9)
! X)) = X)) + v X)) (6)
. what can be written in matrix form as '
v X - AX —
. I I I n For
4 The (r+ 1)? matrix 4, is called connection matrix and the ‘vector’ X; with r+ 1 elements of agI E
N R? (d=r, hereis r=2) is sometimes called the r-jet of X. . 0O
ced a
Because the curvature of a planar resp. spatial curve is given by VAL e
x" ” ’ )
: X e = XxXT a
« Xl IXI T
.tion/ ]
3 we see that a v spline is curvature continuous. s111ty Codes |
L} ail and/or
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A Bezier representation of v splines can be derived by inserting (3) for n=3 into (4) to (6). We
get as continuity conditions of the Bezier representation (Figure 1)

(I +q)b = qby_) + by,

(I + yia) b3y = viq1by + 54

e+ @by = qrsp + vibyy,
where
o =
!l = ’
A
and -1
o 1
' 1 A[ ! (8)
-~V
T+q 21
(- [=1,..,N—1. (8) allows the evaluation of the y, 's of the Bezier representation of a v spline,
i 1.e. the evaluation of the y, ‘s for given v, values. On the other side, the corresponding v spline
_;.‘:.: to a given curvature continuous cubic Bezier spline, a so-called y spline, has v, values given by
'-:_\ ) 1
Y I=1,..,n-1 vy = ==—(1+ —=1). 9
R 1= A ey ©
L
(9) was first given by Boehm in [Boehm 85). He also presented a B-spline representation for cur-
- vature continuous cubics, and pointed out the relation to Barsky's uniformly-shaped f# splines.
h [Barsky 8/] The connection to general f splines, sometimes called explicit, discrete or discretely-
b shaped f splines [Hoellig 86], [Bartels et al. 87], was also pointed out by Nielson and given by
s Fritsch (see [Fritsch 86]).! In fact, looking at the connection matrices of y splines, v splines and
’ < general) f splines [Dyn et al. 85] we see that B, y and v splines are nothing else than different
T representations of curvature continuous cubics.
.. LY
L
A i":tn
T
B )“
Oy
g
- \’
N
¥ '\“1 {
Ry
e
SO
ot
by |331-2
) '7-:!’ b
:._j ) 31+2
) Figure 1.  Construction of the Bezier polygon for v splines
FALS
'alh . . .
® Dyn and Micchelli [Dyn et al. 85] have shown that the existence of non-negative local support basis
e functions which sum to one follows - for geometrically continuous spline curves, i.e. spline curves
‘f' oo with continuous differential geometric invariants like curvature, torsion, etc. - from the total
:;' positivity of the connection matrix. For v splines the total positivity of A, has the meaning
j‘-,-; v; 20 and that is exactly the range for the tension parameters v; covered by the minimum norm
e
A I The first local basis for GC? splines was developed by Nielson and Lewis in 1975. [Lewis 75] A local
. basis for uniformly-shaped f splines was given in [Barsky 8/] and for discretely-shaped § splines in
vl [Burtels et al. 84], see also [Cohen 87].
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i
o
o0 o .
a‘:' characterization of v splines. [Nielson 74, 86] For v,=0 we obtain from (9) the y, range:
::. : y;< 1 (remark: v, =0y, =1 isthe usual C?cubic spline). But working with y splines we know
B>, that y,> 1 are possible as well. Indeed. if we request positive design parameters, i.e. y, > 0, so that
": such important properties like the convex hull and the variation diminishing property are given, (8)
"’I.- 1) .
Y vields to
AN
) \" 2
$.': [=1,...,.\7—'1 Vl > —T(l+ql) (10)
. 1
:‘-::. Hence not only positive tension values but v, values in the range given by (10) guarantee positive
ot design parameters (remark: v, < 0 yields to y,> 1) and therefore properties like the two mentioned
\ - above. This result goes conform with work done by Barsky [Barsky 84] who extended the theory
% of v splines by identifying certain ranges for the v,’s that guarantee a unique solution of the in-
ol terpolation problem. In the special case of a uniform, an equidistant parametrization, ie. ¢;= I,
_u';{: Barsky gives the range v, > —4 which is also given by (10).
N
3
L]
o
LS ve
oo III. Tau-spiines
ﬂ"‘ .
"
‘A Hagens's t splines are solutions of the minimization of (2) over the space H¥ for K= 3 subject
?,: to the interpolation conditions
- .
:"_ [=0,.,N Xty = X,
T and one of the following end conditions (L =KX, ..., 2(K — 1))
s . e ~1— = SR
- i) x(2K-1 L)(’o) _ Xf)zK -1 x(2K-1 L)(fN) - X(I?JK -0
o . L 2K—-1— Ly, ,— 2K-1-L
*5.* ii.) X = vop-1-1X" Y.,  XPay = "N,2K—1—Lx( (8
” . .
;!'. i.) X(ty) = X(zy), X@K1=Dyey = x@K=1=0y
1 ]
1 I - QK=-1~-L
5) XDy = XOUR) = (voaxm1-2 = vwar-1-0 X P)
‘o 7 splines fulfill at any knot ¢, (/=1,.., N~ 1) the continuity conditions
o
W
L X = Xap) () |
g 1
~ -
v X'(i) = X'(f) (12)
. O |
- X"(f) = X' (13) |
o X"t = X"7) + v X'() (14) .
f- Xt = X' - v, X)) (15)
K- Because the curvature of a spatial curve is given by (7) and the torsion by
Ie w
_ XXXy
- X x X
Lt N

we see that a r spline is curvature and torsion continuous.

RPN
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(0
k) A
J.‘ )
e
| ]
P -
o The connection matrix of a general torsi j f two curv f
NN he connection matrix of a general torsion continuous contact of two curve segments o
\:\' R (d=23) of degree n (n=4) - we speck about geometric C? continuity . briefly GC? continuity
NN - is gven by [Dyn et al. 85, [Lasser.Eck 38]:
v
~.
o™
(‘ 1 0 0 0
0 w 0. 0
) = 1 3
L U wiy w3 o J
N Comparing Ages with (11) to (14). we see that ¢ splines do not take advantage of all shape pa-
1 rameters offered by the concept of torsion continuity. They rather form a subset of the set of GC
- cOntinuous curves. 1
) Furthermore we like*to mention that r splines and visual C? continuous curves, briefly VC? con-
: tinuous curves, i.e. curves having contact of order r [ Geise 62] with r= 3| are spanning two ‘almost
s totally separated’ subsets of the set of GC continuous curves. The connection matrix of two curve Y
N segments having contact of order 3 is given by [Dyn et al. 85], [Lasser 88):
) \.,b = 2 gl }(
1 0 O 0
SO ] — 0 Ul 0 0
b::-: A'VC:s - 0 1)2 Ulz 03
- 0 vy vy v
"
'.:J. and therefore. comparing A, with Ace,  FC? continuous curves form a subset of the set of

G continuous curves, and, companng Ay with (11) to (14), we see that the only curves beeing
= splines as well as V' continuous curves are the usual C? continuous curves.

L]
At

a
’d

»

o
L
N

::A_: To find a Bezier representation of 7 splines we insert (3) for =35 into (I11) to (15) and get as
( ’ continuity conditions of the Bezier representation (Figure 2)
i
N~
Y (1 + apb; = q;bs;_; + bgyy, (16)
o2
N
~y (I + ygpbs;_y = yq;b5;_5 + 54 (17.1)
:‘ (1 + 4D bspyy = qrsy + vibsy, (17.2)
e
- ‘ )
:: (I + d/qpbsp_y = 5;q;bs;_; + ¢; (18.1
L% .
?-. (O + €9 s; = ¢q1e; + 5,e7' (18.2)
5 {
o (&7 + a)bspy = qref + ebspyy (18.3)
b {
° (1 + p@a)bsi_y = prarbs; o + 17 (19.1)
’ (o1 + oane; = oiqf7 + oty (19.2)
[/
o
y X (o; + wd)e] = mqt; + off (19.3)
/
] v
P (t7 + 4D bspey = ¢ + tbsyq (19.4)
A
“a
oy
N B-Spline-Bezier Representation of Tau-Spiines 6
o
R
L J
‘ ":J
-r:j

. "-.‘-1'-.'-'~"}‘-3-'-' YR ~'\}~}"" Vadya- B, N e SOl 7

- "
’\) '» M ' m L LA A e L AL | S .Q,Q.O -‘latg‘:'.i L ,l.,,l.‘ l.l’:‘“.. ",

P O L) I h. Y ‘a‘ .t M‘l»" .'t ..... Y . L) v'l

a3



"=,
p e
"’l

e
o h e

e

i
WA *

L3
x

P
oy

£0N
Wt

”.

AL
Ve

‘r'v.‘- _'v ..'. “'.

',"-Q'.'_.‘

|
1]

. v -‘,’ DA
A

-~ "‘ ‘\ g ' \
L i':fl'&l.o? A l:“'l

where

Y
"= A
and
= i
and
. 1
0y = Rl
! 1 Y (21)
| + 3 Vo
([ - (7[)- 3
_ 1 )
8[ ] | ‘l’ A[ (-“
- i
and
Py = 1 (22)
39 — Ry ‘
2 ]
o = 4 q; (23)
Iy — 3 + (T,—S,):I—
Tl q; 3 - T (24
with
3
dgp =1 + l 3 ‘—ég v
R (L+q) =
b ! A;
1 + T3 V12
(1 +4q)
3
l—q, 4
Al—q) + — 3 35 L
s (t+q) =
- 29 4
1 + 3 TV[_z
(1 + q,)
3
- g q; Af v
- 1
T = (1 +q,)3 24
! = 2 A
9 !
1l + — 373 "I
(I+4p

(20) to (24) allows the evaluation of the design parameters of the Bezier representation of a 7 spline
and by this the Bezier representation is given. The design parameters are of course not independent
of cach other any longer. This is obvious because two shape parameters are given by (11) to (15)

but tive are given by (16) to (19). The dependences are

9161
1 - (1 - (]I)SI

8 = resp. g =

B-Splinc-Bezier Representation of Tau-Splines

Y0 X

q; + (1—q)6;
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Figure 2.  Construction of the Bezier polygon for a 7 spline

ancd

1 1+ 4{1(5,)(5[+ (S[)O’[ ros ((5, + t[,&,)é,p[ (26)

- - RYZN [+3 = B T ” -

P 9y 3l + qple; — (O['Ft][tl[) P { (1 +q[)01p1 - +c]10[)(51+0[) )

. = ((5/ + (]/CI)S[T! resp . = __l— (€I+ q/)(SI'J."' (51)0/ (_\7)

! Ml o+ gty — (£[+ ql)(£[+ 0[) ’ ! & 31+ qpoep — (lj[ + (]1.‘1‘:) -

£+ g0 (1 + qd)et

o (e7+ a0 resp.  py = qr0)€17; 29)

((l +t]l(51)51 (8[+(][)(j[

That means if an interpolating = spline is given, re. v,, and v,; values, then the design parameters
of the Bezier representation of the t spline have to be determined in such a way, that they fulfill the
equations (23 to (28) And the equations (23) to (28) are valid if the design parameter are deter-
muned by (20) to (24). On the other side, the design parameters of a torsion continuous quintic
Bezier spline curve have to fulfill the conditions (25) to (28) to make the quintic Bezier spline beeing
an interpolating r spline in Bezier representation. That means eithier 6, or ¢, can be chosen as
independent design parameter and. let’s sav in case of d,, ¢, has to be determined by (25) as
¢, = £,44,) and in addition either p,; or o, or 1, can be chosen as independent design parameter
and. e.g. in case of p, o, and 7, have to be determined by (26) and (28) as ¢, = o,(p; and
s, = tdp,. If the design parameters of the Bezier representation are determuned in this way. then
the Bezier spline i< equivalent to an interpolating + spline having the property of minimizing (2)
and we can calculate the v,, and v, that means the point weights detining the jumps of the third
and fourth derivatives in the knots of the r spline by

2
3 P 3 (I+qp 1
v = ——A’(1+41)(—-’5, -D resp. via = E—E—(T—l)

B-Spline-Bezier Representation of Tzu-Splines 8
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o
:':: and 24 A 1 1
h \:-' vio = ‘.. (I ""L]/)_ (1 +(7[)(1 - 3(1/\ - (_—+ (]/)( N -'3({‘])
N 3/ o .l
R \'..
e
o resp.
- o2 Ul T e 2
~,';:: A Al di 51+6v)( ”/Tq’—z)+ ‘4/(1_[]’) g+ 0y
| - Sy !
1 \'q
! xh. "‘Qp
Y A TCs
¥ \.h. 2
v ) 24 (1+q 5 gr 9
i ‘ o= Sy | At =3 = (e )
A A ik
!
.‘:" and so on.
-
\--

1
T

The + splines form a subset of the set of GC? continuous quintics. The B-spline-Bezier represen-

_‘. ;H'

e tation of Tau splines is theretore identical with the B-spline-Bezier representation of GC? contin-
_,.:',; uous quintics which was given in [Fck &87], [Lasser.Eck 88]. with the restriction that for a = spline
f_\-’_' the design parameters y,, d,. ¢;. p;, 6, and 7, can not be chosen independently of each other as in
e case of the GC® continuous quintic spline curve. We rather have to set y, =1 and have to choose

JAY b e, pno, and 1, according to the dependences @ven by (25) to (23).
Loy

"_n.j Let’s discuss now the positivity of the design parameters for t splines. The dependences (23) to
] -':.. (2S) imply the following:

N

Because of (25), positivity of §, = d,(¢,) needs

> "P

l“
a
v
.
—

R 0<e< incase of g, <l = A, < A,
e L
"y e >0 mmcaseof ¢,=21 < A, = A,
K
~ On the other side, positivity of ¢; = ¢{J;) needs
oy >0 incaseof ¢, <1 « A; <€ A,
“u
. . - q .
o 0 <o<-l———q— incaseof ¢,>1 = A, > A,
- —q
[ ]
' .- "I .o .
.rf'j R Because of (27) and (28), positivity of p, = p(z,) and of ¢, = ¢,(1;) needs
1 .r_‘:.r
! (e + 4p(e + 6
AN
-f--l . 3(1 + q/)il
1200V ..
® On the other side, because of (26) and (27), positivity of p, = p/c,) and of 1,= 1,5, needs
NEA
_n:t- 45[ + qreq
o 31+ q)
::'::', and because of (26) and (2%), positivity of o,=6/p,) and of r,=1,(p,) needs
. _ (I+ql(5/)(£[+(5,)
| O >
,.’,'i: P .3(1 + (][)45/
- ':t.
'.\.ﬁ B-Splinc-Bezier Representation of Tau-Splines 9
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The minimum norm characterization of t splines works for non-negative tension parameter v,
and v;, only. Asfor v splines we can extend the theory of t splines by requesting the positivity
of the design parameters.

Because of (20) and (21). for ¢,>0 and 6,>0 the tension parameter v,, has to be within the

range
2
7 3 (l+¢]ll 3 ]
via > mﬁx{-(“f‘h)‘—, - (29)
' A qr A,j
that means
(1+49)" 3 .
V2 T T T A fa>1 = & >4,
9
vi2 > ‘—Z\' fq=1 < 48 =4,
i
3

fq<l = 8 <4
Thus not only non-negative but also certain negative v,, values are allowed.

Because of (22) to (24), for p; >0, ;>0 and 1,>0 the tension parameter v;; has to be within
the ranges given by (30).

24
vip < F[(1+41)3 + 9] (30.1)
]

3402 A
24 (’.+q[) <+ '(1—ql+ql) 3 VI.Z
vy > - X (30.2)
4 2+ ! ——[v
L+q 3 712

First v,, has to be chosen such that ¢, >0 and 6,> 0 is fulfilled, i.e. v,, has to be chosen within
the range given by (29), than v,; can be chosen within the range given above.
For g, =1 (30) vields for emmple to

< 2_§ (8 + A[V,‘z)
[ 4

Barsky [Barsky 847 extended the theory of v splines by identifving certain ranges for the v,’s that
zuarantee a unique solution of the interpolation problem. This idea allows especially the consider-
ation of different end conditions. The same can be done for r splines, and is indeed the topic of
actual research.

Furthermore the idea of [ Salkauskas 75] and [Foley 86,87] of introducing interval weights can be
picked up to create interval weighted geometric spline curves? minimizing

ip,f Xt dr + ZZV,LHX(L)U,)]] dr .
= Y

I=0L=1
For K =3 we get interval wexghted 7 splines. Actually we are working on this too.

? These interval weighted geometric spline curves are in general not curvature, torsion, etc. continuous.

B-Spline-Bezier Representation of Tau-Splines 10
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