Phase-Shift Parameters and Small Vibrations in Resonant Optical Cavities

REPORT DOCUMENTATION PAGE

a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS			
-a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT A Statement; public release; distribution unlimited.			
2h DECLASSIFICATION / OOWNGRADING SCHEDULE					
4 PERFORMING ORGANIZATION REPORT NUMBER(S) NWC TP 6776		5 MONITORING ORGANIZATION REPORT NUMBER(S)			
6a NAME OF PERFORMING ORGANIZATION Naval Weapons Center	6b OFFICE SYMBOL (If applicable)	7a NAME OF MONITORING ORGANIZATION			
6c ACDRESS (City. State, and ZIP Code) China Lake, CA 93555-6001		7b. ADDRESS (City, State, and ZIP Code)			
8a VAME OF FUNDING SPONSORING orgainization Naval Weapons Center	8b OFFICE SYMBOL (if applicable)	9. PROCUREME	INSTRUMEN	NTIFICAT	MBER
BC ADDPESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
China Lake, CA 93555-6001		$\begin{aligned} & \text { PROGRAM } \\ & \text { ELEMENT NO } \\ & 61101 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO } \\ & \text { DD } \end{aligned}$	$\begin{aligned} & \hline \text { WORK UNIT } \\ & \text { ACCESSION NO } \\ & 782239 \end{aligned}$

11 TITLE (Include Security Classification)
PHASE-SHIFT PARAMETERS AND SMNLL VIBRATIONS IN RESONANT OPTICAL CAVITIES (U)

\qquad											
$\begin{array}{r} 13 \mathrm{~A} \text { TYE } \\ \quad \text { Fina } \\ \hline \end{array}$		$\begin{aligned} & 13 \mathrm{~B} \text { TIME COVERED } \\ & \text { FROM } 85 \text { May } \text { To } 85 \text { Sep } \end{aligned}$	14 DATE OF REPORT (Year, Month, Day) 1987 , September	$\underset{15}{15 \text { PAGE COUNT }}$							
T6 OPPLEMENTARY NOTATION											
17. Cosati codes		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)Passive Cavity Reflectometers, Phase-Shift Method, Lasers,High-Reflectance Mirrors, Precision CharacterizationTechniques									
FFELD	GROUP										
$\frac{14}{20}$	02										
	20 05 19 ABSTRACT (Continue on reverse if necessary and identify by block number)										
An exact analysis has been performed on a three-mirror passive cavity reflectometer. An expression is derived to determine the reflectance of the sample mirror including a random phase shift caused by thermal instabilities in the cavity. This exact expression is compared to a numerical analysis derived earlier for the same thermal instability. The comparison shows variations of up to several parts in 10^{4} for low-loss dielectric mirrors. An error analysis is presented that quantifies the error of a three-mirror cavity.											
20 2STPIBUTION AVAILABILITY OF $\triangle B S T R A C T$D UNCLASSIFFEDUNLIMITED \square SAME AS RPT \square DTIC USERS			21 ABSTRACT SECURITY CLASSIFICATIONUnclassified								
22a RANE OF RESPONSIBLE INDIVIDUAL D. M. Ross			2/h TELEPHONE (Include Ared COde) (619) $939-3965$22C OFFICE SYMBOL Code 3312								
DOFORM 1473, 84 MA		83 $\triangle P R$ edition may be used until exhausted All other editions are obsolete	Untlilexhausted bbsolete	IFICATION OF THIS PAGE \qquad overnment Drinting office: 1906-607-04 a UNCLASSIFIED							

CONTENTS
Introduction 3
Theory 3
Error Analysis for Three-Mirror Configuration 14
Summary 21
Appendixes:
A. Derivation of the Finite Sum in Equation 3 23
B. Derivation of $A^{*} A$ 27
C. Reduction of Variables in Equations 20 and 21 31
D. Proof of $A E-G C=0$ 39

INTRODUCTION

Phase-shift (References l through 5) and ring-down (References 4 and 5) methods of determining the reflectance of mirrors in a high Q optical cavity possess high sensitivity and precision. In maintaining this precision, the errors in the measurement must be minimized. The errors include--but are not limited to-(1) mode matiching the input source to the optical cavity, (2) stable input source in power and waveform over the time required to make measurement, (3) in terms of loss, cavity mirrors equal to or better than the unknown mirror's losses, and (4) thermal stability of the cavity. Rahn (Reference 5) examined an optical cavity and included a random thermal fluctuation in the analysis to explore the range of fluctuations that can be tolerated. He was not able to evaluate two time-averaged integrals exactly but derived an expression for the loss on a numerical approach. Starting from the same assumptions as Rahn, we will derive an exact solution to a passive optical cavity, including the thermal fluctuation. Also, an error analysis of the phase-shift method is derived and examined.

THEORY

Consider an optical cavity consisting of two mircors with their symmetry axes on a common line, as in Figure 1 . Once the reflectance of one of the mirrors is known, the other can be calculated. A phase shift can be uniquely associated with the product of the cavity mirror reflectances:

$$
\begin{equation*}
R_{t}=R_{1} R_{2} \tag{1}
\end{equation*}
$$

where R_{t} is the total reflectance of the cavity and R_{1} and R_{2} are the respective reflectance values of the cavity mirrors.

FIGURE 1. Two-Mirror Passive Cavity. Injection laser source can be short pulsed laser or modulated-CW laser source.

Another configuration--a three-mirror cavity--will be discussed in the remainder of this paper. In a chree-mirror passive cavity, the optimum position of the test mirror is at the vertex of the triangle defined by the three mirrors. In the configuration of Figure 2 , the total reflectance of the cavity is

FIGURE 2. Three-Mirror Passive Cavity. Advantage over cavity in Figure 1 is in one-round trip test Mirror 3 is sampled twice, i.e., $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}{ }^{2}$.

$$
\begin{equation*}
R_{t}=R_{1} R_{2} R_{3}^{2} \tag{2}
\end{equation*}
$$

where R_{3} is the test mirror reflectance. R_{3} is squared because in one round trip the test mirror is sampled twice. Thus, R_{3} may be calculated if R_{1}, R_{2}, and R_{t} are known. To obtain high-reflectance values of R_{3}, high-reflectance end mirrors are required to aid in minimizing the error of the measurement. The effects of errors will be discussed later.

To model the cavity exactly, careful attention must be given to the input wave and its representation. The representation of the input laser power used by Rahn (Reference 5) will be the starting point in this analysis. This power is described by

$$
\begin{equation*}
I(t)=I_{0} \sin ^{2} \omega t=\frac{1}{2} I_{0}(1-\cos 2 \omega t) \tag{3}
\end{equation*}
$$

where I_{0} is the output power of the laser, $f(\omega=2 \pi f)$ is the amplitude modulation frequency of this laser determined by a suitable intensity modulator, and t is time.

The passive cavity is designed to allow oscillation of the cavity modes defined by $f_{o}=n c / 2 L$, where f_{o} is the optical frequency of the injection source (units $=\sec ^{-1}$), n is any integer (on the order of 10^{6} for optical frequencies injected into cavities with lengths from centimeters to meters), L is the length of the cavity in meters, and c is the speed of light in meters per second. If the source is a laser possessing a mode bandwidth, a change in cavity length will not quench the oscillation but will select a slightly different mode. If the length of the cavity changes beyond an integral number of half wavelengths or if only one mode is available from the laser, the oscillation may be intermittent. This will lead to errors in measurement of the cavity loss. Care in system design is necessary to prevent intermittent operation.

The beam is free to propagate through the cavity subject to losses from the mirrors. Since the modulation of the beam changes its phase with time, we can expect that as the beam traverses through the cavity in the course of one round trip, the relative phase changes by the amount (References 6 through 8)

$$
\phi_{r}=\omega \tau=(2 \pi f)\left(\frac{2 L}{c}\right)=\frac{4 \pi f L}{c}
$$

for a single mode. The resulting Intercavity intensity is therefore a summation of the intensities of all modes oscillating in the cavity. Each of these modes is subject to reductions in intensity because of the cavity losses. If Equation 3 is representative of the modulation, this summation over all modes can be expressed as (References 5 and 8)

$$
\begin{equation*}
I=I_{o} \sum_{n=0}^{\infty} R_{t}^{n} \sin ^{2}(\omega t+n \omega \tau) \tag{3a}
\end{equation*}
$$

where $\tau=2 L / c$ and R_{t} is the total cavity reflectance. This summation can be evaluated by expressing the trigonometric function in its complex exponential form, so that the summation takes the form of a geometric series. In the case of Equation 3, the appropriate trigonometric power relation is applied. Details of this process are included in Appendix A. Thus,

$$
\begin{align*}
I= & I_{0} \sum_{n=0}^{\infty} R_{t}^{n} \sin ^{2}(\omega t+n \omega \tau)=I_{0} \frac{1}{2\left(1-R_{t}\right)} \\
& +\frac{1}{2} \frac{(\sin 2 \omega t)\left(R_{t} \sin 2 \omega \tau\right)-(\cos 2 \omega t)\left(1-R_{t} \cos 2 \omega \tau\right)}{1-2 R \cos 2 \omega \tau+R_{t}^{2}} \tag{3b}
\end{align*}
$$

The power and the phase angle of the transmitted beam I_{t} can be related since it follows a pattern similar to that of the injected beam. Thus,

$$
\begin{align*}
& I_{T} \propto \frac{I_{0}}{2}[1-\cos (2 \omega t+\phi)] \\
& \quad \propto \frac{1}{2} I_{0}+\frac{1}{2} I_{0}(\sin 2 \text { 人⿻t } \sin \phi-\cos 2(\Delta t \cos \phi) \tag{4}
\end{align*}
$$

Now the time dependence can be eliminated by equating the appropriate time-related coefficients in Equations $3 b$ and 4. Thus, equating the coefficient of $\sin 2 \omega t$,

$$
\begin{equation*}
\sin \phi=\frac{R_{t} \sin 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \tag{5}
\end{equation*}
$$

Equating the coefficient of cos $2 \omega t$ in Equations $3 a$ and 4,

$$
\begin{equation*}
\cos \phi=\frac{1-R_{t} \cos 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \tag{6}
\end{equation*}
$$

So that

$$
\begin{equation*}
\tan \phi=\frac{\sin \phi}{\cos \phi}=\frac{R_{t} \sin 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau} \tag{7}
\end{equation*}
$$

This is the result if no random thermal fluctuations are included in the analysis.

To examine the effect of a random phase induced by a thermal variation in the cavity, the amplitude rather than the intensity must be used. The amplitude function is related to intensity I by

$$
\begin{equation*}
I=A^{*} A \tag{8a}
\end{equation*}
$$

as is also

$$
\begin{equation*}
R_{t}=r * r \tag{8b}
\end{equation*}
$$

where A is the electric field amplitude of the laser beam, r is the reflectivity coefficient, and R_{t} as before is the reflectance of the cavity.

Rahn (Reference 5) suggests that a random phase shift δ could range from $-\pi$ to $+\pi$; he used numerical averaging to obtain an expression for \langle tan $\phi\rangle$. Increased precision may be realized if the
averaging evaluation of tan ϕ can be done exactly. Starting with Equation 4 of Reference 5 for the transmitted intensity,

$$
A(t)=A_{0} t_{1} t_{2} t_{3} \sum_{p=0}^{\infty}(r)^{p} e^{i \delta p} \sin [\omega(t-p \tau)]
$$

where $r=r_{1} r_{2} r_{3}^{2} ; t_{1}, t_{2}$, and t_{3} are the reflection and transmission coefficients, respectively; p is the number of passes through the cavity; δ is the round-trip phase shift; and τ is the time required for a photon to make a single round trip in the cavity. Summing the infinite series gives

$$
\begin{align*}
& A(t) \sim \frac{\sin \omega t}{2}\left[\frac{1}{1-r e^{i(\delta+\omega \tau)}}+\frac{1}{1-r e^{i(\delta-\omega \tau)}}\right] \\
& +\frac{1 \cos \omega t}{2}\left[\frac{1}{1-r e^{i(\delta+\omega \tau)}} 1-\frac{1}{1(\delta-\omega \tau)}\right] \\
& =\frac{\sin \omega t\left(1-r_{1} r_{2} e^{i \delta} \cos \omega \tau\right)-\cos \omega t\left(r_{1} r_{2} e^{i \delta} \sin \omega \tau\right)}{1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}} \tag{9}
\end{align*}
$$

Squaring to get the transmitted power,

$$
\begin{align*}
I_{T}=|A(t)|^{2} \sim & \frac{\cos 2 \omega t\left(r \cos \omega \tau \cos \delta-\frac{1}{2}-\frac{1}{2} r^{2} \cos 2 \omega \tau\right)}{4 r^{2} \cos ^{2} \delta-4 \cos \omega \tau\left(r+r_{3}\right) \cos \delta+4 r^{4}} \\
& \frac{-\sin 2 \omega t\left(r \sin \omega \tau \cos \delta-r^{2} \sin \omega \tau \cos (\omega \tau)\right.}{} \tag{10}\\
& -2 r^{2}+4 r^{2} \cos ^{2} \omega \tau+1
\end{align*}
$$

details of which are in Appendix B. Equating trigonometric coefficients in Equations 4 and 13 for the transinited power gives expressions for $\sin \phi$ and cos ϕ,

$$
\begin{equation*}
\sin \phi=\frac{2\left(r^{2} \sin \omega \tau \cos \omega \tau-r \sin \omega \tau \cos \delta\right)}{4 r^{2} \cos ^{2} \delta-4 \cos \omega \tau\left(r+r^{3}\right) \cos \delta+4 r^{4}-2 r^{2}+4 r^{2} \cos ^{2} \omega \tau+1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \phi=\frac{\left(1+r^{2} \cos 2 \omega \tau\right)-2 r \cos \omega \tau \cos \delta}{4 r^{2} \cos ^{2} \delta-4 \cos \omega \tau\left(r+r^{3}\right) \cos \delta+4 r^{4}-2 r^{2}+4 r^{2} \cos ^{2} \omega \tau+1} \tag{12}
\end{equation*}
$$

Both expressions are of the form

$$
\begin{equation*}
F(\delta)=\frac{a \cos \delta+b}{c \cos ^{2} \delta-d \cos \delta+e} \tag{13}
\end{equation*}
$$

where
$c=4 \mathrm{r}^{2}$
$d=4 r\left(1+r^{2}\right) \cos \omega \tau$
$e=1+4 r^{2} \cos ^{2} \omega \tau+r^{4}-2 r^{2}$
or

$$
e=\left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau
$$

For sin ϕ,
$a=-2 r \sin \omega \tau$
$b=2 r^{2} \sin \omega \tau \cos \omega \tau$
For $\cos \phi$,
$a=-2 r \cos \omega \tau$
$\mathrm{b}=1+\mathrm{r}^{2} \cos 2 \omega \tau$

Equations 11 and 12 rewritten in the form of Equation 13 must be integrated between the limits 0 to 2π to obtain an average value of tan ϕ. Evaluation of these integrands is by partial fractions. The decomposition of the denominator to produce partial fractions is accomplished by noting that

$$
=c \cos ^{2} \delta-(h+k) \sqrt{c} \cos \delta+h k
$$

where h and k are coefficients that satisfy $d=(h+k) \sqrt{c}$ and $=h k$.
These equations yield

$$
k^{2} \sqrt{c}-k d+e \sqrt{c}=0
$$

and

$$
h=\frac{d}{\sqrt{c}}-k
$$

so that

$$
k=\frac{1}{2 \sqrt{c}}\left(d+\sqrt{d}^{2}-4 e c\right) \quad, h=\frac{1}{2 \sqrt{c}}\left(d-\sqrt{d^{2}}-4 e c\right)
$$

To find the partial fractions, we first write

$$
\frac{a \cos \delta+b}{c \cos ^{2} \delta-(h+k) \sqrt{c} \cos \delta+h k}=\frac{A}{\sqrt{c} \cos \delta-h}+\frac{B}{\sqrt{c} \cos \delta-k}
$$

where A and B are unknown coefficients, then

$$
a \cos \delta+b=A(\sqrt{c} \cos \delta-k)+B(\sqrt{c} \cos \delta-h)
$$

and evaluate at $\sqrt{c} \cos \delta=\mathrm{k}$ and $\sqrt{c} \cos \delta=\mathrm{h}$ separately. These yield

$$
\begin{equation*}
A=\frac{-(a h+b \sqrt{c})}{\sqrt{d^{2}-4 e c}} \tag{14a}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{a k+b \sqrt{c}}{\sqrt{d^{2}-4 e c}} \tag{14b}
\end{equation*}
$$

We integrate

$$
\begin{align*}
\langle\sin \phi\rangle= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a_{1} \cos \theta+b_{1}\right) d \theta}{c \cos ^{2} \theta-d \cos \theta+e}=\frac{A_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{c} \cos \theta-h} \\
& +\frac{B_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{c} \cos \theta-k}=\frac{A_{1}}{\sqrt{h^{2}-c}}+\frac{B_{1}}{\sqrt{k^{2}-c}} \tag{15a}
\end{align*}
$$

with similar results for

$$
\begin{equation*}
\langle\cos \phi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a_{2} \cos \theta+b_{2}\right) d \theta}{c \cos ^{2} \theta-d \cos \theta+e} \tag{15b}
\end{equation*}
$$

so that

$$
\begin{equation*}
\langle\tan \phi\rangle=\frac{\langle\sin \phi\rangle}{\langle\cos \phi\rangle}=\frac{A_{1} \sqrt{k^{2}-c}+B_{1} \sqrt{h^{2}-c}}{A_{2} \sqrt{k^{2}-c}+B_{2} \sqrt{h^{2}-c}} \tag{16}
\end{equation*}
$$

This becomes

$$
\begin{equation*}
\langle\tan \phi\rangle=\frac{r^{2} \sin 2 \omega \tau}{1-r^{2} \cos 2 \omega \tau}=\frac{R_{t} \sin 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau} \tag{17}
\end{equation*}
$$

the details of which appear in Appendixes C and D. Notice this is exactly equivalent to Equation 7. Thus, random phase shifts are not a major source of error over the time interval of measurement of ϕ.

An expression for $\mathrm{R}_{3}-$-the unknown mirror's reflectance--can be derived starting from Equation 17. Using a common denominator and solving for R_{t} gives

$$
\begin{equation*}
R_{t}=\frac{\langle\tan \phi\rangle}{\cos 2 \omega \tau\langle\tan \phi\rangle+\sin 2 \omega \tau} \tag{18}
\end{equation*}
$$

Using Equation 2, solving for R_{3}, and substituting into Equation 18 for R_{t} gives

$$
\begin{equation*}
R_{3}=\left[\frac{\langle\tan \phi\rangle}{R_{1} R_{2}(\cos 2 \omega \tau\langle\tan \phi\rangle+\sin 2 \omega \tau)}\right]^{1 / 2} \tag{19}
\end{equation*}
$$

The cavity parameters $4 \pi f L / c$ substitute for $\omega \tau$; thus

$$
\begin{equation*}
R_{3}=\left[\frac{\langle\tan \phi\rangle}{R_{1} R_{2}\left(\langle\tan \phi\rangle \cos \frac{8 \pi f L}{c}+\sin \frac{8 \pi f L}{c}\right)}\right] 1 / 2 \tag{20}
\end{equation*}
$$

If the cavity satisfies $8 \pi f L / c \ll 1$ and $R_{1} \sim R_{2} \sim 1$, then

$$
\begin{equation*}
R_{3} \simeq\left(\frac{\langle\tan \phi\rangle}{\langle\tan \phi\rangle+\frac{8 \pi f L}{c}}\right)^{1 / 2} \tag{21}
\end{equation*}
$$

a good approximation for very low-loss mirrors.

A comparison of the sample reflectance R_{3} derived by the numerical analysis of Rahn (Reference 5) and the exact expression, Equation 20, is given in Figure 3. The expression used by Rahn is

FIGURE 3. Comparison of the Numerical Analysis by Rahn (Reference 5) and the Exact Analysis for the Same Cavity Parameters, $R_{1}=R_{2}=$ $0.998, f=100 \mathrm{kHz}$, and $L=3.864 \mathrm{~m}$. Shows sample reflectance versus measured phase angle between injected and transmitted wave.
where L is the round-trip length of the cavity. Recall that the length used in Equation 20 is defined as the length of the cavity.

Notice that the numerical analysis gives a lower sample reflectance than the exact expression, but differences are not seen in R_{3} until the fourth decimal place. The numerical analysis of Rahn is adequate unless one requires higher precision, 1 part in 10^{4} or better. This is the situation for characterization of state-of-the-art low-loss mirrors used in laser gyros and low-gain lasers. The high precision is also useful for detecting very small changes in the performance of an optical coating under laser loading when determining functional lifetime.

ERROR ANALYSIS FOR THREE-MIRROR CONFIGURATION

In order to evaluate the total error in the value of reflectance of a sample mirror in a passive cavity, errors must be included from four sources: errors from (1) modulation frequency; (2) cavity length; (3) cavity end-mirror; and (4) phase in the phase detector. Although several of these contribute relatively insignificantly to the overall error, the error analysis nevertheless includes them, both as reference for future systems and for the sake of completeness. Future advances in measuring systems may reduce some errors to the point that others are increasingly significant. Existing systems can have their total errors calculated without concern that error sources have become more (or less) significant.

For

$$
\begin{aligned}
& \tan \phi=\frac{R_{t} \sin (2 \omega \tau)}{1-R_{t} \cos (2 \omega \tau)} \\
& \frac{\partial}{\partial \phi}(\tan \phi)=\frac{\partial}{\partial \phi} \frac{R_{t} \sin (2 \omega \tau)}{1-R_{t} \cos (2 \omega \tau)}
\end{aligned}
$$

So that

$$
\sec ^{2}(\phi)=\frac{\left(1-R_{t} \cos 2 \omega \tau\right) \sin 2 \omega \tau+R_{t} \sin 2 \omega \tau \cos 2 \omega \tau}{(1-R \cos 2 \omega \tau)^{2}} \frac{\partial R_{t}}{\partial \phi}
$$

and

$$
\begin{align*}
& \frac{\partial R_{t}}{\partial \phi}=\left(\frac{1-R_{t} \cos 2 \omega \tau}{\cos \phi}\right)^{2} \\
& \times \frac{1}{\left(1-R_{t} \cos 2 \omega \tau\right) \sin 2 \omega \tau+R_{t} \sin 2 \omega \tau \cos 2 \omega \tau} \\
& \frac{\partial R_{t}}{\partial \phi}=\left(\frac{1-R_{t} \cos 2 \omega \tau}{\cos \phi}\right)^{2} \csc (2 \omega \tau) \tag{22}
\end{align*}
$$

Since we are concerned with the error associated with the sample mirror rather than that of the system, we must consider the previous equation $R_{t}=R_{1} R_{2} R_{3}^{2}$, where R_{1} and R_{2} are the system mirrors and R_{3} is the sample, so that

$$
R_{3}=\frac{\sqrt{R_{t}}}{\sqrt{R_{1} R_{2}}}
$$

and

$$
\begin{align*}
\frac{\partial R_{3}}{\partial \phi} & =\frac{1}{\sqrt{R_{1} R_{2}}} \frac{1}{2 \sqrt{R_{t}}} \frac{\partial R_{t}}{\partial \phi} \\
& =\frac{1}{2 R_{1} R_{2} R_{3}} \frac{\partial R_{t}}{\partial \phi} \tag{23}
\end{align*}
$$

The chain rule applies for the variables in the equation relating to the frequency and delay time of the system; also, so that the total error is

$$
\begin{aligned}
\Delta R_{3}= & \frac{1}{2 \sqrt{R_{1} R_{2} R_{t}}}\left(\frac{\partial R_{t}}{\partial \phi} \Delta \phi\right)^{2}+\left(\frac{\partial R_{t}}{\partial \omega} \Delta \omega\right)^{2}+\left(\frac{\partial R_{t}}{\partial \tau} \Delta \tau\right)^{2} \\
& +\left(\frac{\partial R_{t}}{\partial R_{1}} \Delta R_{1}\right)^{2}+\left(\frac{\partial R_{t}}{\partial R_{2}} \Delta R_{2}\right)^{2}
\end{aligned}
$$

Evaluating the partial differentials gives the following:

$$
\begin{align*}
& \frac{\partial R_{t}}{\partial \tau}= \frac{\partial}{\partial \tau}\left[\frac{\tan \phi}{\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi}\right] \\
&= \frac{-\tan \phi(2 \omega \cos 2 \omega \tau-2 \omega \sin 2 \omega \tau \tan \phi)}{(\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi)^{2}} \\
&=\frac{-2 \omega \tan \phi(\cos 2 \omega \tau-\sin 2 \omega \tau \tan \phi)}{(\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi)^{2}} \tag{24}\\
& \begin{aligned}
\frac{\partial R_{t}}{\partial \omega}= & \frac{\partial}{\partial \omega}\left[\frac{\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi}{}\right. \\
= & \frac{-\tan \phi(2 \tau \cos 2 \omega \tau-2 \tan \phi}{(\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi)^{2}} \\
= & \frac{-2 \tau \tan \phi(\cos 2 \omega \tau-\sin 2 \omega \tau \tan \phi)}{(\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi)^{2}}
\end{aligned}
\end{align*}
$$

Now

$$
\begin{aligned}
&\left(\frac{\partial R_{t}}{\partial \omega} \Delta \omega\right)^{2}+\left(\frac{\partial R_{t}}{\partial \tau} \Delta \tau\right)^{2} \\
&=\frac{4 \tan ^{2} \phi(\cos 2 \omega \tau-\sin 2 \omega \tau \tan \phi)^{2}}{(\sin 2 \omega \tau+\cos 2 \omega \tau \tan \phi)^{4}}\left[(\tau \cdot \Delta \omega)^{2}+(\omega \cdot \Delta \tau)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{4 R_{t}^{2} \sin ^{2} 2 \omega \tau}{\left(1-R_{t} \cos 2 \omega \tau\right)^{2}} \frac{\left(\cos 2 \omega \tau-\frac{R_{t} \sin ^{2} 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau}\right)^{2}}{\left(\sin 2 \omega \tau+\frac{R_{t} \sin 2 \omega \tau \cos 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau}\right)^{4}} \\
& \times\left\{(\tau \cdot \Delta \omega)^{2}+(\omega \cdot \Delta \tau)^{2}\right] \\
& =\frac{4 R_{t}^{2} \sin ^{2} 2 \omega \tau\left(1-R_{t} \cos 2 \omega \tau\right)^{2}}{\left(1-R_{t} \cos 2 \omega \tau\right)^{4}} \\
& \times \frac{\left[\cos 2 \omega \tau-\frac{R_{t} \sin ^{2} 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau}\right]^{2}}{\left[\sin 2 \omega \tau+\frac{R_{t} \sin 2 \omega \tau \cos 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau}\right]^{4}}\left[(\tau \cdot \Delta \omega)^{2}+(\omega \cdot \Delta \tau)^{2}\right] \\
& =\frac{4 R_{t}^{2}\left[\sin 2 \omega \tau \cos 2 \omega \tau\left(1-R_{t} \cos 2 \omega \tau\right)-R_{t} \sin ^{3} 2 \omega \tau\right]^{2}\left[(\tau \cdot \Delta \omega)^{2}+(\omega \cdot \Delta \tau)^{2}\right]}{[\sin 2 \omega \tau(1-R \cos 2 \omega \tau)+R \sin 2 \omega \tau \cos 2 \omega \tau]^{4}} \\
& =\frac{4 R_{t}^{2}\left[\sin 2 \omega \tau \cos 2 \omega \tau-R_{t} \sin 2 \omega \tau\right]^{2}\left[(\tau \cdot \Delta \omega)^{2}+(\omega \cdot \Delta \tau)^{2}\right]}{\sin ^{4} 2 \omega \tau} \\
& =\frac{4 R_{t}^{2}\left(\cos 2 \omega \tau-R_{t}\right)^{2}\left[(\tau \cdot \Delta \omega)^{2}+\left(\omega \cdot \Delta \tau^{2}\right]\right.}{\sin ^{2} 2 \omega \tau} \tag{26}
\end{align*}
$$

Now

$$
\Delta \omega=\Delta(2 \pi f)=2 \pi \Delta f \quad ; \quad \Delta \tau=\Delta\left(\frac{2 L}{c}\right)=\frac{2}{c} \Delta L
$$

$$
\text { NWC TP } 6776
$$

and

$$
\sec ^{2} \phi=1+\tan ^{2} \phi=\frac{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}}{\left(1-R_{t} \cos 2 \omega \tau\right)^{2}}
$$

so that Equation 22 becomes

$$
\begin{aligned}
\frac{\partial R_{t}}{\partial \phi} & =\frac{\left(1-R_{t} \cos 2 \omega \tau\right)^{2}\left(1-2 R_{t} \cos 2 \omega \tau+R_{t}\right)^{2}}{\sin ^{2} 2 \omega \tau\left(1-R_{t} \cos 2 \omega \tau\right)^{2}} \\
& =\frac{\left(1-2 R_{t} \cos 2 \omega \tau+R_{t}\right)^{2}}{\sin ^{2} 2 \omega \tau}
\end{aligned}
$$

According to Equation 2 , the reflectance of the sample mirror can be expressed as

$$
R_{3}=\frac{\sqrt{R_{t}}}{\sqrt{R_{1} R_{2}}}
$$

where R_{t} is the reflectance of the three-mirror system and R_{1} and R_{2} are the end-mirror reflectances. Since they are inextricably bound to the measuring system, the end mirrors contribute to errors in the determination of the sample reflectance as follows:

$$
\begin{align*}
\frac{\partial R_{3}}{\partial R_{1}} & =\frac{\sqrt{R_{t}}}{\sqrt{R_{2}}} \frac{\partial}{\partial R_{1}}\left[R_{1}^{-1 / 2}\right]=\frac{\sqrt{R_{t}}}{\sqrt{R_{2}}}\left[-\frac{1}{2} R_{1}^{-3 / 2}\right]=-\frac{1}{2 R_{1}} \frac{\sqrt{R_{t}}}{\sqrt{R_{1} R_{2}}} \\
& =-\frac{R_{3}}{2 R_{1}} \tag{27a}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial R_{3}}{\partial R_{2}}=-\frac{R_{3}}{2 R_{2}} \tag{27b}
\end{equation*}
$$

so that the total squared error contribution from end-mirror accuracy 18

$$
\begin{align*}
&\left(\frac{\partial R_{3}}{\partial R_{1}} \Delta R_{1}\right)^{2}+\left(\frac{\partial R_{3}}{\partial R_{2}} \Delta R_{2}\right)^{2}=\frac{1}{4} R_{3}^{2}\left(\frac{\Delta R_{1}^{2}}{R_{1}^{2}}+\frac{\Delta R_{2}^{2}}{R_{2}^{2}}\right)=\frac{R_{3}^{4}}{4 R_{1}^{2} R_{2}^{2} R_{3}^{2}} \\
& \times\left[R_{2}^{2} \Delta R_{1}^{2}+R_{1}^{2} \Delta R_{2}^{2}\right] \tag{28}
\end{align*}
$$

and the total root-mean-square (rms) error is

$$
\begin{align*}
\Delta R_{3}= & \frac{1}{2\left(R_{1} R_{2} R_{3}\right)} \sqrt{\left[\left(1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}\right) \csc ^{2}(2 \omega \tau) \Delta \phi\right]^{2}} \\
& +4 R_{t}^{2}\left(\cos 2 \omega \tau-R_{t}\right)^{2} \csc ^{2} \omega \tau \\
& \times 4\left[(\pi \Delta \tau f)^{2}+\left(\frac{\Delta \omega L}{c}\right)^{2}\right]+R_{3}{ }^{4}\left(R_{2}{ }^{2} \Delta R_{1}{ }^{2}+R_{1}{ }^{2} \Delta R_{2}{ }^{2}\right) \tag{29}
\end{align*}
$$

For example, a system in which

$$
\begin{aligned}
f & =10^{5} \pm 10^{2} \text { hertz } \\
L & =2 \text { meters } \pm 0.002 \text { meters } \\
R_{1} & =R_{2}=0.999 \pm 0.0001
\end{aligned}
$$

then $\omega \tau$ equals

$$
\omega \tau=\frac{4 \pi f L}{c}=0.48 \text { degrees }
$$

A sample with a nominal reflectance of 0.998 (therefore, $R_{t}=0.996$) would produce an angle exiting the cavity of

$$
\phi=\tan ^{-1} \frac{R_{t} \sin 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau}=82.706 \text { degrees }
$$

If this measurement is subject to an error of +1 degree, then the reflectance measurement is subject to an error of

$$
\begin{aligned}
\Delta R_{3}(\phi) & =\frac{1}{2 R_{1} R_{2} R_{3}}\left(1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}\right) \csc (2 \omega \tau)\left(\frac{\pi}{180}\right) \\
& =1.545 \times 10^{-4}
\end{aligned}
$$

The measurement due to end-mirror deviations would be

$$
\begin{aligned}
& \Delta R_{3}\left(R_{1} R_{2}\right)=\frac{R_{3}^{2}}{2 R_{1} R_{2} R_{3}} \sqrt{R_{2}^{2} \Delta R_{1}^{2}+R_{1}^{2} \Delta R_{2}^{2}}=\frac{R_{3}}{2 R_{1} R_{2}} \sqrt{2 R_{1}^{2} \Delta R_{1}^{2}} \\
& =\frac{R_{3} \Delta R_{1}}{\sqrt{2} R_{1}}=7.064 \times 10^{-5}
\end{aligned}
$$

Finally, the error caused by the frequency and cavity-length deviations would be equal to

$$
\begin{aligned}
& \Delta R_{3}(\omega \tau) \frac{\sqrt{(\pi f \Delta \tau)^{2}+\left(\frac{L \Delta \omega}{c}\right)^{2}}}{R_{1} R_{2} R_{3}}\left(\frac{R_{t}}{1-R_{t} \cos 2 \omega \tau}\right)\left(\cos 2 \omega \tau-R_{t}\right) \\
&= \frac{\sqrt{\left(4.1888 \times 10^{-6}\right)^{2}+\left(4.1888 \times 10^{-6}\right)^{2}}}{0.996}(240.9)\left(3.85 \times 10^{-3}\right) \\
&=5.516 \times 10^{-6}
\end{aligned}
$$

so that the total rms error would be equal to

$$
\begin{aligned}
\Delta R_{3_{\text {tot }}} & =\sqrt{\left(1.545 \times 10^{-4}\right)^{2}+\left(7.064 \times 10^{-5}\right)^{2}+\left(5.516 \times 10^{-6}\right)^{2}} \\
& =1.700 \times 10^{-4}
\end{aligned}
$$

and the reflectance of the sample would be expressed as $R_{3}=0.998 \pm$ 0.00017 . It is seen from the above that, for this system, the major sources of error in calculating the reflectance are the measurement of the phase angle of the superimposed waves and the uncertalnty of endmirror reflectances. However, the contributing sources of error are sufficiently comparable in magnitude that we suggest including them all, especially with the foreseable modifications of greater phaseangle sensitivity and different end-mirror uncertainty values. The above analysis would not be valid for a two-mirror system, since $R_{t}=R_{1} R_{2}$, but those elements that are based on partial derivatives of R_{t} can be incorporated into a two-mirror system error analysis.

SUMMARY

An exact calculation has been performed on the influence of a random phase fluctuation induced by a thermal variation in the cavity to the performance of a passive cavity reflectometer. The analysis started with the assumptions stated by Rahn (Reference 5) in his numerical analysis of this problem. The expression that was derived is identical to the expression where no random phase fluctuations were included. Thus, thermal variation of the cavity is not a major source of error for the operation of a reflectometer. Comparison of the numerical and exact analyses show that the numerical expression for R_{3} is not a good approximation where high precision-better than 1 part in 10^{4}-is required.

Error analysis was performed to determine the functional dependence of cavity length, modulation frequency, cavity mirror reflectance, and phase measurement errors on the precision of the reflectometer. The total error of a simple reflectometer was determined to be on the order of 2 parts in 10^{4}.

If high precision is required, care must be taken in the design and construction of a passive cavity reflectometer to minimize or eliminate the sources of error that are mentioned above. On the other hand, a simple reflectometer can be constructed with a precision and error of approximately 2 parts in 10^{4}; either analysis is adequate for the measurement of R_{3}.

Appendix A

DERIVATION OF THE INFINITE SUM IN EQUATION 3

Using the power relation for $\sin ^{2}(\alpha)$,

$$
I^{\prime}=\sum_{n=0}^{\infty} R_{t}^{n} \sin ^{2}(\omega t+n \omega \tau)=\frac{1}{2} \sum_{n=0}^{\infty} R_{t}^{n}[1-\cos (2 \omega t+2 n \omega \tau)]
$$

Now applying the sum-and-difference formula

$$
\begin{align*}
I^{\prime}= & \frac{1}{2} \sum_{n=0}^{\infty} R_{t}^{n}-\frac{1}{2} \sum_{n=0}^{\infty} R_{t}^{n}[\cos 2 \omega t \cos 2 n \omega t-\sin 2 \omega t \sin 2 n \omega \tau] \quad(A-1) \\
I^{\prime}= & \frac{1}{2}\left(\frac{1}{1-R_{t}}\right)-\frac{1}{2} \cos 2 \omega t \sum_{n=0}^{\infty} R_{t}^{n} \cos 2 n \omega \tau \\
& +\frac{1}{2} \sin 2 \omega t \sum_{n=0}^{\infty} R_{t}^{n} \sin 2 n \omega \tau \tag{A-2}
\end{align*}
$$

The trigonometric identities for complex exponential yield

NWC TP 6776

$$
\begin{align*}
& I^{\prime}=\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{2} \cos 2 \omega t \sum_{n=0}^{\infty}-\frac{R_{t}^{n}}{2}\left(e^{i 2 n \omega \tau}+e^{-i 2 n \omega \tau}\right) \\
& +\frac{1}{2} \sin 2 \omega t \sum_{n=0}^{\infty} R_{t}^{n} \frac{e^{i 2 n \omega \tau}-e^{-i 2 n \omega \tau}}{2 i} \\
& =\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{4} \cos 2 \omega t \quad \sum_{n=0}^{\infty} R_{t}^{n} e^{i 2 n \omega \tau}+\sum_{n=0}^{\infty} R_{t}^{n} e^{-12 n \omega \tau} \\
& +\frac{1}{4 i} \sin 2 \omega t \sum_{n=0}^{\infty} R_{t}^{n} e^{i 2 n \omega \tau}-\sum_{n=0}^{\infty} R_{t}^{n} e^{-12 n \omega \tau} \\
& =\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{4} \cos 2 \omega t \frac{1}{1-R_{t} e^{i 2 \omega \tau}}+\frac{1}{1-R_{t} e^{-12 \omega \tau}} \\
& +\frac{1}{4 i} \sin 2 \omega t \frac{1}{1-R_{t} e^{i 2 \omega \tau}}-\frac{1}{1-R_{t} e^{-12 \omega \tau}} \tag{A-3}
\end{align*}
$$

The complex fractions can be evaluated by expressing them with a common denominator:

$$
\begin{align*}
I^{\prime}= & \frac{1}{2\left(1-R_{t}\right)}-\frac{1}{4} \cos 2 \omega t \frac{1-R_{t} e^{-i 2 \omega \tau}+1-R_{t} e^{i 2 \omega \tau}}{1-R_{t} e^{-2 \omega \tau}-R_{t} e^{i 2 \omega \tau}+R_{t}^{2}} \\
& +\frac{1}{41} \sin 2 \omega t \frac{1-R_{t} e^{-i 2 \omega \tau}-1+R_{t} e^{i 2 \omega \tau}}{1-R_{t} e^{-i 2 \omega \tau}-R_{t} e^{i 2 \omega \tau}+R_{t}^{2}} \\
& =\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{4} \cos 2 \omega t \frac{2-2 R_{t} \cos 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \\
& +\frac{1}{4 i} \sin 2 \omega t \frac{21 R_{t} \sin 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \\
& =\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{2} \cos 2 \omega t \frac{1-R_{t} \cos 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \\
& +\frac{1}{2} \sin 2 \omega t \frac{R_{t} \sin 2 \omega \tau}{1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}} \tag{A-4}
\end{align*}
$$

Thus,

$$
I^{\prime}=\frac{1}{2\left(1-R_{t}\right)}-\frac{1}{2} \frac{\cos 2 \omega t\left(1-R_{t} \cos 2 \omega t\right)-\sin 2 \omega \tau R_{t} \sin 2 \omega \tau}{\left(1-2 R_{t} \cos 2 \omega \tau+R_{t}^{2}\right)}
$$

NWC TM 6776

Appendix B

DERIVATION OF A*A

$$
\begin{aligned}
& \text { Given } \\
& A \sim \sin \omega t\left[\frac{1-r e^{i \delta} \cos \omega \tau}{1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}}\right] \\
& +\cos \omega t\left[\frac{r e^{i \delta} \sin \omega \tau}{1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}}\right] \\
& =\frac{\sin \omega t\left(1-r e^{i \delta} \cos \omega \tau\right)+\cos \omega t\left(r e^{i \delta} \sin \omega \tau\right)}{1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}} \\
& A * A=\frac{\sin ^{2} \omega t\left(1-r e^{i \delta} \cos \omega \tau\right)\left(1-r e^{-i \delta} \cos \omega \tau\right)+\cos ^{2} \omega t\left(r^{2} \sin ^{2} \omega \tau\right)}{\left(1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}\right)\left(1-2 r e^{-i \delta} \cos \omega \tau+r^{2} e^{-2 i \delta}\right)} \\
& +\frac{\sin \omega t \cos \omega t\left[\left(1-r e^{i \delta} \cos \omega \tau\right) r e^{-i \delta} \sin \omega \tau+\left(1-r e^{-i \delta} \cos \omega \tau\right) r e^{i \delta} \sin \omega \tau\right]}{\left(1-2 r e^{i \delta} \cos \omega \tau+r^{2} e^{2 i \delta}\right)\left(1-2 r e^{-i \delta} \cos \omega \tau+r^{2} e^{-2 i \delta}\right)}(B-1)
\end{aligned}
$$

The denominator becomes

$$
\begin{aligned}
& 1-2 r e^{-i \delta} \cos \omega \tau+r^{2} e^{-2 i \delta}-2 r e^{i \delta} \cos \omega \tau \\
&+4 r^{2} \cos ^{2} \omega \tau-2 r^{3} e^{i \delta} \cos \omega \tau \\
&+r^{2} e^{2 i \delta}-2 r^{3} e^{i \delta} \cos \omega \tau+r^{4} \\
&=1+r^{4}-4 r \cos \delta \cos \omega \tau+2 r^{2} \cos 2 \delta+4 r^{2} \cos ^{2} \omega \tau \\
&-4 r^{3} \cos ^{2} \cos \omega \tau \\
&=1+r^{4}-4 r\left(1+r^{2}\right) \cos \delta \cos \omega \tau+4 r^{2} \cos ^{2} \omega \tau \\
&+2 r^{2}\left(2 \cos ^{2} \delta-1\right) \\
&=4 r^{2} \cos ^{2} \delta-4 r\left(1+r^{2}\right) \cos \delta \cos \omega \tau+4 r^{2} \cos ^{2} \omega \tau \\
&+\left(1-r^{2}\right)^{2}
\end{aligned}
$$

Simplifying the numerator as follows,

$$
\begin{aligned}
\frac{1}{2}(1 & -\cos 2 \omega t)\left(1-r e^{-i \delta} \cos \omega \tau-r e^{-i \delta} \cos \omega \tau+r^{2} \cos ^{2} \omega \tau\right) \\
& +\frac{1}{2}(1+\cos 2 \omega t)\left(r^{2} \sin ^{2} \omega \tau\right) \\
& +\frac{1}{2} \sin 2 \omega t\left(r e^{-i \delta} \sin \omega \tau-r^{2} \sin \omega \tau \cos \omega \tau\right. \\
& \left.+r e^{i \delta} \sin \omega \tau-r^{2} \sin \omega \tau \cos \omega \tau\right) \\
& =\frac{1}{2}\left(1-2 r \cos \delta \cos \omega \tau+r^{2} \cos ^{2} \omega \tau+r^{2} \sin ^{2} \omega \tau\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \cos 2 \omega t\left(r^{2} \sin ^{2} \omega \tau-1+2 r \cos \delta \cos \omega \tau\right. \\
& \left.-r^{2} \cos ^{2} \omega \tau\right) \\
& +\frac{1}{2} \sin 2 \omega t\left(2 r \cos \delta \sin \omega \tau-2 r^{2} \sin \omega \tau \cos \omega \tau\right) \\
& =\frac{1}{2}\left(1-2 r \cos \delta \cos \omega \tau+r^{2}\right) \\
& +\frac{1}{2} \cos 2 \omega t\left(2 r \cos \delta \cos \omega \tau-1-2 r^{2} \cos 2 \omega \tau\right) \\
& +\frac{1}{2} \sin 2 \omega t\left(2 r \cos \delta \cos \omega \tau-2 r^{2} \sin \omega \tau \cos \omega \tau\right)
\end{aligned}
$$

Using double-angle identities for $\sin ^{2}$ wt and $\cos ^{2} \omega t$, $A^{*} A \sim$

$$
\frac{\frac{1}{2} \cos \omega t\left(2 r \cos \omega \tau \cos \delta-r^{2} \cos 2 \omega \tau-1\right)-\sin 2 \omega t\left(r \sin \omega \tau \cos \delta-r^{2} \sin \omega \tau \cos \omega \tau\right)}{4 r^{2} \cos ^{2} \delta-4 r\left(1+r^{2}\right) \cos \delta \cos \omega \tau+4 r^{2} \cos ^{2} \omega \tau+\left(1-r^{2}\right)^{2}}
$$

Appendix C

REDUCTION OF VARIABLES IN EQUATIONS 20 AND 21

Equation 16 is

$$
\begin{equation*}
\langle\tan \phi\rangle=\frac{A_{1} \sqrt{k^{2}-c}+B_{1} \sqrt{h^{2}-c}}{A_{2} \sqrt{k^{2}-c}+B_{2} \sqrt{h^{2}-c}} \tag{c-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A_{1}=\frac{-\left(a_{1} h+b_{1} \sqrt{c}\right)}{\sqrt{d^{2}-4 e c}}, & B_{1}=\frac{\left(a_{1} k+b_{1} \sqrt{c}\right)}{\sqrt{d^{2}-4 e c}} \\
A_{2}=\frac{-\left(a_{1} h+b_{1} \sqrt{c}\right)}{\sqrt{d^{2}-4 e c}}, & B_{2}=\frac{\left(a_{2} k+b_{2} \sqrt{c}\right)}{\sqrt{d^{2}-4 e c}} \\
a_{1}=-2 r \sin \omega \tau & b_{1}=2 r^{2} \sin \omega \tau \cos \omega \tau \\
a_{2}=-2 r \cos \omega \tau & b_{2}=1+r^{2} \cos 2 \omega \tau \\
c=4 r^{2}
\end{array}
$$

$$
\begin{aligned}
& h=\frac{1}{2 \sqrt{c}}\left(d-\sqrt{d^{2}-4 e c}\right) \\
& k=\frac{1}{2 \sqrt{c}}\left(d+\sqrt{d^{2}-4 e c}\right) \\
& d=4 r\left(1+r^{2}\right) \cos \omega \tau \\
& e=\left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau
\end{aligned}
$$

It is noted that the expression

$$
\sqrt{d^{2}-4 e c}
$$

is an Imaginary term since

$$
\begin{aligned}
d^{2}-4 e c & =16 r^{2}\left(1+r^{2}\right)^{2} \cos ^{2} \omega \tau-4\left[\left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau\right]\left(4 r^{2}\right) \\
& =-16 r^{2}\left(1-r^{2}\right)^{2} \sin ^{2} \omega \tau
\end{aligned}
$$

Thus $\sqrt{d^{2}}-4 e c=4 i r\left(1-r^{2}\right) \sin \omega \tau$, and imaginary terms are present in Equation 16 . Upon multiplying the numerator and denominator of Equation 16 by $\sqrt{h^{2}}-c$,

$$
\begin{equation*}
\langle\tan \phi\rangle=\frac{A_{1} \sqrt{\left(k^{2}-c\right)\left(h^{2}-c\right)}+B_{1}\left(h^{2}-c\right)}{A_{2} \sqrt{\left(k^{2}-c\right)\left(h^{2}-c\right)}+B_{2}\left(h^{2}-c\right)} \tag{c-2}
\end{equation*}
$$

Using $h k=e$ and $\left(h^{2}+k^{2}\right) c=d^{2}-2 e c$, the argument under the radical in Equation C -2 becomes

$$
\begin{align*}
\left(k^{2}-c\right)\left(h^{2}-c\right) & =h^{2} k^{2}-\left(h^{2}+k^{2}\right) c+c^{2} \\
& =e^{2}-d^{2}+2 e c+c^{2} \\
& =(e+c)^{2}-d^{2} \\
& =\left[\left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau+4 r^{2}\right]^{2}-16 r^{2}\left(1+r^{2}\right)^{2} \cos ^{2} \omega \tau \\
& =\left[\left(1+r^{2}\right)^{2}-4 r^{2} \cos ^{2} \omega \tau\right]^{2} \tag{C-3}
\end{align*}
$$

and $X=\sqrt{\left(k^{2}-c\right)\left(h^{2}-c\right)}=\left(1+r^{2}\right)^{2}-4 r^{2} \cos ^{2} \omega \tau$ is entirely real. Now Equation $\mathrm{C}-2$ can be written

$$
\langle\tan \phi\rangle=\frac{A_{1} X+B_{1}\left(h^{2}-c\right)}{A_{2} X+B_{2}\left(h^{2}-c\right)} \quad, \quad X=\left(1+r^{2}\right)^{2}-4 r^{2} \cos ^{2} \omega \tau
$$

$$
=\frac{-\left[\frac{a_{1} h+b_{1} \sqrt{c}}{(h-k) \sqrt{c}}\right] x+\left[\frac{a_{1} k+b_{1} \sqrt{c}}{(k-h) \sqrt{c}}\right]\left(h^{2}-c\right)}{-\left[\frac{a_{2} h+b_{2} \sqrt{c}}{(h-k) \sqrt{c}}\right] x+\left[\frac{a_{2} k+b_{2} \sqrt{c}}{(k-h) \sqrt{c}}\right]\left(h^{2}-c\right)}
$$

$$
\begin{align*}
& =\frac{\left(a_{1} h+b_{1} \sqrt{c}\right) x-\left(a_{1} k+b_{1} \sqrt{c}\right)\left(h^{2}-c\right)}{\left(a_{2} h+b_{2} \sqrt{c}\right) x-\left(a_{2} k+b_{2} \sqrt{c}\right)\left(h^{2}-c\right)} \\
& =\frac{\left(a_{1} h+b_{1} \sqrt{c}\right) x-\left(a_{1} k h^{2}-a_{1} k c+b_{1} \sqrt{c h} h^{2}-b_{1} c \sqrt{c}\right)}{\left(a_{2} h+b_{2} \sqrt{c}\right) x-\left(a_{2} k h^{2}-a_{2} k c+b_{2} \sqrt{c h} h^{2}-b_{2} c \sqrt{c}\right)}
\end{align*}
$$

NWC TP 6776

Using hk $=\mathrm{e}$ again,

$$
\begin{align*}
\langle\tan \phi\rangle & =\frac{\left(a_{1} h+b_{1} \sqrt{c}\right) x-\left(a_{1} e h-a_{1} k c+b_{1} \sqrt{c} h^{2}-b_{1} c \sqrt{c}\right)}{\left(a_{2} h+b_{2} \sqrt{c}\right) x-\left(a_{2} e h-a_{2} k c+b_{2} \sqrt{c} h^{2}-b_{2} c \sqrt{c}\right)} \\
& =\frac{a_{1} h(x-e)+b_{1} \sqrt{c}(x+c)-b_{1} \sqrt{c} h^{2}+a_{1} k c}{a_{2} h(x-e)+b_{2} \sqrt{c}(x+c)-b_{2} \sqrt{c h} h^{2}+a_{2} k c} \\
& =\frac{a_{1} h(e-x)-b_{1} \sqrt{c}(x+c)+b_{1} h^{2} \sqrt{c}-a_{1} k c}{a_{2} h(e-x)-b_{2} \sqrt{c}(x+c)+b_{2} h^{2} \sqrt{c}-a_{2} k c} \tag{c-5}
\end{align*}
$$

Using

$$
\begin{aligned}
h & =\frac{1}{2 \sqrt{c}}\left(d-\sqrt{d^{2}-4 e c}\right) \\
& =\frac{1}{2 \sqrt{c}}(d-D i), D=4 r\left(1-r^{2}\right) \sin \omega \tau \\
h^{2} & =\frac{1}{4 c}\left(d^{2}-2 d D i-D^{2}\right) \\
k & =\frac{1}{2 \sqrt{c}}(d+D i)
\end{aligned}
$$

and Equation C-5 can be written
$\langle\tan \phi\rangle=\frac{\frac{a_{1}}{2 \sqrt{c}}(d-D i)(e-X)-b_{1} \sqrt{c}(c+X)+\frac{b_{1}}{4 \sqrt{c}}\left(d^{2}-21 d D-D^{2}\right)-\frac{a_{1} \sqrt{c}}{2}(d+D i)}{\frac{a_{2}}{2 \sqrt{c}}(d-D i)(e-X)-b_{2} \sqrt{c}(c+X)+\frac{b_{2}}{4 \sqrt{c}}\left(d^{2}-2 i d D-D^{2}\right)-\frac{a_{2} \sqrt{c}}{2}(d+D i)}(c-6)$
or, multiplying numerator and denominator by $4 \sqrt{c}$,

$$
\begin{align*}
\langle\tan \phi\rangle= & \frac{2 a_{1}(d-D i)(e-X)-4 b_{1} c(c+X)}{2 a_{2}(d-D i)(e-X)-4 b_{2} c(c+X)} \\
& +b_{1}\left(d^{2}-2 i d D-D^{2}\right)-2 a_{1} c(d+D i) \\
& +b_{2}\left(d_{2}-2 i d D-D^{2}\right)-2 a_{2} C(d+D i) \tag{C-7}
\end{align*}
$$

Separating into real and imaginary parts,

$$
\begin{align*}
\langle\tan \phi\rangle= & \frac{2 a_{1} d(e-X)-4 b_{1} c(c+X)+b_{1}\left(d^{2}-D^{2}\right)-2 a_{1} c d}{2 a_{2} d(e-X)-4 b_{2} c(c+X)+b_{2}\left(d^{2}-D^{2}\right)-2 a_{2} c d} \\
& -D 1\left[2 a_{1}(e-X)+2 b_{1} d+2 a_{1} c\right] \\
& -D 1\left[2 a_{2}(e-X)+2 b_{2} d+2 a_{2} c\right] \tag{c-8}
\end{align*}
$$

For

$$
\begin{aligned}
& A=2 a_{1} d(e-X)-4 b_{1} c(c+X)+b_{1}\left(d^{2}-D^{2}\right)-2 a_{1} c d \\
& B=4 r\left(1-r^{2}\right) \sin \omega \tau \\
& C=2 a_{2} d(e-x)-4 b_{2} c(c+X)+b_{2}\left(d^{2}-D^{2}\right)-2 a_{2} c d \\
& E=2 a_{2}(e-X)+2 b_{2} d+2 a_{2} c \\
& G=2 a_{1}(e-X)+2 b_{1} d+2 a_{1} c
\end{aligned}
$$

$$
\begin{align*}
\langle\tan \phi\rangle & =\frac{A-B I G}{C-B I E} \\
& =\left[\frac{A-B I G}{C-B I E}\right] \times\left[\frac{C+B I E}{C+B I E}\right] \\
& =\frac{A C+B^{2} E G+B I(A E-C G)}{C^{2}+B^{2} E^{2}} \tag{c-9}
\end{align*}
$$

Since the original integrand was real, we expect that the above expression should also be real, with the inference that $A E-C G=0$ or

$$
\begin{equation*}
C=\frac{A E}{G} \tag{c-10}
\end{equation*}
$$

This is indeed the case, as shown in Appendix D. Using Equation $D-1$,

$$
\begin{align*}
\langle\tan \phi\rangle & =\frac{A\left(\frac{A E}{G}\right)+B^{2} E G}{\left(\frac{A E}{G}\right)^{2}+B^{2} E{ }^{2}} \\
& =\frac{A^{2} E G+B^{2} E G^{3}}{A^{2} E^{2}+B^{2} E^{2} G^{2}}=\frac{E G\left(A^{2}+B^{2} G^{2}\right)}{E^{2}\left(A^{2}+B^{2} G^{2}\right)}=\frac{G}{E} \tag{C-11}
\end{align*}
$$

Now,

$$
\langle\tan \phi\rangle=\frac{G}{E}
$$

$$
=\frac{2 a_{1}(e-X)+2 b_{1} d+2 a_{1} c}{2 a_{2}(e-X)+2 b_{2} d+2 a_{2} c}
$$

$$
=\frac{a_{1}(e-X+c)+b_{1} d}{a_{2}(e-X+c)+b_{2} d}
$$

$$
=\frac{2 r \sin \omega \tau\left(8 r^{2} \cos ^{2} \omega \tau\right)-2 r^{2} \sin \omega \tau \cos \omega \tau(4 r \cos \omega \tau)\left(1+r^{2}\right)}{-2 r \cos \omega \tau\left(8 r^{2} \cos ^{2} \omega \tau\right)+\left(1+r^{2} \cos 2 \omega \tau\right)(4 r \cos \omega \tau)\left(1+r^{2}\right)}
$$

$$
=\frac{16 r^{3} \sin \omega \tau \cos ^{2} \omega \tau-8 r^{3} \sin \omega \tau \cos ^{2} \omega \tau\left(1+r^{2}\right)}{4 r \cos \omega \tau\left(1+r^{2}\right)\left(1+r^{2} \cos 2 \omega \tau\right)-16 r^{3} \cos ^{3} \omega \tau}
$$

$$
\begin{equation*}
=\frac{8 r^{3} \sin \omega \tau \cos ^{2} \omega \tau\left(1-r^{2}\right)}{4 r \cos \omega \tau\left(1+r^{2}\right)\left(1+r^{2} \cos 2 \omega \tau\right)-16 r^{3} \cos ^{3} \omega \tau}(\tag{C-12}
\end{equation*}
$$

Dividing the numerator and denominator by $4 \mathrm{r} \cos \omega \tau$,

$$
\begin{align*}
& \langle\tan \phi\rangle=\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{\left(1+r^{2}\right)\left(1+r^{2} \cos 2 \omega \tau\right)-4 r^{2} \cos ^{2} \omega t} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{1+r^{2} \cos 2 \omega \tau+r^{2}+r^{4} \cos 2 \omega \tau-4 r^{2} \cos ^{2} \omega \tau} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{1+r^{2}\left(2 \cos ^{2} \omega \tau-1\right)+r^{2}+r^{4} \cos 2 \omega \tau-4 r^{2} \cos ^{2} \omega \tau} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{1-2 r^{2} \cos ^{2} \omega \tau+r^{4}\left(2 \cos ^{2} \omega \tau-1\right)} \tag{c-13}\\
& \langle\tan \phi\rangle=\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{1-2 r^{2} \cos ^{2} \omega \tau+2 r^{4} \cos ^{2} \omega \tau-r^{4}} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{\left(1-r^{4}\right)-2 r^{2} \cos ^{2} \omega \tau\left(1-r^{2}\right)} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau\left(1-r^{2}\right)}{\left(1-r^{2}\right)\left(1+r^{2}\right)-\left(1-r^{2}\right)\left(2 r^{2} \cos ^{2} \omega \tau\right)} \\
& =\frac{2 r^{2} \sin \omega \tau \cos \omega \tau}{1+r^{2}-2 r^{2} \cos ^{2} \omega \tau} \\
& =\frac{r^{2} \sin 2 \omega \tau}{1-r^{2} \cos 2 \omega \tau} \quad, \quad R_{t} \equiv r^{2} \\
& \langle\tan \phi\rangle=\frac{R_{t} \sin 2 \omega \tau}{1-R_{t} \cos 2 \omega \tau} \tag{C-14}
\end{align*}
$$

Appendix D

$$
\text { PROOF OF AE - GC }=0
$$

Starting with substitution of terms

$$
\begin{aligned}
& \left.A E-G C=\left[2 a_{1} d(e-X i)-4 b_{1} c+X\right)+b_{1}\left(d^{2}-B^{2}\right)-2 a_{1} c d\right] \\
& x\left[2 a_{2} 2 a_{2}(e-X)+2 b_{2} d+2 a_{2} c\right]-\left[2 a_{1}(e-X)+2 b_{1} d+2 a_{1} c\right] \\
& x\left[2 a_{2} d(e-X)-4 b_{2} c(c+X)+b_{2}\left(d^{2}-B^{2}\right)-2 a_{2} c d\right] \\
& =4 a_{1} a_{2}(e-X)^{2} d+4 a_{1} d(e-X)\left(b_{2} d+a_{2} c\right)-8 a_{2} b_{1} c(c+X) \\
& x(e-X)-8 b_{1} c(c+X)\left(b_{2} d+a_{2} c\right)+2 a_{2} b_{1}(e-X)\left(d^{2}-B^{2}\right) \\
& \left.\left.+2 b_{1}\right) d^{2}-B^{2}\right)\left(b_{2} d+a_{2} c\right)-4 a_{1} a_{2} c d(e-X)-4 a_{1} c d \\
& x\left(b_{2} d+a_{2} c\right)-\left(4 a_{1} a_{2}(e-X)^{2} d-8 a_{1} b_{2} c(c+X)+2 a_{1} b_{2}\right. \\
& x(e-X)\left(d^{2}-B^{2}\right)-4 a_{1} a_{2} c d(e-X)+4 a_{2} b_{1} d(e-X) \\
& -8 b_{1} b_{2} c d(c+X)+2 b_{1} b_{2} d\left(d^{2}-B^{2}\right)-4 a_{2} b_{1} c d^{2}+4 a_{1} a_{2} c d \\
& \left.x(e-X)-8 a_{1} b_{2} c^{2}(c+X)+2 a_{1} b_{2} c\left(d^{2}-B^{2}\right)-4 a_{1} a_{2} c^{2} d\right] \\
& =4 a_{1} d(e-X)\left(b_{2} d+a_{2} c\right)-8 a_{2} b_{1} c(c+X)(e-X)-8 b_{1} c \\
& \left.\left.x(c+X)\left(b_{2} d+a_{2} c\right)+2 a_{2} b_{1}\right) e-X\right)\left(d^{2}-B^{2}\right)+2 b_{1}\left(d^{2}-B^{2}\right) \\
& x\left(b_{2} d+a_{2} c\right)-4 a_{1} a_{2} c d(e-x)-4 a_{1} c d\left(b{ }_{2} d+a_{2} c\right)+8 a_{1} b_{2} c \\
& x(c+X)(e-X)-2 a_{1} b_{2}(e-X)\left(d^{2}-B^{2}\right)+4 a_{1} a_{2} c d(e-X) \\
& -4 a_{2} b_{1} d^{2}(e-X)+8 b_{1} b_{2} c d(c+X)-2 b_{1} b_{2} d\left(d^{2}-B^{2}\right) \\
& \left.+4 a_{2} b_{1} c d^{2}+8 a_{1} b_{2} c^{2}(c+X)-2 a_{1} b_{2} c\left(d^{2}-B^{2}\right)+4 a_{1} a_{2} c^{2} d\right]
\end{aligned}
$$

$$
\begin{aligned}
& A E-G C=4 a_{1} b_{2} d^{2}(e-X)+4 a_{1} a_{2} c d(e-X)+8 c(c+X)(e-X)\left(a_{1} b_{2}\right. \\
& \left.-\mathrm{a}_{2} \mathrm{~b}_{1}\right)-8 \mathrm{~b}_{1} \mathrm{~b}_{2} \mathrm{~cd}(\mathrm{c}+\mathrm{X})-8 \mathrm{a}_{2} \mathrm{~b}_{1} \mathrm{c}^{2}(\mathrm{c}+\mathrm{X})+2(\mathrm{e}-\mathrm{X}) \\
& x\left(d^{2}-B^{2}\right)\left(a_{2} b_{1}-a_{1} b_{2}\right)+2 b_{1} b_{2} d\left(d^{2} b^{2}\right)+2 a_{2} b_{1} c\left(d^{2}-B^{2}\right) \\
& -4 a_{1}{ }_{2} c d(e-x)-4 a{ }_{1} b_{2} c d^{2}-4 a_{1} a_{2} c^{2} d-4 a^{2} b_{1} d^{2}(e-x) \\
& +8 b_{1} b_{2} c d(c+x)-2 b_{1} b_{2} d\left(d^{2}-B^{2}\right)+4 a_{2} b_{1} c d^{2}+8 a_{1} b_{2} c^{2} \\
& x(c+X)-2 a_{1} b_{2} c\left(d_{2}-B^{2}\right)+4 a_{1} a_{2} c^{2} d \\
& =4 d^{2}(e-X)\left(a_{1} b_{2}-a_{2} b_{1}\right)+8 c(c+X)(e-X)\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& +8 c^{2}(c+X)\left(a_{1} b_{2}-a_{2} b_{1}\right)+2(e-X)\left(d^{2}-B^{2}\right)\left(a_{2} b_{1}-a_{1} b_{2}\right) \\
& +2 c\left(d^{2}-B^{2}\right)\left(a_{2} b_{1}-a_{1} b_{2}\right)+4 c d^{2}\left(a_{2} b_{1}-a_{1} b_{2}\right) \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[4 d^{2}(e-x)+8 c(c+X)(e-x)+8 c^{2}\right. \\
& \left.x(c+X)-2(e-X)\left(d^{2}-B^{2}\right)-2 c\left(d^{2}-B^{2}\right)-4 c d^{2}\right] \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[4 d^{2}(e-x-c)+8 c(c+X)(e-x+c)\right. \\
& \left.-2(e-X)\left(d^{2}-B^{2}\right)-2 c\left(d^{2}-B^{2}\right)-4 c d^{2}\right] \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[4 d^{2}(e-X-c)+8 c(c+X)(e-X+c)\right. \\
& \left.-2\left(d^{2}-B^{2}\right)(e-X+c)\right) \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[(e-X+c)\left(8 c^{2}+8 c X-2 d^{2}+2 B^{2}\right)\right. \\
& \left.+4 d^{2}(e-x+c)-8 d^{2} c\right]=\left(a_{1} b_{2}-a_{2} b_{1}\right)[(e-x+c) \\
& \left.x\left(8 c^{2}+8 c X-2 d^{2}+2 B^{2}+4 d^{2}\right)-8 d^{2} c\right] \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[(e-X+c)\left(8 c^{2}+8 c X+2 d^{2}+2 B^{2}\right)-8 d^{2} c\right] \\
& =2\left(a_{1} b_{2}-a_{2} b_{1}\right)\left[(e-X+c)\left(4 c^{2}+4 c X+d^{2}+B^{2}\right)-4 d^{2} c\right]
\end{aligned}
$$

Using

$$
\begin{aligned}
& c=4 r^{2} \\
& x=\left(1+r_{2}\right)^{2}-4 r^{2} \cos ^{2} \omega \tau
\end{aligned}
$$

NWC TP 6776

$$
e=\left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau
$$

then

$$
\begin{aligned}
e-X+c= & \left(1-r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau-\left(1+r^{2}\right)^{2}+4 r^{2} \cos ^{2} \omega \tau \\
& +4 r^{2} \cos ^{2} \omega \tau+4 r^{2} \\
= & 1-2 r^{2}+r^{4}+8 r^{2} \cos ^{2} \omega \tau-1-2 r^{2}-r^{4}+4 r^{2} \\
= & 8 r^{2} \cos ^{2} \omega \tau \\
4 c(c+X)= & 16 r^{2}\left[4 r^{2}+\left(1+r^{2}\right)^{2}-4 r^{2} \cos ^{2} \omega \tau\right] \\
= & 16 r^{2}\left[4 r^{2} s^{2} n^{2} \omega \tau+\left(1+r^{2}\right)^{2}\right] \\
d^{2}+B^{2}= & 16 r^{2}\left(1+r^{2}\right)^{2} \cos \omega \tau+16 r^{2}\left(1-r^{2}\right)^{2} \sin ^{2} \omega \tau \\
= & 16 r^{2}\left(1+r^{2}\right)^{2} \cos ^{2} \omega \tau+16 r^{2}\left(1+r^{2}\right)^{2} \sin ^{2} \omega \tau \\
& -64 r^{4} \sin ^{2} \omega \tau \\
= & 16 r^{2}\left(1+r^{2}\right)^{2}-64 r^{4} \sin ^{2} \omega \tau \\
4 c(c+X) & +d^{2}+B^{2}=16 r^{2}\left[4 r^{2} s i n^{2} \omega \tau\right] \\
(e-X+ & c)\left(4 c^{2}+4 c X+d^{2}+B^{2}\right)-4 D^{2} c \\
= & 8 r^{2} \cos ^{2} \omega \tau\left(32 r^{2}\right)\left(1+r^{2}\right)-4\left[16 r^{2}\left(1+r^{2}\right)^{2}\right. \\
& \left.\times \cos ^{2} \omega \tau\right]\left(4 r^{2}\right) \\
= & 256 r^{4}\left(1+r^{2}\right)^{2} \cos ^{2} \omega \tau-256 r^{4}\left(1+r^{2}\right)^{2} \cos ^{2} \omega \tau \\
= & 0
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
A E-G C=0 \tag{D-1}
\end{equation*}
$$

or

$$
\mathrm{C}=\frac{\mathrm{AE}}{\mathrm{G}}
$$

REFERENCES

1. J. M. Herbelin and others. "Sensitive Measurement of Photon Lifetime and True Reflectances in an Optical Cavity by a Phase Shift Method," Appl. Opt., Vol. 19 (1980), pp. 144-46.
2. Aerospace Corporation. Determining HF Mirror Reflectance With the Cavity Phase-Shift Method, by M. A. Kwok and R. H. Ueunten. El Segundo, Calif., Aerospace Corp., 30 June 1986. (Air Force Report SD-TR-86-37, publication UNCLASSIFIED).
3. D. A. Smith and D. I. Shernoff. "Simple Measurement of Gain and Loss in Ultralow Loss Optical Resonators," Appl. Opt., Vol 24 (1985), pp. 1722-723.
4. D. Z. Anderson, J. C. Frisch, and C. S. Masser. "Mirror Reflectometer Based on Optical Cavity Decay Time," Appl. Opt., Vol. 24 (1985), pp. 1238-245.
5. Naval Weapons Center. "Calibration for Herbelin Total Loss-Meter," by J. P. Rahn. China Lake, Calif., NWC, 27 September 1982. (NWC Reg Memo 381-5 ${ }^{\text { }}$. document UNCLASSIFIED.)
6. M. Born and E. Wolfe. Principles of Modern Optics. New York, Pergamon, 1980.
7. H. G. Unger. Introduction to Quantum Electronics. London, Pergamon, 1970.
8. Amnon Yariv. Quantum Electronics. New York, Wiley, 1967.

INITIAL DISTRIBUTION

2 Naval Air Systems Command (AIR-5004)
2 Naval Sea Systems Command (SEA-09B312)
1 Commander in Chief, U.S. Pacific Fleet, Pearl Harbor (Code 325)
1 Commander, Third Fleet, Pearl Harbor
1 Commander, Seventh Fleet, San Francisco
2 Naval Academy, Annapolis (Director of Research)
1 Naval War College, Newport
1 Air Force Intelligence Service, Bolling Air Force Base (AFIS/INTAW, Maj. R. Lecklider) 12 Defense Technical Information Center, Alexandria

$E N D$
Date
FILMED
DT/C
9-88

