
NWC TP 6776

~ FILE COPY

Phase-Shift Parameters and Small
Vibrations in Resonant Optical

Cavities

by
D. M. Ross

SC.Brune LECTE
and

C. D. Marrs
Research Department

0) SEPTEMBER 1987

I"

O NAVAL WEAPONS CENTER
CHINA LAKE, CA 9366401

Approved for public release; distribution is unlimited.

68 1 .5 008

W&_



UN CLASS IFItED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

.a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

A Statement; public release; distribution
2h DECLASSIFICATION: DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NWC TP 6776

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Weapons Center (If applicable)

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

China Lake, CA 93555-6001

8a NAME OF FUNDING SPONSORINGcneSb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (fapplicable)
Naval Weapons Center j~l

8c ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT

China Lake, CA 93555-6001 ELEMENT NO. NO NO ACCESSION NO

61101E DD 782239

11 TITLE (Include Security Classification)

PHASE-SHIFT PARAMETERS AND SMALL VIBRATIONS IN RESONANT OPTICAL CAVITIES (U)

12 PERSONAL AUTHOR(S)

Ross, D. M., Brune. C.. and Marrs, C. D.
13a TYPE OF REPORT 13b TIME COVERED 514 DATE OF REPORT (Year,MonthDay)15 PAGE COUNT

Final FROM 85 Mau TO 85 Sep 1987, September 42

1 , 71_PPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Passive Cavity Reflectometers, Phase-Shift Method, Lasers,

14 02 High-Reflectance Mirrors, Precision Characterization

20 05 Techniques
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

An exact analysis has been performed on a three-mirror passive cavity reflectometer.

An expression is derived to determine the reflectance of the sample mirror including a

random phase shift caused by thermal instabilities in the cavity. This exact expression is
compared to a numerical analysis derived earlier for the same thermal instability. The
comparison shows variations of up to several parts in 104 for low-loss dielectric mirrors.

An error analysis is presented that quantifies the error of a three-mirror cavity.

20 DSTPIBUTON AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

k JNCLASSIFIED/UNLIMITED 0 SAME AS RPT El DTIC USERS Unclassified

22a %AiVE OF RESPONSIBLE INDIVIDUAL .,HTFLEPHONE (include Area Code) 22c OFFICE SYMBOL
D. M. Ross (619) 939-3965 Code 3312

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete * U.S. Gow rn nt Printns Office: 1S6-67O-O444

UNCLASSIFIED



NWC TP 6776

CONTENTS

Introduction ............. ........................... 3

Theory ............... .............................. 3

Error Analysis for Three-Mirror Configuration .. .......... .. 14

Summary ............... ............................ 21

Appendixes:
A. Derivation of the Finite Sum in Equation 3 . ........ .. 23

B. Derivation of A*A ....... ..................... .. 27
C. Reduction of Variables in Equations 20 and 21 ... ....... 31

D. Proof of AE - GC = 0 ...... ................... . 39

UI-C TA:3

(Copy/

I i-

NS PECTED M



NWC TP 6676

INTRODUCTION

Phase-shift (References I through 5) and ring-down (References 4
and 5) methods of determining the reflectance of mirrors in a high Q
optical cavity possess high sensitivity and precision. In maintaining
this precision, the errors in the measurement must be minimized. The
errors include--but are not limited to--() mode matching the input
source to the optical cavity, (2) stable input source in power and
waveform over the time required to make measurement, (3) in terms of
loss, cavity mirrors equal to or better than the unknown mirror's
losses, and (4) thermal stability of the cavity. Rahn (Reference 5)
examined an optical cavity and included a random thermal fluctuation
in the analysis to explore the range of fluctuations that can be
tolerated. He was not able to evaluate two time-averaged integrals
exactly but derived an expression for the loss on a numerical
approach. Starting from the same assumptions as Rahn, we will derive
an exact solution to a passive optical cavity, including the thermal
fluctuation. Also, an error analysis of the phase-shift method is
derived and examined.

THEORY

Consider an optical cavity consisting of two mirrors with their
symmetry axes on a common line, as in Figure 1. Once the reflectance
of one of the mirrors is known, the other can be calculated. A phase
shift can be uniquely associated with the product of the cavity mirror
reflectances:

Rt = R1 R 2  (I)

where Rt is the total reflectance of the cavity and R, and R2 are
the respective reflectance values of the cavity mirrors.

3
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MIRROR 1 MIRROR 2

INJECTED .

LASER SOURCE DETECTOR .

R1 R2

FIGURE 1. Two-Mirror Passive Cavity. Injection laser source can be
short pulsed laser or modulated-CW laser source.

Another configuration--a three-mirror cavity--will be discussed
in the remainder of this paper. In a three-mirror passive cavity, the
optimum position of the test mirror is at the vertex of the triangle
defined by the three mirrors. In the configuration of Figure 2, the
total reflectance of the cavity is

INJECTED
DETECTOR LASER

SOURCE

R 2 MIRROR 1

MIRROR 2

/b

R 3

MIRROR 3

FIGURE 2. Three-Mirror Passive Cavity. Advan-
tage over cavity in Figure 1 is in one-round
trip test Mirror 3 is sampled twice, i.e.,
RT = R1R 2R 3

2.
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2
Rt = RR 2R3  (2)

where R3 is the test mirror reflectance. R 3 is squared because in one
round trip the test mirror is sampled twice. Thus, R3 may be calcu-
lated if R1 , R 2 , and Rt are known. To obtain high-reflectance
values of R 3 , high-reflectance end mirrors are required to aid in
minimizing the error of the measurement. The effects of errors will
be discussed later.

To model the cavity exactly, careful attention must be given to
the input wave and its representation. The representation of the
input laser power used by Rahn (Reference 5) will be the starting
point in this analysis. This power is described by

1

l(t) = I sin 2 It = 1 1o(1 - cos 2wt) (3)

where 1o is the output power of the laser, f (w = 2nf) is the ampli-
tude modulation frequency of this laser determined by a suitable
intensity modulator, and t is time.

The passive cavity is designed to allow oscillation of the cavity
modes defined by fo = nc/2L, where f. is the optical frequency of

the injection source (units = sec- ), n is any integer (on the order

of 10 for optical frequencies injected into cavities with lengths
from centimeters to meters), L is the length of the cavity in meters,

and c is the speed of light in meters per second. If the source is a
laser possessing a mode bandwidth, a change in cavity length will not

quench the oscillation but will select a slightly different mode. If
the length of the cavity changes beyond an integral number of half
wavelengths or if only one mode is available from the laser, the
oscillation may be intermittent. This will lead to errors in measure-
ment of the cavity loss. Care in system design is necessary to pre-
vent intermittent operation.

The beam is free to propagate through the cavity subject Lo
losses from the mirrors. Since the modulation of the beam changes its
phase with time, we can expect that as the beam traverses through

the cavity in the course of one round trip, the relative phase changes

by the amount (References 6 through 8)

5
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* ,2L, 4itfL
r r a (2nf)( -) = --

r c c%

for a single mode. The resulting intercavity intensity is therefore a

summation of the intensities of all modes oscillating in the cavity.

Each of these modes is subject to reductions in intensity because of

the cavity losses. If Equation 3 is representative of the modulation,

this summation over all modes can be expressed as (References 5 and 8)

I - I Rn sin 2 (t + n w) (3a)

n-o

where x - 2L/c and Rt is the total cavity reflectance. This

summation can be evaluated by expressing the trigonometric function in
its complex exponential form, so that the summation takes the form of

a geometric series. In the case of Equation 3, the appropriate

trigonometric power relation is applied. Details of this process are

included in Appendix A. Thus,

n sin 2 1
0 n R- t  o 2(1-R )

(sin 2wt)(R sin 2wT)-(cos 2(ot)(1-R cos 2wrr)

+ -- t t(3b)
2 1 - 2R cos 2wT + R 2

t

The power and the phase angle of the transmitted beam It can be
related since it follows a pattern similar to that of the injected

beam. Thus,

1 - [1 - cos (2wt + d)1
T 2

',

I - I (sin 21,t sin €- cos 2wit cos *) (4)

6
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Now the time dependence can be eliminated by equating the appropriate
time-related coefficients in Equations 3b and 4. Thus, equating the
coefficient of sin 2wt,

R sin 2wrt

sin * = (5)
1 - 2R cos 2wT + R2

t t

Equating the coefficient of cos 21ot in Equations 3a and 4,

i - Rt cos 2w(
cos * = (6)

1 - 2Rt cos 2w-u + R2
t t

So that V

R sin 2w-uT
tan =sin = t si(7)n

cos 4 = -R cos 2w

This is the result if no random thermal fluctuations are included in
the analysis.

To examine the effect of a random phase induced by a thermal
variation in the cavity, the amplitude rather than the intensity must
be used. The amplitude function is related to intensity I by

I= A*A (8a)

as is also

Rt = r*r (8b)

where A is the electric field amplitude of the laser beam, r is the
reflectivity coefficient, and Rt as before is the reflectance of the r
cavity. IN

Rahn (Reference 5) suggests that a random phase shift 6 could
range from -n to +n; he used numerical averaging to obtain an expres-
sion for <tan 4>. Increased precision may be realized if the

7N
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averaging evaluation of tan * can be done exactly. Starting with

Equation 4 of Reference 5 for the transmitted intensity,

A(t) = A 0 t1t 2t 3  Y (r)P e i p sin[o(t - pT)]

p=O

2
where r = rjr 2r 3 ; ti, t2 , and t.. are the reflection and transmission

coefficients, respectively; p is the number of passes through the

cavity; 6 is the round-trip phase shift; and - is the time required
for a photon to make a single round trip in the cavity. Summing the

infinite series gives

A(t) sin t 1 121 ite(6 - r.) + ire(6 - o)

-re 1-"re d)

i cos Wt I 1 y
+ 2 -re I re (-T[I -r i(8 o)i( -,x

sin wt(1 - r1r2e Cos ) cos wt(rlr2 e l5 sin 16)

(9)
[ 2re i6 cos (o + r e9

Squaring to get the transmitted power,

1 121

cos 2t(r cos (ox cos co

I T = A ( t ) 1 2 2 2 r_ _ c o -

4r cos 6 -4 cos (,)(r + r3 ) cos + 4r.

- sin 2wt(r sin wot cos - r 2 sin (r- cos wrt)

- 2r
2 + 4r

2 cos
2 ( 1- 

0)

S

details of which are in Appendix B. Equati ng trigonometric

coefficients In Equations 4 and 13 for the traisin[tted power gives

expressions for sin € and cos ¢,

-, - . ,' W% .'.:, <,.d' , :.. -a :J. *,-
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2(r 2 sin wT cos wT-r sin wT cos 6)sin €=(I
4r2 cos 2 6-4 cos wT(r+r 3 cos 6+4r-2r2+4r 2 Cos T+

and

Cos = (I + r 2 cos 2w) - 2r cos wT cos (12)
4r 2 cos 2 6-4 cos wr(r+r 3 ) cos 6+4r -2r2 +4r 2 Cos 2 Wti+

Both expressions are of the form

F(6) = a c o s 6 + b (13)
c Cos 2 6- d cos 6 + e

c = 4r 2

d = 4r(1 + r 2 ) Cos (iYL

e = I + 4r 2 cos 2 oT + r 4 - 2r

or

e = (- r 2 ) 2 + 4r 2 Cos 2 WT

For sin *,

a = -2r sin wT

b = 2r2 sin w cos w

For cos *, ,

a -- 2r cos (a..

b = I + r2 cos 2wT

Equations 11 and 12 rewritten in the form of Equation 13 must be
integrated between the limits 0 to 2n to obtain an average value of
tan 0. Evaluation of these integrands is by partial fractions. The
decomposition of the denominator to produce partial fractions is
accomplished by noting that

9
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c cos 2 6 - d cos 6 + e = (/c cos 6 - h)(/-c cos 6 - k)

= c cos 2 6 - (h + k)/c cos 6 + hk

where h and k are coefficients that satisfy d (h + k)/c and l hk.

These equations yield

k 2 /c - kd + e/c 0

and

h d- k

so that

k d + /d h= ec

To find the partial fractions, we first write V

a cos 6 + b A + B

c cos 2 6 - (h+k) /c cos 6 + hk VC Cos 6 - h /c cos 6 - k

where A and B are unknown coefficients, then

a cos 6 + b =A(/c co 6 - k) + B(/c cos 6 - h)

and evaluate at V/c cos 6 = k and ic cos 6 = h separately. These yield

%I..0
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A = -(ah + b/c) (14a)
--d2 _4ec

and

ak + b/c(B =(14b)

id--d_ 4ec

We integrate

2n (aj cos 0 + bl)d0 A1 2n dO
! f 2 = o f
2 o c cos 0 -d cos 0 + e o /ECos 0-h

B1 2n A1  B1+ j f dO= + (15a)

o Ic- co -k 
2 C

with similar results for

2n (a2 COS 0 + b 2 )dO<CS 2 f 2(15b)<cos€> =- 2-" 2

0 c cos O - d cos 0 + e

so that

Al /k 2 -c + BlIh 2 -c

<tan i = - (16)<cos 4) il,
<- C A2 42 c + B2X 2 -c

This becomes

2I
r sin 2wT Rt sin 2(t

<tan 2 Co 2T I - R cos 2wT (17)

III

11t



NWC TP 6776

the details of which appear in Appendixes C and D. Notice this is
exactly equivalent to Equation 7. Thus, random phase shifts are not a
major source of error over the time interval of measurement of 4.

An expression for R 3--the unknown mirror's reflectance--can be
derived starting from Equation 17. Using a common denominator and
solving for Rt gives

<tan 4> (18)
t cos 2wr <tan 4> + sin 2,AT

Using Equation 2, solving for R3 , and substituting into Equation 18
for Rt gives

[<tan t0> I 1 / 2  
(9

R3  RlR 2 (cos 2 w> <tan 0 + sin 2w ) (19)

The cavity parameters 4nfL/c substitute for w-r; thus

R= <tan t> 1 )/2
(RR2 <tan t> cos- 8fL + sin

If the cavity satisfies 8nfL/c (1 and RI R2 - 1, then

R3  <a tfL 1 (21)
<tan t> +

a good approximation for very low-loss mirrors.

A comparison of the sample reflectance R3 derived by the
numerical analysis of Rahn (Reference 5) and the exact expression,
Equation 20, is given in Figure 3. The expression used by Rahn is

12
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/<tan O> - 4iTfL 1/ 2

R3 c)
R3 ~ -~RR2 <tan O>

1.000

EXACT/ '

NUMERICAL

0.999 -

UJ

U/
Z

U- 0.998

(n

O/

_=

0.997

0.996

so 55 60 65 70 75 80
PHASE ANGLE (v, DEG

FIGURE 3. Comparison of the Numerical Analysis by Rahn (Reference 5)

and the Exact Analysis for the Same Cavity Parameters, R, - R 2 =
0.998, f = 100 kHz, and L = 3.864 m. Shows Sample reflectance versus
measured phase angle between injected and transmitted wave.

where L is the round-trip length of the cavity. Recall that the
length used in Equation 20 is defined as the length of the cavity,..

13 "
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Notice that the numerical analysis gives a lower sample reflectance
than the exact expression, but differences are not seen in R3 until
the fourth decimal place. The numerical analysis of Rahn is adequate
unless one requires higher precision, 1 part in 104 or better. This
is the situation for characterization of state-of-the-art low-loss
mirrors used in laser gyros and low-gain lasers. The high precision
is also useful for detecting very small changes in the performance of
an optical coating under laser loading when determining functional
lifetime.

ERROR ANALYSIS FOR THREE-MIRROR CONFIGURATION

In order to evaluate the total error in the value of reflectance
of a sample mirror In a passive cavity, errors must be included from
four sources: errors from (1) modulation frequency; (2) cavity
length; (3) cavity end-mirror; and (4) phase in the phase detector.
Although several of these contribute relatively insignificantly to the
overall error, the error analysis nevertheless includes them, both as
reference for future systems and for the sake of completeness. Future
advances in measuring systems may reduce some errors to the point that
others are increasingly significant. Existing systems can have their
total errors calculated without concern that error sources have become
more (or less) significant.

For

Rt sin (2Qw)

I - Rt cos (2w-)

Sta Rt sin (2(w)
-(tan ) = 1 - Rt cos (2wr)

So that

2 (1-Rt cos 2wx) sin 2w +Rt sin 2(wT cos 2(,u 6Rsec2(,) =t
(1 - R cos 2wT) 2

14
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and S

6 (I 1-R tCos 2 w-r\2

- cos

x (I - R cos 2w-c) sin 2wtr + R sin 2wt cos 2w-r
t t

oRt  (I - Rt cos 2wt

--- . Cos t ) csc (2wr) (22)

Since we are concerned with the error associated with the sample
mirror rather than that of the system, we must consider the previous
equation Rt = RIR 2R3

2, where RI and R2 are the system mirrors and R3
is the sample, so that

t
R 3 =

VR1R2

and

6R3  R1 1 R

/Rj2 2 /R- a

I Rt

2RIR 2R3  t (23)

The chain rule applies for the variables in the equation relating
to the frequency and delay time of the system; also, so that the total
error is

15
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2t + t A 2 )2

+I -A 2 AR2

Evaluating the partial differentials gives the following:

Rt 6R tant

t B in 2ow + cos 2 r tan

=- tan 0(2w0 cos 2wtz - 2w sin 2wot tan 0)
=r (sin 2 + COB 2w tan 0)2

= -2w tan 0(cos 2w-t - sin 2wot tan 0) (24)

(Bin 2wt +- cos 2wt tan 0)2

+(Rt AR) /b tn 2

E a t pa Bin 2f nt + cos 2g tan 01

- tan 0(2w cos 2wr -2 sin 2wt- tan 0)

(sin 2w- + cos 2wt tan 0)2

-2 w tan 0 (cos 2wt - sin 2wt tan ) (25)

(sin 2w + cos 2w r tan )2

Now

bRt 6i ta

= 4 tan2  (cos 2 - sin 2wc tan 0)2 [(t.w) 2 +(w.Ar)2]

(sin 2wt + cos 2wt tan )2

16
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2I s2- R tsin2 2wr 2

4R t sin2 2wr ICO -W 1 Rt coB 2wT/ )

( R - t cos 2w ) 2  ( in 2 - Rt sin 2wv cos 2wr'\
Iw -1 - Rcos 2ur

x f('r.-A) 2 + (WeAr) 2~

4R 2 sin 2 2w-r(1 - Rcos 2w-), 2
t

(1 - R tcos 2 wt)
4

r sin2 2 i 12
[os 2 w - -1- o -i ['.

xtCo 4 [-Aw2 + (w.C) 2]

~sin 2w Rt sin 2wv cos 2c~l
L8 1 - Rt cos 2wT I

4R2 [i 2w co 2w(- o 2wy(1 -R si 3 2 (L 2 T W 2 +( W. C) 21

[sin 2wr(1-R cos 2w:) + R sin 2wv cos 2wv] 4

4R 2 [sin 2wv cos 2wv R sin 2 W-v] 2  r -A') 2 + (Wet) 2]
t t

sin 42wv

2R cs2- 2 [(*w) 2 + (wAt2]4 (Cs2 cR [(-A (26)
2w-

Now

Aw- A( 2 nf) 2 tAf ;Ar= A(-L) .1-AL
C C

17
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and

I - 2R cos 2wx + 2

sec 2  + tan 2 t t

(- R t cos 2w) 2

t|

so that Equation 22 becomes

bR (1 - Rt cos 2wt) 2 (1 - 2Rt cos 2 wj + Rt)2

sin 2 2 w(I - Rt cos 2 ) 2

(I - 2Rt cos 2wt + R )2

sin2 2 w

According to Equation 2, the reflectance of the sample mirror can be r.p
expressed as

t
R 3 =

where Rt is the reflectance of the three-mirror system and R, and R 2

are the end-mirror reflectances. Since they are inextricably bound to

the measuring system, the end mirrors contribute to errors in the

determination of the sample reflectance as follows:

oR3 At o -1/2 /R 1 3/ 2 
t

-o1  -6 [R1 I t fj R1 Il /R42 /R-- ] / 2 "R 2R1 /RR

R3

2 - ~j- (27a)

and

oR 3 R3

- 2 2R2(27b)

18 2
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so that the total squared error contribution from end-mirror accuracy
is

1 R2 4R 1R2R3

R2 2 2 2 2
x [R 2 AR1 + RIAR 2 ] (28)

and the total root-mean-square (rms) error is

_ _ _2 2 A 21R3 _ _[(I - 2R t cos 2wr + R2)csc (2w't)A*I
AR ,2(R 1 R2 R3 )

+ 4R 2(cos 2wr - R)2 csc 2 WT
t

x 4[(RArf) 2 + (AI)21 + R 3
4(R2

2AR1
2 + R1

2 AR 2
2) (29)

C

For example, a system in which

f - 10 5 ± 102 hertz

L - 2 meters ± 0.002 meters

R I = R2 = 0.999 ± 0.0001

then wT equals

4fL 0.48 degrees

cI

A sample with a nominal reflectance of 0.998 (therefore, Rt 0.996)
would produce an angle exiting the cavity of

R t sin 2un

o tan- R = 82.706 degrees
1 - Rt cos 21

19
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If this measurement Is subject to an error of +1 degree, then the

reflectance measurement is subject to an error of

AR3(O) = 2R1 R2 R3 (1 - 2R cos 2wx + R 2) csc (2wT)(-jo)

= 1.545 x 10 - 4

The measurement due to end-mirror deviations would be

R 3  22 2 2 R 3  2 2
AR 3 (RlR 2 ) = 2R -R2 R 3  2ARI + RAR2 = RR 2  2RIAR1

R 3 AR 1  5
- = 7.064 x 10 -

/2 R1

I

Finally, the error caused by the frequency and cavity-length
deviations would be equal to

( + ) LAw 2

AR3( tw) RIR 2R 3  1 - Rt cos r (cos 2w- Rt)

= /4.1888x1-6)2+(4.1888x1- 6) 2 (240.9)(3.85x10- 3)

0.996

= 5.516 x 10- 6

so that the total rmq error would be equal to

20
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AR3tot = 41.545 x 10-4) 2 + (7.064 x 10- 5)2 + (5.516 x 10-6)2

= 1.700 x 10 - 4

and the reflectance of the sample would be expressed as R 3 = 0.998 ±
0.00017. It is seen from the above that, for this system, the major

sources of error in calculating the reflectance are the measurement of
the phase angle of the superimposed waves and the uncertainty of end-
mirror reflectances. However, the contributing sources of error are

sufficiently comparable in magnitude that we suggest including them
all, especially with the foreseeable modifications of greater phase-

angle sensitivity and different end-mirror uncertainty values. The
above analysis would not be valid for a two-mirror system, since
Rt - RIR 2 , but those elements that are based on partial derivatives
of Rt can be incorporated into a two-mirror system error analysis.

SUMMARY

An exact calculation has been performed on the influence of a
random phase fluctuation induced by a thermal variation in the cavity

to the performance of a passive cavity reflectometer. The analysis
started with the assumptions stated by Rahn (Reference 5) in his
numerical analysis of this problem. The expression that was derived
is identical to the expression where no random phase fluctuations were
included. Thus, thermal variation of the cavity is not a major source
of error for the operation of a reflectometer. Comparison of the

numerical and exact analyses show that the numerical expression for R 3
is not a good approximation where high precision--better than I part

in 10 4--is required.

Error analysis was performed to determine the functional
dependence of cavity length, modulation frequency, cavity mirror
reflectance, and phase measurement errors on the precision of the
reflectometer. The total error of a simple reflectometer was

determined to be on the order of 2 parts in 10'.

If high precision is required, care must be taken in the design
and construction of a passive cavity reflectometer to minimize or
eliminate the sources of error that are mentioned above. On the other
hand, a simple reflectometer can be constructed with a precision and

error of approximately 2 parts in 10; either analysis is adequate for

the measurement of R 3.

21
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Appendix A

DERIVATION OF THE INFINITE SUM IN EQUATION 3

Using the power relation for sin 2 (a),

it R n sin 2 ( t + n wt) - R [~1 - cos (2ut + 2nw )]

n=o n=o

Now applying the sum-and-difference formula

coZ c o
= R n 1c 2(t cos 2nwt-sin 2bt sin 2nar ] (A-I)

n=o n=o

I' = ( ) - - cos 2wt R n cos 2nT
2 n o s 2n2r

n+ si sin 2nw (A-2)2 n t sin nc t

n-o

The trigonometric identities for complex exponential yield

23Rowt

L 0 .I hNA
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CD R'
1'1 2 . t 2nw-v -i2nwr

2(1 -R t)  2cos 21ot -- (e +

t n=o

I i2n -i2 nw 'n
( - e +w R2l 2t Rt  21 "

n=noo o

1cos 2t R* e e2nwr + I R n e-12nw

20 R t ~ ~

n=o n=o

2(1- Rt) 4 -cos 2ot 12(0 +
tI - Re o I - Rte 2

1 1 1S

+ j sin 2t 12w 1 -12w (A-3)
1-Re 1 eI -

The complex fractions can be evaluated by expressing them with a

common denominator:

P
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I-Re1
2  + I -Re 

2 w-
t tI=2(I R Rt )  cos 2wtIr -2 wT i2w-c R2

t t t

~i2 ot l i2Wt
SI -R e- 12o I + Rte2w-

+ -1 sin 2t t-
1 Rtei 2 wT - Re i2w + R2

t t t

co 2 - 2 Rt cos 2w
2(1 - Rt ) 4 cos 2 t

1 - 2 R cos 2wr + R2

t t

+I sin2ut 21R t sin 2w c

41 1 - 2R t cos 2w + R2

I - R cos 2 w
cos 2ut-

Rt - 2 R cos 2w- + R2

t t

+-i~R sin 2wt
+ -1sna- R t sintw (A-4)

21 - 2R cos 2w- + R2

t t

Thus,

1 cos 2wt(l - Rt cos 2wt) - sin 2(w Rt sin 2cwit

2(1 - R )  (i - 2R cos 2wt + R 2)

t

2,

P.'

SI-

25 '

5% 5 ~ ~*s~~ ~.~- -. ' S. .~% %~'%~.I* ~ a* P.
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Appendix B

DERIVATION OF A*A

Given

A sin At -re cos WT

16 2tr 21b
ICO 2re cos wc + r e

+ Cos wt ree1 sin w-

11 -2re 1
6  Cos w ' + r 2e 

2 1b6 221

sin wt(1 - re cos WT) + cos ut(re 6 sin wt)

1 - 2re i1 cos wr + r2e
2 16

A*A = sin 2 wt (1-re 1 6 cos wT)(1-re- i 6 cos W )+cos 2 wt(r 2 sin 2w)Wp
16 2 2i6 - i 6 2 -216

(I - 2re Cos wT+re -2re cos wT + re

16. .-Cs6 16
+ sinwicost (1-re cosw )re sinwT+-(1-re coswr)re sinWj (B-1)

(1-2re1 6 coswT+r2e 2 i 6 )(1-2re - 6 coswT+r 2e- 2i6

The denominator becomes
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1 - 2re - i 6 cos w+ r2e- 2 i 8 2re i6cos WCy

+ 4r 2 co s2 2 32ei6
w-r" cos wo

+ r2 e 2 6  2r3e i 6 cos wi + r 4

= I + r4 - 4r cos 6 cos w + 2r 2 cos 26 + 4r 2 cos 2 WT

-4r 3 cos 6 cos wt

=I + r4 - 4r(1 + r 2) cos 6 cos w + 4r 2 Cos 2 
WT

+ 2r 2(2 cos 2 6 - 1)

= 4r 2 cos 2 6 - 4r(l + r 2) cos 6 cos w-r + 4r 2 Cos 2 WIC

+ (I - r 2)2

Simplifying the numerator as follows,

(1 - cos 2bnt)(1 - re- 6 cos wt - re 1 6cos wT + r2 cos 2t)

+ 1 (1 + cos 2wt)(r 2 sin 2 W)0

16 -i2
+ -sn2tre sin wt- r sin wt cos w

2

16 2

+ sn2tre sin w r sin wT cos w

I- 2r cos 6 cos wtr+ r 2 cos 2 wr r 2 sin 2 Wt)

28
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1. 2 2
+- cos 2wt(r sin 2w- - 1 + 2r cos 6 cos wr

Sr
2 Cos2 W )

+ - sin 2wt(2r cos 6 sin w - 2r 2 sin w cos
2

- (I - 2r cos 6 cos w' + r
2 )

12

+ cos 2wt(2r cos 6 cos wt - I - 2r 2 cos 2 w)
2

+ - sin 2wt(2r cos 6 cos w - 2r2 sin w cos wT)
2

Using double-angle identities for sin 2 ( and cos 2 wt,

A*A

oswt( 2rcosw cos6-r2cos2w -i )-sin2 ( rsinwrcos 6-r2sinw cosBw)

4 r2cos 2 -4 r(l1+r 2) cos 6cos w+4 r 2cos 20w+ (I1 -r 2) 2 (B2

29
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Appendix C

REDUCTION OF VARIABLES IN EQUATIONS 20 AND 21

Equation 16 is

AlkA c + jh-c
<tan 0> (C-1)

Ac + B2L

where

-ah+ blc) (alk + bjc-)
A l , Bj =

A 2 - 4ec 2 -4ec

lp

-(alh + bl/c-) (a2k + b2vc)
A 2  = , B 2 =fi

d24ec A2- 4ec

al = -2r sin wz , b I = 2r 2 sin w- cos wT

a 2 - -2r cosw , b2 = I + r
2 cos 2w

c = 4r 2

31
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h - I d-/ 4ec1

d - 4r(1 + r 2) cos WT

e- (1 - r2 )2 + 4r2 Cos2

It is noted that the expression

Ad 2 4ec

is an imaginary term since

d 2-4ec - 16r2 (1+r2)
2 cos 2 wT-4[(1-r 2) 2+4r

2 cos 2 wr](4r 2

- -16r 2(1-r 2) 2 sin 2 w C

Thus 4 - 4ec - 41r(l - r 2) sin w-, and imaginary terms are present
in Equation 16. Upon multiplying the numerator and denominator of

Equation 16 by AT- c,

A/(k- c)(h - c) + Bj(h 2 - c) -

<tan *> f (C-2)

A 2 kk2 - c)(h 2 
- c) + B2 -

Using hk e and (h2 + k 2)c = d2 
- 2ec, the argument under the radical

in Equation C-2 becomes

32
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(k2-c)(h 2-c) - h2k2-(h2 ik 2)c+c2

= e 2 _d 2+2ec+c 
2

- (e+c)2-d
2

- [((-r 2) 2+4r 2cos 2w'r+4 r 2]2 _16r 2( 1+r 2) 2 cos 2ar

- [(1+r )-4r 2  o 2 wj (C-3)

and X - / -2 c)(h 2 _ c) =(1 + r 2 ) 2 
-4r

2 cos2 wt is entirely
real. Nov Equation C-2 can be written

<tan *>-AIX + Bj(h2 _ C) X (1+ r 2 )2 - 4r 2 c082 wr
A2X + B2(h

2 _ c)

a 1 h + bI/c _alk + b1V 1 (h2 - c
[ x+ 1h _C
(h-k)r (k - h ) v

'2h+ b 2rc_] a 2 k + b 2 /C_~h~

(h - Qk)r --] X[ (k -h) Fc] h2 C

(alh + bl/c) X - (alk + bl/c)(h2 _ C)

(a 2 h + b2v'C) X -(a 2 k + b2 ,r7)(h 2 
-C)

(alh + bjyrc) X -(alkh 2  a 1 kc + bj/ch2  b1cic)

(a~kh - akc +- b~v'c) (C-4)
(a 2 h + b2 r/c) X -ak k b 2ych bcvc
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Using hk - e again,

(alh + blvc) X - (aleh - alkc + bliech2 - blcrc)

<tan (a 2 h + b2/F) X - (a 2 eh - a 2 kc + b2 vFCh 2 
- bcC

alh(X - e) + b1 /c(X + c) - bjVch 2 + alkc

a2h(X - e) + b2 /c(X + C) - b2vch
2 + a 2kc

alh(e - X) - blvc(X + c) + bjh2 'c - alkc
- (C-5)

a2h(e - X) - b2Vc(X + c) + b~'c- a2kc

Using

h2- (d -id 2 - 4ec)

- (d-Di) D D4r(1 -r 2 ) sin wi

24c

k ( d + Di)

and Equation C-5 can be written

34
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al bi 2 2) a/c
- (d-Di)(e-X)-blic(c+X)+ - (d2-21dD-D2)- -(d+Di)

<tan 2> 2v 4/c 2 (C-6)a2 (dS)eX_2ccX+b2 2 )a2c "
2 - (d2-2idD-D2) (d+Di)

2 /c" 4 r" 2

or, multiplying numerator and denominator by 4/, i.

2al(d - Di)(e - X) - 4b1c(c + X)

<tan *> =

2a2 (d - Di)(e - X) - 4b2c(c + X)

+ b1 (d
2 

- 21dD - D 2) - 2aIC(d + Di)
(C-7) S

+ b2(d 2 - 2idD - D 2) - 2a2C(d + Di)

Separating into real and imaginary parts,

2ald(e-X) - 4b1c(c + X) + b1 (d
2 

- D 2) - 2aicd(tan> >-
2a2d(e-X) - 4b2c(c + X) + b2(d2 - D2) - 2a2cd

- Di[2al(e-X) + 2bld + 2ac],

- Di[2a 2(e-X) + 2b2d + 2a2c] (C-8)

4For

A = 2ald(e - X) - 4b1c(c + X) + bj(d
2 

- D2) - 2alcd

B - 4r(I - r 2) sin w-z

C - 2a 2d(e -X) - 4b 2c(c + X) + b 2(d
2 

- D 2) - 2a 2cd

E - 2a2 (e - X) + 2b 2d + 2a2c

G - 2al(e - X) + 2bld + 2alc

35



NWC TP 6776

<tan A - BIG
C - BiE

< an > BIECf BiE C + BiE

AC + B2EG + Bi(AE - CG) (C-9)

C 2 + B
2E2

Since the original integrand was real, we expect that the above
expression should also be real, with the inference that AE - CG - 0 or

C - (C-10)

G

This is indeed the case, as shown in Appendix D. Using Equation D-1,

( A) + B2 EG

(AE)2 + B2 E2

G

A2EG + B2EG 3  EG(A 2 + B2G 2 )G

A2E2 + B2E2G2 E2(A2 + B2G2) " (C1)

Now,

3.

-4
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<tan>= G

2ai(e - X) + 2bld + 2ale

2a2(e - ) + 2b2d + 2~

a1 (e - X + c) + bld

a2(e - X + c) + b2d

2rsinwr(8r 2Cos 2wc)-2r 2sinwrcosw- (4rcosuw)(l+r2 )
-2rcosw'c(8r 2COB wr)+( 1+r 2cos2toy0(4rcoswc)( 1+r 2)

16r 3sin wT coB wT - 8r 3sin wrr cos 2wr( I + r 2

4r coB w-c(1 + r 2)(1 + r2coB 2wri) - 160 3 Cos 3 WT

Br 3 sin wT cos 2 w-T(1-r 2  (-2
4r cos w'r(I + r )(1 + r2 cos 2wi) - 160 O (~
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Dividing the numerator and denominator by 4r cos wT,

<tan > i 2r 2  sin wT cos w(1 - r 2 )
(1 + r 2 )(1 + r 2 cos 2wT) - 4r 2 cos 2 t

2r 2 sin w cos wir(I - r 2)

1 + r 2 cos 2wTo + r2 + r4 cos 2w - 4r 2 COs 2 WIC

2r 2 sin wT Cos wT ( - r 2)

1 + r2 (2cos 2 w - 1) + r 2 + r4 cos 2w - 4r2 Cos 2 W'r

2r 2 sin wo cos x (1 - r 2 )  (C-13)

I - 2r 2 Cos 2 wr + r 4 (2cos 2 rt - 1)

<tan *> 2r2 sin wT cos wx(1 - r 2)

I - 2r 2 cos 2 w + 2r4 cos 2 WT- r

2r 2 sin w- cos wT(1 - r )

(1 - r4) - 2r 2 C w - r 2 )

2r 2 sin w' cos wr(l - r 2

( - r 2)(1 + r 2) - (I - r 2)(2r 2 cos 2 WT)

2r 2 sin wT cos w

1 + r- 2r 2 cos 2 'Al

r r 2 sin 2w-T R t -r 2

1 - r 2 cos 2iw;

R sin 2wt

<tan R t s 2wr (C-14)
I - R tCos 2w-t

38
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Appendix D

PROOF OF AE - GC 0

Starting with substitution of terms

AE GC -[2ald(e - Xi) - 4blc + X) + -jd B 2) -2ajcdI

" [2a 22a2(e - X) + 2b2d + 2a2c1 - [2a,(e - X) + 2bld + 2a~c1

" [2a 2d(e - X) - 4b2c(c + X) + b2(d 
2 _ B 2)- 2a2cdl

- 4ala2(e - X)2d + 4ajd(e - X)(b 2d + a2c) - 8a2 blc(c + X)

x (e - X) - blc(c + X)(bAd + a2c) + 2a2bl(e -X)(d 
2 _ B 2)

+ 2bl)d 2  B B2)(b2d + a 2 c) -4ala 2 cd(e - X) - 4alcd

" (b 2 d + a 2 c) - 4ala 2 (e -X) 'd -8alb 2c(c + X) + 2alb 2

" (e - X)(d 2  B B2) - 4ala 2cd(e X ) + 4a2bld(e - X)

- 8blb 2cd(c + X) + 2blb2 d(d 2 _ B 2) 4a2blcd 
2 + 4ala 2cd

x (e - X) - 8alb 2c 
2(c + X) + 2alb2 c(d 2 _ B2 ) -4ala 2 c 2 d]

- 4ald(e - X)(b 2d + a2c) - 8a2b~c(c + X)(e - X) -Bbjc

x(c + x)(b 2d +a 2c) + 2a2bl)e -X)(d
2 _ B2) + 2b,(d 2 - B 2)

x (b2d + a2c) - 4ala 2cd(e -X) -4a~cd(b 2d + a2c) + 8alb 2c

x (c + X)(e - X) - 2alb 2(e - X)(d 2 _ B 2) + 4aja 2cd(e - X)

-4a 2bld 
2(e - X) + 8blb 2cd(c + X) - 2blb 2d(d 

2 - B2)

+ 4a2blcd 
2 + 8alb 2c 

2(c + X) -2alb2c(d 2 - B2) + 4ala 2c 
2dl

39
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AE - GC - 4alb 2d
2(e - X) + 4ala 2cd(e - X) + 8c(c + X)(e - X)(alb 2

- a 2b1) - 8blb 2cd(c + X) - 8a2blc
2 (c + X) + 2(e - X)

x (d2 - B2 )(a2bl - alb 2) + 2blb 2d(d
2b 2) + 2a2blc(d

2 - B 2)

- 4ala 2 cd(e - X) - 4alb 2cd 2 
- 4ala 2 c 2d - 4a 2 bld 2 (e - X)

+ 8blb 2cd(c + X) - 2blb 2d(d
2 - B2) + 4a 2blcd

2 + 8alb 2c
2

x (c + X) - 2alb 2c(d 2 - B 2) + 4ala 2c 
2d

= 4d 2(e - X)(alb 2 - a 2bl) + 8c(c + X)(e - X)(alb 2 - a 2bl)

+ 8c2 (c + X)(alb 2 - a 2bj) + 2(e - X)(d 2 - B2 )(a 2b, - alb 2)

+ 2c(d 2 - B 2 )(a2bi - alb 2) + 4cd 2 (a 2 bl - alb 2 )

- (alb 2 - a 2bl)[4d2(e X) + 8c(c + X)(e - X) + 8c2

x (c + X) - 2(e - X)(d 2 
- B 2 ) - 2c(d 2 

- B 2) - 4cd 2 ]

- (alb 2 - a 2bl)[4d 2(e - X - c) + 8c(c + X)(e - X + c)

- 2(e - X)(d 2 - B 2) - 2c(d 2
- B2 ) - 4cd 2 ]

- (alb 2 - a2bl)[4d2(e - X - c) + 8c(c + X)(e - X + c)

- 2(d 2 - B 2)(e - X + c)j

- (alb 2 - a 2bl)[(e - X + c)(8c 2 + 8cX - 2d2 + 2B2 )

+ 4d 2(e - X + c) - 8d 2 c] - (alb 2 - a 2 bl)[(e - X + c)

x (8c 2 + 8cX - 2d2 + 2B2 + 4d 2 ) - 8d 2c]

- (alb 2 - a 2bl)[(e - X + c)(8c 2 +8cX + 2d2 + 2B 2 ) - 8d 2c1

2(alb 2  a 2bl)[(e - X + c)(4c + 4cX + d + B - 4d

Using

c - 4r 2

X - (l + r 2)2 - 4r 2 cos 2 Ta
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e r ( - r2 + 4r 2 cos 2 w

then

e - X + c = (1 - r 2 ) 2 + 4r 2 cos 2 wT - (1 + r 2 )2 + 4r 2 cos 2 wT

+ 4r 2 cos 2 (u + 4r 2

1 - 2r 2 + r4 + 8r2 cos 2 wT - I - 2r 2 - r 4 + 4r2

= 8r 
s2 C WT

4c(c + X) - 16r 2[4r 2 + (1 + r2) 2 
- 4r 2 Cos 2 W]

= 16r 214r 2 sin 2 w + (1 + r2) 2 ]

d 2 + B2 . 16r 2 (1 + r 2 ) 2 cos wT + 16r 2( 1 - r 2 ) 2 sin 2 WT2c22 2x+I

= 16r 2(1 + r2) 2 cos 2 wo + 16r 2 (1 + r 2 ) 2 sin2 (4T

- 64r4 sin 2

= 16r 2(1 + r 2)2 - 64r 4 sin2 wT

4c(c + X) + d 2 + B2 = 16r 2[4r 2 sin2 WTI

- 32r 2(1 + r

(e- X + c)(4c 2 + 4cX + d 2 + B2 ) - 4Dc

= 8r 2 co 2w(32r2 )(1 + r 2) - 4[16r 2(1 + r 2 ) 2

x cos 2 wt](4r 2)

= 256r (1 + r2 ) 2 cos 256r 4 (1+ r 2 ) 2 cos 2

=0

Therefore,

AE- GC -0 (D-I)

or

C --
G
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