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ABSTRACT

A distributed system is based on a layered set of abstractions of network communication. At a low level,
current distributed systems use primitives such as datagrams, requestfreply message-passing, reliable vir-
tual circuits, or a combination of these. Future distributed systems will use high-performance large-scale
communication networks, and will support a range of communication-intensive applications. What are the
appropriate communication abstractions for such systems? -

In answer to this question, we have developed a communication abstraction called Real-Time Message
Streams (RMS). An RMS is a simplex (unidirectional) stream with several performance and security
parameters. These parameters express 1) the needs of RMS clients (user programs and communication
protocols), and 2) the capabilities of the RMS provider (network and higher layers). This information can
be used in two ways. First, RIIS providers can eliminate unnecessary or redundant work, and can
oprimally schedule resources such as netv ork bandiwidth and CPU. Second. the RMS client can use the
parameters to select op.imal methods for achieving whatever reliabiliy adJ fiov control arc needed.

RMS is the communication primitive of the DASH distributed system currently being developed at UC
Berkeley. This paper describes 1) the RMS abstraction itself, 2) the role of RMIS in the DASH communi-
cation architecture, and 3) techniques and algorithms for providing RMS at various system levels.
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1. INTRODUCTION

Progress an low-level software mechanisms for distributed systems (virtual memory, proess control, kernel

sruictucre, and communication software architecture) has not kept pace with that at higher levels (distnbued

data, distributed computation, transactions, and so forth). The focus of the flASH project at UC Berkeley

[I] is on the development of low-level mechanisms for next-generation distributed computer systems.

The DASH distributed system is intended to run on multiple types of computer architectures and commua-

cation networks. To accommodate multiple network types, a large part of the DASH network communiz-

tion system is aerwork independent. The lower-level network dependent part has a network-independmnt

interface (see Figure 1).

In existing distributed systems, the corresponding interface has typically provided a simple abstraction such

as wnreliable, insecure datagrams. Higher software layers then use this facility to provide higher-level

abstractions such as reliable request/reply message-passing 151, reliable secure typed message streams (12],

or reliable byte streams [9). This approach simplifies the task of porting the system to different network
DTIC

types. However, it suffers from several basic problems, stemming from the overly simple nature of the , I"
INSPECTED~

basic abstraction (such as datagrams):

DAS!H icrr.<:

network-independent part Accession For'

NTIS ORA&I

1 ~ DTIC TABI
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network-dependent part Ju3tIfroatjo

AL. A, 3_Ptiu~

i ma hine-dependent part Avnl 1 ' 2;1ljt y o .

'~~ ~ ~~ C' 8!3.:iea/o -

DILit

network network
interface intrfacr

Figure 1: The Interface to the Network-Dependent Part of the DASH Kernel
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S Communication clients cannot expres their pufrmance, lpblity and sarity needs to the com-

munication provide . Some applications, for example. may not need data integrity, and thetore do

not need data checksumming. Typically, however, data integrity is a mandatory part of the primi-

Live. Converse ly, a network interface might do link-level data checksumming in hardware; there is

no means for software layers to karn of this and avoid doing checksumming themselves.

" It does not provide a well-defined means for the communication provider to dictate limits on client

behavior, such as the amount of client data outstanding within the network. This makes congestion

control in large networks difficult.

* It makes no provision for real-time performance guarantees. Such guarantees are needed for interac- e.

tive high-bandwidth traffic such as digitized audio [3] and video. This shortcoming leads to res-
'S

uicted, hardware-expensive solutions.

Finally, in future large-scale general-purpose systems, request/reply communication primitives wilU not be

sufficient, because they cannot efficiently provide stream-style communication (as is needed for digitized

audio and video) on high-delay long-distance nemworks.

Work in the area of real-time distributed systems for robot control has led to the development of commui-

caaon pnmiuvcs that arc paramctcnzcj b) rcal-timc constraints o- reiabibt\ nc.-, 113,14). This o:;. 1,

in the same spirit as that described here, but addresses a restricted domain: request/reply communication,

small networks, and no security concrns.

In a.-, a:tzmp: u '. ",. thc-c pro ,!r. th: DASH n-twork communication sscm ha, been based on an

abstraction called real-tirm message streans (MS). An RMIS is a simplex streamn with several perfor. 5-

mancc, r-1 abiiy, and sucarit) parameters. The RMS abstraction appears in the interface to the network-

dependent part. and at higher levels of thc DASH system as wel. RM4S also is the basis for n reque t/rrply

communication facility, and the RMS features serve to optimize request/reply performance.

The use of RMS in DASH is based on anticipated needs and on projections of futumr network technology;

RMS are not supponed on current networks. and they cannot be built on top of simpler abstractions such as .,
%.

%"



datag or vkal cruits. However, we feel that our approach is nssary for exploiting the advace*

in communication ocdmolog' that will occur in tie near- and long-term fumte.

This paper is crganized as follows: Section 2 defines the RMS abstraction and lists some possible ues.

Section 3 describes the DASH communication architecture, which is based on RMS. Section 4 discusses

implementation techniques for RWS in the areas of multiplexing, flow control, and process schedulmg.

Section 5 summarizes the wor.

2. REAL-TIME MESSAGE STREAMS

A real-timfe message stream (RMS) is a simplex communication channel between a sender and a receiver.

The sender is a process or set of processes that can invoke a send operation on the RMS. The receir is

typically a passive object such as a port; a message is considered delivered when it is enqueued on the por

or given to a process waiting at the port. Messages are untyped byte arrays. They may in addition have

source and target labels identifying the sender and receiver. The sender and receiver are RMS cliernz. The

hardware and soft-are system supporting the creation and use of RIS is the RMS provider. A cli,: al

one level may be a provider at a higher level.

An R.MS has th f'lowinp basic properties: 1) message boundaries are prescrved; 2) message: arc

dzhdverc d in seqrc,.. 3) clien" are noufi,ed of an RMS failure. In aidiuon, an RMS has othe-r pa7.-

as described in the following sections.

2.1. Reliability and Security Parameters

An RMS has the fol cwing Boolean parametcrs:

Reliability. if true, then all messages that arc sent on the RMS arc delivered, unless the RMS fails.

Aut'cntication: if true, then impesonation (delivery of a message with incorrect source label) is impossi-

blc.

Privocy: if true, then eavesdropping (access to a message by a host or process other than that spcifitd hy

the target label) is impossible.
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2.2. Performance Parameters

An RMS has the following performance parameters:

Capacity: an upper bound on the amount of data outstanding within the RMS at zny point (i.e., sent btg not

yet delivered). This limit is enforced by the RMS clients, not by the provider (see section 34).

Maximum message size: an upper bound (enforced by the sender) on the size of individual message& This

limit cannot be ga than the RNS capacity.

Delay boundparwwers: message delay is the elapsed real time between the start of the send operation w-d

the moment of delivery. An RNS has an upper bound (guaranteed by the RMS provider) on message

delay. The components of the delay may include network transmission delay, queueing and proe ssing

delays at the sender and at intermediate switches, and processing at the receiver. The bound is expressed

as

A + B*(message size),

where A and B are parameters of the RMS. This bound may be deterministic, statistical, or best-effo-t (see

section 2.3).

Saiist.ja;'. p.iarn-;icr.w: ii Lc dzla bourn is s'aiuca . ar. RMS h-- a-craie lc,,Janj .. :.-.

parameters (supphed by the client) and a delay probability parameter (guaranteed by the provider).
,,-

Average bit error rate: this parametr reflect the combination of 1) the error rate of the underlvir..:

transmission meu- . 2) the effectieness of the checksumming algorithrr., and 3) the expected ra*2 of

packet loss from bcLffer overrun It is guaranteed by the RMS provider.

Initially it might seem that an RMS should have a "guaranteed handvidth" parameter. However, ths is

implied by the other parameters. If M is the maximum message size, D is the maximum delay of a messe

of size M, and C is the RMIS capacity, then a client can send a message of Siz Af every DMIC secon-

without violating the capacity rule, since at any point at most CIM messages (of total size C) will have be

sent within the preious D seconds, and all earlier messages are guaranteed to have been delivered artea.-.
N,

S
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This will provide a bandwidth ef about CID bYtes per Meound The atua] maximum bandwidth may eathr

be lower (because ot eorrs and protocol overead) or higher (if actual delays we nmaller than the uppe

bound).

2.3. Delay Bound Types

The delay bound lwarneters of an RMS have the following types:

Deterministic: the delay bounds are "hard"; only an RMS failure will cause them to be violated. System

resources (buffer swce, media bandwidth) are allocated to individual RMS's. The RMS provider rejects

an RMNS request if its worst-cas demands cannot be met with free resources.

Statistical: the dela. bounds hold probabilistically, and may require a statistical description (average loaJ

and burstiness) of the offered workload. An RMS creation request is rejected if either its expected message

delay or its expected bit oror rate (which is affected by the possibilit) of buffer overruns) is higher than

acceptable. Failure to observe the delay bounds is not necessarly reported to the clients.

Best-Efforr RMS a".anon requests are never rejected. Delay bound parameters are used only to schedule

resources based oc message delivery deadlines (see Section 4.1).

2.4. RMS Creation and Ownership

RMS creation opera:jans (offered by RMS providers) specify the direction of the RMS; the creator of an

RMS may act as ci-.hzr the sender or the receiver. If there is accounting, the creator owns the RMS in the

sons. of bKnrz rcsy . fo: p.vinr fo,: ik, Us.'-

RMS parameters a.-: established at the time of creation. A set of aztual RMS parameters is said to b- co-:-

patible with a set of' request parameters if

(1) the actual reliariliiy and security properties include those requested;

(2) the actal cazity and maximum message size parameters are no less than those requested, and
Iq•



(3) he ctul dlayboud ad aot atepetrmees arm no grewer (ha those requested,

An MS reakm equst ncldesdesredandacceptable paramewe sets. The aa parameters of the

reutigR S i ny mreund ate leth7ese parrnc*s 4utb optbewt h eus'

accetabl partnetrs. he RS cratio reqestis rejectediftsisntpsbl.TeMSrodr

tries to match the desired parameters as closely as possible.

2.5. RMS Exarnples

To see the importamze of RMS parameters, consider the case of a client (say a transport protocol serving a

user program) that requires data privacy. The protocol requests an RMS from the subtranspon layer (see

Section 3.2). The desired and accptiible parameter sets both request privacy. DependIng on the netwcrk.p

the follouing situations are possible: A'

(1) Priazy is provided by data encryption in the subtransport layer.

(2) Tbe network has Iink-level encryption hardware; The subtrarisport layer learns this (it is a propert of

nerwork-level RMS's) and does no data encryption; 
p~

(0 The nctwvork i considecred secure. so) no data encryptio)n is, d:).

In any ca-se, the optimal mechanism is used for privacy. If a client does not require privacy, no m-chasm-,

is used (which is again optimal). Without the RMS security parameters, this optimization would no: bc

possible. A similar situation eXis for data integrity: the optimal checksumming mechanism can be used

baixed or. RMS paz -7 .

The following examples illustrate the uses of the RNIS capacity and performance parameters:S

0 Initial request and reply messages in a request/reply protocol should use RMS's with low dclaN

bound. The precise delay bound and the delay bound type are determined by application needs. The

RMS capacity may be large, unless it is known that request or reply messages will be small aol

infrequent-

I 
;

I . N
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" A scream protocol for bulk dama traer should use a high capacity, high delay RMS for dmt

RMS's for w~xiowledgerneats ame discussed below.

" Reliability acknowledgements should use low capacity, high delay RMS's.

" Flow control aknowledgements should use a low delay, kow capacity WMS. In DASH, the subtran-

sport layer provides a "fast acknowledgement- service to reduce response time and WAS establish-

ment overhead-

* Real-time communication may require deterministic or statistical delay bounds.

* Digitized voice should use a high capacity, low delay RMIS, perhaps with a statistical delay bound.

A high bit error rate may be acceptable.

* Communication involving a human user interface trffc (such as for network window system5FJ

can tolerate a moderate amnounc of delay because of human perceptual limitations. The RMS from

user to application carries mouse and keyboard events, and can have low capacity. The RMS in the

opposite direction carries graphic information, and gen=Hall requires higher capacity.

Ir a" th,-se cas>- Lrcifz uoo clicn: needs jn~rcascs thc likelihood that the provider can accornmc-

date them. For examplc, if packet queueing in an internetwork gatewlay is done using RMS-specifie-d dzz.2-

lines, then a by. -delay packet can be sent before high-delay packets that would otherwise cause it to be

delivered late. A nerwork may be capable of providing low delay or high capacity, but not both. The RMS

parameters allou the client to choose.

3 THE DASH COMMUNICATION ARCHITECTURE a,

In this section we briefly describe the DASH communication architecture. This is done primarily to

motivate the material in Section 4. Details of addressing, namning, encryption schemes, and specific opera-

tions are omitted The structure of the DASH network communication architecture is shownM in Figu= 2.

I
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steam -rwd
protocols

0RKQM RKOM

R.KOM channel

subtransport laver suuAsotlayeor

object object

Figure 2. The DASH Communication Architecture.

3.1. The Network LaYer

DASH allowAs multiple network types. Each network type to which a DASH host is connected is

rc~~ser.:e..i ~ ir.nfkzri -% asc n:,)Julc ith a sutir r.rx..TVr~

objects provide hcst-to-host nerworiRMS's. They, encapsulate network-spccific protocols fom RMS crez-

tion, deletion, and tansrnission, and for non-RNIS network maintenance tasks such as routing.

Networks are absL-a:t entities, and need not be physically or logically disjoint. For example, the DARPA

Internet and a local Ethernet (both with the addition of an RNIS protool) could be separate DASH n-i-

works, although the% might share host interfaces and network media.

A network object has the following parameters:

. Whether all hosts on the network are trtd. If so, opuimizauocns by the suhtransport laver (scc

below) are possible. :
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a Whbet the w twork has the "physical broadcast property": ta if an tavesdropper receives an

entire message. then so does its intended recipient. If so. ofimiiatons by the subtransport layer we

possible.

, For each ccmbination of security and reliability paramete-s, the limits of the network's performance

* parameters for that combination (this may be zero if the combination cannot be directly supported).

3.2. The Subtransport Layer

The subtranspori layer (ST) provides a variety of host-to-hos functions. All upper-level network commun-

ication in DASH passes through the ST. The ST provides ST RMS's to its clients. ST RMS's are mulu-

plexed onto network RMS's. The basic functions of the ST are to provide security [21, to do deadlirne-

based message queueing, to multiplex ST RMWS's onto network RMS's, and to arrange for "fast ack-

nowledgement" of messages sent on ST RMS's.

For each active peer host, the ST maintains a control channel consisting of two low capacity, low delay

network RMS's, one per direction. The ST uses a simple request/reply protocol on this channel to d

authentication and ST RNS establishment. The first ST RMS creation requesi to a given peer triggers the

creation of the ST control channel to that peer.

In addition, the ST maintains a set of data network RMS's to the peer. These are used to carry ST RMS

traffic. Their ownership, direction and multiplicity are dynamically determincJ by ST client demand. see

section 4.2.

3-1. Transport Protocols

All request/repl) communication uses the DASH Remote Kernel Operation Mechanism (RKOM). RKOM

provides kernel-level request/mply communication, and is used as a basis for user-level request/reply corn-

munication. The RKOM module maintains an RKOM channel to each active peer. Such a channel consists

of four ST RMS's, one low-delay and one high-delay RMS in each direction. The low-delay RMS's are

used for initial request and reply messages, and the high-delay RMS's are used for retransmissions and

acinowledgements



-. F r

Wo

In tddjuon to commucation using RJCOM, user- and kerriel-level clients can establish their own conuun-

ication aessions. Tese sessions typically consist of 1) a set of ST RMS's aid 2) a set of stream protocols, "

each of which is a kIroel -level process.

3.4. RNIS Levels in DASH

In addition to the Dework- and ST-level RMS's described above, DASH provides the following R.MS.

types (see F4gure 3): .,

Subuaser RMS: this spans communication protocol processes. Message sending and delivery are defined as

the moments wten message arrive from, or are passed to, user processes. The delay bounds include proto-

col processing time, and their enforcement includes dealine-based process scheduling (see Section 4.1).

kernel A kernel B

user-level RMS ....us~er proce.se s - ,,

sub-uiser KNMS

P ',-: . .P5.'.

ST R-NS,sr~is

sub:rar, n, ri lawr I

netwoork Law'

a.i
Figure 3: RNMS Levels. in DASH

N5
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User-level RMS: this spans user processes. The moments of message aending and delivery am deined by

th user mprocess, and end-process CPU Wne is included in the RMS dela). ScWduling of these user

processes must be deadline-bas. 0

4. IMPLEMEN-TATION TECHNIQUES FOR RMS

This section desaibes a set of techniques, algoridns, and issues that arise in providing low-level RMS and V

in building high-level RMS out of low-level RMS. These techniques are presented in the context of the

DASH architecture described in the previous section_

4.1. Process and Interface Scheduling

When an uppez-level RMS is created, its total delay is divided among its various stages (send protocol pro-

cssing, ST RMS delay, network RMS delay, and receive protocol processing). When a message is sent on

an R S, there is a deadline by which it must be handled (Le., processed b, a protocol, sent on a lower-

level RMS, or trwaniued on a network medium). This deadline is the curren: real time plus the delay allo-

cated to the next stage of the RMS.

For subuser and user-level RMS, these deadlines are used by the shon-term scheduler to determine the exe-

cuj:). ord:- o' r:o]X or 07 cr -Tr pr'-A s_ 7r, ax'.....-cr "ovr' d.- 0:07

the delay bound type of the RMS. For network RMS, thli deadlines arc us.J to determine the ordzr in

which packets are queued for transmission on a network interface.

4.2. RMS Caching and Multiplexing

The ST caches network RMS's; i.e., it may retain a nemork RMS even whiz it is not being used b% aN

ST RMS. This caching is motivated by mo assumptions: 1) during a given time period a host will tenJ to

communicate repeatedy with a sma] set of remote hosts; 2) it is slow and costly to create network RMS's.

The ST also does Wpwardr matiplexing of multiple ST RMS's onto a single network RMS (see Firgur 4).

The motivations for this multiplexing (as opposed to simply creating a network RMS for each ST RMIS) are

that 1) it can eliminate the need to create a new network RMS, and 2) mes&aes from multiple ST RMS's

I
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STRM4S

mu/dp/xig. subtransport layer demudtiplez $n

quetuing

inetwork RNIS

Figure 4: RMS Multiplexing

can potentialy be piggybacked, Le., combined and sent as a single network message, %ith a possible reduc-

tion in overhead- Multiplexing of ST RMS's increases the potential frequency of piggybacking.

Among the rules that govern RMS multiplexing are:

* A dcarj,. .STP.Scane l. r-...' 'Pi , dztc.c : s-r,:: ,.R'.- a7.uz -a '

ST can be multiplexed only onto a deterministic or statistical network RMS.

* The delay bound parameters of the ST RMS's must be at least those of the network RMS; the differ-

ence is a potentiaf queueing delay during which the ST can attempt to piggyback acditional messar-e.

with the outgoing message.

* The capacii of the network RMS must be at least the sum of the capacities of the ST RMS's.

* The maximum message size of the ST RMS's may exceed that of the network RMS. This requires

fragrnentation and reassembly by the ST (see below).
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Ir would also be possible to downwards.multplex an ST RMS across uevaal network RMS's. If there

were multiple nemwks paths between the hosts, this technique could be used to increase capacity beyond

that available in a single network RMS. However, this has not been included in the DASH design because

the expected gain may not outweigh the additional ST protocol complexity.

4.3. Increased Maximum Message Size

It is an issue wether the ST should offer a much larger maximum message size to its clients than that pro-

vided by the netmork layer. This is done, for example, in VMTP [6]. At the network level there will

always be a message size limit (e.g., the 1.5KB Ethernet packet size limit) because of hardware restrictions,

RMS capacity, nonzero bit error rate, or the need for fairness.

To offer its clients much larger message lengths, the ST would have to use a transport protocol providing .

both reliabilin4 and RMS capacity enforcement. In general, this places an undesirable burden on the ST,

and may duplicate work being done at higher levels. On the other hand, providing a somewhat larger max-

imrnum message than that provided by the network layer may reduce protocol process context smitching and

other overhead,

For these reasons. th: ST may provide a larger maximum message size than the network layer. A ma-.-

imum messazc siz- is chosen with the object of maximizing potential thougl.-: basyed on the combirp.1:,7

of network RM.S faror rate and context switch time. The ST does fragmentation and reassembly to support

this larger message size. It does not retransmit fragrnents; if a message is incomplete when a fragmen: of

the next messace arrives, the partial message is discarded.

4-3.1. Message Queueing and Ordering

When the ST sen, a fragment for transmission on a network RMS, a transmission deadline parameter is

passed to the network RMS send routine. If the network interface has a nonempty transmission queue,

transmission deadlines determines the order in which messages are sent. In any case, the network layer

must guarantee that if message A is sent after message B, and has a transmission deadline greater than or

equal to that of B, then B is delivered first (now: this is a refinement, particular to network RMS, of the
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seqetf. lal delivery prope.y of RMs)

If the ST does Do piggbackins. and immediately sends each client message on the Uciaed network

RMS using transmission deadlines that we monotonically increasing for a panicular ST RMS. then ST

RMS messages will be delivered in the correct order. The curent real time could be used as the Vrmis-

sion deadline. However, it would be preferable to use

(current real time) + (ST RMS delay bound) - (network RMS delay bound)

since this would beu reflect the true deadlines.

It is also possible (and perhaps desirable) for the ST to internally queue messages in the hope of piggyback-

ing. In doing this, care must be taken to preserve the ordering of ST R.S messages while still honoring

deadlines. The following set of policies can be used to achieve this:

For each outgoing network RMS, the ST maintains a piggybacing queue of client messages await-

ing transmission. This queue never exceeds the network RMS maximum message size. ST client

messages that require fragmentation are not piggybacked.

* The mazimum transmission deadline of an ST client message is its arrival time plus the ST RMS

d:-,%. t,-"' mirus th networl. RMS dcv bun ,

* The minminu., rransyission deadline of a client message is the actua transmission deadline of the

previous message on the same ST RMS. This ensures that messages on the ST RMS are delivered in

orda.

* The minimum (maximum) transmission deadline of a piggybacking queue is the minimum (max-

imum) of the corresponding deadlines of its component messages.

* When a piggybacking queue is finally sent on the network RMS (either because its maximum

transmission deadline is reached or because it overflows) the transmission deadline passed to the net-

work layer is the queue's maximum transmission deadline.
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tanismissEn2 deadline of the correspondinig queue, then it is sent an the network RMS inimediawiy.

Otbexise it is appended to the piggybacking queue it possible.

This algorithm maximnizes the possibility of piggybacking, while ensuring correct ordering and optimal

uuaefax scheduling.

4.4. Flow Controf and RNMS Capacity Enforcemnent

WhIere there is a limited buffer spare in a communication system, flow control can be used to avoid perfor.

mance loss hmti buffer overrun and dropped packets. Flow control mechanisms are often necessary for

even minimal performance levels. On the other h and, flow control mechanisms may not be needed in cer-

tain sitat ons (for example, if the data rate of the-sender is knovm to be low) and in that case may impose

an unnecessary overhead.

It is useful to Lazor commnircation system buffers into tree groups:

(1) Buffers bem-een the sending process and the send protocol.

(2 Buffers ir~ the netvvorl: switches ani gateways, aii in the receiver's network interface and low-level

driver.

(3j Buffers bemtw the receive protocol and the receiver.

Thn RMIS approchl to fioik control treas these buffer groups separately. The capacity parameter of ar

RMS prevents overrnning buffers in group (2). Since there is no RMS capacity adjustment, it is assurnbc J

tha: the sizes of thtse buffer do not change dyniarnicall). If they do, the RMS provider must delete the

"IMS, and the clients must establish a new RMS. In contrast, the flow control of TCP does not protect

gtwmay buffers; ICMP source quench messages f8, 101 provide an ad hoc and often ineffective solution to

this flow control problem.

RAIS clients are responsible for enforcing the RNMS capacity. If they fail to do so, the provider's guara-

tees are voided, messages may be delivered late or discarded. The RMIS provider is not responsible for

21 AM-
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detctng potential capacity violations and blocking the sender. This sinplihes the task of RMS providers,

and it means that in cases where no flow control is necessary (peidups becaus the sender is known to be

sufficiently slow) ther is no wasted overhead for capacity enfocncmnL

If a capacity-enforcement mechanism is needed, the following approaches are possible:

" Rate-based: using timers, the sender ensures that during any time period of duration A + CB, the

number of bytes sent does not exceed C. This approach is pessimistic in the sense that it assumes the

maximum delay for all messages.

* Acknowledgement-based: the sender receives flow control acknowledgements for messages received.

This may achieve higher maximum throughput at the cost of the reverse message traffic.

If the receiver can, on the average, process incoming data faster than it arrives, then it is possible that no

flow control is needed (a large receive buffer may be needed; the size is determined by several fators,

including the variability of the receiver's speed). If not, then a receiverflow" control mechanism is needed;

the protocol must stop sending data when the limit of the receive buffer is reached. The need for this flow

control mechanism is independent of the need for RMS capacity enforcement; if both are needed the)

could be integrate d into a single protocol.

There are no capazity-enforcement mechanisms in the DASH ST or nework layers. Where needed, a -

sport protocols can enforce RMS capacity using either rate-based or ackImoledgement-based mechanisms.

In addition, they may provide a receiver flow control mechanism if needed.

If the sender can produce data faster than it can be sent on the ST RMS (because of capacit) enforcemem,

receiver flow control, or both) then there must be a sender flow control mechanism. This is done in the

DASH kernel using a flow controlled local IPC port for message-passing between the sender and the send

protocol. A sender blocks when a port queue size limit is reached. The sending transport protocol tops

reading messages from the pon while it is prevented from sending because of RMS capacity enforcement

or receiver flow control.
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If mechanisms for sender flow control. RMS capacity enforcement, and receiver flow control a all
I

present, then thr is end-w.eid flow control (fI ]). However, in cases when this is not necessary, perfor-

mance optimi s (simpler protocols and fewer messages) may be possible, Figure 5 shows the df-

ferent options for flow control.

5. CONCLUSION

We have proposed the real-time message stream (RMS) abstraction as a network-independent communia-

lion primitive in fu~re distributed systems, RMS allows the client and the provider to negotiate parame-

ters. Client ca specify their performance, reliability and security requirements to the provider, and the

provider can di=aLe limitations on the behavior of the client. Compared to simpler abstractions, this has

the following btefits:

0 The solution of the congestion control problem is simplified by the availability of (and control over)

network kioa information. This may be critical in the design of large-scale high-performance net.

works.

sender receiver

send protocol receive protocol

network buffers "

RMS capacity enforcement

sender flow conzo. --------- --

receiver flow control

RMS capacity enforcement + receiver flow control

Figure 5: Flow Control Options.



* Real-time deadlines can be used to schedule both network bandwidth and CPU time. Compared to

ysuems that use only priorities (or no information at all), this optimizes usage and makes real-time

ccxnmunicaxiom possible. A system cannot provide real-time communication unless it is supported at

the lowest level.

* RMIS capaci enforcement is separated from sender and receiver flow control. Based on the valu-

of RMS parameters it can be determined what flow control mechanisms are needed, and unnecessary

mechanisms can be avoided.

" Flow control protocols can be simpler (because of the fixed window size determined by RMS capa-

city) and more efficient (because of the fast acknowledgement service provided by the ST) than those

in traditioal protocol hierarchies.

* Clients may have better control over network costs. RMS parameters correspond roughly to the net-

work resow=.es (buffer space and bandwidth) consumed. A network might charge a fixed RMS setup

cost, plus a charge determined by the RMS parameters, the number of bytes sent, and the RMS con-

nect time.

In aiibiuon, we hC dcs,-rJbcl the DASH new-ork communication architecture. It illustrates the following

points
',.

* It may be desirablc to introduce a subrransport layer that does piggybacking, RMS caching, and '4

other functions.

* A request/reply facility can be built on RMS, and can exploit its features.

* An operanuni system can provide higher-level RMS's that provide real-time properties similar to

those of lower-level RMS's, but which take into account protocol and perhaps user processing time ,

at each end.

Many questions related to RMS remain to be investigated, including:

'p " ~ 'a '~%'\ '~~% * ~ a."
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0 How can RMS's be supponed on existing and future netwofts? In particular. how can it be detar- i
mined wheter a request for a new set of RMS's should be granted or not? Solutions may vary in

complexity according to the underlying network and the types of RMS suqwvd. An Ednet RMS

protocol supporting only the best effort type is being implemented in the DASH prototype.

" How can RMS's be supported in internetworks? A design for a best-effort RMS protocol for the

DARPA Internet is given in [4].

* How should the workload of an RMS with a statistical delay bound be parameLerized and how can

these parameters be used to determine rules for multiplexing such RMS's?

" How can deterministic, statistical and best-effort RMS's be intermixed on the same network?

" What are the optimal RMS transport protocols for providing various combinations of reliability,

RMS capacity enforcement, and receiver flow control?

These and other issues are currently being investigated in the DASH research project, under the direction

of Professor Domenico Ferrari and myself.
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