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A Software Architecture for Network Communication !

David P. Anderson

Computer Science Division
EECS Deparment
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November 30, 1987

ABSTRACT

- A distributed system is based on a layered set of abstractions of network communication. At a low level,
current distributed systems use primitives such as datagrams, request/reply message-passing, reliable vir-
tual circuits, or & combination of these. Future distributed systems will use high-performance large-scale
communication networks, and will support & range of communication-intensive applications. What are the
appmpnate communication abstracuons for such sys&ems"

In answer to this question, we have developed a communication abstraction called Real-Time Message
Streams (RMS). An RMS is a simplex (unidirectional) stream with several performance and security
parameters. These parameters express 1) the needs of RMS clients (user programs and communication
protocols), and 2) the capabilities of the RMS provider (network and higher layers). This information can
be used in two ways. First, RMS providers can eliminate unnecessary or redundant work, and can

opumally schedule resources such as network bandwidth and CPU. Sccond. the RMS client can use the
paramelers to sclect opumal methods for achieving whatcver reliability and fiow control arc needed.

/

RMS is the communication primitive of the DASH distributed system currently being deveIOped at UC
Berkeley. This paper describes 1) the RMS abstraction itself, 2) the role of RMS in the DASH communi-
caion architecture, and 3) techniques and algorithms for providing RMS at various system levels. ;

(~e

'Sponsored by MICRO, IBM, Olivetii, MICOM-Interian, Defense Advanced Research Projects Agency (DoD) Arps Order No.
4871. Monitored by Naval Electronic Systems Command under Contract No. NO0039-84-C-0089. )

- - - e
TR IR BRI T A T L L A, T N e O s A
B AN LR Pop S s e SRR RS AR T ATREN s T ) Bl )

LoD
S92 dgv p

AT

g .
AN <

Py

WP

e o™

Sy gl Wy g
A o~ 4

A



1. INTRODUCTION

interface (see Figure 1).

basic abstraction (such as datagrams):

DASH keere!

nerwork-independent part

A T ?

nerwork-dependent part

interface

h
network
interface

W UNIV U T T T TR O ™

or reliable byte streams [9). This approach simplifies the task of porting the system to different nerwork

types. However, it suffers from several basic problems, stemming from the overly simple nature of the

Accession For
NTIS QRA&I E —
0

Progress in Jow-level software mechanisms for distributed systems (virtual memory, process control, kemel
structure, and communication software architecture) has not kept pace with that at higher levels (distributed
data, distributed computation, transactions, and so forth). The focus of the IXASH project at UC Berkeley

[1] is on the development of low-level mechanisms for next-generation distributed computer systems.

The DASH distributed system is intended to run on muliiple types of computer architectures and commury-
cation networks. To accommodate multiple network types, 8 large pan of the DASH nerwork communica-

tion system is herwork independent. The lower-level nerwork dependent part has a network-independant

In existing distributed systems, the corresponding interface has typically provided a simple abstraction such
as unreliable, insecure datagrams. Higher software layers then use this facility 1o provide higher-level

abstractions such as reliable requestreply message-passing [5], reliable secure typed message streams [12],
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e  Communication clients cannot express their performance, reliability and security needs to the com-
munication provider. Some applications, for example, may not need data integrity, and therefore do
not need data checksumming. Typically, however, data inlegrity is a mandatory part of the primi-
tive. Conversely, a network interface might do link-level data checksumming in hardware; there is

no means for software layers to learn of this and avoid doing 'checksumming themselves.

) It does not provide 8 well-defined means for the communication provider to dictate limits on client

behavior, such as the amount of client data outstanding within the network. This makes congestion

contro! in large networks difficult

. It makes no provision for real-time performance guarantees. Such guaraniees are needed for interac-
tive high-bandwidth traffic such as digitized audio [3] and video. This shoncoming leads 1o res-

tricted, hardware-expensive solutions.

Finally, in future large-scale general-purpose sysiems, requestfreply communication primitives will not be
sufficient, because they cannot efficiently provide stream-style communication (as is needed for digitized

audio and video) on high-delay long-distance networks.

Work in the area of real-time distributed systems for robot control has led 1o the development of communi-
cauon primitives that are parametenzed by real-ime constraints or rebiability needs [13,14). Thic worn 1s
in the same spirit as that described here, but addresses a restricted domain: request/reply communication,

small petworks, and no security concerns.

In an atempt w0 < these probloms. the DASH network communication system has been based on an
abstraction called real-time message streams (RMS). An RMS is a simplex stream with several perfor-
mance, rlability, and security parameters. The RMS abstraction appears in the interface 10 the network-
dependent part. and at higher levels of the DASH cystem as wel!. RMS also is the basis for 2 request/reply

communication facility, and the RMS features serve to optimize requesi/reply performance.

The use of RMS in DASH is based on anticipated needs and on projections of future network technology;

RMS arc not supported on current networks, and they cannot be built on top of simpler abstractions such as

o
\f .\ n': }}f

T

7
ASRNAY

J

vy

‘l
4 %

oy
a

OIS

Wy Gm
0

Yy

Y
LA N N

=g
e
s



I

INC X

» " 2

o

e g Ao P i P

X Vg

¥
)

!
) ",
. ¥y

o mﬁunuﬂggquQN m(‘(ﬂlUHHEIEH !G ) ala¥al I s a0 Nt J0A ain 0 v i ) Fah S el o W™ v
ALl : 3 Wi Wy ¥R L YR ST A, S R B v e
U RN NNRX] Lta P D'H'ﬂv‘jl

) -
020N, 0 Oy R IR T T Xy DT o Oy " L |
Ut S NEEE AV, P T T T ) o D e S S R AL 1 R R - .
) 3 e N e 2O

datagrams or virtual ciruits. However, we fee! that our approach is necessary for exploiting the advances
in communication technology that will occur in the near- and long-term future.

This paper is arganized as follows: Section 2 defines the RMS abstraction and lists some possible mses.
Section 3 describes the DASH communication architecture, which is based on RMS. Section 4 discusses

implementation techniques for RMS in the areas of multiplexing, flow control, and process scheduling.

Section § summarizes the work.

2. REAL-TIME MESSAGE STREAMS

A real-time message stream (RMS) is a simplex communication channel between a sender and a receiver.
The sender is a process or set of processes that can invoke a send operation on the RMS. The receiver is
typically a passive object such as a port; a messaée is considered delivered when it is enqueued on the port
Or given o a8 process waiting at the port. Mességes are untyped byte arrays. They may in additor have
Sowrce and targe: 1abels identifying the sender and receiver. The sender and receiver are RMS clierzs. The

hardware and software system supporting the creation and use of RMS is the RMS provider. A clien: at

one level may be a provider at a higher level.

An RMS hac the following basic properiies: 1) message boundaries are preserved, 2) messages are
deivered in sequenc<. 3) client are notfied of an RMS failure. In addiuon, an RMS has other paran . o:»

as described in the following sections.

2.1. Reliability and Security Parameters

An RMS has the foliowing Boolcan parameters:

Reliability: if true, than all messages that arc sent on the RMS are delivered, unless the RMS fails.

Authentication: if true, then impersonation (delivery of a message with incorrect source label) is impossi-
bic.

Privacy: if true, then eavesdropping (access to a8 message by a host or process other than that specificd by

the target label) is impossiblc.



2.2. Performance Parameters .

An RMS has the following performance parameters:

Capaciry: an upper bound on the amount of dala outstanding within the RMS at any point (i.e., sem but not
yet delivered). This limit is enforced by the RMS clients, not by the provider (see section 3.4).

Maximum message size: an upper bound (enforced by the sender) on the size of individual messages. This

limit cannot be greater than the RMS capacity.

Delay bound parameiers: message delay is the elapsed real time between the stant of the send operation and
the moment of delivery. An RMS has an upper bound (guaranteed by the RMS provider) on messaze
delay. The components of the delay may include network transmission delay, queueing and processing
delays at the sender and at intermediate switches, and processing at the receiver. The bound is expressed
as

A + B*(message size),
where A and B are parameters of the RMS. This bound may be deterministic, staristical, or best-ffort (ss2

section 2.3).

Staristical worsioes paramcicrsif the delsy bound is statsucal. an RMS he: averase loos and b

parameters (supplizd by the client) and a delay probability parameter (guarantezd by the provider).

Average bit error raie: this parameter refiect the combination of 1) the error ratc of the underhvicz

transmission med c. 2) the effectiveness of the checksumming algorithm. and 3) the expected ra of

packet loss from buffer overrun. It is guaranteed by the RMS provider.

Initially it might seem that an RMS should have a *‘guaranieed bandwidth™ parameter. However, this is
implied by the other parameters. If M is the maximum message size, D is the maximum delay of a messa; 2
of size M, and C is the RMS capacity, then a client can send a message of size M every DM/C second:

without violating the capacity rule, since at any point at most C/M messages (of total size C) will have beer.

sent within the previous D seconds, and all earlier messages are guaranieed to have been delivered atreads .
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This will provide a bandwidth ef about C/D bytes per second. The actual maximum bandwidth may either
be lower (because of errors and protocol overhead) or higher (if actual delays are smaller than the uppes

bound).
23. Delay Bound Types :
The delay bound parameters of an RMS have the following types:

Deterministic: the delay bounds are **hard’"; only an RMS failure will cause them to be violated. System
resources (buffer space, media bandwidth) are allocated to individual RMS's. The RMS provider rejects

an RMS request if its worsi-case demands cannot be met with frec resources.

Statistical: the delzy bounds hold probabilistically, and may require a statistical description (average load
and burstiness) of the offered workload. An RMS creation request is rejected if either its expected message
delay or its expectad bit error rate (which is affected by the possibility of buffer overruns) is higher than

acceptable. Failure 1o observe the delay bounds is not necessarily reported to the clients.

Best-Efforr. RMS areation requests are never rejected. Delay bound parameters are used only 1o schedule

resources based on massage delivery deadlines (see Section 4.1).

2.4. RMS Creation and Ownership

RMS creation operazions (offered by RMS providers) specify the direction of the RMS; the creator of an

RMS may act as either the sender or the receiver. If there is accounting, the creator owns the RMS in the

scns: of being respon s for paving for it use.

RMS parameters a~: established at the time of creation. A set of actual RMS parameters is said to be com:-

patible with a set of request parameters if
(1) the actual reliability and security properties include those requested,;

(2) the acma) capacity and maximum message size paramelers are no less than those requested, and
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(3) the acta! delay bound and error rate parameters are no greater than those requested.

An RMS creation request includes desired and acceptable parameter sets. The actual parameters of the
resulting RMS (if any) are retuned W the client. These parameters must be compatible with the request’s
acceptable parameters. The RMS creation request is rejecied if this is not possible. The RMS provider

tries 1o match the desired parameters as closely as possible.

2.5. RMS Examples

To see the importance of RMS parameters, consider the case of a client (say a transport protocol serving a
user program) that requires data privacy. The protocol requests an RMS from the subiransport layer (see
Section 3.2). The desired and accepiatle parameter sets both request privacy. Depending on the netwark,

the following situations are possible:
(1) Privacy is provided by data encryption in the subtranspon layer.

(2) The network has link-level encryption hardware; The subtransport layer leamns this (it is a property of

nerwork-leve] RMS’s) and does no data encryption;

(3y  The networl i< considered securc. so no data encryption is done.

[

In any case, the opumal mechanism is used for privacy. If a client does not require privacy, no mecharss

[T 3o 30 2o 7% B ]

is used (which is again optimal). Without the RMS security parameters, this optimization would no: be

LI §
A
]

0 (' .

»

possible. A similar situation exists for data integrity: the optimal checksumming mechanism can be used

o
based or. RMS paran.oiers, '\-:,:-
._:':.

o«

The following examples illustrate the uses of the RMS capacity and performance parameters: ?_
e

i

) Initial request and reply messages in a request/reply protoco! should use RMS’s with low delay
bound. The precise delay bound and the delay bound type are determined by application needs. The

RMS capacity may be large, unless it is known thal request or reply messages will be small and

infrequent
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o
e A stream prowcol for bulk data transfer should usc s high capacity, high delay RMS for data ;r
RMS's for acknowledgements are discussed below. :
S
.h
e Reliability acknowledgements should use Jow capacity, high delay RMS’s. ;l. "
. Flow control acknowledgements should use a low delay, low capacity RMS. In DASH, the subtran- 5
o0
sport layer provides a ‘*fast acknowledgement’® service 1o reduce response time and RMS establish- <A
- ".
ment overhead. n .;
[
Y
e  Real-time communication may require deterministic or statistical delay bounds. ”
3
2
N
e  Dipitized voice should use & high capacity, low delay RMS, perhaps with a statistical delay bound. e
A high bit error rate may be acceptable. !
=
. Communication involving a human user interface traffic (such as for network window' systems [7}) ;\:__
can tolerate a moderate amount of delay because of human perceptual limitations. The RMS from :'
user to application carries mouse and keyboard events, and can have low capacity. The RMS in the .-rf
l._' '
opposite direction carries graphic information, and generally requires higher capacity. \
o
R
Ir all these cases the specifization of chient needs increases the Likelihood that the provider can accommo- )
r ]
date them. For example, if packet queueing in an internctwork gateway is done using RMS-specified dez 2 2 :
3 \!
lines, then a low-delay packet can be sent before high-delay packets that would otherwise cause it 10 be Nl
delivered late. A network may be capable of providing low delay or high capacity, but not both. The RMS »
N
parameters allow the client to choose. ".t:
RS
.Q:
3 THE DASH COMMUNICATION ARCHITECTURE :\ )

&

In this section we bnefly describe the DASH communication architecture. This is done primarily ©

x”
x
g

motivate the material in Section 4. Details of addressing, naming, encryption schemes, and specific opera- “

tions are omittcd.  The structure of the DASH network communication architecture is shown in Figure 2. >
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Figure 2: The DASH Communication Architecture.

3.1. The Network Layer

DASH allows multiple network types. Each network type 1o which a DASH host is connected is
representad ot kool by a softvare madule with a standurd RMS-bac 8 anwerface Trow ren o
objects provide host-to-host nerwork RMS's. They encapsulate network-specific protocols for RMS crez-

tion, delction, and transmission, and for non-RMS network maintenance tasks such as routing.

Networks arc abstrast entities, and need not be physically or logically disjoint. For example, th: DARFA

Internct and a local Ethernet (both with the addition of an RMS protocol) could be separaic DASH nei-

works, although they might share host interfaces and network media.

A network object has the following parameters:

. Whether all hosts on the network are trusted. If so, opumizanons by the subtransport layer (sec

below) are possible.
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° Whether the merwork has the *‘physical broedcast property’’: that if an eavesdropper receives an

entire message, then so does its intended recipient If 50, optimizations by the subtransport layer are

possibie.

] For each combination of security and reliability parameters, the limits of the network’s performance

parameters for that combination (this may be zero if the combination cannol be directly supported;.

32. The Subtransport Layer

The subtransport laver (ST) provides & variety of host-10-host functions. All upper-level network commun-
ication in DASH passes through the ST. The ST provides ST RMS’s 1o its clients. ST RMS’s are mulu-
plexed onto netwark RMS's. The basic functions of the ST are to provide security [2), 10 do deadline-

based message queucing, 1o multiplex ST RMS's onto network RMS’s, and to arrange for ‘‘fast ack-

nowledgement’’ of messages sent on ST RMS's,

For each active peer host, the ST maintains a control channel consisting of two low capacity, low delay
network RMS’s, one per direction. The ST uses a simple requestreply protoco! on this channel to do

authentication and ST RMS establishment. The first ST RMS creation request 10 a given peer triggers the

creation of the ST control channel to that peer.

In addiion, th: ST maintains a set of data neiwork RMS’s 10 the peer. These are used o carry ST RMS

traffic. Their ownership, direction and multiplicity are dynamically determined by ST client demand. sec

section 4.2.

33. Transport Protocols

All request/reply communication uses the DASH Remote Kemel Operation Mechanism (RKOM). RKOM
provides kernel-leve! request/reply communication, and is used as a basis for user-level requesyreply com-
munication. The RKOM module maintains an RKOM channel 10 each active peer. Such a channel consists
of four ST RMS’s, one low-delay and onc high-delay RMS in each direction. The low-delay RMS's are

used for initial request and reply messages, and the high-dclay RMS's are used for retransmissions and

scknowledgements
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In addition to communication using RKOM, user- and kernel-level clients can establish their own commun-
ication sessions. These sessions typically consist of 1) a set of ST RMS's and 2) a set of stream protocols,

each of which is 8 kemnel-level process.

3.4. RMS Levels in DASH

In addition to the perwork- and ST-level RMS's described above, DASH provides the following RMS

types (see Figure 3):

Subuser RMS: this spans communication protocol processes. Message sending and delivery are defined as
the moments when message amive from, or are passed to, user processes. The delay bounds include proto-
col processing time, and their enforcement includes deadline-based process scheduling (see Section 4.1).

kernct A kernel B

Q user-level RMS Q
wﬂproctm.‘ ---"r--"m"-"=-"—=-"=-=-""=-=-= -
sub-user RMS

STRMS '
subirarspari layer .

network layer

network RMS

Figure 3: RMS Levels in DASH
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User-level RMS: this spans user processes. The moments of message sending and delivery are defined by
the user process, and end-process CPU time is included in the RMS delay. Scheduling of these user

processes must be deadline-based.
4. IMPLEMENTATION TECHNIQUES FOR RMS

This section describes & set of techniques, algorithms, and issues that arise in providing low-level RMS and
in building high-level RMS out of low-Jevel RMS. These techniques are presented in the context of the

DASH architecture described in the previous section.
4.1. Process and Interface Scheduling

When an upper-level RMS is created, its total delay is divided among its vanous stages (send protocol pro-
cessing, ST RMS delay, network RMS delay, and receive protocol processing). When a message is sent on
an RMS, there is a deadline by which it must be handled (i.e., processed by a protocol, sent on a Jower-
level RMS, or ransmitted on a network medium). This deadline is the curren: real time plus the delay allo-

cated 1o the next stage of the RMS.

For subuser and user-level RMS, these deadlines are used by the short-term scheduler to determine the exe-
cudon order of prowovol or wer pravess Thoss b odeling deadliines are 'Rz or Vsofi T depandicz o

the delay bound type of the RMS. For network RMS, the deadlines are used to determine the ord:r in

which packets are queued for transmission on a network interface.

42. RMS Caching and Multiplexing

The ST caches network RMS's; i.e., it may retain a network RMS even whil: it is not being used by any
ST RMS. This caching is motivated by two assumptions: 1) during a given ame period a host will tend 10

communicate repeatedy with 2 small set of remote bosts; 2) it is slow and costly to create network RMS's.

The ST also does upwards mudtiplexing of multiple ST RMS's onto a single network RMS (see Figure 4).
The motivations for this multiplexing (as opposed 10 simply creating a network RMS for each ST RMS) are

that 1) it can eliminate the need to create a new network RMS, and 2) messazes from muluple ST RMS's
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r STRMS

multiplexing, subtransport layer demultiplexing
queusing

network RMS

Figure 4: RMS Multiplexing
can potentially be piggybacked, ie., combined and sent as a single network message, with a possible reduc-

tion in overhead Multiplexing of ST RMS’s increases the potential frequency of piggybacking.

Among the rules that govern RMS multiplexing are:
suonswone RMS anda sl
ST can be multiplexed only onto a deterministic or statistical network RMS,
) The delay bound parameters of the ST RMS’s must be at least those of the network RMS; the differ-

ence is a potential queucing delay during which the ST can atiempt to pigpvback additional messagas

with the outgoing message.
. The capacity of the network RMS must be at least the sum of the capacities of the ST RMS's.

The maximom message size of the ST RMS’s may exceed that of the network RMS. This requires

fragmentation and reassembly by the ST (sec below).
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It would also be possible o downwards-multipiex an ST RMS across several network RMS's. If there

were multiple networks paths between the hosts, this technique could be used to increase capacity beyond
that available in a single network RMS. However, this has not been included in the DASH design because

the expected gain may not outweigh the additional ST protocol complexity.
43. Increased Maximum Message Size

It is an issue whether the ST should offer a much larger maximum message size 1o ils clients than that pro-
vided by the petwork layer. This is done, for example, in VMTP [6). At the network level there will
always be a message size limit (e.g., the 1.5KB Ethernet packet size limit) because of hardware restrictions,

RMS capacity, nonzero bit error rate, or the need for faimess.

To offer its clients much larger message lengths, the ST would have 10 use a transport protocol providing
both reliabilinv and RMS capacity enforcement. In general, this places an undesirable burden on the ST,
and may duplicate work being done at higher levels. On the other hand, providing a somewhat larger max-
imum message than that provided by the network layer may reduce protocol process context switching and

other overhead.

For these reasons. th2 ST may provide a2 larger maximum message size than the network laver. A ma.-
imum message size iz chosen with the object of maximizing potenual throughy . based on the combinas
of network RMS error rate and context switch ime. The ST does fragmentation and reassembly 1o suppo:t
this larger message size. It does not retransmit fragments; if a message is incomplete when a fragmen: of

the next message artives, the partial message is discarded.

4.3.1. Message Queueing and Ordering

When the ST sends a fragment for transmission on a network RMS, a transmission deadline parameter is
passed o the petwork RMS send routine. If the network interface has a ponempty transmission queue,
transmission deadlines determines the order in which messages are sent. In any case, the network layer

mus! guarantee that if message A is sent after message B, and has a transmission deadline greater than or

equal 1o that of B, then B is delivered first (note: this is a refinement, parucular to network RMS, of the
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scquential delivery property of RMS) ; -
X i
‘ J
; If the ST does no piggybacking, and immediately sends each client message on the associated network Y.
', RMS using transmission deadlines that are monotonically increasing for a particular ST RMS, then ST
i RMS messages will be delivered in the correct order. The current real time could be used as the transmis- : -
‘ "X
! sion deadline. However, it would be preferable 10 use “
: (current real time) + (ST RMS delay bound) - (network RMS delay bound) 4
since this would beaer reflect the true deadlines.
N
h It is also possible (and perhaps desirable) for the ST to internally queue messages in the hope of piggyback- .
ing. In doing this, care must be taken 10 preserve the ordering of ST RMS messages while still honoring
deadlines. The following set of policies can be used 1o achieve this: N
. For each outgoing network RMS, the ST maintains a piggybacking queue of client messages await- J!
. ing transmission. This queue never exceeds the network RMS maximum message size. ST client 4
: messages that require fragmentation are not piggybacked. :" ﬁ!
;
| e  The madmum transmission deadline of an ST client message is its amival time plus the ST RMS ! ‘
t
N d:lzy bound minus the network RMS delzy beend "
[ *
) 4
) o  The minimum transmission deadline of a client message is the actua! transmission deadline of the 3
3
previous message on the same ST RMS. This ensures that messages on the ST RMS are delivered in vy
! order. s
” -
! e  The minimum (maximum) transmission deadline of a piggybacking queue is the minimum (max- :.(
imum) of the corresponding deadlines of its component messages. ‘
; e  When a piggybacking queue is finally sent on the netwark RMS (either because its maximum ’;
. &
transmission deadline is reached or because it overflows) the transmission deadline passed 1o the net- :
s work layer is the queue’s maximurn transmission deadline. ¢
: ;
4 ' 0:
)l
o™
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e If a client submits a message whose maximum transmission deadline precedes the minimom
transmission deadline of the corresponding queue, then it is sent on the network RMS immediately.

Otherwise i is appended to the piggybacking queue if possible.

This algorithm maximizes the possibility of piggybacking, while ensuring correct ordering and optimal .

interface scheduling.
4.4. Flow Control and RMS Capacity Enforcement

Where there is a limited buffer space in a communication system, flow contro! can be used 10 avoid perfor-
mance loss from buffer overrun and dropped packets. Flow control mechanisms are often necessary for
even minimal performance levels. On the other hand, iow control mechanisms may not be needed in cer-

tain situations (far example, if the data raie of the-sender is known 1o be low) and in that case may impose

an unnecessary overhead.
It is useful to factor communication system buffers into three groups:

(1) Buffers berween the sending process and the send protocol.

(2+  Buffers ir. th2 network switches and gateways, and in the receiver's network interface and low-lzvel

driver.
(3) Buffers between the receive protocof and the receiver.

Th: RMS approact 10 flow convrol treats these buffer groups separately, The capacity parameter of an
RMS prevents overrunning buffers in group (2). Since there is no RMS capacity adjustment, it is assumbcd
tha: the sizes of these buffer do not change dynamically. If they do, the RMS provider must delete the
RMS, and the clisnts must establish a new RMS. In contrast, the flow control of TCP does not protect

gateway buffers; ICMP source quench messages (8, 10] provide an ad hor and ofien ineffective solution o

this Sow control problem.

RMS clients are responsible for enforcing the RMS capacity. If they fail o do so, the provider’s guaran-

tecs are voided. messages may be delivered late or discarded. The RMS provider is not responsibic for
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detecting potential capacity violations and blocking the sender. This simplifies the task of RMS providers,
and it means that in cases where no flow control is necessary (perhaps because the sender is known 10 be
sufficiently slow) there is no wasted overhead for capacity enforcement.

If a capacity-enforcement mechanism is needed, the following approaches are possible:

o Rate-based: using timers, the sender ensures that during any time period of duration A + CB, the
number of bytes sent does not exceed C. This approach is pessimistic in the sense that it assumes the

maximum delay for all messages.

. Acknowledgement-based: the sender receives flow control acknowledgements for messages received.

This may achieve higher maximum throughput at the cost of the reverse message traffic.

If the receiver can, on the average, process incoming data faster than it arrives, then it is possible that no
flow control is needed (a large receive buffer may be needed; the size is determined by several faciors,
including the variability of the receiver’s speed). If not, then a receiver flow control mechanism is needed;
the protocol must s1op sending data when the limit of the receive buffer is reached. The need for this flow
control mechanism is independent of the need for RMS capacity enforcement; if both are needed they

could be integrated into a single protocol.

There are no capacity-enforcement mechanisms in the DASH ST or nerwork layers. Where necded, trarn-
sport protocols can enforce RMS capacity using either rate-based or acknowledgement-based mechanisms.

In addition, they may provide a receiver flow control mechanism if needed.

Mol e o

If the sender can produce data fasier than it can be sent on the ST RMS (because of capacity enforcemant,
H receiver flow control, or both) then there must be a sender flow control mechanism. This is done in the
DASH kemel using a fiow controlled local IPC port for message-passing between the sender and the send
protocol. A sender blocks when a port queue size limit is reached. The sending transport protocol stops

reading messages from the port while it is prevented from sending because of RMS capacity enforcement

or receiver flow control.
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If mechanisms for sender flow control, RMS capacity enforcement, and receiver flow control are all b
present, then there is end-to-end flow contro! ({11]). However, in cases when this is not necessary, perfor- »
Ll 'l
mance optimizations (simpler protocols and fewer messages) may be possible. Figure § shows the &f- e
"'l
ferent options for iow control. 'f-:'
' »
5. CONCLUSION 4
x .
&!
We have proposed the real-time message stream (RMS) abstraction as a network-independent communizz- X
tion primitive in fucure distributed systems. RMS allows the client and the provider 1o negotiate parame- i'. 3
)
. A . h'
ters. Client can specify their performance, reliability and security requirements to the provider, and the Y :;
o)
provider can dictace limitations on the behavior of the client. Compared 10 simpler abstractions, this has :::
the following benefits: '
]
° The solunor. of the congestion control problem is simplified by the availability of (and control over) a,:sf‘
network Joad information. This may be critical in the design of large-scale high-performance net- !
works. :: :
4
o
s .
sender receiver )
: serl oo receive bufler . gw
‘ =3
send protocol receive protocol i '\
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4 - N network buffers N =3 N E‘
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Figure 5: Flow Contro! Options. :.
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Real-time deadlines can be used to schedule both network bandwidth and CPU time. Compared 10
systems that use only priorities (or no information at all), this optimizes usage snd makes real-time

communication possible. A system cannot provide real-time communication unless it is supporied at

the lowest level.

RMS capacity enforcement is separated from sender and receiver flow control. Based on the valur
of RMS parameters it can be determined what flow control mechanisms are needed, and unnecessary

mechanisms can be avoided.

Flow contro! protocols can be simpler (because of the fixed window size determined by RMS capa-

city) and more efficient (because of the fast acknowledgement service provided by the ST) than those

in traditiona! protocol hierarchies.

Clients may have betier control over network costs. RMS parameters correspond roughly to the net-
work resources (buffer space and bandwidth) consumed. A network might charge a fixed RMS setp
cost, plus a charge determined by the RMS parameters, the number of bytes seat, and the RMS con-

nect time.

In addivon, we hzve deseribed the DASH network communication architecture. It illustrates the following

points:

It may be desirablz 1o introduce a subrransport layer that does piggybacking, RMS caching, and

other functions.
A reguest/reply facility can be built on RMS, and can exploit its features.

An operaung system can provide higher-level RMS's that provide real-time properties similar 10
those of lower-level RMS's, but which take into account protocol and perhaps user processing time

ateachend

Many questions related 10 RMS remain to be investigated, including:
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° How can RMS's be supported on existing and future netwotks? In particular, how can it be deter-
mined whether a request for a new set of RMS's should be granted or not? Solutions may vary in

complexity according to the underlying network and the types of RMS supporied. An Ethernet RMS

protocol supporting only the best effort type is being implemented in the DASH prototype.

. How can RMS's be supported in intermetworks? A design for 8 besteffort RMS protoco! for the

DARPA Intemnet is given in [4].

J How should the workload of an RMS with a statistical delay bound be paramelerized, and how can

these parameters be used to determine rules for multiplexing such RMS's?
. How can deicrministic, statistical and best-effort RMS’s be intermixed on the same network?

° What are the optimal RMS transport protocols for providing various combinations of reliability,

RMS capacity enforcement, and receiver fiow control?

These and other issues are currently being investigated in the DASH research project, under the direction

of Professor Domenico Ferrari and myself.
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