
019 E OCH4ESTER CONNECTIOUTST SIMULATOR VOLUME I USER N /w-
(U) ROCHESTER UNIV NY DEPT OF COMHPUTER SCIENCE
N GHODDARD ET AL 25 APR 87 TR-233-VOL-i1UNCLASSIFIED N614-84-K_8655 / 125 M

I mmmoimmsmmom

1; !IJL.......... 25
L3 2

11111111,L2
L6L

a.~l
- 1 111 Jj j 0

a1,

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUJREAU Of STANOARE- 1963 A

'I-q

BM

.7~00
A 0a)

Rochester Connectionist
Simulator

N.H. Goddard, K.J. Lynne and T. Mintz
Department of Computer Science

The University of Rochester
Rochester, NY 14627

I TR 233 _

-A, _ .. . Spring 1987 -. '

DTI C>
EL ECTE

-.:AU 01198

~H-

0

* Dparmen f'of Computer Science
Rochester, New- York 1462 7

% DISTRIUTION STATEMENTA

Approved for public .e ;-4'--
DitrbtinUnlimited 7........

Rochester Connectionist
Simulator

N.H. Goddard, K.J. Lynne and T. Mintz
Department of Computer Science

The University of Rochester
Rochester, NY 14627

TR 233
Spring 1987

Abstract

The Rochester Connectionist Simulator is a connectionist network
simulator written in the "C" programming language and designed to be
run on the UNIX operating system. This technical report comprises the
User and Programmer's Manuals for the simulator. The documentation
is divided into five volumes:

(1) User Manual; D T IC
* (2) Graphics Interface User Manual; ELECTE

(3) Advanced Programming Manual; eAU 0 8 3
(4) Graphics Interface Programmer's Manual; AUG 0 1 IM

(5) Back Propagation Library User Manual. D
H

This work was supported in part by the Office of Naval Research under
Contract N00014-84-K-0655.

DISTRIBUTION STATEMENT A
* Approved for public role=;

lMstrlbution Unlimitedow" 1 1w

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) / / I /
-• REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERTR 233

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Rochester Connectionist Simulator technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 11. CONTRACT OR GRANT NUMBER(a)

N.H. Goddard, K.J. Lynne and T. Mintz N00014-84-K-0655

:. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Dept. of Computer Science AREA & WORK UNIT NUMBERS

734 Computer Studies Bldg.
University of Rochester, Rochester, NY 14627

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA / 1400 Wilson Blvd. Spring 1987
Arlington, VA 22209 13. NUMBER OF PAGES

136
14. MONITORING AGENCY NAME & ADDRESS(If different from Controflfng Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research
* Information Systems IS. DECLASSIFICATION/DOWNGRADING

Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

S19. KEY WORDS (Continue on reverse side if necessiy and identify by block number)

connectionist tools
network construction
neural simulator ..)

20. ABSTRACT (Continue on revere. side it neeasary aid identify by block number)

The Rochester Connectionist Simulator is a connectionist network simulator
written in the C programming language and designed to be run on the UNIX oper-
ating system. This report comprises the User and Programmer's Manuals for the
simulator. The documentation includes: 9{1) User Manual; A(2) Graphics Interface
User Manual;-(3) Advanced Programming Manual;-f4) Graphics Interface Program-
mer's Manual; and(5) Back Propagation Library User Manual. () ---

FORM

DD JAN 73 1473 EDITIO' OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The Rochester Connectionist Simulator
Volume 1:

User Manual

Nigel Goddard
Dept. of Computer Science

University of Rochester
Rochester. NY 14627

April 25 1987

S]

R44

0..

Contents

1 Introduction 4

1.1 Preliminaries 4

1.2 Graphics Interface 4

2 Network Construction 5

V -2.1 Creating space for units 5

2.2 Making units 5

2.3 Adding sites. 6

2.4 Making links 6

2.5 Naming units. 7

2.6 State names 7

2.7 A simple example. 8

2.8 Flags 8

2.9 Sets 9

2.10 Activation Functions. 10

*2.10.1 Link functions. 10

2.10.2 Site function5

*2.10.3 Unit functions. 11

2.11 Library functions 11

2.11.1 Unit functions. 11

2.11.2 Site functions. 11

2.11.3 Link functions. 1

2.12 Another simple example 12

2.13 Modular construction. 13

3 Making an executable Simulat or 14

4 Simulation 15

4.1 Help 15

*4.2 Building the network 15

4.3 Debugging during network construction 15

4.3.1 Debug command. 16

4.3.2 Debug interface. 16
4.3.3 Set command 17 or

*4.3.4 Ignore command. 17

4.3.5 Interrupt interface. 17

4.4 Calling functions 18 n.

4.5 Unit specification in commands 19

D1sL l1but1n/

1 Availability CodeB
OlIC Avail and/or

Copy Diet Special
NPC.r YC j

4.6 Simulation commands 20

4.6.1 Sync command 20

4.6.2 Fsync command 20

4.6.3 Async command 20

4.6.4 Go command 21

4.6.5 Echo command 21

4.7 Examination commands 22

4.7.1 Display command 22

4.7.2 List command 22

4.7.3 Show command .. 23

4 7 4 Pipe command 24

4.7.5 Pause command 24

4.76 Sta tii command 24
'a 4 8 Modificatiou commands 2

9 4.8 1 Alo..ate.'nits command 25

4 8.2 MakUrfit command 25

* 4.8.' AddSIte command 25

4.8.4 MakcLink command 26

4.8.5 NameUnit command 26

4.8.6 Out command 26
" 4.8.7 Pot com m and 27

4.. o omnd...2

4.8.8 State command .. 27

4.8.9 Weight command .. 27

4.8.10 Reset command .. 27

4.9 Set commands 28

4.9.1 Addset command .. 28

4.9.2 Remset command 28

4.9.3 Deleteset command .. 28

4.9.4 Unionset command .. 28

4.95 Intersectset command 28

4.9.6 Diffset command 29
4.9.7 Inverseset command 29

4.10 File commands 30

4.10.1 Checkpoint command 30

* 4.10.2 Restore command 30

4.10.3 Save command 31

4.10.4 Load command31

4.10.5 Log command .. 32

4.10.6 Read command .. 32

2

4.11 Miscellaneous co mm a n d s 33

4.11.1 Quit command 33

4.11.2 Print command 33

*4.11.3 Printpause command. 33

4.12 Abbreviated commands. 34

4.13 Constructing a network fromn the coribmand interface. 34

5 Advanced Programming Features 35

5.1 Simulator Variables 35

5.2 Network Access Functions 36

5.2.1 Display functions. 36

5.2.2 Naming 36

5.2.3 Simulating 36

5.2.4 Modifying and Accessing the Network. 37

5.2.5 Unit macros 37

5.2.6 Miscellaneous library functions. 37

*5. 3 Saving and reloading user data structures 38

5.4 Customizing unit, site and link data structures 38

5.5 Customxizinig the simulator command interface 38

0.

6 An Extended Example of network construction 39

6.1 Designing a network 39

6.2 The Problem: four coloring a map 39

6.3 Designing the build program. 40

6.4 Implementing in C. 41

6.4.1 Top level build funvtior 41

6.4.2 Making a region. 43

6.4.3 Making borders. 45

6.4.4 The unit function 46

*6.5 A command script to demonstrate the network.. 471

7 Floating Point version 48

8 Acknowledgements 48

3

1 Introduction

Connectionist networks consist of simple computational elements (units) which communicate by
sending their level of activation via links to other elements. The units have a small number of st4tes.
and compute simple functions of their inputs. Associated with each link is a weight. indicating the
'significance' of activation arriving over that link The behaviour of the network is determined by
the pattern of connections. the weights on the links, and the unit functions

The Rochester Connectionist Simulator supports construction and simulation of a wide veriety of

networks. The inain design criterion has been flexibility. Each unit can compute a different function.
any arount of data may be associated with each unit, and an arbitrary connection pattern may b,
specified. . "

The particular network paradigm supported by the simulator is. in brief. aI follow-. Each unit

has a number of sites at which the incoming link- .rive The provision of site- allow, differenatl
treatment of inputs, since the links themselves do not indicate their origin at the destination unit

Simulations may be run synchronously or asynchrono'ily During synchronou- ,.m ulatioij all
units use the output values computed during the prvion- step a their input The order of Sij,-

ulation is unimportant. the network behaving ai thigh all unit- ijitt sindutva,.,um-ly During

asynchronous simulation, at each step a fraction of the unit:- are updated. in pseudo-random order.

with the new output value immediately tran-imitted to the other units It is guaranteed that after
a limiting number of steps every unit will have updated at lea.st once

There are a number of example networks in the -/exanple directory. It would be a good idea
to check these out before writing any code.

1.1 Preliminaries

It wilU aid in understanding the following sections if the representation of units. sites and links is
discussed here. The main data structure is an array of unit structures (of type Unit). with a linked

list of site structures (of type Site) attached to each unit structure, and a linked list of incoming
link structures (of type Link) attached to each site structure. Unit. site and link structures contain
various pieces5 of data. Units have a potential. corresponding to the level of activation, a statr which
can be used to vary the unit function, and an output which is transmitted along the outgoing links.

Each site has a value. which is set by the site function. Each link has a weight which may be modified
by the link function. a pointer value to the incoming value, and the index from-unit holding the index
of the source unit for the link. Each unit. site and link structure contains a pointer to a function
which is called by the simulator to simulate the action of the unit, site or link In addition. each
unit. site and link structure contains a data field which is for general use by user. Further details
may be found in the Advanced Programming Manual.

1.2 Graphics Interface

The simulator command interface (see section 4) was designed for simple terminal operation. Thi5

document describes network construction and simulation on the terminal interface.

The Graphics Inte rfaef. is a package that runs on top of the simulator described in this document. P
and is a powerful network debugging aid. See the document The Rochester Connectionist Simulator.

Graphics Interface User Manual for details. If the Graphics Interface is included when making a

simulator (see section 3), it is automatically invoked when the simulator is run. All the commands I
described in section 4 are available from the Graphics Interface, as well as many more. -

41

SfnM /N~mr i • m mmm mu

W.J WUWU E-VWV VV -h,WV WVWV-W

S2 Network Construction

*Although it is possible to construct a network from the command interface (see section 4.13. it is
a time consuming process and really only suited to novice users. One of the example networks is

constructed this way. and is de-.ribed in section 4.13.

Generally a network is built in the simulator by a user program written in C. The simulator
provides primitive functions. the major ones being to make units, add sites, make links, and associate

a name with one or more units. Many other primitives are also provided to access parts of the network

data structure.

2.1 Creating space for units

Before any units can be made. the program should specify the total number of units needed. The

program may only ask for units once, but need not actually use all the units asked for, The total

number of units is specified with a call to AUocateUnits, for example:

AllocateUnits(100):

This allocates data space for the requested number of units. If a programi doue not explicitly allocate

space for units, then by default space for 200 will be allocated.

0(2.2 Making units

Now units may be mad, with a calls to MakeUnit. This function builds a new unit. using space
allocated by AllocateUnits. for example-

int :akeUnit(type.fu.nc,init-pot.potential.data.output.init-state.atate)
char *type;
fu.n:.ptr fun:;
int istate. state, init-pot, potential, output, data;

fyp- ;- a pointer to a character ,tri,,. 5nd is simply used for display purposes. func is a pointer to

the function used to simulate the unit's action. potential is the activation level for the unit. data

is a four byte value for the unit data field described above, output is the initial output of the unit.

- state is a short integer representing the initial state value. init-pot and init-state are the values to

set the unit potential and state when the network is reset. MakeUnit returns the index in the unit
, array of the unit created. The first call to MakeUnit builds the unit with index 0. and consecutive

calls to MakeUnit will return consecutive indices. An example of , call to MakeUnit would be:

* unit-index = MakeUnit (-retinal.VFsum.500.500,0,50,1.1):

The function pointer may be NI'LL. in which case a function which does nothing will be called by

the sunulator to simulate the unit action. If not NULL. the function must be either one you have

written, or one of the library functions. For simple networks the library functions (see section 2.11)

should be sufficient

2.3 Adding sites

Once a unit has been created, one or more sites may be attached to it with calls to AddSite:

Site * AddSite(index. name, function, data)
int unit. data;
char *name,
func-ptr func,

indf.z is the index of the unit to which the site is to be attached. nanu is a pointer to a character
string which will be the iianie of the site. function is a pointer to the function to be called to simulate
the action of the site. data is the four byte value to be placed in the site data field described above.

Links to the untit cannot be made until there is a site attached to the unit to which they may
go. A call to AddSite might look like:

AddS ire(unit-index. -excite .SFweightedsum.0):

AddSite returns a pointer to the newly created site structure. As with units. thc function may be
NULL. one of your functions, or one of the library functions.

2.4 Making links

A link from a unit to a site on another unit is created with a call to MakeLink.

Link * MakeLink(source-unit.destination-unit.site-nameweight.data.function)
*,'. ,int fromto;

int weight, data;
char *Site:

func.ptr fune;

: source-unit is the index of the unit where the link originates. destinatio n-unit is the index of the

* unit to which the link is going. site-namf is a pointer to a character string which is the name of the
site on the destination unit at which the link is to arrive, weight is the weight to put on the link.
and should be within range of a short integer. By convention weights are scaled down by a factor of
1000. thus a specified weight of 500 will be treated as a weight of 0.5. This is to allow weights in the
range 0 to 1 without having to use floating point arithmetic. Weights may be negative. MakeLink
returns a pointer to the link structure created. An example of a call to MakcLink might be:

MakeLink(unit-index. unit-index. "excite',-500. 0. LFsimple);

This would make a link from the unit to itself, to be attached at the site -excite'. with a weight of
-500 (meaning -0.5). and function LFsimple. Such a link could be used to proide exponential decay.
As with units, the function may be NULL. one of your functions. or one of the library functions.

6

2.5 Yaming units

ich unit may be given a name with a call to Nainet'nt:

NameUnit (name~type, index.length.depth)

char *name.

int type. index.length.depth

As weU as naning a single unit. this function can name a vector or 2-D array of uniit- Ti. nam,
may then be used during simulation from the command interface (see' section 4). and may a]l.o b,
used during network construction nam, is a pointer to the character string name to be givell ty*,,

-is the type of name SCALAR. VE(TOR. or ARRAY. ;nd'z is the index of the unit to be n,,n1ed

or the first unit in the vector or array length is the number of unit- if it is a VECTOII? a:;,! th,
number of columns if it is at ARRAY. and is undefined for SCALAR depth is the nuniher of row-

A for an ARRAY. and is undefined for SCALAR and VECTOR.

A name which is specified as VECTOR or ARRAY will apply that nane to th, ui! %,t,, th
index specified. and to the requisite number of units folowing it in the unit array Thu- th, cal'

NanmeUnit(-Vertex-. ARRAY. 100. 4. 2):

will apply the name -Vertex- to uriits 100 through 107. making all array of 2 rows of 4 unit: Nov.
for example. unit 107 wil be displayed by the simulator with the nafn- -Vertex"f

All nanites must be unique. This applies to stae. site. functi or typ. axll ,t namles. as W'1ll a-

unit arzil:v'

2.6 State names

A name in ay be given to a state litrer allY th#, tat., is just a shor, hit t,,pr but f, r display plrp,,-.
it I i i.r.(1I cl -. 7t-7 if the sTatP Of a unit ;> pr.iti -I a- a iit:iif rdth,.r t l. , ,, i.. A 6 !,ttm ,. A :-.ritf

name" is declared with. for examplh.
DeclareState(-active-.1):

which assig-iu the nane -active- to the state represented by number 1. Now whenever a ut, i-
displayed. if its state field has value I the simulator will print the nane -active-. otherwie it will
print the state value as an integer A maximum of 100 state names may be declared. corresponding
to state values 0 to 99

"61
-57

-5N
%

- .

- 2.7 A simple example

The following sarmple program will build a network of 10 units, each one linked to all the others with
inhibitory links. This kind of structure is known as a winner-takes-all network

build()

int i. j index.

.llocateUnits(10)
for (i - 0; i < 10; 1--);

..
index = MakeUnit("competing",UFaim. 0. 0. 0. 0. 1. 1);
AddSite(index. "inhibit". SFeightedsum. 0);

for (i = 0: i < 10: i-*)

for (j 0, j < 10. j--)
if (i)

MakeLinCi, j. "inhibit". O-(random)71000). N NULL),

DeclareState("active". 1):
Na, imeUnit("W-T-l". VECTOR. 0. 10. 0);

S-First space for the 10 units is allocated. Then. in the first for loop the 10 units of type -con-
peting are constructed, and a site with name -inhibit" is added to each one. The functions VFsum

and SFweightedsum are library functions. UFsurn simply sets the unit potential and output to be

the sum of the values of all the units sites (in this case. just one). SFweighted sum sets the value of
the site to be the weighted sum of the incoming link values. All the initial values for the unit field-

are set to zero. apart from the states. which set to 1.

The second for loop constructs all the links: one from each of the other units. all attach.d to

the sites -inhibit. The weights are set to a random value in the range 0 to 1000 (representing 0

to 1). The name -active- is associated with state value 1. and the 10 units are named as a vector

-W-T-A. The first unit built is always unit 0. so the index in the call to NameUnit can safely be

assumed to be 0.

2.8 Flags

Each unit ha.s: 32 flags associated with it. Currently flags 0 to 6 are used by the simulator. and flags
7 to 11 are reserved for future simulator use. Flags 12 to 19 should be used for library packages and

so user code should be restricted to flags 20 through 31, preferably working from 31 down. Some of

the simulator reserved flags may be set by the user for one or more units.

The user-settable flags are as follows:
SHOWFLAG if set then the unit is in the Show set (see section 4.7.3).

LIST-FLAG if set then the unit is in the List set (see section 4.7.2).

NOLINKFUNCFLAG if set then no functions are called for the links into a unit.
This will result in speed up.

NOSITE-FUNCYFLAG if set then no site or link functions are called for the unit.
NOUNITFUNCFLAG if set then no unit. site or link functions are called for the unit.

The output of the unit remains the same.

,-,

Flag may be set when the network is constructed (i e. in the build program) or during siniulatron
(i.e. by unit functions). or in fact by any user function The macros used to set, clear, and te"t ring
are:

SotFlag(unit-index. flag)
UnaetFlag(unit-index. flag)
TastFlag(unit- index. flag'

TestFlag computes TRUE if th, flag is set for the unit. FALSE otherWise For efficiency purtosc-
macros which use pointers to the unit (to avoid indexing into the unit arriy) are alm, availad,
SetFlagP. UnsetFlagP. TestFlagP (uiit-pointer. flag) These enable flag st ting in a tight loop m

-, an efficient manner

2.9 Sets

The user may create. modify and delete sets of units. The maximurn number of sets at any timtarit

is 32. Unless otherwise stated. the set functions return TRUE if the function succeedid. and F.,I.E

otherwise. In general the return value will only be FALSE if any of the sets specified do not exjt.
or cannot be created. The set functions are:

DeclareSet(name) - creates a set.

DeleteSet(name) - deletes a set.

AddToSet (name, low, high) - adds unit with indices low through high to the set

RemFroniSet (name, low, high) - removes units low through high from the set.

UnionSet (name3, namel. name2) - assigns the union of sets namel and nane? to the- set

nanie3_ Creates set name3 if it does not already exist.

IntersectSet (name3, namel, name2) - assigns the intersection of sets namel and naui? to

the set naTne3. Creates. set name3 if it does not already exist.

DifferenceSet (name3, namel, name2) - assigns all units in set namel but not in set name2

to the narne3 Creates set name3 if it does not already exist.

InverseSet(namel, name2) - assigns all units not in set name2 to be in set namel. Creates set
narnel if it does not already exist.

MemberSet (name, unit-index) - returns TRUE if the unit is in the set with the given namie.
FALSE otherwise.

IsSet(name) - returns TRUE if the name is the name of a set. FALSE otherwise.

* Sets are a useful way to impose some structure on an otherwise amorphous mass of units. Unit

functions may add or subtract a unit from a set. The sets are known to the command interface (sef-

section 4) by name when simulating, and so s-mulation commands can be applied to Lhem.

...

i

2.10 Activation Functions

The library contains some standard unit, site and link functior, but user-written functions may be
used. Unit, site and link functions are called by the simulator during each time step

2.10.1 Link functions

Let us look at the library function LFsimple for a sample link function

LFsimple(up.sp.lp)
Unit *up;

Site sap.
Link 01p;

{

lp->data = *lp->value):

Three pointers~ are passed as paramneters. when the siimulator calls% a link function a pointer ti)
the unit to which the link is attached: a pointer to the site at which the link arrive.: arid a pointer
to the link itself. LFbimple uses only the link pointcr and simply stores the incoming value in the

link data field. In effect the data field is being used as a one-simulation-step memory Check the
Advanced Programming Manual for complete detail- of Link structure. Note that the talu field in1
the Link structure is a pointer.

2.10.2 Site functions

A commordy used site function, from the library. j:; SFveighted..um:

SFweightedsum (tip, sp)
Unit *up;

Site sap;

int sum:
Link 0Ip;

for(lp = sp-inputs sum = O;1p != ULL;lp lp->nxt)
sum = (-(lp->value). ip->weight);

sp->value - sam/lO0w;

Pointers to the unit to which the site is attached. and to the site itself. are passed in as pararneterc
to site functions. SFweightedsum simply trips down the linked list of incoming links. accumulating
the weighted sum of the incoming values. The end of the list is terminated with a NULL nerz field
in the final Link structure. The weighted sum is divided by 1000 (the weight scaling factor), and
the result set in the site value field.

10

2.10.3 Unit functions

One of the simplest possible unit functions is UFsum, which simply sums the site values:

UFsum(up)
Unit *up;

int sum;
Site *sp;

for(sp = up->sitessum = O;sp I= NULL;sp = sp->next)
sum - sp->vslue;

up->output = up->potential a sum;

Unit functions are passed a pointer to the unit structure when called by the simulator. This
function trips down the linked list of sites attached to the unit, summing up the values. The final

sum is set in the potential and output fields of 'he unit structure, thus setting the value that will be
transmitted along outgoing links.

2.11 Library functions

2.11.1 Unit functions

UFsum is a unit function which sets output and potential to the sum of all site values.

2.11.2 Site functions

SFmax sets the site value to the maximum input value.

SFmin sets the site value to the minimum input value.

SFsum sets the site value to the sum of the input values.

SFweightedmax sets the site value to the maximum weighted input value. A weight of 1000 is
treated as unity: the input value is multiphed by its weight and the result divided by 1000.

SFweightedmin(up.sp) sets the site value to the minimum weighted input value. A weight of
1000 is treated as unity.

SFweightedsum sets the site value to the sum of the weighted input values. A weight of 1000 is
treated as unity.

SFand returns I if all its inputs are positive, otherwise 0.

SFxor(up,sp) returns I if exactly one of its inputs is nonzero, otherwise 0.

SFprod returns product of inputs.

2.11.3 Link functions

LFsimple sets the data field of the link to be the input value (unweighted). This does not affect
the behavior of the network, but does help with debugging.

2.12 Another simple example

Let us modify the winner-takes-all example to demonstrate the use of sets and flags

Since the link functions were specified to be NULL. i.e. a function which does nothing, we could
equally well set the NOLINKFUNCFLAG for each unit. saving the time taken to call the null
function for each link.

We shall also create a set "still-competing" which will contain all the units whos potential is
greater than 0. This set could then be displayed during simulation to view the winner-takes-al]
inhibition process.

build()

{

int i. j. index;

ll1ocateUnits(10);
for (i = 0; i < 10; i-+);

{
index = MakeUnit("competing".UFmysum. 0. 0. i. 0. 1. 1);
AddSite(index. "inhibit". SFweightedsum. 0);
SetFlag(i. NO_LINKFU';C_FLAG);.

for (i = 0; i < 10; i-+)
* for (Q = 0; j < 10; j--)

if != j)

lMakeLink(i. j, "inhibit". 0-(randomo)%1000). 0. !:ULL'
DeclareState("active", 1);
NlameUnit("W-T-A". VECTOR. 0. 10, 0);
DeclareSet('still-competing");

AddToSet("still-competing", 0, 9);

%! The network building program has changed very little. The NO-LINKFUNCFLAG is set for
each unit as it is made. and the unit's data value is set to be the index of the unit. At the end of the
program we declare the set -still-competing" and add the 10 units to it. But the major change is
we no longer use the library function UFum. Instead we write our own function. UFrnsum. which
in addition to setting the output and potential. adds or removes the unit from the set.

UFmysu(up)

Unit *up;

* mnt sum;

Site sap;

for(sp = up->sites.sum = O;sp != NULL;sp = sp->next)
sum * sp->value;

up->output = up->potential = sum;
l if (sum <= 0)

RemFromSet("still-competing", up->data.up->data);

N As each unit is simulated, it checks if it is still in the competition; if not. it removes itself from the
4, "still-competing set, using its index which was stored in the data field when the unit was created.

12

Now if the set "still-competing" is displayed at every step during simulation, the winner-takes-all
process will become apparent.

2.13 Modular construction

One of the most important aspects of network construction is a modular approach. The actual
size and configuration of network can be specified at the highest level in a data file. containing an
abstract version the problem being modelled. At the next level, the build function is used to control
the gross aspects of network construction. Another level down, separate functions can be written to
construct the different types of units and links. This corresponds to a hierarchy of descriptive levels
and is crucial for building large networks. Section 6 gives an example of this approach.

13

N

P3 Making an executable Simulator

Before a network can be simulated, the program to build it must be compiled and linked in with the
simulator object files. A shell script makes this task simple. The name of the shell script is makesim.
and it is normally found in the -connect/bin directory - but this is site dependent. There are a
number of flags which may be specified, if you specify none it will assume you are running on a
SUN workstation and will create an integer simulator with the graphics interface. To create such a
simulator, assuming the network building program is in the file build.c, simply type:

makesim build.c

This will create an executable binary file sr which is the simulator. When aim is run. the
graphics interface window will appear and simulation commands, described in the next section. may
be executed.

The complete specification for makesim is given in the man page. The simulator man directory.
connect/man. should be onk the manpath. The most commonly used flags are:

-ng do not load graphics interface.
-T assume not running on a SU!N.
-g compile user code for debugging.
-r run the executable ,when it has been created
-d run the executable under dbx(tool) when it is created.

-o <file> file name for the executable.

Multiple C files ending with .c and object files ending with .o are allowed. For iiistance. the hne:

makesim build.c initialize.c test.o print.o

would compile the files budd.c and initialize.c and load the resulting object files with test.o and
print.o and the simulator object files. to make the executable.

Libraries can also be inclided. The line:

makesim build.c mylib a neurolib.a

would compile the file budid.c and load the resulting object file with the simulator object file.
together with appropriate code extracted from the library files mylib.a and neurolib.a.

14

!',I0II " o

4 Simulation

When a simulator executable is run. the startup message will be printed and commands can be
typed when the prompt appears. The startup message will be something like:

Rochester Connectionist Simulator 4.0

integer version

Debugging turned on, not in Auto-Fix mode

The command interface prompt is ->. The startup message indicate- what kind of simulator
is running. integer or floating point. Debugging and Auto-Fix are described below. The simplest

command is ?. Typing this to the prompt will result in all the command names being listed.

4.1 Help

The help command has the syntax:

0 help [<iteem>]
<item> ?

help alone will print the standard help message. describing the types of commands available, and

how to exit the simulator. help name and name ? are equivalent, and print help information about
name. This should be a command name or the special item Unitid. For instance, the command help

display will print information as to what the display command does. Many of the commanids :equir
a specification of a unit or range of units. which can involve unit indices, unit names. set names or
a combination of these. help UnitId will print information as to how to specify units for commands.

4.2 Building the network

The network building program was linked in with the simulator to produce the executable which is
now running. Before the network can be simulated. it must be constructed by running this network
building program. By convention, the top level function in the network building program is build.
To execute this function, the call command (see section 4.4) is used. in this case:

call build

4.3 Debugging during network construction

It is often the case that network building programs contain errors, for instance specifying a link
between two units. one of which does not exist. The simulator can be put in debug mode. in which
case these kinds of errors do not cause a core dump. but rather are automatically fixed, or cause a
debug interface to be entered.

15

- EM

4.3.1 Debug command

Syntax. debug [[auto I <on I off>]
Example: debug auto on

The debug command is used to switch network construction debugging on and off. and to switch
automatic error correction on and off. debug on and debug off will control whether debugging is
operative. debug auto on and debug auto off will control whether automatic error correction is in
operation. If automatic error correction is switched on and a log file is being maintained, then the
user may accumulate a list of errors to be fixed, just as a conventional compiler produces a list of
errors before aborting.

Debugging only applies to network construction, not to simulation. If debugging is switched on.
then anytime the simulator, tries to make a unit, site or link. the simulator will check that the values-
specified are suitable. For instance, if a function for a unit that is not known to the simulator is

.i ,specified. the simulator will issue an error message. If automatic correction (Auto-Fix) is switched
on. the simulator will substitute what it thinks is a suitable value, and continues.

If Auto-Fix is off. the simulator will enter a debug interface (see section 4.3.2) and asked for the
errors to be fixed The set command (see section 4.3.3) is used to change incorrect value-. Oilcw
all the errors have been fixed. the quit command may be used to return to the normal network
construction process. Continuation is not possible until the errors have been fixed. urdess the igvorf
command (see section 4.3.4) is issued.

* If debugging is turned off. absolutely NO CHECKING is done - a core dump will occur if anything
is wrong during construction. It is best to build and test a network with debug switched on until it
is clear that the build function is correct. Building without checking appears to be approximately
twice as fast as with checking.

If debugging and Auto-Fix are switched on. and errors or warnings are occurring rapidly. typing
controlC which will introduce the interrupt interface (see section 4.3.5) whence the network may be

examn'ed. Auto-Fix switched off. etc. If controlC is typed when the network is not in a safe state.
the interrupt will be delayed.

4.3.2 Debug interface

The debug interface is signalled by a different prompt:

debug[n]>

where n is an integer indicating the interface level. Level 0 is the normal command interface. Most
of the commands available at level 0 are available to the debug interface, but none of the commands
that cause a simulation step. such as go or read. When the debug interface is entered. a list of errors
that need fixing. and for which unit. site or link. is displayed. The list of errors may be displayed at

, any time with the set command. When all the errors have been fixed with the set command, exiting
the debug interface with quit will cause the building process to continue. Exiting with ignore will
cause the building process to continue, but the unit. site or link will not have been made.

The way in which debug levels may accumulate, is that on being put in the debug interface, say
level 1. the user may decide that a unit should be made on the fly. with the Make Unit command.
If the specification given for this unit is incorrect, the next level debug interface will be entered to
fix this specification. On exit from a debug interface, if one returns to another lower level debug
interface then the set command may be used to recall what the errors were that caused this interface
to be entered originally.

16

4.3.3 Set command

Syntax: set <potIoutistatelipotlistatelunitltolfromlweight> <value>

set <funcltypelsite> <name>

set all default

set
Example: set func SFweightedsum

The set command. which is only available at the debug interface, is used to correct errors in unit.
site or link specifications. Errors may be fixed with specific values, or the simulator default value.
may be used: set all default. The list of outstanding errors will be printed in response to: set. It will
also be printed if the user attempts to quit before all the errors have been corrected. For example.
suppose one tried to build a unit with the Make Unit command (see section 4.8.2):

M-> akeUnit mytype NullFunc 1 2 3 4 1234567 1234567

The following errors were encountered while trying to
make unit 1 of type mytype and function UullFunc

- initial state value 1234567 ot of range -/-32767
- state value 1234567 out of rauge -/.32767

debug[2]> quit
There are still errors in the unit definition.

- initial state value 1234567 out of range -/-32767

- state value 1234567 out of range -/-32767
* debug[2]> set

Current values for MakeUnit are:

- type = mytype

- function = NullFunc

- state = 1234567

- init state - 1234567

- potential = 2

-. int potential = I
- output = 4

- data = 3
remaining errors are;

- initial state value 1234567 out of range -/+32767
- state value 1234567 out of range -/+32767

fix and quit, or type ignore
debug[2]> set all default

debug[2]> quit

Made unit I

* 4.3.4 Ignore command

Syntax: ignore

The ignor, cotrnarid. which is only available at the debug interface, is used to continue the
construction process without constructing the unit. site or link whose specification was in error.

0 This may be expedient. but may also cause further errors in the construction process at a later time.

4.3.5 Interrupt interface

The interrupt interface is entered whenever the user types controlC. The interrupt interface is
signalled by a different prompt:

17

S

interrupt ln

where n is an integer indicating the interface level. Level 0 is the normal command interface. Most of
the commands available at level 0 are available to the interrupt interface, but none of the commandds
that cause a simulation step. such as go or read. If controlC is typed during a piece of guarded
code, a message will be printed anid entry to the interrupt interface will be delayed until the guarded
code is exited.

The intention behind the interrupt interface is that the user can first of all manipulate the debug
settings (whether on or off. whether automatic or manual fixing). and secondly can interrupt a
potentially catastrophic situation to save or examine the network before it is corrupted or destroyed.

4.4 Calling functions

Any function in the user code can be called from the interface, using the call commitand. so long as
the function was not declared static in the code (see the C manual for an explanation of this). The
call command has the syntax:

Syntax call function-name [<argl> <arg2> I
Example call Initialize image.inp.1

This will call the function with the optional arguments as parameters. The oily required use of
thi, coiiniand is to cotstruct the network, as described in the preceding section. An example. as
above, of an additional use would be to call a function which initializeQ a set of units representing a
retinal image array from file data.

0

18

%

% 4.5 Unit specification in commands

Vi Many commands expect one or a range of units to be given, to which the command will be applied.
A single unit may be specified by index or by name. A range of units my be specified by the low and
high units separated by - (with mandatory space either side of the -), by a set name, by a VECTOR
or ARRAY name, or by the token all

For example, suppose units 0 to 9 have names ZERO, ONE, TWO ..., NINE. units 10 to 19 are
a vector with name MyVector. units 20 to 39 are a 4 by 5 array of units with name MyArray. set
FirstSet consists of all the odd-index units, and these 40 units are all that have been made.

Then the following unit specifications are valid and indicate these units:

Specification Units
0 0
ONE 1
0- 3 0.1.2.3
THREE - 5 3.4.5
MyVector 10.11.12.19
MyArray 20.21.22 39
MyVector'4' - 19 14.15.16.17.18.19
MyArray'1 4 - MyArrav314 29.30.31 39
FirstSet 1.3.5 39
all 0.1.2.....39

-'4/. As can be seen. mixed modes are allowed.

0

0

4.6 Simulation commands

The simulation commands are used to modify aspects of the simulation, and to cause one or mor,
steps to be simulated.

4.6.1 Sync command

Syntax: sync

The sync command sets the simulation to be synchronous. This means that at each simulation
step, every unit will be updated. using the output values calculated from the previous step. The
network behaves as if all units update simulataneously. This is the default setting for the update
protocol.

4.6.2 Fsync command

Syntax- fsync <execfrac> <execlimit> [<random seed>]

Example- fsync 10 100 2039

The fsync command sets the simulation style to be asynchronous. This means that at each
time step a percentage of units (given by ezecfrac) picked pseudo-randon dy from all : v units ar,

simulated, and that after a limiting number of steps (given by ezech t) all units will have been
simulated at least once. The new output of a unit is available imninediately the unit is simulated. for
other units to use. Thus the network should not be sensitive to the order in which unzit are simulate-d

The point by which all units must have been simulated at least once {ezeclimit) is determined with
reference to the simulator Clock (see section 5.1). When the clock is an exact multiple of ezeclimst.
any unit that has not been simulated is simulated.

If an integer number is given for random seed then the random number generator will be seeded
with this number. Seeding with the same number on separate occasions will cause the generator to
produce the same sequence of random numbers. thus by specifying the same seed a session involving
asynchronous simulation can be repeated exactly. If no seed is specified. the UNLX system time will
be used.

This style of execution becomes more inefficient as the execution fraction increases (for imple-
mentation reason.s). For an execution fraction of 100c. the async command should be used.

4.6.3 Async command

Syntax: async [<random seed>]

Example: async 2039

This command is a special case of the fync command. Logically it has the same effect as if fsync
100 1 were given. i.e. that at each time step all units will be simulated in pseudo-random order. For
implementation reasons it much better to use this command than the equival, nt /sync command.

2

02

a'2

4.6.4 Go command

Syntax; go [clock] [<StepCount>]

Example: go clock 100

The go command causes one or more simulation steps to be run. Step Count specifies the number
of steps to run, and defaults to 1. If the clock option is used. the simulator will time how long it

takes to simulate the number of steps. in increments of I second. This can be used to get a precise
idea of network code efficiency. Since the time quantum is 1 second. a significant number of steps
must be simulated to get reliable timing data.

4.6.5 Echo command

Syntax: echo (StepCount I on I off]
Example: echo 10

The echo comnman,] set- how oft et; the simulator prints the echo message:

finished x out of n steps

* Echoing occurs (if it is switched on) during execution of a go command n is the number of step:
specified in the go comnmand. and x is a multiple of the StfpCount specified in the echo coniand
For exampl,

-> echo 5

-> go 20
finished 5 out of 20 steps
finished 10 out of 20 steps

finished 1S out of 20 steps

finished 20 out of 20 steps

Echoing is switched off with: echo off : and on with: echo on. At start up echo is switched on
Issuing the echo command withoilt any of the options wiU cause the current setting to be displayed

o21

(-s

S)

'p " . , ., . , , - . . -

4.7 Examination commands

The examination commands are used to print out details of units and links, either automatically or

at the user's request.

4.7.1 Display command

Syntax: disp unit <UnitlD>
Example: disp unit 33

The disp command is used to display the values associated with one or more units, for instance
the potential. output. state, functions, site names and values, link weight, and values. The namin
and index of the unit where the link originates is shown in each link display. For example:

-> disp unit 0
Unit:0 Name:W-T-A[0 Type:competing function:UFsum

potential:10 output1 state active data:O

Set memberships: still-competing
sitename:inhibit function SFoeightedsum value 0 data.0

link:W-T-. '7] (7) fun-:,;ullFunc weight.873 value 0 data:O

link:W-T-A[4] (4) func NullFunc weight:216 value.0 data:O

link:W-T-A[31 (3) func:l:ullFunc weight:477 value:O data:O

4.7.2 List command

Syntax: list <link I set I unit Unitld>

Example: list unit 3 - 5

The list command is used to display information about links, sets or units. list link display: all
the links. list set displays all the set name- and the number of remaining slots for sets. lis.t unit

Unitld will display in compact form the units specified by UnitId. For example:

-> list unit 3 - 5

Clock 0

Index Name Type Potential Output State

3 **N0 NAV E** vertex 0 0 0

4 4 ,,!O NAME** vertex 0 0 0

5 **NO NAME-- vertex 0 0 0

-- >

22

'-

V "4.7.3 Show command

Syntax: show [on I off]

show <step i pot > <value>
show -(- <Unitld>

show set [(-I-) <set name>]
Example: show set still-competing

show - 3 -5

The show command is used to control what information is displayed during .siniulation. Showing
is turned on or of with show on or show off. If showing is turned on. theui every n steps the set of
units selected for showing (the Show set) is displayed in compact form, where n is set with show
step n.

The Show set is controlled in various ways. If a unit has a potential greater than or equal to the
Show potential. it is in the show set. The Show potential is set with show pot value , and is initially
a very large- number. A unit or range of units may be added to the Show set with show + UnitId,
and removed from the Show set with show - Unitld . A set of units may be added to or removed
from the Show set with ,how -t -/- set-narnc . Although show set-narnc is equivalent to ehow

set - set-nayne. the latter is more efficient. For example:

-> show- 3 - 5
-> sho. on

-> show step 2
-> go 2
finished 1 out of 2 steFs
finished 2 out of 2 steps

Index Name Type Potential Output State

3 '*::O !:A'E- vertex 0 -18643 0
4 *"':D : AVE* - vertex 0 -31767 0
5 0::0 :A'.E - vertex 0 -24072 0

.9,. ->

0

-23

4.7.4 Pipe command

Syntax: pipe < on I off I command >
Example: pipe /usr/ucb/more

Output from display. list, and show commands can be fed into a pipe rather than directly to the
screen. The default pipe is the UNIX more command: this simply avoids large displays scrolling off
the screen. Another use might be to save displays to a file. with for example:

pipe cat >> save-file

If piping is turned on (pipe on) then at every display, list or show. the output is sent to the pipe.
Piping may be turned off with pipe off.

4.7.5 Pause command

Syntax: pause < on I off >

Example: pause on

The paus, command is used to avoid displays scrolling off the screen. If pausing is switched on.
then after every shou the simulator waits for user indication to continue.

4.7.6 Status command

Syntax: status

The statue command displays the state of the simulator. For example:

-> status

Clock: 5 Show is on
NoUnits: 10 ShowPot: 3
NoLinks. 30 NoSets: 0
Echo every 1 steps Pause is on
Pipe is on PipeCommand is /usr/ucb/more
Simulation is synchronous

24

4.8 Modification commands

There are two types of modification commands: those that alter the network structure; and those
that alter the state of the network. The former commands are those to make a unit. site. or link.

In addition the commands to allocate data space for units and to give a name to one or more unitt.
are included in this section.

4.8.1 AllocateUnits command

Syntax: AllocateUnits <number>
Example: IllocateUnits 200

AllocateUnits is used to create data space for the units. It should be called before any call to
MakeUnit. and can only be called once. This means you should allocate more than enough units for
your purposes all at once.

4.8.2 MakeUnit command

Syntax: MakeUnit <type> <function> <ipot> <pot> <data> <out> <istate> <state>
Example: MakeUnit competitor UFum 0 0 0 0 1 1

Make Unit is the simulator command to make one unit. It takes the same arguments as the

simulator function to make a unit (see section 2.2), namely type. function, initial potential. potential.
data. output. initial state. and state. in that order. The first parameter. type. is simply stored in the.
name table by the simulator for display purposes. Any name that is not already in use (i.e. n,.t a
name of a set. state, function or unit(s)). may be used here. The second parameter. function. is the
unit function. which must be known to the simulator (i.e. a library function or a function in user
files. or NULL for the function which does nothing). The remaining arguments are integer values
for the various fields of the unit. Initial potential is the unit potential after a reset. Potential is the

current unit potential. Data is for you to use as you wish. Output is the current unit output. Initial
state is the unit state after a reset. State is the current unit state.

Defaults for the numeric arguments are zero. Default for the function is the function NullFunc

(does nothing). Default for type is the name NullType. Debugging is automatically switched on for
the duration of this command.

There must be space for the unit to be made. If a build program has been run. and urit space
already allocated, then the unit will be made as long as enough space remains. If no unit space has
yet been allocated. i.e. Allocate Units has not been called. then space for 200 units will automatically

be allocated when you issue the Make Unit command.

4.8.3 AddSite command

Syntax: AddSite <unit> <sitename> <function> <data>
Example: AddSite 9 "excite" SFweightedsum 0

- AddSite is the simulator command to add a site to a unit. It takes the same arguments as the
,- simulator function to add a site (see section 2.3). namely: unit index, site name. site function. and

,, site data. A site with the given name and function is attached to the unit with the given index, and
,4 1 0the data field is set as given. Any name that is not already in use (i.e. not a name of a set. state.

function, type or unit(s)) may be used. The site function must be known to the simulator (i.e. a

25

0:

library function or a function in user code or NULL for the function that does nothing). The unit
index must be that of an existing unit. Data is for general use.

Defaults exist for site name. site function and data are NullSite, NullFunc and 0 respectively.
The unit to which site is to be attached MUST be specified Debugging is automatically switched on
for the duration of this command.

4.8.4 MakeLink command

Syntax: MakeLink <from> <to> <site> <weight> <data> <function>

Example: MakeLink 3 5 "excite" 500 0 LFsimple

MakeLink is the simulator command to make a link from one unit to another. It takes the same
arguments as the simulator function to make a link (see section 2.4), namely: source unit index.

target unit index, site name (on target unit), link weight, link data and link function. A link from
the source unit to the named site on the target unit is made with function, weight and data as given.
The link function must be known to the simulator (i.e. a library function or a function in your files.
or NULL for the function which does nothing).

The specified weight is scaled down by the simulator by a factor of 1000, so 500 corresponds to
a real weight of 0.5 data is for general use. Defaults exist for function (NuIlFunc). weight (0) and
data (0). The source and target unit indices, and the name of the site on the target unit MUST be

* specified. Debugging is automatically switched on for the duration of this command.

4.8.5 NameUnit command

Syntax: NlameUnit <scalarlvectorlarray> <index> [<width> [<depth]]
Example: 1NameUnit array 10 4 5

NameUnit is used to give a name to one or more units. It takes the same arguments as thesimulator function of the same name. i.e. a name. a type, the index of the first unit to which the

name is to be applied. the width (if a vector or array). and depth if an array. The possible types are:
scalar. vector, array. For a scalar name. the name is applied to a single unit. For a vector name.
the name is applied to width units starting with index. For an array name. the name is applied to
width *depth units starting with index.

4.8.6 Out command

Syntax: out <UnitrO> <value> (<UnitiD> <value>]*
Example: out 3 100 4 200 5 300

The out command is used to set the output of one or more units. It expects one or more unit-
identifier/output-value pairs. The unit identifiers may be specified in any of the usual ways (see
section 4.5).

26

0i

4.8.7 Pot command

Syntax: pot <UnitlD> <value> [<UnitID> <value>]*
Example: pot 3 100 4 200 5 300

The pot command is used to set the potential of one or more units. It expects one or more
unit-identifier/potential-value pairs. The unit identifiers may be specified in any of the usual ways
(see section 4.5).

4.8.8 State command

Syntax: state <UnitID> <value> [<UnitID> <value>]*
Example: state 3 10 4 20 5 30

The state command is used to set the state of one or more units. It expects one or more unit-
identifier/state-value pairs. The unit identifiers may be specified in any of the usual ways (see section
4.5).

4.8.9 Weight command

Syntax weight [<From> <To> <sitename> <value I random [<mean> <deviation>)>]

0Example: weight 3 5 excite 200 3 6 excite 100

The weight command sets the value of a weight on a link. The first unit index is the originating
unit. The second unit index is the receiving unit. and the sitename is the name of the site on the
receiving unit to which the link is attached. The weight is scaled up by a factor of 1000. Thus a
weight of 500 indicates a real weight of 1/2. In the floating point simulator you may use floating
point values as well as integers. Random weights may be assigned. e.g. the command:

weight 0 1 excite random 500 100

will assign a weight picked randomly from the range 400 to 600.

Multiple weight settings may be given with one command, as with the out. pot. and state com-
mands. The unit specifications may be given in any of the usual ways (-help Unitld" for details)
The site name may be *all'. meaning all sites at the destination unit(s).

4.8.10 Reset command

Syntax: reset

The reset command is used to reset the network to some initial state. It resets the potential and
state of all units to their original values (as specified when they were made with Make Unit). It also
resets the outputs of all units to be zero. It does not reset weights or any other parameters.

This command has been somewhat superseded by the checkpoint and restore commands (see
sections 4.10.1 and 4.10.2).

27

4.9 Set commands

Sets may be manipulated from the command interface as well as from within user code (see section
2.9). Sets provide a way of imposing some structure on what is essentially an amorphous mass of
units.

4.9.1 Addset command

Syntax: addset <set name> <Unitld>
Example: addeet still-competing W-T-A

The addset command adds one or more units to a set. The units may be specified using any of
the normal methods (see section 4.5). If the set does not already exist it is created.

4.9.2 Remset command

Syntax: remset <set name> <Unitld>

Example: remset still-competing W-T-A[o - W-T-A[41

The remset command removes one or more units from a set. The units may be specified using
any of 'he normal methods (see section 4.5).

4.9.3 Deleteset command

Syntax: deleteset <set name>

Example: deleteset still-competing

The remset command deletes a set. All units in the set are removed from the set and the name
is reset to be unused.

4.9.4 Unionset command

Syntax: unionset <answer set name> <set A> <set B>

Example: unionset winners still-competing-A still-competing-B

The unionset command assigns the union of the second and third sets to the first set. All units
which are in either the second set or the third set or both are put in the first (answerj set. If the
answer set does not yet exist. it is created. If the answer set exists, then any units in the set which

• are not in the union of the second and third sets are removed from it.

4.9.5 Intersectset command

Syntax: intersectset <answer set name> <set A> <set B>
Example: intersectaet winners still-competing-I still-competing-B

The intersectset command assigns the intersection of the second and third sets to the first set.

All units which are in the second set and the third set are put in the first (answer) set. If the answer
set does not yet exist. it is created. If the answer set exists, then any units in the set which are not
in the intersection of the second and third sets are removed from it.

28

0

4.9.6 Diffeet command

Syntax: diffset <answer set name> <set A> <set B>
Example: diffeet winners still-competing-A still-competing-B

The diffset command assigns the difference of the second and third sets to the first set. All units
which are in the second set but not the third set are put in the first (answer) set. If the answer set

does not yet exist, it is created. If the answer set exists, then any units in the set which are not in
the difference of the second and third sets are removed from it.

4.9.7 Inverseset command

Syntax: inverseset <answer set name> <set name>
Example: inverseset losers still-competing-A

The invwrsfsrt command assigiis the inverse of the second and third sets to the first set. All
units which are not in the second set are put in the first (answer) set. If the answer set does not yet
exist. it is created. If the answer set exists. then any units in the set which are not in the inverse of
the second sets are removed from it.

29

0

4.10 File commands

It is possible to save the structure anJ/or state of a network to file, and load the saved file in later.
It is also possible to make a log file of the session, both user input and simulator response, and to
read in a file of simulator commands. The simulator automatically makes a log file of the commands
typed in for each session, and at the end of the session (see section 4.11.1) asks if it should be saved.

4.10.1 Checkpoint command

Syntax: checkpoint [<file name>]
Example: checkpoint conceptlearn

The checkpoint command is used to save a the state of a network to file. The state consists of the
values of unit parameters (e.g. weights. potentials. etc), the current sets and unit state names. The
network state may be restored with the restore command (see section 4.10.2). Related commands
are satve and load (see sections 4.10.3 and 4.10.4). which save and reload the structure (pattern of
units and links) of the network as well.

A name does not have to be specified for the checkpoint file. if it is not the simulator will construct
one involving the UNIX process id number. The convention is that all checkpoint file names are of
the form name.chk.n. where n is an automatically incremented integer.

For example:

-> checkpoint conceptlearn

chk file name [default: conceptlearn.chk.1] >
saving state

-.

Here the simulator appended .chk.1 to the specified file name. and asked for confirmation. The
roh of dots indicate the checkpoint prG-es., each dot representing ten units having been checkpointed.

4.10.2 Restore command

Syntax: restore <file name>
Example- restore conceptlearn.chk.i

The restore command restores the state of a network from a file made with the checkpoint
command. This command simply restores the state of the network (i.e. the weights. potentials.
etc), it does NOT rebuild the network. That means the network must already have been built. The
command will check that the file used for restoration was made from the same simulator with the
same network. If the simulator has been recompiled, but has had the same network constructed
in it, the warning message may be safely ignored. The simulator will also issue a warning if the
checkpoint file vas made during a previous session.

For example:

- restore conceptlearn.chk.l
restoring unit state
restoring set names
restoring state names
state restored.

-3

03

4.10.3 Save command

Syntax: save [<file name>]
Example: save conceptlearn

The save command is used to save a the structure and state of a network to file, The structure
of the network is the units, sites and links and associate names and functions. The state consists of
the values of unit parameters (e.g. weights. potentials. etc), the current sets and unit state nanes
The saved network may be reloaded into an empty simulator with the load command (see section

4.10.4). Related commands are checkpoint and restore (see sections 4.10.1 and 4.10.2). which save
and reload the state of the network only.

A name does not have to be specified for the save file, if it is not the simulator will construct one
inolving the UNIX process id number. The convention is that all save file names are of the form
namt.net.n. where n is an automatically incremented integer.

For example:

-> save conceptlearn
%,b. net file name [default conceptlearn.net.1] >

saving name table

saving units

saving state

Q ->

Here the simulator appended .net.1 to the specified file name. and asked for confirmation Tht
e2," row of dots indicate the save process. each dot representing ten units having been saved.

4.10.4 Load command

Syntax load <file name>

Example. load conceptlearn.net.1

The load command loads the structure and state of a network from a file made with the 'ave

command This command constructs the network (i.e. makes units, sites and links) and restores the
state of the network (i.e. the weights. potentials. etc). The simulator should be empty: no network
building functions can have been called The command will check that the file used for loading

was made from the same simulator executable. and issue a warning message if the executables are
different. If the simulator has been recompiled. with the same functions available, the warning
message may be safely ignored.

* For example:

-> load conceptlearn.net.1
loading units units loaded
restoring unit state
restoring set names

*restoring state names
state restored.
Done!

5%"
31

0r

4.10.5 Log command

Syntax: log [<onloff>)

Example: log on

The log command is used to switch logging on and off. If logging is on, then everything typed
at the keyboard. and everything sent to the screen by the simulator is saved in a log file. When
logging is switched off. the current log file is closed. If logging is switched on again, the previous log
file may be appended to. or a new log file may be started. For example:

-> log on
log file name [default: run2462 log.1] >

-> log off

-> log on
log file name [default: run2462 log.1) >
Overwrite file run2462 log I (y.n,a(ppend]) ? a

The coiventi,,t is that all log files are of the form name.log n whlr, n is an automatically
- incremented integer The simulator constructs a logfile name from the 'NIX process id number (as

above), and asks for confirmation or another file name. If a network is constructed with debugging
and Auto-Fix switched on. and a log file is kept. then errors may be accumulated in the file for
one-time correctioni. just as compilers for conventional languages accumulate errori before aborting
the compilation.

4.10.6 Read command

Syntax: read <file name>

Example: read conceptlearn.cmd.1

The read command causes the simulator to read commands from a file. The commands in the file

should have exactly the same format that commands typed on the keyboard have. read commands
may be nested - in other words a file of commands that is being read may contain a read command
to commence reading a different file. and return to reading the current one when the end of the new
one is reached.

A command file containing the commands typed at each session is created, and at the end of
the session the simulator asks if it should be deleted or kept (see section 4.11.1). This enables easy

rerun of a session For instance, the following command script is used to control the simulation for
the example in section 6.

call build map
show on

show pot 1
show set - change

pipe off
pause on
async
printpause are you ready

5, go 10
.-

32

M

4.11 Miscellaneous commands

4.11.1 Quit command

Syntax: quit

The quit command is used to exit the simulator (or to exit a higher level interface - see section
4.3.2). When exiting to the UNIX shell, the simulator will ask if the file of conmmands typed during
the session should be kept. If the answer is yes, it will ask for a file name. The convention is that
command file names are of the form name.cmd.n. For example:

-> quit
Save command file (y.n) ? y
cmd file name [default: run2482.cmd] > conceptlearn.cmd 1

From higher level interfaces, the quit command will return to the next lowest interface (if all
errors have been fixed - see section 4.3). Typing controlD to the prompt at any level interface will
result in immediate exit to the UNIX shell (after possibly saving the coinniand file).

4.11.2 Print command

Syntax: print <message>

Example: print finished reading in concepts

The print command simply prints the message it is given. For example:

-> print finished reading the message

finished reading the message

This command is intended for use in command files. When a command file is being read. the
commands are not echoed on the screen. This command can be used to indicate significant stages
in the simulation specified in the command file.

4.11.3 Printpause command

Syntax: printpause <message>
Example printpause finished reading in concepts

The printpause command is a combination of the print and pause commands. It prints the
message and then the simulator pauses for the user to indicate to continue. For example:

-> printpause finished reading in concepts
finished reading in concepts
PAUSE - any char to continue <user hits a key here>

Like the print command, this command is intended for use in command files. The command
file can display interesting units. and then printpause while the user examines the data. before
continuing. During the pause. the user can even type controlC, thus entering the interrupt interface
(see section 4.3.5) whence the network may be examined in detail, and when the interrupt interface

is exited, the command file will continue to be read.

33

4.12 Abbreviated commands

Several commands have abbreviations:

Abbrevation Command
d disp
e echo
g go
I list
o out
p pot
q quit

s state
sh show

w weight

In addition some of the terms used in commands have abbreviations:

a all
c connections (equivalent to link)
def default

O u unit

4.13 Constructing a network from the command interface

Using the Make Unit. AddSite. and MakeLink commands it is possible to construct small simple
networks from the command interface. The first Make Unit command will cause space for 200 units
to be allocated, or the Allocate Units command may be used to explicitly create the space. For
example. the following script file makes a network of four units. linked in a ring. and names them
&a a vector.

MakeUnit mytype UFaum
MakeUnit mytype UFaum

MakeUnit mytype UFsum

MakeUnit mytype UFsum

AddSite 0 mysite SFweightedsur.
AddSite I mysite SFweightedsuir

AddSite 2 mysite SFweightedsum
AddSite 3 mysite SFweightedsum

MakeLink 0 1 mysite 1000 0 NULL

MakeLink 1 2 mysite 1000 0 NULL
MakeLink 2 3 mysite 1000 0 NULL
MakeLink 3 0 mysite 1000 0 NULL
NameUnit NOVICE vector 0 4

03

W 34
W

5 Advanced Programming Features

We have tried to ensure that the functions and facilities described in the preceding sections cannot

corrupt the network structure, or cause the simulator to dump core, even if misused. However. such
security inposes limitations that experienced users will find irksome. Consequently the simulator
has purposely been designed so that an advanced programmer is limited as little as possible. This
means that all internal data structures apart from the Name Table are available to user code.
The following sections give an overview of unsecured features, which are described in detail in the
Advanced Programming Manual. Details of features that are commonly used in user code appear
here.

5.1 Simulator Variables

Many variables used by the simulator are accessible to user code. Modifying these should be done
with care. The variables which are often used in user programs follow. Most are documented in the

Advanced Programming Manual.

Unit * UnitList pointer to the unit array

int NoUnits; number of units made so far
int LastUnit; index of last unit that there is space for

char ** State':ames: array of state names, indexed by state value

int NoStates; maximum number of states with names

int StateCount; actual number of states with Names
char *'Set!.ames; array of set names, indexed by set number

int LastSet, maximum number of sets allowed (currently 32)

int NoSets: actual number of sets used

int NoLinks number of links made so far

int Clock the system clock

It.: Pause, if TRUE. Pause af.er e-ery Shok

int EchoStep, print message after this number of steps

int Logging. TRUE if a log .ile is being created
FILE * LogFile; file pointer for Log file

int Sho,. TRUE if showing is switched on

int Sho.Step, display units at this number of steps

int ShowPot. display units with potential over this limit

unsigned int Sho4Sets: bit vector for sets to be shown

The use of these variables is documented in the Advanced Programming Manual.

%J.

35

04s =

5.2 Network Access Functions

There are a large number of access functions and macros that allow user code to retrieve and set
values in the network data structure. The following subsections describe the kinds of facilities
available, and detail functions and macros which are commonly used in user code. A much more
complete description is given in the Advanced Programming Manual.

5.2.1 Display functions

The simulator functions used to display. list and show units and links can be called from user code.
The piping mechanism through which these functions usually print is also available.

5.2.2 Naming

The Name Table is available for user code access, to add. delete. and modify names. In addition to
the basic functions which are used to access the Name Table, the following functions are common
in user code particularly activation functions.

char * IndToName(u)
int U;

* Returns the name of the unit with index u. or **NO NAME** if the unit has not been given,
,/ a name. If the name is that of a VECTOR or ARRAY. the name has the form name'offeet" or

namt. "row I column

int !ameToInd(name. column, row)
char * name,
int colt -a. row;

Returns the index of the unit with the given nane. If the name is that of a VECTOR. then

column gives offset of the unit within the vector. If the name is that of an ARRAY. then column
and row give the column and row of the unit within the array. If the name is not that of a unit. or
either of the indices are out of range. then the function returns -1.

More naming functions appear in the Advawed Programming Manual.

5.2.3 Simulating

Several simulation functions which closely correspond to simulation interface commands can be
called from user code.

Reset()

Resets the network: sets the system Clock to zero; sets the potential and state of each unit to
mitpotentiai and init.state respectively: sets the output of each unit to zero

36

J' I

§91M*-i~ 6..

.C Step(count)
int count,

Simulates count steps. Echoes and shows will be done if appropriate.

5.2.4 Modifying and Accessing the Network

There are a large number of functionn which can be used to modify values in thte network data
structure. The ones often used are:

SetOutput(index, value)
SetPotential(index. value)
SetState(index, value)
SetData(index, value)

int index, value.

Unit index is given output. potential. state, or data value.

int GetOutput(index)
int GetPotential(iadex)

int GetState(index)
int GetData(index)

int index;

Output. potential. state or data of unit index is returned.

5.2.5 Unit macros

T'iese macro- access the deal with unit indices and point(rs.

LegalUnit (index)
int count.

computes TRUE if index is the index of an existing unit. FALSE otherwise.

UnitIndex(up)
Unit - up.

computes the index of the unit pointed to by up. If up does not point to a unit, computes
garbage.

0

5.' 5.2.6 Miscellaneous library functions

The following functions are in the standard simulator library.

0 SiteValue(name. ap)
char * name;
Site * sp;

If sp is a pointer to a linked list of site structures, such as in the sitea field of the Unit structure.

and name is the name of one of the sites in the linked list. then the function returns the value of
that site. If no such site is found. 0 is returned and an error message printed.

37

5.3 Saving and reloading user data structures

The user may wish to create data structures separate from the main network data structure. Hooks
are provided in the simulator to enable user-written functions to save and reload these structures
when the sate. checkpoint. load and restore commands are issued.

5.4 Customizing unit, site and link data structures

Each unit. site and link structure contains a field. data. which is for general purpose use. This field
is the size of an integer or float, depending on which simulator is being used. but in any case is
assumed to be the same size as a pointer. Therefore it is possible to use this field as a pointer to an
arbitrary user-defined data structure. A mechanism is provided for the field to be re-defined for user
code, and hooks are provided in the simulator code to call u.er functions to deal with displaying.
saving, and loading these user-created structures.

5.5 Customizing the simulator command interface

Any user written function which has a name commencing "Cmd" wil be treated as a regular
command by the simulator, and will be available at all interfaces. The simulator pases an argc-argv

structure to command functions. In addition. any command commencing "Debug_?Cmd_" will be
available at the debug and interrupt interfaces (see sections 4.3.2 and 4.3.5). and will take precedence
over level 0 commands of the same name.

5.6 Modelling Time

One aspect of neural modelling that the simulator was not designed to deal with is modelling tinle.
for instanre modelling propagation delays along fibres. By customizing the network data struct ur' as
outlined above, it is po-sible to adapt the simulator to model such paranieter:. albeit in a sorinewhat
limited fa.shion. An example is given in the Advanced Programming Manual.

'.",38

-,

-

6 An Extended Example of network construction

In this section we provide an examples of a relatively complex network in order to introduce some of
the ways in which networks may be constructed. This network is one of the examples found in the
example subdirectory (usually "connect/example, but this is site-dependent). Read the README
file before running it.

6.1 Designing a network

The process of creating a connection network can be broken down into three related stages. First
a design for the network in terms of units, links and activation functions (unit, site and link) is
specified. Second a program is designed to build this network. Third the program is coded in C. We
present these three stages for the Four-Color problem. If one is building a network to model sonie
process specified at a higher level of description (e.g. a model of a cognitive process). the higher
level specification must be made before a network to implement it can be designed.

6.2 The Problem: four coloring a map

., .The problem is to color a map using four colors so that no neighboring regions have thr same color.
The colors are RED. BLUE. GREEN and WHITE. We shall represent each region with four units.
one for each color. The dynamics of the network are simple. Each region wants to turn on exactly

* one color node. If some region is shut out by neighbors' colors it may turn on soni- color anyway.
which may force off some other region's color node. The general idea is for each region's units to
inhibit each other (corresponding to the notion that a region can have at mrrost one color), and for
neighboring regions to inhibit each other from having the same color. We shall use asynchronous
simulation to ensure that the search space is explored until a stable state corresponding to a correct

'coloring is found.

We have four units for each region. What exactly will the links be . Our units wiV have one
site - "inhibit-. Each region's units must inhibit each other - we shall accomplish this by making

A an inhibitory link from each unit to each of the other units in that region. Thus each region will
require twelve links internally - three for each of the four units. Since it is a very strong constraint

that a region have only one color, the weight on these links will be highly negative (high inhibition).

How shall we accomplish inter-region inhibition? No two neighboring regions can have the same
color. so if two regions have a border. we make an inhibitory link from the color units in one region
to the corresponding units in the other. For instance, if region X borders region Y. we add inhibitory
links from region X's blue unit to region Y's blue unit. and vice versa. The same applies for the red.
green and white units. Since we wish the network to search the space of possible colorings we must
allow neighboring regions to have the same color for a short period of time, so the weight on these

0 links will be moderate and negative (moderate inhibition)

How do we control the search through the state space? First we will say that if a unit is receiving
no inhibiton. it will turn on. If there is strong inhibition (e.e. from another color in the same region).
the unit will remain off. If there is weak inhibition (i.e. from bordering region(s) of the same color.

. the unit will turn on or remain on with a probability which decreases with the amount of inhibition.

O Finally, exactly what activation functions shall we use to implement the descriptions above.
Since the weights are not changed. link functions can be the NULL function. The site function

-. will simply take the weighted sum of the inputs. What weights shall we use ? For the intra-region
inhibition the maximum negative weight of- 1000. For the inter-region same-color inhibition we shall

.r. use -100. The unit function will simply look at the inhibition arriving. If there is none,i.e. the region
is not yet colored and no neighboring region is colored with the same color, then the unit will turn

39Ad.t

0i

on with activation and output 1000. If there is inhibition from neighboring countries (in the 100's)
but not from units in the same region (in the 1000's) then with some small probability dependent
on the strength of the inhibition, the unit will turn on with activation and output 1000. If there is
inhibition from another unit in the same region (i.e. it is already colored) then the unit will turn off
with activation and output 0.

6.3 Designing the build program

There are several things to note about the network design. The map of the regions is not specified
explicitly. All linkcs are bi-directional. i.e. if unit X inhibits unit Y then unit Y inhibits unit X with
both links having the same weight. The links can be divided into two kinds. intraregion (twelve for
each region), and inter-region (four for each border). These suggest some design decisions.

First we shall specify the map using a data file, which will be read in by the build program. The
map file format will be:

<number of regions>

<region ndimber><region number>
<region number><region number>

<region nuniber><region number>

'a The first itemi specifies the number of regions. the remaining pairs specify the pairs of regions

0 which border earl, other (each region is assumed to have been assigned a number). Thus the data
file:

3
* ~1 2

3 2

would specify a three region map with one region sandwiched between the other two, as in El
Salvador. Honduras. Nicaragua. The map will be read in by the top level function. build.

Since the links are effectively bi-directional, we shall have a function mur (mutual exclusion)
which creates two links, one in each direction. Since each region has the same internal structure. we
shall have a function region to create a region. Since each border consists of mutual exclusion links
between corresponding color units for the two regions. we shall have function border to create these
links.

How shall we assign the units? Our method will be to assign them in blocks of four. one block for
each region. Within each block, the first unit will be for RED. the second BLUE. the third GREEN.
and the fourth WHITE. For example unit number 6 (the seventh unit as unit numbers start at 0)
will be the GREEN unit for the second region.

Thus the overall mechanism for building the network will be to read in the number of regions.
allocate sufficient units accordingly. make the specified number of regions (with region). arid then
read in each border and make it (with border).

The site for each unit will have flag NO -LIN K-UNC -FLAG set to indicate that no link functions
are operative. The site function will simply be the library function SFweightedsum. The unit

* function will operate as described above, with the addition that it will add the unit to a set. change
if the potential changes. and remove it if it doesn't. While simulating we may then use the show
command to cause just the units which have changed since the last step to be displayed. In addition
we will have two named states, Change and Static, which will correspond to membership or not of
the set change respectively.

04

140

6.4 Implementing in C

Now that we have the design. the build program can be coded.

6.4.1 Top level build function

At the outermost level, the program looks like this:

#include "simsh" /* simulator definitions -
#def ine STATIC 0 I'constant state names
#define CHANGE 1

nt, UFcoloro; /* unit function declarations *

1* build is the topmost network building function. It is called from

the simulator to build the network *

build(argc ,arg7)
int argc. I' number of arguments *
char -argv[); /* array of argument strings .

int count. i.regl .reg2 ,readstatus;

FILE -infile;

ai(argc !=2)
{ /* expect build 1 argument '

printf("Uage: build <desc file name>\n");
return;

infile =fopen(argv(1]2'r."); 1' open data file *
if(infile == NULL)

{ I'/ if cannot open file '
printf ("build: could not open %\n".argvfi]);
return;

fscanf(infile,"%d",count); /* read number of regions from file .
AllocateUnits(count*4); /* make units for regions X 4 colors .

DeclareSet("change"); Is declare a set name 0/
DeclareState("Static"STATIC); /* state name declaration *
DeclareState("Change"CHAHIGE); I' state name declaration '

for(i = O:i < count;i+-) I. make the regions 0/

regiono;

for(i=0;;i--) Is make the borders .
{ Is exit loop with break statement 5

readstatus = fscanf(infile.'%7d".kregl.®2);/* read two regions .
if(readatatus '=2) break; /* assume end of data -leave loop *
border(regl.reg2); I' make the border *

priatf("%d regions with %d borders',~count~i);

41

The first two lines allow us to use the unix input/output facilities, and the simulator functions
respectively. These lines will be present in every build program. The next two lines define constants
STATIC and CHANGE to have values 0 and I respectively. The fifth line declares the unit function

* which is defined later. Finally the definition of the function build is given. This function is called
from the simulator interface with the name of a data file as the only argument. The first if statement
checks that indeed only one argument to build has been given. The second if statement checks that
the argument is indeed a file that the program can read. If either of these checks fail, the function
return's to the simulator with an error message.

Assuming all is ok so far. the niumber of regions (the first item in the data file) is read into variable
count. Each region requires four units so count *4 units are allocated with a call to Allocate Units.
The set we wish to use for display. change is declared, and the state names "Static" and -Change-
are bound to the values -STATIC" and "CHANGE-. If this seems confusing, remember that the
units keep their states as a number. e.g. STATIC = = 0. By binding a name to a state value. using
DeclareStatt. the simulator will display the name rather than the number.

Finally we are ready to do the real work of building the network. The first for statement make-,
the appropriate number of regions by successive calls to the functior. region. The second for statement
repeatedly reads a border specification from the map file and makes it via a call to the function

V border, until the end of the map file is found. Once all this is accomplished.. the network is in place
and the user is informed how many regions and borders were made.

S4

6.4.2 Making a region

The code to make a region is given below.

/* Make a region. Four units are made - one for each color. The entire

region is named as an array, with the color macros below specifying

the appropriate indices. They inhibit each other strongly. 0/

$define RED 0

$define BLUE I
#define CREE; 2

Sdefine WHITE 3
-static char *colornames[] = {"red"."blue"."green"."white"};

static int region()
{

static int regionnum = 0; /$ which region - static means value remains

between calls; it is initialized at startup

to 0 0/
int i.j.first;
char but [15J;

/* make 4 consecutive units, each for a different color */

first = makecolor(RED); /* save index for name declaration*/

makecolor(BLUE);
makecolor(G&EEN);
makecolor(WHITE);

/* name these as a single vector */

sprintf(buf."region.ld".regionnum); /* but contains name s'
1ameUnit(bufVECTOR.first.4); /* vector of length 4 */

for(i = O:i < 4;i--) /* make them inhibit each other 4/

for(j = i+l;j < 4;j *)
mux(first-i.firstj .-1000);

return regionnum++; /* returns region number o/

The first few lines are to define values for our colors. These will be used to index into the string
array colornames. so they take values 0. 1. 2 and 3 in the same order as in colorname,. Now we come
to the code for the function region It is declared static to ensure that wher, loading multiple object
files this function is not visible to any other object file (consult a C manual if this is not clear). The
first line in the function declares an integer regionnum, which is also static. The effect of this version
of static is to make regionnum a permanent variable, so that it retains its value between calls to the
function. At each call to the function it is incremented, so it represents the number of the region
that is currently being made. The first region will have number zero.

The task of making the units for the region is done by the four calls to makecolor. Each call
makes one unit corresponding to one color for the region. and because the calls are consecutive, the
four units are next to each other in the unit array. We name them using the Name Unit simulator
function. Finally the mutually exclusive links between the region's units are made by calls to muz.

S The weight on the links is set to -1000. as specified in the design. We return the number of the
region just made, and increment regionnum before exiting.

43

Next we describe the code for the functions rnakecolor and muz

Is make a single unit representing a region color; return index of that unit *
static int makecolor(ty-pe)

mnt type; I' a string containing color name 0/

mnt index;

index = MakeUnit(colornaneaCtype] ,UFcolor.O.O.O.QSTATIC.STATIC);
AddSite(inidex."inxhibit".SFweightedsum);

"'etFlag(inde.N.40LINK..FUNIC-LAG); /* weights don't change s

return index;

static nux(unitl.unit2.weight) /. mutually exclusive linkasi

int uniti .unit2 .weight;

Maeikuilunt {hbt.wih..TL)
MakeLink(unit2.unitl.'inhibit".weight.O.NULL);

The function makfeolor makces a unit (MakeUnit), adds a site called -inhibit- to it (Addqitf).
sets the no link function flag. and returns the index of the unit made. Notice that the type of the
unit is taken froin the string vector colornames according to the color being made. and that the unit

* function is called CJFcolor - this will be described below. The initial and reset state for the unit is
STATIC. Also notice that the site function is SFweightedsum. a library function.

The function muz simply makes two links, one in either direction. between the two units. each
link going to site 'inhibit- and having the same weight.

44

6.4.3 Making borders

Making a border is a simple matter of creatiaig mutually inhibitory links between the region units
representing the same color. The function mapunit is a utility to get the unit index from the region
number and unit color.

The border is actually made by function border. This calls mur to create the foar !,Firs of links
(one pair for each color) using mapunst to get the unit indices. The code appears below.

/* mapunit takes a region number and color and returns that unit's index s

static zspunit(r~gion~cQi'or)

int region.color;

char but (15];
sprintf(buf.'regionY.1d" region); /*get name of region in but *

?return liameTolnd(bul~color); /*look up index .

/s make a border between regioni and region2 *
static border(regionl.region2)

int regioni.region2;

94 int i;

* mux(mapunit(regionl .BLUE) ,mapunit(region2,BLUE). -100):

mux(mapunit~regionl.RED) .mapunit(region2.KED) .-100):

* mux(mapunit(regionl.GREE:) ,mapurit(region2,GREEN:).-100);

4 mux(mapunit(regionl WHITE) .mapunit(region2,WHITE) .-100);

There are faster ways of finding the index of a unit than the name lookup used by mapunit.
For example. the expr,--Ssiori 4re.-ior-color givf- tnp correct idex. HoVever. if we d-cide to add
new units to the network. the expression might be invalidated, but the name lookup will still work.
This is an important general principle: if you wish your network to be modifiable, use the simulator
functions to access data items. rather than finding them with your own code. In this case. with
smnall maps. using the simulator functions produces no noticeable delay.

No link functions are required because weights don't change. The NO..LINK.FIUNCYFLAG can
also be set in the units flags. If it wasn't. a default, empty link function would be called for every
link, for each step of simnulation. This does no harm. but does take some time.

0

45

6.4.4 The unit function

The unit function UFolor performs the function described in the design. Color units are either on
(potential and output equal to 1000) or off (0). If there is no inhibition or dice returns true a unit
will tur; on. The macro dice returns true with a probability dependent on the anount of inhibition
the unit is receiving, and is used to determine whether or not to switch the unit on. If the inhibition
is over 1000 (another color unit in the same region is on) then dice returns false. If the inhibition is
under 1000 (corresponding color unit(s) in neighboring region(s) are on) then the unit will turn on
or remain on with probability approximately (10 - #conflicts)/20.

/*

dice(inhibit) has value 1 with probability: (1000+inhibit)/1999:
Note that if inhibit is <= -1000. this probability is zero.

S/

#define dice(inhibit) ((randomo%1999) < (1000 + inhibit))

UFcolor (up)
Unit *up;

C {
int inhibit;
int oldpot;

oldpot = up->potential; /* remember old potential */
inhibit = SiteValue("inhibit".up->sites);
if(inhibit >= 0 I g dice(inhibit))

{ /* unit on'/
up->potential = 1000:

up->output = 1000;
"C' }

else
{ /* unit off *I

up->potential = 0;
up->output = 0;

/, change state and set membership if necessary '/
if(oldpot != up->potential)

{

AddSet("change",UnitIndex(up));

up->state = CHAUGE;
}

else
{

lemSet("change".Unitlndex(up));

up->state * STATIC;
}

The function UFcolor defines the behavior of the color nodes, and thus. of the whole network.

Units are in one of two states: STATIC and CHANGE. The state does not affect their behavior.
but it does make it easier to see what is happening when watching unit lists scroll by. Several steps
in a row with no units in a change state probably means the network has settled on a solution.

UFcolor also dynamically updates membership in the set "change" so that it contains units which
have changed state this step. This set is used as a show set, so units which have just changed will
always participate in a show.

46

6.5 A command script to demonstrate the network

An important way of controlling the simulation is the use of command scripts The following script
has all the commands necessary to start and run the four color network.

call build map
show on
show pot I
show set - change
pipe off

- Fnse on
async
printpause are you ready

go 10

The first command calls the function build with map file map. This causes the network to be
constructed. The three show commands together mean that we will see only those units which are
on or have just gone off. Turning the pipe off means that output to the terminal will not go through
the more filter. Turning pause on causes the simulator to wait for a prompt after each step. The
simulation must be run asynchronously or the whole network will oscillate: all on, all off. all on.
The async command puts the simulator in asynchronous mode with all units simulated at each step.
The printpause command prints the message and waits for a prompt. The final command tells the
simulator to run for 10 steps.

0 Command scripts can considerably ease the burden of simulating. It is easy to create script files
4.,with slight variations in the simulation parameters and control. Feeding in a lot of information to a

network can be done as well. for instance for initialization.

47

I0i 6 1

7 Floating Point version

The floating point version of the simulator uses floating point values for potentials, outputs. site

values, weights, link values, and unit, site and link data fields. The floating point version is created by

specifying the -f flag to makeeirn (see section 3). If this flag is given, user code will be compiled with

the flag -DFSIM used (see the man page for the C compiler, /em cc /em, for details of the -D flagj.

Thus user code may use conditional compilation to automatically be recompiled for integer/floating

point simulation. The type FLINT is defined in the user compilation environment to be a float or

a. intcgci Jependlng on whether the compilation if for the floating point or integer simulator. More

details are given in the Advanced Programming Manial

8 Acknowledgements

The first version of the simulator was designed and implemented by Stephen Small, Lokendra Shastri,
Gary Cottrell and others. Mark Fanty converted it from LISP to C and made extensive changes.

Mark has been a constant source of Good Advice during development and upgrade to release quality

software. As always, Jerome Feldman provided inspirational comments when they were most needed.

S4.8

9:'

44

U

'I

V

The Rochester Connectionist Simulator
Volume 2:

Graphics Interface User Manual

Kenton Lynne
Dept. of Computer Science

University of Rochester
Rochester. NY 14627

April 15 1987

SN

i

0

Conteiits

1 Background 2

2 Getting Access to GI Functions 2

3 Using the GI Tool 3

4 The Command Panel 4

5 The Message Panel 4

6 The Mode Panel 5

7 The Control Panel 6

7.1 Lower control panel running the simulation 6

7.2 Main Mlod laying out the network.....

7.3 Link Mode chpckii~cg the connections 9

7.4 Text Mode - displaying text. 10

7.5 Draw Mode line drawings 11

7.6 Custoi, Mode customizing mouse buttons 11

8 The Display Panel 13

9 The Info Panel 15

10 GI command interface 16

10.1 Placing unitS on the graphics display 16

10.2 Drawitig lines or boxes and adding text 18

10.3 Moving and deleting objects. 1

10.4 Simulating and updating the graphics display. 19

10.5 Redisplaying 19

10.6 Displaying unit details 19

10.7 Mapping mouse buttons. 19

11 Advanced Features 21
11.1 Creating and using your own icons. 21

11.2 The programming interface for GI functions 22

11.3 Using the log file 23

612 Multiple unit view. 25

13 Performance Hints 26

14 Future Directions 27

1 Background

The Graphics Interface (from now on called GI) was developed as an extension to the Rochester
Connectionist Simulator for us" on Sun graphic workstations. It provides a graphic output display
for networks created by the Rochester Connectionist Simulator nakirng it possible to observe the
behavior of the network as it runs. Once your network has been built by the simulator. Cl give-
you a display panel upon which can be arranged graphic symboLs (icons) representing particular
aspects (potential. output. state. links. etc) of units of your network that you want to observe. As
simulation steps are runi. the appearance of these icons will change as the values of their selected
aspect change Thus you can visually observe the dynamic overall behavior of your network (or part
of it) as it runs. which can be very useful in getting an intuitive feeling for what the network is
doing. You can also draw and write text and line drawings on the display panel for documentation
of your network. Remember that GI is strictly a -read-only- interface: that is. anything you do
with the graphics has no affect on your net-work itself and the base simulator is (almost) complete]y
unaware of GI's existence.

Note: All references to -simulator- in this manual refer specifically to. and only to. the software
package kiiown as the The Rochester Connectionitt Simulator and the assumption is that you already
have a working knowledge, of it. So if you are a unfamiliar with the simulator itsUf. you should
probably read TR (forthcoming) which explains its basic concepts and operation. or the document
The Rochest.r Connctionist Simulator: User Manual.

.- 2 Getting Access to GI Functions

The GI is linked into the simulator itseLf at "'makesim" time auromatically. If you do not wan, the
GI graphics package, you should use the "-ng- flag with your makesint command. Because Sutioot
graphic tool,- pull a lot of library routines into their objects. the final load objects tend to be quite
large. usually berween 300 and 500 KB (depending on whether you compile with the -g option). You
will probably wan- to delete these object, once you are finished with them if disk space is a critical
resource &s it is at the University of Rochester.

RESTRICTION. If your own simulator code makes use of external variables you must be aware
that name clashes are possible between your code and the GI functions since they are linked together
as one object. All GI external variables and functions have names beginning with the prefix "gi_7.

so you would be wise to avoid naming any of your external objects using this prefix.

"'42

%

3 Using the GI Tool

Once you've made your simulator with "makesim" you can run your simulation session with the GI
interface. Simply type in the name of your simulator object as usual. You will notice a message
when the simulator comes up "building Graphic Interface tool - please wait. It will take a few
seconds and then you should see the GI tool come up on the righthand side of your screen (see
Figure 1). You can use any of the Suntool --W- flags following the simulator command if you wish
to customize aspects of the tool. For example. the command:

mysirr - Wp 0 100 -Ws 1000 800

would bring the GI tool up on the extreme left-hand side of the screen. 100 pixels from the top and
sized 1000 pixels wide by 800 pixels high. See the Suntools documentation for a complete list andN explanation of all the -W option, available. Note: if you are using the optional saved simulator file
parameter. it must appear before any of the -W flags.

Once the GI tool has appeared on the display. you will notice it consists of six separate (but
interrelated) panels:

" The info panel is the top panel of the display and is used for showing detailed textul infor-
mation about specific units in your network.

" The mode panel is the wide short panel immediately below the info panel and is used both for
0 changing -iodes" (described below) and for turning logging on or off (aiwu described i. - J.

" The display panel is the mostly large blank panel on the left side of the window just below
the mode panel. It is the canvas on which the graphical representation of your network will
be displayed

" The control panel is the complicated looking panel with all the buttons and prompts and is
just to the right of the display panel. This panel is the primary way you will interface to the
GI fuictions in order to control the graphical expression of your network on the display panel.

" The message panel is the thin panel directly below the display panel. It is used solely for
displaying errors. warnings or informational messages.

" The command panel is just below the message panel and is the bottom most panel of the GI
tool. It is your primary interface with the base simulator and essentially takes the place of its

, command interface.

Like most Suntools. in order to work within a particular panel. you need to move the cursor into it.
'. Successful operation of GI requires understanding bow these panels operate and how they relate to

0 one another. A detailed description of the operation of each panel is contained in the next sections.

"p,

0 " "" : - ; ,'''''..""-%" € -," ", : "": ., 2" Y"" ')' Y ""'% 0Wi d€€

4 The Command Panel

The command panel is the the bottom leftmost panel of the Gl tool and usually the first ont you
will use. It consists of a prompt "->- which looks very much like the standard simulator prompt
for good reason: it essentially is, the simulator prompt. That is. any simulator conran, that you
type followed by a return is sent unchanged to the simulator command interpreter and executed.
For example. if the first thing you normally do is build your network with -call buildimyniet". that
is exactly what you would type into this prompt. The simulator will procest your commniid. and

, once it returns, the command will move up to the next line and you can typ,' in another command
The only difference between using this command line and the one on the standard simulator is that
any text output generated by the simulator (for example on a "list" command). will show up in the
original window the simulator was started in. not in the GI tool window. Thus if you plan to use
simulator commands for generating displayed output. you should set up your Sun windows so that
you can see both the GI tool and the original simulator window at the same time However. if the
simulator command generates an error message from the simulator. the error will appear in the GI
message panel as well.

5 The Message Panel

The message panel is the simplest because the only interaction you will have with it is to rtad
text that has been put there by GI for your information or befuddlement. Mostly (hopefully) they
will be confirmational messages like -Show command successful-. Sometimes there will be wariLi'
messages to inform you of something that happened that you may not be aware of (such a- that a
unit has been -displayed- off the viewable screen) but may be OK anyway. At other times there will
be error messages inform ug you with utter clarity as to what went wrong and maybe even a clue
on how to fix it. Hopefully. very seldom will you see obscure looking messahs Uk- "undesigiated
<what> in get-unit procedure" which are indications of a program failure. If you run into any of
these consistently. please let us know so we can try to figure out the problem. You should also see
any error messages resulting from commands sent to the simulator in this window.

4

-i

0
4Z

..1, ,

6 The Mode Panel

The mode panel is right below the info panel and controls two separate functions. The left side of the
panel has the word MODE: followed by the choices -Main-. "Link-", "Text-, "Draw- and -Custom-
with one of thenm reverse-imaged. Clicking over "~Mode:- or one of the choices will change modes
accordingly. Different modes allow you to do different operations on the display panel. You will
notice that switching from one mode to another results in a different set of prompts being displayed
on the control panel. The mouse actions performied in the display panel will also change based on
the current mode. A hint as to what the thre'e mou~e buttons do will appear in the message panel
each time a mode is selected. Briefly. the differ, tit miod", are used for the following functions.

e Main mode is used primarily for setting up and displaying the units in your network on the
display panel. In main mode the control panel will have prompts that pertain to what, how
and where you want the units in your network displayed.

* Link mode is for interactively examining and verifying the topology of your network. That
is. in Link mode the icons being displayed are always showing connection strengths between
units rather than some other aspect such as their output, potential. state. etc.

e Text mode is for placing printable ASCII characters on the display primarily for documentat ion
and publication purposes. The control panel prompt asks for a font which allow-, a variety of
type faces and sizes to be used on the display.

e Draw mode allows you to draw boxes and other straight line objects on the display for docu-
mentation and aesthetic purposes.

@ Custom mode enables you to set the mouse buttons to specific commands that can be executed

while the mouse is on the display panel. These commands can have symbolic arguments that
are filled in at execution time based on where the cursor is located in the display panel.

More detail on how to work in these modes in contained in the following section Th"v Control
Panel.

The right side of the mode panel contains two fields for controlling the logging of commands.
LOG: is a switch which can be set either "On" or "Off" by clicking over it with the mouse and
indicates whether you want G1 and simulator commands you issue to be logged to a file. If logginlg
is on -On- then actions that affect the display screen will be turned into commands arid written
to the file named in the prompt just to the right of the switch. The default log file used is named
"gilog" but of course you can change this to any file name you want. When logging is turned off.
any commands that had been written to the log file are immediately flushed into the file and can
thus be read in immediately if desired. If you then specify another log file and turn logging back on.
then the original log file will be closed and the new log file will be opened for write (deleting its old
contents) as soon as the next command completes. However if you don't change log file names. and
switch logging back on and off. then the log file will accuniulate commands that are issued whenever
logging is on.

The reason you might want to log commands is that you can then "repla- your simulation
session back later (via the simulator -read" command) thus saving yourself the trouble of setting up

* the network display. You can also edit the log file to -weed out" or change the way the session will be
reenacted. Of course to do this you will have to understand the syntax of the simulator commands

4'' -which we assume you are aLready familiar with - and the GI commands which are documented in

section 10. More detail regarding the log file is contained in section 11.3.

7 The Control Panel

The control panel is located on the right side of the GI tool and is normally useful only after you
have built your network (presumably by interfacing to the simulator through the command panel).
Through interacting with it you set up the display with the graphic representation of your network.
run the network and do other miscellaneous functions such as writing the display image to a file or
placing text or line drawings on the display. The control panel is divided into an upper and lower
part. The upper part (above the Clock and Origin messages) is used primarily for setting up the
display panel the way you want it to look. and will have different prompts displayed depending on
what mode you are in. (See previous section on the mode panel). The lower part is used mostly

after the network has been laid out for actually running and watching the simulation run. It looks
and operates the same in every mode and we'll describe it next.

7.1 Lower control panel - running the simulation

The buttons on the lower part of the control panel are most useful during and after a simulation run.
The GO button is for actually running some number of steps of the simulation oice the network ha.s
been laid out on the display screen. It has two associated prompts. one ("number steps:-) specifies
the number of steps to run. and the other ("update steps:") indicates how often to update the
display while the simulation is running. For example setting "number steps:" to 20 and "pdate
steps:- to 4 will cause 20 simulation steps to be run with the display being updated every 4 stept..

The DUMP buttun is used to save the actual display panel image in a raster file. The default
name is "gi.image" but you can change that to any name you wish.

The RESHOW button simple rewrites everything onto the screen (from scratch. so to speak).
so if in moving thing around. the display has somehow gotten messed up. RESHOW should put

things right again. It has a prompt: ":" which defaults to the current Origin. If you would like the
display to show a different portion of the display space, change the value to the desired origin before
pressing RESHOW and the display will be translated appropriately using the new origin (which
will then become the current origin). The relationship between display space and the origin, is be
explained in detail in section 8.

The QUIT button does exactly that: ends without recourse the simulation session and returns
to the shell. Make sure you've saved everything you need to before pressing this button since it gives

no second chances.

7.2 Main Mode - laying out the network
When you are in main mode (see Figure 1), the upper part of the control panel will have three buttons

representing the three basic commands that are used for initial layout of your network on the display
panel: SHOW. CHANGE and ERASE. They all act by taking the appropriate parameters from the
the prompts (WHO. HOW MANY, WHERE, etc) and then performing the requested action on the

display screen.

The SHOW command is used to specify how and where to display units that are not already
currently displayed. The ERASE command is used to erase units from the display (not from
your network) that currently are displayed. Thus ERASE is the functional inverse of SHOW. The

CHANGE command is used to change some representation of units that are already displayed.

CHANGE is sort of a combination (or shortcut) of the ERASE and the SHOW commands. That

is. it acts as though the specified units were first ERASEd and then SHOWn again with (possibly)

different attributes.

.

/* 6

Po, I II

The prompts (WHO, HOW MANY. WHAT, etc) need to be filled in appropriately before pressing
any of the command buttons. Note that defaults are set up in all the prompts. In fact. once you've
built your network you can immediately left click over the SHOW button which will execute the

* default SHOW command thereby laying out your entire network in a default fashion. However.
for your specific purposes this default layout may be somewhat inappropriate. In order to specify
the exact way you want your network to appear on the di-play panel. you need to understand the
semantics of the prompts and how they apply to each command:

"WHO (along with HOW MANY) determine which units in your network will be SHOWni.
CHANGEd or ERASEd. The' WHO part specifies the beginning unit (if HOW MANY specifies
more than one) in an ordering of units by unit index. There are four ways to specify a unit
in the WHO prompt - By unit index (note the default is "0" indicating the first unit in any
network). by unit name. by unit type or by set name. These are all things you can specify via
functions in the basic simulator within the C code that you wrote to build your network. For
convenience in starting over. the ERASE command will allow you to specify -'all- for WHO
which will erase everything that has been displayed.

" HOW MANY' specifies the number of units the command is to be applied to. beginrinig with
the unit specified in the WHO prompt. This can be either a decimal number or the word "all"'
which means all units matching the WHO prompt,

Note: Depending on what the command is, the beginning unit specified by WHO is handled
slightly differently. For SHOW, the WHO unit will be the first unit (starting from unit 0) that

* matches a unit which is not currentlyj displayed So if. for example. your network has 100 units
of type "input", then setting WHO to "input" and HOW MNANY to "10" and pressing SHOW
will display the first ten of them. Pressing the SHOW button again will display the next 10.
and so on until SHOW can't find 10 units of type "-input- that aren't already displayed (which
will theni result in an error message). The ERASE command sort of works in reverse. Once
all 100 input units are displayed (and setting WHO to -input** and HOW MIANY to -10"')
ERASE will erase the first 10 displayed, pressing ERASE again wil.] erase the next 10. and so
on until ERASE can't find 10 -input- units that are still displayed. CHANGE always works
on the 1st unit it can find that is displayed. Thus setting WHO to "input- and HOW MANY
to -10" and pressing CHANGE multiple times will always affect only the first 10 "input" units
displayed.

" WHAT specifies two things: the "aspect- of the unit you wish displayed (Potential. Output.
State. Data. Link/' in, and Link/out) and the expected range of values that you expect that
aspect to take on during the simulation. The desired aspect is selected by clicking left over
it (which becomes reverse imaged) and you specify the range by typing into the "from:" and
"to:" prompts. Note that the default is to display the unit potential over a range of .1000
to 1000. The meaning of "Potential", "Output" and "State" should be self-evident. "Data"

* refers to the data field contained in each unit. Link/in and Link/out specify that the aspect
of the unit you want displayed is the link weight of that unit to (Link/in) another (target)
unit. or the weight from (Link/out) another (target) unit. Note that when you select Link/in
or Link/out as the aspect another prompt appears labeled -target:" This is where you specify
the target unit in the same manner that you specified WHO. Note. however that the target
unit is just one particular unit. Thus if you specify a set namne or type. the target will bu

* just the first one found. The safest way to specify the target to make sure you get just what
you want is by unit index or unit name. If the target happens to already be on the display
screen, clicking the right mouse button over it will automatically copy that unit's index to the
"target:" prompt for you. If you specify just a unit in the target field. GI will use the first
matching link it can find for that target. However if there is more than one link between the

W 7

-41

target and a unit you may want to specify a particular link. You can therefore add a "site-
designation to the target as well. The site designation is simply the site name where the link is
attached and you specify it by appending the site name to the unit separated by a slash (-/).
Thus if you were interested in the link between target unit 43 at site 'special" you would put
"43/special" into the target prompt. (If you have multiple links between two units all at the
same site you out of luck: there is no way in GI to distinguish among them).

HOW specifies what kind of graphic object(s) you want the unit aspect displayed as. There
are six choices; the first five are polygons and the last a dark square, is a grey-scale icon.
You select the one you want by clicking left over it which moves a horizontal bar beneath the
selected choice. If you don't like any of the choices presented, there is a seventh choice (on the
next line) designated by an icon with a "?-. If you select the "?- icon. you are prompted to
fill in the "name:" of your own icons. (see the section -Advanced Features- for details). The
default choices given are only the prototype of what the unit wil actually look like: the actual
appearance of the unit during the simulation will depend on its current value for the aspect
selected for it. The icons shown are what the unit will look like when and if it reaches the
maximum value for its selected aspect. The way the value of the unit aspect is shown for the
five polygons is by the two dimensions of size and shading. Each shape has 20 different icons
associated with it and based on the particular value of the unit aspect at the time. one of those
shapes is selected to represent the unit and is then displayed. What actually happens is that
the range is divided into 20 evenly sized subranges and whatever subrange the value happens
to falls into. that corresponding icon is displayed. (If the value falls outside the range. it is
treated as though it were the maximum or minimum of the range). The 20 icons are ordered

_ such that the maxiIIiunI valuc in the range corresponds to a large. light colored polygon. and
as the valnes decrea.se the polygon becomes smaller and smaller until at the middle of the
range (normally 0) the point is reached at which the polygon is at its smallest. As the valuf-
gets smaller (normally more negative) the icon becomes dark and begins to get larger until
at the low end of the range it appears as a large dark polygon. The exception to the above
rule applies to the grey-scale icon. At its largest value it is a dark rectangle. and decreases
by becoming progressively lighter until at its minimum value it is almost a completely white
space it however, does not change size. By the way, if you prefer the reverse (have the dark
polygons or lighter grey-scales represent larger values) simply switch the numbers in the -to:-
and -from:- prompts.

9 WHERE is used to control where on the display panel the aspect of the unit you've selected
will appear. As such it is only looked at by the SHOW command. There are several things that
need to be specified about the positioning of the icons. They all require that you understand
a little about the geometry of the display panel and how it is referenced.

The objects on the display panel are positioned by x and y coordinates with 0.0 being the
upper lefthand corner of the panel with x becoming increasingly positive as you move to
the right and y becoming more positive as you move down. This is in accordance with Sun

* conventions for window geometry. On the display panel you may notice an odd looking -X"-
like object which from now on will be referred to as the -marker-. If you look at the prompts

a"start x:" and 'start y:" you will notice that they have coordinates already in them. These

happen to be the coordinates of the marker on the display panel. Notice that if you change
these coordinates, the marker will correspondingly change position. Similarly when you move
the marker around (by clicking left on the display panel where you want it to move to) the
coordinates will automatically change to reflect its new position. This synchronicity between
these prompts and the marker comes in handy when laying out units of your network since the
"start x" and "start y" prompts indicate where the first unit will be positioned on a SHOW
command. If only one unit is going to be displayed. then the rest of the WHERE prompts
are irrelevant. However if a number of units are going to be displayed. the other WHERE

8

0 0

D'

prompts are used to specify how the whole group are to be laid out. The underlying strategy
is to lay out multiple units in a rectangular fashion in rows and columns. in "reading order",
that is. left-to-right and top-to-bottom. The "start x:" and "start y:" designate the top left
of the rectangle. "space x:- and "space y:" specify how many pixels to leave between each
column and row respectively, and "units per row:" tells how many icons to put in each row.
If "units per row:" is set to max. SHOW will put as many all the icons in one row even if that
means some of the icons will be off the display panel. Be assured however that even though
the units are not presently showni. they are they are still there and in the next section you'll
learn different ways to make them visible. If you want the units displayed in a right to left or
top to bottom order. simply use negative values for the "space x:" and "space y:" prompts.
respectively. Note that you can make the units "overlap" by specifying small (less than the
icon size) negative spacings. However. GI does not guarantee that the results will be pretty.

Once appropriately filled in. clicking left over the SHOW. CHANGE or ERASE buttons will
perform the specified command. It useful to fool around with these commands in order to get a feel
for how to arrange and rearrange the units. An important thing to remember is that the SHOW
command uses all the prompts. the CHANGE command uses all the prompts except WHERE. and
the ERASE command only uses WHO and HOW MANY. Remember that no amount of messing
around with the display will have any effect on the network itself: in a sense GI is "read only" as
far as the actual network is concerned.

7.3 Link Mode - checking the connections

Selecting Link mode on the mode panel will put you in link mode (see Figure 2. Link mode was
designed for the single-minded purpose of making it easy for you to tell how your networK is cor:-
nected. No matter what aspect your unit icons were displaying in the other modes, in link mode all
icons are always tracking the weight of links from or to some one other unit called the target unit.
Link mode is as if you CHANGEd all the units displayed to either Link/in or Link/out to or from
a particular target unit. The advantage to link mode is that the original definitions of your units
are not lost. That is no matter what you do in link mode. switching back to main or any other

mode. will restore the units to what they were before you entered link mode. Thus think of link
mode as a temporary escape from the "usual" definitions of the unit icons to one where only links
are displayed. Here's how to use it.

Notice that the control panel has three prompts in it: TARGET, HOW and DIRECTION.
The idea is to pick a unit as the 'target' in much the same way as you do in main mode. either by
clicking the right mouse button over the target unit or by typing the target unit name (or index.
type or setname) into the TARGET prompt. You can add a site name to the TARGET prompt by
appending it to the unit separated by a "/". Once you pick a target (by either clicking or pressing
return in the TARGET prompt) all the other icons on the display will change to show the weight of
their link (if any) to that unit. The other two prompts are for controlling how the links are shown:

" DIRECTION: which way the link is supposed to go. Link/in indicates that each unit on the
display will show the weight of the link from the unit to the target: Link/out specifies that
each unit will show the weight of a link to the unit from the target.

" HOW: what kind of icon and using what range of values. For choice of icon. the familiar
* |polygonal ones are available as well as the default one labeled "same-. If one of the polygonal

ones are chosen, then all the displayed units will change to that one icon shape (only during
link mode. of course). Selecting "same" means to use the same icon shape for each unit that

*was used in main mode. Range just indicates what the expected link values will be so as to
proportion the icon changes appropriately among subranges.

7.4 Text Mode - displaying text

There may be times that for documentation or publication purposes you may want to put text on
the display panel along with the network. Selecting "Text- on the mode panel puts you in text

mode which allows you to do this (see Figure 3). Once in text mode you simply click left anywhere
on the display panel where you want your text to start. A black rectangle will appear meaning you
can start typing characters and they will then appear on the display. You can use the backspace key
to fix errors and the Return key will put you on the next "line-. However each line of text you enter

will actually be treated as a separate text 'object" that can be manipulated (ic. moved or deleted)
independently. Also any significant mouse action, such as leaving the window or pressing another
button, will create a separate object for the text entered so far and you will have to click left again
to set the position for another text string. The longest possible single text object is 80 characters.
If you type in a string longer than 80 characters. GI will automatically break it up into two or more
text strings. You will normally be unaware that this happened unless you try to move or delete the
string in which case the fact that it is not really a single object will become apparent.

The control pan-! in text mode has just one prompt - specifying the text font. Thus you can put
text on the displaN in a variety of fonts (in fact each text object can be in a different font). You have
to remember to specify the font before you set the text position as leaving the window to change font
will necessitate setting the text position again. Also one you start typing in a text object. there is no

interactive way (yet) to change its font. The default font is just your workstation default font and will
be used if you don't specify anything or the font you specify cannot be found. Just about any font
the system supports can be used. The default directory used is /usr/lib/fonts/fixedwidthfonts,

* so if you want a font in that directory you only need specify the filename of the font. For fonts in
% other directories vo-: have to fully qualify the font file name. By the way. the FONT prompt has

three lines: should you run out of space on the current line. typed in characters will automatical'

be continued on the next. A warning regarding using variable pitched fonts: The Sun 2.0 font

p. structure did not allow efficient manipulation of variable pitched fonts (this was changed in 3.0).

Thus selecting a variable pitched font will produce funny-looking spacing while you are typing the
text in. However a RESHOW will put it back together with the proper spacing.

Text objects can be moved about the display manually by clicking the middle mouse button
down ovw: t! P text object. This will cause the cursor to change into a "grab icon. Then moving the

mouse (while keeping the middle button down) will cause the text object to track the "grab" cursor
until you release the middle mouse button. Any screen damage caused by dragging text objects over
other objects can be cleaned up with a RESHOW.

Text objects can be removed by clicking the right mouse button over them. A warning will then

appear on the message panel asking you to confirm the operation by pressing the right mouse button
again which then will (permanently) delete the text. Thus you need to click -right" twice over a

text object to delete it.

If logging is enabled, all commands that create, delete or move text objects are also written to

the log file allowing that text to recreated and positioned automatically when the log file is read in.
In fact. if you wish to change fonts of text objects. one way to do it is to edit the log file items that

created the text items with the new font before reading it. (See section: GI command interface).

"' 1

7.5 Draw Mode - line drawings

It may also be useful for you to be able to draw objects on the screen. -Draw" mode (see Figure
4) allow- you to do this in one of two ways. You can draw "Line- objects consisting of connected
straight line segments or box objects consisting of rectangles. Select which one you want by clicking
over the -Lines- or -Boxes" switches of the TYPE prompt on the control panel. If you are drdwing
"Lines. click and release the left mouse button on the display pa: el where you want to start drawing
This will position a dot (vertex) at the cursor position. Moving the mouse will cause a line segment
to emanate from that vertex to the current cursor position. Clicking and releasing the left button
again will cause a new vertex to be placed at the cursor and a line segment drawn between the
original vertex and the new one. Moving the mouse will then cause a new line segment to emanate
from the new vertex to wherever the cursor is. By continuing to move the cursor and pressing the
left mouse buttoi you can create a line drawing of almost any complexity. To stop drawing just
click left twice in the same place.

Boxes are drawn similarly except that only two diagonal corners of the box need to be specified
Clicking left and releasing will create one corner: moving the mouse will then cause a box to emanate
from that corner to the current position of the cursor. Clicking down and releasing the left button
will then set the oth,-r corner and the box object will have been created.

Boxes and line drawings are treated similarly to text items. You can move them around with

the middle mouse button (but you must "grab" them at a vertex) or delete them with the right
button (again you nmist be near a vertex). If logging is enabled. comn.-.ds that generate. move or
delete these drawn objects are written to the log file. GI limits each line object to no more than 10
vertices and will automatically break up objects you try to draw that arc larger thanl this into tw,

-\ or more separate objects. Like text objects. if you exceed this limit, you will ordinarily be unaware

of it until you try to move or delete the object(s).

7.6 Custom Nlode - customizing mouse buttons

Custom mode is a Little more complicated, but if you do a lot of simulation work. learning how to use
it may save you a lot of time. When you get into custom mode. the mouse buttons no longer have

, any pre-specified actions on the display panel. Instead the actions of the mouse buttons are defined
by you. The control panel has 6 prompts with little icons in front of them that (are supposed to)
look like mice (see Figure 5). The top three are for down button actions (left. middle and right)
and the bottom three are for up (release) button actions. If you don't define anything for a button
(leave it *null or blank) nothing happens when that button action occurs. However if you do specify
a command. then when that button action occurs while the cursor is over the display panel. that
command will be executed just as if were typed into the command panel. Thus what custom mode
allows you to do is map GI or simulator commands to mouse buttons. For example. if you do a lot
of resetting of your network, you can map the simulator command "reset- to the left mouse button.
Then every time you press the left mouse button over the display panel, the simulator will do a
network reset. The mouse buttons only act that way while you are in custom mode: we you go back
to any of the other modes, the mouse buttons revert to their old meanings.

In order to make your customized commands more useful. you are allowed to create commands
with symbolic arguments that are filled in at the time the mouse button is pushed and whose values
depend on where the mouse is on the display panel. For now there are three substitution arguments
you can use: Su. Sx and Sy. (Future releases may have more, so avoid using "I names for anything).
They have the following meanings and values:

S $u: returns the unit index of the unit icon (if any) underneath the mouse cursor. If there is
no unit icon underneath the cursor the command will not be executed.

U,. 11

S..

N" Sx: returns the x (horizontal) pixel coordinate of the mouse cursor in display space.

" Sy: returns the y (vertical) pixel coordinate of the mouse cursor in display space.

You can use as many substitution ,orguments as you wish. but they must each be a separate
argument in the command. That is. they must be surrounded by white space. So for example. you

could map the left button to the command "pot Su 1000-. Then every time (while in custom mode)
you clicked the left mouse button over a unit icon. the potential of that unit would be changed to
1000.

You can specify multiple commands to be executed sequentially with the press of a button by

separating the commands by a semi-colon (":') surrounded by blanks on both sides. You , an also
specify a partial command on one button with the command continued on another by making the
last argument on the first part of the command two dashes ("-"). This feature could be useful when
you need to pick up substitution arguments from different parts of the screen (since the mouse can,

only be in one place at a time). For example. if you wanted to make a link between two units showi,
on the screen you could map the first part of the MakeLink command (which needs the unit index of
one unit) to left button down and the latter part of the MakeLink command (which needs the unit
index of the other unit to another button action. say left bw ton up. Then by placing the mouse
cursor over a unit. pressing the left button down then moving the cursor t- another unit (or even
the same one) and letting the button up, a MakeLink command will be executed that makes a link
between those two units.

0 The fact that there doesn't seem to be space for a command longer than than a couple of dozen
characters for each mouse button is an illusion: there's actually two lines. When you get to the elnd
of the line. your keystrokes will automatically be continued on the second line. When you get to the

end of the second line. you can still keep typing (for up to about 120 characters) with characters at

the front of the second line disappearing as you type characters that appear at the end of tile ble.
Those chararterz that disappeared are still part of the command. they just don't show up inr the
prompt. Thus you will only be able to sr- the prefix and suffix of really long cornman d However

the entire command will still appear or. the command paniel when they are executed as W(il as in
the log file if logging is enabled.

While commands that you map to mouse buttons are written to the log file whenl executed.

the mappings themselves do not unless you specifically ask them to be. Once you have set up
the buttons as you desire. you can write those mappings to the log file by clicking over the LOG
DEFINITIONS button beneath the last button prompt. You may. for example. have several

different mappings that you use. and want to write them to separate files so that you can set them
up by executing a simulator "read" command. Obviously to make effective use of "Custom" mode

you will have to become familiar with the actual simulator and GI commands. We assume you are
already know the simulator commands; the GI commands are discussed in detail in section 10.

k12

V

8 The Display Panel

The display panel is. of course. the raion d'etre for GI. The whole purpose of all the other panels is
really just to put this piece of pixel real estate to best use in displaying the salient features of your
running network. Although the display panel doesn't have any buttons or prompts per se. there are
a nunber of things you ca. do using the mouse depending on what mode you are in.

First of all. you may have noticed that the display panel seems kind of puny for di.playing more
than a few dozen nodes. Nevtr fear. stretching the GI window in the normal Suntool fashion will
expand the display parel in both directions to the limit of the screen. (And of course you could
of made it larger initially by using the -Ws flag). In making it larger. you will notice that any
"hidden units" (not a joke) that were outside the display, will appear automatically if you make
the display panel large enough to encompass them. They were really there all along, they just were

• not within the current scope of the display panel. Another way to bring units that are currently
outside the panel into view without making the panel larger is to -move" (translate) the panel
itself. This is done by pressing the middle mouse button down on a piece of screen that does not

hav, a object under it (otherwise you'l move the object and not the display). You should notice the
cur-or changinig to the "grab" icon again, except in reverse image: this indicates that you have indeed
grabbed the screen and not something else. Now (while still holding the middle button down) move
the mouse in the direction that you want the display window to move (the display doesn't actually

move. of course. but all the objects in it do). You will notice that as you move it. the Origin prompt
d, on the control panel will change reflecting where the new origin will be. The display itself will not

track the mouse (it would be too slow) but when you release the middle mouse button. the whole
display (i.e. the object in it) will suddenly jump to reflect the new origin. GI remembers the alnowit

and direction of the last "jump" and will translate the origin the same amount repeatedly if. while
A holding the middle button down. you press the click the right mouse button. You can similarly go
" in the opposite direction by pressing the left button. Moving this way is called -jumping" and is a

convenient way to "scroll" through two dimensional display space.

The Origin coordinates always indicat where the current display pan' "window" is located iT.

something called "display space". The way to think about the relation between -display space". the
display panel and the "Origin" is as follows: Display space is a Cartesian plane stretching (almost)
infinitely in both direction'. The display panel is always showing a finite portion of this plane.
specifically the rectanqle whose upper left hand corner is located at the origin coordinates in display
space. Initially the Origin is -0 0" meaning the display is looking at the positive quadrant of display
space. However through the actions just described, any point in display space can be viewed and
the Origin coordinates indicate just where in display space the display panel is currently "looking".
Usually you will not have to think much about the actual coordinates since most of the work of laying
out and examining your net-work can be done using the marker and appropriate mouse actions.

13

What the mouse buttons do on the display panel depends on what mode you have Gl i. Although
most of the mouse functions have been covered when discussing the different control panel prompts.

well try to summarize them here by mode. Note that custom mode is absent since you define tho-(
button actions yourself.

LEFT BUTTON (mark)

" Main mode: If the cursor is over a unit icon. causes the detailed information about that unit
to be displayed on the info pan'l (at the coluni marked NEXT). If there is no unit there.
it movc. thf marker to the cursor position and redisplays it if it had beeni made invisible

Everywliere else. it should have no effect.

" Link mode: If the cursor is over a unit icon. causes the detailed information about that unit
to be displayed on the info panel (as in main mode). Otherwise, does nothing

" Text modf: Marks the start position of a new text string. Text string is terminated by moving
cursor outside the window or pressing any other mouse button.

" Draw mod,: Marks individual vertices for line drawings or marks opposite Corier4 of box
drawings.

MIDDLE BUTTON (move)

In all modes (excepting Custom) the middle button is used to move objects around on the display
* screen or to move the display window itself around in display space. You simply click down, ovur

the object (or the display window if no object is underneath) and move the mouse with the button
depressed and then releasing the button wheni the object is positioned as required. -Jump- moves
with the window can be made bv holding the middle button down and then depressing the right or
left buttons.

RIGHT BUTTON (target/erase)

* Main mode: If the cursor is over a unit icon. it causes that unit to be reverse imaged (marking
it as the current target) and copies its unit index into the -target- field of the control panel
WHAT prompt. Clicking over a marked unit. "unrmarks" it (although its unit index remains
in the tarqf t prompt). If the cursor is over the marker. it nondisplays the marker. Otherwise
the right button does nothing.

* Link mod,: If the cursor is over a unit icon. it causes that unit to be reverse imaged and marks
it as the current target unit. This causes all other units on the display to immediately change

V to reflect the value of a ink between them and the now marked target unit. Otherwise the

button does nothing.

e Text mode: If over a text object. attempts to delete that text object but first issues a warning
message requiring you to click the right button down again to confirm the delete.

e Draw mode: Similar to text mode: if over a vertex of a drawn object. attempts to delete that

object after asking for a confirmational right button click.

S

14

01

• "9 The Info Panel

While the purpose of GI is to give a birds-eye view of the behavior of a large number of units
at a time, it is sometimes necessary to focus in on one or a small number of units. That is the

purpose of the info panel It has a number of different columns each capable of displaying detailed
textual infornation, for a particular unit. Note that as the GI tool window is stretched horizontally.

the number of columns available for this type of information increases up to a maximum of eight.
Initially none of the columns displays any information for any unit. The way to -activate" one of
the columns is to click left over a particular unit on the display panel in main or link mode (or
issue an -info- command - see section 10). The particular info column that will display that unit s
information is the one that has the "NEXT" icon reverse-imaged just below it. You can specify
which column is to be "next" by clicking left ovei its NEXT icon. Otherwise the NEXT column will

automatically circulate to the right. A column on the info panel that is displaying information for
a particula- unit will continue to "track- that unit as the simulation proceeds. updating itself just
aq the display panel does. You can clear the information for a particular column by clicking over its
NEXT icon when its NEXT icon is reverse-imaged. (i.e. click twice over its NEXT icon).

There are several things to note about the columnar information that is displayed. First is that
most of the time you %ill notice that one of the values in each colunin will be bold-faced. Thi-
indicates the aspect of the unit that is currently being captured by the display panel if the unit is
being displayed. Secondly. if the aspect for that unit is not Link/in or Link/out. then (normally)
no values for these items will be shown. However if the unit is displaying link weight or you are
in link mode then the -Link:- field will contain a link weight and an additional field will show up
u. dernea'h the "Link:- item. labeled --Target- which will contain the nane of the unit on the -other
side of the link as well as the site name (if specified). In addition. the label "Target will have
either a or a < following it indicating if the link being shown is -to" or "Iromn the targe..

515

-5.

.'

SI

10 GI command interface

As has been, hinted at above, most everything you can do (with the exception of li-k mode) with
the buttons and mouse actions. can also be done with commands. This section documents what
those commands are and defines their syntax. These commands can be entered on the command
panel. read in from a file. or even executed from user code. It is these commands that are built and
then written to the log file when logging is ena'Aed and allows you to recreate your display screen or
simulation session. In fact. although the SHOW. CHANGE and ERASE commands are executed by
pressing buttons on the control panel, they actually first create a comniand string which is executed
by the same routine that reads comnand- from the command panel. (You may have noticed that

%. , a "gi" command appears on the command panel when you execu t e a SHOW. CHANGE or ERASE
through the panel buttons). Thus. although you don't need to know the syntax of the commands to
use GI. that knowledge is necessary for creating or modifying a command file or for programming

_ the mouse buttons in Custom mode.

All the commands follow 'ie same format They begit with "gi" (indicating that the commald
is for GJ rather than the simulator) followed by an argument consisting of a single letter that
specifies the particular command. followed by an argument list containing some number of positional
arguments specific to that command. The arguments must be in the exact order indicated, and at
lea.t one blank must separate each argument. An argument having blanks as part of it must be
surrounded by double quotes. Double quotes that are meant to be part of an argument which itself
is double.-quoted. must be doubled. If you are building these commands in a file (to be read in by

0 GI using the -read" command) the commands must be separated by a line feed with exact.h. oie
corijiand per :-e (commands cannot cross line boundaries).

10.1 Placing units on the graphics display

The first three commands discussed are the SHOW. CHANGE and ERASE comiaT d' whir, a-,
grouped togetrec because they partialiy share the same argument list definition-

SHOW:

gi s <who> <num> <what> <Irange> <hrange> <target> <image>
<xstart> <ystart> [<xspace> <yspace> [<numrow>]]

CHANGE:

gi c <who> <hum> <what> <Irange> <hrange> <target> <image>

0 ERASE:

gi e <who> <num>

where the parameters in < > have the following syntax:

* <who> indicates the starting unit for the command and has the same syntax as the WHO prompt

on the control panel: either a unit number, name, type or set.

<num> is a decimal number specifying how many units are affected by the command (beginning
with the units specified by <who>).

<what> is a character string indicating the aspect of the unit and must be either "P (potential).
* "0" (output). -S- (state). -D" (data). "Li- (Link/in) or -Lo" (Link/out).

16

0

A!,

-.

--. ",.

<irange> is a decimal number specifying the lower bound of the range of values the selected aspect
of the unit will assume.

<hrange> is a decimal number specifying the upper bound of the range of values the selected aspect
of the unit will assume.

<target> specifies the target unit if the aspect is Link/in or Link/out and has the same syntax as
<who>. If the aspect is other thaii Link/in or Link,'out. this parameter should be 0. If you wish to

specify a site as well. append it to the target unit separated by -/-. Thus -Morn/apple-pie- specifies
a link to unit -Morn- at site -apple-pie-,

<image> is either a decimal number from 1 to 6 indicating which default icon family to use
(1=square. 2=circle. 3=triangle, 4=pentagon. 5=diamond and 6=grey-scale). or the file name of
your own icon family if you are using custom icons. See section: Creating and using your ou-n icons
for more information about customized icons.

<xstart> and <ystart> are decimal numbers specifying the position in display space for the first
icon if more than one will be displayed by this SHOW command.

<x-pace> and <yspace> are decimal numbers specifying how many pixels you you want to separate
the cohnun - arid roA of icons if more than one unit is to be SHOWn. Does not need to be specified
if orlv one unit is b(ing SHOWn. If the spacing is made slightly (less than the width or height of
an icon) negative. the icons will end up overlapping each other. Making the spacing more negativ
(larger than the width or height of the icon). will lay out the icons in right-to-left and; Ior bottom-
to-top or , r.

<nuniroA> is a decimal number indicating how many icons you want per row if SHOWing more
than one icon. The default --max- indicates that all the icons should be placed on the same row
arid like <xspace> and <yspace>. does not need to be specified if not more than one unit is being
SHOWn.

For example. the command:

gi s input all P 1 99 0 3 -100 20C 40 50 5

would attempt to SHOW the potentials of all remaining unshown "input- units using the triangle
icons. with the first icon being displayed at coordinate 1-100. 200) with 40 pixels separating each
icoii horizontally and 50 pixels separating each vertically and 5 icons per row. The expected range
the potentials will take is from I to 99. Note that even though the target parameter is ignored it
still needs to be specified ("0-) as a placeholder.

17

%0

10.2 Drawing lines or boxes and adding text

The next set of commands are for creating and deleting text or drawn objects and moving those
objects around on the display:

DRAW:

gi d <#vertices> <xl> <yl> <x2> <y2> [<x3> <y3> ... <x10> <yl0>]

draws an object consisting of connected line segments starting at display coordinate (xl. yl) arid
ending at (xn. yn) where n is between 2 and 10. The <#vertices> argument is a decimal number
indicating the total number of vertices (and should thus be n) and will thus always be one more
than the number of line segments drawn. Thus

gi d 5 50 100 50 200 150 200 150 100 50 100

would draw a box with opposite corners at (50. 100) and (150. 200). Note that 5 vertices were
needed to draw the box as a closed figure.

TEXT:

gi t <string> <xi> <yl> []

creates a text string consisting of <string> at display coordinates (xl. yl) using the named font
If <string> contains embedded blanks. then it should be surrounded by double quotes. Dou-
ble quotes that are part of a quoted string should be doubled. If the font is in the directory
/usr.'lib./fonts.'fixedwidrhfonts/ only the file name of the font need be supplied, otherwise it mus'
be fully qualified If not specified or "*default-. the workstation default font will be used. Thus

gi t ''lucky units'' 100 200 screen.i.14

will display the string lucky units beginning at location 100 200 using a 14 point italic font.

10.3 Moving and deleting objects

The following commands are used to move or delete icons. text. or drawn objects.

MOVE:

gi m <xl> <yl> <x2> <y2>

moves either an icon. text or drawn object located at display coordinates (xl. yl) to the location
(x2. y2). If no object is at (xl. yl) then the command simply does nothing (an error message is
sent to the message panel. though). If more than one object is at (xl. yl) then only one of them
(indeterminately) will be moved. Note that for drawn objects, the (xl. yl) must be :near- (within
3 pixels) of one of the object's vertices.

DELETE:

gi x <x> <y>

deletes P drawn or text object at that display coordinate location (x. y) if there is one. If no text or
drawn object is at that location, then the command does nothing but put up an error message on
the message panel.

18

= 0 . #. " "• - : .- . .v.#" - # t ',

0

10.4 Simulating and updating the graphics display

GO:

gi g [<#steps> [<#update_steps>]]

causes the simulator to run the network for <#steps> steps. updating the display screen every

<#update-steps>. Thus has. the saime function and analogous syntax to the "GO" button on the
control panel. Thus

gi g 20 5

will run the network for 20 simulation steps. updating the display after every 5 steps.

If <#updatesteps> is not supplied, it defaults to 1. as does the <#steps> argument. Setting
the <#updatesteps> argument greater than I will allow the simulation to proceed faster. but tlh,
tradeoff of course is that you won't see the unit icons change after every step.

10.5 Redisplaying

RESHOW:

gi r [<x> <y>]

redisplays the screen -fromn scratch- so to speak with possibly a different display space origin (given
by <x> and <y>). This is equivalent to interactively using the -RESHOW'" button on the control

panel. It causes GI to erase the screen aid completely rebuild it from scratch using the new display
space origin coordinates (if given). Any "damage- on the screen should then get cleared up.

10.6 Displaying unit details

INFO:

gi i <x> <y> (<col>

displays the detailed information for a unit with an icon at display space location (x. y) on the info
panel in the column (1-8) indicated by the <col> argument. If <col> is not specified. the current

-next- coiumn as indicated on the info panel is used. Issuing this command is equivalent to clicking

the left mouse button over the unit icon while in main or link mode. If currently no icon is at

location (x. y) nothing happens except that a warning is issued to the message panel.

10.7 Mapping mouse buttons

SET BUTTON:

gi b <#button> <command'_string''>

maps the indicated mouse button to the specified command string for execution in custom mode.

(A separate -set button" command is built for each of the six mouse buttons and written to the
log file when the -LOG DEFINITIONS" button is selected in custom mode). The mouse buttons

are numbered from I through 6 with the left, middle and right buttons (down) numbered I through
3 respectively, with numbers 4 through 6 assigned to release of the left, middle and right buttons.
Example:

--19

2 ' I 0

6

11.'~ - L L* x%~ &y-.2k.' 2k=~c~JLXI ~*- L-*."-1L

gi b 4 "pot \$u 1000 ; gi i \Sx \$y 3''

sets the left mouse button release action to two commands to be issued sequentia'Ly: The first
command sets the potential of the unit under the cursor to 1000 and the second then displays the
inffo for that unit in the 3rd column on the info panel.

02

S..'

V

I.

.0 "1

,"5

11 Advanced Features

You should now know enough to make effective interactive use of GI. There are some other sophis-
ticated features available, some of them hidden. that may be useful to you. However for now. it's
probably better for you to go out and practice what you've learned so far and come back to this
section when you're pretty familiar with the basic operation of GI or when your curiosity is just
killing you.

A

11.1 Creating and using your own icons

You may not like some or any of the default icons we've given you to display units of your network.
No problem: there is a way to specify your own icons if you're willing to go through a little trouble.
What you have to do is create a "family" of icon files (one icon for each subrange you want to be
able to distinguish) using icontool (or anything that puts the pixel definitions in the same format).

SThen. on the main mode WHAT prompt. select the icon with the "?" in it - this indicates that you
wish to supply your own icons. Then put the file name of the icon family into the "Name:- field.
When the SHOW or CHANGE command is executed. it will look for the specified icon files, read
them in and use them for displaying those unit icons. There are some restrictions and rules you have
to know to successfully use customized icons. First of all the icons within a particular family have

' ",. to be the same size. For Sun 2.0 to use them. icons must have a width of some multiple of 16 pixels.
but can be of any height. (Sun 3.0 may be more flexible). So if you are using icontool you car; use

* botn the "icon" (64 x 64 pixels) and -cursor" (16 x 16 pixels) type icons. (The default polygonal
icons GI supplies are of the "cursor" type). So one thing customizing icons gives you is control over
the size of the icons for displaying units in your network. There is also a naming convention for the
files you are going to put the various icons into. The file names for a particular icon "family" should
be be of the format yournamr. # where "" is numbered from 0 through however many icons are in
that family.

For examn:le. say you wantd a 5P! of smiley face icoi,4 to reprfsQ::* the outpu- of sor.' un:,
and needed to be able to distinguish 4 different levels of output values. You could then use icontool
to create 5 different icons named, say. funny.0. funny.l. funny.2. funny.3 and funny.4. The reason
you need 5 icons to represent 4 ranges is that funny.1 through funny.4 will be used to divide up the
output rarge (whatever it is) with funny.0 used only to indicate a value of exactly 0. Thus if you set
the output range to be -30 to 70. funny.1 would be used for values (-infinity) to (-6). funny.2 for (-5)
to (19). funny.3 for (20) to (44). and funny.4 for (45) to (+infinity). However for the -special" value
of 0. funny.0 would be used. If you didn't want this special treatment of the 0 value, you could just
make funny.0 look exactly like funny.2. When running GI. select the "?" icon and put the name
-funny" into the -Name:" prompt that will then appear. Now doing a SHOW or CHANGE will
result in those "funny- icons being used instead of one of the default polygonal ones. You can have
(almost) any number of different icon families at a time (the size of memory is the only limitation).
You can specify the same family many different times in a GI session without any additional memory
overhead: GI remembers each icon family it loads in and will search through that list first before
reading them from the file system. There is also no (practical) limit on the number of icons that
can be in a family (ie. the number of subranges). If you want you could specify a separate icon for
every discrete value between -1000 and 1000 by creating an icon family (maybe tribe would be a
better description) with 2001 members.

21

Id

I

11.2 The programming interface for GI functions

The normal way one builds a network using the simulator is to create a C function that is callable
from the simulator command interface that will build the network, possibly using parameters passed
along with the call. From your callable C function you can then call many of the simulator functions
directly. Frequent users of the simulator often exploit this to good advantage, for example. by
dynamically creatitig and setting input potentials for a particular network simulation. What makes
this technique so useful is

1. the ability to "call- your own C functions from the command interface, and

2. the abihty to call the simulator functions from C code.

The point of this section is that you may want to do the same thing with the GI interface. For
example you may want to have the job of displaying your network done dynamically by your own C
code rather than interactively (which is time-consuming and error-prone) or by reading in a command
file (which is inflexible). To allow you to do this. GI provides a programming interface to many of
its functions. but in a different fashion from the simulator. Rather than provide and document the
calling sequences to actual GI functions. we chose to limit all (documented) programming interfact-
to a single routine: gheommand. It takes a single argument - a character pointer - and assumer
that it points at a command string to be executed. If the command string begins with the argument

* gi then it tries to execute the command itself, otherwise it sends the command to the simulator
for execution. Thus gi-command treats the conimand string passed to it as if it had been typed
by you on the command panel. It returns to its caller an integer indicating whether the command
was successful: 0 indicates (probable) success and -1 indicates (probable) error. In addition. if the

command generated any error or confirmational messages. these will be displayed on the message
panel. Thus if in your C code you specify:

return-cc.e = gi_co=.and(''gi d 2 !50 200 300 450'');

executing that code (while in GI) will result in a drawn object being created that consists of a line
segment from display space coordinates (150. 200) to (300. 450).

The advantages of this -single interface" approach is that it gives a consistent and easily re-

membered way to access most GI functions through code. Since gi-command is the routine that
internally processes all interactive commands. we can guarantee absolute consistency of function
and error detection between the interactive and programming interfaces. It also provides -for free"
program interfaces to all future GI functions implemented as interactive commands. In addition you
only need to remember one syntax for both interactive and program commands. The disadvantage
is that it probably takes a little more work to create the command string. However. the syntax of
GI commands has purposely been made simple. terse and rigid: given C's powerful string commands
(especially sprintf) building the appropriate GI command in code should be fairly easy.

V

22

-I,

11.3 Using the log file

As noted previously, all commands typed into the command panel and executed, as well as most
commands performed by mouse actions or panel buttons, are made into command strings and written
to the log file (if logging is active). Logging is enabled and disabled by selecting the LOG: switch on

4the mode panel. (See previous section: The Mode Paneo . As was mentioned there, the reason you
might want to do this is to save yourself time and trouble the next time you are running that same
network. Especially if you have spent a lot of time getting your network displayed exactly as you
want it. you'll appreciate only having to do that once. However you have to be a little knowledgeable
regarding the log file if you are to get maximum benefit from it. This section will try to give you
some hints on possible log file usage and how, combined with the read command. it can be useful
to you.

First of all. you should know exactly what commands GI has the capability of logging in the first
place. To begin, basically all commands that affect the appearance of the display panel are loggd.
Thus all SHOW. ERASE and CHANGE commands are logged. Similarly commands are generated
and logged whenever you create. move or delete a text or drawn object. "GO" and "RESHOW"
commands are loggc d as well, since their execution has the potential to change the display panel.
Also an -iifo" co:nmand is logged whenever you click left over a unit icon to display its values on
the info panel. Finally, any command at all that you type directly into the command panel and
execute. whether it be a simulator command, a GI command or a call to your own function. will be
logged. This includes commands executed by mouse actions in custom mode, if those mouse actions
are mapped to commands. If such commands have substitution parameters, they will be logged after

,< those parameters have been resolved.

You should also know what commands are not logged. None of the mouse actions for displaying
Links n link mode are logged. This was becausc it was felt that such commands are really only
useful interactively - thus no "show links" command exists. (This may change at a later release).

Also setting up the custom buttons will not automatically write out a "set button" command unless
you explicitly request it by selecting the "SET DEFINITIONS" button. There is also the special
case of the "read" command. Executing a read command may cause a number of other coMrnTand
to be executed - namely those in the read file. Although the initial "read" command is logged, the
commands executed as a result of that read will not be logged. The reason is that. if you think
about it. reading in of the subsequently created log file would execute all those conimands twice:
once when the read command is executed, and then again for each individual command that was in
the read file. Thus only the bottom level "read" command is logged. Also not logged are commands
that simply sets operational characteristics of the GI tool. for example. enabling logging or switching
modes.

The obvious way to use a log file created during a previous session. is to use the simulator -read'

command to read that list of commands in again, thereby "replaying" the GI session. Since the log
0 file was a record of anything significant that happened. you should be able to recreate the session

° (almost) exactly. Since. strictly speaking. the "read" command is a simulator command, you may
wonder what the simulator is going to do with all the gi commands since it doesn't recognize them

The answer is that in reality the simulator doesn't ever see any of the gi commands because when
GI is active, the "read" command is actually processed by GI itself. What GI does is read each
command from the read file and if it starts with a gi (or if it is another "read") it executes it
itself. otherwise it passes it to the simulator for processing. Not only does this solve the problem
of recordiivg both simulator and GI commands in the same file, it also will allow you to use your
command files stored on the Sun file system when the parallel simulator is running on the Butterfly

d Multiprocessor.

23

R A.

When the GI tool first comes up. by default logging is always enabled and the default log file is

named gi log. The first thing to remember is that anything that was previously in gilcg before GI
was started. will get cleared out and rewritten after the first command (hat is logged. So anything

that gets saved in gi.log in the current session will be erased the next time you run gi.log unless you
do something. There arc several ways to deal with this:

1. Once you've started the GI session, immediately change the name of the log file to something

else: this will prevent you from accidentally clobbering it next time. or

2. After finishing your GI session. remember to move or copy the contents of gi.log to another

file. Obviously solution (1) is a safer but requires some forethought.

The next thing about using the log file is to make sure that what gets put into the log file is

exactly what you want. For example. if you want the log file to contain only network set up arid
display commands. then you certainly don't want "go", "reshow,". or simulator commands in the log
file when you read it back in. On the other hand. you may want the log file to contain only those

kinds of commands. that is. commands that run the simulation rather than set up the display Or
you may just want a log file to contain specific commands. such as ones that set up the custom mode

mouse buttons. Again there are several ways to accomplish this. The first is to keep in mind the

kind of a log file you wish to create and simply turn logging on or off at the appropriate times. As

* long as you don't rename the log file. turning it on and off during a single session will not destroy

its contents: it will just act like a command accumulator. On the other hand. it you don't Want to

think about that kind of stuff during the session. you can simply record everything and later oil just

edit out all the commands you don't want. A third option is to use a file processor like auk or grtp
to filter the commands you want from the log file.

24

... ... Jl,1

12 Multiple unit views

GI believes fainiy strongly in the "one man-one vote" principle. paraphrased as -one unit. one view"
That is. as you may have noticed. GI doesn't easily let you create more than one icon for a particular
network unit. GI tries to prevents this by checking, whenever a SHOW command is issued, if the
unit index of the unit you are requesting be SHOWn is already displayed If it is. GI will normally
ignore your request to display another icon ft - that unit. However there are many situations where
having more thani one icon per unit could be useful. If you had more than one view you could
display several aspects of a single unit simultaneously, for example. its potential. output and statc.
Or you could show the same unit in different parts of display. The major problem with multiple unit
views is finding a good way to specify which one of several that exist when building a CHANGE or
ERASE command. We weren't able to come up with clean way ourselves as a matter of fact. but
we did want to allow multiple unit views. Thus the method we've come up with is a bit awkward.
but until we conie up with something better, here's how it works:

If you already have displayed an icon for a particular unit, and you want to create an additional
icon for it. simply prefix the backslash character ('\') to however you designate that unit in the
WHO prompt of the SHOW command. When processing the SHOW command. if the first character
of the unit designation is a backslash. GI will skip doing the checks it normally does that make sure
the unit is not already displayed. It also internally marks the new icon as being an "auxiliary" icon.
as distinguished from the "primary" view of that unit that was first created. Thus you can have as
many -auxiliary" icons as you want for a particular unit. but only one "primary- icon. The difference
between -primary" and -auxiliary" icons will only become noticeable when you do a CHANGE or
ERASE command. That is because the backslash prefix is valid on these conItImands as well: and
necessary if you want to change or erase an auxiliary unit. To change or erase a primary icon. you
do nothing different since the absence of the backslash in the name will cause GI to look only at

"*, the primary icons for that unit. On the other hand. if you wish to change or erase an auxiliary
icon. you need to use the backslash prefix in the name so that GI only looks for icons marked as
auxiliary Unfortunately a problem arises if you have more than one auxiliary icon for a unit. and
wiSh to change or erase just one of then.. Since GI isn't able to distinguish between more thar, o:.e
auxiliary unit. it wil just change or erase the first one it finds on the chain - which may or may not
be the one you had in mind. There is currently no good solution to this. except to caution you to
set up any multiple auxiliary icons with care. since fixing them later may prove a little frustrating

25

0

. k

13 Performance Hints

Although for small, simple networks performance will probably not be a problem for you. large
networks, or those that require many thousands of simulation steps. may tax your patience. Although
GI has been designed to be fairly efficient, just the fact that it is writing out graphics command-
and queries the status of all the units after every step. means it that it uses a fair amount of machine
cycles. So if you running a simulation session with 01 where performance is important. there are a
few things you can do that will help GI to run faster.

One. of course is not to require GI to update the display after every simulation step. Especially
if your network changes rather slowly anyway. you may well be able to get by with only updating the
display every 5th or 10th simulation step. You control how often GI updates its display panel via
the "update steps.- parameter on the GO command. This will reduce G overhead to zero between
those simulation steps that don't require an update.

Another way to reduce GI overhead is by restricting the display panel to just those units you are
antere ted in watching Say. for example. you have a netwo:k of 2000 units but for the particular
simulation. you are only interested in the 200 that make up the "learning" layer. If all 2000 units
are on the visible display panel. then every simulation step that requires an update will force GI
to do 2000 units of work. On the other hand. by moving the display window or compressing the
tool window to focus in on just the 200 of interest. you can cut Gl's overhead by 90This is because
internally GI keeps track in separate data structures those units that are currently displayed and

0. those that aren't. Units that are not within the current dimensions of the display window are never
even looked at between simulation steps. so "hiding them when you're not interested in them can
result in significant performance improvements.

You can also improve performance through optimizing the number of subranges or. equivalently.
the size of the range for the aspect being tracked by an icon family. Since a significant anmount of
CI overhead results just from having to write a new icon to the disply. GI only writes a new icon
when absolutely necessary. That is. even if a unit's tracked value changes at a simulatioi. step. if
the changed value is not outside the subrange of the currently displayed icon. GI takes care to not
superfluously redisplay that same icon. So by coordinating the displayed range with the number of
subranges you are actually interested in. you can cut down on the number of times GI has to write
out a new icon. For example. let's say you are really only interested in distinguishing when a units
output is below or above 500: you don't really care if its 250 or 400. If you use the default ranges
(-1000. 1000) and the default icons (of which there are 20), then every time the value of such a unit
changes by 100. a new icon will have to be displayed. A better strategy would be to change the
range to (-5000, 5000) in which case a icon display would be generated only when the unit changes
from below 500 to above. Or equivalently, you could design and load in an icon family that only
had 3 members - one for 0. one for 0-500 and one for 500-100 - and then set the range to (0. 1000).

,'.

Sd'

26

07

14 Future Directions

This is the first official version of the GI package. We have tried to put in a level of "unctionalir"
that will satisfy most users most of the time. We expect, of course. that based on user experience
there will be requests for more function and performance. We ourselves have identified the following
probable areas of enhancement:

Update to Sun 3.2. The current version of GI was developed on a Sun 2.0 OS. With a recompile
it will also run under Sun 3.0 and 3.2 as well. However the graphics package for the Sun wa-
significantly redesigned at release 3.0 (what was SunTool is now SunView) and with it maiN
functional and performance enhancements which could be made use of in GI were it to be
rewritten in SunView. Since SunView and SunTool are quite similar (the major difference
being in the graphics panel) such a rewrite would probably be worth the effort.

Provide an efficient Butterfly version of GI. Because of the Butterfly Multiprocessors unique

environment. it should be possible to find a very efficient way of interfacing the GI tool running
on a Sun with the parallel version of the simulator running on the Butterfly. In fact we have
such a design and we expect it to be forthcoming shortly. (Summer of 1987).

e Provide for a customizable "set-up" file for running the simulator and GI. Such a file would

- make it easy for the user to specify things such as where and how big to make the tool. what

kinds of default icons to use. should logging be turned on and what commands should be
* logged. Basically this would make it even easier for the user to tailer the GI interface to his or

her specifications.

*-Allow the user to flip back and forth between interfacing to GI and interfacing directly to the
simulator (as though GI were not compiled into the simulator object). This would allow the
user (and the simulator) to make use of special key sequences that normally would not be
trans.aied into appropriate commands by the command panel interface

We hope you enjoy using GI and the simulator. Should you have any problems. complaints or
suggestions. please contact the authors through the University of Rochester computer laboratory
staff. We will make every effort to make sure GI is a reliable. flexible and most of all, useful tool for
your simulation needs

27

" , . , ,

K Lnne Gl Users anual and Guide 4/15/87

Co'py ov- ilPbje to L;,Lj._.,
DIOM fully. legible reprodic-ti .

.r, IrceI

-ypey

,:tern P] :t -. "ot ent i aI Potent i a I'
: -,'ut put. -,,tf" Outpu~t O utpr.ut'

-tate State State

[,ata E-t& Data

LiLi. Lin Link ; Liri.

WE E WEiX lT fli XT

MODE: Li r Ie t Draw Custmom LOG: Or, 9i lol

WHO .

HOW 2

MANY"

WHAI F'ote,t-E ' 4

S D fl Li 'in Link /out
f r , tO C' k

HOW ~(~C '

name
_ L L~J WHERE itartx5 y 5

A
space x: 2e y 20
units per row. 5

[SHO --I][CHANGE][ERASE

Clock= 0 Origin= 0 8

number steps:
TC-) update steps: 1

Change command successful DUMP : gi image

gi c Pix 20 0 0 50e e 1

-> read demo.sq2 RHO' '0

Figure I (GI Tool indoA -- min mode)

Goff availble to DTIC .&am __

SON huh No1bL swdm

K L~nnc GI Users Manual and Guide 4/1 5/87
COPY ovailIable to DTIC CiV' IAo:
Pocnif fully lagig reproduci~m

V y p t V e! ~ Type:
-t P l Fotent i a

-I'. r'1t Cl 0,-; r'- -0IL.;[Outr.,.t Li

&t 0 ELi a 1;

a rget >1 191. la rg-* 11 Q- Target >1 15 Tar ge t)ii195
M HE ME 11E

MODE: M.;r 1 3 Tc.- Er au! CLIStom LOG: Or 1~ .l

TARGETi195g .4 art,

f rom: 1c i tc. il C

jDIRECTION~lo

%Clock=8 D rigin= 278 89

w---~inber steps: I
* ________________________ L~~Jupdate steps: 1

showJ info I move objects I mark link tag

gi e Slope all

->read derncsq' :RSH 278 89

to DIC oes Figure 2 (GI Tool Windoj lik mode)
* COPY QyailabletoDIdesa

peTnit flly legible revead.Wtion

\[".~~~ A N ~ ~ v

- Vw n MWQ W XW V I 1_rn _I. lr '_VF4I.r ' VW .JT

* K Li nne GI Users Manual and Guide 4/15/87
Copy available to DTIC dotg UlI

Timm; fully legible reoducjo.

Su~ 6 0 Out r .;! 6 Cu lt Pu t 8

t 0 Lt' ClCtte E

L L :Lir

ME ME NE

MODE: KM i r L~r i ri Ctomi LOG: Or 9' 1ca-

FONI *default
A

m, 7

This is the Vertex Array

at~e~t:Ed a EU ri t s

Clock- 8 O~rigin= 8 0

0-- G -) number steps:1
_____ _____ _____ ____ ____%-----.,__update steps: 1

mark text start Imove objects Idelete t ~ g mg

9 i e Slope all--
-% read demo sq' -------

Figure 3 (GI Tool Windo% text mode)

Copy available to DTIC doeit not
* wrmit fully legible reptoduction

/%

K Lynne GI Users Manual and Guide 4/15/87

r% _ I' I I I I I I Irii 1' IrdA lg' :n i--.ioe 1 ,.,a Ind&, 1l19CI Inde/, . I119

,N ,- 1 'N 'ne Vx 3 3 Name Vx_3 .4
, Type Ve'te: Type Vert e

'- : e:-.1 ' C: F',e.' 0 Fotertial 0 F'c te;,t.i.l 0.

, :+ .f . 8 Ot.J .:,. t 8 0 .' t 8 O u.put pt 8!
". _ ie 0 State 0 State 0 Stte

a D[a 0 a 0 Date 0
L i ' Lir4 Li,

H E ME NE
X T X T Xl

MODE: Ma . r Link Text Iir ,M:u,,rim LOG: Or, : gi log

TYPE Box e

.,/ /

//

' ! r' f-"

This is the Vertex Array

(attached to Edge LUnits-.1.

Clock= 8 Origin= 0 8

__, _number steps 1A;, _ _ _ _GO update steps:

mark vertex I move object I delete drDUT g image

gi e Slope all
- read demo.sq2 -----------

Figure 4 (GI Tool Windo- draw mode)

-4n1ni .. Wylegible repoductkwi

SK Lnne GI Users Manual and Guide 4/15/87

-rJ 1 -, 1--" Ir, :1 Iroea 111

I " . j I,,. - _ epe Ri. lype ",' e ,:

ct er, t -.;,: : F::. - .: Fct t: i 0 F c te'tl . 0

3tr Li:Z~t 0 :Zat 0 Etate

NWE NE NE-

NP TT v

MODE: Main LirF Te t [,r. , a lOG: Or, gi .loo
I:A PlutSu 1EtI , out .'0

I ' d 2 $× Sy --

. F D B- -. °ull/ S

01 C l O$

,/. N _ [

This is the Vertex Array

Mattached to Edge li rts. LO gE . I I~

Clock= 8 Origin=8 8

___ __ ___ __ __ ___ __ ___ __-, number steos'
update steps.

Waiting for rest of command ___UM___ gi image
gii d23734 22 $3x3

-> read demo sq

Figure 5 (GI Tool Window - custom mode)

5%~PCopy av~zflab~e to DTIC doeI not
Ler7it .ul e

This i tileVertegArra

0ta- e z deUit 0GIFN1Dj

~------------- ------- ------

Clock=0 Orign= 0

The Rochester Connectionist Simulator
Volume 3:

Advanced Programming Manual

Nigel Goddard
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

April 25 1987

S.

Contents

1 Introduction 3

2 The Network Data Structure 4

2.1 Creating space for units 5

2.2 Making units.

2.3 Adding site 5

.2.4 Making links. 6

3 Naming 7

St3.1 Unit namnes 7

3.2 Function namnes.

3.3 Set and State namnes.

3.4 Miscellaneous narne functioy 8

4 Display functions 9

*0 5 Set functions and macros 10

V5.1 Adding units to a set. 10

5.2 Removing units from a set. 10

5.3 Creating and deleting sets. 11

5.4 Set theoretic functions 11

5 Set mnembership tests. 12

5.6 Miscellaneous set functions 12

6 Modifying and Accessing network values 13

7 Library functions 14

7.1 Unit functions. 14

7.2 Site functions 14

A'7.3 Link functions. 14

*7.4 Weight scaling. 14

8 Unit index and pointer macros 15

9 Flag Macros 16

9.1 Setting a Blag 16

9.2 Clearing a flag. 16

9.3 Testing a Blag 16

9.4 An example 17

*10 Simulating 18

JIF, 111 1' 3,11IPI

11 File functions 19

11.1 Network saving functions 19

11.2 Network checkpointing functions 20

11.3 Logging functions 21

11.4 Other file functions 22

12 Calling the Command Interface 23

12.1 Calling the debug interface 23

12.2 Running another interface on top of the standard one 23

13 Parsing command lines 24

13.1 Lexical functions 24

13.2 Parsing unit specifications .. 26

13.3 An example of a simulator command function 27

! 14 Guarded code functions 28

15 Miscellaneous functions 28

16 Simulator Variables 29

17 The Name Table 31

18 Customizing unit, site and link data structures 33

18.1 Redefining the data typt 33

18.2 Making a link 33

S " 18.3 The link function.. 34

18.4 The site function 35

18.5 Linking with simulator code 35

18.6 Displaying. saving, loading. etc 36

18.7 Displaying units 37

18.8 Listing links 37

18.9 Checkpointing and Restoring 38
-S 18.10Saving and Loading 39

18.1lUnit Site functions 39

18.12Completing the example 40

19 Customising the simulator command interface 41

20 Adding to the Help information 43

21 Avoiding name clashes 43

! ,22 Floating Point version 43

23 Linking user and simulator code 44

S2

0

I Introduction

This manual assumes familiarity with the operation of the simulator as described in the User Manual.
The multitude of simulator functions that can be called from user code are described. Examples
of customizing the data structures and command interface are given. The sample networks in the
example subdirectory use some of the facilities described here. Almost all the functions are used by
the simulator itself. so exaiiig the simulator source code will reveal further uses.

Sr

I-

N
Q

2 The Network Data Structure

The network data structure is the heart of the simulator. It is the basis of the representation of units.
sites and links. Simply put, it is an array of Unit structures, with a linked list of Sit, structures

attached to each Unit structure, and a linked list of Link structures attached to each Site structure.

These structure definitions are:

typedef short weight-type;
typedef int data-type;
typedef int func.type;
typedef short pot-type;

typedef short Output;

typedef func-type (s func-ptr)();

typedef data-type link-datatype;

typedef data-type site-data-type;

typedef data-type unit-datatype;

typedef struct link

{ func ptr link-f; /* link function pointer '/
veight.type weight; /* weight. can be a float '/
Output - value; /* can be float, pointer to Outputs array '/
link data-type data; /* can be float, or user defined */

int from-unit; /* index of unit where link originates '/
struct link *next; / next in linked list; !ULL if last '/

} Link;

typedef struct site
{ char * name. /* name of site 'I

Output value; /* can be float; value of site '/
short no-inputs; /- number of links into site */

site-data-type data; /* can be float, or user defined '/
func-ptr site-f; /* site function pointer */
Link e inputs; /* linked list of incoming links '/
struct site *next; /* next in linked list of sites. IULL if last -/

} Site;

typedef struct unit
{ unsigned int flags; /* miscellaneous flags */

char * type; / unit type name */

func.ptr unit-f; /* unit function pointer '/
char * name, /* name of unit. or NULL if unnamed '/
pot-type init.potential; /* can be float; initial potential '/
pot-type potential; /* can be float; unit potential '/
Output output; /* can be float; unit output a/
short init-state; /* unit state after a reset '/

short state; / unit state a/
short no-site; /* number of sites attached to unit '/
unit-data-type data; /0 can be float, or user defined a/

unsigned int sets; /* set membership bit vector */

Site * sites; /* linked list of attached sites */

} Unit;

The complex structure is to allow various fields to be either a shert integer, as above, or a float for the
floating point simulator (see section 22). The data fields may be redefined by the user to extend the network
data structure (see section 18).

4

2.1 Creating space for units

Before any units can be made. the program should specify the total number of units needed. The program

may only ask for units once. but need not actually use all the units asked for. The total number of units is
specified with a call to Allo-ateUnits, for example:

AllocateUnits(100);

This allocates data space for the requested number of units. If a program does not explicitly allocate space
for units. then by default space for 200 will be allocated.

2.2 Making units

Now units may be made with a calls to MakeUnit. This function builds a new unit, using space allocated
by AllocateUnits. for example:

int MakeUnit(type.func.init-pot.potentialdataoutput.init-state.state)

char -type,

func..ptr finc.
int ista, state. init-pot, potential, output. data;

type is a pointer to a character string, and is simply used for display purposes. func is a pointer to the
function used to simulate the unit's action. potential is the activation level for the unit. data is a four byte
value for the unit data field described above. ou tp-,t is the initial output of the unit. state is a short integer

7 representing the initial state value. init.pot and init-state are the values to set the unit potential and state
when the network is reset. MakeUnit returns the indx in the unit array of the unit created. The first call
to MakeUnit builds the unit with index 0. and consecutive calls to Make!'nit will return consecutive indices
An example of a call to MakeUnit would be:

unit-index = MakeUnit (-retinal .UFsum.500.500.0.50. 1.1):

The function pointer may be NULL. in which case a function which does nothing will be called by the
simulator to sinu!h.e the unit action. If not NULL. the function mus: be either oui you ha- written, or
one of the library functions. For simple networks the library functions (see section 7) should be sufficient.

2.3 Adding sites

Once a unit has been created, one or more sites may be attached to it with calls to AddSite:

Site * AddSite(index. name, function, data)
int unit, data;

char *name,
func-ptr func;

0
tndez is the index of the unit to which the site is to be attached. name is a pointer to a character string
which will be the name of the site. function is a pointer to the function to be called to simulate the action
of the site. data is the four byte value to be placed in the site data field described above.

Links to the unit cannuot be made until there is a site attached to the unit to which they may go. A call
9
A. to AddSite rmight look like:

0 AddSite(unit-index.-excite .SFweightedsum.0):

AddSite returns a pointer to the newly created site structure. As with units. the function may be NULL.
one of your functions, or one of the hbrary functions.

GA06 ISS

2.4 Making links

A link from a unit to a site on another unit is created with a call to MakeLink:

Link * MakeLink(source-unit.destination-unit,site-name.weight.datafunction)

int from,to;

int weight, data;
char *site;

func-ptr func;

souvce-unit is the index of the unit where the link originates. destimation-unit is the index of the unit to
which the link is going. 3zte-narie is a pointer to a character string which is the name of the Site on the
destination unit at which the link is to arrive weight is the weight to put on the link. and should be within

range of a short integer. By convention weights are scaled down by a factor of 1000. thus a specified weight
of 500 will be treated as a weight of 0.5 This is to allow weights in the rangge 0 to 1 without having to
use floating point arithmetic. Weights may be negative. Mak'Link returns a pointer to the link structure
created. An example of a call to MakeLink oight be:

MakeLink(unit-index. unit-index "excite. -500. 0. LFsimple):

This would make a link from the unit to itself, to be attalied at the site -excite-. with a weight of -500
(meaning -0.5). and function LFsimple. Such a link could be used to provide exponential decay. As with
units, the function may be NULL, one of your functions, or one of the library functions.

06

'

.4

3 Naming

The Name Table access functions are described in section 17. These functions provide additional possibilities

3.1 Unit names

NameUnit (name. type .index, length .depth)

S.. char *name:
int typeindex.length,depth:

As well as naming a single unit. this function can name a vector or 2-D array of units. The nani
may then be used during simulation from the command interface, and may also be used during

network construction. name is a pointer to the character string name to be given, type is the
'V type of name - SCALAR. VECTOR. or ARRAY. indez is the index of the unit to be named, or the

first unit in the vector or array. length is the number of units if it is a VECTOR. and the number
of columns if it is an ARRAY. and is undefined for SCALAR. depth is the number of rows for an

ARRAY. and is undefined for SCALAR and VECTOR.

char * IndToNaame(u)
int u;

N Returns a pointer to a volatile string containing name of the unit with index u. or --NO NAM.E if
the unit has not been given a name. If the name is that of a VECTOR or ARRAY. the name has-
the form nameloffsetor namerouj'colun 1 .

int I:ameTolnd(name, column, row)
char a name;

int column, row:

Returns the index of the unit with the given nasre. If the name is that of a VECTOR. theni
column gives offset of the unit within the vector. If the name is that of an ARRAY. then column
and rou' give the column arid row of the unit within the array. If the name is not that of a unit. or
either of the indices are out of range. then the function returns -1.

3.2 Function names

char * FuncTo.ame(function-pointer)

func _ptr function-pointer.

'.5.. If function-pointer is a pointer to a user function, e.g a unit function, or to a simulator command
function. then FuncToName returns a pointer to the name of the function. otherwise NULL.

func-ptr NameToFunc(name)

i.'..
char * name;

If name is the name of a user function, or a simulator command function, then NatneToFun,
returns a pointer to the function, otherwise NULL.

char * IndToFunc!;ame (index)

int index;

Passed and index into the function table, returns the pointer to that function's name. or NULL
if the index is out of range.

4 7

3.3 Set and State names
DeclareState(name .num)

char * name;
int nun;

Associates a name with a state number. num must be in the range 0 to 99.

NameToSet (name)
char *name;

NameToState(name)

4 char *name;

Passed a set/state name, returns the set/state number. or -I if the name is not that of a set/state.

char *SetToNaiae(namber)
int number;

char *StateToName (number)
int number;

* Passed a set/state number. returns a pointer to the set name. If the number does not correspond
to a set/state. the function returns a pointer to a volatile string containing the character version of
the number.

3.4 Miscellaneous name functions

char * INareToType(narne)
char * name

If name is the name of a unit type. a unit. a site, a function, a unit state, a set, or an unused
name in the name table. NameToType returns a pointer to a volatile string detailing the type of
name. e.g. -unt vector name-. If the name is not found. it returns a pointer to the volatile string
-unknown name-

L
I 111

4 Display functions

ListLinks()

Writes a one-line description of each link to the display output file Dispf with a header. The line
consists of the four values: source index, destination index, weight, and data.

DisplayUnit (u)
int u ;

DisplayUnitP(u.up)

int u;
Unit * up;

Writes a complete description of the unit with index u to the display output file Dispf. including
descriptions of all the links to that unit. Display UnitP avoids having to index into the unit array
by having the unit pointer passed in as a parameter.

ListUnits(all)
int all:

* Used for listing units. If all is nonzero (TRUE). it writes a one line description of all units to the
display output file Dispf. If all is zero (FALSE I it writes the description only for units with the li-t
flag set. Each line contains the unit index, name (**NO NAME- if not named). type. potential.
output and state

ShoiwUnits()

Does a show. If a unit ha.- its show flag set. or it has potential greater thani the show potCTIria2.
or itt is a member of a show set. then the unit is displayed in detail.

PipeBegin()

If piping is turned on (PipeFlag non-zero) then the display output file Di,,pf is set to be a file
pointer to the popen ed process whose name is maintained in PipeCommand. otherwise Dispf is
set to stdout. This function should be called before any of the display functions listed above.

PipeBegino)

The counterpart to PipeBegin. If Dispf is not stdout then it closes the pipe and sets Dispf to
stdout. This function should be called after the displaying has been done.

0.

LOGfprintf(LOGfprintf(fp.str.argl.arg2.arg3.arg4.arg5.arg6.arg7,arg8.arg9.argl0)
FILE , fp;
char * str.*argl.*arg2.,arg3.*arg4.*argS,*arg6.*arg7.*arg8.*arg9.*arglO.

An augmented-restricted version of fprintf. The string str is written to file fp. with substitution
of the arg, in order for %s. %d. %f. If Logging is TRUE. the string :3 written to the Log file as well
as to fp. If fp is stderr then a message count for the Graphics Interface is incremented. If Format is
TRUE, the function formats the string into lines no longer than 75 characters, and indents all the

* lines thus formed by 3 spaces.

0, r

5 Set func'Lons and macros
'.

5.1 Adding units to a set

IddToSet (name, ulow. uhigh)

char *name;

int nlo i.nhigh;

AddSet(name, uindex)
char * name;

int uindex.

Adds units with index ulow to index uhigh to the set name. Returns TRUE if successful. FALSE
otherwise. AddSet simply calls AddToSet with ulow = uhigh uind-z. Does a name lookup to fild
the set index.

AddSetI (setindexuindex)*
int setindex.uindex;

Macro which adds unit uinder to set with index setindez. Faster because no name look up.
uindez must be a valid unit index. For tight loops.

AddSetP(setindex,up)*
int setindex;

Unit * up;

Macro which adds unit pointed to by up to set with index setindex. Fastest because no name
look up and no need to index into unit array. For tight loops,

5.2 Removing units from a set

_emFromSet (name. ulow, uhigh)

char *name;

int ulo',uhigh;

RemSet (name aindex)

char * name.

int uindex.

Removes units with index ulow to index uhigh from the set name. Returns TRUE if successful.
- FALSE otherwise. RemSet simply calls RrmFromSet with ulow = uhigh = uindez.

RemSetI(setindexuindex)*

%. int setindexruindex;

Macro which removes unit uinder from set with index setindex. Faster because no name look

up. uindex must be a valid unit index. For tight loops.

RemSetP(zetindex, up)*

int setindex;
Unit * up;

Macro which removes unit pointed to by up from the set with index setindez. Fastest because
no name look up and no need to index into unit array. For tight loops.

10

0. --

A* 'S *,..

WSTER CONKtC 108115 SIMULATO VO A S OUUK
(Ii) ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE
N H GODDARD ET AL 25 APR 87 TR-233-VOL-i

UCASFIED N9884-84-K-0655 F/G 12/5 U

UNllllllllln!

EEEEEEEEEEEEEE
EEEEEEEIIEEIIE

~liii 10l'. t ,

111

-.-

V.

• *• • • •'.W

5.3 Creating and deleting sets

Dec lreSet(name)

char *name,

Creates a set with the given name. Returns the index assigined to the set, or -1 if the set could
not be created.

DeleteSet (name)
char *name.

Deletes the set with the given name. Returns TRUE if successful. FALSE if the name is not that

of a set.

5.4 Set theoretic functions

DifferenceSet(name.namel.name2)

char *name,*name!..'name2:

IntersectSet (name .name .name2)

char 'name. *name 1 . nane2;

UnionSet(name.namei ,nar.e2)

char *name.,namel.'name2.

Assigns the difference'interscction 'unii, of set namel and nane2 to set name. All three sets

must already exist Returns TRUE if successful. FALSE otherwi.e.

InveraeSet(nanenamel)

char *na-e.'namel;

Assigns the inverse of set nam,_1 to the set name. Both sets must already exist. Returns TRUE

if successful. FALSE otherwise.

1
0
.:5

%

0
-S..

" 5"$

5.5 Set membership tests

MemberSet(name .uindex)

char *name;
int uindex;

Returns TRUE if unit with index uinder is in the set name. Otherwise returns FALSE. indiratii!
the index was not legal, the namie was- not that of a set, or the unit wasn't iii the set.

MemberSeti (aetindex .uindex)*
int setindex.nindex;

Macro which calculates TRUE if unit uindfr is in the set with index setinder. FALSE otherwise
Faster because no namne look up. uinder must be a valid unit index. For tight loops.

MemberSetP(aetindex~.up)*

int setindex;
Unit * up.

Macro which calculates TRUE if unit pointed to by up is in the set with index setindfz. FALSE

otherwise. Even faster berna..se no name kvok up and tio need to index into unit array. For ighi
0 loops.

MemberSetS(setindex unitsetbits)s

int setjndex.unitsetbits

Macro which calculates TRUE if unit set bits field unitsetbits has the .ttinder bit set. FALSE
otherwise. Fastest because no name look up. no indexing into unit array. and no adding in offset for
unit set bits field Not much use unless each unit is being tested for mkembership of several sets.

% 5.6 Miscellaneous set functions

IsSet (name)

46 char *name,

Returns TRUE if the name is that of a set. FALSE otherwise.

/112

6 Modifying and Accessing network values

SetOutput(index, value)

SetPotential(index. value)
SetState(index. value)

SetData(index. value)
int index, value;

Unit index is given output, potential. state, or data value.

int GetOutput (index)
int GetPotential(index)
int GetState(index)

int GetData(index)

int index.

Output. potential. state or data of unit index is returned.

Set~eight(ul.uhususind.ulow.iuhigh.uset.uasetind.sitename.randomval.vai.pert)
int uluh.us.usindulow.uhigh.uset.usetind.randomval:

FLINT val.pert:

char * sitename;

This function sets the weights on one or more links. The first four parameters specify the units

from which the links originate. The second four parameters specify the destination units Ritutnam,
is the name of the site at which the links arrive, or optionally ALL. meaning any site on a destinat ioTl

unit. The last three values specify the weight. If randomval is FALSE. the weight is simply t'z1. If
randomval is TRUE. the: the weights are randomly distributed in the range val-pfrt to val pert.

The source antd destination units are in the range ul(ouj to uh(igh). If ust is FALSE. all tet

units in these two ranges are considered. If u,(et) is TRUE. then only those units in the range

that are in the set whose number is usind (for source units) or usetind (for destination units) are

considered. Thus.

SetWeight(O.10.FALSE.OO.I00.TRUE.6, ''excite'' .FALSE.500);

would set the weight on any link from a unit in the range 0 to 100 to a site -excite- on a uuit in the

range 0 to 1000 which is in set number six to 500.

Randomise'leighte(mean, pert)

FLINT mean;

jut pert;

This function sets all the network weights to values in the range mean-pert to mean +perf. Th,
values are evenly distributed throughout this range.

0

13

7 Library functions

There is one library function that is not a unit. site or link function. The other library functions
are described in the Uaer Manual. but included here for completeness.

SiteValue(name, sp)
char * name;

Site * sp;

If 8p is a pointer to a linked list of site structures, such as in the site field of the Unit structure.
and name is the name of one of the sites in the linked list. then the function returns the value of
that site. If no such site is found. 0 is returned and an error message printed.

7.1 Unit functions

UFsum is a unit function which sets output and potential to the sum of all site values.

7.2 Site functions

SFmax sets the site value to the maximum input value.

SFmin sets the site value to the minimum input value.

SFsum sets the site value to the sum of the input values.

SFweightedmax sets the site value to the maximum weighted input value. A weight of 1000 is
treated as unity: the input value is multiplied by its weight and the result divided by 1000.

SFweightedmin(up,sp) sets the site value to the minimum weighted input value. A weight of
1000 is treated a4 unity.

SFweightedsum sets the site value to the sum of the weighted input values. A weight of 1000 is
treated as unity.

SFand returns I if all its inputs are positive, otherwise 0.

SFxor(up,sp) returns I if exactly one of its inputs is nonzero, otherwise 0.

SFprod returns product of inputs.

7.3 Link functions

LFsimple sets the data field of the link to be the input value (unweighted). This does not affect
• the behavior of the network. but does help with debugging.

7.4 Weight scaling

The library functions assume that weights are scaled up by a factor of 1000. Thus a weight value
of 500 represents a real weight of 0.5. This is to allow representation of values in the range 0 to I
without having to use floating point arithmetic. The floating point library functions also scale by
1000 for compatibility.

Since all the functions that use weights (mainly site and link functions) can be written by the
user, any weight scaling factor may be used. The only restriction is that if library functions that
deal with weights (such as SFweightedsum) are used, weights must be scaled by 1000.

I A

0

W~d q.41 1 1

8 Unit index and pointer macros

LegalUnit(index)*
int count;

computes TRUE if inder is the index of an existing unit, FALSE otherwise.

UnitIndex(up*

Unit * up;

compute- the index of the unit pointed to by up. If up does not point to a unit, coniputes
garbage.

15

9 Flag Macros

Various macros are defined to set, clear, and test the flags in a unit. Each unit h,-s 32 flags associated
with it. Currently flags 0 to 6 are used by the simulator, and flags 7 to 11 are reserved for future
simulator use. Flags 12 to 19 should be used for library packages, and so user code should be
restricted to flags 20 through 31, preferably working from 31 down. Some of the simulator reserved
flags may be set by the user for one or more units.

The user-settable flags are as follows:

SHOW-FLAG if set then the unit is in the Show set (for the show command)
LIST-FLAG if set then the unit is in the List set (for the list command).
NOJINKFUNC.FLAG if set then no functions are called for the links into a unit.

This will result in speed up.
NO-SITESFUNC-FLAG if set then no site or link functions are called for the unit.
NOUNIT.FUNC-FLAG if set then no unit. site or link functions are called for the unit.

The output of the unit remains the same.

9.1 Setting a flag

$StFlag(uindex.flagno)*
St;tF1agP(up.f1agno)*

SetFlag sets flag flagno in the unit with index uindz. SetFlagP does the same thing. but up is
a pointer to the unit. thus avoiding indexing into the unit array.

9.2 Clearing a flag

UnsetFlag(uindex ,flagno)-
UnsetFlagP (up. flag)

UnsetFlag clears flag flagno in the unit with index uindz. UnsetFlagP does the same thing. but
up is a pointer to the unit. thus avoiding indexing into the unit array.

9.3 Testing a flag
TestFlag(uindex,flagno)*

TestFlagP(upflagno)*
TestF1agF(u1.flagno)*

,i". TestFlag calculates TRUE if flag flagno in the unit with index uindez is set. FALSE otherwise.
TestFlagP does the same thing. but up is a pointer to the unit. thus avoiding indexing into the unit

* array. TestFlagF uses the bit vector uf (an unsigned int) and thus avoids adding in the offset for the
flag field in the unit. TestFlagF is only of any use if several flags are being tested for each of many
units in a tight loop.

160l¢

!- -

9.4 An example

If flags are used a lot. it is advantageous to be able to use the macros which take a Unit pointer
insid loops. An example of how this is done is a code fragment from the simulator source.

register Unit * up;

register int which. ucount;

for (which = 0. up = UnitList. ucount = NoUnits;
which < ucount;

which .up-*)

UnsetFlagP(upSTEP_SIMFLAG);

This code fragment clears the STEP-SIMFLAG for every unit. To avoid having to index into
the unit array, UnitList. for every unit. the loop maintains a current index. which. and a current unit
pointer, up. both of which are incremented each time round the loop. Now the the pointer version
of the flag clearing macro. UnsetFlagP can be used, so that no indexing into the unit array is ever
done. For an array of thousands of units this can be significant. especially if the code were in a unit
function.

R,%

%01

J.

10 Simulating

Reset()

Resets the network: sets the system Clock to zero-, sets the potential and state of each unit to
init-potential and init-state respectively. sets the output of each unit to zero

Step(count)
int count;

Simulates count steps. Echoes and shows will be done if appropriate.

Sync()

Further simulation steps will be synchronous.

Asy-nc (seed)
int seed:

Further simulation steps will be asynchronous. as in the asy'nc command. The random number
* generator will be seeded with seed unless it is zero, in which case it will be seeded with the UNIX

system time.

S1

11 File functions

A number of functions are available that deal with files.

11.1 Network saving functions

FILE * GetNetFile(fname)

char * fname;

.If fname is NULL. asks the user for a filename to use for saving, opens the file and returns a
descriptor to it. If fname is not NULL. a file with this name is opened and the descriptor to it
returned. Will not overwrite or append to a file without user confirmation.

CloseletFile()

Closes the save file opened with GetNetFile (if one was).

NetSave(savef)
FILE *savefr

Writes a time stamp into the file savef using Stamp Time. followed by the structurf of the network
(that is enough information to be able to reconstruct all the units, sites and links. including unit
names and types and all function pointers. Finally calls SaveState to save the state of the network
(i.e. the weights. outputs. potentials. etc).

NetLoad (nfp)
FILE *nfp,

The function complimentary to .NetSave. Reads in and checks the time qtamp in the file nfp with
CheckStamp. reconstructs the network from the file data. and then calls RestoreState to restore the
stat, of the network.

0

0

19

01

MOM'*-.-

11.2 Network checkpointing functions

FILE * GetChkFile(fname)
char * tname;

If fnane is NULL, asks the user for a filename to use for checkpointing. opens the file and returns
a descriptor to it. If fname is not NULL. a file with this name is opened and the descriptor to it

returned. Will not overwrite or append to a file without user confirmation.

CloaeChkFile()

Closes the checkpoint file opened with GetChkFile (if one was).

NetCheckpoint (savef)

FILE esavef;

Writes a time stamp into the file savef using Stamp Time. followed by the stat of the network.
that is all the weights. potentials. outputs etc. Uses the following function to save the state.

,-. SaveState(savef)

FILE *savef:

Writes the statt of the network to file for reading in later.

&estore':etwork(nfp)

FILE *nfp;

The function complimentary to NetCh'ckpoint. Reads in and checks the time stamp in the file
nfp with CheckStamp. and then restores the statt of the network using tie following fuliction.

RestoreState(nfp)
FILE *nfp;

Restores the state of the network from file nip.

S

20

N

11.3 Logging functions

FILE * GetCmdFile()

Opens a file for logging the keyboard input only. and returns a descriptor to it. The file name is
of the form run???2 .cmd.# where ???? is the process ID of the current process. and # is an integer.

SaveCmdFileC)

Closes the file opened with GetCmdFile. and asks the user if it should bp saved. If thle answA,'
is yes. prompts for a name for the file and does a UNIX environment call to mt it to that nwnf-
Otherwise it does a UNIX environment call to rm the file.

FILE * GetlogFile(fname)
char * faine:

If fnrme is NULL. asks the user for a filename to use for logging all i/t o. opens the file and returnl

a descriptor to it. If fnrnme is not NI'LL. a file with this name is opened and the descriptor to it
returned. 'Will not ov-rwrite or append tc a file without user confirmation.

AskLog~n

Asks the User if (s)be would like to commence a logging the i/o. If the answer is ye,. calls Log On

to open a log file,

* AskLogOff C

*Asks the user if (s' he would like to close the current log file. If the answer- isz yes. call> -'-g)f To
* close the log file.

Logan C

Asks the user for a file name to use for the log file (supplying a default). opens the file and stores
the descriptor to it in LogFtle.

LogOff C

Closes the file opened in Log On (LogFile).

Pt21

9-5P.-, 1 191 "1 11111 1 11:1

O

-. 11.4 Other file functions

StampFile(nfp.type)

FILE .nfp.
int type.

Writes a time. process and image name stamp to the file nfp. If type is TRUE (i.e. a checkpoint

file) the process ID number is written first, otherwise (i.e. a save file) the process ID number is not
written. Then the function writes out the name of the program that is running (i.e. the simulator
executable) and the time it was made in human-readable form. Next it writes out the curreut tim,'

in human-readable form. Finally it writes out the current system time in seconds. Returns -1 on
. -failure. For example;

Processid = 882

Image = aim written Wed Apr 29 15:03.58 1987
Current Time = Thu Apr 30 23:32:58 1987
546838378

CheckSt amp (nfp .type)
FILE *nfp.
int type.

* Reads in and checks a stamp made by Stan;,Fil,. If type is TRUE. it expects a process ID
number. if FALSE it expects no process ID number. The function will return -1 if the check fails

because the stamp format is incorrect or missing It will issue warnings if the file is over a week
*. old. if the stamped image name is different to the current program file nane (i.e. the simulator ha,

been recreated). or tywp is TRUE. meaning a chickpoint file and the stamped process ID number is-

different to the current process ID number.

ReaddmdFile(Iname)
char * fname.

Open the file named fname to read commands from. This may be nested (i.e. a command in one
file causing this fuiiction to be called to open another command file) to a depth of 16 files.

:V CloseCmdFile()

Close the file which is currently being read from. and continue readin, from the one that caused
',is function call. or stdin if it occurred by the user issuing the read command.

22

%N

12 Calling the Command Interface

It is possible to call the simulator debug command interface from use, u thus allowing a unit
function to interrupt a simulation step or other function so that the user can examine or even modify
the network mid-step. In fact this is the way the construction debugging facility operates. A more
useful feature is the ability to build an interface on top of the simulator interface, which is exactly
what the Graphics Interface is.

12.1 Calling the debug interface

debug-command-reader (str)
char * str;

This function runs the debug command interface. The parameter is a string to be used in the
prompt. Debug should probably be incremented before calling this function (the value of Debug is
printed in the prompt) so that it is clear from the prompt how many layers of interface. are running.
For instance, the controlC interrupt routine executes the following code fragment:

Debug--.
debug-command-reader("interrupt");
Debug--.

resulting in the prompt -interrupt 2 > where Debug has value 2. Most of the regular simula-
tor comrnarid can be called from the debug interface, except those to actually run the network.
In addition the user can add their own command functions. as described in section 19. The df-
bug-romrnand-readr returns when the quit command is issued. Normally the user should zero
Errore before calling debug-cornmand-reader.

12.2 Running another interface on top of the standard one
char * extern-c .nrand-reader(cmd-line) /* called externally '/

char - cmd-line, /* command string -/

This is the function called by the Graphics Interface to pa.s a command to the simulator cmd-lhn,
is a character string containing the command to be executed. ezterncommand_r-ad r excutes the
command and returns a message string if any output to stderr occurred via LOGfprintf during the
command, or NULL if there was no such output. An interface can be built on top of the simulator.

. ,while retaining all the simulator commands, by simply passing on all simulator commands to the
S_simulator via this function. This command may also be used to execute a single simulator command.

for example:

,- extern-command-reader(''d u 3'')
.5..

would cause unit 3 to be displayed in standard fashion.
X

p,..'
w. '

2. ",- 23

0

13 Parsing command lines

Several functions make it easier to write new simulator commands. These functions will perform
some simple lexical analysis and will process command line specification of units, if it is done in the
standard fashion. The simuator passes command lines to command functions already parsed into
an argv-argc structure. Whitespace in the command line indicates argument termination. To use

the functions described in this section. the file "lex.h" should be included.

13.1 Lexical functions

int Lex(cmd)
char *cmd;

Lex is the main lexical analysing routine used to parse simulator commands. cmd is not the whole
command, rather it is one argument from the argc-argv structure representing the command. Lex
parses the argument. which should be an integer, a floating point number, a quoted string, a character
string containing no whitespace. the character "?". "+". or --". or a unit identifier of the form
name index/'indczj. where both indices are optional. Parsing unit identifiers should be done with
Get Units described below.

Lez will return the following values (#define 'd in the standard include file):

Return value character string

CBRACK

OBRACK
END-STRING :\O.

ALL all

AUTO auto
LINK c or conections or link or links
CLOCK clock
DEFAULT def or default
FUNC func
FROM from
IPOT ipot

ISTATE istate
NAME name

ON on
OFF off

OUT out

POT pot
RANDOM random
SHOW sh or show
STATE s or state or states
SET set
SITE site
TITE type

TO to
UNIT u or unit or units
WEIGHT weight
HELP
STRING "<characters >"

24

I3

PLUS +
MINUS

INT <digits>
FLOAT <digits.digits>
IDENT anything other than the above

The most recently parsed token is held in the character string Yyarg. The most recently parsed
integer is held in Yyint. The most recently parsed floating point number is held in Yyfloat. Thus
command functions can check the return type and get the value or string from one of these three
variables, if it is needed.

Cmdindez is the index into the argument string cmd that Lez has reached. It is reset to zero
when the end of the string is reached. In most cases this will have happened by the time Lex returns.
but when parsing, say, "RETINAl31[4]", it will return on encountering the first "[', and the next
call to Lex will continue where it left off. As far as Lex is concerned, token delimiters are \O'.
and '. Unit names, such as -RETINA[3][4p " should be parsed with GetUnits.

Curarg is the iiidex into the command arg, vector indicating the current command argument
being processed. It is incremented by Lea on encountering the end of the string (cmd).

OUnLex(tok)

i .t tok ;

- Unkix effectively puts the most recent token processed by Lex back in the input stream. to be
re-processed on the next call to Lez. Only one tokcin can be Unlex'd.

EAT-

EA T is a macro that chew- up the rest of the argument currently being processed. It is usually
only used if Ler returns an unexpected type of token. and command parsing has to be abandoned.

EAT then resets Cmdindez to an appropriate initial value for processing the next command. See
section 19 for an example of the use of Lea. EAT and Get Units.

725

0

A 'l ,I1 4

Q 1 ,1

13.2 Parsing unit specifications

GetUnita(argc.argv)

int argc;

char ** argv;

GetUnits processes a specification of a range of units, given in the normal form (see the User
Manual for detaiLs). It sets the variables Ulow, Uhigh. Uset. and Usetind to indicate which units
where specified. Ulow and Uhigh indicate the low and high unit indices in the range: if they are
equal. a single unit was specified. Uset is a boolean indicating whether a set of units was specified.
and if it is TRUE. then Usetind holds the number associated with the set (i.e. the index into the
sets bit vector in the Unit structure).

GetUnits returns FALSE (=0) if it fails, that is if a valid unit specification was not found.
Otherwise it returns one of the following values:

Return value meaning
FALSE invalid unit specification
ALL all units
TRUE other valid unit specification

0 FO1M.UTS(index)*

FORUNITS(index.unitpointer)*

FORUNITS is a macro to use with unit range specifications. The parameter is an integer. which
is used as a unit index inside a for loop to cycle through the unit range. using the values set by
GetUnits in Ulow. Uhigh, Uset. and Usetind. For instance, the code:

FORU::ITS(z)
SetOutput(z.10);

would cause all the units in the specification parsed by GetUnits to have their outputs set to 10.
An example of the use of FORUNITS in conjunction with GetUnits is given in the next section.
FORUNITS'P is simply a version of FOR-UNITS that uses a unit pointer rather than a unit index.
so that thf code in the for loop need not index into the unit array. FORI'NITSP does the indexing
itself in a fast manner, so this is the preferred macro for speed.

26

C0II

-- - - - -- - --

13.3 An example of a simulator command function

As an example, here is the code for the disp command.

Cmd-disp(argc .srgv)

int srgc;
char 0* argv;

register int u;
register Unit * up;

if ((argc == 2) kk (Lex(argv(1]) ==HELM)

goto helpinfo;

if (argc > 2)

Curarg=1; /* first command argument S
ii(ex(argvECurargJ) == U!1IT)

if(!GetUnits(argc~argv)) return 0;

PipeBegino;

FOR-U!;ITS-P(u~up)
DisplayfnitP~u.up);

* PipeEnd;
return 0;

else

els ET; synerror;

goosynerror.

helpinfo:

Format = TRUE;
LOGfprintfCDiapf,"The d(isp) command is used to display the

values assoc\iated with one or more units. for instance the potential.

output, state. functi\ons. site names and values, link weights and values.\n-);

Format zFALSE;

sync rror:
LOGfprintf(Dispf.-\nUsage: dVisp) u <UnitID>\n\n-):

0 return 0;

As described in section 19. this function obeys the standard format for command fu~nctions. First
it tests to see if help information has been requested. and if so jumps to the helpirafo label. Then it
sets Curarg to I (argv/O/ is the command name) and calls Let to parse the expected string -units-

0 and tests that it was indeed found. The call to Lex will have incremented Gurarg. so now Get Units
is called to find the units which should be displayed. If further parsing were required. Curarg would
have the correct value, but we expect no more arguments for this command so proceed to display
the units. Pipe Begin is called to set up the pipe process for displaying (if one has been requested
with the pipe command), and then the FOR.UNI TSP is used to call Display UnitP for aJI the units
in the range.

27

101

14 Guarded code functions

When a controlC interrupt is issued from the keyboard. the simulator enters the interrupt interface
(see section 12.1). so that the network may be examined and possibly modified. To guard against
entry to this interface when the network data structure is in the middle of being modified (and may
therefore have inconsistent or invalid pointers), functions are provided to delay entry until a safe
state is achieved.

Guard()
lelease C)

Guard simply increments Guarded and exits. Release decrements Guarded and checks if an
interrupt has occurred since the previous call to Guard. If so. and if Guarded is zero. the interrupt
processing routine is called to enter the interrupt interface. The fact that Guarded is incremented
and decremented by each matched pair of calls to Guard and Release means that these calls may be
nested. and interruptu. will only be processed when the outermost level is reached.

15 Miscellaneous functions

lul1Func ()

This is the function that does nothing. It is used for units, sites and links whose function
specification is NULL in the call to Make Unit, AddSite or MakeLink.

User'ait(str)
char * str;

Prints the provided prompt. str. then reads a single character in cbreak mode. Returns the
character. mapped to lower case. Used to pause during simulation or display.

0

0

00
L M 111 28

16 Simulator Variables
Many variables used by the simulator are accessibl, to user code. Modifying these should be ione

with care. The complete list follows.

int AutoFix A boolean value that indicates whether automatic correction of construction errors
is enabled.

int Clock The system clock, or count of simulation steps.

FILE * CmdFile The file to which keyboard input is written, if LogCrnd is TRUE. The file is

closed on exit from the simulator, and saved at user discretion.

int Cmdindex Index into the current character of the current command argument. Used by Lex.

see section 13.1.

hit Curarg Index into argv structure for command functions. indicating next argument to process.
See section 19.

int Debug Indicates the debug and interface level. Zero means normal interface, debugging switched
off. One means normal level, debugging switched on. Incremented during construction com-
mands such as Make Unit.

*FILE *Dispf The file to which display output is written. i.e. during a display. list. or help com-
mand. If piping is enabled (see section 4), the pointer is to the popen'ed process. Otherwise

it points to stdout.

hat Echo A boolean value that indicates whether echoing is enabled.

hit EchoStep Number of steps between simulator echo messages.

unsigned iat Errors A bit vector containing the error types when debugging.

iat ExecFract During fair asynchronous simulation (faync command). the percentage of units sim-

ulated each step

9it ExecLimit During fair asynchronous simulation.the number of steps before all units have been
simulated at least once.

hit Format A boolean value indicating whether LOGfprintf (see section 4) should format the out-
put.

int Guarded Incremented by the Guard. decremented by the Release function (see section 14).
when zero code is not guarded against interrupt processing.

it LastSet Maximum number of sets allowed (currently 32).

hit LastUnit Index of last unit that there is space for. Set in Allocate Units

int LogCmd A boolean indicating whether keyboard input is being saved in the command log file.

FILE * LogFile The file to which the log is written, that is the record of all keyboard input and

simulator output.

iat Logging A boolean indicating whether logging is enabled.
hit NoLinks Actual number of links made so far.

int NoSets Actual number of sets used currently.

hit NoStates Maximum allowed number of states with names.

nht NoUnits Actual number of units made so far.

Output * Outputs Vector of unit output values. Links get their values with a pointer into this
array. Updated in Step.

int Pause A boolean indicating if pausing is enabled.

29

0

char PipeCommand [] Name of pipe process to use for display output, if piping is enabled.

int PipeFlag A boolean indicating whether piping is enabled.

char **SetNames Array of pointers to set names, indexed by set number.

hit Show A boolean indicating whether showing is enabled.

unsigned int ShowSets A bit vector indicating which sets are in the Show set.

it ShowPot During a show, display all units with potential higher than this value.

hit ShowStep Perform a show every this many steps.

nht StateCount Actual number of states with names.

char ** StateNames Array of pointers to state names, indexed by state value.

hit SyncFlag Simulatioin update protocol. Can by SYNC (synchrono is. sync command). FAIRASYNC
(fair asynchrowu., fsync command) or ASYNC (asynchronou.. ayrnc command).

hit Uhigh, Ulow Set by Get Unit(s) (see section 13.1), indicates ranige of units found.

U it * UnitList Pointer to unit array, the main data structure.

hit Uset, Usetind Set by Get Unit(s) (see section 13.1). Uset is a boolean indicating if a set namne
was found, in which case Usetind is the set index.

char Yyarg[] Contains the token most recently parsed by Lez.

float Yyfloat Contains the floating point value most recently parsed by Lex.

nht Yyint Contains the integer value most recently parsed by Lex.

1'*3
~'-

0.>

V

0

17 The Name Table

All the names used in the simulator (for umits. unit types. sites, states, functions and sets) are stored
in the global name table. User code may also insert names into the name table. look then up. and
delete them. The name table access fuictions are:

char * EnterName (name, type, datal, data2, data3);
char * AlterName (name, type, datal, data2, data3);

NameDesc * FindName (name, descriptor-pointer);

char *name;
int type, datal, data2, data3;

NameDesc * descriptor-pointer;

EnterName will enter the name in the table. type is used by the simulator to determine
(,'what type of name it is. Type numbers 0 through 8 are used by the simulator, and numbers 9

through 99 are reserved to the simulator. Libraries should use numbers 103 through 999. and user

code numbers 1000 and up. The thr., data fields are simply entered in the table. If the name is
successfully entered, the function rftulri,- the pointer to the stored nane character sring. Care
should be taken not corrupt this character string. EnterName will fail and return NULL if the name

is already in the symbol table. unless all fields match those already in the table.

AlterName is just like EnterName. except that it never fails: if the name is already in the table.
0it is simply overwritten. This function should be used with extreme care.

FindName looks up the name in the name table, and fills in the descriptor with the table entry

contents. It returns a pointer to the descriptor if the name was found. and Nt LL if not. Thc
descriptor is of type NameDesc (see the Reference Manual for details). so a typical call to FindN ame

'*" ~might look like:

..a'eDesc descriptor:

if (Find':ame ('some-name". &descriptor) == NULL)

printf(''can't find name: %s\n". ''some-name");

else

The type s defined by the simulator are as follows:

Typevalue used for
SCALAR single unit name
VECTOR unit vector name

ARRAY unit array name
SET.SYM set name
STATE-SYM state name
STRING.SYM unused name (may be re-usedi
TYPE -SM unit type name

FUNCSYM function name

SITESYM site name

31

~ " ..

Name table entries have the following structure:

typedef struct n-.i.-desc

char *name; /* Pointer to name '
short type; I' Type of unit {O=SCALAR.1=VECTOR.2=ARRAY} 8

short size; /* Size of vector if VECTOR. number of columns if ARRAY *
short length; /* number of rowas if type 2 0/

int index; /* index of first unit name applies to '

struct n-idesc *next.

}NameDeac;

Each name must have a unique use. i.e one cannot use the same name for a site that is used for
a unit. type, function. state. -wt. etc. etc.

32

18 Customizing unit, site and link data structures

Each unit, site and link structure contains a field, data. which is for general purpose use. This field

is the size of an integer or float, depending on which simulator is being used, but in any case is
assumed to be the same size as a pointer. Therefore it is possible to use this field as a pointer to ari

arbitrary user-defined data structure. The simulator uses types unit-data-type . site-data-type and
link-data-type for the unit, site and link data fields respectively. By using the -D flag in makesim

(see section 23 and the man page for makesim) the user can re-define the type' 'ut must define it
to be of size four bytes, so that user code is compatible with the simulator code.

18.1 Redefining the data type

Suppose. for instance, one wanted to delay the incoming values on a link by an arbitrary time steps.
Then the data field for each link could be used as a pointer to a structure which stored the previous
input values and weights. For example:

typedef struct inp

short weight;
short value;

) input;

typedef struct 1_d-type

Sbshort count:
input * inputs;
link-data:

typedef link-data * link-date-type;

typedef int site-data type.

typedef int unit-datatype;

Here unit-data-typ* and site..data-type are defied to be int. just as the default. But linkdatntyp '
is now a pointer to a structure of type link-data. which contains a count field specifying the length

of the propagation delay on the link. It also has a pointer. inputs, to a vector of type input, each
element of which contains fields for weight and value.

18.2 Making a link

Since the simulator itself has no knowledge of this redefinition, it will not allocate space for the

* link-.data structure, nor for the vector of input 's. Thus the user code must allocate the space.
conventionally at the same time that MakeLink is called to make the link. For example. user code
would do something like:

Ip = MakeLink(from.to,"excite".OO .LFdelay);
MakeLinkfata(lpdelay);

where delay is the number of simulation steps delay and MakeLinkData is:

33

0

WWWlflflVW VWLV A W1'M aJ I~ p an~ V' M x3 M Wl MW W WXL

JMakeLinkData(lp~count)

int count;
% Link 1 p;

int i;

lp-data =(link-data-type) malloc (sizeof(atruct 1-.d.type));
q lp->data->count =count;

lp->data->inputs =(input *) malloc (sizeof(input) * count);

for (i = 0: i < count; i-+)

lp->data->inputsti) weight = 1p->data->inputs(i] value =0;

The incoming parameters are the pointer to the link, and the count of the number of steps delay
4 First the link-d at a structure is malloc ed. and the pointer to it stored in the link data field. Then the

count is stored in the malloc ed structure. and the vector of length count and type input is mallo-

N. ed. the pointer to. it being stored in the link-data structure. Finally all values and weight., in the
* vector are initialised to zero.

18.3 The link function

0 Now the link function. LUdelay. would simply shift the values along one place. and store the current
input value in the final vector location.

L~delay(up up, ip)
Unit * up.
Site * Sp:

Link -*

int i;

for (i = 0; 1 < lp->data->count 1,i)
1p->data-inputs~i] = 1p->data->iriputsfi-1],

lp->data->input#[iJ weight = p->weight.
lp->data->inputstil value *(lp-value):

The for loop shifts the vector entries up one place (towards the first entry.- or top if it is thought
* of as a stack). Then the incoming values are stored in the final entry. or bottom of the stack.

0

S3

'.F % e.

18.4 The site function

Suppose we just wanted a standard weighted sum to be computed at the site, but wsing these delayed
inputs. The function could be:

S~delayweightedsum(up ap)
Unit * up;
Site * sp;

Link * Ip ,
int sum = 0.

*for (Op = sp->inputs; 'Ip ! ULL; 1p = lp->next)

sum - lP->data->input9[O].weight 1 p->data->inputs[O] value;

sp->value =suinIIOOO;

The for loop simply sur!:s the weighted inputs from the top of the stack of delayed inputs, and

scales the result appropriately.

18.5 Linking with simulator code

~ -~ Since the unit. site and link structures are specified (at the C level) in a file that is included in user
code. one might wonder how this code will ever compile. The solution. as hinted at above. iio to

provide a flag to the make sim command (see section 23) that specifies a file of user defined data
structures to inclunde instead of the standard ones. This is the -D flag. check the rrlako~qirn manl page.

The file must define the types unit-data-type, site-data-type. and link-data-type. These types must
be of the savrf siwc as an irnies-r or F . tt. Although the simulator code will contzi to rrva the
data fields as ainerscethe simulator never actually uses these fieldiisprsilefrur
code to treat the field as a pointer, or any other integer-sized structure.

0
N,.

18.6 Displaying, saving, loading, etc

The problem arise in displaying. saving and loading. By default the simulator would display. save.
and load the data field as an integer or float. The pointer value would not be restored on a load.
and the extra structure would not b inalloced. The solution to this problem is for the user to write

% specially named functions to display. save and load these structures. In addition the general help
information provided by the simulator when the Help command (see secton 20) is used might need
to be augmented. The funrtionr that may need to be written are as follows:

Ucs

UserUnitDisplay(fp,up) called when the Unit structure is displayed.
UserSite_.Display(fp,up,sp) called when the Site structure is displayed.
User_.Link_.Display(fp,up,sp,lp) called when the Link structure is displayed.

-.- UserLink-List(fp,upsp,lp) called when links are listed.

User-UnitCheckpoint(fp,up) called when the Unit structure is checkpointed.

User-SiteCheckpoint(fp,up,sp) called when the Site structure is checkpointed.

User-LinkCheckpoint(fp,up,sp,lp) called when the *:'nk structure is checkpointed
UserUnitRestore(fp,up) called when the Unit structure is restored.
User-Site_-Restore (fp,up,sp) called when the Site structure is restored.

V- User-LinkRestore(fp,up,sp,lp) called when the Link structure is restord
• UserUnit_Save(fp,up) called when the Unit structure is saved.

UserSite-Save(fp,up,sp) called when the Site structure is saved

UserLink-Save(fp,up,sp,lp) called when the Link structure is saved.

User-UnitLoad(fp,up) called when the Unit structure is loaded.

UserSiteLoad(fp,up,sp) called when the Site structure is loaded.

UserLink_.Load(fp,up,sp,lp) called when the Link structure is loaded.

User-HelpInfo() called after the general help information has been printed when the Help corn-
marid is used.

where the arguments are a file pointer for the display information to be written to and pointers to
the Unit. Site and Link.

If these functions exist in user code. then the simulator will call them to handle the data field
for units., sites. and/or links. and to print extra general help information. If they do not exist. the
default simulator action of treating the field as an integer or float will be taken. Examples of some

.A.. of them follow, using the propagation delay definitions given in the preceding sections.

36

% V %

18.7 Displaying units

User-Link-Diaplay(fp.up.sp.lp)

FILE * fp;

Unit * up;

Site * ap;
Link * ip;

{

int i;

ftr (i = 0; i < lp->data->count; i+*)

lprintf(fp."\t\t~d delay - value: %d weight. %d\n'',i-1,

lp->data->inputs[i] .value.lp->data->inputs[il .weight);

This function is called when the display command is issued from the simulator command interface.
Instead of printing the link data field. the simulator calls this function to display the information.
The display information is written to the file pointer, with Ip being a pointer to the link currently

being displayed, sp a pointer to the site at which the link arrives, and up a pointer to the unit to
which the site is attached. In this case the latter two pointers are not used. but they are passed
as parameters to the functions dealing with links for completeness. As can be seen. the function

* simply prints out the stack of delayed input values and weights. Then when a unit is displaoyd. the
link would be printed in the following fashion:

link*,0 :AVE- (3) func:LFdelwy ,eight 1000 value:O

I delay - value: 0 weight 0

2 delay - value 0 weight 0

3 delay - value 0 weight. 0

18.8 Listing links

The list command lsts each link. and as part of the display prints the value of the link data field.
In our example we might wish to have the delay associated with the link displayed instead.

UserLink_Liat(fp,up, p.Ip)

FILE * fp,
Unit * up;

- %'' Site * sp;

Link • lp;

..e. fprintf(fp,''delay")d\r,. 1.p->data->coant):

As in the link display function in the previous section, the file pointer and pointers to the unit.
* site and Link are passed in as arguments. The function simply prints the delay value in th count

field

U'.:

37

0

swi-~. v

18.0 Checkpointing and Restoring

When a checkpoint command is issued from the simulator command interface, the state of the
network is saved to file. that is the values in the data structure. On a restore command, these values
are restored from the file. To ensure that the extra structures we have defined and created are also
checkpointed and restored, the following functions are written:

UserLinkCheckv- ,nt(fp.'-p.sp.1p)
FILE * fp.
Unit * up;
Site * up;
Link * Ip;

int i.j.k;

fprintf(fp." %hd''.l T ->data->count) ;

for (i = 0; i < lp->data->count; i*)

fprintf(fp.'" %hd %hd''.lp->data->inputs[i].weight.
Ip->data->inputa[i] value);

fprintf(fp. '\n- *);

UserLinkRestore(fp,up.ap,Ip)

FILE * fp:
Unit * up;

Site * sp,

Link * ip;

int i. count,

facanf(fp. %d" '.count);
for (i = 0; i < count; i*)
facan(fp. "/hd *fhd'' ,&(lp->data->inputs[i].weight).

k(Ip->data->inputs(i .value));

* .~ UserLinkCheckpoint prints out the count field, corresponding to both the delay on the link and
the length of the vector of incoming weights and values. Then it prints out the vector of weight:.

.1 and values. UserLinkRestore simply does the complimentary thing: it reads in the count, andthen reads in that number of incoming weight/value pairs. and saves them in the vector. The only

*important thing about these functions, and it is crucially important. is that the Restore function
reads in exactly the same amount of data that the Checkpoint function wrote out. Otherwise. the
restore process will fail.

38

S'

18.10 Saving and Loading

When a save command is issued from the simulator command interface, the structure and state of
the network is saved to file. On a load command. the network is built in the simulator, and the
state reset. The saving and loading of the state are handled by an internal call to the checkpoint
and restore process. so that the only extra thing that needs to be done is write functions to save the
structure of our extended links. and recreate that structure when loading.

UserLink Save(fp.up, sp, ip)
FILE * 1p.
Unit * up,
Site * sp.
Link * Ip,

{
fprintf(lp.' %d ,lp->data->count);

I

UserLinkLoad(fpupsplp)

FILE a fp;
Unit * up;

Site * sp;
Link * 1p;

int count;

fscenf(fp.''%d'",&count);
MakeLinkData(lp.count);

The only important factor in the extended link structure is the length of the vector of delayed
input weigh/value pairs. Thus UserLinkSave simply writes out this length. When loading, the extra
structures we defined have to be explicitly created: the link is being made afresh. User-LinkLoad

reads in the size of the vector, and calls the data structure creation function MakeLinkData (see
section 18.2) to allocate and initialise the space. The values will be restored by UserLinkRestore
when the restore process is internally called by the simulator.

Once again, the most crucial thing to get right with these functions is that the Load function
r, vsr x actly the same amount of data as the Save function writes out.

. -11 Unit and Site functions

In our example. the unit and site data fields are simply the simulator default integers. If they had
been redefined to be some structure. we would need to write corresponding functions to deal with
them. named as in section 18.6.

0
.J1 3

18.12 Completing the example

Using the functions described above, we may complete the example with a function to build a small
network. This example is included in the /example/userdef subdirectory. The build function simply
creates ten units. each one linked to the other nine. with the delay on each link set to the absolute
difference between the unit indices. This is not meant to represent anything, just to provide a simple
example.

build()

int i~j~k, a;
Link * 1p;

AllocateUnits(i0);

for (i =0; i < 10; i++)

u NMakeUnit('neuron '.UFsum.0.0,0,0,0,0);
AddSite(u. excite .SFdelayireightedaun.0);

for (i = 0: i < 10; i-+)
for (Q = 0; j< 10; j+4)

if (i

1p MakeLink(i.j."'excite"1000,0.LFdelay);

MakeLinkData(1p. (10.i-j)%10);

The only departure from conventional network construction code is the call to MakcLinkDatez as
each link is constructed.

04

%

19 Customizing the simulator command interface
'S

'Any user written function which has a name commencing "Cmd_" will be treated as a regular

command by the simulator, and will be available at all interfaces. The simulator passes an argc-ar9v
structure to command fwctions. There is a standard format for command functions, one aspect

of which is obligatory. The function must allow for the case when argo is 2 and the argv/1/ is
the string "?". This occurs when the the user types command f or help command In this case
the function should print help information, including the command syntax. Conventionally single
character command functions. e.g Cmd-e. are abbreviations for other commands. and so are not
listed when the user types ? to the prompt.

Suppose one wanted a command. linkdata, to set one of the delayed weight /value pairs in a link
(as in the example above). In canuizical form, this might look like.

$include "lex.h'

Cmdjlinkdate(argcargv)

int argc;
char *- argv:

int from, to, delay. weight, value;

char sitename[100);

Unit * up;
Site * sp;
Link * ip;

if (argc == 2 kk Lex(argv[1]) == HELP)
goto helpinfo;

if (argc != 7) goto synerror;
ascanf(argv[1]''%d'.kfrom);
uscanf(argv[2] '%d'.kto);
sacanf(argv[3J."'Zs''.sitename);
sscanf(argv[4 ''d'".&delay);

sacanf(argv[5]"'.d''.kweight);

&scsnf(argv[6."%d''.kvalue);
up = &UnitList[to) /* get unit pointer ./
for (up = up->sites. /* find site */

up N!ULL &k strcrrp(sp->name.sitename);
sp = sp->next):

if (up =NULL) goto synerror:
for (ip =p->inputs; /* find link */

Ip NULL kk lp->from-unit != from;
*, ip = ip->aext);

if (Ip i= lULL) goto synerror;
if (delay > lp-data->count) goto synerror; /* check delay in range */
lp->data->inputsfdelay-1l.weight = weight; /* set new values ,/
lp->data->inputs~delay-l] value value.

*, return 0;

Wi helpinfo:
Format = TRUE; /* print detailed help */
LOGfprintf(Dispf."The linkdata command is used to set the weight

and value in a time delayed link. You must give. in order, the unit
from which the link originates, the unit to which it goes. the site at

41

which it arrives, which delay you want to adjust the values for. the
new weight, and the new value\n");

Format = FALSE;

synerror:
LOGfprintf (Dispf.

-\nUsage: linkdata [<From-IJnitID> <To-UnitiD> <To-site>

<delay> <weight> <value>]\n\n");
return 0;

}

Much more error chec' ing should be done, but for brevity it is omitted here. The important
point is the initial check for the help condition described above (note the use of Lex). If it exists.
there is a jump to tb- help information label helpinfo. Here the simulator global variable Format
is set to TRUE so that LOGfprintf will format the output (see section 4). The help information is
written to Dispf since help is one of the commands whose output is piped. The string inside the call
to LOGfprintf contains no newlines - for the purposes of this documentation it has been split irto
lines. After the help information has been displayed, formatting is switched off.

The other label. synerror. is conventionally used if a syntax error is discovered while processing
the command argc-argv structure. The command syntax is printed, again to Dispf since convention-
ally the help information should include the syntax specification. If piping is turned off Diqpf will be
8tdout. so everything works even if synerror is jump-d to from elsewhere in the command function
code.

Any function whose name begins with "DebugCmd- will be available at the debug interface.
V., but not the normal interface. It will take precedence over any normal command of the same nanme.

For example. to create a different linkdata command at the debug interface. the function would
be called -DebugCmdinkdata". This function would be called when the linkdata command was
issued at the debug and interrupt interfaces, but "Cmd-linkdata" would be called at the normal
interface.

All command functions should return 0. whether there is an error or not. with the exception
of any command used to exit the debug interface, such as the simulator function DebugCmd-quit.
Any such function should return TRUE. Errors is a bit vector used within the debug facility. One
cannot exit the debug facility tc the normal interface until Errors is zero.

42

IN 0,1

*

20 Adding to the Help information

If a simulator has been customized it may be that extra information describing the customization

should be printed with the general help information (i.e the message that is printed when the

command help is issued). The customizer can write a function. UserHelp-lnfo. which will be called
by the simulator after the standard help information has been displayed. Continuing the example
in the preceding two sections. such a funciton could be:

User-HelpInfo()

Format - TRUE;
LOGfprintf(Dispf."This simulator is augmented to model fibre

propagation delays. If you display a unit, you will notice each link
has a series of delays. Every link has at least one delay. At a

given time step, the current incoming value and the current weight are

saved at the bottom of the list. At each time step the values and
weights percolate up the list one place. When a value/weight pair

reaches the top of the list, it is used by the site function.\n\n'*):

Format = FALSE;
}

As with the command function, formatting is switched on for the call to LOGfprintf. and off
after it.

21 Avoiding name clashes

To avoid name clashes, do not use any names for functions. variables, data types etc that begii

with i_. These are reserved to the simulator code.

22 Floating Point version

The floating point version of the simulator uses floats for the weight, data. output. and potential
fields of the unit. site and link structures. In addition the function pointers for the unit. site and

link functions are declared float * instead of int *. User code will be compiled with the -DFSLM

flag so that conditional compilation is possible if one wants to freely move the code between integer

and floating point simulators. In addition the type FLINT is defined to be an int in the integer
simulator and a float in the floating point simulator.

43

11 1 '1 lPA SX r iA

23 Linking user and simulator code

User code must be compiled and linked with the simulator object files to form an executable simula-
tor. makesim is a UNIX Bourne shell script to perform this somewhat complex process. The steps
that must be taken are:

I. Compile the user source files.
2. Extract the names of user functions from the user object files and build a program to load

the function names and pointers into the simulator function table. Thus the simulator will
have a mapping from function name to function pointer, allowing the user to call the functions
from the simulator command interface. This process also finds the function names in all
libraries. The program grabnarnes interrogates object and library files and its output is fed to
the program makebind which builds the appropriate C source file.

3. Compile the C source file created in the previous step.

4. Link the user object files, the object file created in the previous step. and the appropriate
simulator object files.

makesim has a number of flags. which are described in the man page. Note that the user nmut
have write permission in the simulator source directories to use the -z (compile simulator development
version) flag. There is a mechanism in makesim for checking that user files have been compiled for
at most one type of simulator (i.e. either integer of float). Briefly. the standard include file for user
code (either sim.h or fsinm.h) contains a specially named statically declared integer, with different
names for the different types. makesim checks the user object files to ensure that at most one of
these names exists.

SI

0

44

0

The Rochester Connectionist Simulator
Volume 4:

Graphics Interface Programmer's Manual
Renton Lynne

Dept. of Computer Science
University of Rochester
Rochester, NY 14627

May 11 1987

0

0

Contents

1 Introduction 2

2 Structural Organization 2

3 External Variables and Functions 2

4 Data Structures 3

5 Processing Strategy 4

6 Link Mode processing 5

1 Introduction

This document is directed to the programmer who needs to understand the working of the GI
interface code. Although the code itself is well documented at the module level, this text is meant to
provide a high level discussion of the underlying principles and organization of the software package.
This document does NOT contain much user useful information: for information on how to USE
GI. refer to the GI User's Manual and Guide which is contained in the file gi.doc.

2 Structural Organization

The GI code is distributed among more than a dozen source files. The primary organization revolves
around the panel. There are six panels and thus six of the source files (obviously named) contain
the code necessary to implement the the panel itself as well as most of the routines used to access
the panel and its data as a unit. In addition there are several other source files whose organization
revolves around function:

main.c contains the mainline (a misnomer). that is the entry point for setting up the GI tool to
begin with. This file actually sets up the tool windows and then passes control to the Suntool
select mechanism.

update.c contains the routines used to update the display after something has happened (such as
a simulation step) and it is necessary to update the display panel with the new information
for the displayed unit icons.

show.c contains the routines that perform the SHOW. CHANGE and ERASE functions that ma-
nipulate tho, di-play panel in terms of unit icons being displayed. changed or erased.

misc.c contain- varioii miscellaneous routines used by several of the other modules. They have
all been put in this one place for convenience since they don't really "belong to any one
particular funi tion

gisim c contains all the routines that access routines or data structures of the simulator itself. All
interfaces ti the simulator by GI routines should go through a routine in this file. We wish to
segregate thisc simulator interface routines so that we can localize changes to the simulator
interface (for example. the parallel version of the simulator on the Butterfly) to routines in
this one file. rather than having to make changes (and have separate versions of the code)
everywhere.

gistart.c contains the interface to the entry point. This routine and this routine alone is processed
by the narmetable function and the presence of the function name gi-start in the simulator's
function table tells the simulator that gi has been compiled into the object code.

3 External Variables and Functions

GI uses many external (global) variables and functions. Most of these are defined in globa.s.c and
externalized in externs.h. However some globals that are closely tied to certain routines are defined
in those routines and externalized in separate header files for that file. For example. most of the
Suntool Panel item variables that are externalized are defined in the corresponding *_panel.c file
and externalized in _panel.h.

2

,0W-%

Note that all external GI variables and functions begin with the suffix gi_. This is to enable the
0% . user, whose functions will be linked with the GI code, to avoid external name clashes. Any new GI

external variables and functions should continue to follow this convention.

Most of the global defines and structure definitions are contained in the file macros.h which is an
include in every source file. Anything added or changed in this file will be globally available to all
the GI modules, but by the same token, will necessitate a complete recompile of all the GI sources.

4 Data Structures

The most complex data structures in GI are used to maintain the objects on the display panel.
There are basically three kinds of graphic objects that can appear on the display:

grobj graphic objects for an icon that is tracking some aspect of a network unit. There is one of
these for every icon on the display panel. maintained as a separate structure on one of tvo
doubly linked lists.

txobj graphic object for a text item[that appears on the diplay There is a separate txobj structure
for each line of text on the display and they are all linked together on their own doubly linked
list.

drobj graphic objects for a drawn object consisting of 2 10 vertices joined by line segments. There
is a separate drobj structure for every connected drawn object and they too are linked together
on their own doubly linked list.

In order to optimize performance. two list of grobjs are always maintained. One contains all the
grobjs that are currently displayed. The list header for this chain is called gi-marker because the
marker icon itself resides inside the header structure. The other chain contains all the other grobjs
that exist but are currently outside of the display panel window. Thr header for this structure is

named gi-off-display and its structure is not used for anything currently. Any time the display
panel changes size or the panel window is moved or a reshow with a new origin is done. these two
chains have to be updated so that each contains the right grobjs for the new window. The routines
that accomplish this are located in update.c source file.

Each of the grobj structure point to structures that maintain the information on the icon family
that control the appearance of the icon relative to the aspect of the unit it is tracking These icon
structures (called gricons) contain pointers to array of pixrect pointer that make up the icon family
as well as variables indicating how many members in the family and what the dimensions of the
icons are. It also contains a pointer to the icon family name if this structure contains a user defined
icon family. These gricons themselves are chained together on a singly linked list in order to be able
to search for previously defined user icons.

All strings. vertices (of drawn objects) and fonts are maintained in separate areas using a similar
strategy. For example string space is maintained in any number of separate buffers all of which are
allocated dynamically as STRING.SPACE JIZE bytes. Initially no string space is allocated. As
soon as the first string needs to be stored a chunk is allocated and pointers maintained to the free
area. When the chunk is used up. another buffer is allocated and so on. Since strings once stored
always need to be retained these buffers are never deallocated until the GI exits. A similar strategy
is followed for maintaining vertices and font definitions.

The only other data structure of consequence is the one (info-unit) that maintains the columns
of information on the info panel. This is maintained as an array of 8 (MAX.INFO.COLS) structures

which keep track of what unit is being tracked by the column as well as the current values for all
aspects of the unit that appear in the column.

3

5 Processing Strategy

Most of the complexity of the code revolves around trying to be as smart as possible in NOT writing
graphics object to the screen unless it is absolutely necessary. That is the reason two chains of gr'-bjs
are maintained - the objects on the off-display chain are not even looked at during the simulation
However even the grobjs on the on the displayed chain have a number of flags designed to increase
the efficiency of the display actions. There is also one other important consideration in the update
strategy. That is that the actions of getting the new values for the units after a simulation step
is completely separate from the eventual display of the unit on the display panel. It is crucial to
performance that these actions be strictly segregated for the version that will run on the butterfly
This is because all the values for all the units on the display are gotten at the SAME time (in one
large buffer) in order to take advantage of the parallelism in the butterfly version of the simulator.
Thus instead of looking at each unit on the chain, getting its value and ther. displaying it. getting
the next unit's value, displaying it. etc. we choose to get ALL the unit values first and then display
them all. Although this requires going through the display chain twice (once to get the values, then
to display them). this is a small price to pay for the expected effciencies to be gotten with the
Butterfly.

The flags for controlling what needs to be gotten and/or resl own and what dosn't is contained
in gi-reshowf lag which has a number of bit flags which need to be set or not depending on what
kind of display behavior is called for. The gi-reshowflag are set in various places of th0e code and
checked and reset in the routine gi-reshow. The bit flags in gi-reshow-f lag have the following
meaning and should be strictly adhered to:

RESHOWNEEDED indicates that there is something for gi-reshow to do (ie. there is at least
one unit icon that may have to be updated). This flag is set on by any routine which through
its processing knows that an object on one of the display chains may need to be reshown.

RESHOWALL indicates that all units on the display must be redisplayed regardless of the set-
tings of their switches. This is set. for example. when the display window moves, necessitating
the redisplay of everything on the display panel at different coordinates.

SOME_VALSNEEDED indicates that some grobjs on the display chain need to have their values
updated via the simulator. These grobjs are indicated by the fact that their VALUEOK flags
are off

ALLVALS.NEEDED indicates that ALL grobjs on the display need to have their values updated
regardless of the settings of their VALUEOK switch. This flag would be set on when the
simulator has run a simulation step. or indeed if any command is sent to the simulator.

SOMELINKS_-NEEDED analogous to SOMEVALS-NEEDED except it only applies in link
mode to the Link value that the unit icon is displaying. It indicates that at least one grobj
(with LINKOK off) is on the display chain which needs to have its link value gotten from the

simulator.

ALLLINKS..NEEDED analogous to ALLVALSNEEDED except it only applies in link mode
to the unit icon Link values. Indicates that ALL link values must be gotten from the simulator
regardless of what the individual grobj flags indicate.

CLEAR-NEEDED indicates that gi-reshow should first clear the display panel before rewriting
it. Caused when the display is moved to another part of display space or when the RESHOW
button is pressed. Should thus take care of a. damage- on the screen.

What values have to be gotten and when a display of an icon is necessary is determined by the

bit flags in each gricon. The critical flags and what they mean are as follows:

4

DISPLAYED on - indicates that the unit is currently displayed, and thus does not need to be
redisplayed unless the display moves or its value changes

VALUEOK on - indicates that the value in the val field is current and thus there is no need to
go to the simulator. (Unless ALL-VALUES-NEEDED flag is on).

VALUECHG on - indicates that the value currently in the val field is correct but has been
., changed from the last time the unit has been displayed. Thus suggests that a new icon-index

and thus a different icon may be necessary to reflect the value of the unit on the display screen.
LINKOK analogous to VALUEOK except only applies in link mode to the link-val field.

LINKCHG analogous to VALUECHG except only applies in link mode to the link-val and
link-index fields.

6 Link Mode processing

Each grobj maintains two independent valur.- one for the current aspect of the unit it is tracking.
and one maintained explicitly for link mod(represcnting a link weight between it and the curret
target unit/site. Since there is only one target for all units in link mode. the target unit and siteare maintained in global variables gi-cur-link-target, gi-cur-link-site and gi-cut-link-ptr.
However if a unit is specifically tracking a particular aspect outside of link mode then the target
information is maintained locally withii% the grobj itself.

Currently there is no support for "comniwaid<" for displaying links in link mode. mostly because.
it is felt that link mode is primarily an interactive task and doesn't have much value in commaid
mode. However this could change in the future.

N5

%

The Rochester Connectionist Simulator

Volume 5:
Back Propagation Library User Manual

Nigel Goddard and Toby Mintz
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

April 28 1987

vpr

0

0,

0,

0.

Contents

I Introduction 2

2 Building a back-propagation module 2

2.1 BPmodule 3

2.2 BPinput 3

2.3 BPhidden. 3

.2.4 BPoutput. 4

2.5 BPteach 4

2.6 BPfire 4

2.8 BPendmod 5

3 Simulating the module 6

*.-3.1 B31setiput 6

3.2 BP,-etteach 6

*3.3 BPcycle 6

4 Example: learning 8-3-8 encoding 7

4.1 Constructing the network. 7

4.2 Running a simulation 9

5 Activation and error- propagation functions 10

5.1 Writing error propagation functions. 10

6 Module unit layout and operation 11

URs2

1 Introduction

A simple back propagation network consists of a number of layers of units. The first layer is the

input layer. the final layer the output layer. and the remaining intervening layers are hidden layers.

Links within the network are feedforward: no links within a layer or from a higher layer to a lower
layer are allowed.

A back propogation network has two modes of operation. When operating in the forward mode.
activation spreads fron lower layers to higher layers. using the unit activation functions. When

operating in the error-propagation mode. errors arc propagated from higher layers to lower layers.
usi-lg al t, rUr-prp(. ,i ,n function, unit-, adjusting the weights on their incoming links as the error-

propagate. This package allows arbitrary activation and error-propagation functions. The stanidard

9. UCSD sigmoid activation function and derivative based error-propagation functions (see 11) are
provided in the package, but other functions may be written by the user.

Although many researchers have concentrated on looking at a single multi-layer back-propagation
network. in general one would like to be able to include a back-propagation network (or several such

networks) as sub-parts of a larger network. This package is designed to allow one or more back-
propagation modules as part or all of a network

A cycle is defined to be the process of feeding activation forward until the output layer has settled.

then propagatin errors back to the first hidden layer. The number of simulation steps this will take is
twice the number of layers (only hidden and output layers. explained later) in the back-propagation

module (the simulator must be running ii. synchronous mode).

2 Building a back-propagation module

The standard backpropagation module has certain required features, and some optional featur#s.
The required features are the following a control unit to monitor and control the running of the

module. a bias unit that ca, 1w, optionally hnked to units in the module. and an output layer of

units. In almost all cases there will be at lea.st one" hidd. n layer of units, but it is not necessary. The

optional features are as follo - an input layer of units which feeds information to the first hidden
layer. and a teach layer of units which always has the same number of units as the output layer. It

feeds information into the output layer. in effect telling it what the correct output is. Finally there

is an optional firt unit which is used to trigger the control unit to tell it to start the module.

A back-propagation module is built with a series of calls to library functions. First the module

name is declared, then the hzddon and output layers are specified. Finally the end of the module
is indicated. Optionally input and teach layers may be declared, the input layer before any hidden

layers. the teach layer after all the hidden layers. The functions to do this (in the order in which
they should be called) are:

BPmodule declares the beginning of a module.
BPinput creates the optional input layer.

BPhidden creates a hidden layer.

BPoutput creates the output layer.

BPteach creates the teach layer.

BPink creates a link between two units in the module.

BPflre creates the fire unit and links it to the $fire site of the control unit.

2

-m VT VWj

BPendmod indicates the end of the module specification.

Once the module has been constructed, the trial patterns and correct outputs must be presented
to the network during simulation. If the module is part of a larger network, other units in the
network may feed the trial and output patterns to the module. Alternatively, functions are provided
to set the trial and output patterns in the input and teach layers from a user program. These
functions are:

BPsetinput sets up a trial pattern iyi the input layer.

BPsetteach sets up the correct pattern in the teach layer.

BPcycle turns the module on for a number of cycles .

2.1 BPmodule

The first function that must be called is BPmodule . It takes as argimient. a string which is the
yA:, name of the module, and an integer which is the number of layers (including only the hidden and

Youtput layers. not input or teach layers). This will set up the building process and create a control

unit and a bia, unit. If the name of the module is foo the control unit will be named -cont foo
and the bias unit -biaslfoo ". For example:

BPmodule("learn", 3)

declare- the beginning of a section of code that defines the module learn that will have two hidden
layers and one output layer. The units "cont Jearn" and -bias-learn- will be created. Fron now on.
until the module is completed with the BPendmod routine, there should be no calls to the Make Unit
unit construction function from user code.

2.2 BPinput

After the module is started with the BPrnodule command an optional input layer may be created.
The routine BPinput takes as an argument one integer representing the number of units in the layer.
It creates a unit vector of that length with name -foo(O)' (where foo is the module name). The
units are created with the null function. For example:

BPinput (7)

following the above call to BPmodtde would create a vector of seven units with the name -learn(O)"
(not to be confused with "learn[0 1'). Thus the third input unit will be called "learn(O)'21r. The
outputs of the units in the input layer can be set at any time during simulation using the BPsetinput
routine described in section 3.1. BPinput returns the index to the vector.

2.3 BPhidden

Now the hidden layers are created, each layer being a vector of units. They will be given names
"foo(1)" to ".oo(n-1)" where n is the number of layers specified in the call to BPmodule (if n is
1 then there are no hidden layers). The units in these layers have one site called the $learn site.
The routine BPhidden must be called for each hidden layer. It takes 11 arguments. the first is an
integer representing the number of units in the layer. The second is a pointer to a unit function, the

3

Jil,

I

standard function is suplied in the library and is called UFho (it is the same as the standard output
layer function). The third argument is a pointer to a site function for the $learn site. the standard
function is SFbpsigmoicd The fourth argument is either 0 or I signifying if the bias unit is to be
linked to the units in this layer. The fifth is the weight of the link from the bias unit: it must be
suplied even if the bias unit will not be linked. The next six arguments specify what certain fields in
each unit in the layer should be initially set to. They are all integers (in the floating point version
only the last two are integers, the others are floats): initial potential. potential. data. output. initial
state. and state- BPhidden returns the index to the vector. For example:

BPhidden(3, UFh-o, SFbpsigmoid, 1, 500, 0, 0, 0, 0. 0. 0)

creates a layer with three units. The units' unit function is UFh-o and their $learn site function
is SFbpsigmoid. The bias unit will be linked to each unit in this layer with a weight of 500. The
remaining field values for the units are initialized to 0.

2.4 BPoutput

After ALL the hidden layers are created the output layer must be created. The units ini the. output
layer are identical to those of the hidden layers except that there is one extra site. the $f rror s;tc As
a result the routine BPoutput takes identical arguments except there is one more which appears right
after the $1,arn site funtion pointer, thus moving the remaining arguments one space to the right.
This is the $trror site function pointer; the standard function given in the library is SFerrrisee

5.1). BPutput creates a unit vector with name -foo(n)- where n is as above, and returns the index
to the vector. For example:

BPoutput(5, UFh-o, SFbpsigmoid, SFerror, 0, 0, 0, 0, 0, 0, 0, 0)

creates a vector with five units. The units' unit function is UFh-o and their $learn site function is
SFbpsigmoid. The bia.q ,uit will not be linked to the units in this layer, and the field values for these
units will be initialized to 0. If this call to BPoutput occured after the above call to BPhiddfn then
the layer would have the name -learn(3)."

2.5 BPteach

After the output layer an optional teach layer can be created. The routine to do this is BPteach. It
takes no arguments and creates a vector of the same length as the output layer with name -oo(n-l)."
Links are made from each unit in the teach layer to the $error site of its corresponding unit in the
output layer. The units have no function (null function pointer) and their outputs can be set using
the BPaetteach routine described later. BPteach returns the index of the vector.

So calling BPteach after the above call to BPoutput would create a vector with five untis and
name "learn(4)."

2.6 BPfire

After the output layer (and the teach layer if there is one) there can be an optional fire unit. The
routine that creates this unit is BPfire: it takes no arguments. It creates a unit with name "firefoo"
and links its output to the $fire site of the control unit. It returns the index of the fire unit.

So calling BPfire after the above call to BPteach or BPoutput would create a unit called "fire-learn."

The unit would be linked to the $fire site of the unit "cont-learn." The unit function for the fire
unit is automatically set to be UFfire. defined in the library.

4

Initially the output of the fire unit is 0. When its output is non-zero it triggers the control unit
to start a cylcle. Each time the fire unit runs it reduces its output by one. Therefore if a cycle takes
6 steps then running the network with the fire unit outputing 12 at the start would let the module
run through 2 cycles.

The output of the fire unit can be set by the user with BPcycle described below. If there is no
fire unit then the network will have to activate the control unit on its own.

2.7 BPlink

To link units in layers the routine BPlink is called: it takes 5 arguments. The first argument is the
layer number of the unit where the link is coming from. It can be from 0 (input layer) to n-1 (last
hidden layer). The second argument is the local unit index within the from layer which specifies thc
actual from unit. The third argument is the layer number of the unit that the link is going to. It
can be from 1 (first hidden layer) to n (output layer). The fourth argument is the local unit index
within the to layer which specifies the actual to unit. The fifth argument is an integer which is the
weight of the link (float if floating point version). For example:

BPlink(0. 2. 1. 0, 250)

links the third unit of the input layer to the first unit of the first hidden layer. with a weight of 250.

Links can only be made in the forward direction, and no links can be made to the teach layer.

NOTE: Because the error-propagation function uses the link function pointer field as a backpointer
with which to propagate errors there can not be any link function.

2.8 BPendmod

To complete the module the routine BPendmod is called with an argument which is the nane of the
module (given to BPmodul). After this is called only calls to the simulation functions BPsetttach.
BPsetinput or BPcycle (see section 3) can be made (or BPmodul to start a new module). For
example. to complete the module started by the BPmodule above we would call-

BPendmod ("learn")

This would lable the -learn" module as complete. An error will occur if the corret number of layers
have not been created.

a'5

3 Simulating the module

During simulation the trial patterns and correct output patterns must be provided to the input and
output layers. This can be done by other units if the module is embedded in a larger network, or by
explicit library function calls from user code.

3.1 BPsetinput

To set the output values of input units the routine BPsetinput is called. It takes three arguments.
The first is a string which is the name of the module. The second is an integer which is the local
index of the unit within the input layer vector (starting at 0). The third is an integer (or float in
floating point version) which is the value to set the output of the specified unit to. This routine can
be called while the module is being built (after the input layer has been built) or after the module
has been completed. For example:

BPsetinput("learn", 6, 900)

called anytime after the input layer has been created, will set the output of the seventh unit in the
input layer to 900. An error is signalled if the unit index it out of range.

3.2 BPsetteach

To set the output values of teach layer units the routine BPsetteach is called. Its arguments are
identical to those of BPoetinput . It can be called anytime after the teach layer is created. For
example:

BPsetteach("learn", 4, 0)

will set the output of the fifth unit of the teach layer to 0. An error is signalled if the unit index is
ou of range.

3.3 BPcycle

BPcycle is called to activate the network for a number of cycles. This can also be done by feeding
activation from another unit to the $fire site on the control unit (whenever the control unit gets
activation on that site it starts a cycle). BPcyce takes an integer parameter, the number of cycle-

to be run. and a string, the name of the module to be activated. For example:

BPcycle("concept-learn", 100)

will activate the module concept-learn for 100 cycles. Note that activating is not the same as
simulation. In addition to the call to BPcycle. the simulator must be run for the appropriatr

number of time steps. i.e at least #cycles * #steps-per.cycle .

I

)6

)p

4 Example: learning 8-3-8 encoding

The goal behind the 8-3-8 encoding problem is to teach a network to encode a number between 0 and
7 into a '3-bit' code, and then decode it back into the original number between 0 and 7. The original
number is represented as the activation of one of a group of 8 units. Which number is represented
depends on which unit is activated. In other words, there is a unit for 0. a unit for 1. etc., up to
7. The '3-bit' representation consists of three units. When the network learns the encoding there
will be a unique pattern of activation over these three uiLts when given the activation of each of th
original 8 units. The decoded number is represented in the same way as the original number.

4.1 Constructing the network

We will create a module with one hidden layer. one output layer. an input layer. a teach layer. and
a fire unit. The input layer will consist of the 8 units which represent the original number. The
hidden layer will consist of the 3 units which represent the '3-bit' code. The output layer will have
8 units ike the input layer to represent the decoded number. The teach layer will be used to feed
the correct result to the output layer. The standard functions will be used for both the hidden and
the output layers.

Links will be made from each of the units in the input layer to each of the units in the hidden
layer. Then from each of the units in the hidden layer to each of the units in the output layer. First
the initial definitions are given. Both sim.h and bp.h must be included,

#include "sim.h"
"ifdef FSIM /* floating point simulator */

. define BP_0!;E 1.0
. t define BPZERO 0.0

S define CAST float

:else /* integer simulator ./
S define BPO'IE 1OO0

S define BP-ZERO 0
S define CAST int

*endif

#include "bp.h"

The above code can be compiled for either the floating point or integer version of the simulator.
When the floating point version is made it is compiled -DFSIMso FSIMwil be defined and BPONE
will be 1.0 (rather than 1000). and BP.ZERO will be 0.0 (rather than 0).

J.

7

4114

build(argc. srgv)

imt argc,
char sargv[];

register int i.j;

trandom(getpido); /* seed random number generator 8

AllocateUnits(40); /* upper limit on units *

BPmodule(argv~l). 2); /* start 2 layer module *

DPinput(8); I' create input layer wuith 8 units *
BPhidden(3. UFh..o. SFbpsigmoid. 1, /* create hidden layer 8

BP-ONE/2. BP-ZERO, BP..ZEIIO, DP-ZERO. BP-ZERO, 0. 0);

BPoutput(S. UFh-o. SFbpsigmoid. SFerror. 1. /* create output layer 0/

DP..ONE/2. BP-ZERO. BP-ZE&O. BP-ZEO, BP-ZERO. 0, 0);

DPteacho; /* create teach layer *

M~ire(); /0 create fire unit *
for(i = 0; i < 8; i++) /* create all links

for(j = 0; j 3; j-~)
- { Plink(0. i. 1. j. (randomo%700)*(BP-0NE/1000)-(BP.0NE/10));

BPlink(l. j, 2. i. (randomo7.70)*(BPOITE/100)(BP-..!:E/10));
) /* weights random .1 - .

BPendmod(argv El);

The call to Allocate Unit.s is :standard for building any network. The number of units allocaTedl
must include the units in the input layer (if there is one). in all hi'ddn layer,,. in the output layer.

and in the teach layer (if there is one). It also must include the bia* unit. the contrul unit. and the

fire unit (if there is one).

The call to BPmoduloe names the module being built and defines it as having 2 layers (since one,
layer mnust be an out put layer that mvian there is only one hidden layer).

The call to BPin put creates the optional input layer with 8 units.

Then the hidden layer is created. It ha.- 3 units. each unit having the function UFA..o. which

is the standard unit function. The site function for these units is SFbpsigmoid again the standard
function. The -Y in the fourth argiinient position signifies that the bias unit is to be linked to each

unit in this layer. The weight of the link is BP-ONE/2. which is 500 for the integer version. and .5
for the floating point version. The remnaining 6 arguments set the initial potential. potential. data.

* output. initial state. and state values of each unit in this layer to 0. (The last two arguments are

integers in either version of the simulator.)

The output layer is created with 8 units. It is created like the hidden layer except it has an extra
* site function, SFerror, for the $error site which hidden layer units do not have.

The call to BPteach sets up a teach layer with 8 units (because the output layer has 8 units).

and links% the output of each unit in the teach layer to the $error site of the respective units in the

output layer.

Then linking is done. in the manner described above, between the input layer and the hiddrn

*laver. and then to the output layer. The weight for each link is a random number between 100 and
799 for the integer version, and between .1 and .799 for the floating point version.

The end of the module is signified by the call to BPendmoL

8

PT-10 FNMIKV TT7

4.2 Running a simulation

To run a simulation, we shall use a function that sets up trial patterns and correct outputs in the

input and teach layers. For example, unit 0 of the input layer is activated. as well as unit 0 of the
teach layeri then the network is run through one cycle. The function below does this for all eight

input and teach units. This function can be called from the simulator command interface.

cycle(argc. argv)
ilt .rgc;

char *argv[]J

register int i.j.k;

if(argc != 3)
{ printf(stderr. "Wrong I args\n");

return;

j = atoi(argv[2J);
for(k = 0; k -c j; k--)

for(i = 0; ± < 8: i++)

{ BPsetinput(argv[IJ. j. BP..ONE);

Basetteach(argv[1l . i, BP-0!E);

* BPcycle(argv[l), 1);

Step(4); 1* 2 layers times 2 ~
BPaetinput~argv[1), i. BP.ZERO);

DPsetteach(argvlll. i. BP.ZERO).

The first argument to the above function is the name of the module and the second is the number
of times each of the eight units should be activated. Origionally all the units in the input and teach

layers are outputing 0. The function goes through each unit in those layers. one by one. and sets
their outputs to 1000 (or 1) using BPqetinput and BPsetteach. The call to BPcycle sets up the
module to be run for one cycle. Then the network is acutally run. using the Step function. Then the
units are reset to zero. This process is repeated as many times as the user specified in the function
call.

The argument to Step is '4* because the number of steps in a cycle i5 2 times the number of
layers (hidden and output only). This example is contained in the example/backprop subdirectory.

9

0

-, . . :

5 Activation and error-propagation functions

There is a standard format for the unit functions to be used in the hidden and output layers. It is
of the form:

In forward state (activation):
Output some function of activation from $learn site (usually identity);

call BPendfwd passing the unit pointer as argument.

In reverse state (error-propagation):
For each link into $learn site:

Change weight of link.

Propagate error to unit at other end of link.
call BPendrev passing the unit pointer as argument.

The library provides the standard UCSD functions for activation and error-propagation. Other
functions may be written by the user.

5.1 Writing error propagation functions

0 Error. are propaqtled through links between units by the link function pointrr. When the links are
made with BPhznk the link function pointer is set to point to the data field of the $1harn site wh:.re
the link is originating from. Suppose unit A is linked to unit B via link I. When B propagates its

N error down to 4 it puts the error where fs link function pointer is pointing: this will be to the data
field of A's Vha$rn site. Any user-written error-propagation functions should use this method. As an
example consider the code for the standard error-propagation function, in the library.

FLINT
UFh-o(up)
Unit *up;
{

FLIVT delta,
deltaw;

Link *lp;

/a- -------------------

* activation code **
-.---------- s

if(TestFlagP(up. FORWARDFLAG))

up->potential = up->output up->sites->value;
BPendfwd(up);

} else
5 /s-------------------------------

All error-propagation code

----------------------------------- ,

{
delta = (up->sites->data * (up->output) * (BPOE - up->output))/(BPOE * BPO!E);

for(lp = up->sites->inputs ip != NULL: lp = lp->next)
{ deltaw = ((delta * *(lp->valu*))/BP_ONE)

• BPmomentum * lp->dats;

10

lp->weight *= deltaw;

lp->data = deltaw;
*(FLINT *)(lp->link_) (delta * lp->weight)/BP_ONE:

~BPendrev(up) ;

First note that the symbol FLINT is defined to be float if compiled for the floating point version.
mp' and int if compiled for the integer version of the simulator. In addition. remember that BPONE is

defined a% 1.0 for the floating point version and 1000 for the integer version.

*: In the first part of the error-propagation section delta, the error to be propagated is computed.
It is a function of the error passed down from an upper layer. stored in up->sites-> data. and the
current output of the unit. up->output. The specific function used is described in [1].

For each link coming into the $learn site of the unit the weight change for each link. deltaw. is
computed. It is a function of delta and the output of the unit where the link originates. In addition
a momentum factor can be added in. The global variable BPmomentum is a floating point between
0 and 1. lp->data is set to the last weight change of the link (initially 0).

After the link weight change is computed the change is made to the current weight. and then it

is stored in lp->data to be used to compute the momentum factor during the next error-propagation
.. stage.

Finally the error deta is passed dowi to the unit at the other end of the link as a function of
the weight of the link In other words the propagated error is in proportion to the signifigance of
the link. Note that the address lp->linkf must be type-cast as a float pointer or an int pointer
(depending on the version of the simulator) so that the compiler will not interpret it as a function
pointer. Also note that the propagated error is added: this is because a single unit might output to
a number of units, and error should be totalled from all these units.

The hbrary function BPendfwd switches the state of the unit from forward to reverse and sets the
NOUNIT-FUNC-FLAG. The library function BPendrev switches the state of the unit from reverse
to forward. sets the NOUNITFUNCFLAG, and clears the accumulated error.

Errors originate at the $error sites of output units. The $error site function calculates the error
of the output unit by comparing its output with data coming from the teach layer It puts the error
in the data field of the $learn site of the output unit. thus allowing for standard error-propagation

procedures. The library's $error site function is SFerror.

1,:

p.

6 Module unit layout and operation

Back-propagation module units appear in the UnitList in a particular order. The control unit comes
first, then the bias unit, followed by the units in the input layer (if there is one). Next come the
units of all of the hidden layers. the output layer. and the teach layer (if there is one). The last unit
is the fire unit (if there is one).

If the name of the module is learn then the control unit would he named cont-learn. the bias

* unit bias-learn, and the fire unit fire-learn. Each layer would be named learn(n). where n specifies
the layer number of the particular layer. The input layer number is 0. hidden layers start at 1. The

"-" indices of these units may be found using the Name ToInd function. Each layer is a vector, while the
control, bias and fire units are scalars.

Initially all layers units have the NO. UNITF UNC..FLA G set. as well as the BPFOR WA RD.FLA G.
-it" To start simulation the control unit turns on the first hidden layer of units by unsetting the

11

I'l0

N = aI I llF

NOUNITFUNCFLAG. After these units run they reset their NOUNITFUNCFLAG's. In ad-
dition. if the BPFORWARDFLAG is set it is then unset so that the next time the unit is turned
on it will be in the reveroe direction (if the flag was unset then it is set again). Then the control
unit turns on the next layer of units. The process continues until the output layer has run. At this
point the output layer is run again (this time in the reverse, error-propagating direction) and the
control unit then turnq on layers in the reverse order. When it reaches the first hidden layer the
whole process is ready to start again.

NOTE: The unit flag BPFOR WARD-FLAG is defined as 12. Care should be taken that there is no
conflict with flag defined in other packages.

References

[11 David E. Rumelhart. Geoffrey E. Hinton. and Ronald J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland. editors. Parallel Dis-
tributed Processir g: Exploring the Microstructure of Cognition Volume 1: Foundations.. Bradford
Books/MIT Press. Cambridge. MA, 1986.

%

1;1
"i "9[

0 ,

0

0

A S

0 '0

.4,.

'I.
.4

S S

I.'

S

0

0 0

