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Anisotropic Ginzburg-Landau theory for coupled s-wave
and d-wave order parameters is used to analyze the
unique thermodynamic and transport properties of the
new La2. (BaSr).CuO4 and YBaCu3 0 7  superconductors.
This simple phenomenological approach is used to
explain the prevalence of the large Sommerfeld
coefficients of the specific heat. the existence of
multiple specific heat anomalies, the ultrasonic
attenuation peak, and modfl the anisotropic critical
field data as observed in oriented samples.

Following the discovery by Bednorz and Miller [1] of "high-
temperature" superconductivity in the rare-earth copper oxides,
there have been numerous investigations of the anisotropic

* electronic [2,3] and magnetic [3-7] properties of these materials.
It is now well recognized that any successful theory of
superconductivity for the high-T oxides must include the quasi-two-
dimensional nature of the Cu-0 pianes; the theory must provide, in

'V addition, for a coupling between the planes [8,9]. One of the best
known theories of the new superconductors is the resonating-valence-

* bond (RVB) model of Anderson [10] which describes the onset of
superconductivity as a Bose condensation of quasi-particle pairs
within a large-U Hubbard model. It has been shown by Kotliar [11]
and Inui, et al [12] that the superconducting order parameter of
this model possesses s-wave and d-wave components, the latter being
favored at large U and near half-filling. At low temperatures the

mixed (s+d)-state is favored, similar to that found in the heavy-
fermion superconductor U1 xThxBel 3 [13-15]. It is interesting to

note that the low-temperature behavior of the penetration depth,
A(T) [16], the large Sommerfeld coefficients of the specific heat, y

[17,18], the enhancement Tf the sound velocity and ultrasonic
atrenuation (19,20], and the thermopowers (17] of the

La2 -x(Sr,Ba)xCuO4 (called 214) and YBa2Cu307 -6 (called 123)



materials are very similar to the heavy-fermion systems. This leads
us to believe, as has been suggested on the basis of high-resolution
X-ray scattering experiments, [21] that s- and d-wave coupling may
exist in the high-T superconductors.

C

Model

In this work we apply anisotropic Ginzburg-Landau (GL) theory (221,
previously extended by us to include coupled s-wave and d-wave
superconducting order parameters [231, to qualitatively analyze the
single-crystal and oriented-film data on the 214- and 123-materials.
In particylar we think that the large2Sommerfeld coefficients 7 - 5
mJ/mol K [4,24,25] and 9 mJ/mol K (18,201 for the 40 K and 90 K
superconductors, respectively, the anomalous peak in the yitrasonic
attenuation at T - 0.9 T [19,201, the upturn in the Hc2 (T) curve
[6,7], and the anisotropy in the magnetic properties of these
materials can be explained in the context of coupled (s+d)-wave
states. A brief investigation of the (s+d)-wave state on a square
lattice has been reported previously [26] and will be compared with
the full three-dimensional results. We are aware that the
limitations on any mean-field-theory description of the high-Tc
materials, namelv the Brout condition, due to critical fluctuations
is very restrictive [27]; however, the qualitative agreement of the
GL thoery with experiment deserves mention.

As is done in the GL-theory for a single even-parity order
parameter, we write the free energy density difference between the
superconducting state and the normal state as an expansion in even
powers of the complex gap function A(k), which is related to the
anomalous thermal average <c- c - > of the microscopic theory [28]
where c- is the electron anni a ion operator with wave vector k
and spin t. However, for the multiple-order parameter case we must
expand A(k) as a linear combination of the angular momentum basis
functions (Y. (k)),

2 2

17k - .(k) Y.(i A.(1c) exp(iO .)y i(rc),()

j-0 j- 0

where Y0, Y1  and Y2 are analogous to the s, d 2 2 and d 2 atomic

orbitals. Y0 and Y both belong to theX _X irreducible
representations of tie D (tetragonal) and the D 2h(orthorhombic)
point groups, while Y1 4egenerates from a B to an A
representation in going over from D4h - to DIg-symmetry. T6
consequence of this is to induce some low-angular-momentum s-d 2 2

coupling as described below. Cenersting the invariant terms of' he
free-energy density, as previously described [29), we can write the
free-energy difference between the superconducting and normal state
for a tetragonal lattice as

Fs -Fn - d3r [ sq +  T +  GS + + b2/(8/g)] (2a)

L. sq 2 (aj + 6 + A 0AI ( I + 6 1 cos2e 1 ) , (2b) S

j-0



a a. 4 +a2 A2 cT - 2 2 + 02&2 A 2 (72+62cos2# 2 )
+ a Cosa2 A2 2

+ 2cos 2 (A2 + 02 0 A0 + 22 (2c)
1

"S - lajidj[IDx071j + IDy~i1 2

j-O
+ Mol[(Dxo)(Dx91 )* - (Dy 9 0)(D y l) + cc] , (2d)

2 id ID ? 12 IC I 2 + I 123

*GT - laji zID=Pj +21 a2 + Dy11 2l
.j-0

+ M j2[ (Dxqj)(D xn2 )* + (-)J(D y 1ji)(Dy172 ) + cc]

j-O
+ M z [(D z"o)(Dzq2 ) + cc] (2e)

2 2 /rm hHere we define the coherence lengths, as e,, I ,2mjta~jon
a -A (T-T ), where j refers to the pecies nd Ithe ori n

refed to 1he xy-plane), as is done in GL-theory for axial
symmetry. The gauge-invariant differential operators are defined as
D - (8/8 - ioi A ) ( - x,y,z), with vector potential A and .

_'27/0 - hc, 2e) being the flux quantum. The coupling termsn?
the gradient expressions are characterized by reciprocal effective
masses M - /4m... The phase angles 0 and 0 are taken
relative tojeo, the phae of q., thus ensuring the gauge invariance
of Eq. (2). We use b /8w to represent the internal magnetic field
energy density.

Equation (2) has been subdivided into terms arising from a two-
dimensional analysis of the square xy-planes, J- and and the
additional terms required to analyze tetragonsl systems, JT and

3GT" Reduction of the symmetry to an orthorhombic point group adds
an additional term of the form A A cos 1 to Eq. (2c) and destroys
the axial symmetry of the gradient 2e~ms. In light of the smallness
of the orthorhombic distortion and prevalence of twinning in the
copper oxide superconductors (30], we assume the A A term to act as
a perturbation on the free energy of the tetragonal lattice and
ignore the effect of reduced symmetry on the gradient terms. It is

*directly to each other up to order I - 2 of the relative orbital
angular momentum of the Cooper pairs.

Results

We have performed a full minimization of the free energy with
respect to the Ai's, 84's and the vector potential A to obtain a
self-consistent pictule of the thermodynamics and spatial variation
of the order parameters which reproduces the dominant features of
the single-crystal data of the high-T oxides. Even though many
parameters appear in Eq. (2), we understand the basic physics in
simple qualitative terms. The simplest scenario is that of the
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coexistence of a highly anisotropic d 2 2-state, Al responsibleI

for the quasi-two-dimensional charac~eryof these materials, with a

nearly isotropic, mixed (s+d 2 )-state, possibly characterizing the

"holon"-pair hopping wihtinZthe RVB picture (31]. As determined by
Kotliar [11], the transition temperature, T, of the O-state is
higher than that of the mixed state. A schematic picture of the
relative magnitudes of the order parameters is given in Fig. 1. The
relative phases are 81 - 7r/2 and 82 - r near the transitiontemperatures. The small amount of A - A0 + A2  state persisting

above the onset temperature, T, is a consequence of the small
perturbation to Eq. (2) caused by a shift from tetragonal to
orthorhombic symmetry. Perhaps in a naive way, this may be viewed
as adding the three-dimensional character necessary for the onset of
superconductivity [9]. The existence of d-wave states, consequently
gapless superconductivity, would explain the large observed
Sommerfeld coefficients, while the multiple transitions of these
states would explain the two specific heat anomalies observed near
T [32,33].

We feel that the peak in the ultrasound attenuation results
from the oscillations of the reative phases 81 and 82 about their
equilibrium values 81 - w/2 and 02 - w, as suggestel by Kuma5 and
Wolfle [13] in a different context. Defining w. - a JL/as8 (j -
1,2), where L- s+ the oscillation frequincies are Jgiven

by L sq 'by

2 22
-" 4AoAI61  , (3a)

and

2 2 2
2 AA 2  2 2 2 + "2 0 A0 + 142 2 A) (3b)

There will be a sharp onset of these oscillations at T which will
correspond to the attenuation peak at T - 0.9 T .

We next consider the variation of the upper critical field, H C
with orientation and temperature. Using a straightforwar
variational approach on the linearized form of Eq. (2), we have
derived the differential GL equations, the full details of which
will be presented elsewhere. For the sake of simplicity we assume a
(s+d 2)-wave mixed state with A0 - A2 - Am and fop - f2p - 11m and
writd differential equations for fields, parallel, HI, and

Rerpendicular, H to the xy-plane. For Hi - (H,0,0) and
A - (0,-zH,0], we have,

Am  ( m n Hz) 2 A + 2(d2A/dz 2) - 0 , (4a)m minv M m m

A - 0 H)2 6+ 2 (d2 A/z2 0(b
I  ( lp invHz) A1 + z(d2Al/dZ)-0 (4b)

IX
Similarly, for H - (O,O,H) and A - (O,xH,O), we have

(a 2)A- (a 4+2M 0 nHX)2Am + (a 2 +2M0)(d2Am/dx 2 ) 0,

(4c)

... ..



2 +I2 p(d2 Al/dx 2 0 (4d)

(. ip - invHX) - -.-- I-.- +. W )~W w -'?V X 1* IlWJ

These equations are decoupled and can readily be solved for H c2
Swithin the harmonic oscillator approximation to yield

,, H!2  (4i v~i~iz .I  H 2 -1
c2 , c2 - (Oinv ~p)

2 -1
H c2 -(i - A 2/am)[oinv( m + 2M02/am)]  (5)

•Figure 2 gives the variation of the critical fields with temperature
for . < < . For H" the upper critical field is alwayl.
determied by The smalest coherence length 1 (0 K) - IA. For H
the upper critical field becomes the larger getween H C2 and H as
given above. This may explain the discrepancy in the reported c6 K
values of the in-plane coherenfe length ( , (0) - 34A, % (0) ~
22A), as well as the kink in the H ^data.P

The variation of the lower critical field, H c, with
orientation and temperture for the mixed state can be approximated
by the expression H .- (0^/4w Aeff))In (Keff) [34), which is valid
for large values of tle GL-parameter, x -. A =/ . For this

ef eff/ efcase the variation of the internal fie occurs mainfy in a region
where the order parameters exhibit their maximum values. One can
therefore obtain the penetration depth, X . bycasting the curient
relations into thl form of the London equa lon, V x b A - eff.
The results for H cl and Hcl are,

H11. A- 2 m2A- 
2  + A-"21  +  A-'2 (6a)

H I A 2 .2A- 2 + A- 2 + -2 (6b)
Hcl: _ m ip +  p ,

where the same assumptions on A 0 and A 2 were made as for the
calculation of H c2. At 1eprars erT- the lower critical
field should behave as A1 since it is proportional to the square of
the order parameter. Consequently the anisotropy of H cl should go
as the square of the anisotropy of HU * At.iower temperatures the
influence of the coupling terms A 'and A zmakes predictions more
difficult. The anticipated behavio? of H el for several values of
the coupling terms is given in Fig. 3. e are at present not aware

of any single-crystal H cl studies over the entire temperature 'range
0 - T

C

Summary

We have analyzed the thermodynamic, magnetic and ultrasound
attenuation data on oriented samples of the high-T superconductors
within the context of anisotropic Gtinzburg-Lndau theory for

coupled, even-parity superconducting states. We are able to present
a consistent interpretation of the data in terms of the coexistence
of a quasi-two-dimensional d-wave state, with critical temperature
T - T and a more isotropic mixed (s+d)-wave state with critical
teF ertaur e T < T . We predict the possibility of a "kink" in the
temperature dependence of the lower critical field near 0w9Tac
should be tested by experiments on single crystals.

tRM I'l-pr tr Qul I;-Aef
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Figure Captions

Figure 1. Schematic temperature dependence of the
superconducting order parameters, where A is for the mixed
(s+d)-state and A for the pure d 2 2 s ta t e . T 1 and T - a -

T are the critical temperaturex " f the mixed and pure
spates, respectively, and T - b - T is the onset temperature.

Figure 2. Schematic temperature dependence of the upper
critical field, H . T e dashed curves are not
experimentally objervaCile H c is the field parallel to the
ab-plane, and H is the fieid parallel to c-axis. T - a -
T and T - b .c2

m

Figure 3. Schematic temperature dependence of the lower
critical field, Hcl . Thp dashed curves represent the effect

*of the coupling terms A and A.- T a Tm and T'-b-
p z
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