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articulated hands offers a means for expanding the flexibility of the robot in

both directions. Articulated hands are capable of adapting to a wide variety

of grasp shapes, hence reducing the need for special tooling. The availability

of low mass, high bandwidth joints close to the manipulated object also offers

significant improvements in the control of fine motions. This thesis provides a

framework for using articulated hands to perform local manipulation of objects.

In particular, it addresses the issuesvin effecting compliant motions of objects in

Cartesian space. The Stanford/JPLHaniid ia used as an example to illustrate a

number of concepts. The examples provide an unified methodology for control-

ling articulated hands grasping with point contacts. We also present a high-level

hand programming system based on the methodologies developed in this thesis.

Compliant motion of grasped objects and dextrous manipulations can be easily

described in the LISP- d hand programming language.
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Abstract

> The flexibility of the robot is the key to its success as a viable aid to pro-
duction. Flexibility of a robot can be expanded in two directions. The first
is to increase the physical generality of the robot such that it can be easily
reconfigured to handle a wide variety of tasks. The second direction is to in-
crease the ability of the robot to interact with its environment, such that tasks
can still be successfully completed in the presence of uncertainties. The use of
articulated hands offers a means for expanding the flexibility of the robot in
both directions. Articulated hands are capable of adapting to a wide variety
of grasp shapes, hence reducing the need for special tooling. The availability
of low mass, high bandwidth joints close to the manipulated object also offers
significant improvements in the control of fine motions. This thesis provides a
framework for using articulated hands to perform local manipulation of objects.
In particular, it addresses the issues in effecting compliant motions of objects in •
Cartesian space. The Stanford/JPL Hand is used as an example to illustrate a
number of concepts. The examples provide an unified methodology for control-
ling articulated hands grasping with point contacts. We also present a high-level
hand programming system based on the methodologies developed in this thesis.
Compliant motion of grasped objects and dextrous manipulations can be easily
described in the LISP-based hand programming language. ( R - __ _
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Associate Professor of Mechanical Engineering 5

2



VVI. V1 %A.. IM C1 9 nUPv. -vr

Acknowledgments

I would like to thank my advisor, Ken Salisbury, for his guidance and en-
couragement. The ideas in this thesis are the results of many fruitful discussions
with Ken. I would also like to thank Pat O'Donnell for his assistance in the de-
velopment of the programming system; Pat Sobalvarro for always lending a
helpful hand; and all my friends and associates who made the MIT AI Lab such
a pleasant place to work.

Financial support for this work was provided by the System Development
Foundation and ARPA Contract N00014-82-K-0494.

3

'L L.



Contents

1 Introduction 7
1.1 Robotics and Automation. .. .. .. .. ... ... .. ... .... 7
1.2 Applications of Articulated Hands. .. .. .. ... .. ... .... 8
.1.3 Preview .. .. .. .. .. ... ... ... ... .. ... ... .... 8

2 Manipulation and Contact Constraints 10
2.1 Introduction.... .. .. .. .. .. .. .. .. .. .. .. .. .. ... 1
2.2 Kinematic Constraints. .. .. .. .. ... .. ... ... ... .. 12
2.3 Position Control. .. .. .. ... .. ... ... ... .. ... .. 14
2.4 Force Control. .. .. .. .. ... .. ... ... ... ... .. ... 5

3 Coordinate Frame Transforms 17
3.1 Introduction .. .. .. .. .. .. ... ... ... .. ... ... .. 17
3.2 Homuogeneous Transform Matrix .. .. .. .. ... ... ... ... 18
3.3 Specification of Rotation. .. .. .. .. .. ... ... ... .. .. 206
3.4 An Example .. .. .. .. .. .. ... ... ... ... .. ... .. 22

4 Generating Grasp Trajectory 25
4.1 Introduction .. .. .. .. .. .. ... ... ... .. ... ... .. 25
4 .2 Hand Kinematic Transforms . .. .. .. .. .. ... ... ...... 26

4.2.1 Dealing with Multiple Solutions. .. .. .. .. .. ... .. 26
4.2.2 Transforms for the Stanford/JPL Hand. .. .. .. .. .. 29

4.3 The Grasp Framie.. . ..... .. .. .. .. ... ... ... .. .. 34
4.3.1 Defining a Body-fix'ed Frame. .. .. .. .. ... ... .. 35
4.3.2 Frame Definition for Stanford/JPL Hand .. .. .. .. .. 36
4.3.3 Using the Grasp Frame. .. .. .. .. ... ... ... .. 39

4.4 Generating a Trajectory .. .. .. .. .. ... ... ... .... 41
4.4.1 -Describing Motion of Objects ....... .. .. .. .. .. .... 42
4.4.2 Specifying Motion. .. .. .. .. ... ... ... . ... 43

4.5 Interpolation in Joint Space. .. .. .. .. .. ... ... ... .. 47

4

Vp.J ". " . . .4-"- V%- r' I~ rwAWP,, wV. " ;



5 Grasp Stiffness Control 50
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 The Stiffness Matrix .............................. 52

5.2.1 Diagonal Matrices ........................... 53
5.2.2 Non-diagonal Matrices ........................ 54

5.3 Force Application ................................ 62
5.3.1 Generalized Contact Force ...................... 63
5.3.2 Generalized Grasp Force ....................... 64
5.3.3 Grasp Matrix for the Stanford/JPL Hand ......... .. 65
5.3.4 Specifying Force in Alternate Frames ............... 68

5.4 Stiffness Control ...... ........................... 69
5.4.1 The Joint Stiffness Matrix ...................... 70
5.4.2 Stiffness Control in Alternate Frames .............. 71

5.4.3 Object Centered Stiffness Control ................. 72
5.5 Impedance Control ............................... 73

6 Compliant Motion of Objects 76
6.1 Introduction .................................... 76
6.2 Compliant Trajectory ..... ........................ 77
6.3 Selecting the Compliance Frame ....................... 79
6.4 Computational Complexity ......................... 82

7 A Hand Control Language 84
7.1 Introduction .................................... 84
7.2 Control Heirarchy and Interaction .................... 87
7.3 Basic Functions .................................. 90

7.3.1 Frame Representation ......................... 91
7.3.2 Transforming Points and Vectors ................. 92
7.3.3 Hand Kinematic Transformations ................. 93

7.3.4 Grasp Frame and Grasp Matrix ................... 95
7.3.5 Generating a Trajectory ....................... 96
7.3.6 Sending a Trajectory ......................... 97

7.3.7 An Example . ......................... 98
7.4 Object-oriented Programming .I................... 100

7.4.1 Abstract Objects and Message Passing ............ 101
7.4.2 The Trajectory Generator Object ................. 102
7.4.3 The Parallel Connection Object . ... ............. .104

7.5 Constructing a Trajectory ........................... 105
7.5.1 Motions in Joint Space ........................ 106
7.5.2 Finger Motion ..... ........................ 107

5 I



7.5.3 Object Motion. .. .. .. ... .. ... ... ... .. .. 108
7.5.4 Positioning and Orienting Objects .. .. .. .. .. ..... 110

7.6 Setting Stiffness.... .. .. .. .. .. .. .. .. .. .. .. .. .... 1
7.6.1 Joint Stiffness and Force.. .. .. .. .. .. .. .. .. ...
7.6.2 Finger Stiffness and Force .. .. .. .. .. ... ... ... 113
7.6.3 Object Stiffness and Force .. .. .. .. .. ... .. .... 115

7.7 Sending a Trajectory. .. .. .. .. ... .. ... ... ... ... 116
7.8 Programming Examples. .. .. .. .. ... ... ... .. ..... 117

7.8.1 Peg Insertion Using Body-fixed Compliance. .. .. .. .. 117
7.8.2 Peg Insertion Using Hand-fixed Compliance. .. .. .. .. 1180

8 Conclusions 121
8.1 Review. .. .. .. .. .. ... ... ... .. ... ... ... ... 121
8.2 The Future .. .. .. .. ... ... ... .. ... ... ... ... 123

A CADR/VAX Messages12

B The Trajectory Generator 129

C The Parallel Connection 131

References 132

6



N

Chapter 1

Introduction

1.1 Robotics and Automation

Over the past twenty years we have seen the evolution of the robot from a novel

gadget in research laboratories to a critical component in industrial production.

However, the capabilities of the robot are far from that portrayed in science

fictions. The applications of current industrial robots are limited to repetitive

tasks involving large motions and miminal interactions, such as transferring ob-

jects, spray painting, and welding. The robot simply moves through a prescribed

sequence of positions in a predictable environment. In this respect, robots are

no different from fixed automation. What uniquely distinguishes a robot from

fixed automation is its programmability. Through programming, the robot can

adapt to different tasks without re-design of its physical configuration. This al-

lows increased flexibility in controlling production, and smaller batches of parts

can be manufactured cost effectively.

The flexibility of the robot is the key to its success as a viable aid to pro-

duction. Flexibility of a robot can be expanded in two directions. The first is to

increase the physical generality of the robot such that it can be easily reconfig-

ured to handle a wide variety of tasks. The second direction is to increase the V.'

ability of the robot to interact with its environment, such that tasks can still be

successfully completed in the presence of uncertainties.

%7
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1.2 Applications of Articulated Hands

The typical robotic manipulator consists of a six-degrees-of-freedoin arm with ',

a simple gripper. Handling parts of different geometries usually requires re-

configuring the gripper by adding special finger shapes. Much of the time in

implementing a manipulator system is spent on the design of these special tool-

ings. In tasks requiring handling objects having a variety of geometries, e.g.

assembly, the cost involved in the design of these toolings can be considerable.

Also, a large portion of the work cycle is spent on tool changing. The develop- S

ment of articulated hands capable of adapting to various grasp shapes seem to

offer a solution to this problem.

Close tolerance parts assembly can cause significant forces of interaction

between the manipulator and the parts. In the presence of uncertainties in .

the position and orientation of the parts, a manipulator must be capable of

controlling the forces of interaction and allow the geometry of the parts to guide

the assembly process. It is difficult to obtain fine control of forces at the gripper

from the proximal manipulator joint actuators. Accurate control requires local

sensing and exertion of forces. The high bandwidth, powered joints of articulated

hands can also be used to provide the necessary local force control.

This work focuses on the application of articulated hands to perform useful •

manipulation. The increased flexibility in grasping and accurate exertion of

forces can significantly extend the capability of an existing manipulator. The low

mass links of articulated hands also offer high bandwidth control of motions of

objects. This reduces the need to rely on the dynamically complex manipulator

for small motions. In effect, an articulated hand can be used as a local high

bandwidth manipulator.

1.3 Preview

The motivation for this thesis is to provide a famework for using articulated

hands to perform local manipulation of objects. In particular, it addresses the

.~~~~~% . ... ....
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issues in effecting compliant motions of objects in Cartesian space. The Stan-

ford/JPL Hand [Salisbury 1982] is used as an example to illustrate a number of

concepts. The examples provide an unified methodology for controlling articu-

lated hands with point contacts.

Before we begin the analysis of hand kinematics and force control, it is im-

portant that we have a basic understanding of the task of manipulation. In

Chapter 2, we consider the motions of rigid objects as the solhtions to a con-

straint problem. We will examine the task of manipulation in the context of

constraint equations. %

In Chapter 3, we review the mathematics of coordinate frame transforms

which are used extensively throughout this thesis. In Chapter 4, we study the

the kinematic transformations for articulated hands. The transformations for -:

the Stanford/JPL Hand are derived as an example. We also derive the grasp

frame, which provides the necessary link between the position and orientation

of a grasped object and the joint coordinates of a hand. The coordinate frame

transforms and hand kinematic transforms are combined to describe desired

object motions as a set of corresponding joint motions of the hand. Interpolation

in joint space during trajectories is also discussed.

In Chapter 5, we study the application of 9tiffness control to articulated

hands, where the hand is made to behave as a spring with respect to the grasped

object. We also examine the meaning of the stiffness matriz, which defines the

force/displacement relations. In Chapter 6, we integrate trajectory computation

and stiffness control to obtain compliant motion of objects. We also consider

some implementational issues.

In Chapter 7, we present a high-level hand programming system based on
the concepts and methodologies developed in the thesis. The principal features

of the LISP-based hand programming language is described. A programming

example for a peg-in-hole insertion task is also given. Finally, in Chapter 8,

we review the materials presented in the thesis and give suggestions for future

research. 1



Chapter 2

Manipulation and Contact

Constraints

2.1 Introduction

To describe a point in three dimensional space requires three independent co-

ordinates. To describe a rigid object in three dimensional space requires six

independent coordinates, for example, three for locating a reference point on

the object and three for specifying the orientation of the object. The number

of coordinates that can be independently varied is called the number of degrees

of freedom of the object. The coordinates which can be indepedently varied

are analogous to unknown variables in a mathematical system. To describe the

motion of a rigid object is equivalent to specifying sufficient constraint equations

on these unknowns such that they are uniquely determined. For an object with V,

n degrees of freedom (DOF), n independent linear constraint equations are re- ",jk

quired to uniquely describe its motion. If the constraint equations are nonlinear,

then there is usually a finite set of possible motions, and additional constraints

must be imposed to obtain a unique solution.

As an example, we consider the cube shown in Figure 2.1. When uncon-

strained, the cube can translate along and rotate about any of the axes. There-

fore, six independent coordinates can be varied arbitrarily; hence the uncon-

10
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z

zA

Figure 2.1: Constraining an object reduces the number of DOF

strained cube has six DOF. The correpsonding mathematical system is a system

with six unknowns and no constraint equations. When the cube is constrained 0

by the two frictionless point contacts shown, then the cube can no longer trans--%

late in the z direction. This fixes the z coordinate of the cube; hence only five

coordinates remain which can be instantaneously varied, i.e. the numbei: of

DOF is reduced to five. In the corresponding mathematical system, specifying

the z coordinate introduces a constraint equation, and the number of unknowns

which can be arbitrarily specified reduces to five.

Now suppose the two point contacts are not frictionless, then tranlations in

the x and y axes also become constrained.' In the corresponding mathematical

system, introducing friction at the contacts introduces four additional constraint

equations. The number of unknowns which can be arbitrarily specified is reduced

.o one, the z rotational coordinate. To uniquely determine the configuration,

one more constraint is required. The effects of contacts on the DOF of a rigid

object have been studied and formalized by Salisbury [1982]. Here we will simply

note that the reduction in the DOF of a rigid object depends on the number of

Assuming that the friction is sufficicnt to rc,'ist wiy trawlrational forces.
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contacts and the type of contact, e.g. point contact, line contact, plane contact,

with friction, without friction.

From the point of view of manipulation, each DOF represents an arbitrari-

liness in the possible object motion. To fully control the motion of the object,

sufficient contacts with the manipulator must be made to reduce the DOF of

the object to zero. Then the possible motions of the object are completely con-

strained by the motion of the contacts. Hence, manipulation corresponds to

using the contacts to impose appropriate constraints such that the possible mo- O

tions of the object will be uniquely the desired motion. In the following sections

we shall study how inconsistent constraints can arise, and how to ensure that

the constraints imposed by the manipulator contacts will be consistent.

2.2 Kinematic Constraints

A kinematic constraint is a constraint imposed by geometry. Violation of a

kinematic constraint is a violation of the assumption of rigidity.

When a rigid object is constrained by a set of contacts, its motion must be

consistent with those of the contacts, i.e. its motion must satisfy the kinematic

constraints. The desired motion of the object is obtained by specifyng appro-

priate motions of the contacts. Hence, a key issue in manipulation is how to

constrain the object and how to generate the desired motions of the constraining

contacts.
S

In terms of the corresponding mathematical system, the specification of con-

tact motions is equivalent to specification of constraint equations on the possible

set of object motions. Obtaining the desired motion of the object reduces to

specifying an appropriate set of constraint equations. This set of constraints

must be consistent with the assumption of rigidity, otherwise deformation of the

object will occur.

As an example, consider the manipulation of a planar object as shown in

Figure 2.2. Points A and B are the points of contact between the object and 0

•.S %
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A A! B B

AA B"

C I

Figure 2.2: Motion of contacts must be consistent with the assumptions of

rigidity

the manipulator. Assuming that A and B are rigidly attached to the object,

specification of the motion of A and B constitutes a set of constraint equations on

the possible motion of the object. The motion of A and B to A' and B' imposes

a set of constraint equations which are inconsistent, i.e. there is no solution to

the corresponding motion of the rigid objcet. To enforce this set of constraints

would violate the assumption of rigidity, and hence cause deformation of the

object.

Contacts with the environment also imposes kinematic constraints. The

specification of the motion of A and B to 4" and B" imposes a set of constraint

equations which are inconsistent with that imposed by the surface at C. To

enforce this set of constriants would require deformation of the object and/or

the environment surface.

This example shows that the kinematic constraints hnposcd by the rnanipu-

lator contacts must not only be self-consistent, but also be consistent with the

constraints imposed by the environment. Self.consistent kinematic constraints

can be imposed only if the object shape is precisely known. Kinematic con-

%'.%""
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straints consistent with those of the environement can be imposed only if the O0

environment is precisely known.2

2.3 Position Control

Manipulation can be viewed as the task of using manipulator contacts to impose

a set of constraints on the object. The constraints imposed by a contact may be

a force constraint or a kinematic constraint. That is, the contact tuay be used to

exert a specified force or to enforce a desired kinematic constraint on the object.

Using the manipulator contacts to enforce a desired kinematic constraint is

referred to as position control.

The desired position and orientation of an object are usually specified in
terms of Cartesian coordinates in some fixed coordinate frame. Hence, the

required position and orientation of the manipulator contacts are also generally

specified in Cartesian coordinates. This requires transforming the specification

of the contact motion in Cartesian space into a specification of motion in the

manipulator's natural coordinate space, e.g. joint angles. This transformation
is referred to as the inverse kinematics transformation. For the sake of brevity,

henceforth the natural coordinate space of the manipulator will be referred to

as jcint space.

The inverse kinematics transformation is generally nonlinear, and hence can

yield more than one set of solutions. Additional conditions on the solutions

must be specified in order to obtain a unique motion in joint space. The ma-

nipulator actuactors are then commanded to execute the desired motion. The

issues involved in controlling the joint motion via feedback and dynamics con-

putations will not be discussed here. It will be assumed that the control system

can accurately implement the desired motion.

As shown in the previous section, kinematic constraints imposed by the ma-

2 Free %pace can be considered as mi environnient known precisely to impose no kinematic

constraints. 0

V ~' ~.V~ ~ " f~'.*~ - .~VV_-.i
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nipulator must be self-consistent and consistent with those imposed by the en-

vironment. Hence, philosophically, position control can be used only when both

the manipulated object and the task environment are precisely known. In prac-

tice, the mechanical compliance of the manipulator can absorb the forces gener-

ated due to small discrepencies in the constraints, hence avoiding deformation

of the object.

2.4 Force Control

When the object or task environment is not precisely known, using the ma-

nipulator contacts as kinematic constraints may lead to inconsistencies. This

can also occur during assembly of parts with tolerances less than that of the

positional accuri.cy of the manipulator. Inconsistent kinematic constraints will

generate excessive contact interaction forces which may deform the object, the

manipulator, or the environment. As the manipulator attempts to enforce the

kinematic constraint, excessive actuator torques may also damage the manipu-

lator. Although safeguards can be provided to avoid damages, the task may not

be successfully completed.

In order to generate motion of contacts which are kinematically consistent,

the manipulator must be able to interact with its environment. In particular it

must be able to control the forces of interaction and let the kinematic constraints

in its environment guide it where appropriate. Using manipulator contacts to

impose a desired interaction force is called force control.

There are several force control strategies which have been applied to ma- a
nipulators. Paul and Shimano [1976] proposed a method for controlling forces

in a desired direction. In this scheme, the joint which is most closely aligned

with the desired force direction is force controlled while the remaining joints

are position controlled. Whitney [19771 presented a strategy in which velocity

commands are altered based on sensed force. He used an admittance matrix: to

define the desired relation between velocity commands and sensed force. This is

in essence a velocity control strategy which has the desired effect of controlling

, , , ,,,p, , - . ,- ---
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the contact forces. This strategy can also be conveniently used to move the _0

manipulator end point over obstacles. The problem of specifying manipulator

motion to appropriately match the kinematic constraints was studied by Mason

[1979]. He proposed that the manipulator motion should be specified to impose

a set of artificial constaints orthogonal to the natural constraints imposed by the

environment. Given a constraint surface, the task of the manipulator is then to

control the force normal to the surface and velocity tangent to the surface. This

approach can be realized in simple tasks by the hybrid position/force controller _O

described by Raibert and Craig [1981]. The hybrid scheme involved combining

a position and force feedback loop to control position along specified axes and

force orthogonal to the axes.

Salisbury [1980] presented a method for controlling the effective stiffness of

a manipulator. Restoring forces are exerted proportional to the deviation of the

endpoint position from a desired nominal trajectory. The manipulator is made

stiff in unconstrained directions and compliant in constrained directions. Hogan

[1984] argued for this type of strategy from the view point of causal dynamics.

He noted that th- environment acts as an admittance (i.e. force in, motion

out), hence the manipulator should acts as an impedance (i.e. motion in, force

out). He proposed a more general strategy which includes stiffness, damping,

and inertia terms, i.e the applied forces are functions of the position, velocity,

and acceleration. Full control of the apparent impedance of the manipulator is

not necessary from the stand point of task requirements. Stiffness control is

sufficient to control the forces of interaction. However, when dynamic coupling

with the environment is considered, stiffness control alone may not be sufficient

to maintain stability. Kazerooni [1985] has suggested that the damping terms

should be used to ensure stability of the closed-loop system, i.e. the stiffness

controller interacting with the environment, and that the inertia terms be used to

limit the bandwidth of the controller. The bandwidth of the controller should

be chosen to attenuate the effects of high frequency disturbances (e.g. force

measurement noise) and unmodeled dynnics.
|S



Chapter 3

Coordinate Frame Transforms

3.1 Introduction

The task of a manipulator is almost always specified in terms of Cartesian coor-

dinates. For position control, the desired position and orientation of an object is

given in Cartesian coordinates. The desired motion is specified as translations S

along and rotations about Cartesian axes. For force control, the desired forces r

are specified as forces along and moments about these axes. The transforma-

tion of position and force from joint space to Cartesian space is computed with

respect to some "absolute" coordinate frame, often one fixed at the base of the -

manipulator. However, the task is often specified in a coordinate frame different 4

from the "absolute" frame. This requires transforming the desired position or

force in the task frane into position or force in the absolute frame.

In this chapter, we will review the mathematics of coordinate frame trans-

forms. There are many methods to represent how one Cartesian coordinate

frame is positioned with respect to another. In general, the representation may

be divided into two parts: one part describing the relative location of the frame

origins and the other describing the relative orientation of the coordinate axes.

The relative location of the frane origins is described simply by a vector point-

ing from one origin to the other. The relative orientation of the coordinate

axes, however, have many standard representations. Among the commonly used S

17
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iz

Figure 3.1: Relationships between two coordinate frames

methods are: Euler angles, 3x3 rotation matrices, and quarterions. Here we will
sturdy the representation of coordinate frames by 4x4 homogeneous transform

matrices, which uses the rotation matrix to describe orientation.

3.2 Homogeneous Transform Matrix

The complete representation of location and orientation by a 4x4 homogeneous

transform matrix was proposed by Roberts [1965] in connection with computer

vision. If the displacement of the frame origin is described by the 3x 1 vector p

and the orientation of the axes by the 3x3 rotation matrix R, the homogeneous

transform matrix representation is

AR(3.1)0 0 0 1

The rotation matrix R is simply a matrix of direction cosines expressing the

components of the :r, y, and z axis of one coordinate frame in another. The

realtionship between the two frames i and i + 1 in Figure 3.1 is given by
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34 l i -I 2 i* z i~lz Pi-lz

Ajij l ',ly Yi!-IY zi+1Y pi -Iy (3.2)
Xi'-lz Yi-l3 Zi'jIz Pi~lz

0 0 0 1

The first column is composed of the components in frame i of the z unit vector
of frame i + 1. The second and third columns are composed of the components

of the y and z unit vectors, respectively. The last column is the vector pointing

from the orgin of frame i to the origin of frame i + 1.

The homogeneous representation of a point (z, y, z) is the column vector

X

Y (33)
z
1

If a point is located by zi+l in frame i + 1, then its location in frame i is

x, = Aj+j &+1 (3.4)

Let i + 2 he a frame described relative to frane i + 1 by A j2, then

x+, = Aj+2 -T+

and hence
4.= [Aj+jAj+ 2j+ L,

Therefore we see that succesive relative frame transforms can be reduced to one

composite transform matrix by simple matrix multiplications. If there are n

succesive relative frames, then a point expressed in frame n as .,, is expressed
in the base frame 0 by

= [AIA2 ... A.11,_

Coordinate transfomation in the opposite direction is accomplished by in-
version of the transform mnatrix. For example, if the location of a point is given

in terms of framne i, to find its location in frame i + 1, we use

1 = AiJ, (3.5)
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Since the inverse of a rotation matrix is its transpose, the inverse of a transform

matrix (Equation 3.1) can be shown to be

A-'= R T _R T P1

0 00 1 J
The homogeneous representation of a direction vector (z, y, z) is

X

Y(3.6)
z
0

Similarly, if a direction vector is expressed as v,+ in frame i + I, then in frame

i it is expressed as

Because the last row of v+L is zero, it is easily seen that the displacement of

the frame origin has no effect on the result vector (scc Equation 3.2). This

is expected, since the magnitude of a vector is constant with respect to any

coordinate frame, only the direction vary. Hence, transforming a vector reduces

to a simple multiplication by the rotation matrix R.

In addition to using the transform matrix to represent a coordinate frame,

it can be used to represent the position and orientation of a rigid object. That

is, the transform matrix can be used to represent a frame fixed in a rigid object.

The position and orientation of the frame then become attributes of the object.
S

3.3 Specification of Rotation

The relationship between two adjacent frames can also be specified as an equiv-

alent rotation followed by a translation of the frame origin. For the two frames

shown in Figure 3.2, we envision that frame i + 1 originally coincides with

frame i. Frame i + 1 is first rotated' about the unit vector n through the

'Po.itive rotation corrc-potld: to a right hand crcw

MUMNIt N Z % )*

NMI OKM ui NY.V '1
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Figure 3.2: Describing relation of frames as a rotation followed by a translation

angle 0. Then the origin of frame i + 1 is translated along the vector p. This

representation is physically more meaningful than the transform matrix when

describing the position and orientation of an object. Instead of stating where

an object is, we can now describe how it got there. Replacing the 3x3 rotation

matrix R by the pair [n, 01 also conserves data storage.

Given a rotation matrix R composed of the column vectors (M, v_, _)

R (3.7)

the correponding pair [n, 0! is found from the formulae

Cos 0 (u, + v, + W, -1) (3.8)
cos 0 =cos0

n, = sgn(- ) V -cos (3.9) S

14Y = sg,, (, - Ii') VY - Cos (3.10)
g 2 -u -cosO

n,= sgn (U. - v /i- cos ' (3.11)

i- Cos 0
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When the angle 0 is small, numerical computation of the components of n be-

come inaccurate. Paul [19811 presented a method for nmore accurately deteruiin-

ing these values. Whitney [19721 gives an alternate approach in which n is found

as an eigenvector of the rotation matrix.

The rotation matrix corresponding to a specification of [n, 01 is found from

the formula

nrnvers 0 + cos 8 n~n~vers 0 - n: sin 0 n,n~vers 9 + n. sin 1
R(n, 9) = nznyvers 9 + n. sin 0 n1 nyvers 9 + cos 9 nznyvers 0 - n. sin 0 ,

n~n,vers 9 - n, sin 9 nYn~vers 9 + n sin 9 nnvers 9 + cos 9
(3. 12

where

vers -versine0 = 1- cos .

Equation 3.12 is very useful for locating points fixed on objects, as will be shown

next.

3.4 An Example

Manipulation by position control requires computing the appropriate mnanipu-

lator contact motion which will enforce a desired object motion. Assuming no

slip has occured and that rolling is negligible, a point contact will remain fixed 0

with respect to the object throughout the motion. As a preview of the matrials

in the next chapter, we will consider an example which involves locating a fixed

point on an object after a prescribed object motion.

Consider the rigid cup shown in Figure 3.3. Point P is fixed on the side of

the cup and is located by x. in the "absolute" coordinate frame o. Let c be a

coordinate frame related to o by the transform matrix Ac. If the cup is rotated

by 0 about 2, and then translated by the distance h along i,. where is point P

with respect to coordinate frame o ?

First we find the location of P relative to frame c from

N
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ze

C

Y 2

xV

Figure 3.3: Example in using frame transforms

Next, we establish a coordinate frame c' fized to the cup which initially coincides

with framne c. After rotating thru 0 about ic and translating by the distance h

along i, the relation of frame c' to frame c is described by the rotation [in 01
andthe translation pwhere

1=( 0 h]

Let A, be the transform relating c' to c. From Equation 3.12 we obtain

[1 0 0 0
Ac 0 cos 0 - sinG 00

Sine he oit Pisftxd o 0 sinG0 cos 0 h

Sinc th pont Pis ixe tothe cup, its location in frame c' is the samne as its

original location in frame c. Denoting the new location by e, we have

Hence, the new location of point P in frame o is given by

x= AcA, z A AtAC-17 ~

it- *.- -.
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Now suppose the cup is securely grasped by an aticulated hand with n

contact points, performing this transformation for the n points will yield the

required contact positions which will place the cup at the desired position and

orientation. This procedure forms the basis for generating Cartesian trajectory

of objects with an articulated hand.

ION

SI ,\- -
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Chapter 4

Generating Grasp Trajectory

4.1 Introduction

Using manipulator contacts to impose kinematic constraints on an object re-

quires that these constraints be self-consistent and consistent with the con-

straints in the environment. Assuming that the object and the environment S

geometries are precislely known, consistent constraints can be specified. Ob-

taining the desired object motion then corresponds to imposing the appropriate

kinematic constraints on the object via the contacts.

Articulated robot hands are essentially arrangements of fingers; each finger

can be viewed as a miniature manipulator having one or more degrees of free-

dom. The motion of each finger tip is equivalent to the end point motion of

an independent manipulator. When an object is grasped by the finger tips, we

can view each end point as attached to the object.' The motions of the end

points then act as kinematic constraints on the possible motion-s of the object.

Manipulation of the object then reduces to the task of imposing an appropriate

set of end point constraints such that the possible motions of the object will be

uniquely the desired motion. %

This chapter studies how to obtain desired Cartesian motion of grasped ob-

Assuiing no slip and that rollig at the oitact. is uegligible. .0,0

25
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jects with an articulated hand. It will be assumed that the object and the l

environment are precisely known, and hence position control of the contacts

can be used. The materials will be presented in a general context. The Stan-

ford/JPL Hand [Salisbury 19821 will be used to illustrate materials which are

unique to a particular hand. First, we will study the transformations between

Cartesian and joint space hand coordinates. Next, a useful coordinate frame

called the grasp frame will be defined. Finally, the coordinate frame transforms

and Cartesian to joint space transforms are combined to translate the desired

Cartesian motion of an object into desired motion of the finger joints. By using

the grasp frame, we will be able to specify motion of the object in a body-fixed

coordinate frame.

4.2 Hand Kinematic Transforms

The desired motion of an object is almost always specified in terms of Cartesian

coordinates. Hence, to use the manipulator contacts as kinematic constraints,

the motion of contacts must also be specified in Cartesian space. Given the joint

position of the manipulator, to locate the contacts in Cartesian space requires a

kinematic transform from joint space to Cartesian space. Conversely, given the

Cartesian positions of the contacts, to locate the corresponding joint position

requires a inverse kinematic transform from Cartesian space to joint space.

4.2.1 Dealing with Multiple Solutions

For a non-redundant manipulator with n degrees of freedom, we need to derive

the transforms which maps the n joint space coordinates into n Cartesian coor-

dinates, and vice versa. The mapping from joint space to Cartesian space will

have a unique solution, but the inverse mapping will usually have a finite set

of possible solutions. Additional conditions must be imposed on the solutions t

to obtain a unique mapping. For example, a typical manipulator wih six DOF

may have eight or more possible configurations which will place the gripper at

a desired position and orientation. The path to some configurations may cause

,4p -.- .N: _ .. . ... -
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YS
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,-I Y5 X2 2

Figure 4.1: Non-redundant articulated hand for planar motion

collisions, while others require awkward movements. An unique configuration

must be chosen ahead of time, or sufficient conditions must be imposed such S

that a unique configuration can be automatically selected.

For a redundant manipulator, the number of DOF in joint coordinates is

greater than the number of DOF in Cartesian coordinates. The mapping from

joint space to Cartesian space has a unique solution, but the inverse mapping

has zero or infinite solutions. Additional constraint equations must be included

in the inverse mapping to obtain a finite set of solutions, and then conditions

imposed on this set to obtain a unique solution. The additional constraint

equations may be chosen to optimize the performance, e.g. even distribution

of joint velocities minimize joint torques [Hollerbach and Suh 19851, required

power input [Salisbury and Abramowitz 19851, or time of travel [Brooks 19821.

The same principles hold for articulated hands. Consider the planar four

DOF non-redundant hand shown in Figure 4.1. Given the four joint angles, " ,

there is a unique set of four Cartesian coordinates for the hand, two for each

finger end point. Hence, the mapping from joint space to Cartesian space is

. N



%A-

CHAPTER 4. GENERATING CRASP TRAJECTORY 28

(X2, Y3)
(Xi, YL

Figure 4.2: Redundant articulated hand for planar motion

given by the single-valued transform

where

0'= 03, 01,2 02,1 02,2 IT

However, for a given Cartesian position there are usually four possible combi-

nations of joint positions. The configuration of each finger must be specified to

either bend toward the palm or away from the palm in order to obtain a unique

joint solution. Hence, the inverse transform

can have up to four solutions.

For the planar six DOF redundant hand shown in Figure 4.2, the mapping

from joint space to Cartesian space is still single-valued. However, there are

now inifinite solutions for the inverse transform. This is because there are six

..... ..... . .. .
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Figure 4.3: The Stanford/JPL Hand

unknowns (the joint angles) but only four constraint equations (the z and y

positions of the finger tips). To reduce the possible solutions to a finite set, S

two additional constraint equations are required. For exunple, we may specify

that the ratio of 01,1 to 01,2 must be some constant. After the solutions are

reduced to a finite set, additional conditions are imposed to obtain a inque
solution. It is important to distinguish between constraint equations and con- S

ditions. Constraint equations are imposed on the DOF of the manipulator to

reduce the possible solutions to a finite set. Conditions are imposed to select a

unique solution from the finite set.

4.2.2 Transforms for the Stanford/JPL Hand

As an example, we will derive the kinematic transforms for the (non-planar)

Stanford/JPL Hand. The Standford/JPL Hand is a nine DOF hand composed5

of three fingers, each having three DOF. (see Figure 4.3).
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Figure 4.4: Definition of finger coordinates

Finger Transforms

We will first consider the transformations for a finger in a Cartesian coordinate

frame fixed at its base. The Cartesian coordinate of the finger corresponds to

the location of the finger tip. The definitions of the joint angles and Cartesian

coordinates are shown in Figure 4.4.

The transform from joint space to Cartesian space can be easily found as

X (L + L2 cos 2 + L3 cos(0 2 + 03)) sin 01

Af y~ (LI + L 2 CoO 2 + L3 cos(0 2 +0 3)) COS01 (4.13)
z [2 0sin 12 + LI sin(02 +0s) 

The inverse transform involves more complex geometry. Figure 4.5 defines

the variables which will be used in the derivation. There are two possible config-

urations which will place the finger tip at (z, y, z), one corresponds to the finger

curling upward and the other corresponds to finger curling downward. From the

figure, the first joint angle is simply

01 atan(!). (4.14) ,
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Figure 4.5: Coordinate definitions for derivation of inverse transform
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The mechanical design of the hand limits this joint to 0t[ < 90'. Otherwise,

some positions may have up to four solutions, corresponding to the fingers reach-

ing backwards.

The lengths d and I are found from

d = L,
Cos 01

tV/-V + _2

Note that if 12 > L2 + L2, then the desired position is out of reach. The angle

is found from the law of cosines
_12 + L 2 -L2

cos~ €= 21L 2

and 02 is
d 02 atanisd :F atan (z):F acos 2 (4.15)

d z1L2

where - corresponds to the upward curl configuration, and + corresponds to

the downward curl configuration. Similarly, we find

L 2~ + L~ - 1Cos ¢=; + /3 -t

2L 2 L3

and the solutions for 03 ( L 2 +LL 12)
03 = - k) = + - acos 2 (4.16)

where + corresponds to upward curl, and - corresponds to downward curl.

Equations 4.14, 4.15, and 4.16, constitutes the inverse transform

which can have from zero to two solutions.2 When there are two solutions, the

condition of whether the finger is curled upward or downward will determine a

unique solution.

'When there are no limits on the joiit 2 .nd 3 MugleS. no solution corresponds to the pl,,ition

out of reach: one solution corrsIbomi&4 to links 2 and 3 fully extended.

4 4 * '.(I
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z ~Finger 2Figr

S

Fingerr I

Figure 4.6: Definition of hand coordinate system

Hand Transforms

The previous transforms were derived with respect to a coordinate system fixed

at the base of a finger. To coordinate the motion of the fingers in the hand,

the transforms of all the fingers should be derived with respect to a uziaform

hand coordinate system. For the Stanford/JPL Hand, we have chosen the hand

coordinate frame as shown in Figure 4.6. The finger transforms in the hand

coordinate frame are as previously derived but for a simple shift in origin. The

transforms for finger 3 requires an additional rotation of coordinate axes. M

The transforms of the individual fingers are combined into a hand transform

which maps the nine joint coordinates to nine Cartesian coordinates in the hand

frame
-" AhkZ ) $.\

where [ I I:

_ and 0_=

030

The vectors z and 0 are the Cartesian and joint positions of finger i, respec-

SV %I- % V. % . *t.
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Figure 4.7: Inward curl avoids interference with object

tively. The inverse transform

0 =

can have up to eight solutions, since each finger can have two solutions. Curl con-

figurations must be specified for each of the fingers to obtain an unique solution.

Instead of specifying the configurations as "curl up" or "curl down", we can now

conveniently specify them as curling inwards or outwards from the palm. Since

the outward curl configuration may cause the links to interfere with a grasped

object, the inward curl should be chosen by default (see Figure 4.7). This will

free the programmer from the tedious task of specifying the curl configuration

for each of the fingers, unless an outward curl is required.

4.3 The Grasp Frame

For a manipulator with a simple gripper, the position and orientation of the

grasped object is described by the position and oricntation of the hand frame. ,,.

This is possible because the hand frame is rigidly attached to the object. The

desired motion of the object is translated into the desired motion of the hand

I
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Figure 4.8: Body-fixed frame defined by planar finger contacts

frame. However, when an object is grasped by an articulated hand, the object

can be moved and oriented within the hand, and hence the position and orien-

tation of the hand frame is insufficient for describing the object. To place an

object at the desired position and orientation, we P ccd to :"'. o a body-fized

coordinate frame, i.e. one rigidly attached to the object.

4.3.1 Defining a Body-fixed Frame

Assuming that no slip has occured and that rolling is negligible, finger contacts

can be viewed as rigidly attached to the grasped object during any object motion.

Therefore, the position and orientation of the contacts can be conveniently used

to define a body-fixed coordinate frame. Once this frame is defined, the joint

coordinates can be used to compute the location of this frame at any time. An '.-

alternative would be to use a vision system to track the object. 0

As a simple example, consider the planar two-fingered hand shown in Fig-

ure 4.8. The two finger tip contacts can be used to define a body-fixed frame.

The z direction of the frame is defined as a vector normal to the plane of the

hand. The vector parallel to the line connecting the two finger tips is used to
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define the z direction. The y direction is defined by the cross product of the

z and z vectors. The frame origin is set at the center of the line connecting

the two finger tips. The position and orientation of this frame can be easily

computed from the joint angles.

To distinguish it from the hand frame, the frame defined by the grasp con-

tacts will be refered to as the grasp frame. The grasp frame should always be

defined relative to the hand frame. This lends modularity to the hand. When

the hand is mounted on a manipulator arm, the absolute position and orienta-

tion of the object can be found simply by multiplying the grasp frame matrix

by the hand frame matrix computed from the arm position. Hence, by defining

the grasp frame relative to the hand frame, we can write hand software which

ire independent of the arm used. With this in mind, we shall henceforth use the

hand frame as the "absolute" coordinate frame for defining positions and orien-

tations. The configurations and motions of objects in the hand frame can always

be transformed to a global manipulator frame by a simple matrix multiplication.

4.3.2 Frame Definition for Stanford/JPL Hand

The definition of the grasp frame should be chosen based on usefulness and ease

of computation. A useful choice of frame origin is the centroid of the area or

volume enclosed by the contacts. However, for ease of computation, one may

simply choose a point contact as the frame origin. Readily defined vectors should

also be exploited to avoid complexity.

To illustrate the computation of a grasp frame, we consider the contacts of S

the Stanford/JPL Hand. The contacts vith an object are idealized as point

contacts at the fing- tips. Figure 4.9 shows a grasp frame definition using these

contact points. The three points define a triangle in space. The vector from

finger I to finger 2 defines the z direction of the frame. The outward pointing

vector normal to the plane of the triangle defines the y direction. The z direction

is defined by the cross product of the x and y vectors. The frame origin is set

at the centroid of the triangle.

%

V~~~~~~ %%\ ~ ~ ~ *~~v
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Hand Frame

Xt 3 9
3 ..

Figure 4.9: Grasp frame definition for Stanford/JPL Hand

Given the joint position 0 of the hand, we first find the corresponding Carte-

sian position of the contact points from the kinematic transform

= Ah(6

Define v, as the vector pointing from finger I to finger 2, and v2 as the vector .

pointing from finger I to finger 3 40..._

1= 13-

Let , , and i denote the unit vectors of the grasp frame expressed in the hand -

frame. We have

_ X

If at this time we decide to shnply place the origin of the grasp frame at one of

the contact points, say z1, the grasp frane is then related to the hand frame by

%~ "B N"~
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Hand Frame

2 Vt

Grasp Frame

Figure 4.10: Alternate grasp frame definition

the transform matrix (see Equation 3.2)

Ag91 [ ~ 1 (4.17
L0 0 01

The coordinate system for this grasp frame is shown in Figure 4.10. With respect

to this frame, the triangle lies in the x-z plane, and one of its sides coincides
with the z axis. The position of the centroid in this frame cain be easily found.

Let the position of the centroid in this frame be

-- 0z Z0

Then the position of the cent'oid in the hand frame is given by

:c= Ac

This is now substitued for x_ in Equation 4.17 to obtain the grasp frame with

origin at the centroid of the triangle

Ay 0 0 0.

or .]- (4.18)V

%4
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z

Cylinder Frame c

Figure 4.11: Using the grasp frame

Note that in this derivation we have used the standard representation and ho-
mogeneous representation of positions interchagebly. This miLxture of represen-

tations will be used to avoid verbosity. Hence, if a position vector is multiplied

by a transform matrix, it is taken to mean that its homogeneous representation

is multiplied by the matrix.

4.3.3 Using the Grasp Frame

The grasp frame provides a body-fixed coordinate frame computable from the

joint positions. However, this frame may not be appropriate for describing the S
position and orientation of a grasped object. For example, consider the cylinder

shown in Figure 4.11. The grasp frame g is not as appropriate for describing

the position and orientation of the cylinder as frame c. If the grasp points on

the cylinder are known, then frame c can be defined relative to the grasp frame 0

g. Then frame c can be located at any time by multiplying the relative frame c:

matrix by the grasp frame matrix.

To illustrate the usefulness of the grasp frame, we will consider the problem

of moving the can to the desired position and orientation of frame d. The
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"absolute" coordinate frame is understood to be the hand frame. Given the

joint position 2, we begin by finding the finger tip positions

x-Ah(0)

The grasp frame A,(z) is then computed. Let the can frame relative to the

grasp frame be described by the matrix A,,. Then the position and orientation

of the can frame is described by

A, = AgACI

and the contact locations in the can frame are found from

Note that we have used the simple matrix multiplication to denote the trans-

formation in which every point in z is multiplied by A-'. This notation will be

used to avoid verbosity. Now assume that the can frame is moved to coincide

with frame d, defined by the Matrix A,. Since the location of the contact points 0

relative to the body-fixed can frame do not change, the location of the contacts

in the absolute frame is

X = Adz.

Hence, to move the can from configuration c to d would require moving the

fingers from x to x' given by

=. Ad[A9Ac,,1- x AB

The required joint position is then found from the inverse transform

Ah

This example illustrates the simplicity of defining an alternate body-fixed co-

ordinate frame and obtaining the desired position and orientation of this frame.

The grasp frame provides the necessary link between the hand coordinates and I

the position and orientation of a grasped object.

%
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4.4 Generating a Trajectory

The use of frame transforms has made it possible to compute the required final

positions of the fingers corresponding to a desired object position and orien-

tation. If the individual fingers were to move in straight line motion to their

respective final positions, the shape of the grasp will alter during the motion,

e.g. the distance between the grasp points will change. This will cause either

dropping or crushing of the manipulated object. The computation of the final

positions assumes that the contacts are rigidly attached to the object. Hence,

during every instant of object motion, the relative locations of the contacts must

remain constant. The solution to this problem requires knowledge of the posi-

tion and orientation of the object at every instant of the motion. The positions

of the contacts are then transformed using the body-fixed coordinate fraic into

positions in the absolute frame.

To obtain the position and orientation of the object at every instant of the

motion requires a specification of motion. That is, instead of specifying where

the object is to be moved, we must specify how. This is philosophically very

different from motion specifications for ordinary manipulators. When using a

manipulator, the desired gripper position and orientation is translated directly

into goal joint positions. The joints are then simply servoed to their final po-

sitions. Specification of how the gripper is to be moved to its final position

and orientation is not necessary. Paul (1975,19791 and Taylor [19791 have both

investigated the problem of obtaining Cartesian trajectories of the gripper, but

the fundamental motion command for a manipulator is still a desired position

and orientation. For an articulated hand, however, the fundamental motion ,

command is the desired trajectory of an object. A goal position and orienta- "

tion must be specified in terms of a trajectory. In this section we will study

how object motions are specified and how to translate the desired motion into

trajectory of contact points.

SN
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zS

Figure 4.12: Describing motion of an object

4.4.1 Describing Motion of Objects

Coasidcr the motion of a rigid object as shown in Figure 4.12. We wish to rotate

the object about uil axis n by the angle 0,L. Let T be the timne duration of the N

rotation and let x(0) locate a point on the object before the rotation. Then, for

uniform motion, the point at time I is located by

U0 0i

where R(n, 0) is given by Equation 3.12 and

9(t) = t a

Similarly, if we wish to translate the object along the vector pin time T, the

point is located by

0) I P(t) ]~O
0 00 1

where I(is the identity matrix and

P(t) t;
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Placing the object in an arbitrary position and orientation can be accomplished

by a rotation followed by a translation. However, dividing the motion into

two sequences is both time consuming and unnatural. The same position and

orientation can be obtained by a single motion. Let the required rotation be

In, 0,] and the translation be p, we define the corresponding "straight line"

motion by the point trajectory

Rzz,8t) p=t (1.19

This motion corresponds to superimposing the translation on the rotation. We

shall call the set [n, O,, .d a move specification, or simply a move spec. Equa-

tion 4.19 defines the motion corresponding to the move spec with duration T.

4.4.2 Specifying Motion

The above formulation provides the basis for determining required contact tra-

jectories corresponding to a desired object motion. We will now study how

trajectories corresponding to some basic tasks are obtained.

Motion in Alternate Frames

Often we wish to specify motion with respect to a frame which is not the absolute

coordinate frame. For example, the rotation shown in Figure 4.13 is obtained

by specifying rotation about the z axes of frame o. To generate motions with

respect to an arbitrary frame, we can simply obtain the trajectory of the contacts S

in that frame and then transform it back to the absolute fra.me.

Let the move [n,0d,.J be specified with respect to a frame A, and let _(O)

be the absolute position of the contacts at time t = 0. The contact positions in

frame A, are then given by

,( = A-'x(0)

When the object is rotated and translated with respect to the axes in frame A, 

.4 ek %~. ~ '~~,4
.7.
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Figure 4.13: Specifying motion with respect to another frame

the trajectory of the contacts in framne A,, is

10 00 1 ()

The required trajectory of the contacts in the absolute frame is then easily found

from

Hence, we haver

Z(t = Ao R(n,O(t)) E~t A-' z~(0). (4.20)
10 00 1 0

The contact trajectory 1(t) can then be transformed into the required joint

trajectory 6(t) by the inverse transformu

Object Centered Motions

A body-fixed coordinate fraine defines an origin and a set of axes which de-

scribes the position and orientation of an object. Often we wish to rotate or
N ,NN-l

n .,9

4 *! I I.
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Figure 4.14: Screw motion is generated with respect to body-fixed frame

translate an object along one of its own axes. For example, the screw motion

shown in Figure 4.11 is obtained by specifying sinitltoaneous rotation about and

translation along the y axis. This class of object centered motion can be casily

obtained by the use of the grasp frame.

Let the body-fixed frame of an object be described by A, relative to the

grasp frame, and let the move [n, 0,pd] be specified with respect to the body-

fixed frame. We begin by evaluating the current grasp frame A,(1(0)). The

body-fixed frame is then

A0 = Aq (z( _) A,

The trajectory of the contacts are then computed in this frame md transformed

back to the absolute frame, as given by Equation 4.20.

Positioning and Orienting Objects

As discussed previously, a trajectory specification is the fundanmental motion

command for an articulated hand, while for an ordinary manipulator it is a

desired position and orientation of ,he object/gripper. The position and ori-
0

entation commands for a manipulator can be used to generate desired object
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trajectories [Taylor 1979]. Similarly, the trajectory commands for an articulated S

hand can be used to obtain desired positions and orientations of objects. We

will now consider how to transform a position and orientation specification into

a trajectory specification.

Recall that the relation between two frames can be described by an eqliv-

alent rotation about an unit vector n followed by a translation p of the frame

origin. That is, one frame can be brought to coincide with another by a single

rotation followed by a translation. This offers a well defined motion path for

moving a body-fixed frame to a desired position and orientation. However, as

previously discussed, dividing the motion into two sequences is both time con-

suming and unnatural. Hence, we will adopt the "straight line" motion defined

by Equation 4.19. The straight line motion between the two frames can be

envisioned as superimposing the rotation on the translation.3

The equivalent rotation [n,0] is used to describe the relation between two
frames. Hence, if we wish to move a body-fixed coordinate frame from A, to

some frame A,, then we imust first express A, as a frame relative to A,. Let z .

be a point in the absolute frame. Let its location in frame A, be given by ,

and its location in frame AP be given by 1_,. Then we have

1 = A. , = A,

or
- [A-' Ap] 1p

Since the matrix [A;'IAp] transforms x, to x, AP must be related to A, by the

matrix 0
A,,, = AO 'Ap.

The first three columns of this matrix is used in Equations 3.8 thru 3.11 to

find the equivalent rotation [n,0Od, and the last column is the origin translation

vector p. The task of moving the body-fixed frame from A, to A, now reduces

to generating the trajectory [fn,9,pJ in frame A,.

'Paul [19751 dhincs "strtight Ue" motion a, truilation of the frame origin cou,,Icd with two

conpo,,itc rot;ations. This dCfinitioh wotild re.quire computation of rotations about two axes.
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4.5 Interpolation in Joint Space

In the previous section we have studied how to obtain the required trajectory of
the contacts corresponding to . given task. The contact trajectory is given by a

continous time function .(t). The corresponding continous time joint trajectory

is found from the inverse transform

a(t) =A-' x(t)

Computer control of maniplator involve specifying a desired joint position or
force for each interval of servo cycles. Hence, we can only specify goal positions
for isolated points in time. To compute a transformation for every servo cycle

usually cannot be done in real time. The computations must be performed prior 9
to the execution of the trajectory, i.e. the joint trajectory must be preplanned.

For manipulations in which trajectory decisions are made based on sensory input,

it is important to minimize the time the manipulator waits for the planning to be
completed. Therefore, only a selected number of intermediate trajectory points
should be computed. The number of computations should be the minimum

required to satisfy some "fineness" criteria for the motion.

To illustrate the computations, we will consider a trajectory specified with
respect to the absolute frame. Trajectories in other frames can be obtained by

a constant matrix multiplication. Let the trajectory [n, Od, P] in time interval T
be divided into N uniform segments, then the position of the contacts at each

knot point is given by

RCn, Vtk)) 2(tk) 0 ' "0 0 0 1 .

where

k k'

Define the incremental rotation angle and translation vector

Ae = Od
;V

UN
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1

Since rotations are composed by multiplying rotation niatrices, we can write

R(ti) = Rk(!, AO)

and for the translation
(tk)= k Ap

These two equations offer a convenient algorithm for computing the positions of

trajectory knot points. The corresponding knot point in joint space is

a(t ) = A-'X(tk)

This corresponds to N joint trajectory segments, each with duration T/N. The

joints can be commanded to simply move from 9(tk) to 8(tk+l) in a straight

line in joint space, or quadratic curve fitting may be used to smooth out the

transitions between the segments.

The interpolations in joint space will result in intermittent deviations of the

contact trajectory from the desired path. Philosophically, to maintain the grsp

shape would require the continuous time contact trajectory z(t) be faithfully

executed. Interpolations in joint space would result in distortions of the grasp

shape and hence lead to either dropping or crushing of the manipulated object.

In pratice, we can command a slightly smaller grasp shape than the actual shape

of the object. The mechanical compliance of the fingers are used to absorb the

contact force variations due to distortions in the commanded grasp shape.

With respect to manipulator Cartesian motion, Taylor [19791 has suggested

a method for determining the number of knot points required. He noted that the

maximum deviation from a Cartesian path usually occur at or near the midpoint

of a joint trajectory segment. Therefore, the Cartesian position and orientation

corresponding to the midpoint of a segment can be used as a convenient mena-

surement of the accuracy of the motion. The position and orientation computed

from the joint segment midpoint are compared with the desired Cartesian path

midpoint. If the deviations exceeds some specified bounds, then the segment is

%~ % .&.>'



w.

CHAPTER 4. GENERATING GRASP TRAJECTORY 49

4 z &

Figure 4.15: Two grasp shapes have same grasp frame'

divided in two and the computations repeated for the midpoints of these two

segments.

Similar algorithms can be used to determine the required number of knot
points for an articulated hand. The position and orientation of an object at

the joint segment midpoint can be computed by evaluating the corresponding

grasp frame. However, the grasp frame may not be an accurate indicator of

the correctness of the motion. For example, the two grasp shapes shown in
Figure 4.15 have the same grasp frame. Excessive contact forces will result from

mistaking one configuration as satisfactory. Hence, we may also wish to evaluate
the distances between the contacts and check if the variations exceeded some

specified bounds.

% %
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Chapter 5

Grasp Stiffness Control

5.1 Introduction

Philosophically, position control of an articulated hand is feasible only when

the shape of the object and the environment are perfectly known. The motions

of the contacts can then be used as a set of consistent kinematic constraints

on the object. Specifying the positions of n contact points is equivalent to 3n

constraint equations on the object.' Since an object only has six DOF, the

solution to the position and orientation of the object is over constrained when

there are more than two contact points. ' Using coordinate transforms, we were

able to specify contact motions for which all constraint equations are consistent.

However, interpolations in joint space inevitably result in intermittent inconsis- ,

tencies in the constraints. In practice, we can use the mechanical compliance of

the fingers to absorb the interaction forces due to attempts to impose inconsis-

tent constraints. That is, the passive compliance of the fingers is exploited to

ensure that the actual motions of the finger tips are geometrically compatible

with that of the object. Allowing the passive compliance of the fingers to ensure

geometric compatibility corresponds to absorbing the kinematic inconsistencies

'Assuming three-freedom constraints such as point contacts with friction.
2 Actually, the rcquiirement that the distance between two contacts must remain constant al.o

impo a constraint equation. Hence, we can only specify two coordinates of the second 0

contact point without over constrailluig the object.

50
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through deformation of the fingers. When the fingers do not have a sufficient S

range of elastic deformations, permanent damage may occur. If the object is
also compliant, then deformation of the object will occur as well.

Since position control will inevitably result in kinematically inconsistent con-
tact motions, force control is a necessity, at least philosophically, for articulated

hands. Force control corresponds to imposing force constraints at the contacts
instead of kinematic constraints. The motion of the contacts is specifically al-
lowed to adapt to the object motion. Force control also eliminates possible

kinematic inconsistencies due to constraints in the enviroment. As the contacts

comply to the object motion, the object motion will comply to the enviromental

constraints.

There are several force control strategies suitable for a manipulator with a
single endpoint, as described in Chatper 2. For these manipulators the object

is securely grasped by a simple gripper. The force at the endpoint is controlled

to produce a desired net force on the object such that the motion of the object
satisfies the constraints in the environment. For an articulated hand, multi-

pie endpoints must be coordinated to produce the desired internal force which

maintains a stable grasp, as well as produce the desired net force on the object.

The stiffness control strategy presented by Salisbury [19801 is particularly

suitable for articulated hands. For manipulator endpoint motion, restoring
forces are exerted proportional to the deviation of the position from a desired

nominal trajectory. When applied to an articulated hand, in addition to exerting
net forces proportional to the object trajectory deviation, internal grasp forces
can be exerted in proportion to the deviation of the distances between the grasp
points [Salisbury 19821. Hence, the object behaves as if attached to a set of

interconnected springs at each contact. Instead of enforcing the intermittently
inconsistent contact positions, the hconsistcnt positions are treated as nominal

positions. The deviations of the actual positions from the joint-interpolated val-

ues are now absorbed by the active spring instead of the mechanical compliance
of the finger.

% %
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The stiffness strategy is sometimes also referred to as the generalized spring
strategy because it imparts to a manipulator endpoint the characteristics of a

multi-dimensional spring. This is one in a class of causal strategies in which the

manipulator acts as an impedance. An analogous generalized damper strategy

imparts to the manipulator the charateristics of a dashpot. Using this strategy,

forces and moments are exerted in proportion to the deviations from a nominal

translational and rotational velocity. The impedance control strategy "Hogan

1984] combines both of the generalized spring and damper characteristics with

a generalized inertia; additional forces are exerted in proportion to the accel-

eration. Stiffness control can be used only when there is sufficient mechanical

damping in the manipulator or in the environment to ensure a stable closed-loop
system. In general, active damping should be included to guarantee stability of

the combined manipulator-environment system.

This chapter will begin with an analysis of the stiffness matrix which defines

the force/displacement reiationship. Thcn we will consider the implementation

of stiffness control using aai articulated 4and. When the expected deviations

are small, it will be possible to pre-compute a joint space stiffness corresponding
to a desired Cartesian stiffness. The results are then generalized to include full

impedance control.

5.2 The Stiffness Matrix
.. %

Stiffness control involves implementing a desired relationship between force and
displacement. Restoring forces and moments are exerted on an object as a

function of the displacement from some desired nominal position and orientation. , .

We will consider a linear Cartesian force/displacement relation defined by

(5.21)J

where I is the generalized force vector which includes both translational and

rotational forces, and AX is the generalized displacement vector which includes

J.



CHAPTER 5. GRASP STIFFNESS CONTROL 53

both position and orientation, i.e.

L f. fy , M, M y m ,dmJ

and

~ ~ =m [ Ax Ay Az Aq ABog 1 T

K is a general 6x6 stiffness matrix which defines the desired force/displacement

relation. The coordinate frame in which the net force and moments on the object ,

are defined is referred to as the compliance frame. The point at which a pure

force can be exerted without causing rotation is called the compliance center.

We envision an object at its nominal configuration is rigidly attached to a frame

which initially coincides with the compliance frame. As the object is displaced

relative to the compliance frame, the position and orientation of the atached

frame is described by the vector AX. The origin of the displaced frame is

located by the first three elements of the vector. The orientation of the frame

corresponds to the rotation (in, AO where

A fj[A9O]
AO ny AOY

n, A02

Alternately, we can view the vector AX. as the effective move specification in S

the compliance frame which corresponds to the object displacement.

5.2.1 Diagonal Matrices S

Active stiffness control of the manipulator imparts to the manipulated object a

controlled compliance. That is, the displacement of the object from its nominal

position will be proportional to the force exerted on it by the environment. The

use of passive compliance in assembly tasks was analyzed by Drake [19771. His

work led to the development of the Remote Center Compliance (RCC) which

is used for chamfered assembly tasks. The RCC is basically a four-dimensional

spring which allows lateral and angular realignment of the constrained object.

For a peg-in-hole insertion task, the ideal location of the compliance center was

-

'V N ~ sls.
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shown to be at the mouth of the hole [Whitney 1982J. However, since the RCC

is a passive device, the compliance center must remain fixed with respect to the

peg. Hence, the compliance center is placed near the tip of the peg where the

desired relation is satisfied approximately. By using active stiffness control, the

effective compliance center can be easily shifted to remain near the hole as the

peg is inserted. This will be shown in a programming example in Chapter 7.

Using active stiffness control, a full six-dimensional RCC can be implemented
by the diagonal stiffness matrix

k, 0 0 0 0 0

0 kv 0 0 0 0

0 0 k 0 0 0

0 0 0 ke, 0 0
0 0 0 0 ko, 0
0 0 0 0 0 ko,

defined at the compliance center. The current four-dimensional RCC has no

translational or rotational compliance about the vertical axis, which corresponds

to

kz = ke, = oo

Diagonal stiffness matrices appear frequently in literature because its effects .

are easy to visualize. The use of a diagonal stiffness matrix is also sufficient

for many assembly tasks. However, the capabilities of active stiffness control

far exceeds implementing the simple decoupled force/displacement relation. In
what follows, the physical significance of non-diagonal stiffness matrices will be

investigated.

5.2.2 Non-diagonal Matrices

Consider an arbitrary stiffness matrix K with distinct eigenvalues. A matrix P

may be found which diagonalizes the stiffness matrix by the following transfor-

P Kation

=D P-'KP (5.22)

. ~ - -
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or S

K = PKDP- ' (5.23)

where KD is a diagonal matrix with the eigenvalues of K on the diagonal, and

P is a matrix with columns composed of the corresponding eigenvectors. Sub-

stitution into Equation 5.21 yields

I=-PK 1 p-'A .

Let the vectors 70 and XD be defined by

I" = P -D '

then we can write

ID = -KD AID

This is a decoupled force/displacement relation. The decoupled force and dis-

placement directions are along the colunn vectors of P, i.e. the eigenvectors.

The eigenvalues and eignevectors may be real or complex. The eigenvector corre-

sponding to a real eigenvalue is always real, and that corresponding to a complex

eigenvalue is always complex.

Before we begin the analysis of eigenvalues and eigenvectors, the following

definitions are useful

Definition 1 A matrix W is said to be a unitary matrix if

W rW = W W = I

where W denotes a matrix whose elements are complex conjugates of the elements

of matrix W, and I denotes the identity matrix.

Definition 2 A matrix If i3 said to be a normal matrix if

TIT H7 ,TIT
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It is a fact fiora linear algebra that only normal matrices can be diagonalized .

by a unitary transformation of the form

HD = WT HW

where HD is a diagonal matrix with the eigenvalues of H on the diagonal. Fur-

thermore, if H is real, then HD and W will be real.

Since the elments of a stiffness matrix K are always real, we have

KT = KT

and hence the matrix will be normal if

KTK = KK r

From this definition, we see that only symmetric stiffness matrices are normal,

i.e. K = K . Therefore, only symmetric stiffness matrices can be diagonalized

by a unitary transformation.

Symmetric Matrices

We now consider a symmetric stiffness matrix K and investigate the significance

of a unitary transformation. Since K is real, the diagonal eigenvalue matrix K,

and the corresponding unitary transformation matrix W will be real. Hence,

the definition of unitary matrix yields

WTW=WWT=I

or

WT = Wl

Therefore, the unitary transformation can be written as

KD = W-'KW --S

Comparison with Equation 5.22 shows that the unitary transformation matrix

corresponds to the matrix P. The property"',

pTp ppT 1 (5.24)

.. " "."...:." ", , ' .'R" -.,
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is obtained by normalizing the eigenvectors in the matrix. Let v, and K, be two S

column vectors in the matrix P, then Equation 5.24 states that

rj /I if i=
- (0 otherwise

i.e. the eigenvectors are orthogonal. Some physical insights can be gained by
considering a simple 3x3 translational stiffness matrix. For the symmetric 3x3

stiffness matrix, we have

The set of orthogonal eigenvectors transforms the coordinates into the decoupled
force/displacenient relations

!D = -KD A_.D

where iD nd XD are defined by

I = PID

Since prp F, the inverse of P is simply its transpose. Recalling that the

inverse of a rotation matrix is also its transpose, we see that P is essentially

a rotation matrix describing the orientation of the decoupled axes with respect
to the original axes. Hence, the symmetric stiffness can be viewed as obtained

from a simple rotation of a diagonal stiffness. The dccoupled stiffnesses, or

eigenvalues of K, are completely analogous to the principal stresses in solid

mcchanics and the principal moments of inertia in rigid body dynamics. The
eigenvectors then correspond to the principal axes. We will refer to these axes

-s principal translational stiffness axes. If the 3x3 K matrix is a symmetric

rotational stiffness matrix, then corresponding principal rotational stiffness axes

are obtained.

~**~ ~~~*( ~ **'* ~~ $ ~-
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If we construct a 6x6 stiffness matrix with decoupled translational and rota-
tional stiffnesses, the orientation of the principal translational axes and principal

rotational axes can be specified independently. This is accomplished by a K ma-

trix such that

KLK

where K. and Ko are 3x3 translational and rotational stiffness matrices, re-

spectively, and each 0 represents a 3x3 matrix of zeros. The K, matrix is used

to orient the translatonal stiffness axes, and K0 is used to orient the rotational
stiffness axes. The required K. and K0 are found by reversing the unitary

transformation (see Equation 5.23). Hence,

Ke = RoK,,dR0

K0 - RoKo,dRrY

where K,d and K9., are the desired diagonal principal stiffnesses; R. and R0 are
the rotation matrices describing the desircd orientation of the principal transla-

tional and rotational stiffness axes, respectively.

For a general symmetric Gx6 stiffness matrix K, the principal directions

are in genral not purely translational or rotational. The three translational

displacements and the three rotational displacements can be viewed as a gen-
eralized displacement in six-dimensional space. Although the translation axes

coincide with the rotation axes in three-dimensional space, they are orthogonal

axes in six-dimensional space. The normalized eigenvector matrix P then rep-
resent a six-dimensional transformation matrix which describes the orientation
of the six-dimensional principal axes. After diagonalizing the stiffness matrix,

six decoupled real force/displacement relations are obtained .. '

f, = -k, Axi i = 1, 2,..., 6 ,.
hS

where A, is the ii" eigenvalue of K. In order for restoring force to be exerted for

a given displacement Ax,, the stiffness k, must be positive. If k, is negative, then
a displacement will cause a force which will further compound the displacement.

a' %,_
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Any general displacement having components along the ih eigenvector will be

unstable. If k, is zero, then no force is exerted along the i" eigenvector, i.e.

that direction is perfectly compliant. Therefore, to ensure asymptotic stability,

all eigenvalues of K must be positive, i.e. the stiffness matrix must be positive

definite.

The requirement of positive-definitness can also be obtained from energy

considerations. An elastic system is stable if work must be done to cause a

displacement from its nominal configuration. Hence, if the nominal configuration

is taken to have zero energy, then the energy stored in the displaced system

must be positive. Given a generalized spring with stiffness K, the energy stored

corresponding to the displacement AX_ is

2
The energy E will be positive for all displacement AX 0 Q if and only if the.

matrix K is positive definite.3

A positive definite stiffness matrix is ensured when the principal stiffnesses

are selected to be positive. The required stiffness matrix K corresponding to

a desired diagonal stiffness K0 can be easily found by reversing the unitary

transfozn-ation, i.e. from

K = PKDPT

where P is a six-dimensional rotation matrix describing the desired orientation

of the principal axes.

Whether stiffness control of a manipulator implements a stiffness or a com-

pliance depends on how we view the interaction with the environment. With

respect to external kinematic constraints, the spring acts as a stiffness, i.e. force

is exerted in proportion to displacement. With respect to external forces, the

spring acts as a compliance, i.e. displacement is proportional to the external -

force. For the symmetric stiffness matrix, the compliance relations are given by
Ax =, i = 1,2,...,6 :

'This is the definitioi of positive defiuitness. The requirement that a eigenvatws be positive

i.i a .ufficieut test for positive ,hfflnitnes.

" V WM" " ~~ 5~* v* * V.,''' "'" - s.' %
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where fi is now the external force in the direction of the ith eigenvector.

Non-symmetric Matrices

Non-symmetric stiffness marices do not satisfy the definition for a normal matrix.

Therefore, it cannot be diagonalized by a unitary transform, i.e. the eigenvectors
of non-symmetric matrices are not orthogonal. This means the stiffness matrix

cannot be decoupled by a simple rotation of axes, whether in three-dimensional

or six-dimensional space. Furthermore, the eigenvalues and eigenvectors are no
longer guaranteed to be real. The diagonal matrix KD and the eigenvector ma-

trix P will in general contain both real and complex elements. As eigenvalues

come in complex conjugate pairs, the corresponding eigenvectors are also com-

plex conjugates. That is, if k, and k2 are a pair of complex eigenvalues, then

they are of the form

k,1 = k,, + jk;

k2 =k, - A,

and the corresponding eigenvectors are of the form

tj = _+ft_

By definition the eigenvectors satisfies the following relation

Kv, = vk, = (g_+j3)(k,, +jk,) = (ka - k,2_) + j(k,. + k,_)

K2~2 = E2k2 =( (- jl)(k. - jk,,) = (k.,a- kj) -j(kg+ k.0j)

Therefore, we can write

K11+22) = Ka= k ,a- kO
22

1 9'

I K(R1 - 12 )= K 0 k,,a+ kf

Hence, the decoupled complex equation

k, + jj 0°Ko g2

P.e %Te re U
%• % %' NO%
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has been transformed into the coupled real equation

K> ~kjA kV]

The eigenvector matrix P can be transformed into a purely real matrix P" by

transforming each pair of complex eigenvectors [a + J30,a_ - jij into a corre-

sponding pair of real vectors [q,01 as shown above. The stiffness matrix K will

then be transformed by the P" matrix into a purely real matrix. For example,

ki 0 0 0 0 0
0 k2  0 0 0 0

K; = [p'I-_Kp =  0 0 k,,,3  k,, 3  0 0 (5.25)0 0 -k,,3 ki,,3 0 0

o 0 0 0 k,, 4  k.,4

o 0 0 0 -k, 4 kv,4

Just as the response of linear dynamic systems can be decoupled into first and

second order responses, we can decouple the generalized spring into "first and

second order springs". The "first order spring" will be referred to as a simple

spring, and the "second order spring" will be referred to as a complex spring.

The decoupled real force/displacement relations will then be either of the form

A= -k, Ax, (5.26)

or of the form

Ax i (5.27)

where the decoupled coordinate axes are along the column vectors of P'.

The characteristics of the simple spring described by Equation 5.26 is well

understood. We will now examine the characteristics of the complex spring

described by Equation 5.27. Consider the complex spring

-Ak, AX2A

rf21 k AX (5.2)8)

%L %9
" A- ?N:,,
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The energy stored in the deflected spring is

1 2 .E=- x z__T  z=-(kxz +k A )

Therefore, from the standpoint of energy storage, the complex spring acts as two

simple springs with stiffness k,,, the real part of the complex stiffness. Equa-

tion 5.28 shows that deflection in one direction can cause force to be exerted in

-nother direction. More insight can be gained by considering the compliance of

the spring. Inverting the stiffness matrix, we obtain the compliance relation[A 1 1 [k,, -k h

AX2 k '+ k2 [, k. fvL 2J

where f, and f2 now represent external forces, and Ax and AX2 are the resulting

deflections.

We see that force in one direction can cause deflections in another direction.

The term k., the imaginary part of the complex stiffness, provides the cross-

coupling. This behavior can be useful in moving objects across obstacles, e.g.

climbing over a wall. In essence, the term k,, is used for its value as a stiffness,

and the term k, is used for its value as a cross-coupling compliance.

This analysis shows the potential uses of non-symmetric stiffness matrices.
The required stiffness matrix K can be easily obtained from the desired simple

and complex stiffnesses. The matrix K is found by reversing the transformation

of Equation 5.25

K = P'K(P'I1l

where P* is selected from the desired directions of the simple and complex

stiffness axes in six-dimensional space.

5.3 Force Application

The basis of stiffness control is pure force control, i.e. the exertion of the desired %

forces on an object. Stiffness control is essentially specifying the desired forces

as functions of the measured displacements. In this section we will consider

N,Mlr Z"N :
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the issues of exerting the desired forces on an object. Much of the materials

here were presented by Salisbury [19821 in his works on hand kinematics and

force analysis. We will develop these ideas from a more heuristic approach.

Coordinate transformations are then added to allow the specification of forces

in arbitrary coordinate frames.

5.3.1 Generalized Contact Force

The kinematic transform for a manipulator yields a functional relation of the
form

i. =A(2)

where I are the Cartesian coordinates of the manipulator endpoint correspond-

ing to the joint coordinates _. The Jacobian J is defined as the matrix which

transforms the joint velocities to the Cartesian velocities

where the elements of J are given by

ax,

The endpoint Cartesian force 7 is related to the joint coordinate force r by the

transpose of the Jacobian
jr_ (5.29)

Each finger of an articulated hand can be viewed as an independent manip-
ulator. The velocities of the contacts are related to the finger joint rc.ncities by

the individual finger Jacobians. Hence, for finger i, we have

Similarly, the forces at the contacts are related to the finger joint torques by

r =JYL
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The generalized contact force F is defined as a vector composed of the individual

finger contact force vectors. For a hand with m fingers, we have

To exert a desired contact force F, the required joint torque vector r is computed

from the hand Jacobian J

"-TjT F (5.30)

where S

and
j[ 0 0 0

0 J 0 09

jTr= 0 0

0 0

5,32 Generalized Grasp Force

W'e define the generalized grasp force " as a vector with the first six elements

being the net translational and rotational forces exerted on the object and the

remaining elements being the magnitude of the internal grasp forces. For a hand

with n elements in the contact force vector, the generalized grasp force is

1T0
L= Af, f. m, My mz .. gn-]

As the Jacobian matrix J relates the joint torques to the generalized contact

forcc, we :zu construct a n X n grasp matrix G which relates the contact force

to the generalized grasp force

F=G T L (5.31)

To exert a desired grasp force on an object, we first compute the required contact

force from Equation 5.31. Then the required joint torques are computed from

_&
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the hand Jacobian J as in Equation 5.30. Therefore, the required joint toque

corresponding to a desired grasp force F is

- jTGT " = [GJ]T j (5.32)

Comparing with Equation 5.29 for an ordinary manipualtor, we see that the

matrix (GJ of an articulated hand is analogous to the Jacobian matrix of the
manipulator. Similarly, the velocity relation for the hand is

2iGJ (5.33)

where t is the generalized velocity corresponding to the generalized force F.

Hence, the first six elements of .1 are the translational and rotational velocities

of the grasped object.

Unlike the Jacobian, G or Gr cannot be found directly from geometry. This

is because forces are exerted by parallel links rather than serial links. Hence,
we can only geometrically compute the transform which maps F to L, but not

in the reverse direction as in Equation 5.31. From Equation 5.31, we have f

where G- denotes the inverse of the transpose of G. This equation allows the

solution for the G-r transform to be found by projection; G or G are then found
by matrix inversion. Therefore, to have a defined grasp matrix requires that G- 7 '

be non-singular. This means that the n- 6 internal grasp forces must be chosen

such that the last n - 6 rows of the G -T matrix are mutually independent and

independent of the first six rows. From the viewpoint of specifying constraints, ;

specifying 2: corresponds to imposing n constraint equations on the variable F.

Each row of G -T corresponds to a linear constraint equation, which must be

independent in order for a unique solution to exist.

5.3.3 Grasp Matrix for the Stanford/JPL Hand

As an example, we will compute the grasp matrix for the Stanford/JPL hand.

The definitions for the variables used in the derivation is shown in Figure 5.1. 0

Ne
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z L

E3 3X

131

Figure 5.1: Coordinate definitions for deriving grasp matrix

Idealizing the contacts as poiat contacts with friction, each finger is capable of

exerting three translational forces. Hence

-j f

and the generalized contact force is

F f

Since the generalized contact force has nine elements, the generalized grasp

force will also be a nine element vector. The first three elements arc the net

trauslational force f exerted on the object

f~=f+L2+ 4  .(5.34)

L ,+ -1 + ±1-3.3) .

The next three elements in the grasp force vector are the net moment ?n exerted

on the object. Let the position of contact i be r, we have S

n = rx f -+ r, x f + x (5.35)'.

%

where

!:1 tr iz r1y riz JT

S .5-'.,% --.S . ,
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Since there are a total of nine force degrees of freedom for the hand, we must

specify three more force constraint equations. Otherwise there will be inifinite

contact force solutions which will result in the desired net force on the object.

This force redundancy allows us to control useful internal grasp forces. We define

the three internal grasp forces to be the "squeeze force" along the edges of the

'grasp triangle. Defining the unit vectors pointing from contact i to contact j as

r,:, the internal grasp force vector is

-12 ] :12 If - !:12 f2
g. 123 r L3 - 1-13f 3 ] (5.36)

223 J K3 f1 -r!:3f

A positive value for gij indicates squeezing the object between contacts i and

Recall the transform relation

or
f f

Comparison with Equations 5.34, 5.35, and 5.36 shows that the matrix G- r is

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

o -r1. ri, 0 -r2, r2. 0 -r 3 , r3,

G-T = r1 , 0 -ri, r2z 0 -r 2 , r 3, 0 -r 3 ..

-r, rIz 0 -ro r2, 0 -r 3 , r3, 0 fr
r12, r12, r2, -r12z -r1 2y -rl2Z 0 0 0

r1 3, rt 3, r13, 0 0 0 -r 1 3 , -r 1 3y -r1 3 z

0 0 0 r23, r23 y~ r23, -r.)3 , -r,,3 y -r 2 3z J.(5.37)

This matrix is then inverted to obtain GT. This is a derivation of the grasp

matrix given by Salisbury and Craig [19821.
pP
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Hand Frma

3

Figure 5.2: Computing the grasp matrix in an alternate frame

5.3.4 Specifying Force in Alternate Frames

The previous derivations have assumed that the grasp force I was specified in

the absolute hand frame. This resulted in the simple relation for the required

joint torques

When 7 is specified with respect to some frame A,, the grasp matrix nmust be
computed in that frame. That is, the contact position vector r, in Equation 5.37
become the relative position of the contact in frame A, (see Figure 5.2). These

positions can be computed from the absolute positions x_ as

The required contact force vector computed from G' ." are vectors expressed in

frame Ao. They axe easily transformed to force vectors in the absolute frame by

multiplying by the rotation matrix R. of frame A,, i.e.

The contact force vector in the absolute frame can then be transformed into

the required torques by the Jacobian matrix. For the Stanford/JPL Hand, this

%%

. ,a' IM A "A.- 6' * s j . = j- 1 . A-. A-_. ... i_
.
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yields
1"=JTZ, oGT 1r (5.38)

where
J, 0 0

J = 0 J2 0

- 0 J3
and

R, 0 0
P.0 0 Ro, 0

0 0 R,

Therefore, the matrix [Jr,.o] is the effective Jacobian transpose in frame A,.

Substituting the effective Jacobian (RTJJ into the Jacobian of Equation 5.33,

we obtain the velocity relation in frame A,

'00where It is now the generalized grasp velocity specified in frame A,,.

5.4 Stiffness Control

Using the force analysis developed in the previous section, we are ready to

implement the stiffness relation

K* A

where I now includes the internal grasp force, e.g. force between grasp points,

and AX now include the corresponding internal displacement, e.g. distance S
between grasp points. It is also desirable to exert a nominal bias force ,

to maintain positive contact between the fingers and the object or between the

object and the environment. Hence, we will implement the more general relation

=-KAl + L . (5.39)

If the displacement AT can be found, then the required torque for the corre- ho_,e

sponding F can be computed as shown in the previous section, with the grasp

matrLx evaluated in the compliance frame. 0

w _' ' o ' .' .' . ' ' "€ ' " W 
"

O . ' % , W _ " ' ' " g w ' W ' . J. W w ' W 'w ' . _ w 
"

,' _ w . " _ " . . - " , .- . - - .- - . . - .- - . , - - .- - . " , , - "
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5.4.1 The Joint Stiffness Matrix

The first six elements of the vector AX are the translational and rotational

displacements of a body-fixed frame from the nominal position and orientation.

The computation of the first six displacements requires evaluating the grasp

frame from the finger positions and comparing the actual body-fixed frame with

the desired nominal frame. The remaining elements in AX" requires comput-

ing the internal positions and comparing with the desired nominal positions.

The computational requirements makes this approach infeasible in real time. 6

However, when the displacements are small, we can use approximations which

produce a more efficient algorithm. Assuming the compliance frame has the

same orientation as the absolute frame, the velocity relation in the compliance

frame is given by Equation 5.33 as 0

~~G9.

For small perturbations, we can write

AlX ;-GJ A9

where AO is the deviation in joint position from the nominal coordinate. Sub-

stituting into Equation 5.39, we obtain •

F = -KGJ AO + .

The required torque is

_ = JGT _ = -JTGTGJ AO + j T T

Defining the grasp Jacobian as the matrix

J9 = GJ

the control law can be written compactly as

-JTKJ A + jr . (5.40) ,

V,
.

4
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The name "grasp Jacobian" is used for the matrix because of its similarity to S

the role of the Jacobian in manipulator force control. Alternately, we can write

the equation as

1: = -K AO + Z (5.41)

where K# is a joint stiffness matrix defined by

Ke=TKJ (5.42)

and r i. the bias torque defined by

(5.43)

Equation 5.41 is a joint level stiffness control law which relates the joint torques

directly to joint displacements. The joint stiffness matrix is in essence the pro-

portional gain matrix of a multi-input/multi-output joint position control sys-

tem. This algorithm is computationally efficient, and, more importantly, the

joint stiffness matrix can be pre-computed based on the desired nominal posi-

tion. Pre-computing the joint stiffness matrix will eliminate evaluation of the

Jacobian and the grasp matrix in real time, hence allowing higher servo rates

and better control.
S

5.4.2 Stiffness Control in Alternate Frames

The joint stiffness matrix and bias torque given by Equations 5.42 and 5.,43 are

valid if the compliance fiame have the same orientation as the absolute frame.

If the stiffness relation is specified in an alternate frame, the Jacobian must be

modified to account for the orientation of the force and displacement vectors.

For the Stanford/JPL Hand, this is accomplished by replacing the Jacobian by

the modified Jacobian [)orJI, where Q,, is the generalized transformation matrix

which transforms the contact force vectors in the compliance frame into force V

vectors in the absolute frue. Hence, the grasp Jacobian becomes X

J= GprJ 
,

00

%

J.% -- I. \Y , . O %



C!IAPTER 5. GRASP STIFFNESS CONTROL 72

180 deg rotation about cup axis equivalent rotation and translation

zz

Frame 2 - -" -.

Figure 5.3: Effects of different compliance frames

and the joint stiffness relation
S

r JKJ AO-+ JT 7-

can be used as before.

5.4.3 Object Centered Stiffness Control

Just as it is often desirable to specify motions of objects with respect to a body-

fixed frame, we often wish to set the compliance frame to coincide with the

body-CLxcd frame. For a diagonal stiffness matrix, the principal stiffness axes

will correspond to the body-axes and the compliance center will coincide with

the center of the body-fixed frame. As an example, consider the cup shown in

Figure 5.3. The rotation about the cup axis is equivalent to a translation along

the x axis and a rotation about the z axis in the first compliance frame. Hence, "

restoring forces will be exerted as well as moments. If the compliance frame

coincides with the initial body frame, then the rotation will only cause a restoring

nionient to be exerted. The translational displacement now corresponds to the

actual displacement of the body frame origin. 5
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Manipulator 
L

M M

Environment

Figure 5.4: Interaction with the environment

Placing the compliance frame at a body-fixed frame A, can be easily ac-
complished by evaluating the grasp matrix in Ao. Stiffness control can then be

implemented as shown previously, with the Jacobian modified to account for the

frame orientation.

5.5 Impedance Control S

If stiffness control can be perfectly implemented, the inanipualted object will
behave as if attached to a set of ideal springs. Consider the simple case of an

object attached to a translational spring and in contact with the environment, as

shown in Figure 5.4. If the environment is also modeled as a stiffness, exerting

force proportional to deflection of the surface, then the closed-loop system will

not be asymptotically stable. In general, excessive oscillations will result if there

is insufficient damping in the environment. If the manipulator is controlled as
a spring in parallel with a damper, then the closed-loop system can be made

stable regardless of whether the enviroment is damped [Kazerooni 1985]. To

ensure stability of the closed-loop system, we can either rely on the mechanical
damping in the manipulator, i.e. imperfect implementation of stiffness control, S

IL
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or introduce controlled damping. Controlled damping is preferable because it

allows us to fine tune the closed-loop system to obtain the desired dynamic

interactions. Relying on mechanical damping may result in an under-damped

or over-damped system.

From the point of view of task stability, we need only to impart to the manip-

ulator the characteristics of a stiffness and damper, exerting force as functions
of the deviation in displacement and velocity. However, from an implementation

point of view, an inertia term may also be necessary. Basically, the inertia term

limits the bandwidth of the stiffness controller to reject high frequency distur-
bances, e.g. sensor noise and environmental vibrations. An alternate approach

to the selection of impedance is suggested by Hogan [1984J. He proposed that

the impedance be chosen to minimize a cost function of interaction force and

motion errors, based on a-priori knowidege of the schochastic property of the :-'- "

uncertainties.

Impedance control of an articulated hand is a simple extension of the method-
ology for stiffness control. We wish to implement the linear impedance relation

7= -M-B AX- KAX

where M! is the inertia matrix, B is the damping matrix, I is the measured

acceleration, and AX is the deviation of the measured velocity from the desired
nominal velocity. Using the velocity relation

GJ=

for small displacements Al, we have

= -MGJ 0 - BGJ AO - KGJ AO- --

where 0 is the measured joint accerleration, and Az_ is the deviation in joint

velocity. Using the force relation

we obtain the joint impedance relation

_ -JrGTMGJ 0 - JTGTBGJ A - JTGrKCJ AO .

NX, ..
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Hence
"= -M 0A-B 0 A_'-K0

with the joint inertia, damping, and stiffness matrices defined as

Mo = J9TMJg

Bo = JTBJ0

K - JKJ,

where J. is the grasp Jacobian. Again, if the compliance frame does not have the

same orientation as the absolute frame, then the Jacobian need to be modified

accordingly.

The material in this section is presented to show how impedance control of

an articulated hand can be obtained as a sinple extension of stiffness control.

Implementation of impedance control requires joint veloctity and acceleration

sensors in addition to the position encoders for stiffness control. Real time

processing of this amount of information for control of an articulated hand re-

quires data acquisition speeds which are not achievable by present hardware. At

present we have only implemented stiffness control for the Stanford/JPL Hand

at the MIT Artificial Intelligence Lab. The mechanical damping of the fingers

plus a fixed nominal damping in the control system was sufficient to maintain

task stability. In the following chapters, only stiffness control will be used in the

discussion of compliant motion of objects.

_Ix
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Chapter 6

Compliant Motion of Objects

6.1 Introduction

Compliant motion is in essence motion guided by the geometric constraints in

the environment. By allowing geometric constaints to guide the motion of a

manipulator, tasks can be successfully completed in the absence of precise infor-", .%.

mation of the environment. We have seen that manipulation with an articulated N

hand requires not only the net motion of the object be guided by the geometry.

of the environment, but also that the internal grasp motions be guided by the

geometry of the object.

Force control strategies are basically specifications of how motions are to

be guided by the geometric constraints. Using the stiffness approach, restoring

forces are exerted on the object proportional to the displacement from a desired a
nominal position. Generating compliant motion then involves superimposing

stiffness control on a desired nominal trajectory. During the motion, restoring

forces are exerted proportional to the deviations from the planned trajectory. In

this chapter, we will integrate the trajectory computation and stiffness control

methodologies developed in previous discussions. Algorithms are presented for

generating compliant motion of objects. We will also study the effects of a

compliance frame fixed with respect to the hand versus one fixed with respect

to the object. Con2ideration is also given to the variations in computational

76 eN.
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complexity for motions controlled with respect to the two classes of compliance

frames.

6.2 Compliant Trajectory

Combining trajectory computation with stiffness control, we now have the nec-

essary tools for generating compliant motion of objects. A joint trajectory is

first computed based on the desired object motion, as shown in Chapter 4. Let

_.(t) be the contact motion which will result in the desired object motion, then 6

the corresponding joint position at time tk is

~d(tk) = Ah'Z~k

9

This joint position is then used as the nominal position for the joint stiffness ?.y-.

controller derived in Chapter 5. At time tk, the joint force/displacement relation

is

r=-T~k)~jJt~~?t + (tk Z6

where AO(tk) is the deviation of the measured joint position from the desired

position

A _(tk)=-

and J,(tk) is the grasp, Jacobian defined by

Jg(tk) = G(tk).'(tk)J(tk)

The grasp matrix G(tk) is computed from the nominal position of the contacts

;d(tI) relative to the compliance frame. Tile matrix , ,,(tk) is a generalized

transformation matrix which transforms the contact force vectors in the corn-

pliance frame into force vectors in the absolute frame. Hence, it represents the

orientation of the compliance frame at time tk. The matrix J(tk) corresponds

to the Jacobian at the nominal joint position d(tk). The small displacemcnt

assumption has allowed us to transform the Cartesian stiffness relation into

a pre-cout putable joint stiffness relation. In essence, we have linearized the

O
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force/displacement relation in joint space about the nominal position. We will

write the linearized relation at time tk as

= -KO(t) AO(tk) + (tk)

where

KO(tk) = JT(tk)K J9(t)

rb(tk) = J(tk) Lb

As the trajectory I(t) must be interpolated between knot points in joint space,

the stiffness control law must also be interpolated. Consider the motion between

knot points _(tk) and 0(tk+I). A simple interpolation algorithm is to use linear

interpolation of the joint positions and the goal joint stiffness and bias torque 9

for each motion segment, i.e.

=-go(tk,) AO(t) + L(tk)

for ti < t < I+I, where
A-(t) = -(t) - -&,(t )<

with 0 (t) being the linearly interpolated trajectory

t - tk "
d(l) = -(tk) + [tk- k [,(.'t) - O(t).

By using a constant joint stiffness and bias torque throughout the segment, this

algorithm is simple and efficient. However, at the transition between segments, .".

there is a step change in the commanded joint stiffness and bias torque. As the

stiffness matrix can be viewed as the proportional gain matrix for a position

control system, this is equivalent to a step change in the scrvo gains. Such step

change in gains may cause undesirable oscillations or sudden jumps in motion.

To eliminate the problems associated with the discontinuities, we mav "wish to

interpolate the stiffness matrix and bias torque in addition to the position. A

linear interpolation algorithm yields

-= -,(t) AQ (t) + r (t)
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for tk < t < tkil, where

K0 (t) + t - t [KO(tk,.i) - Ko(tk)]
tk I - tic

zdt) = + F t - .)

- k btic) -Zbt)

Significant improvements in stiffness and force transition can be obtained from

this slight refinement of the interpolation algorithm. However, just as a rotation

matrix cannot be interpolated element by element to represent intermediate ro-

tations, neither can the stiffness matrix be interpolated element by element to •

represent intermediate stiffnesscs. The desired stiffness behavior can be approx-

jinated only if the knot points are closely spaced.

In generating manipulator Cartesian motion, often quadratic interpolation

of joint position is used to smooth out the transition between segments [Tay-

lor 1979]. Similary, we may wish to use quadratic interpolation for the finger

joint positions as well as the stiffness matrix and bias torque. Quadratic inter-

polation of joint position aid bias torque is feasible with current computation

speeds. However, the computations required to quadratically interpolate a joint

stiffness matrix is subtantial. For example, for the 9x9 stiffness matrix of the

Stanford/JPL Hand, 81 elements must be interpolated. The controller servo

rate must be slowed to acconiodate the increase in computation time. In gen-

eral, there is always a trade-off between smoothness of motion and controller

bandwidth.

6.3 Selecting the Compliance Frame .,,

The compliance frame can be chosen completely independent of the desired'

trajectory of the object. The role of the compliance frame is to define the '""

displacement and forces. As an example, consider the cup shown in Figure 6.1.

The displacement of the cup from position A to B is a pure rotation about

the z axis in the first compliance frame. Using a diagonal stiffness imatrix, a '€

pure restoring torque will be exerted about the z axis of the frame. The same

IMI
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pure rotation rotation plus uianslation

Frame 1Frme 2 A

- - 0"!

AI A - , Y

Figure 6.1: Definition of displacement in a compliance frame

displacement in the second compliance frame is obtained by 4 rotation from

A to A' followed by a translation along the Ax vector. Therefore, a net force

in the -Ax direction will be exerted as well as a moment about the z axis.

We see that the magnitude of translational displacement is dependent on the

choice of compliance frame. The rotational displacement is a measure of the

changes in the orientation of the object, and hence the magnitude is uniform 2L2

in all compliance frames. Now consider force exertion in different conpliance

framies. Given the same contact forces, the magpitude of the net translational

force on the object is uniform in all frames. However, the net moment exerted

on the object is dependent on the location of the contact points relative to the

frame origin. Therefore, the compliance frame is essentially a definition of the

translational displacement of an object and the rotational force on the object It

should be chosen to reflect the natural definitions of translational displacement

and rotational force for an object. For example, consider the block shown in

Figire 6.2. The coordinate frame with origin at the centroid of the block is

a natural choice of the compliance frame. The translational displacement is

then (lefined as the displacement of the centroid, and the restoring moments are S

dlefined to be :nonients about the nominal centroid.

. .%- .-, - -. . . - .. -, . .,.**-. .' ..-. .,-.
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A A1

zo ./v ' -

/ "
X/

Figure 6.2: Compliance frame chosen to reflect actual translation

In most cases, the natural choice of a compliance frame is the body-fixed

frame which defines the position and orientation of an object. The translational

displacements in the compliance frame then correspond to i.he actual displace-
Ments of the object position. Restoring moments will also be exerted about the

nominal "center" of the object. Coinciding the axes of the compliance frame with
those of the object also simplifies the selection of the stiffness matrix. There-

fore, it is usually desirable to use a compliance frame which coincides with the .

nominal body-fixed frame, i.e. the frame describing the nominal position and
orientation of the object. As the object trajectory is executed, the compliance

frame should be constantly updated to coincide with the current nominal body-

fixed frame. If the compliance frame is not updated, then future translational

displacements measured in the compliance frame will not represent the actual
deviations in the object position. Given a rotational displacement, the restoring

moment about the object center will vary as the distance of the object from the

compliance center changes. op

For some tasks, using a body-fixed frame as the compliance frame may not be
the best choice. Analysis have shown that the ideal location of the compliance S

N r Ir
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center for peg-in-hole insertions is at the mouth of the hole [Whitney 1982!. By

fixing the compliance center with respect to the hole, the risk of jamming is

greatly reduced. Therefore, if the hand is staticnary while the fingers perform

the peg insertion, the compliance frame should be fixed with respect to the hand.

6.4 Computational Complexity "' !

In this section we will compare the computational requirements for motions

controlled with respect to a body-fixed compliance frame and a hand-fixed com-

pliance frame. When implementing the joint stiffness relation

= KJgAO + JTL

the bulk of computation is contained in the evalutaion of the Grasp Jacobian Jg

at each knot point, where

Jq = GRrJ

The matrix G is a function only of the positions of the contacts in the compliance -.

frame. Assuming that the fingers do not slip and that rolling at the finger tips

is negligible, the positions of the contacts will remain constant relative to a

frame fixed to the grasped object. Hence, for motions controlled with respect

to a body-fixed compliance frame, the matrix G needs only be evaluated once,
i.e. the same matrix applies to ali knot points. However, the orientation of

the compliance frame will vary as the orientation of the object. Therefore, the

orientation matrix Ro must be evaluated for each knot point.

Conversely, for a compliance frame fixed with respect to the hand, the po-

sitions of the contacts relative to the frame will change as the object motion

proceeds. Therefore, the matrix G must be evaluated for each knot point, while

the rotation matrix , , remains constant. The Jacobian J is a function only of .

the joint position, and hence need to be evaluated for each knot point regardless
of the compliance frame..

In general, it is simpler to evaluate a rotation matrix Po than a grasp matrix

G. Evaluation of ,, for a body-fixed compliance frame requires computing the

4z'
% .,'t+.
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grasp frame A. from the contact positions. Let R 9 be the rotation matrix in A. ,

and let R, denote the orientation of the compliance frame relative to the grasp

frame, then the orientation of the compliance frame is given by the rotation

matrix

Ro = R9 R.,

The generalized rotation matrix R, can then be easily constructed from R.

Evaluation of the grasp matrix G requires finding the contact positions in the

compliance frame, constructing G from the positions, and inverting the G - 
T

matrix. For a large G -T matrix (9x9 for the Stanford/JPL Hand), inversion

will require substantial computation time. Hence, from a computational point

of view, using a body-fixed compliance frame is preferable to using one fixed

with respect to the hand.

J•.

I'?.

------------ %

%S



Chapter 7

A Hand Control Language

7.1 Introduction

The fundamental distinction between robots and fixed automation is programma- :'

bility. Through programming, the robot can adapt to different tasks without .,

re-design of its physical configuration. Over the years, a number of programming $

languages have been developed specifically for the control of robotic manipula-

tors. The earliest of such endeavors consists of manually moving the manipulator

to a desired configuration and recording the corresponding joint positions. A

program is then composed of a series of joint position commands plus signals for ,

the end effector. This teach-by-showing or guiding approach to programming is

still widely used in industrial manipulators. The drawback of such methods is ,

that motion cannot be altered via sensory feedback. The manipulator simply

executes the sequence of moves as taught, without condition monitoring. This is P

adequate for tasks in a predictable environment, such as spray painting and spot

welding. Tasks in which subsequent moves must be based on current sensory

data, such as assembly and parts inspection, requires manipulator languages

with data accessing and conditional branching capabilities. Some programing .N

languages provide extensions to guiding which include testing of external binary '

signals and conditional branching, e.g. the ASEA [ASEA] and Cincinatti Mi- A,

lacron 'Holt 1977] systems. In these languages, the sequence of motions taught

84 ElI
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by guiding are each given numbers. The manipulator can branch to appropriate

points in the sequence based on the conditional tests.

Some manipulator programming languages provide capabilities comparable

to general purpose computer programming languages. The first of such is the

WAVE system [Paul 1977] developed at Stanford. This system provided pio-

neering features such as the specification of manipulator position in terms of

end effector Cartesian position and orientation. It also provided algorithms for

smooth Cartesian trajectory segment transition and for specification of Carte-

sian forces. WAVE ran off-line on a machine which produced a trajectory file

to be executed by another machine responsible for real-time control. This is

primarily due to the time consuming sophisticated trajectory planning and in-

verse dynamic computations provided by the system, requiring the trajectories

and forces to be pre-computed in joint space. The alogrithms were based on the

assumption that the deviation from the desired path is small.

The MINI system [Silver 1973] developed at MIT was based on an existing

LISP system. In essence, it consisted of a set of functions in LISP which per-

formed the' tasks of setting position and force goals and communicating with

another machine which controlled the manipulator in real time. The advantages

of this system is that it can be easily expanded by writing additional LISP func-

tions. The LISP system also provides an interactive environment for immediate S

excution of statements and program debugging.

The AL language was motivated by the desire to deve!op a complete robot

programming language which includes all the features specific to manipulators

as well as those of a general purpose high-level language. As an extension of

the ALGOL language, it has the same block structure for program control. The

AL system provided all the capabilities of WAVE as well as coordination of

parallel processes. Special geometric data types are defined, such as vectors,

rotations, and coordinate frames. Arithmetic operators for these data types are

also defined, e.g. vector products, composition of transformations, and coordi-

nate mappings. AL provides an AFFIX statement which models the relationship

between two attached frames. Whenever one of them is changed, the other will

. . ..
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be updated to maintain the fixed relationship. The AL system consisted of, .

a compiler which translated the program into low level commands interpreted

by a machine dedicated to real time control. Recent developments have made

AL an increasingly interactive system [Goldman 1982], supporting immediate

execution of single statements, setting of breakpoints, and single stepping to

subsequent statements in a program.

Another comprehensive language is AML [Taylor, Summers, and Meyer L

1982], used in IBM robots. Similar to the MINI system, it is designed to pro- 4

vide the user an environment to build other programming interfaces, e.g. vision.

Like the AL language, geometric data types and operators are defined. Carte-

sian motion planning and afixment of frames are also supported. However,

no mechanisms are provided for parallel process control and general compliant A
motion.

Although there exist a number of manipulator programming languages, there -

is to date no language designed specifically for articulated hands. The desire

for high-level control of the Stanford/JPL Hand motivated the design of a hand

prograinming language. The goal is to provide coordination of finger motions

based on high-level specification of desired motion of grasped objects. The de-

sign philosophy is similar to that of AML, i.e. to provide an easily expandable

vocabulary and all the basic features specific to hand programming. Since ma- ,

nipulator programming is a highly interactive task, requiring repeated trials, the

language should be interpreted, so as to bypass the traditional edit-compile-test

loop. A statement can then be immediately tried out and the state of the pro-

gram can be examined for dbiigging. Rather than constructing a completely %

new language, we have used a LISP system as its basis, similar to the MINI sys-

tern. The LISP system provides a rich interactive environment for programming

and debugging. Immediate execution of single statements, setting of break-

points, and single stepping through a program are all supported by the LISP

environmuent. With the language written as a collection of LISP procedures, it

can be expanded by simply defining more procedures. As most knowledge-based

programs are written in LISP, the integration of knowledge-based systems with _

-o
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manipulation is also simplified.

This chapter describes the LISP based system developed for the Stanford/JPL

Hand. The control structure resembles the WAVE and AL systems in that joint

postions and forces are pre-computed based on the assumption of small devia-

tions. The desired position and force trajectories are gcnerated by the LISP ma-

chine and sent to a VAX-11/750 real-time control machine for execution. First,

a brief description will be given of the interaction between the LISP machine and

the VAX. Then the basic repertoire of functions and high-level procedures will

be described. We will conclude with a programming example for a peg-in-hole

insertion task.

7.2 Control Heirarchy and Interaction

The hand programming system developed for the Stanford/JPL Hand consists of

three levels of control. At the top level is a LMI LISP machine (CADR) which

interprets high-level motion commands and translates them into a sequence

of joint level co timands. The joint level commands are then sent to a VAX-

11/750 dedicated to real-time control. The VAX performs interpolations in

joint space, reads sensor data, and sends new setpoint commands to an array

of microprocessors controlling the servo motors. A schematic of the control

heirarchy is shown in Figure 7.1. We will not discuss the control algorithms

used for servoing to a desired position or torque, but will simply assume that the

VAX/microprocessor control system accurately enforces the desired setpoints at

each servo cycle. A detailed discussion of the control sytem is given in [Salisbury

1984a],

A basic data structure referred to as a "seg" is defined in the VAX. Each

seg represents a trajectory knot point. It contains a set of joint positions, a .- ..

time duration, and a pointer to the next seg. The time duration is the duration ',r

for moving from the last position in the previous seg to that in the current seg.

The trajectory can be either linearly or quadratically interpolated, as both types

of interpolation are supported. During pure position control, the VAX control

.~~~~. . ...
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Figure 7. 1: Hand prograuning system control heirarchy

program simply steps through a sequence of segs until a null seg is reached. To

support pure force control and stiffness control, each seg also contains a set of %

joint torques and a pointer to a joint stiffness matrix. During pure force control,

the programi steps through the segs, and commands the corresponding joint

torques. During stiffness control, the positions and the torques are interpreted as

the nominal values. The deviations in joint positions are multiplied by the joint

stiffness matrix, and the results are added to the nominal torques.' If a torque

or a stiffness is not defined for a particular seg, then a default torque or stiffness

will be used. The control program can be switched between pure position, pure

force, and stiffness modes by a simple sequence of character commands.

The basic task of the LISP machine is to translate high-level motion com- ..

mands into a sequence of corresponding seg structures. The LISP machine.

communicates with the VAX via niessage passing, using two DR11-C parallel

interface boards. First, the LISP machine specifies whether a seg structure is to "R V

be executed by the VAX as soon as it is completed, or that it should wait for

an entire sequence to be transmitted before execution. The contents of a seg is

'At present, torque and ,iffness interpolation are not supported.

% ~ "A - -. 0 _ 'F V
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then sent, and is stored into a seg structure allocated by the VAX. The pointer

to the next seg is set to that of the next structure to be allocated. When the

entire sequence of segs has been specified, the LISP machine sends a begin sig-

nal and the motion is executed. The VAX deallocates the seg structures as they

are freed. During the motion, additional segs may be inserted, and the VAX

may send messages reporting its position or force status. As the LISP machine

computes the next sequence of motions, the new sequence can be modified based

on the data.

There are approximately twenty different messages which can be passed from

the LISP machine to the VAX. Among these are commands to pause Lhe VAX

servo control program, change the control mode (position, force, or stiffness),

add a seg, set torque, set stiffness, set a conditional, start trajectory, query

position, query torque, and query finger forces. The finger forces correspond to

those which will be obtained from recently developed finger tip sensors Salisbury

1984b]. Also included are commands to define a position, torque, or stiffness

by a character string. Definition by a character string is used when a position,

torque, or stiffness matrix is used repeatedly. A short character message can

then replace a long sequence o" floating point numbers. The efficiency in message

passing appears to merit the extra effort spent in contructing a symbol table for

the VAX.

There are seven different messages which can be passed from the VAX to

the LISP machine. Most of these messages are status reports, including current

position, torque, finger forces, and general status. The remaining are print

character string, and general integer and floating point data responses to query. S

This set of messages is sufficiently general to report any situations the VAX

may encounter. As experience is gained with using the system, more specialized

responses will be defined. A listing of the messages and syntaxes is given in

Appendix A.

* kW
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7.3 Basic Functions

The hand programming system developed is basically an extension to an ex-

isting LISP system. LISP procedures are defined for computations specific to

the hand and for communicating with the VAX via parallel connections. The

LISP procedures can be divided into two levels - a functional level and a higher "O

object-oriented programming level. The first consists of a set of basic functions to

perform coordinate frame and kinematic transformations, compute grasp frame

and grasp matrix, generate trajectory of Cartesian points, and compose message

packets. These are functions called by names and arguments, as in program-

ming languages such as Fortran and C. The next level of procedures are written

in the message passing style of programming, also referred to as object-oriented

programming. This style of programming is used in the Smalltalk and Actor

families of languages, and is also supported by the LISP system. When a par-

ticular action is desired, a message is sent to an abstract object which performs

the required operations. Each abstract object is basically a data structure which

can be accessed and modified according to the messages received. Because each

object is a data structure, the results of previous computations and internal

states can be retained. This can free the programmer from tedious bookkeeping

and simplify the program. Another advantage of object oriented programming

is modularity. Each object is self-contained and presents the caller with a set

of external interfaces, i.e. the defined messages. The caller is not required to

understand the implementation details, but only that a particular message sent

to an object will cause a particular action to be performed.

The functional procedures will be described in this section. The object-

oriented procedures are built on these basic functions, aid will be described

in the subsequent sections. This is not meant to be a comprehensive docu-

mentation, but only a description of the basic features provided in the hand

programming system. The design philosophy is to adopt existing manipulator

language syntax when possible, and to make the arguments optional when pos- o%

sible. By adopting existing language syntax, users familiar with other manipu-

lator languages can easily adapt to the new system. By making most arguments

10 %pe - S,%r-
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optional, a new user can quickly begin programming without having to learn

detailed function syntax. As experience is gainiad, the user can progressively use

the optional arguments to exercise more control over the program. Only the

optional arguments pertinent to our development of a simple working program

will be described here. The codes are written in the Zetalisp dialect. It is as-

sumed that the reader has some familiarity with the list evaluation structure of

LISP; 2 the special features provided by Zetalisp will be explained as necessary.

7.3.1 Frame Representation

Many of the ideas for coordinate frame representation were taken from the AL

language. Rotations are represented by 33 matrices. A rotation, or rot, can

be constructed from a unit vector, specifying the axis of rotation, and a scalar,

specifying the angle of rotation. The function make-rot returns a rot, and is

called by the following syntax

(make-rot rot-vector tb.ru angle)

The argament rot-vector is a one-dimensional array of 3 elements, and angle is

given in radians. The argument angle is referred to as a key-worded argument.

Key-worded arguments are optional arguments which are associated by key-

words with the appropriate variables in the function. Hence, the key-word :thru

associates the subsequent argument with an angle. If the optional argument is

omitted, then vector will be interpreted as the set of Eulcr angles describing

the rotaton. Hence, (make-rot rot-vector) is also a valid function call. As

is, a new 3x3 array is allocated and returned every time the function is called.

To minimize the work of the garbage collector, the results can be stored into an

existing 3x3 array by providing another key-worded argument

(make-rot rot-vector :thru angle :into storage-array)

The :into option is available in all functions which return a vector or an array.

Computations of rotation matrices are greatly simplified when the axis of

2See [Winstol anrd lIorn 19811 for a tutoridl on the LISP linguage.

.. . .



CHAPTER 7. A HAND CONTROL LCNGUAGE 92

rotation is one of the coordinate axes. The make-rot function also recognizes

special symbols indicating rotation about a coordinate axis. Greater efficiency is

obtained by using these symbols instead of the actual unit vectors. For example,

use

(make-rot 'xhat :thru angle)

instead of

(make-rot (vector 1.0 0.0 0.0) :thru angle)

A coordinate frame is represented by a 3U4 matrix, the first three columns

is the rotation matrix, and the last column is a 3-element vector specifying the

displacement of the origin. A coordinate frame, or simply frame, is constructed

from a rot and a displacement vector by using the make-frame function

(make-frame rot vector)

The inverse of a frame is returned by evaluating

(invert-frame frame)

Composite transformations are obtained by multiplying the frames. Because the

frames are represented internally as 3x4 arrays, a special frame multiplication

function is provided. Frames are multiplied in succession by using -0

(multiply-frames frame-I frame-2 frame-3 ... ) .

A new frame is returned. There is no limit to the allowable number of arguments.

7.3.2 Transforming Points and Vectors

Transforming points expressed in one frame into those in another frame is done

by the transform-peints function. The syntax is similar to that used by AML, •

but offers much more flexibility. Positions expressed in a realtive frame can be

transformed into positions expressed in the "absolute" frame by

(transform-points frame-foo pos-array)

- -- .'" --
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The argument pos-array is a one or two-dimensional array containing the co-

ordinates of points expressed in frame-f oo. Each row contains the x-y-z coor-

dinates of an arbitrary number of points. For example, a typical row is

[ Y1 Z1 2 Y2 Z2

This function basically multiplies three coordinates at a time by the frame ma-

trix. An array of the same dimensions as pos-array is returned, containing I
the coordinates of these points expressed in the "absolute" frame. The ability

to transform coordinates contained in two dimensional arrays is Lonvenient for

transforming entire trajectories of finger positions. Similarly, the transform-

vectors function re-expresses vector directions, e.g.

(transform-vectors frame-foo vect-array)

Here frame-foo can be either a frame or simply the corresponding rotation

matrix; in either case, a vector is only rotated by this function and its length is I
preserved.

7.3.3 Hand Kinematic Transformations

The kinematic transformation Ah(8) from joint space to Cartesian space is per-

formed by the function

(J-to-c joint-pos)

The argument joint-pos is a one or two-dimensional array containing the joint

positions. Each row contains nine elements, with the positions of finger 1 oc-

cupying the first three elements, those of finger 2 occupying the next three

elements, etc. Hence, each row corresponds to a complete hand configuration in

joint space. An array of the sane dimensions is returned containing the corre- '.

sponding anger tip positions. The first three elements in each row contain the

x-y-z coordinates of finger 1, the next three elements contain those of finger 2,

etc.

The inverse kinematic transformation Ah () from Cartesian to jo;nt space

is performed by the function

d, W r 0~ r~ %
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(c-to-j cartesian-pos)

The argument cartesian-pos is a one or two-dimensional array containing the

positions of the finger tips. Each row contains nine elements, with the position

of each finger occupying three consecutive elements. Therefore,

(j-to-c (c-to-j cartesian-pos))

will return a copy of cartesian-pos. Recall that in general two solutions are

possible for the inverse kinematic transformation of each finger. By default, the

solution selected corresponds to all fingers curling in toward the palm. Alternate

solutions are obtained by including a key-worded argument as follows:

(c-to-j cartesian-pos :curl-out curl-vector) .

The argument curl-vector is a three-element vector of logical values, i.e. T or

NIL. A non-NIL value for an element indicates that the corresponding finger is

to curl outward from the palm. For example, evaluation of

(c-to-j cartesian-pos :curl-out (vector t nil nil))

will return the set of solutions corresponding to finger I curling outward from the

palm and fingers 2 and 3 curling in toward the palm. In the event that a certain

hand configuration connot be attained, the function will return a list containing

two integers. The first integer is the row number in the cartesian-pos array

at which this occured; the second integer is an error code indicating the type

of error. There are four possible types of error for each finger. The first three

correspond to a required joint angle being greater than the limits imposed by

the mechanical design. The fourth is that the desired position is simply out of

reach, regardless of joint limits. The first four bits of the error code represent

these errors occuring in finger 1, the next four bits represent these errors in

finger 2, etc. Therefore, given a desired Cartesian trajectory, the returned list

can indicate the point in the trajectory at which an error will occur, as well as

the type of error.

The transpose of the Jacobian matrix is found by evaluating
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(jac-transpose joint-pos)

The argument j oint -pos is a vector of nine elements, containing the finger joint

positions. This function returns a 3x9 "compressed" Jacobian transpose, with

the 3x3 Jacobian transpose of each finger occupying three consecutive columns.

A function was provided for evaluating the Jacobian transpose rather than the

Jacobian itself because the transpose is used more often in practice.

Corresponding transform functions for individual fingers are also provided.

They have names such as j-to-c- !, j-to-c-2, etc. Since we arc only concerned

with coordinated motion of the entire hand, these functions will not be discussed

here.

7.3.4 Grasp Frame and Grasp Matrix.-"

As described in Section 4.3, the grasp frame for the Staiiford/JPL Hand is

defined by the triangle formed by the grasp points. A 3x4 matrix corresponding

to the grasp frame is returned by evaluating.

(make-grasp-frame cartesian-pos)

where carterian-pos is a vector of nine elements containing the positions of the

finger tips. By default, the origin of the grasp frame is located at the centroid

of the grasp triangle. The origin can also be set at one of the grasp points by

including a key-worded symbol. For example,

(make-grasp-frame cartesian-pos :origin 'fingl) .

will place the origin at the tip of finger 1.

As with the Jacobian, the transpose of the grasp matrix is evaluated instead

of the grasp matrix itself. A 9x9 grasp matrix transpose (see Section 5.3) is

returned by

(grasp-matrix-transpose cartesian-pos) .

The argument cartesian-pos is a vector of nine clements containing the posi-

tions of the finger tips relative to the frame in which forces and moments are

or
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defined, e.g. the compliance frame. The transpose of the grasp Jacobian is

constructed by evaluating

(grasp-jac-transpose jac-transpose frame grasp-mat-transpose)

The first argument is the 3x9 compressed Jacobian transpose. The second

argument is the 3x4 compliance frame, or simply a 3U3 rot describing the

orientation of the compliance frame. The third argument is the transpose of the

grasp matrix. This function is basically an efficient algorithm for constructing

the grasp Jacobian transpose defined by

J o0 ]Ro 0 ii0oT o oT0 0R,,0 G T
0 J 0 0 Ro

where J is the i" finger Jacobian and R. is the 33 rotation matrix of the

compliance frame.

7.3.5 Generating a Trajectory

Trajectories of points in Cartesian space are generated by the function

(gen-caxtesian-traj cartesian-pos move-spec-list :nseg nseg)

The first argument is a vector of arbitrary length containing the x-y-z coordi-

nates of the points to be moved, with the coordinates of each point occupying

three consecutive elements. The second element is a list of move-specs. There

should be as many move-specs as there are points in cartesian-pos. Each

move-spec specifies the motion of the corresponding point. If there is only one

move-spec in the list, then that move will apply to all the points. A move-spec

is itself a list of the form

(rot-vector angle trans-vector)

where rot-vector is a unit vector about which the point will be rotated through

angle, and trans-vector is a three-element vector specifying the translation

in the x-y-z directions. The resulting motion is a translation superimposed
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on a rotation. The key-worded argument nseg is the number of knot points S

to compute for the trajectory, uniformly distributed in time. For n points,

cartesian-pos will be a vector of length 3n, and the trajectory will be returned

as a nsegx3n array. If nseg is omitted, the value defaults to 1, i.e. only the

final positions are computed.

Frequently, a pure rotation or a pure translation is desired, or a particular

point does not need to be moved. In these cases, the following forms of move-

spec will make computation more efficient:

(NIL NIL NIL) = null move, the point will remain at
the orginal coordinates

(rot-vector angle NIL) ' pure rotation

('xhat angle NIL) pure rotation 0

(NIL NlIL trans-vector) : pure translation

7.3.6 Sending a Trajectory

As described previously, the basic task of the LISP machine is to fill a data

structure in the VAX, referred to as a "seg". This is accomplished by sending

the VAX message packets which contain operation codes, or op-codes, and data.

The packets are transmitted via a 16-bit parallel interface, and hence data must

be converted into sequences of 16-bits. The function which performs this task

is called by the following syntax:

(make-packet op-codel op-code2 datal data2 data3 ... )

The first two arguments are integer op-codes which define the operations to

b perfomed. The remaining arguments are data which are expected to follow

the op-codes. They can be character strings, single integers, single floating

point numbers, or arrays of numbers. The make-packet function will convert

all character strings into pairs of 8-bit ASCII codes, adding a null padding

character if needed t, complete a 16-bit word. All integers arc convertcd into

16-bit "short integer" formats, and all floating point numbers are converted %

into 32-bit formats used by the VAX. This function returns a vector of 16-bit

. . . .. . . .. .4
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elements which can be sent through the parallel interface an element at a time.

Each packet also has a header and a tail containing information such as packet

i.d. number and the number of words to be transmitted.

As an example of the use of this function, we will compose a packet containing

a message to move the fingers to a specified position. To command a motion of

the fingers, the following packet is sent:

(make-packet add-seg 0 joint-pos duration)

where add-seg is a pre-defined integer op-code for adding a trajectory segment.

The second op-code is currently not used, and hence can be any integer. The

argument joint-pos is a vector specifying the joint positions in radians, and

duration is the time duration in seconds for this move.

Joint stiffness matrices are stored into the VAX seg structures by sending

a set-stf message. A stiffness matrix is always sent before the corresponding

joint positions. When a add-seg message is received, a seg is considered corn-

pletely specified. A default stiffness will be used if add-seg was not prcceeded

by a set-stf message. The same rules apply to storing torque vectors into seg

structures. The op-code definitions and packet syntaxes are given in Appendix

A. The mechanism for sending message packets is written in the object-oriented

progranmming style, and hence its description will be deferred to the next section.

7.3.7 An Example

As an illustration of their uses, we will generate a trajectory using these basic

functions. Assume that the body-fixcd frame of a grasped object has the same

orientation as the grasp frame, but its origin is translated along the y-axis of

the grasp frame by 2 centimeters (see Figure 7.2). We wish to rotate the object -r

about its own z-axis by 45 degrees.

Let the current joint pobitions be coutained in the 9-eiement vcctor j oint-pos. A

We first evaluate the current Cartesian positions and grasp framue by

(setq cartes-pos (j-to-c joint-pos))

?.N IV NA' % I.,* ~ A f
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Figure 7.2: Frame definition for programing example

(fetq grasp-fm (make-grasp-frame cartes-pos))

Next, the frame describing the object relative to the grasp frame is obtained.

(setq rel-frame (make-frame HIL (vector 0.0 2.0 0.0))

The current body-fixed frame is then computed from

(setq body-fm (multiply-frames grasp-fm rel-fm))

Tro generate a trajectory with respect to any frame, the grasp point3 must first

be expressed relative to the frame.

(setq rel-pos (transform-points (invert-frame body-fm) cartes-pos))

A Cartesian trajectory is then gcneraLed with respect to the body-fixed framue

using a move-spec-list containing only one move-spec, i.e. 3

(setq spec-list (list (list 'xhat (// pi 4.0) NIL))

Csetq cartes-traj (gen-cartesian-traj rel-poa spec-list :nseg 10))

for a trajectory with 10 knot points. The variable cart en-traj is now bound to

3Thc Zetidisp !-ymhol for diviiun is the datibic slash /

% % % %..
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a 10x9 array. The trajectory expressed in the "absolute" hand frame is obtained

from

(transform-points body-frame cartes-traj :into cartes-traj)

with the results stored back into the cartes-traj array. The Cartesian trajec-

tory can then be transformed into a joint trajectory.

(setq joint-traj (c-to-j cartes-traj))

The variable joint-traj is now bound to a 10x9 array, with each row containing

a configuration in joint space. Each row of the trajectory can then be sent to

the VAX via the add-seg message.

Suppose we wish to use the nominal body-fixed frame as the compliance

frame. The joint stiffness matrix corresponding to the initial position is evalu-

ated by the following sequence of instructions:

(setq jac-t (jac-transpose joint-pos))

(sctq grasp-mat-t (g.rasp-mat-transpose rel-pos)) 9

(setq grasp-jac-t (grasp-jac-transpose jac-t body-fm grasp-mat-t)) %

(setq grasp-jac (transpose-matrix grasp-jac-t))

(setq joint-stf (multiply-matrices grasp-jac-t cartes-stf grasp-jac)) Wy

where cartes-stf is a 9x9 Cartesian stiffness matrix.

As can be seen from this example, computing trajectories and stiffnesses

requires tedious bookkeeping of transformations and various matrices. The task

of programming is greatly simplified by using the object-oriented procedures

described in the subsequent sections.

7.4 Object-oriented Programming

Programming the hand can be simplified and made more "natural" by building

a higher level interface between the programmer and the basic functions. The

tedium of keeping track of positions, frames, transformations, and construct-

ing and sending message packets should be hidden from the programmer. This
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is achieved by providing an object-oriented programming interface. Using this

interface, high-level programming of the hand is reduced to the sending of ties-

sages to two abstract objects. The first object is a trajectory generator, which is

responsible for generating compliant trajectories and composing message pack-

ets. The second object is a parallel connection which is responsible for sending

and receiving message packets.

The two components of the object-oriented programming interface will be

described in this section. However, it is useful to begin with an introduction to

the concepts of abstract objects and message passing.

7.4.1 Abstract Objects and Message Passing

An abstract object is basically a data structure containing state information.

For example, an object named my-ship may contain informations such as posi-

tion, heading, velocity, and a passenger list. Objects which have the same data

structure format are said to be of the same type. Procedures can be defined

which can operate on objects of the same type. For example, a procedure called -

ship-position can be defined to retreive the position information in a ship data

structure. To obtain information on the position of a particular ship, the pro-

cedure must access that particular structure. In Zetalisp , this is accomplished

by the following syntax

(send my-ship :ship-position)

To access the position of another ship-type object named her-ship, we use

(send her-ship :ship-position)

Although the process consists of passing an object to a defined procedure, it
is convenient to think of it as sending a message to an object, hence the send

syntax. The defined procedures can be viewed as operations "taught" to an

object. The object "responds" to the messages sent to it by performing the

appropriate operations. In the previous example, a ship responds to the ship-

position message by returning its current position. The general syntax of a

%%"W
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S

message is

(send object operation arguments)

This sends object a message to perform the specified operation using

the arguments defined for the procedure. For example, an operation named

fractional-speed can take an argument to specify the ship speed as a fraction

of the maximum speed. Hence, to set the speed of my-ship at half the maximum

speed, we send the following message LN

(send my-ship :fractional-speed 0.6)

The ship can respond to this message by computing the new speed and

appropriately update the velocity information in its structure.

7.4.2 The Trajectory Generator Object

The trajectory generator is the key component in the object-oriented program-

ming interface. It contains facilities for storing frames, joint trajectories, stiffness
matrices, torque vectors, default parameter values, and various other mecha-

nisms for keeping track of the current states. Hence, a complete trajectory

with the associated stiffnesses and bias torques can be stored in a trajectory

generator. A trajectory is constructed by sending appropriate messages to the

trajectory generator. When a message for executing the trajectory is received,

the trajectory is translated into a sequence of message packets and sent to the % %

VAX via the parallel connection object.

There are two types of trajectory generators defined. The first is referred to
as a basic-frame trajectory generator, and the second is referred to as a grasp-

frame trajectory generator. A trajectory generator of the appropriate type is

created by evaluating the expression

(setq tg (make-instance 'trajectory-generator :type :basic)) 'V

or

(setq tg (make-instance 'trajectory-generator :type :grasp))

09
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The variable tg is now bound to a trajectory gcnerator object. A trajectory

generator contains an internal frame which can be set by sending a message of

the form

(send tg :set-frame frame)

This defines the frame in which motions and compliances are specified. For a

basic-frame trajectory generator, frame is taken to be relative to the "absolute"

hand frame, i.e. a frame fixed with respect to the hand. For a grasp-frame

trajectory generator, frame is taken to be relative to the grasp frame, i.e. a

body-fixed frame. Hence, the basic-frame trajectory generator is intended for

handling motions specified relative to a hand-fixed frame, and the grasp-frame

trajectory generator is intended for handling motions specified relative to a body-

fixed frame. To use a basic-frame type to generate body-centered motions and

compliances would require the programmer to handle the computations of the

grasp frame and the body-fixed frame. Each time a motion is desired, a iew

set-frame message must be sent to update the internal frame. By constrast,

the grasp-frame type automatically updates the grasp frame and computes the

current body-fixed frame for each motion specification. When a trajectory gen-

erator is created, this internal frame is initially set to be an identity frame.

Hence, if the set-frame message is not sent, the basic-frame trajectory gener-

ator will interpret the desired motions as specified in the hand frame, and the

grasp-frame trajectory generator will interpret them as specified in the current

grasp frame. .

A grasp-frame trajectory generator can be made to imitate a basic-frame

type by sending the message

(send tg :back-to-basic).

The frame which was defined by the set-frame message is then taken to be 1

relative to the absolute hand frame. When a back-to-basic message is received,

the trajectory generator sets its grasp frame to be an identity frame and stops

updating the grasp frame. Hence, frame is effectively specified with respect

to the absolute hand frame. To return the grasp-frame trajectory generator to

V V .. . .. .
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its normal mode of operation, a-u internal logical variable called auto-frame-

update needs to be reset by

(send tg :set-auto-frame-update T)

Using a gTasp-frame type to generate motions in a stationary frame is slightly

less efficient than directly using the basic-frame type. However, the ability to
switch between frame types was found to be a desirable feature, and hence the
basic-frame trajectory generator is rarely used. A listing of the messages which S

are handled by the trajectory generator is given '.a Appendix B.

7.4.3 The Parallel Connection Object

The parallel connection object is responsible for communication with the VAX. ...-.

When a parallel conncction object is created, a background process is set up to

handle data transfers via the DR11-C interface boards connected to the VAX. ,-

As with the trajectory generator, there are two types of parallel connections -
a polled type and a fast-polled type. The two types of parallel connections differ

in the rate at which they check the DR11-C interface for new data. Checking the
interface at a higher rate increases the bandwidth between the two machines, but
takes up more process time which can be used for computations. An interrupt-

driven type parallel connection object was also attempted, but could not be .
successfully implemented due to hardware problems in the CADR. A parallel
connection object is created by evaluating

(setq pc (make-instance 'parallel-connection :type :fast-polled))

The variable pc is now bound to a fast-polled parallel connection object. To

send a message to the VAX, a message packet is first constructed by using the

make-packet function. For example,

(setq msgi (make-packet add-seg 0 joint-pos 1.0) .

The packet is then sent by

(send pc :send-pkt msgi) .

. t.#
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A similar process exists in the VAX which can send message packets to the

LISP machine. To check if any packets have been received from the VAX, the

following message is sent

(send pc :data-available)

The parallel connection will respond by returning either T or NIL, indicating ..

whether there are packets already received by the background process but not

yet acknowledged by the superior process. The backgraound process basically

places the packets in a queue. Each packet is r'emoved from the queue W it

acknowledged by the superior process. The packets are removed from the que

by evaluating

(setq vax-msg (send pc :get-next-pkt) .

The variable vax-msg is now bound to a packet, and can be passed as an ar-

gument to a procedure which handles the messages from the VAX. A listing of

the messages which are handled by the parallel connection object is given in , % %

Appendix C. 0

7.5 Constructing a Trajectory

A trajectory generator maintains an internal model of the current hand config-

uration. This model is initialized by the message

(send tg :init-pos joint-pos)

where joint-pos is a vector of the current joint positions. If this message is 0

not sent, then the trajectory generator will assume that the initial position is

the "home position" corresponding to all joint angles being zero.

A trajectory is constructed by sending nessages to the trajectory generator

specifying the desired motions. The number of knot points added to the trajec-

tory by each motion is dependent on the type of motion. For example, moving

from one joint position to another adds only one knot point, whereas rotating

an object usually requires more than five knot points. The trajectory generator N &

N%
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responds to each motion message by returning an integer indicating the total

number of knot points in the current trajectory. If a particular motion cannot

be achieved, e.g. a position is out of reach, the trajectory generator will print

out a statement explaining the reason and return NIL. Here we will describe

the messages for constructing a trajectory. Joint stiffnesses and bias torques are

superimposed on the trajectory by messages which will be described in the next

section. Because in practice the grasp-frame type is used almost exclusively, we

will focus on the operations supported by the grasp-frame trajectory generator.

7.5.1 Motions in Joint Space
Motions in joint space are specified by the message

(send tg :move-joints-to joint-pos)

The joints will move to the location given by joint-pos with a default time

duration of two seconds. A different time duration is obtained by including a

key-worded argument. The message

(send tg :move-joints-to joint-pot :duration 1.0)

will move the joints to j oint-pos with a one second duration. The :duration

option is available in all messages which specify motion. If we wish all motions

to have a duration of one second, it is cumbersome to repeat the duration

key-word and argument. The default time duration can be changed by

(send tg :set-default-move-duration 1.0)

Then all subsequent motions specified without the duration argument will have

a duration of one second.

Instead of specifying the motion in terms of goal joint positions, we may

wish to specify the motion as incremental changes from the current positions.

Incremental motions in joint space can be obtained with

(send tg :move-joints-by joint-pos)

The resulting joint position will be the current position incremented by j oint-poe. a.

.V V~~ W, - VP V -. e eV Pe
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7.5.2 Finger Motion

The finger tips can be moved to specified coodinates in Cartesian space by

sending the message

(send tg :move-fingers-to cartes-pos)

where cartes-pos is a nine-element vector of the desired finger tip positions

and the default time duration is used. For a basic-frame trajectory generator

the positions are interpreted as specified in the frame defined by the set-frame

message. For a grasp-frame trajectory generator, the positions are interpreted 6

as specified in the body-fixed frame. This message is normally used to perform

initial grasping, before any valid grasp frame or body-fixed frame can be de-

fined. Hence, for a grasp-frame trajectory generator, we would send a message

to first convert it into a basic-frame type, and then set the appropriate frame

for specifying the motion. For example,

(setq identity-frame (make-frame NIL NIL))

(send tg :back-to-basic)

(send tg :set-frame -identity-frame)

(send tg :move-fingers-to cartes-pos)

will move the fingers to cartes-pos in the absolute hand frame. Because mov-

iag the fingers to positions in the absolute frame occurs so often, an optional

arugment is provided to perform this task without having to convert the grasp-

frame trajectory generator or altering the existing frame. The previous motion

can be accomplished by the single message

(send tg :move-fingers-to cartes-pos :in-hand-frame T) -,

Analogous to its joint space counterpart, incremental motions of the fingers

can be obtained from

(send tg :move-fingers-by cartes-pos)

where cartes-pos is again taken to be specified in the appropriate frame.

Jr r ev
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The finger solutions, i.e. finger curl configurations, are selected based on the 9

logical state of a three-element vector in the trajectory generator. The elements

of the vector are initially set to be NIL, indicating that the solutions should

correspond to the fingers curling in toward the palm. Alternate solutions are

obtained by sending a set-curl message followed by the desired logical vector.

For example,

(send tg :set-curl (vector T NIL NIL ))

will select the outward curl solution for finger 1.

7.5.3 Object Motion

After the hand has securely grasped an object, the desired motion of the object -9
can be obtained by sending the message

(send tg :generate-traj move-spec-list)

with the move-spec-list containing only one element - the move-spec de- 0

scribing the desired object motion. If unspecified, the duration of the move

will correspond to the current default-move-duration. Also by default, the

trajectory will be generated with five knot points, and hence use five seg struc-

tures in the VAX. The desired number of knot points is specified by including a

key-wordcd agument, e.g.

(send tg :generate-traj move-spec-list :number-of-segs 10)

As with the default time duration, the default number of knot points can be set

by sending the message

(send tg :set-default-segs-per-move 10)

For a basic-frame trajectory generator, the motion is specified with respect

a hand-fixed frame. For a grasp-frame trajectory generator, the motion is spec-

ified with respect to the current body-fixed frame. The grasp frame is updated

and the current body-fixed frame is computed prior to every motion command.

Frequently we wish to continue a motion specified with respect to a previous •

JC % -% ~ C*
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!S
zC

- A

C
B

/ -,, 6

Figure 7.3: Specifying motion with respect to previous frame

body-fixed frame. For example, consider the cylinder shown in Figure 7.3. We
wish to first translate the cylinder along its own z-axis, from position A to B,

then rotate it about the initial z-axis, from B to C. In this-case, we do not

want the body-fixed frame to be updated for the second motion command. This

sequence of motions is accomplished by

(setq movel (list (list NIL NIL (vector xdist 0.0 0.0))))

(setq move2 (list (list 'zhat angle NIL)))

(send. tg :generate-traj movel)

(send tg :set-auto-frame-update NIL)

(send tg :generate-traj move2) .

All subsequent motion commands will be interpreted as specified with respect

to the initial body-fixed frame. Updating the body-fixed frame can be resumed

by resetting auto-frame-update to T.

To specify motions with respect to a hand-fixed frame, we must convert the

grasp-frame trajectory generator into a basic-frame type, as shown previously. r%

In the special case that the motion is specified with respect to the hand frame,

VS



CHAPTER 7. A HAND CONTROL LANGUAGE 110

the :in-hand-frame optional argument can be used, i.e.

(send tg :generate-traj move-spec-list :in-hand-frame T)

Generating motions of objects requires only one move-spec because the same

motion applies to all fingers. However, when regrasping an object or exploring

its surface with a finger, different motions need to be specified for the individual

fingers. This is the reason that the generate-traj message was desinged to take
a list of move-specs as its argument rather than a single move-spec. This feature

can be used to implement stable regrasp (Fearing 1984] and object recognition

algorithms (Grimson and Lozano-Perez 1984].

7.5.4 Positioning and Orienting Objects

An object can be rotated about the center of the body-fixed frame to a desired

orientation by

(send tg :orient-with frame-foo)

where frame-foo is a frame or a rot specified relative to the hand frame. The
object will be rotated such that its body axes will have the same orientation as

the coodinate axes of frame-f oo. If unspecified, the number of knot points used

for the rotation is the current value of default-segs-per-move.

An object can be moved to a desired position and orientation by sending the

message

(send tg :move-to frame-foo) .

The object will be simultaneously translated and rotated about its origin such

that the body-fixed frame will coincide with frame-f oo. Again, both duration

and number of knot points can be specified or defaulted.

o!
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7.6 Setting Stiffness

There are in general three levels of motion specifications - motion in joint space,

finger motion, and object motion. The messages for specifying these motions

were described in the previous section. The trajectory generator also provides

facilities for specifying stiffnesses and forces at the joint, finger, and object levels.

The messages for specifying these stiffnesses and forces will be described in this

section.

7.6.1 Joint Stiffness and Force

A trajectory is constructed from a sequence of knot points. As messages specify-

ing motions are received by the trajectory generator, new knot points are added

to the trajectory. The joint stiffness at the current knot point, i.e. the end of

the current trajectory, can be specified by sending the message

(send tg :set-joint-stf stf-mat) .

where stf -mat is the desired joint stiffness matrix. For example, assume that a

new trajectory is constructed by the sequence of messages

(send tg :move-joints-to joint-pos)

(send tg :set-joint-stf stf-mati)

(send tg :generate-traj move-spec-list :number-of-segs 9)

(send tg :set-joint-stf stf-mat2)

Then the joint stiffness at the first knot point will be stf-matl, and that at the

tenth knot point will be stf-mat2.

A corresponding nominal torque can be set by including the optional argument

(send tg :set-jcint-stf sti-mat :nol-trq trq-vect)

where trq-vect is a vector of the desired nouninal bias torque.

To set the stiffness and/or torque at a prceeding knot point, another optional

argument is used, specifying the knot point number, e.g.
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(send tg :set-joint-stf stf-mat :seg-number 8) .

The nomenclature :seg-number is a reminder that each knot point corresponds

to a seg structure in the VAX. The first knot point is assigned the number zero,

according to LISP array index convention. Hence, this message has the effect

of setting the joint stiffness at the ninth knot point. If we attempt to set the
stiffness at a non-existent knot point, i.e. past the end of the current trajectory,

an error message will be printed and NIL is returned.

When a particular stiffness matrix is used repeatedly, sending the same long

sequence of floating point numbers to the VAX is extremely inefficient. This
can be avoided by associating the stiffness with a name. The VAX provides

a symbol look-up table for named stiffnesses. Once the stiffness is defined,
subsequent messages for using the stiffness need only contain a short character
string corresponding to the associated name. These operations are handled by

sending a define-stf message to the trajectory generator, e.g.

(send tg :define-stf 'foo stf-mat)

will associate the name foo with the joint stiffness matrix stf -mat. Setting the

joint stiffness at the knot points can then be accomplished by using the symbolic

name ;ustcad of the actual stiffness matrix, e.g.

(send tg :set-joint-stf 'foo :seg-number 8)

Not specifying the stiffness at a particular knot point will cause the VAX to

use a default stiffness for the corresponding seg structure. This stiffness has the
special name nom-stf, its value can be replaced by sending the message

(send tg :define-stf 'nom-stf stf-mat)

This will cause stf -mat to be used at all knot points without spcified stiffness.

Frequently we may wish to only specify the nominal bias torque at a knot

point and use the default stiffness. This is accomplished by

(send tg :set-trq trq-vect)
0
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where an optional seg-number can also be included.

Similarly, torque vectors can be associated with a symbolic name by

(send tg :define-trq 'bar trq-vect)

Subsequent set-trq messages may then use the symbol bar instead of the actual

toruqe vector.

Complete(y analogous to the default stiffness, the message

(send tg :define-trq 'nom-trq trq-vect)

will cause the VAX to use trq-vect as the default nominal torque for segs

without torque specifications.

7.6.2 Finger Stiffness and Force

The current stiffnesses at the finger tips can be set by sending the message

(send tg :set-finger-stf stf-mat)

where stf -mat is a 9x9 finger stiffness matriz.

This message implements the following force/displacement relation

L2 K A1_2

where f and A. are respectively the force and displacement vectors of the ith

finger tip. The interpretation of the frame in which to implement the stiffness

relation follows the rules for finger motions. For a basic-frame trajectory genera-

tor, the directions of the forces and displacements are interpreted as specified in

the hand-fxed frame. For a grasp-frame trajectory generator, the directions are

interpreted as specified in the body-fixed frame. The back-to-basic message

can be sent if we wish to specify the stiffness relation in a hand-fixed frame. In

the special case where the stiffness relation is to be specified in the hand frame,

the optional :in-hand-frame argument can be used, i.e.
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(send tg :set-finger-stf stf-mat :in-hand-frame T)

Specifying only the stiffness will cause the default nominal torque to be applied.

Nominal finger forces can be specified by the inclusion of another key-worded

argument, or by a sending a separate set-f inger-frc message. For example,

(send tg :set-finger-stf stf-mat :nom-frc frc-vect)

or
S

(send tg :set-finger-frc frc-vect)

will set the nominal finger forces at the current knot point to frc-vect. Speci-

fying only the finger forces will cause the default joint stffness to be used.

Analogous to the joint space counterparts, the finger stiffness and/or force

at a previous knot point is set by including the optional : seg-number argument,

e.g.

(send tg :set-finger-stf stf-mat :seg-number 8)

The stiffness will be interpreted as specified in the body-fixed frame correspond-

ing to that particular knot point, i.e. the stiffness is specified in the instanta-

neous object coordinates. This feature provides a very natural way to specify the

stiffnesses and forces of fingers. For example, assuming that we are constructing

a new trajectory, the following two different sequences of messages produce the

the same effect:

Sequence 1:

(send tg :move-fingers-to grasp-position :in-hand-frame T)

(send tg :jet-finger-stf stf-mat)

(send tg :generate-traj movel :number-of-segs 9)

(send tg :set-finger-stf stf-mat)

Sequence 2:

(send tg :move-fingers-to grasp-position :in-hand-frame T)

(send tg :generate-traj movel :number-of-segs 9) 5
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(send tg :set-finger-stf stf-mat :seg-number 0)

(send tg :set-finger-stf stf-mat)

Again, this feature can be by-passed using the back-to-basic message.

7.6.3 Object Stiffness and Force

The generalized grasp stiffness at the current knot point is specfied by sending

the sequence of two messages

(send tg :update-grasp-matrix)

(send tg :set-grasp-stf stf-mat)

This message implements the generalized grasp force/dispacement relation

=n K AO

where f and m are the net force and moment vector on the object and y is the.

internal grasp force vector. The vector Ad corresponds to the change in the

distance between the grasp points.

The interpretation of desired compliance frame is completely analogous to that

for setting the finger stiffness. For a basic-frame trajectory generator, the stiff-

ness relation is interpreted as specified in the hand-fixed frame. For a grasp-

frame trajectory generator, the stiffness is interpreted as specified in the body-

fixed frame, i.e. the body-fixed frame is the compliance frame. The back-

to-basic message can be sent if we wish to specify the stiffness relation in a

hand-fixed frame. The optional :in-hand-frame argument can be used for the

special case of setting the hand frame as the compliance frame.

It is interesting to note that a update-grasp-matrix message is sent prior to S

setting the stiffness, i.e. the grasp matrix is not updated automatically as part N

of the set-grasp-stf procedure. Recall that a grasp matrix is only a function

of the positions of the contacts relative to the compliance frame. Hence, if the

compliance frame is a body-fixed frame, then the grasp matrix need only to be 0

N-11I "V V V V%, V V %
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computed once for each grasp. That is, the grasp matrix need not be updated

for every knot point at which we wish to specify the stiffness. Therefore, to

avoid unnecessary computation, the task of updating the grasp frame is left

to the programmer. The grasp matrix need to be re-computed only in two

situations - when regrasping an object, and when the compliance frame is not

a body-fixed frame.

The optional arguments to the set-grasp-stf message are also completely

analogous to those for the set-f inger-stf message. Nominal grasp force can S

be specified by

(send tg :set-grasp-stf stf-mat :nom-frc frc-vect)

or by sending a separate message

(send tg :set-grasp-frc frc-vect)

The stiffness and/or force at a previous knot point is set by the optional seg-

number argument, e.g.

(send tg :set-grasp-stf sit-mat :nom-frc .frc-vect :seg-number 8)

Again, the stiffness relation will be interpreted as specified in the body-fixed

frame corresponding to that knot point. This feature allows the programmer to

naturally specify the desired body-centered stiffness at any point in the traje-

ctory.

7.7 Sending a Trajectory

As messages are received by the trajectory generator, a joint trajectory with

the associated stiffnesses and nominal torques is constructed. At any time,

the programmer can either continue to construct the trajectory or execute the

current trajectory. The trajectory can be executed by sending the message

(send tg :eend-traj pc) .

where pc is the parallel connection object. S

VsFE
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V Grasp Frame

VO d

Figure 7.4: Peg-in-hole insertion using body-fixed compliance frame

When this message is received, the trajectory generator constructs message pack-

ets with the appropriate op-codes and arguments. As each packet is constructed, S
the trajectory generator sends a message to the parallel connection object, re-

questing that the packet be sent to the VAX. When all packets have been sent,

the internal trajectory structure is cleared for storing a new trajectory.

7.8 Programming Examples

As an illustration of how these messages are used, we will consider a peg-in-
hole insertion task using two different compliance frame specifications. The first -

will use a body-fixed compliance frame, while the second will use a hand-fixed

compliance frame.

7.8.1 Peg Insertion Using Body-fixed Compliance

Consider the task of inserting a peg into a chamfered hole in the presence of
alignment errors (see Figure 7.4). This task can be accomplished by allowing

the geointric constraints imposed by the chamfer and the hole to guide the
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motion of the peg. We will first consider using a body-fixed compliance during •

the insertion, as that achieved by the RCC device.

To place the compliance center at the tip of the peg, we define a body-fixed

frame with the tip as origin, as shown in Figure 7.4. Assume that the axis of

the peg is approximately aligned with the axis of the grasp frame, and that the

distance from the origin of the grasp frame to the tip of the peg is approximately

d, the peg frame relative to the grasp frame is given by
S

(setq peg-frame (make-frame NIL (vector 0.0 d 0.0)))

A message is sent to the grasp-frame trajectory generator to set the body-fixed

frame.

(send tg :set-frame peg-frame)

Let the initial vertical position of the peg tip be the same as the mouth of the

hole, the task can then be achieved by the following sequence of messages:

(setq insert-y (list (list NIL NIL (vector 0.0 h 0.0))))

(send tg :generate-traj insert-y :number-of-segs 10),

(send tg :update-grasp-matrix)

(dotimes (i 10)

(send tg :set-grasp-stf stf-mat :nom-frc frc-vect :seg-number i))

(send tg :send-traj pc)

where the dotimes structure is a simple do-loop, repeating the enclosed state-

ments 10 times, with the variable i incremented from 0 to 9. The stiffness matrix

stf -mat is usually a diagonal matrix, and the nominal force vector frc-vect

usually specifies only internal grasp forces to be non-zero.

7.8.2 Peg Insertion Using Hand-fixed Compliance

Kinematic and force analysis [Whitney 19821 has shown that the ideal location

of the compliance center for peg-in-hole insertions is at the mouth of the hole.

However, because the RCC is a passive device, the compliance center has to

r
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Figure 7.5: Peg-in-hole insertion using hand-fixed compliance frame ".t".

remain fixed with respect to the peg, and hence moves beyond the mouth of

the holc during insertions. Using active stiffness control, we can specify the

compliance center to remain fixed with respect to the hole.

The compliance frame defined at the hole is shown in Figure 7.5, having the

same orientation as the hand frame. The vector p denotes the translation of the

origin of the compliance frame from the origin of the hand frame. Therefore,

the compliance frame relative to the hand frame is given by

(setq hole-frame (make-frame NIL p-vector)) A

To specify compliance in a hand-fixed frame, we first convert the gra-p-franie ,,

trajectory generator into a basic-frame type. k':

(send tg :back-to-basic)

(send tg :set-frame hole-frame)

The task can then be achieved by the following sequence of messages:

(setq insert-y (list (list NIL NIL (vector 0.0 h 0.0)))) 
"%

(send tg :generate-traj insert-y :number-of-segs 10)

_'M W V 
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(dotimes Ui 10)

(send tg :update-grasp-matrix)

(send tg :set-grasp-stf stf-mat :nom-frc frc-vect :seg-number 0)

(send tg :send-traj pc)

Note that the grasp matrix is now re-computed at every knot point.

The trajectory generator may well be inipleiL.entcd with a settable internal

variable named auto-grasp-matrix-update. However, because the evaluation

of a grasp matrix is computationally expensive, the syntax is designed to en-

courage using a body-fixed compliance frame when possible.

1 ok
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Chapter 8

Conclusions

8.1 Review

This work was primarily concerned with coordinating the motion of an articu-

lated hand to perform useful manipulations of objects. We began with an study

of the nature of manipulation.. It was shown that motions of rigid objects are

determined by kinematic constraints. Manipulation corresponds to using the

contacts to impose appropriate constraints such that the possible object mo-

tions will be uniquely the desired motion. The question of whether consistent

kinematic constraints can be imposed led to the discussion of force control.

We then studied the kinematic transformations of articualted hands which

translate the desired Cartesian motions of contacts into motions in joint space.

The transformations for the Stanford/JPL Hand were derived as an example.

These transformations were determined on the assumptions that the fingers do

not slip and that rolling at the contacts is negligible. The geometry of the

contacts were nsed to define a grasp frame, which provided the necessary link

between the position and orientation of a grasped object and the joint coordi-

nates of the hand. It was shown that the goal position and orientation of an

object must be specified in terms of an object trajectory. This is a fundamental

distinction between articulated hands and ordinary manipulators. The neces-

sity to specify a trajectory path led to a discussion of how motions are specified,
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and how points on a rigid object are located at each instant of the motion.

Combining motion specification and the transformations developed earlier, we
were able to translate object motions in arbitrary coordinate frames into a set

of corresponding joint motions. However, joint space interpolations inevitably

result in kinematic inconsistencies. In practice the inconsistencies may be ab-

sorbed by the mechanical compliance of the fingers. Still, this can result in

excessive contact forces causing permanent deformations of the fingers and the

object. Hence, regardless of whether the environment imposes any kinematic

constraints, force control is necessary to safely resolve the internal kinematic

inconsistencies between the fingers and the object.

The stiffness control strategy was considered. An analysis of the stiffness

matrix showed how a stiffness matrix can be specified to obtain the desired com-

pliant behavior. In essence, symmetric stiffness matrices can be used to orient

the principal stiffness axes, and non-symmetric matrices can be used to obtain

cross-coupled compliance. To implement stiffness control with an articulated

hand, we must be able to translate the desired grasp forces into required joint

forces. The transpose of the Jacobian provides the transformation from contact

force to joint force, and hence a transformation from grasp force to contact force

is re( .. This transformation is defined as the grasp matrix transpose. The

produ .)f the grasp matrix and the Jacobian matrix was defined as the grasp

Jacobian. Assuming small deviations, the grasp Jacobian can be used to trans-

form a Cartesian stiffness into a pre-computable joint stiffness. The results can
be extended to include full impedance control, transforming Cartesian inertia,

damping, and stiffness matrices into che joint space equivalents.

Using the stiffnes approach, compliant motion of objects then involves super-,I "

imposing stiffness control on a desired nominal trajectory. This is implemented

by setting the appropriate joint stiffnesses and bias forces at the trajectory knot

points. Although trajectories and forces can be interpolated linearly or quadrat-

ically between knot points in joint space, it is not certain that the same holds

for stiffness matrices. If the knot points are closely spaced, these simple inter-

polation methods can be used to elininate undesirable oscillations or sudden

S%
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jumps in motion during stiffness transitions.

The choice of compliance frame basically affects the interpretation of the

translational displacement of an object and the rotational force on the object. It

should be chosen to reflect the "natural" definitions of translational displacement

and rotational force for an object. In most cases, a natural choice is the body-

fixed frame which defines the position and orientation of an object. Using a

body-fixed frame as the compliance frame is also desirable from a computational

point of view. •

The compliant motion coacepts and methodologies culminated in the imple-

mentation of a high-level hand programming sytem for the Stanford/JPL Hand.

The hand programming system is basically an extension to an existing LISP

system. LISP procedures are defined for computations specific to the hand and

for communicating with a VAX dedicated to real-time control. High-level hand

programming is realized through the implementation of two abstract objects, a

trajectory generator, and a parallel connection object. Compliant motions are 0

specified by sending messages to the trajectory generator, which constructs a

joint trajectory with the associated stiffnesses and bias torques. Motions and

stiffnesses can be specified at the joint, finger, or object level. At any time,

the programmer can execute the current trajectory or continue to build the

trajectory. The interactive nature of the system shiplifies programming and de-

bugging. The use of LISP as the basis of this system also supports integration

of knowledge-based programs with manipulation.

8.2 The Future

The current development of the hand programming system has not reached the

stage where conditionals can be sent as part of a trajectory. To check if a

force threshold has been exceeded, the LISP machine must send a message to

the VAX requesting the current force state. The goal of the immediate future .-

is to implement the conditionals as part of a trajectory, such that the VAX %

will automatically respond with a message if a certain condition has occurred.

?*% . . , A .6..
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The conditionals will have different levels of priority. Certain conditions will 0

completely pause the trajectory until further instruction is received, while others

may simply send a message to the LISP machine.

Force sensors have been developed which can locate point contacts as well as

measure normal and tangential forces at the contacts [Salisbury 1984b]. These

sensors have recently been miniaturized as hemi-spherical finger tips to be used

on the Stanford/JPL Hand. In the present hand programming system, joint

motions are computed on the assumption that contacts occur at the tip of the

fingers, neglecting rolling of the finger tips across the surface of the object. More

accurate modeling of the grasp kinematics can be obtained from the sensor

information. Pending the completion of the sensor system, algorithms can be

developed to improve the dexterity of the hand. Forces exerted on an object is

currently computed from the joint torques. The sensors will also provide more

precise measurement of these forces. The use of tactile sensor information in a

force feedback algorithm is an interesting topic of future research.

The current vocabulary of the hand control language is sufficiently broad to

implement complex regrasping or exploration algorithms. Performing regrasp-

ing with a three-fingered hand is difficult, since two fingers with point contacts

are insufficient to completely constrain an object. When a finger is withdrawn

for regrasping, the object is free to rotate about the line connecting the two

remaining fingers. The two finger grasp configuration must counteract the mo-

ments exerted by the gravity force. This can be achieved by using soft finger

tips which are capable of exerting moments at the contacts as well as forces.

The extra stability is obtained at the expense of positioning accuracy. An al-

ternative is to push the object against the palm while a finger is re-positioned.

However, it is not clear that free rotation of the object is undesirable. The gray-

ity force may be exploited to manipulate the object into a stable configuration. .

A method for using local tactile sensor information and appropriate choice of

finger stiffness to perform stable regrasp of two-dimensional objects was pre-

sented by Fearing [1984]. Regrasping in three-dimensions remains a new area of

research. Works on interpreting tactile information for identifying objects has

9!
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also been limited. An algorithm for identifying polyhedral obje4G from local 6

measurements of positions and surface normals was presented by Grimson and

[,ozano-P6rez [198,1]. This requires an integration of manipulation, sensing, and

model-based reasoning. The hand programming system is a step toward these

goals.

Significant progresses have been made in recent years in the development

of manipulator control, sensor technology, vision systems, and knowledge-based

programs. Advances in these areas are made by researchers specialized in the

particular fields. It is important to keep a broad perspective on the available
technology. As the human hand compliments the eye, it may not be necessary

to develop each technology to perfection for a particular application, but to

integrate them properly to compliment each other.

S
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Appendix A

CADR/VAX Messages

This appendix lists the messages available for CADR/VAX communication. 9

Message packets are constructed from two op-codes followed by appropriate

data.

1. OP-CODE DEFINITIONS A

Op-codes for CADR to VAX Communication

Symbol Octal Number Message

PAUSE-SYNC #010 pause servo control program

RESUME-SYNC #020 resume servo control program

START-TRAJECTORY #030 start trajectory execution

CHANGE-MODE #040 change control mode

CHAR-CHD #060 special character command

QUIT #070 quit

DEFINE-POS #0100 define position by a symbol 

DEFINE-TRQ #0200 define torque by a symbol

DEFINET #0300 define stiffness by a symbol

ADD-SEG #01000 add pre-defined position to trajectory

$ADD-SEG #01100 add position to trajectory '

SET-TRQ #02000 set pre-defined torque

$SET-TRQ #02100 sel torque

SET-STF #03000 set pre-defined stiffness

$SET-STF #03100 set stiffness
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SET-COND #04C00 set conditional, not implemented

QUERY-POS #010000 query position

QUERY-TRQ #020000 query torque

QUERY-FINGER-FRC #030000 query finger force

Op-codes for VAX to CADR Communication

Symbol Octal Number Message

CHAR-MSG #01 character string message

INT-MSG #02 integer message

FLOAT-MSG #03 float message

CURRENT-POS #010 current position

CURRENT-TRQ #020 current torque

CURRENT-FINGER-FRC #021 current finger force

CURRENT-STATUS #030 current status

2. MESSAGE PACKET SYNTAXES

CADR to VAX Packet Syntaxes

The symbol OP-2 indicates that the second op-code is

not yet defined for the message; any integer is acceptable. S

(PAUSE-SYNC OP-2)

(RESUME-SYNC OP-2)

(START-TRAJECTORY OP-2)

(CHANGE-MODE OP-2 CHAR) 6

(CHAR-CMD OP-2 NCHAR STRING)

(QUIT OP-2)

(DEFINE-POS OP-2 NCHAR NAME-STRING 12-FLOATS)

(DEFINE-TRQ OP-2 NCHAR NAME-STRING 12-FLOATS)

(DEFINE-STF OP-2 NCHAR NAME-STRING 90-FLOATS)

(ADD-SEC OP-2 NCHAR NAME-STRING DURATION)

($ADD-SEG OP-2 12-FLOATS DURATION)

(SET-TRQ OP-2 NCHAR NAME-STRING)

($SET-TRQ OP-2 12-FLOATS)

(SET-STF OP-2 NCHAR NAME-STRING)
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(SSET-STF OP-2 90-FLOATS)

(QUERY-POS QUERY-ID)

(QIJERY-TRQ QUERY-ID)

(QUERY-FINGER-FRC QUERY-ID)

VAX to CADR Packet Syntaxes

(CHAR-M4SG OP-2 STRING)

(INT-tMSG OP-2 INTERGERS)

(FLOAT-MSG OP-2 FLOATS)

(CURRENT-POS REPLY-ID 12-FLOATS)

(CURRENT-TRQ REPLY-ID 12-FLOATS)

(CURREMT-FINGER-FRC REPLY-ID 9-FLOATS)

(CURRENT-STATUS REPLY-ID 12-INTEGERS)



Appendix B K

The Trajectory Generator

This appendix lists the messages which can be sent to a trajectory generator

object. The first symbol is the operation name, followed by the arguments. The

symbol &optional indicates that the remaining arguments are optional. The

symbol &key indicates that the remaining arguments are optional arguments

which must be preceeded by the appropriate keywords.

1. MESSAGES HANDLED BY ALL TRAJECTORY GENERATORS

(INIT)

(:INIT-POS &OPTIONAL INITIAL-JOINT-POS CHG-DEFAULT-INT-POS)

(:SET-DEFAULT-SEGS-PER-?4OVE SEGMENTS-PER-MOVE)

(SET-DEFAULT-MOVE-DURLATION DURATION-IN-SECONDS)

(:SET-DEFA*ULT-INTERNAL-POS POS-VECTOR)

(:SET-DEFAULT-UTTERNAL-rRQ TORQUE-VECTOR)

(:SET-DEFAULT-INTERNAL-STF STIFFNESS-VECTOR)

(:SET-TRAJ-FILL-POIZTER SEG-NUMBER)

(SET-CURL CURL-OUT-VECTOR)

(:SET-FRAME FRAME)

C:SET-TRQ TORQUE-VFCTOR-OR-SYMBOL &KEY SEC-NUMBER NAME)

(:SET-FINGER-FRC FORCE-VECTOR &KEY INTERNAL-TRQ SEG-NUNBER IN-HAND-FRAME NAME)

(:SET-GRASP-FRC FORCE-VECTOR HKEY INTERNAL-TRQ SEQ-NUMBER IN-HAND-FRAME NAME)

(:SET-JOINT-STF STIFFNESS-MATRIX-OR-SYMBOL &KEY NOM-TRIQ SEG-NUMBER NAME)

(:SET-FINGER-STF STIFFNESS-MATRIX HKEY NOM-FRC INTERNAL-STF

SEGNUMERIN-RAND-FRAMRE NAME)
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(:SET-GRASP-STF STIFFNESS-MATRIX &KEY NOM-FRC INTERNAL-STF6

SEC -NUMBER IN-HAND-FRAME NAME)

(:UPDATE-GRASP-MATRIX &KEY SEC-NUMBER IN-HAND-FRAME)

C: DEFINE-POS SYMBOL-NAME &OPTIONJAL SEG-HUMBER--OR-JOINT-POS)

(:DEFINE-TRQ SYMBOL-NAME TORQUE-VECTOR)

(:DEFINE-STF SYMBOL-NAME STIFFNESS-MATRIX)

(:MULL-MOVE &OPTIONAL DURATION)

(:MOVE-JOINTS-TO JOINT-POS-OR-SYMBOL-NANE &KEY DURATION)

(:MOVE-JOINTS-BY JOINT-POS &KEY DURATION)

(:MOVE-FINCERS-TO CARTESIAN-POS &KEY INTERNAL-POS DURATION IN-HAND-FRAME)

(:MOVE-FINGERS-BY CARTESIAN-POS &KEY INTERNAL-POS DURATION IN-HAND-FRAME)

(:GENERATE-TRAJ MOVE-SPEC-LIST &KEY NUMBER-OF-SEGS DURATION IN-HAND-FRAME)

(:FIND-RELATIVE-POS)

(:COPY-TRAJ &OPTIONAL FLOAT-BUF)

(:SEND-TRAJ PARALLEL-CONNECTION)

2. ADDITIONAL MESSAGES HANDLED BY GRASP-FRAME TYPE

(:ORIENT-WITH ORIENTATION-FRAME &KEY NUMBER-OF-SEGS DURATION)

(:MOVE-TO GOAL-FRAME &KEY NUMBER-OF-SEGS DURATION)

(:BACK-TO-BAS IC)

(:SET-AUTO-FRAME-UPDATE T/NIL)

(:SET-ORIGIN-AT-CENTROID T/NIL)

(:UPDATE-GRASP-FRAME)

-I 9
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Appendix C
,'

The Parallel Connection

This appendix lists the messages which can be sent to a parallel connection ob-

ject. The parallel connection object was implemented by Patrick A. O'Donnell. '-"(

MESSAGES HANDLED BY ALL PARALLEL CONNECTIONS '-*

(INIT)

(: KILL) 'N

DATA-AVAILABLE)

( : ET-NEXT-PKT &OPTIONAL WAIT?) %

( :MAY-TRANSM IT)

( '.SENID-PKT PACK(ET) -

.

131.

W-".-l-



References

1. ASEA, "Industrial Robot System," ASEA AB, Sweden, YB 110-301 E.

2. Brooks, T.L., "Optimal Path Generation for Cooperating or Redundant

Manipulators," Proc. 2nd Int. Computer Engineering Conference, San

Diego, CA, August 1982, pp 119-122.

3. Drake, S., "Using Compliance in Lieu of Sensory Feedback for Automatic

Assembly," Charles Stark Draper Laboratory Report T-657, Sept. 1977.

4. Fearing, R.S., "Simplified Grasping and Manipulation with Dextrous

Robot Ilands," Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, Al Memo 809, Nov. 1984.

5. Goldman, R., "Design of an Interactive Manipulator Programming Envi-

ronment," Ph.D. Thesis, Department of Computer Science, Stanford Uni-

versity, Dec. 1982.

6. Grimson, W.E. and T. Lozano-Pgrez, "Model-based Recognition and

Localization from Tactile Data," Proc. IEEE Int. Conference on Robotics,

Atlanta, GA, March, 1984. -7

7. Hogan, N., "Impedance Control of Industrial Rn' ts," Robotics and

Computer-Integrated Manufacturing, Vol 1, No. 1, i ,84, pp 97-113.

8. Hollerbach, J.M. and K.C. Suh, "Redundancy Resolution of Manip-._

ulators through Torque Optimization," Proc. IEEE Int. Conference on

Robotics and Automation, St. Louis, MO, March 1985.

9. Holt, H.R., "Robot Decision Making," Cincinnati Milacron Inc., MS77-751, 100

1977.

132

_ 4 , .



REFERENCES 133

10. Kazerooni, H., "A Robust Design Method for Impedance Control of ,

Constrained Dynamic Systems," Ph.D. Thesis, Department of Mechanical

Engineering, Massachusetts Institute of Technology, Feb. 1985.

11. Mason, M.T., "Compliance and Force Control for Computer Controlled

Manipulators," Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, AI TR 515, April 1979.

12. Paul, R.P., "Manipulator Path Control," Proc. IEEE Int. Conference

on Cybernetics and Society, New York, Sept. 1975, pp 147-152.

13. Paul, R.P., "WAVE: A Model-based Language for Manipulator Control,"

The Industrial Robot, March 1977.

14. Paul, R.P., "Manipulator Cartesian Path Control," IEEE Trans. on

Systems, Man, Cybernetics, SMC-9, 1979, pp 702-711.

15. Paul, R.P., Robot Manipulators, M.I.T. Press, Cambridge, MA, 1981.

16. Paul, R.P. and Shimano B., "Compliance and Control," Proc. Joint

Automatic Control Conference, Purdue University, July, 1976.

17. Raibert, M.H., and J.J. Craig, "Hybrid Position/Force Control of

Manipulators," ASME Journal of Dynamic Systems, Measurement, and

Control, Vol 102, June 1981, pp. 126-133.

18. Roberts, L.G., "Homogeneous Matrix Representation and Manipulation

of N-Dimensional Constructs," Lincoln Laboratory, Massachusetts Insti- O

tute of Technology, Document No. MS1045, 1965.

19. Salisbury, J.K., "Active Stiffness Control of a Manipulator in Carte-
sian Coordinates," Proc. 19th IEEE Conference on Decision and Control,

Albuquerque, NM, Dec. 1980.

20. Salisbury, J. K., "Kinematic and Force Analysis of Articulated [lands,"

Ph.D. Thesis, Department of Mechanical Engineering, Stanford University,

May 1982.

21. Salisbury, J.K., "Design and Control of an Articulated Hand," Proc. 1st ' "

Int. Symposium on Design and Synthesis, Tokyo, July 1984a.

.b%._



REFERENCES 134

22. Salisbury, J. Kenneth, "Interpretation of Contact Geometries from %
Force Measurements", Proc. 1st International Symposium on Robotics
Research, Bretton Woods, NH, MIT Press, Sept. 1984b.

23. Salisbury, J.K. and J.D. Abramowitz, "Design and Control of a Re-

dundant Mechanism for Small Motion," Proc. IEEE Int. Conference on

Robotics and Automation, St. Louis, MO, March 1985.

24. Salisbury, J.K. and J.J. Craig, "Articulated Hands: Force Control
and Kinematic Issues," Int. Journal of Robotics Research, Vol 1, No. 1,

Spring 1982.

25. Silver, D., "The Little Robot System," Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, AI Memo 273, Jan. 1973.

26. Talylor, R.H., "Planning and Execution of Straight-line Manipulator

Trajectories," IBM Journal of Research and Development 23, 1979, pp
424-436.

27. Talylor, R.H., P.D. Summers, and J.M. Meyer, "AML: A Manu-
facturing Language," Robotics Research t, 3, Fall, 1982.

28. Whitney, D. E., "The Mathematics of Coordinated Control of Prosthetic
Arms and Manipulators," ASME Journal of Dynamic Ss1tems, Measure-

ment, and Control, Dec. 1972, pp. 303-309.

29. Whitney, D. E., "Force Feedback Control of Manipulator Fine Motions,"

ASME Journal of Dynamic Systems, Measurement, and Control, June

1977, pp. 91-97. .

30. Whitney, D. E., "Quasi-Static Assembly of Comnplimtly Supported Rigid

Parts," Journal of Dynamic Systems, Measurement, and Control, Vol. 104,

March 1982, pp. 65-77.

31. Winston, P.H. and B.K. Horn, LISP, Addison-Wesley Publishing Co., 'A
Inc., 1981.

-,-'0 Os0


