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ABSTRACT

STRUCTURAL OPTIMIZATION INCLUDING
CENTRIFUGAL AND CORIOLIS EFFECTS

by
Howard Dwight Gans

Chairman: William J. Anderson

This dissertatie investigatcs the effecLt of centrifugal and Coriolis forces on Lhe

mode shapes and frequencies of a rotating system. Optimal redesign is then done to

favorably alter the modA_- The rotational effects have a profound influence on the

eigenfrequencies; this is important in optimal structural redesign where the frequencies

must be adjusted.

The structural matrices for the rotating system were obtained by examining the

expression for the total system energy. This provides a differential stiffness matrix that

models centrifugal force and a provides velocity-dependent Coriolis matrix. By using a

high-level programming language (Direct Matrix Abstraction Programming) a modal

analysis solution sequence was modified to account for rotational effects in free vibration.

Finite element models were then created for a typical compressor blade in a modern jet

engine and for a cantilever beam rotating about the vertical axis. I Using these models, the

effects of rotation as simulated by the finite element method were verified against

theoretical results.

The optimal redesign was done by deriving complex nonlinear inverse perturbation

equations for the problem involving both magnitude and phase components. The

perturbation problem is solved by using nonlinear mathematical programming. -In order to

optimally .redesign,415 uses an underdetermined system, i.e., the feasible design must not

be unique. This allows the application of an objective function, such as minimum

structural weight or minimum change from the baseline design. Constraints, such as those1 |I.
I%
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on frequency, are applied. 'Using this method, optimal stuctural changes are obtained that

meet the frequency goals to within three percent. Examples were carried out using the

general purpose software package MSC/NASTRAN and ADS (Automated Design

Synthesis).
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CHAPTER 1

INTRODUCTION

The desire to minimize weight while meeting design requirements is a key concept

in optimal structural design. When a particular stuctural component is being examined.

the engineer must consider many aspects of structural behavior, such as dynamic

response. These parameters must be bounded in the design phase while still meeting the

overall goal of minimizing weight.

There are numerous occasions where the design of an existing structure is found

wanting and this creates the need for structural redesign. For example, the mission of a

particular aircraft that has been used for many years may change. This happened with

the T-38 trainer when it was adapted for use in lead-in fighter training. The aircraft

structure may then be subjected to loads that could not be forseen in the driginal design.

Fatigue cracks may develop due to changes in the load spectrum. Dynamic effects may

result due to excitation of modal frequencies that would have remained stable under the

prior usage.

In any structural redesign problem, there are several possible candidate designs that

would meet the new criteria. Structural optimization can be used in the redesign problem

to find the best possible configuration. The objective function for redesign, however, may

be quite different from the objective function in the original design of a part. It may not be

suitable to concern oneself only with weight. If the dimensions of an existing part are

altered too much, it may r- longer fit in the aircraft. Existing fastener locations may no

longer be suitable. The balance of the entire aircraft may be thrown off. Therefore, it

may be necessary to obtain the optimal design that requires the least possible change from

%
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the original design in terms of some dimension, such as thickness. This is a minimum

design change criterion for optimization.

For given values of design parameters, analytical methods may be used to

uniquely determine the response. The response values can be compared against the

desired response. A search in the design space can be undertaken for a new design, and

the response and constraints can be reanalyzed. This approach is the simplest

conceptually, and if the number of design variables and constraints is small, is the most

advantageous. However, most problems in structural design involve a large number of

design variables and/or a large number of constraints. This makes a random search

approach unfeasible. In addition, a closed form analytical solution usually cannot be

obtained for a large problem. Large, general purpose finite element programs are used to

determine the structural response. Since these programs are expensive to run on a

computer, it is desirable to avoid large numbers of trial solutions. Therefore, some form of

optimization procedure coupled with finite element analysis must be used.

Some structures, because of their application, are subject to body forces in addition

to the loadings caused by boundary forces. Rotating bodies experience centrifugal effects.

These effects are not forces at all if viewed from a nonrotating frame of reference.

However, in the rotating frame, the centrifugal effects may be viewed as a reverse-

effective pseudo-force. If the rotational speed is small enough, these forces can be

neglected. In high speed applications, however, the body forces must be taken into

account. Centrifugal force in particular can result in stiffening. This stiffening is

particularly obvious for rotating helicopter blades. When the blades are at rest, they sag

under their own weight. As the blades speed up, they stiffen, to the point where they can

bear not only their own weight, but the weight of the entire aircraft. A similar effect

occurs in aircraft gas turbine engines. The rotating blades in the high speed compressor

and turbine are subject to body forces. With the advent of higher speed blading, it is

necessary to include the effect of these body forces in design. This introduces a

%OW&- , .V 4L 0.
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nonlinearity in the finite element analysis and optimization scheme.

Coriolis force is another body "force" that a rotating body may experience when

viewed in a rotating coordinate system but is not a force at all if viewed in an absolute

frame of reference. This force, also known as gyroscopic force, couples motion in one plane

with motion in another plane. Gyroscopic effects are velocity dependent; that is, the

greater the velocity in one plane, the greater the effect will be in the other plane. In

systems which permit large amounts of out-of-plane motion, such as in pretwisted blades,

the Coriolis forces will become great at high speeds, and thus will affect optimal redesgin.

In many other systems, Coriolis forces may be ignored. The effect of the Coriolis terms on

structural dynamics is documented by Greenwood (1977) and Meirovitch (1980).

The effect of rotation on the dynamic characteristics of a body has been well-

documented by Washizu (1982). Simplified methods for the solution of the problem of the

rotating beam have been presented by White and Malatino (1975), McDaniel and Murthy

(1977), and Giurgiutiu and Stafford (1977). Isakson and Eisley (1964) related the

centrifugal effect to a stiffening parameter, the Southwell coefficient. Hodges and

Rutkowski (1981) derived a finite element solution to the problem of a rotating beam by

creating variable order shape functions. Queau and Trompette (1981) used parameter

optimization in a beam analysis of a blade. Cross-sectional properties were found under a

least weight objective and with frequency and stress constraints. Kim, Anderson, and

Sandtr6m (1983) presented a nonlinear inverse perturbation scheme for automated

redesign of modal characteristics. Hoff, et. all (1984) used the perturbation technique to

develop a predictor-corrector approach, which is useful in the present study.

The advance of numerical techniques of structural optimization has been one of the

most important developments in the field of engineering design. These methods have

permitted the engineer to select the best possible configuration from several candidate

designs. Structural optimization can also be used to modify an existing design in order to
adapt existing aircraft to new requirements. One critical area where optimal structural

.. ) -I
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redesign will be of great importance is in the reanalysis of aircraft gas turbine blading. As

the demand for increased performance continues, blades may have to be redesigned to

counteract the effect of loading changes. New procedures will have to be created to do this

efficiently.

The objective of this study is to first create a finite element solution for the stiffening

effect of centrifugal force in order to calculate the mode shapes and frequencies of a

structure composed of several different types of elements. Then, nonlinear inverse

perturbation will be used to account for the changing nature of the stiffening effect as the

design process progresses. This scheme measures design changes as perturbations of the

original structure. The method will be applied to a problem involving a typical curved

compressor blade. Finally, the effects of Coriolis forces on the optimal redesign process

will be studied.

This dissertation begins with a review of rotating systems, structural optimization,

and the optimization of rotating systems. The effect of rotation on frequencies and mode

shapes is discussed in Chapter 3. A finite element procedure to account for static loads in

dynamic response is also described in detail. The effect of Coriolis forces is also

considered.

In Chapter 4, the rotational characteristics of rotating systems are examined. The

stiffening effect of centrifugal forces is examined both by a finite element approach and by

a classical theoretical formulation.

In Chapter 5, a nonlinear inverse perturbation scheme including centrifugal and

Coriolis effects is developed. The application of Sequential Unconstrained Minimization

Technique (SUMT) to the problem in optimization is described.

The predictor-corrector technique for the optimization of rotating systems is derived

in Chapter 6. The method is applied to several simple examples.

Chapter 7 applies the procedure to a large problem. A fiat compressor blade is used

as an example to check the method. The effect of Coriolis forces on the optimization
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problem is examined in a rotating beam.

Chapter 8 concludes the dissertation. The original contribution of this work is

examined. Suggestions for future work are made.

%
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CHAPTER 2

LITERATURE REVIEW

Literature Survey on Rotation

The characteristics of vibrating systems were treated mathematically first by

Rayleigh (1898). The basic equations of motion of a rotating beam of constant section with

axis of rotation perpendicular to the length of the beam were updated by Boyce, Di Prima,

and Handelman (1954). Nagaraj and Shanthakumar (1975) solved the problem with

Galerkin's method. Tomar and Dhole (1976) expanded the solution to encompass

pretwisted beams, solving the equations by a conventional Rayleigh-Ritz approach. Putter

and Manor (1978) devised a finite element model of a rotating tapered beam that

incorporated centrifugal effects. Hoa (1979) added a tip mass to the finite element

procedure.

The basic equations of motion for a rotating cantilever blade have been extensively

investigated. Lo and Renbarger (1951) analyzed rotating beams. Houbolt and Brooks

(1958) showed that centrifugal force increases the first bending frequency for a rotating

blade. Carnegie (1959) and Carnegie (1967), using energy methods, expanded this work.

Isakson and Eisley (1964) determined the natural frequencies of twisted blades for both

rotating and nonrotating systems. This subject was also studied by Carnegie and Dawson

for straight blades (1969) and for pretwisted blades (1971). Various solution methods for

these equations have been proposed. Wadsworth and Wilde (1967) solved the problem

using a pair of simultaneous differential equations and a Runge-Kutta approach. Rao and

Carnegie (1970) used a Ritz approach. A transfer matrix approach was outlined by

McDaniel and Murthy (1977). A mixed variational approach was outlined by Lang and

6
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Nemat-Nasser (1979). An integrating matrix finite difference procedure was described by

Hunter (1970). An improved method for the analysis of pretwisted airfoil blades was

presented by Sybrahmanyam and Kaza (1984).

Coriolis effects have also been discussed by several authors. Hunter (1970)

dismisses these effects as being insignificant in comparison with centrifugal forces;

however, Subrahmanyam and Kaza (1985) determined that Coriolis forces are an

important influence at high rotational speeds and for thick beams, They also stated that

Coriolis forces may be important even at low speeds under certain geomet-ies. This

analysis was expanded by Subrahmanyam et al (1987) to include pretwisted blades.

Anarsi (1986) also includes the effects of shear deformation and rotary inertia. Sisto et al

(1983) analyzes the stability of a rotating blade by the use of Floquet theory.

Finite element solutions to the problem of free vibration of rotating beams was

examined by Hodges and Rutkowski (1981). Thomas and Subuncu (1979), using a finite

element method, solved the vibrational characteristics of rotating pretwisted asymmetric

cross-sectional blading. Subuncu (1985) produced a finite element solution for blades with

a nonlinear angular pretwist; however his method did not involve rotational effects.

Dokainish and Rawtani (1971) obtained a finite element solution for a rotating cantilever

plate. They included centrifugal forces but neglected Coriolis effects. A textbook on the

topic was published by MacNeal (1973).

Literature Survey in Optimization

The problem of optimal structural design has been studied for many years. At first,

a trial-and-error approach was used, with initial choice based on experience (Sheu and

Praeger, 1968). However, methods of optimization now exist that obtain the desired

structural configuration more efficiently. These approaches may be categorized as either

direct or indirect methods (Kiusalaas, 1972). In indirect methods, an optimality criteria is

used. Direct methods are based on mathematical programming.

The use of optimality criteria lies at the heart of the indirect approach to structural

-. ' ~ - - **jIN
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optimization. Important developments in this procedure have been made by Prager and

Taylor (1967) and Taylor (1968). These methods involve the establishment of a criterion

that defines the optimum, such as uniform strain energy density, and the creation of an

iterative procedure for obtaining the design (Venkayya, Khot, and Berke, 1973). The

Kuhn-Tucker conditions are the first order necessary conditions for obtaining an acceptable

design (Luenberger, 1984).

The direct, or mathematical programming, methods use numerical search techniques

to solve the problem of optimal structural design. Moses (1964) presented a method for

finding the optimum design by using sequential linear programming. A more general

approach is to minimize the objective function as an unconstrained function, but to impose

a penalty in order to limit constraint violations. This requires that several unconstrained

minimization problems be solved. One such method, called the Sequential Unconstrained

Minimization Technique (SUMT) was extensively described by Fiacco and McCormick

(1968).

Derivatives of structural response with respect to the design variables can be

obtained and used in gradient projection methods (Fletcher and Reeves, 1964). These

derivatives can be calculated by a design space method (Fox, 1965). Kavanaugh (1972)

used dynamic relaxation to devise an approximate algorithm for uncoupling the

optimization problem.

The application of structural redesign to dynamic problems has been extensively

investigated. Rayleigh (1898) provided the first solution for designing a dynamic system to

meet specific frequency requirements. Turner (1967) used the equations of motion for a

large deflection vibration problem as equality constraints and employed a Lagrange

multiplier method. He used a finite element idealization and an iterative scheme to solve

the nonlinear equations. Taylor (1967) proposed an alternate method. He developed a

functional that related the system energy to the eigenvalue problem, and used this

functional to obtain the optimum design. Taylor (1968) added a condition that the cross-

*.....~r
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sectional area not be reduced below a specified minimum during the redesign process. This

was accomplished by an inequality constraint and Lagrange multipliers. Sheu (1968)

applied the approach of Turner and Taylor to a one-dimensional structure and added

segment boundaries and specific stiffnesses as design requirements. Taylor (1969) applied

an energy formulation to the problem of truss design. Sippel and Warner (1973) devised a

mimimum mass optimality criterion and compared the results of continuous optimum

design to piecewise uniform optimum design.

McCart, Haug, and Streeter (1970) used a steepest descent approach to obtain the

optimal design for a three-bar frame. Rubin (1970) satisfied a frequency constraint and

found the minimum structural weight through a step-wise procedure that defined two

"modes of travel". The first mode changed the frequency to obtain a desired value. The

second one minimized structural weight while keeping the frequency constant. The

problem with this approach is that while it may obtain a design it may not necessarily find

the best design. Arrnand (1971) used methods from optimal control theory to present a

different approach to the optimal design of two-dimensional structures.

Taylor (1977) obtained a procedure that upgrades a computer model of a structure

so that the calculated normal mode frequencies more nearly match those determined from

experiment. This method was based on a Taylor series type expansion. Only first order

terms were retained.

If a baseline structure exists but it is found that the response of the structure is

unacceptible and modification is necessary, perturbation techniques may be employed to

obtain the desired values. Stetson (1975) introduced small changes in mass and in the

stiffness moduli of a structure. He then obtained a first order perturbation method that

obtained the mode shapes for the perturbed structure. He introduced the concept of

"admixture coefficients" that expressed the mode shapes of the perturbed structure in

terms of combinations of the baseline mode shapes. Stetson and Palma (1976), Stetson et

al (1978), and Stetson and Harrison (1981) expanded this technique to encompass a finite

, M
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element structural formulation and applied it to several problems. Sandstrom and

Anderson (1982) related Stetson's admixture coefficients to physical changes in the finite

element model. Kim et al (1983) obtained a complete nonlinear inverse perturbation

technique using the equations of dynamic equilibrium. A SUMT penalty function method

was used where the objective function was minimum weight and the penalty term involved

a normalized set of residual force vectors.

One major problem of the nonlinear inverse perturbation method is that for a large

problem, the number of calculations required become excessive. For that reason, Kim and

Anderson (1984) and Kim (1985) used generalized dynamic reduction to transform the

problem into a small sized subspace. Hoff et al (1984) overcame the difficulties in applying

the nonlinear inverse perturbation method by using an incremental predictor-corrector

technique. In the predictor phase, element changes necessary to enforce the desired mode

shape and frequency changes are obtained through a first order solution of the dynamic

equations. In the corrector, approximate eigenvectors are obtained for the objective

system, which are then used to correct the elemental changes. This method was later

expanded by Hoff (1985).

Literature Survey in the Optimization of Rotating Systems

Olhoff and Parbery (1982) analyzed the design of vibrating beams and rotating

shafts with lumped mass at the tip and at midspan. Their method incorporated

centrifugal, but not Coriolis, effects. Kengtung and Gu (1984) also studied the problem of

rotating blades without Coriolis effects for small (ten element) problems using beam

elements. Kounadis (1985) analyzed the effect of axial inertia on the bending frequencies

of a frame structure.

Bennett (1983) examined the the application of optimization methods to problems in

the design of helicopter rotors. His optimization scheme involved a linear design

sensitivity approach. His method did not account for changes in blade weight and inertia

properties since these affect centrifugal forces in a nonlinear manner. Therefore, he
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required that blade weight and inertia remain fixed during the process of optimal design.

Queau and Trompette (1981) applied changes in inertia properties during the

redesign process to determine changes in centrifugal stiffening affecting optimization.

Their method also involved linear design sensitivites. It also did not update the

eigenvectors during the optimization process, requiring a large number of calculations.

Only beam elements were used. Their method of optimization can lead to a local

minimum. Their procedure cannot be used on a general class of problems, particularly

plate-like bodies.

~ m



CHAPTER 3

BACKROUND OF ROTATIONAL EFFECTS

In this chapter, the equations of motion are discussed for small motions of a rotating

discrete system. The terms in the equations that represent rotational effects are shown in

a structural mechanics representation. The corresponding eigenvalue problem and its

methods of solution are shown. Finally, a physical example will be used to derive the

Coriolis matrix for a rotating bar.

Equations of Motion of a Rotating Discrete Structure

A system consisting of n degrees of freedom has its motion fully described by n

generalized coordinates qi(t), where i= 1,2,...,n. The kinetic energy of the system, T, may

be defined as (Meirovitch, 1980):

T = T o +T 1 + T 2  (3.1)

where

i= 1 -=

is a quadratic function of the generalized velocities ,(t),

and

n
T, = (3.3)

is a linear function of the generalized velocities. The term To contains no generalized

velocities; however, the function To and the coefficients mij and f, will depend on the

generalized coordinates qi. The term To gives rise to terms involving centrifugal force and
S

behaves as a potential energy. The T1 term produces Coriolis forces.

12
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In addition to centrifugal and Coriolis forces, there may be other forces that act on

the system. These include forces from a potential energy function written as a function of

the generalized coordinates alone, with no time derivatives:

V = V(qj) (3.4)

Such forces can be elastic forces or gravitational forces. These elastic forces generate the

conventional small-displacement system stiffness.

The final set of forces are those that fall into no particular set, and shall be

represented by Q1, the generalized forces. These forces may depend on time but not on

displacement or velocities. Friction forces are an example of generalized forces.

The equations of motion of the system may be found through the use of the classic

differential form of the Lagrange equation:

d (aL =Qi (3.5)

dt 04j) 8qj

where the Langrangian L is defined by:

L = T - V (3.6)

The system of equations represented by Equation (3.5) comprises a set of n

nonhomogeneous nonlinear ordinary differential equations of second order. General

solutions of this type of equations do not exist. Under certain conditions it is possible to

make simplifying assumptions that will permit the linearization of the equations. One such

assumption is that motion will be restricted to small motions in the i. igborhood of the

static equilibrium condition. qio=0, for i = 1.2....,n. A coordinate transformation can be

done to translate the origin so as to make it coincide with the static equilibrium point.

Thus, only motions in the neighborhood of the trivial solution 410 = qo = 0 (i 1.2 ..... n) will

be considered.

Using these assumptions. it can be shown (Meirovitch, 1980) that:
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a2 T2
mij = mji

0di 041j (3.7)

a T2

where the terms mij are called the mass or inertia coefficients.

It can also be shown that:

89f1
fij = - (3.8)

where the terms fi are constant coefficients. This implies that:
2)

n n

T = f 3 qij (3.9)
i= lj= I

Let U be defined by:

U = V - T o  (3.10)

where U represents a dynamic potential. Furthermore, the stiffness coefficients kij can be

shown to be:

au

a U

As discussed below, the centrifugal effects can be treated as a static preload on the

system. This implies that centrifugal forces will be included in the strain energy

component V of the potential energy U. rather than as T o kinetic energy. A full derivation

of the tangent stiffness matrix including centrifugal effects is shown in Chapter 4.

The explicit equations of motion can be derived and expressed as:

n

nE[mijqj bij jkijqj] = Qi (i=1,2 .... n) (3.12)

Note that the mass and stiffness coefficients are symmetric while the Coriolis coefficients,

bj, are skew symmetric such that:

. - ' - -y % 4 '- : . : z " ' , ,*
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bij=fIi - fij (ij= 1,2,...,n) (3.13)

In matrix form, Equation (3.12) may be written as:

[MJ{ J + [B){l) + [K){q) = {Q} (3.14)

The symmetry of the coefficients mij and kij implies that:

EW = [M]T (3.15)

and

[K] = [K]" (3.16)

while the skew symmetry of the coefficients bij implies that:

[B] = _-[B]T (3.17)

Another way to deal with the differences between centrifugal forces and Coriolis

effects is as follows. In structural analysis, centrifugal force, which is dependent only on

mass, position, and rotational speed, can be considered as a static preload on the system.

As such, its effects can be included in the initial stress, or differential stiffness, matrix.

Coriolis effects, however, are dependent on velocity, which makes them dependent on the

first derivative of the eigenvector. Coriolis terms, unlike structural damping, are energ.

conserving. Just as the structural matrix derived from centrifugal forces can be absorbed

into the stiffness matrix, the matrix derived from Coriolis effects could be absorbed into

the system damping matrix if there is one.

Eigenvalue Problem for Conservative Coriolis Systems

For the free vibration problem, the damping and the generalized forces Qj are taken

to be zero. Therefore, Equation (3.12) may be written by:

[M]{ j + [B]{4} + [KI{q} ={0} (3.18)

MacNeal (1973) showed that the system described in Equation (3.18) is energy

conserving if the mass and stiffness matrices are real, symmetric, positive definite and if

the Coriolis matrix is real and skew symmetric. The solution to Equation (3.18) will be of

the form:

{q(t)} = ePt{q) (3.19)

I
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where p is a constant complex scalar and {q} is a constant complex vector. Equation (3.19)

is introduced into Equation (3.17) and ePt is canceled to obtain the eigenvalue problem:

(p2 [M] + p(B] + [K]){q} = 0 (3.20)

The characteristic equation for this system is obtained by setting the determinant of

the coefficients equal to zero:

[p2[Ml+p[B]+[K]J = 0 (3.21)

This equation gives a polynomial of degree 2n in p. Greenwood (1977) states that due to

the symmetry of the mass and stiffness matrices and the skew symmetry of the Coriolis

matrix, all of the odd powers of p are absent from the characteristic equation. Therefore,

a polynomial of nth degree in p2 is generated. This would also be the case if the Coriolis

terms were absent. Therefore, the eigenvalues will consist of n pure imaginary conjugate

pairs, Pr= ±'W,, where r= 1,2,...,n. The eigenvectors will also occur in complex conjugate

pairs, {q)r = {Y}r + i{z}, {Zr = {Y}r - i{Z}r, where {y}r is the real part and i{z}r is the

imaginary part of the eigenvector {q}r This implies that as a result of the Coriolis effects,

the amplitude ratios will not, in general, be real. Therefore, the components of an

eigenvector pair for a given eigenvalue pair will oscillate at the same frequency but not in

p~hase.

Meirovitch (1974) provides an alternate solution to the system of Equation (3.18)

tha. reduces it to a standard form that is similar to the system without Coriolis forces. If

the matrices in Equation (3.18) are of order n, then one can introduce a 2n-dimensional

state vector:

_X-T = {q)] (3.22)

Therefore, Equation (3.18) can be rewritten as:

[M*]{i} + [B*]{x} = {0} (3.23)

where



[ = 
[ o 

1 7

1-K [0]

are real nonsingular matrices of order 2n.

Though this method reduces the system of equaions involving Coriolis components

to a more conventional form, the arrayb created are twice as large. This will force a

heavy penalty in storage requirements in numerical implementation. In actual application,

the direct solution of the complex problem posed in Equation (3.18) is more efficient than

the solution of the modified system of Equation (3.23). Therefore, this method posed by

Meirovitch will not be used.

Derivation of Coriolis Matrix for a Bar Element

The Coriolis matrix for a rotating bar element will now be derived, using a lumped

mass approach. Figure 1 shows a typical rotating bar. The entire mass of the bar will be

divided into two equal lumped masses at each of the two nodes. Each mass m will have

one-half of the mass of the total mass of the bar. The bar rotates around the global z-axis

at a rotational speed of 1l hz.

The position vector to the mass at the first node, {r }. is given by:

(3.24)
{rl}= x1i+ y j + zk

where xI, yI, and z, are the coordinates of node 1 in the global system and i. j, and k are

the unit direction vectors for the x, y, and z axis respectively. Similarly, the position

vector to the mass at the second node {r2} is given by:

(3.25)
{r2}=x 21+ y+ z2k

The absolute time derivative of a vector, {A}, in a rotating system is given by:

Iq
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m 

m

Figure 1. Rotating Bar - Lumped Mass

{A}o={A}r+{1} x{A} (3.26)

where {A}o is the absolute time derivative of {A}, {A}r is the time derivative of {A} with

respect to the rotating system, and {fl} is the rotation vector.

It is assumed that the rotation will be purely about the z axis. Thus the rotation

vector is given by flp. Therefore, the absolute time derivative of the position vector to

node i, also called the velocity {v}:

(3.27)
{vjj = (i - Qi)I ("i + Q~xi)j + ij" (327

To find the acceleration of the mass at node i, Equation (3.26) is applied to Equation

- ,
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(3.27) to obtain:

(3.28)

{a} = (xi - 2 Qi -fl2xi)1 + (Yi + 2 f - Q2yi)J + i3

The second time derivitive terms in the above equation represent the acceleration of

the mass i relative to the rotating frame. The terms dependent on p2 are the centrifugal

acceleration components. Notice that they are dependent only on the position of the mass,

with x-displacement giving the dependency of centrifugal acceleration in the x-direction and

y-displacement giving the dependency of centrifugal acceleration in the y-direction. The

components of Equation (3.26) dependent on f1 are the Coriolis terms. It is important to

note that Coriolis acceleration in the x-direction depends on the velocity of the mass i in the

y-direction and that Coriolis acceleation in the y-direction depends on velocity in the x-

direction.

Relative, centrifugal, and Coriolis acceleration can each be considered to be reversed-

effective forces or D'Alembert forces. As shown above, the reversed-effective forces due to

relative acceleration and centrifugal acceleration in the x-direction will be dependent upon

acceleration or displacement in the x-direction, respectively, with similar forces in the y-

direction. However, the reversed-effective Coriolis force that points in the x-direction

depends on y-direction velocity, and vice-versa.

The kinetic energy of the mass at the ith node is given by:

1 .(3.29)

or

(3.30)T' = 2m[(:ij - fjy, ) 2 + ( i+ nfxi)2 + iz]

Equation (3.30) can be broken down into its components, T o through T9, to provide

the desired structural matrices. The kinetic energy components are:

=1 (3.31)
2

=1 (3.32)
T', 7-jq)[Tm4

'2

%~ v~ .d
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(3.33)
Tb =1tiq1j[S]{q}

where

[mi 0 o]
01[] mi 0

0 0 m i

0 -mifl 0
[F]=m ifl 0 0

0 0 0

0mf 0 0

To form the Coriolis matrix from [F], one remembers from Equation (3.13) that:

[B] = [F]T - [F] (3.34)

where [F] is the matrix of the fij factors.

In order for one to form element matrices from the matrices given in Equations

(3.31) through (3.34), the components from the other node must be added in. Thus [M]

will become the element mass matrix, [B) will become the element Coriolis matrix, and [S]

will become the element stiffness matrix from the applied load due to the rotation. This

last matrix, however, differs from the differential stiffness matrix. Differential stiffness

results from examining small nonlinear terms in the derivation of stiffness to form the

tangential stiffness matrix for the element. These nonlinearities result from applied

loading, such as centrifugal force.

The matrix derived from the To component of kinetic energy has been previously

used to model the effect of centrifugal loading on the eigenfrequencies of rotating

structures (Trompette and Lalanne, 1974, Olhoff and Parbery, 1982, Subrahmanyarn and

Kaza, 1984, Queu and Trompette, 1981). In the current analysis, however, this approach

will not be used. Instead, the forces generated by the centrifugal effect will be considered
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as an applied load (Hoa, 1978). Optimization can then be done in the presence of the

applied loads (Garstecki, 1984). A potential energy expression will then be derived from

these forces (MacNeal, 1972). This puts the expression of centrifugal effects in the same

format as the effects due to internal strain energy. In other words, both become structural

stiffness terms. The internal strain energy components are represented as conventional

infinitesimal small-displacement elastic stiffness. The components due to centrifugal

potential are called differential stiffness. The total of the elastic and differential stiffnesses

is called the tangential stiffness. The proof that this method accurately represents the

stiffening effect of centrifugal force is in the next chapter in the examination of the

Southwell effect.

The Coriolis terms, being a function of velocity, cannot be represented as a potential.

Instead, the kinetic energy formulation must be used. The centrifugal and Coriolis effects

therefore are formulated separately in this analysis. This is permissible because the

Coriolis acceleration terms and the centripetal acceleration terms (those that generate

centrifugal forces) add linearly (Greenwood, 1965). Therefore, each effect will be

considered separately and then combined to produce the total desired effect.

For the generalized beam element, each node has three translational degrees of

freedom and three rotational degrees of freedom. For the nodal displacement vector {q}

given by:

{qT = (x1 y1 z1 6xI 0y1 ez, x 2 Y2 Z2 Ox2 ey2 8 z-) (3.35)

where 9 is the rotation degree of freedom for the indicated direction, the element matrices

will have dimension 12. Therefore, the element Coriolis matrix will be a 12 x 12 with all

terms equal to zero except for the following nonzero components bij:

b1. 2 = 2mil

b2 1 = -2mfl

b7, 8 = 2mil

b8, 7 = - 2mil

., ..
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Once again, it is noted that the element Coriolis matrix is skew symmetric.

It is important at this time to note the effect that the form of each matrix; [M], [B],

and [K], on system stability. The kinetic energy term T2 by definition is a positive definite

or positive semidefinite function of the generalized velocities. Therefore, the mass matrix

must always be positive definite or positive semidefinite (Meirovitch, 1980).

Generalizations about the matrix [K] revolve around the nature of the eigensolutions. A

positive definite stiffness matrix will result in real, positive eigenvalues for the system

solution. A positive semidefinite stiffness matrix will also give some zero eigenvalues with

the rest of the eigenvalues being real and positive. Real, nonnegative eigenvalues imply a

stable system; therefore a positive definite or positive semidefinite stiffness matrix will

result in a stable system. The semidefinite case will admit the existence of rigid body

modes. If the stiffness matrix is negative definite, negative semidefinite, or indefinite,

negative eigenvalues will result. This will generate a divergent eigensolution and an

unstable system.

The Coriolis matrix [B] results from the kinetic energy term T. By the definition of

T I , the Coriolis matrix is always skew symmetric. However, Coriolis forces, also known

as gyroscopic forces, do no work on the system. Therefore, a system with Coriolis effects

not considered that is stable and energy conserving will remain so with the effects

included. If, however, a system has damping, the structural matrix resulting from these

effects will be positive definite or positive semidefinite. These forces serve to dissipate

energy from the system and therefore the system will no longer be energy conserving.

However, it will still be stable.

Summary

We have seen that the problem of the free vibration of a rotating system that

encorporates both centrifugal and Coriolis effects will involve complex modal analysis. The

eigenvalues will be pure imaginary; therefore the frequencies will be real. However, the

eigenvectors will be complex with complex amplitude ratios. This implies that for a given
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eigenvector, the eigenvector components will oscillate out of phase but at the same

frequency, i.e., the motion will not be synchronous.

The element matrices can be derived by examining the system energy. The Coriolis

matrix results from the expression of kinetic energy that incorporates the mixed product of

nodal displacement and nodal velocities. In the expression for the free vibration of the

rotating system subject to centrifugal and Coriolis effects, the Coriolis matrix has terms

that multiply the unknown velocity components. Since the Coriolis matrix is skew

symmetric, unlike a symmetric damping matrix, the Coriolis matrix is energy conserving.

,'/.
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CHAPTER 4

CENTRIFUGAL EFFECTS ON VIBRATION OF
ROTATING BEAMS AND BLADES

The effect of centrifugal forces on the behavior of a rotating structure may be

analytically modeled by examining in detail the centrifugal terms in the energy expression.

One approach is to place these terms in the kinetic energy expression and obtain a

centrifugal effects matrix. This has been done by Subrahmanyam and Kaza, Olhoff and

Parbery, and others. Another approach is to create a potential energy expression that

generates the centrifugal effect and use this expression to obtain a new stiffness matrix

called differential stiffness. This approach is taken by Hoa and by MacNeal. The purpose

of this chapter is to prove the validity of this approach. This will be done by comparing

the analytical results using differential stiffness to the empirical Southwell approach. The

method will also be compared to results obtained by Isakson and Eisley using the kinetic

energy approach to centrifugal effects.

General Problem Statement

In the total optimization approach, the forward problem encompasses the modal

analysis of the rotating blade. This can be thought of as a free vibration problem. with a

centrifugal force applied to the blade acting as a stiffening effect. This stiffening effect can

be quantified by examining the nonlinear components of the structural stiffness matrix

(Appendix B).

In nonlinear analysis, [KT] is the tangent matrix:

[KT] = [K01] + [KD] + [KL ]  (4.1)

where

24
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[KTJ is the tangent stiffness matrix,

[KQ] is the small displacement stiffness matrix,

[KD] is the differential stiffness matrix

(often called geometric stiffness or initial stress matrix),

and

[1KL] is the large displacement matrix.

In solving the rotating blade problem, it is assumed that the displacements are

small; therefore, [KL] is neglected. The differential stiffness matrix, which is retained,

does not explicitly contain displacements, but is dependent on the stress level (Zienkiewicz,

1977). Dropping the large deflection effects:

[KTOT] = UKo] + [KD] (4.2)

This total stiffness matrix incorporates the load dependent terms and can now be used in

the free vibration problem to find frequencies and mode shapes.

The matrix [K0] is given by:

[Ko] = fv [B]T[D][Bo ]dV (4.3)

where

[B o] is the strain shape function matrix,

[D] is the elastic strain-displacement matrix,

and dV is the incremental volume.

Furthermore. it can be shown (Appendix B) that:

[KD]{Au} -- f, "Bt]{}dV 4.4)

where

[ABt ] is the incremental change of the tangent strain matrix due to a small

increment in the displacements and forces

and {a} is the stress vector.

Let us consider the vibration of a simple model for a first-stage turbine blade on a
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circular hub in a typical aircraft engine, such as the General Electric CF6 (Figure 2). The

blade outer radius is about 787.4 mm, the inner radius is 393.7 mm, the blade width is

556.8 mm, and the blade thickness is 87.38 mm. The structure is made of Inconel 718,

with E (Young's modulus) equal to 202696 MPa, p (density) equal to 8.2121E-9 Mg/mm3 ,

and L, (Poisson's ratio) equal to 0.29. The blade is rotated at a constant speed, Qt.

Several rotational speeds were applied, and the first fiexural mode was examined.
Al - A0

A log-log plot of - vs. 0 was made, where A1 and A? are the fundamental (first)
A0

I
eigenvalues of the rotating and nonrotating structures, respectively (Figure 3). The valid

portion of the curve is for 11 above 40.0 sec 1. For l less than 40.0 sec- 1 , numerical
Al - 40

errors give erroneously high values for - . A conventional Cartesian plot (Figure 4)
A

0

helps put these errors in perspective.

Southwell Coefficient

The Rayleigh-Southwell approximation is an analytical method of calculating and

simply representing the effect of centrifugal stiffening on modal frequency (Isakson and

Eisley, 1960). Using this method, the natural frequency under rotation may be expressed

as:

2 = 2 + (4.5)

Rn Nnf

where

wRn = natural frequency under rotation for the nth mode.

= natural frequency with no rotation for the nth mode. and

K n = the Southwell coefficient for the nth mode.

For plate-like bodies, an analysis of the syst. n kinetic energy (Isakson and Eisley.

1960) demonstrates that the Southwell coefficient can be shown to be:

JR{T T )2 + )2] - P,4n} X4.62

R2  + t2

Yn znd
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jigs

Figure 2. Rotating Blade Model

where

T, = fpxdx

and Y' (;I are displacements in the y- and z-directions describing the shape of the nth

natural mode of the nonrotating blade, and R = rotor radius.

Isakson and Eisley in 1960 and in 1964 computed the Southwell coefficient for

various blade configurations, using analytical and experimental techniques. However. a

careful interpretation of Figure 3 will provide a more straightforward method 'jr

determining the Southwell coefficient for a particular mode.
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e Figure 3. Effect of Rotation on
System Fundamental Eigenvalue

The eigenvalue A is related to the frequency w by:

A 2 (4.7)

* Therefore, equation (4.5) may be rewritten as:

An U2 +K f?2  (4.8)Nnn

where An elgenvalue of the rotating structure.

Rewriting and applying to the fundamental mode (n =1) results in:

% %S
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[A1  A'? "(4.9)

A0 A0

Al1 - A0
Equation (4.9) shows that the plot of vs. Q should pass through the origin.

Ao
This is demonstrated in Figure 4, with only a small numerical error evident. Thus it is

seen that the deviation of Figure 3 from a straight line at low values of f0 is indeed caused

by small numerical errors.

Taking the log of Equation (4.9) gives:



In =In ] K,]+ In Q2  (4.10)

.P 0

The numerical curve in Figure 3 may be approximated by:

In = lnA? + aln 0 (4.11)

where a and ,3 are unknown parameters. The slope a of the log-log curve is given in

Equation (4.11) and it is the power to which nl is raised. Comparing Equation (4.11) to

Equation (4.10) one sees the theoretical value of a equals 2. The numerical curve in

Figure 3 has a slope of 1.91. This indicates an error in the finite element approximation of

4.5% for the experiment.

Figure 5 illustrates that a may be approximated by 2. Therefore, Equation (4.10)

may be rewritten:

In A= n + InQ2  (4.12)

Comparing Equation (4.12) to Equation (4.10), one obtains:

K 1

3=- (4.13)
Ao

1

Therefore, Equation (4.10) may be rewritten:

Al - A1
_ = 2 (4.14)

AO

Al - 1?

This implies that B is the slope of a plot of - vs Q2 (Figure 5). For this example, 3
A0

equals 8.0761E-5.

K1 is given from Equation (4.13):

K1 = BA? (4.15)

For this problem, K, = 46.45.

N 2 2 A
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Figure 5. Effect of Rotation on Eigenvalue

The above results can be generalized to all modes:

Kn = 3.A 0  (4.16)

where A0 is the nonrotating eigenvalue for mode n and 3, is the slope of the plot of theA - A0  
'n A

quantity A vs. p2.n

As an illustration, let us examine a simple rotating bar (Figure 6). Consider a

concentrated mass m at the end of a massless bar of length L, moment of inertia I, and

Young's modulus E. The bar rotates about the z-axis with a frequency SI. The left end

(x = 0) is clamped and the right end (x = L) is constrained to allow only x-displacements and
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z-displacements (no y-rotations).

z

m

Figure 6. Rotating Beam with End Mass

The extensional (x-direction) displacements are needed to generate internal loads

(were these displacements not permitted, the load P would be totally absorbed by the

constraint). There is no differential stiffness in the extensional direction (Appendix B).

The extensional components of the stiffness matrix are not affected and the eigenvalue in

this direction remains unchanged. Therefore, for the purpose of this demonstration. we

will concern ourselves only with masses. stiffnesses, and eigenvalues involving only

transverse (z-direction) displacements. This can be done because the stiffness and mass

terms for the x- and z-directions are completely uncoupled.

We now reduce the small displacement stiffness matrix [Ko ] to one term:

12EI
[KO = - (4.17)

L3
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The differential stiffness matrix [KD] has nonzero components of only one term and is:

6P (4.18)

where P is the load applied to the beam. In this case, P is the centrifugal force and is

given by:

P = 4,, 2 fl2 mL (4.19)

Substituting Equation (4.19) into Equation (4.16) and using Equation (4.2), one

obtains:

12EI 242S-?m
CKTOTI - + (4.20)

L3  5

The general form of the eigenvalue problem in finite element analysis is:

[KTOT]{1}I = A[M{¢}i (4.21)

where [] is mass matrix, {0}i the eigenvector, and Ai the eigenvalue.

The eigenvalues Ai are found from solving the characteristic equation:

IEXTOT] - )ijM]I = 0 (4.22)

This particular problem considers only one degree of freedom; therefore, only one

eigenvalue A, exists. It is found from Equation (4.20) to be:

12EI 241r2 f 2

A= - + (4.23)
mL3  5

The eigenvalue in the z-direction for the nonrotating problem AO can be found by

using the stiffness matrix given in Equation (4.17):

12EI
12E- (4.24)

mL
3

(Note that the above result could also be derived from Equation (4.23) with Q= 0.)

Equations (4.23) and (4.24) can be manipulated to obtain:

2 (4.25)

I IL

!s
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Comparison of Equation (4.25) to Equation (4.11) obtains:

5 L  (4.26)

'S =
EI

Therefore, Equation (4.13) gives:

K, = 242 (4.27)
-_547.3741

This is the theoretical value of the Southwell coefficient for the mass with one degree of

freedom at the end of a massless rotating beam.

Let us now try a numerical experiment. Let E equal 73.77E3 MPa, L equal 250

m, I equal 3.2552E4 mm4 , A (cross section area of the beam) equal 625 mm 2 , and m
A 1 - A

equal 5.OE-4 Mg. Figure 7 is a log-log plot of - vs. 0l and Figure 8 is a conventional
A0

A1 - A0

Cartesian plot of the same variables. Figure 9 is a plot of vs fg2. The finite

element data agree exactly with the theoretical results given by Equation (4.25). Figure 7

shows that a = 2.000. 3, derived from Figure 9, = 1.2844E-5. Equation (4.15) gives K1

= 47.374. This agrees exactly with the theoretical result of Equation (4.27). Therefore,

for this problem, there is no error between the finite element approximation and the

theoretical result.

Thus we see that finite elements and graphical analysis can provide a simpler

method for calculating the Southwell Coefficient. This technique is more general than that

of Isakson and Eisley in that they were restricted to blade shapes that could provide a

closed form solution. The finite element method can provide Southwell type of information

for a rotating blade of any geometry.

It is also seen that the potential energy approach that leads to the development of

differential stiffress can be used to accurately determine the stiffening effect of rotation on

the eigenvalues of the structure. Results obtained from this method compare favorably

with those obtained from a theoretical examination of the change in the characteristic
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frequencies due to rotation. Therefore, the potential energy approach and differential

stiffness can be used to model the centrifugal effect in rotating bodies.

I
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CHAPTER 5

PERTURBATION METHODS IN OPTIMAL DESIGN

This chapter will discuss the theory and applications of the perturbation method as

it relates to the problem of redesign in the presence of rotational effects. The theory of

nonlinear inverse perturbation will be presented. The linear perturbation equations as

derived by Stetson will be modified to include centrifugal effects. Then, new equations for

nonlinear inverse perturbation will be derived from first principles that include complex

components. These equations will be applicable for Coriolis effects. An overview of the

optimization techniques used will also be presented.

Definition of Basic Terms in Optimization

The baseline system is the original system configuration. The starting values of the

system parameters and system performance are first determined for the baseline system.

The objective system is the system that exhibits the desired system performance.

This system is the goal of the redesign process.

The system parameters are those independent factors that each influence the system

performance. One such parameter, and the one that will be the primary subject of this

analysis, is element thickness. This parameter influences both mass and stiffness. One

goal of the first part of the analysis is to determine how changes in thickness actually alter

the mass and stiffness matrices.

The system performance is, simply, the behavior of the system. System performance

can be measured in terms of statics, such as stress and displacement, or in terms of

dynamics, such as eigenvalues and eigenvectors.

Optimal redesign is the process by which the desired change in performance is

38
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obtained by altering the parameters in the most advantageous manner so as to minimize

(or maximize) the system objective function. This objective function is a measure of a

desired quantity. Two of the more common system objective functions are minimimum

weight and minimum change from the baseline system.

Perturbation Methods

The first task is to determine the effect of the system parameters on system

performance. This involves analyzing the structural matrices to see what the effect of a

change in one basic parameter, thickness for example, would have on each matrix. This

having been done, the effect of changes to the baseline system can be tracked throught the

redesign process as one works toward the objective system.

We first wish to determine the influence of element thickness upon the differential

stiffness matrix of beam and plate elements. This matrix may be defined by (Cook,

1974):

[S] [o 1
[KO =I [N'] T [0] [s] [0] [N']dV (5.1)

where

[Ke] = elemental differential stiffness matrix,

[N'] = derivative of the shape function matrix, and

[s] = matrix of applied stresses

axo 7xy0 rxz0
IS] |'Xyo O*0Z 7zZoJ

7xz0 7yz0 ITz0

Figure 2 from Chapter 4 illustrates a typical rotating structure. Let 0l be the

rotational frequency of the structure about the z-axis in hz. Let us now suppose that there

exists an element of the structure with the centroid at a radial distance ro from the origin,

length b, mass m, thickness t, cordwise distance a, and density p. The centrifugal force F

"7 ,- V''. '.', '%, * . 4' * %'; WV' ,t.-, .: . .. .: " "~ .- ' ' -.. . : v--" .- -- * ,- ,'.. ,
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applied to this structure is given by:

F = 47r2a 2rom (5.2)

where m may be expressed by:

m = pabt (5.3)

Therefore,

F = 4r 2 fl2ropabt (5.4)

This illustrates that the centrifugal force is linearly dependent on thickness. The

differential stiffness matrix is linearly dependent on the centrifugal force, though the

constant of proportionality may be dependent on geometry. Therefore, we can say:

M ] t (5.5)

This implies that a change in thickness will effect the differential stiffness matrix linearly.

One can relate the baseline and objective systems through perturbations of the

baseline system quantities. The stiffness and mass matrices are perturbed by:

[k'] = [k] + [Ak] (5.6)

and

Im'] = [in] + [AM] (5.7)

where [Ak] and [Am] are the perturbations to the baseline stiffness and mass matrices,

respectively. These perturbations will cause perturbations in the dynamic response. Let

the matrix of eigenvectors be given by [4] and the diagonal matrix of eigenvectors be given

by [w2]. The perturbations in the eigenvalue and eigenvector matrices are given by:

[,2] = [,2] + [A(w 2 )] (5.8)

[4'] = [4] + [Ac] (5.9)

where [A(w 2)] and [A0] are the changes to the baseline system eigenvalues and

eignevectors, respectively.

The structural changes described in Equations (5.6) and (5.7) can be decomposed

into p element change properties where a group of elements may be allowed to change.

Thus
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P

[,k]= > [ A (5.10)
e=1

[Am]= -""" ] (5.11)

e=1

where [Ake] and [Ame] are changes to the stiffness and mass matrices of element e,

respectively. Furthermore, each element change can be expressed as a fractional change

ae from the baseline system. The change ae may represent a change in element

thickness. In general, ae can be expressed by:

[Ake] = [ke]oe (5.12)

[Arn] = [meae (5.13)

Hoff (1985) used the linear relationships given in Equations (5.12) and (5.13) in his

work on optimal redesign; however, he pointed out that nonlinear relations may be

required for certain applications. In the case of plates, membrane components of the

stiffness matrix and also the differential stiffness matrix vary linearly with the plate

thickness. The bending component of the stiffness matrix, however, varies as the cube of

the plate thickness. Therefore, for plates, Equation (5.12) is replaced by:

[ k= [kememb]ae + [kedifwae (5.14)

+ [kebend](3 ae + 3ae2 + ae 3)

where [kememb] contains the membrane components, [kedi] contains the differential

stiffness components, and [kebend] contains the bending components of [ke].

Equation (5.14) also holds for beams, with the exception that the element stiffness

matrix containing only extensional properties, [keext], replaces [kememb]. Therefore, fVr

beams:

[Ake] = Ekeext ]e + [kedif]e (5.15)

+ [kebend](3ae + 3ae2 + fe3 )

The first matrix eigenvalue and eigenvector redesign method using perturbation was

developed by Stetson (1975). This procedure involves the linearization of the uncoupled

V % % -%
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energy equations of the objective structure:

[K']= [M 2  (5.16)

Additional work on this method was done by Stetson and Palma (1976), Stetson et

al. (1978), Sandstrom and Anderson (1981), and Hoff, Bernitsas, and Anderson (1985).

Stetson developed the generalized form of the perturbation equation:

[¢]WTxk][t ] _ [¢,]T[Anm] 0],2] = [€,]W[m][¢,][w,2 ] - []T [k][['] (5.17)

To solve the above equations, note that Equation (5.17) is composed of n 2 scalar equations

given by:

{ [ -w 2 {¢'}T '[rn ] {¢'}i = {'}T[m]{ v}iwi'2 
- (5.18)

for ij = 1,2,...,n.

The changes, Am and Ak, were defined in Equations (5.10) and (5.11). The mode

shape changes [Ab] were given by Stetson in his first order perturbation by:

[A¢] = []ci]T  (5.19)

where the admixture coefficients c8, i, j = 1,2,...n are small and cii = 0.

Equations (5.8) and (5.9) are applied to Equation (5.17). This results in:

[O]T[ k][O]+ 2[€]T[ Ak][Ao] + ['A¢]T[k][AO]

_ (~[A[ m][¢] + 2[€]T[ zm][:A¢] + [ A¢]T[ mn[ A¢]) ([w2 ] + [ A(w 2)]) '

(5.20)= ([]W~m][¢] + 2[ 4]T~m][ A¢] + [ A4 ,]Wjm][Ak ]) ([w2] + [ A(w 2)])

- ([]W[k][0] + 2[]T[k][AO] + [A0]T[k][A¢])

Stetson then obtains the first order perturbation equations by neglecting terms of order A2 ,

A'3. and A4. This yields (in scalar form):

- {w}T[AM]{ )I_ 2 = MiA(w 2) for i = j (5.21)
2 2)1

Micii (Wi2 -w 2  for i =j'

The solution of the above first order equations require the specification of the

irequency changes A(wi 2) and the mode shape changes A1bkl in terms of the admixture

coefficients cii where Awki is the change in the kth degree of freedom of the ith mode.

1i order to eliminate the admixture coefficients, the following algebraic

manipulations are performed (Sandstr6m and Anderson, 1982) for the case of non-

-~J Lh.~-
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repeated eigenvalues. The change to the kth degree of freedom of the ith mode in terms of

the admixture coefficients is:

Ak i - ci1¢kl+Ci2Ok2+ ... + CinOin
n (5.22)

E S Cij kj
j=1 ,j~i

Rearranging Equation (5.21) for i=j obtains the following expression for the admixture

coefficients:

1

- -((p}T[Ia k]{;}i -- Wi2j¢}T[ 'n]jp}i) (5.23)
Mj(w

2  ,j 2) )

Applying Equation (5.23) to Equation (5.22) results in the following expression that relates

the physical mode shape changes directly to the structural changes:

j IMk = _ 2 --]2  (5.24)

for izyj.

Using the relationship for the change in the element mass matrix, Equation (5.14),

and the nonlinear relationship for the change in the element stiffness matrix, Equation

(5.15), results in the following expression, nonlinear in the element change property k,

that describes the change in the natural frequency to the ith mode:

A(Wj 2) = =membI + [k {i i

+ {W)}T[keb dlili(3 ae + 3a, 2 + a 3) (5.25)

Also, the nonlinear expression in terms of ae for the physical mode shape change for

the kth degree of freedom becomes:
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Oki E E 2- (w 2 -w 2) { eb ed i

+{,017[kebfdJ{1}.(3ce + 3ae 2 + ae3) (5.26)

-Wi
2{1b6r~me]{'O}iQe }]}(for -I t i)

In applying the method described above in finite element analysis, practical

considerations make it necessary to divide the quadrilateral elements in the finite element

model into two elements: one with only membrane stiffness and one with only out-of-plane

(bending) stiffness. These elements are then superimposed. This permits multiplication of

the stiffness terms representing membrane properties by a linear element change factor

while the stiffness terms containing the bending properties can be altered by a nonlinear

change factor.

Derivation of Complex Perturbation Equations

Let us now determine the changes in the system eigenvalues and mode shapes for a

problem exhibiting Coriolis behavior. As discussed previously, the eigenvalues for this

system will be real; however, the mode shapes will have complex components.

The basic equation of motion for the descretized system is:

[M]J{j} + [B]{¢}i + [K]{O}i = {0} (5.27)

where [M], [B], and [K] are the system mass, Coriolis, and stiffness matrices respectively,

and {f}i is the displacement vector for the ith mode.

Let us assume a solution for the system described in Equation (5.27) of the form:

{01i = {l}ie i 'i t  (5.28)

where {7p}i is the eigenvector for the ith mode and wi is the eigenvalue for the ith mode.

Applying Equation (5.28) to Equation (5.27) obtains:

- wiM {l}iei.it+ iwi[B]{IP}ieiwit + [k]{b}iei'i t = {O} (5.29)

The term e~it will be eliminated. In addition, the terms will be premultiplied by {f}W,

to obtain the following scalar equation:
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- wj{f~[M[V+ += 0 (5.30)

Define generalized mass for mode i, Mi, to be:

M i = {fk}TM]{}i (5.31)

Similarly, generalized damping or generalized Coriolis, Bi, is defined by:

Bi = {O}T[B]{jb} (5.32)

Finally, generalized stiffness may be defined as:

K, = {,O}W[K]{V} (5.33)

Stetson (1975) applied the above definitions for generalized mass and generalized

stiffness in obtaining his perturbation equations. Since the following analysis will employ

both real and imaginary components, the full form of the terms in Equation (5.30) will be

retained for now.

Perturbations of the System Including Complex Effects

When the original system is modified in the optimization process, it can be said to be

perturbed. The perturbed system must also obey the equations of equilibrium. Let the

perturbed system be distinguished from the original by primes. Equation (5.30) can be

rewritten for the perturbed system by:

-[E']W[M'][¢'][wI2] +i[i¢']W[B'][ 4 '][w'] +[jTK][¢.] -0 (5.34)

where [tb'] is the matrix of perturbed eigenvectors, and [w' is the diagonal matrix of

perturbed eigenfrequencies.

The perturbed system can be related to the original, unprimed system by:

[K'] = [K] + [AK] (5.35)

[M'] = EM] + [AM] (5.36)

[B'] = )B] + [\B] (5.37)

[W] = [w] + [A] (5.38)

[W12] = [w2] + [ ,2] (5.39)

[01 = I0] + [A,] (5.40)

The above perturbation equations are similar to Equations (5.7) through (5.10).
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Equations (5.11) and (5.12) define the global changes in mass and stiffness in terms of

element change properties and Equations (5.13) through (5.15) define the element changes.

One last change that needs to be defined is that for the Coriolis matrix. This is done by:

~P
EAB] L ZtAbe) (5.41)

e=1

and

[.be] = rbe]O'e (5.42)

The last equation is justified because, as we have seen, the Coriolis matrix is linearly

dependent on element mass. The element mass is itself linearly dependent on changes in

thickness; the element change parameter.

Equations (5.35) through (5.42) are applied to (5.34). Terms in A of order 2 or

higher are eliminated as are the baseline equilibrium terms, which essentially are order

zero in A. In a manner similar to that used in section 4.1, the equations are expanded for

all modes and an expression for the change in the eigenvalue in terms of admixture

coefficients is obtained. This relates the change in the eigenvectors for all modes to the

changes in element properties during the redesign process. This results in the following

expression for the change in natural frequency in scalar form:

~b}~r[A.K1{0)j [AI;~ --W w~{b~VJ{~

= {4}i[M]{G}iA(w) - (i=j) (5.43)

Applying the definitions for the changes in the structural matrices to the above

equation and setting i =j, the following expression is obtained for the frequency change for

the ith mode due to application of the element changes a:

{ib}T[M){k} A(wf) - i{4}W[B]{4,}1 A,,,

p (5.44)

= Z({~~r;J{}~+ iwi{W})'be]{2ki - wN{0}?'meJ{Ni) Qe
e=1

where Yke is the approximation of the cubic expansion of the element stiffness matrix such

that:

V.I
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(k ] = [kmemb] + [kedJ] + 3 [kebend ]  (5.45)

However, it must be remembered that the eigenvector is itself a complex quantity,

with both amplitude and phase components. Let us express the complex eigenvector for

the ith mode, {f}i as:

{01i = foli + (5.46)

where {O}i denotes the real part of the ith eigenvector and { }i denotes the imaginary part.

Therefore, Equation (5.44) becomes two equations; one that equates real parts and another

one that equates imaginary parts. These are, respectively,

(f01TI3{1i- {w}'Uil{} ) A(W?) + {e}IYB]{w} A(W1)

t f){{ T} k;){ ,1  { }Yk;J{ , ({ ,rCIeJ{ ,}i - { 6T m e )I) w }ae (5.47)

and

2{T[M{iA )- ({,}TB{} + {TB]{}) i

- {2{}Thk(]{C}i + {T[be]{O}i + {}IiTbef}i wi - 2{f}lTme({l}w1 a(

Note that for the case of no Coriolis terms and purely real eigenvectors, Equation

(5.47) degenerates to Equation (5.25) and Equation (5.48) becomes identically satisfied.

To determine the eigenvector change in the Coriolis system, the admixture

coefficients ci previously defined in Equation (5.45) can be used. From these admixture

coefficients, the eigenvectors of the perturbed system can be obtained:

Akk = {1
e= 1 j =1 j7.{j[M]{V)}i(i2_ j2) _i¢TB {}~ i j

x { e{ T'kJ{¢}iae (5.49)

+iw{7k}Wtbe]{¢},,e-wi2{¢,W~mJ{i}ia}] }( for jzti)

!$ . .. V
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Sequential Unconstrained Minimization Techniques

The generalized form of the optimization problem subject to both equality and

inequality constraints may be stated by:

min F({x}) (5.50)

subject to

gj({x})s0 j=1,2,....m (5.51)

hk({x})"O k=1,2,...,l (5.52)

In the external penalty function method, a penalty is associated with the violation of

a constraint. The penalties are applied outside the region of the feasible domain. All

intermediate solutions lie in the infeasible region. The solution is obtained by convergence

from the outside. The solution may start from an infeasible point; therefore, an initial

feasible point is not required. However, when the optimum solution is achieved, this

solution also is not in the feasible region. Bellagamba and Yang (1981) applied the

exterior penalty function approach to the problem of truss optimization.

The internal penalty function method, however, always keeps the solutions inside

the feasible domain. The solution procedure can be stopped at any time and a permissible

optimized result will be obtained. If one wishes to start the design process from inside the

feasible region, one must obviously start with a feasible solution. This may not always be

possible.

The Augmented Lagrange Multiplier (ALM) method produces a way to reduce the

dependency of the algorithm on the choice of penalty parameters and the way they are

updated. This is accomplished by combining the use of Lagrange multipliers with penalty

functions. Using only Lagrange multipliers gives an optimum that is a stationary point

rather than a true minimum of the Lagrangian. Using only stationary functions gives a

minimum that leaves open the possibility of an ill-conditioned solution that is not feasible.

Using both creates an unconstrained problem that obtains a feasible, well-conditioned

solution that is a true minimum.

IrI
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The minimization problem may now be stated in terms of the following augmented

Lagrangian:

m

F({x},{A},rp)=F({x) + -[Ajoj + rpk ]Pj=1. (5.53)

+ E Ak+mhk({X})+rp 
[hk({x} )]2 }

where

ibj = max [gi{x},-- i] (5.54)L 2rp

The update formulas for the Lagrange multipliers are:

+ 1 9 2rp J

A+= + m + 2 rphk{X} (5.56)

for j 1,m and k= 1,1.

Vanderplaats (1984) states that the ALM method has the following advantages:

1. The method is relatively insensitive to the value of rp. It is not necessary to

increase rp to 00.

2. Precise gj({x}) and hk({x}) are possible.

3. Acceleration is achieved by updating the Langrange multipliers.

4. The starting point may be either feasible or infeasble.

5. At the optimum, the value of A, = 0 will automatically identify the active

constraint set.

Vanderplaats (1982) provides a historical overview of optimization methods.

Vanderplaats (1983) introduced a computer implementation of optimization methods, ADS.



CHAPTER 6

OPTIMAL REDESIGN METHOD

In this chapter, the predictor-corrector method for optimal redesign will be

developed. This development will take place in the context of simple example problems.

In later chapters the method will be expanded to large problems and to the inclusion of

Coriolis effects with complex eigenvectors.

Predictor-Corrector Method

Consider the first example for optimal structural redesign, the rotating beam, shown

in Figure 10. Only vibration in the x-z plane will be considered; therefore, the permitted

vibratory degrees of freedom will be x- and z-axis displacements and y-axis

rotations. Furthermore, the left end of the beam will clamped, and the right end will be

"guided" so as to permit only x- and z-axis displacements and rotations. This guided

bending condition is chosen because the problem then can also be readily solved by

theoretical means. The theoretical solution will be used for comparisons.

The first design change seeks a 10% increase in the fundamental flexural model

frequency. In the predictor step, we will assume that the element change ae is small;

therefore, the quantity (1 + ae) - 1 may be approximated by 3ae. This results in a

3. 11% error, but is done so as to facilitate solving for a, which we shall see will be the

unknown in the inverse perturbation scheme. The element change property 0 e is given by:

Ate
te - (6.1)
te

where te is the element thickness, and Ate is the change in element thickness. Thickness

for the beam in Figure 10 is z-direction in the cross section. The scalar equation that gives

50
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z

-Y \\

Figure 10. Rotating Beam

the relationship between ae and the desired change in natural frequency for the ith mode

Lwl, neglecting Coriolis effects but including centrifugal effects, is given from Equation

(5.25):

A(w 2) - [{}T(Eke b + [kedf + 3kebed])"}iae
MI e=1[ emdebn e

(6.2)
- f2{'j[me {w}ij

where the approximation of the expansion of (1 +ae) 3 as 3 ae is applied.

The above equation is called the predictor. It relates the change in the element

change properties to a prescribed change in the desired eigenfrequency. In this way the

equation predicts what the system configuration should be for a given amount of frequency

change. For the complex case involving Coriolis effects, Equations (5.47) and (5.48) serve
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as the predictor equations. Note that in that case there are two predictor equations.

For the single element case, Equation (6.2) can be solved as one equation with one

unknown. When the bar is divided up into two or more elements, the excess unknown

element change properties can be found by optimizing some function, such as minimum

weight or minimum structural change. Equation (6.2) then becomes an equality constraint

in the optimization scheme. In the Coriolis problem, there are two equality constraints.

Therefore, it is seen that the problem becomes one of parametric optimization, with

thickness as the parameter to be optimized.

Using the results from the static analysis, one finds the eigenvalues and

eigenvectors for the rotating system by finite element modal analysis using MSC/

NASTRAN as modified with Direct Matrix Abstraction Programming (DMAP). The

restart procedure used is described in Appendix A. The eigenvectors are stored, printed

out, and written to a FORTRAN file. Another FORTRAN postprocessor strips out the

eigenvector for the desired mode and appropriately partitions it for each element. Once

this has been accomplished, all of the quantities necessary to formulate Equation (6.2)

have been obtained.

Equation (6.2) is used as an equality constraint in the Augmented Lagrange

Multiplier (ALM) procedure described in Chapter 5. Inequality constraints are also

formulated. The first inequality constraint requires ae to be greater than -0.5. This

ensures that the element thickness will always be positive during the redesign process and

in no case will an element be reduced by more than 50%. This makes certain that

unwanted secondary effects, such as static failure due to the "applied" centrifugal load will

not occur. The second inequality constraint forces the ae to be less than 1E5. This

supplies an upper bound to the search procedure. The function to be minimized in the first

example is the design change:

p
= (6.3)

e=1

%
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where { } is the vector of element change properties ae.

Alternatively, the function to be minimized could be minimum weight. For a system

of uniform density, this function is given by:

p
= e (6.4)

e=1

where Ae is the element planform area perpendicular to the thickness.

The element change properties determined from Equations (6.3) or (6.4) are used to

recompute the cross sectional area and moments of inertia for each element. A reanalysis

is then accomplished to determine the eigenvalues and eigenvectors. The perturbed

eigenvectors are necessary to perform the next step in the procedure, namely the

corrector.

The corrector examines the potential energy imbalance between the system output

from the predictor and the desired system and corrects the imbalance through additional

elemental changes. This enforces the natural frequency constraint on the ith mode. The

following equation is used for the example with no Coriolis effects:

P

- {{ }Tm[Mt{ } - {¢'}TYK({g'} 1  (6.5)

where {0'} is the perturbed eigenvector, w' is the desired eigenvalue, and [K] and [M] are

the global stiffness and mass matrices, respectively. Note that the global stiffness matrix

is the total tangential stiffness matrix that includes the differential components.

If Coriolis effects are included, then the following equation is used for the corrector:

P

({ti'}ifk{, '}i + ibW'{ } ]} [bJ{ I'}i - I
e=1 (6.6)

Notice that the above equation can be broken down into two equations; one that

equates the real parts and another that equates the imaginary parts. This results in two

equality constraints for the corrector step:

-u~w -.P - V0 e
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e=- (6.7)

and

e 2%T~Kewi + ({0'}Ttbe {O'i +{$'}T[be{}i)w' i -2{')T[mej{'}iw'iae

e=1 (1 (6.8)

- ~~~~ - ({O}'EB]{O&}j +{~}'B{})'-24}E1~}

Notice that when the Coriolis effects are absent, the above equations degenerate into those

used previously.

The perturbed eigenectors may be obtained in one of two ways. The first method,

mentioned above, is simply rerunning the predictor. This yields the full, nonlinearly-

perturbed matrix of eigenvectors and the desired mode can be easily partitioned out. The

second procedure involves the application of Equation (5.26), where the change to the kth

degree of freedom for the ith mode in the absence of Coriolis effects is:

aiki = V[{{1PT([ke] + EkediflJ{kiaee= j=wlMj(,i2-wj2 )

+ {,)T[kebnd¢i(1 + (6.9)

- I{Tme]{~ictej (for j:;-i)

If Coriolis effects are present, then Equation (5.49) can be used to compute the perturbed

complex eigenvectors.

The above equation is a linear approximation of the perturbations in the

eigenvectors. Using the results of reanalysis, one obtains the full, nonlinear changes in the

eigenvector. These two candidate procedures have definite trade offs. Using Equation

(6.6) avoids another finite element run. However, Equation (6.6) involves many matrix

multiplications and manipulations and additional programing. Doing the rear.-dysis

involves another finite element run, but it is simple to do and provides the exact
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intermediate answers. It also incorporates the changes in centrifugal force due to mass

changes, which is something Equation (6.6) cannot do. As a side benefit, the intermediate

result of the predictor method alone are provided.

A third approach that one can use in the corrector step is to simply use the

original, unperturbed eigenvector. This should provide reasonable results provided that the

change between the original and objective systems is small. The benefit of this procedure

is that neither a finite element reanalysis nor a new, intricate matrix solution is required.

As shown in Figure 11, the finite element solver is first run. This is done to

generate the system structural matrices and the eigenvectors. Then, using this

information, the equation of constraint for the predictor is used using the frequency change

equation or equation.3 given in Equation (6.4) or (6.5) and (6.6). This constraint is used in

the next step, the optimizer. Optimization is accomplished with respect to minimum

weight or minimum change. Finally, a finite element analysis is done to obtain the system

matrices and eigenvectors for the perturbed system produced by the predictor.

Figure 12 shows an overview of the corrector step. First, the finite element solver

is run for the perturbed system resulting from the predictor. This is done to generate the

system structural matrices and the eigenvectors. Then, using this information, the

equation of constraint for the predictor is used using the energy balance equation or

equations given in Equation (6.4) or (6.5) and (6.6). This constraint is used in the next

step, the optimizer. Finally, a finite element analysis is done to obtain the system

matrices and eigenvectors for the perturbed system produced by the predictor. Note that

this last finite element analysis is not really required: it is done to confirm the results.

Only the initial analysis and the intermediate analysis are required.

Examples

The first physical problem to which the predictor-corrector method is applied is

shown in Figure 10. It is an initially uniform aluminum 2024T-6 beam of length L equal

to 250 mm, with moment of inertia I equal to 3.2552E4 mm 4 , cross sectional area A of

4_
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F.E. Analysis

Predictor Const.

Optimization

F.E. Analysis

Perturbed System

Figure 11. Predictor Overview

*% %.;~~--



77 ,T- O ?T 7T 7K -v- c.lv,~ r9 . nK

57

F.E. Analysis

Corrector Const.

Optimization]

F.E. Analysis

Optimized System

Figure 12. Corrector Overview
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625 mm , Young's modulus E of 73.77E3 MPa, Poisson's ratio v equal to 0.33, and

density p of 2.774E-9 Mg/mm3 . The beam rotates at a speed fn of 80 hz.

A preliminary step done here is to determine the fundamental flexural frequency

for the problem of the nonrotating beam. This will be used to test the convergence of the

finite element mesh. The exact solution for fundamental frequency is 3.5043E3 rad/sec

(see Appendix B). Table 1 shows that the accuracy of the mesh improves when more

elements are used.

Table 1. Mesh Convergence

No. of elements W1  Percent error

1 2.917166E3 16.8

2 3.320063E3 5.3

4 3.365316E3 3.9

For the rotating beam, the bending effects of the beam are separated from the

axial effects. This is done because the effect of extensional (membrane) stiffness on the

predictor-corrector equations is linear in the design variable Qe while the effect of thickness

on bending stiffness is cubic in a e" The separation has been accomplished in an artificial

way by splitting each element into two superimposed subelements: one with moment of

inertia and no cross sectional area and another with cross sectional area and no moment of

inertia. At first this sounds unmotivated, but it is consistent with the additive value of

stiffness. Bending moment of inertia and cross-sectional area are indeed distinct

properties. Any relationship between the two is a consequence of a specific geometry

where the two quantities are related by a common parameter. For a rectangular beam,

both the moment of inertia and cross sectional area are dependent on thickness.

Therefore, in this case, this parameter is thickness, and optimization of this parameter will

-7V



be done.

The beam is divided into four equal-length finite elements, and each element is

composed of two subelements. The mesh is shown in Figure 13.

For the given mesh, the fundamental frequency of the rotating beam is wl ,

3.374117E3 rad/sed. The modal frequency, wd, equals 1.1w1 and will therefore be

3.711529E3 rad/sec with a desired change of frequency w4 of 3.374120E2 radlsec. The

predictor obtains a fundamental modal frequency w of 3.722036E3 rad/sec. This is within

3.11% of the desired frequency change. The corrector step is then done, using the method

that employs an updated eigenvector from the intermediate MSC/NASTRAN analysis.

The fundamental frequency from the corrector, wj, is 3.713899E3 rad/sed. Thus it is seen

that the predictor-corrector obtains the frequency change to within 1% of the desired

change.

1 2 3 4

Figure 13. Finite Element Model for Rotating Beam

t,
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The next test case for optimal redesign will be the simple rotating blade from

Chapter 4. The blade is made of Inconel 718 steel with Young's modulus of 202.696E3

MPa, Poisson's ratio of 0.29, and density of 8.2121E-9 Mg/mm 3 . The blade outer radius is

787.4 mm as measured from a the center of a rigid hub of radius 393.70 mm. has a width

of 556.78 mm, and is initially of uniform thickness 87.38 mm. The rotation speed 0 is

81.2 hz.

Figure 14 shows a finite element model for this blade, which .s the same as the

model in Figure 2. The rigid hub is not modeled. This finite element model consists of four

quadrilateral elements, and each element is once again broken into two subelements. The

first subelement has only membrane properties and the second one has only bending

properties. As in the case of the beam, this is done in order to separate membrane

stiffness from bending stiffness.

A difficulty presented by quadrilateral elements in many general purpose finite

element programs is the that stiffness and "coupled" mass matrices output are in element

coordinates. (The "coupled" mass matrix is a consistent mass matrix with the rotational

terms removed.) Since the eigenvectors are always in the basic (global) coordinate system,

it is necessary to transfer the stiffness and mass matrices to the basic system. The

stiffness matrix can be transformed by:

[Kbaic = [T]W[KeeIent[TI (6.10)

where LKbasicl is the element stiffness matrix in the basic system, [Kelement) is the

element stiffness matrix in the element system. and [T] is the element-to-basic

transformation matrix. The element mass matrices are similarly transformed to the basic

coordinate system.

The fundamental modal frequency for the rotating blade of Figure 6.4, W1. is

2.478E3 rad/sec. For a 10% desired increase in wl, wd is 2.726E3 radlsec and Ad is

2.483E2 rad/sec. The predictor gives w of 2.653E3 rad/sec. Aw is 1.749E2 rad/sec,

which is 70.42% of the desired frequency change. The corrector obtains wc of 2.705E3
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Figure 14. Finite Element Model for Rotating Blade

rad/sec. L,, is 2.268E2 rad/sec which is 91.33% of the desired change.

Figure 15 shows the cross section of the optimal stuctural design of the blade. The

original structure is shown in solid lines and the optimal structure is in dashed

lines. Thickness differences have been exaggerated. Refined meshes will be the subject of

the next section.

To summarize the results of the previous two examples, the governing equation of

the predictor step, Equation (6.2), is a linear representation of a nonlinear perturbation of

the mass and stiffness matrices and the matrix of eigenvectors with respect to a change in

thickness. However, the higher order perturbation terms are important. The predictor

achieved only 70% to 96% of the desired frequency change. Additional nonlinearities are

brought back into the analysis in the corrector in the form of recalculated eigenvectors.

Changes in centrifugal force due to mass changes are also incorporated in the reanalysis.

%e N. V
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Figure 15. Optimized Shape of Rotating Blade

The predictor-corrector method outlined in this section obtained 90% to 99% of the desired

frequency change in one complete cycle. The end result is an improved method for the

optimal redesign of a rotating structure.



CHAPTER 7

OPTIMAL REDESIGN OF ADVANCED SYSTEMS

Review of Solution Procedure

A method has been devised to obtain the optimal stuctural redesign of a rotating

system that incorporates centrifugal and Coriolis effects. This method extends the inverse

perturbation scheme devised by Hoff into the nonlinear physical problem regime. We must

deal with the structurally nonlinear effects of rotation and to obtain the optimal redesign

with a minimum number of finite element analyses. In order to account for the effect of

the static displacements due to rotation on the bending frequencies and mode shapes. a

new finite element solution sequence was created. This involved a preliminary static

solution where the displacements due to rotation were first calculated. Then, a differential

stiffness matrix, [KD], was calculated. This matrix represents the effect of the

displacements on the structural stiffness. A Coriolis matrix was also generated that

incorporated the energy-conserving coupling effects of velocity in one plane to displacement

in another plane. The differential stiffness matrix and the Coriolis matrix were then

incorporated into the modal analysis and the frequencies and mode shapes were obtained.

For the rotating problem without Coriolis effects, Equat, n (3.2) gives the scalar

relationship between the element change ae and the desired change in natural frequency

for the ith mode, Lw. This equation was used as an equality constraint for the function to

be opimized, Equation (6.3). The perturbed eigenvectors for the new system were then

obtained via an intermediate finite element reanalysis. These were used in Equation (6.4)

to correct the energy imbalance between the predicted system and the desired system

through additional structural changes. This equation was used as an equality constraint in
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the optimization of Equation (6.3). Finally, the new eigenvalues and eigenvectors of the

redesign system were obtained by finite element reanalysis.

Rotating Compressor Blade

The next step is to use the above method on more complicated problems. Figure 16

shows a finite element model for a curved rotating blade. The blade is made of Inconel 718

steel, has a radius of 254.0 mm, a length of 69.34 mm, and rotates at a speed of 200 hz.

It has an angle of attack of 30 degrees and is modeled after a NACA 64 airfoil. This is a

blade typically found in a jet engine high-pressure compressor.

Z

Figure 16. Rotating Blade

The finite elements are each divided into two subelements; one with membrane

properties only and another superimposed element with only bending properties. This

finite element model has approximately 1000 degrees of freedom. The elements are

grouped (linked) into twelve regions. During the analysis, the thickness of the regions will
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change, but the elements within each region will maintain a common thickness. (Each

superimposed membrane and bending element region will also keep a common thickness.

The twelve regions are shown in Figure 17.) Table 2 shows the initial thickness, in

millimeters, of the regions.

10 7 4

11 8 5 2

12 9 6 3

Figure 17. Blade Regions

Let a" be the element change property for the ith element. Using Equation (6.2) for

the first mode, define the contribution of the ith element E1 to the frequency change Aw()

to be:

Ei -" 1 nemb] + Ckidif + 3 kibend].I{ }I

(7.1)

W2{,p}T[m] {.,)-

Now let a' be the common element change property for all of the elements in region
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Table 2. Initial Region Thickness

Region Number Thickness (mm)

1 1.734

2 1.734

3 1.734

4 2.312

5 2.312

6 2.312

7 3.005

8 3.005

9 3.005

10 3.467

11 3.467

12 3.467

k. In the corrector, the lower limit on must be changed so that no region will have a

thickness less than one-half of the thickness of the region in the original geometry. Let Qkl

denote this new lower bound of the element change parameter for each -egion. Let E'k be

the sum of the Ek factors for each element in region k. Therefore, using Equation (6.2).

the optimization problem for the predictor becomes the minimization of:

12

E (ak)2 (7.2)
k=1

subject to the equality constraint:

12

L, (7.3)
k=1

and the inequality constraints:

w.
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ak > -0.5 (7.4)

a < 1E5 (7.5)

For the corrector, Equation (4.4) is modified as follows. Let Ji be:

Ji = ¢}~ {'i-'{'Tm]¢}~l(7.6)

Define G to be:

G = w {["'}Vm{,t} 1 - '}TJk{¢' (7.7)

where {'} is the perturbed eigenvector, w' is the desired eigenvalue, and [k) and im) are

the global stiffness and mass matrices, respectively.

Now let 4 be the common element change property for all of the elements in region

k. Let Jk be the sum of the Jk factors for each element in region k. Therefore, using

Equation (6.5), the optimization problem for the predictor becomes the minimization of.

12

f(a'k ) = (0)2 (7.8)
k= 1

subject to the equality constraint:

12 I

2 = G(7.9)
k= 1

and the inequality constraints:

> (7.10)

k < 1E5 (7.11)

For this problem another FORTRAN postprocessor must be written that groups

together the stiffness, mass, differential stiffness, eigenvector, and transformation

matrices for each element. This is done so as to minimize matrix storage requirements

and programming steps during the predictor or corrector. Rather than read in all of the

matrices for all of the elements at once, they are read in per element. The matrix

operations for the predictor or corrector are then performed, the results are stored, and

then the program loops back to read in the matrices for the next element.

Three complete finite element static and dynamic analyses are required for each
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cycle in this method. The first run gives the eigenvalues and mode shapes for the original

system. The second one gives the values for the system output by the predictor. The final

analysis verifies the results of the corrector.

Another possible objective function is minimum weight. In this case, the function to

be minimized in the predictor comes:

12

MOO L AkQkk (7.12)
k= 1

subject to the inequality constraints:

O'k > -0.5 (7.13)

and

akk < 1E5 (7.14)

In the corrector step for the minimum weight problem, the objective function

remains minimum minimum weight. However, as in the minimum change case. the lower

limit on the element change parameter must be changed so that no region will have a

thickness less than one-half the thickness of the region in the original geometry.

Results of Analysis

It is first noted that for the nonrotating system, the fundamental frequency is

7.6656E3 rad/sec. For the rotating system including centrifugal effects, the fundamental

frequency is 8.3802E3 rad/sec. This implies a 9.32% increase in fundamental frequency

due to the centrifugal effect of rotation.

Figures 18 and 19 show the first two eigenvectors for the rotating blade when

centrifugal effects are not included. The first eigenvector is a flapping, or bending, mode

and the second one is a twisting, or torsional mode. The fundamental eigenvector is indeed

that of out-of-plane bending. Figures 20 and 21 show the first two eigenvectors when

centrifugal effects are included. Notice that the mode shapes remain unchanged.

Therefore, the effect of rotation changes the eigenvalues but the eigenvectors retain their

identity.
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Figure 18. Mode Shape 1, Blade
No Rotational Effects

The problem of the rotating blade was analyzed for several cases and using several

different methods to account for nonlinearities. In cases 1 and 2, a 10% increase in the

fundamental eigenfrequency was desired, with the objective function for case 1 being

minimum change and the objective function for case 2 being minimum weight. In cases 1

and 2, centrifugal effects were included in both the structural analysis and the

optimization, but Coriolis effects were neglected. Results of both predictor and corrector

are shown in Table 3. Note that the predictor results can be considered to be results from

a linear, one-step analysis since the effect of redesign on the eigenvectors does not enter

into the predictor procedure. Improvements from the predictor to corrector step show the

benefit of the use of the nonlinear optimization techniques.

In Table 3, the first colum denotes the objective functions used in the predictor and

C-- ~~-I-.V
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Figure 19. Mcdie Shape 2, Blade
No Rotational Effects

the corrector respectively. The symbol C/C denotes minimum change in both parts. If

W/W is indicated, minimum weight was used in both the predictor and corrector. The use

of W/O which symbolizes that minimum weight was used in the predictor while minimum

change was used in the corrector indicates a hybrid system (Case 3), which shall be

described later. The next column entr-,, w1. indicates the fundamental Frequency for the

Id

system. The desired frequency is denoted by ,)) The fundamental frequency resulting

from the predictor geometry is indicated by .. The percentage of the desired frequency

change accomplished by the predictor is symbolizeo by cc .a. The percent weight change

resulting from the predictor, 7c.WPI, is given in the next column. The fundamental

Frequency of the corrector geometry is denoted by .Jj. The percentage of the desired

frequency change accomplished by the corrector is given by -1c, In the final column, the

.. !.

" i-
%1 S ~ ~ ~ ~ . S.~ ~- A S a,
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Figure 20. Mode Shape 1, Blade
Rotational Effects Included

percent weight change resulting from the corrector, %AWc, is given.

Figure 22 shows the final spanwise optimized thickness of the structure for Case 1.

Figure 23 shows the final optimized shape of the structure for Case 2. Notice that in the

minimum change example, emphasis is given to adding material at the root. In the

minimum weight-minimum weight example (Case 2), all of the regions except for the root

have been reduced to the lower limit on thickness. This ib the pathological case in

optimization where the system is driven to an extreme. When this is done in this example.

undesirable side effects occur, such as mode switching. The first bending mode is no longer

the fundamental frequency and the the solution to the problem in optimization is no longer

dependable. The frequency results shown for the corrector are for the bending mode:

however, this frequency is technically no longer w1. A way out of this quandary can be

*%j lk PI'w"
el , -N~i ' - %',,'v , " , °." 

a
j . , , .. o r • € €" '1".t" €" ,€,.€ ,f 4 ,€ ',, 4.0. . .,A %'.
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Figure 21. Mode Shape 2, Blade
Rotational Effects Included

found by a close examination of the results of the predictor. This step obtains 99% of the

desired frequency change and also a weight reduction of - 14%. Therefore, this solution is

close to the frequency constraint, and only a small change is necessary to satisfy it. This

implies that a hybrid approach involving a predictor stop with a minimum weight objective

function and a corrector with a minimum change objective function could work.

The results of this hybrid step are shown in Case 3 and Figure 24. In this example.

material is added at the root but proportionally less than in the minimum change-

minimum change situation. Emphasis is given to removing material from the outboard

regions, with most material removed from the second set of elements from the end. Since

minimum weight is the objective of the predictor, it is not suprising that more material is

removed in Case 3 than in the Case 1 situation.
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Cases involving degradations of the solution procedure are shown in Appendix C.

These were done to observe the effect of the absence of centrifugal effects on the problem

in optimization.

Two other problems were studied; both involved large (30%) changes in the

fundamental frequency. In Case 4, the 30% change is accomplished in one step. A second

iteration is performed to obtain an improved solution (Case 5). In another situation, the

30% change is broken down into three 10% increments (Cases 6 through 8). In both of

these examples, only a minimum change optimization function is used. Table 4 shows the

results of the iterative procedure. The linear predictor step obtains the desired frequency

change with less than 24% accuracy, but at the end of the first iteration, the desired

frequency change is accomplished to within less than 1%. The second iteration is done for
1

completeness, and gives the desired change in fundamental frequency to within T of 1%.
100

In Table 5, each iteration obtains the desired change in frequency for that iteration

to less than 1%. The final iteratin, which completes the 30% change, gives the desired

9change to within -- of 1%. These two Tables show that excellent accuracy on the

100

frequency goal is obtained, showing the feasibility of making large changes.

The use of the word "accuracy" needs some close examination. "Accuracy" has

been used to describe how close the frequency change obtained by solving the problem in

optimization is to the desired frequency change. This is done in terms of a discrete finite

element model. An analysis was made in Appendix B of the convergence of discrete finite

element models to a theoretical solution involving a nonrotating beam. This can be used to

give an indication of the accuracy of the finite element model in that case. However, no

such comparison to a theoretical solution is made for the rotating blade presented in this

chapter. Closed-form solutions to non-abstract structural systems are difficult to obtain.

Therefore, in all discussions on accuracy in this chapter, comparisons are made from one

discrete model to another.

p I
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Figure 22. Optimally Redesigned Blade, Case 1
Minimum Change

Optimization Constraints

The optimizer is run iteratively, with the solution of the previous step becoming the

starting point for the succeeding step (the initial starting point is the origin). In nonlinear

mathematical programming, the approach is to minimize the objective function while

driving the equality constraint function to zero. Table 6 shows for each case the number of

iterations i required for final solution, the value of the objective function f, and the value of

the constraint A. The solution is terminated when further iterations obtain improvements

only of less than 0.001 (Reason 1) or further iterations cause the solution to diverge, as

indicated by increasing values of objective function or constraint (Reason 2). The table also

gives the reason for termination, 1 or 2, as indicated above. Note that in no case were

more than seven iterations required.
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Figure 23. Optimally Redesigned Blade, Case 2
Minimum Weight

In Table 6, it is noticed that cases with a minimum change objective function have

the optimized value of the function A close to zero, but cases with a minimum weight

objective function often have negative values. This is logical: for minimum change, low

values imply low sum of the squares of change. For minimum weight, large negative

values imply a large reduction of volume.

Rotating Beam Incorporating Coriolis Effects

The next example will consider the case of the rotating beam presented in the

prevous chapter (Figure 13) at high rotational speed. Once again, the beam will be divided

into four elements with each element composed of two subelements: one having bending

properties only and the other posessing only tension-compression properties. The rotation

speed will be 300 hz.

la
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Figure 24. Optimally Redesigned Blade, Case 3
Hybrid

For this problem, the fundamental eigenfrequency without rotation is 2.093729E3

radlsec. Figure 25 illustrates the first mode shape of the beam, a bending mode. When

centrifugal effects are included, the fundamental frequncy is 2.952001E3 rad/sec, an

increase of 40.99%. When Coriolis effects are included in addition, the fundamental

frequency drops slightly to 2.951942E3 rad/sec. The inclusion of Coriolis forces in the

rotating problem decreases the fundamental frequency by - 2.00E-3% from the rotating

problem that includes centrifugal but not Coriolis effects.

Table 8 summarizes the results from the optimal redesign of the rotating beam.

The notation is the same as for the rotating blade. In Case 9, centrifugal effects are

included in both the structural analysis and in the optimization. A minimum change

objective was used. Case 10 was identical to case 1; however, the hybrid case was

,,
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Figure 25. Mode Shape 1, Beam

analyzed incorporating a minimum weight objective function in the predictor and a

minimum change objective function in the corrector. Coriolis effects were included in Case

11 in both the structural analysis and equations of constraint. Optimization was

accomplished using a minimum change objective function. Figures 26 and 27 show the

final configuration of the rotating beam for Cases 9 a.Ld 10, respectively. Case 11, being a

minimum change case, shows an optimized shape similar to Figure 26.

Optimization

As in the previous section, the values for constraint functions, constraint values, and

reason for termination are given for each of the three cases in Table 8. For the cases

involving complex equations, the constraint shown is the real constraint.

Notice that the function evaluations for the minimum change objective are close to

zero, and the function evaluations for the minimum weight objective (predictor only) are

- " " ,*~'.. . . . . . . ", ;,-
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Figure 26. Optimally Redesigned Beam, Case 9

negative. They are not as big in this example as in the blade example.

Summary of Results

The predictor-corrector methods breaks the solution of the problem of nonlinear

optimal redesign into two parts. The first part. the predictor, solves for the required

structural changes for a given required change of frequency. In this step, the effect of

structural changes on the mode shapes is not considered. Therefore. this part of the

solution may be considered as a conventional linear structural analysis. In the corrector.

the effect of the structural changes on the mode shapes is taken into account and the

system is once again modified to obtain an improved solution. I
In all of the examples involving the rotating blade, the final result of the predictor-

corrector approac i obtains the desired frequency change to within one percent. In the

-2

i

' '*,,'
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Figure 27. Optimally Redesigned Beam, Case 10

minimum change cases, the linear predictor overshoots the solution by a few percent. The

corrector changes the final solution so that the eigenfrequency is at the desired value.

Even for large changes, the predictor-corrector method obtains the desired solution, if

suitable iteration or incrementing is done.

For the rotating beam with a minimum weight objective function, the linear predictor S

undershoots the desired frequency goal by quite a bit. as much as 35%. The corrector

obtains the desired frequency to within one percent. ,A

The rotating beam shows some other interesting results. In Case 9, the desired

change is obtained to within 4%. In Case 10, there is a lot of undershoot by the predictor,

but the corrector obtains the desired solution to within 6%. However, when both centrifugal

and Coriolis forces are included in Case 11, the best solution is found. The linear approach

gives an answer to within 5% and the corrector improves this to within 1%. The method
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used in Case 11 represents the best theoretical formulation. The equations used represent

the full nonlinear structural approach with both centrifugal and Coriolis effects.

One of the reasons behind the lack of accuracy surrounding the problem of

optimization with respect to minimum weight is that this optimization function in the

presence of the nonlinear effects of the corrector drives most of the structure to the

pathological extreme of the lower bound on thickness. This is an undesirablt: solution. Not

only does it introduce inaccuracies that somewhat distance the frequency change from the

desired value, but it also causes mode switching that results in the bending mode no longer

being the fundamental mode. Since higher order modes were not tracked in this procedure,

the solution to the problem in optimization is no longer valid.

Comparison with Other Methods

Queau and Trompette (1981) obtained minimum weight designs with constraints on

frequency. Their method incorporated the centrifugal effects but not Coriolis. In the

method implemented here, when minimum weight is employed, the second station from the

free end has the minimum thickness and the end bulges out, though it remains less thick

than the original design. This was also obtained by Queue and Trompette (Figure 28),

with the dashed line indicating the final optimized shape.

Olhoff and Parbery (1982) examined the optimization of rotating beams with respect

to frequency constraints. However, they employed lumped masses which tend to alter the

optimized shape from the purely distributed mass approach. Their final shapes indicated

tapering except near the region surrounding a lumped mass where bulging then occured.

In work on the nonrotating beam, Karihaloo and Niordson (1973) obtained the classical

tapered beam for the optimum shape of the initially uniform beam, where the first mode is

of interest. This was confirmed by Olhoff and Parbery (1976) and expanded to higher

order modes (Olhzff, 1977).

1 (K*"' , ~~%~% ~
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Figure 28. Rotating Blade, Optimized Shape
Queue and Trompette



CHAPTER 8

CONCLUSIONS

General Conclusions

The effect of rotation on the eigenvalues and eigenvectors of a system was

successfully modeled through the use of finite element theory. Both centrifugal forces and

Coriolis effects were included. The centrifugal forces in this work were treated as a static

load and therefore the effect was included as a mild geometric nonlinearity in the

differential stiffness matrix. The velocity-dependent Coriolis terms were formulated into a

separate Coriolis matrix. These terms were found to be very small in the examples

treated here. The results obtained by the finite element formulation were shown to be in

close agreement to those obtained by classical means.

By far, the major rotary phenomenon affecting the fundamental eigenvalue was

centrifugal force. The centrifugal effect increased the fundamental frequency of the blade

and the beam by several percent. The mode shapes remained unchanged from the

nonrotating system. The centrifugal forces serve to stiffen the rotating body. Coriolis

forces slightly decreased the fundamental frequency. Since Coriolis forces are velocity

dependent, they affected both the amplitude and phase of the eigenvector components

creating a complex eigenvector problem. However, the eigenvalues remained real.

The predictor-corrector method for structural optimization using inverse

perturbation was extended to incorporate centrifugal forces. To accomplish this. the

element stiffness matrices were separated to isolate the effects of in-plane stiffness

(membrane or extensional), bending stiffness, and differential stiffness. When the

frequency constraint involved a ten percent increase in the fundamental frequency, the

88
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linear predictor zbtained the required change within two percent for the blade or five

percent for the beam. The nonlinear corrector obtained a final optimized system that met

the frequency constraint within one percent. Thus the predictor-corrector method for

nonlinear redesign obtained exceilent agreement between the desired eigenvalue and the

calculated eigenvalue, when centrifugal effects were included.

When Coriolis effects were included, both the magnitude and phase of the

components of the fundamental eigenvector were required to obtain the equations of

constraint. This problem in complex eigenvalue analysis was also adapted to the nonlinear

inverse perturbation predictor-corrector approach. The method was applied to the problem

of the rotating beam. Once again, the desired frequency change was obtained to within

one percent.

The problem of large frequency change (30%) was tried for the rotating blade

incorporating centrifugal effects. Both an iterative and an incremental solution were

accomplished. The iterative approach obtained the desired frequency almost exactly with

only two iterations required. The incremental approach also achieved the desired

frequency using three incremental steps. Thus it is seen that the predictor-corrector

method is extraordinarily stable, obtaining even large changes with excellent correlation

between the desired change in the eigenvalue and the calculated change resulting from the

redesign process.

Good solutions resulting in excellent agreement between the desired frequency

change and the actual frequency change always obtain when a minimum change objective

function is used in both the predictor and the corrector. Minimum weight is a useful

objective function for the predictor, but when it is used in the corrector, a pathological

solution results with all mass concentrated at one area. This is not acceptable. Not only is

this an unrealistic redesign, but the bending frequency drifts away from the desired value

and mode switching may result. To correct this deficiency in the minimum weight

approach, a minimum change objective function was used in the corrector step. This hybrid
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approach combines the desired goal of minimum weight with the stability of the minimum

change objective function.

The solutions calculated by the predictor-corrector method were compared to those

obtained by other authors. These solutions were for minimum weight objective under a

variety of frequency goals. Good correlation between the predictor-corrector method and

other methods was observed.

In summary, the predictor-corrector method for optimal redesign as extended in this

dissertation obtained the desired frequency changes with excellent accuracy. MSC/

NASTRAN finite element solution sequences were modified to incorporate rotary effects.

DMAP and FORTRAN languages were used to implement the derived equations of

constraint. Automated Design Synthesis (ADS) was used to obtain the optimum solution.

The methods used were applied to several test problems, one being a curved blade with

nearly one thousand degrees of freedom. In each case, the desired frequency change was

obtained to within a few percent. Therefore, the approach works and can be applied to a

variety of problems in optimal redesign.

Dissertation Contribution

The major contribution is the extension of the inverse perturbation method to include

both centrifugal and Coriolis effects in the optimization of rotating systems under

frequency constraints. Either minimum structural change or minimum weight objective

functions can be employed. Excellent agreement between the desired change in the

fundamental natural frequency and the actual change as determined by reanalysis was

obtained in the test cases tried. Previous researchers have neglected the Coriolis effects in

the optimization of rotating systems. Both magnitude and phase-dependent constraint

equations were used and it was shown how the equations reduced to the conventional

rotating solution in the absence of Coriolis effects.

Another original contribution is the implementatio uf ,% ineLhod for modifying an

existing large scale finite element program to incorporate static stiffening loads as

N *',!
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observed in the rotating frame due to the centrifugal effect. In addition, a method for

incorporating a global skew-symmetric Coriolis matrix in the complex modal analysis is

developed. Together, these provide the eigensolution for a rotating body. The technology

developed is transportable to other sites by anyone familiar with MSC/NASTRLAN and

DMAP.

Suggestions for Future Work

Theoretical Recommendations

Coriolis matrices for the beam element using a consistent mass approach and in a

generalized coordinate system should be obtained, as should Coriolis matrices for other

elements. The problem of maximizing the differences between eigenvalues, as identified by

Olhoff and Parbery (1982), should be analyzed. This is important in problems where

several eigenvalues are tracked in the redesign process with emphasis given to the

difference between the eigenvalues.

Practical Recommendations

The finite element method employed in this work should be generalized to include

more types of elements, such as higher-order plates. A general problem incorporating

several different elements should be tried. This would permit the analysis of a real-world,

built up structure such as a helicopter blade. An improved method of incorporating

element Coriolis matrices into the global problem within the context of existing finite

element programs should be devised. This should be done so that the employment of a

Coriolis matrix in complex dynamic analysis would be transparent to the user and would

permit the automated analysis of the dynamic problem including all rotational effects.

i.'.
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APPENDIX A

COMPUTER IMPLEMENTATION

Implementation of the predictor-corrector method to rotational problems is

accomplished by a combination of the MSC/NASTRAN program, the ADS program and

FORTRAN programming. MSC/NASTRAN is used to accomplish structural analysis, both

static and modal. and generates the structural matrices (McNeal 1984). _1'ORTRAN

programs are used to transform the structural matrices from MSCNASTRAN into a

format usable for general analysis. Then, Direct Matrix Abstraction Programming

(DMAP) is used to generate the equations of equality constraint. Optimization is done by

use of the ADS program (Vanderplaats, 1983).

Figure 11 shows the flow diagram for the predictor step. The finite element analysis

is accomplished in two steps. First the static solution of MSCINASTRAN. SOL 24, is run

to generate the differential stiffness matrix (MacNeal, 1981). This matrix is then

checkpointed to the restart tape. Then SOL 3 is run for the real modal analysis case (or,

alternatively, SOL 28 is run for the complex eigenvalue problem). The problem is run as a

restart and the differential stiffness matrix is read from the "old problem tape" (Joseph,

1984). In both the static and dynamic runs, the mass, stiffness, differential stiffness, and

eigenvector matrices are written on tape in FORTRAN compatible binary via OUTPUT4. '

For the complex run, the Coriolis matrix is also stored. However, MSC/NASTRAN does

not itself have Coriolis factors. These must be generated by a FORTRAN program. The

Coriolis matrix is output by OUTPUT4 so that it can be processed by the same programs

as are the other matrices. Finally, a nonrotating dynamic solution is done. This is done to

generate the nonrotating eigenvalues and also to produce the global to basic system

transformation matrices on an OUTPUT2 tape. These matrices are located in the KDICT

table.

The following DMAP ALTER is used in SOL 24 to generate the differential stiffness

matrix. Note that first the static displacment caused by the centrifugal forces is obtained
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and then this is fed back into the EMG processor to get the element differential stiffness

matrices (Gockel, 1984). OUTPUT4 is then used to put on tape the matrix of the element

stiffness, differential stiffness, and mass matrices. I'

SOL 24 $STATIC ANALYSIS
CHKPNT YES
DIAG 4,8,14
ALTER 33
OUTPUT4 KELMMELM/0i8 $
TABPT SIL,' $
MATPRN CSTM// $
ALTER 30
PRTPARM ////I $
ALTER 97
PRTPARM /,'//1 $
ALTER 160
EMG EST,CSTM,MPT.DIT,,UGV.ETTEDT/KDELM.KDDICT .... /1/0/0,'
/,,- 1/- 1///i///I/K6ROT $
CHKPNT KDELM.KDDICT $
OUTPUT4 KDELMI/0/8 $
TABPT KDDICT.,,..' $
EMA GPECT.KDDICTKDELM,BGPDT,SIL.CSTM/KDNN.i- 1 $
CHKPNT KDNN $
EQUIV KDNNKDFF/SINGLE $
CHKPNT KDFF $
COND LBL3D,SINGLE $
SCE1 USET.,KDNN,,,/KDFF,KDFS.... $
CHKPNT KDFF,KDFS $
LABEL LBL3D $ ,

EQUIV KDFF,KDAAIOMIT $
CHKPNT KDAA $
COND LBL5DOMIT $
SMP2 USET,GO.KDFFKDAA $
CHKPNT KDAA $
LABEL LBL5D $
ADD KDAA,KAA/KTOT/C,N.(1.0,0.0)/C,N,(1.0,0.0) $
CHKPNT KTOT $
ENDALTER
CEND

This following DMAP is used to modify SOL 3 to produce the real modal solution for

the rotating problem incorporating differential stiffness. The matrix of eigenvectors

created is written on tape by OUTPUT4.

SOL 3 $REAL MODAL ANALYSIS
DIAG 4.8,14
ALTER 395
PRTPARM ////I $
ADD KDAA,KAA/KNEW/C,N,(1.0,0.0)/C,N,(1.0,0.0) $
EQUIV KNEW,KAAJALWAYS $

--. V
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ALTER 448
OUTPUT4 UGV .... //0/8 $
ENDALTER
CEND

For the complex case with Coriolis effects, the following is used to alter SOL 28.

The global Coriolis matrix is read via INPUTT4. Once again, OUTPUT4 is used to write

the eigenvectors on tape.

SOL 28 $COMPLEX MODAL ANALYSIS
DIAG 4,8,14
ALTER 66
INPUTT4 /BCOR,,,,/1/8/0 $
MATPRN BCOR/ $
EQUIV BCOR,BGGX/ALWAYS $
SETVAL //V,N,NOBGGX/0 $
ALTER 392
PRTPARM ////1 $
ADD KDAA.KAA/KNEW/C.N,(1.0,0.0)/C,N,(1.0,0.0) $
EQUIV KNEW,KAAJALWAYS $
ALTER 409
MATPRN KDXX,BDXX.MDXX//$
ALTER 456
OUTPUT4 UGV .... //-1/8 $
MATPRN UGV// $
ENDALTER

CEND

In applying the method described above in MSC/NASTRAN, it is first necessary to

divide the structural elements in the finite element model into two elements: one with only

in-plane (membrane or rodlike) stiffness and one with only out-of-plane (bending) stiffness.

These elements are then superimposed. The element stiffness matrices, created by DMAP

module EMG, reside in triangularized form as individual columns in the matrix KELM.

Dividing up the elements results in a separate column in KELM for in-plane and bending

properties for each superimposed composite element. This permits multiplication of the

column representing membrane properties by a linear element change factor while the

column containing the bending properties can be altered by a nonlinear change factor.

These manipulations may be done by selective use of the MATMOD DMAP module.

In the MSC/NASTRAN static solution procedure, SOL 24. each element stiffness

matrix and element mass matrix has its upper triangular and diagonal components stored

of1 " "... .r "e d " r - -
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as a column in the assembled system matrices KELM and MELM, respectively. To

accomplish optimal redesign it is first necessary to checkpoint these matrices and write

them to FORTRAN readable on disk using OUTPUT4. CBAR elements have element

matrices are already in the basic coordinate system; therefore, no coordinate

transformation is necessary in order to redesign. It is necessary, however, to regenerate

the full symmetric stiffness and mass matrices for each element. This is done by a

FORTRAN postprocessor.

After the initial structural problem is solved, the constants in the equation for the

frequency constraint must be obtained. First, the element matrices which are output by

MSC/NAST.AN in diagonalized form are repacked into full matrices by FORTRAN

programming. Then, these matrices are used by a DMAP sequence to obtain the equation

components. This set of DMAP steps is shown below for the case with no Coriolis forces.

ID GANS,BRONZ3
TIME 30
DLAG 4,14
BEGIN $
FILE EMAT= APPEND $
$ THIS DMAP COMPUTES THE COMPONENTS FOR THE PREDICTOR STEP
$ FOR THE BRONZ PROBLEM.
$ IT INVOLVES 8 CBAR ELEMENTS
PARAMR //MPY/V,N, OMEGA2/V, Y, OMEGA/V,Y, OMEGA; $ SQUARE OMEGA
PARAMR //C,N,COMPLEX//V,N,OMEGA2/0.0/V,N,LAMAJ $ CHANGE
$ OMEGA2 TO COMPLEX
PRTPARM // $
$ THE NEXT SECTION INVOLVES THE CQUAD ELEMENTS
LABEL L2 $
INPUTT4 /K1,M1,D1,UGV1,/4/8/0 $ READ IN MATRICES
ADD K1,/K1MI1.0/ $ CUBIC APPROXIMATIONS ALREADY ACCOMPLISHED
ADD K1M,D1/KiN/$ ADD IN DIFF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGV1,K1N,UGVi.,,/A2/3/1/1/0/1/ $ GET COMPONENTS FOR REDES
SMPYAD UGV1,Ml,UGVi,,,/YY2/3/1/1/0/1/ $ GET COMPONENTS FOR REDESIGN
ADD YY2,/B2/LAMA/ $ MULTIPLY YY1 BY LAMA
ADD A2,B2/C2/1.0/- 1.0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
ADD C2,/E2/C,Y.MINV= 1.0/ $ DIVIDE BY GENERALIZED MASS
$MATPRN E2// $ PRINT OUT RESULTS
APPEND E2,IEMAT/2 $
REPT L2,7 $
OUTPUT4 EMAT,,,,//-1/8 $
MATPRN EMAT// $
END $
CEND
TITLE=ASSEMBLY OF MATRICES INTO HOFF'S EQ. IV. 19
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SUBTITLE = FOR BRONZ PROBLEM
BEGIN BULK
PARAM* OMEGA 2.952001E3
PARAM* MINV 8.955021E3
ENDDATA

When the Coriolis case is used, there are two equations of constraint. One set

relates the real components to each other. These are the magnitude-like factors. The

other equation relates the imaginary components to each other. These are the phase-like

factors. The first set of DMAP creates the real constraint. The second set generates the

imaginary constraint.

ID GANS,BRONZ45A
TIME 30
DIAG 4,14
BEGIN $
FILE EMAT = APPEND $
$ THIS DMAP COMPUTES THE COMPONENTS FOR THE PREDICTOR STEP
$ FOR THE BRONZ PROBLEM 1ST EQUATION
$ IT INVOLVES 8 CBAR ELEMENTS
PARAMR //MPY/V.N,OMEGA2/V,Y,OMEGA/V,Y,OMEGA' $ SQUARE OMEGA
PARAMR //C,N,COMLEX//V,N,OMEGA2/0.0/V,N,LAMAJ $ CHANGE OMEGA2 TO
$COMPLEX
PARAMR //C,NCOMPLEX'V, Y,OMEGA/O. O/V,N,.OMEGAC/ $CHANGE OMEGA TO
$CMPLX
PRTPARM/ $
$ THE NEXT SECTION INVOLVES THE CBAR ELEMENTS
LABEL L2 $
INPUTT4 /K1,M1,D1,,/3/8/0 $ READ IN MATRICES
INPUTT4 IUGVR1,UGVI1,BI,,/3/8/0 $ READ IN MATRICES
MATPRN K1,M1,Dl// $
MATPRN UGVR1,UGVI1,B1// $
ADD K1,/K1MI1.0/ $ CUBIC APPROXIMATIONS ALREADY ACCOMPLISHED
ADD K1M.D1/K1N/ $ -ADD IN DIFF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGVR1,K1N.UGVR1,.,/A2/3/1/1/0/1/ $ GET COMPONENTS FOR REDES
SMPYAD UGVR1.M1.UGVRI,,,,YY2/3/1/1/0/1/ $ GET COMPONENTS FOR REDESIGN
SMPYAD UGVII.M1.UGVI1,,.,XX2/3/1/1/0/1; $
SMPYAD UGVI1.KlN.UGVI1.,,/WW2'3,'l/1/0/1/$ GET COMPONENTS FOR
$REDESIGN
ADD YY2.XX2/Y2/1.0/- 1.0 $
ADD Y2,/B2/LAMAI $ MULTIPLY YY1 BY LAMA
ADD A2,WW2/CC2/1.0/- 1.0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
ADD CC2,B2/E2/1.0/- 1.0/$ SUBTRACT CORIOLIS

*: APPEND E2,/EMAT/'2 $
REPT L2,7 $
INPUTT4 /UGVR,UGVI,KGGX,,/3/8/0 $ READ IN DISPL AND CORIOLIS MATRICES
INPUTT4 /MGGX,KDNN,BCOR,,/3/8/0 $ READ IN MORE MATRICES
MATPRN MGGX// $
SMPYAD UGVI,BCOR,UGVI,,,/T1/3/1/1/O/1/ $ GET COMPONENTS FOR RHS
SMPYAD UGVR,MGGX,UGVR,,,/VV1/3/1/1/0/1/ $ GET COMPONENST
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SMPYAD UGVI,MGGX,UGVI,.../VV2/3/1/1/o/1/ $
ADD VV1,VV2N/1/.O/- 1.0 $
MATPRN T1,V I// $
OUTPUT4 EMAT,....//- 1/8 $
MATPRN EMAT!! $
END $
CEND
TITLE = ASSEMBLY OF MATRICES INTO GANS EQUATION 1
SUBTITLE= FOR BRONZ PROBLEM WITH CORIOLIS, PREDICTOR
BEGIN BULK
PARAM* OMEGA 2.951942E3
ENDDATA

ID GANS,BRONZ45B
TIME 30
DIAG 4,14
BEGIN $
FILE EMAT = APPEND $
$ TH-IS DMAP COMPUTES THE COMPONENTS FOR THE PREDICTOR STEP
$ FOR THE BRONZ PROBLEM 2ND EQUATION
$ IT INVOLVES 8 CBAR ELEMENTS
PARAMR //MPY/V,N,OMEGA2/V,YOMEGAIV,Y,OMEGAJ$ SQUARE OMEGA
PARAMR //C,N,COMPLEX/V.N,OMEGA2/0OV,N.LAM-k $ CHANGE OMEGA2 TO
$COMPLEX
PARAMR, /C,N,COMPLEXI/VY, OMEGAiO. 0/V,N, OMEGAC! $CHANGE 3MEGA TO
$CMPLX
PRTPARM II$
$ THE NEXT SECTION INVOLVES THE CBAR ELEMENTS
LABEL L2 $
INPUTT4 IK1,Ml,Dl,,/3/8/0 $ READ IN MATRICES
INPUTT4 fUGVR1,UGVII,B1,./3/8/0 $ READ IN MATRICES
ADD K1,/K1MI1.0/ $ CUBIC APPROXIMATIONS ALREADY ACCOMPLISHED
ADD KIM,D 1/KIN! $ ADD IN DIFF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGVR1,K1N,UGVI1,.../A2T/3/l1/1i0/1/ $ GET COMPONENTS FOR REDES
ADD A2T,/A2/2.0/ $ DOUBLE A2T
SMPYAD UGVR1,Ml,UGVI1,.../YY2T/31'1/1/0/1/ $ GET COMPONENTS FOR
$REDESIGN
ADD YY2T,/YY2/2.0/ $
SMPYAD UGVR1,Bl,UGVR1 .../ZZ2/3/1i/I0/1/ $ GET COMPONENTS FOR REDESIGN
SMPYAD UGVI 1,B lUG VT1,,,,'XX2311 1' 10,1/ $
ADD ZZ2,XX2/ZZ3
ADD YY2.JB2fLAMA.' $ MULTIPLY YY 1 BY LAMA
ADD ZZ3,1Z2/OMEGAC,' $ MULTIPLY ZZ3 BY OMEGAC
ADD A2,B2/CC2/].0/- 1.0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
ADD CC2,Z2/E211.0I1.0I $ ADD CORIOLIS
$MATPRN A2.B2.Z2// $ PRINT OUT RESULTS
APPEND E2,/EMAT/2 $
REPT L2.7 $
INPUTT4 /UJGVR.UGVI,KGGX,,13/8!0 $ READ IN DISPL AND CORIOLIS MATRICES
INPUTT4 /MGGX,KDNN,BCOR,./3/8/0 $ READ IN MORE MATRICES
SMPYAD UGVR,BCOR,UGVR,,./TTI/3/l111/o/1/ $ GET COMPONENTS FOR RIIS
SMPYAD UGVI,BCOR,UGVI,.../TT2/3/ 111/0/1/ $
ADD TT1,TT2/T1 $
SMPYAD UGVR,MGGX,UGVI .../VV 1/3/1/1/0/1/ $

IFi

-IIIII1
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ADD V,/V1I/2.0 $
MATPRN T1,V1// $ OUTPUT RESULT
OUTPUT4 EMAT,,,,//-1/8 $
MATPRN EMAT// $
END $
CEND
TITLE=ASSEMBLY OF MATRICES INTO GANS EQUATION 2
SUBTITLE= FOR BRONZ PROBLEM WITH CORIOLIS, PREDICTOR
BEGIN BULK
PARAM* OMEGA 2.951942E3
ENDDATA

Once the equations of constraint are obtained, the problem in optimization is ready

to be run. This is done by the use of a FORTRAN program that calls the ADS program,

which is the optimizer (Vanderplaats 1985). The objective function can be either minimum

weight or minimum change. This produces the values for the element change factors ae

and hence the thicknesses of the predictor system. An intermediate finite element analysis

is then done to generate new system matrices and eigenvectors. This is the conclusion of

the predictor step. As stated in Chapter 6, the predictor results represent a linear solution

of the problem in optimization.

In the corrector, the MSC/NASTRAN finite element analysis represented by the

last step of the predictor becomes the first step of the corrector. The structural matrices so

created are used in a corrector DMAP to produce the energy balance constraint equation.

For the case involving no Coriolis forces, there is one constraint equation. When Coriolis

effects are included, there are two equations. The following DMAP represent the steps

necessary for the real case.

ID GANS.BRONZ7
TIME 30
DIAG 4,14
BEGIN $
FILE EMAT = APPEND $
$ THIS DMAP COMPUTES THE COMPONENTS FOR THE CORRECTOR STEP
$ FOR THE BRONZ PROBLEM. IT INVOLVES
$ 8 CBAR ELEMENTS.
PARAMR /fMPY/V,N.OMEGA2/V.YOMEGA/V.Y.OMEGA/ $ SQUARE OMEGA
PARAMR //C,NCOMPLEXI/V,N,OMEGA2/0.0/V,N,LAMA/ $ CHANGE OMEGA21
$ TO COMPLEX
PRTPARM // $
$ THE NEXT SECTION INVOLVES THE CQUAD ELEMENTS
LABEL L2 $

2
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INPTJTT4 fK1,M1,D1,UGV1,/4/8/0 $ READ IN MATRICES
$MATPRN K1,Ml,D1,UGV1/! $
ADD K1,IK1M1.0/ $ CUBIC APPROXIMATION ALREADY ACCOMPLISHED
ADD K1M,D1/K1N/ $ ADD IN DI-FF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGV1,K1N,UGV1 .../A2/3/1I1/0/1I $ GET COMPONENTS FOR REDES
SMPYAD UGVi,M1,UGVI .../YY2/3/1/1I0/i/ $ GET COMPONENTS FOR REDESIGN
ADD YY2,/B2JLAMA/ $ MULTIPLY YYl BY LAMA
ADD A2,B2/E2/1.0I- 1.0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
$ MATPRN E2// $ PRINT OUT RESULTS
APPEND E2,fEMATI2 $
REPT L2,7 $
$ THE NEXT SECTION COMPUTES THE RHS OF THE
$ CORRECTOR EQUATION
$ THE FOLLOWING MATRICES ARE OUTPUT FROM THE WHITE 6
$ PROBLEM AND STUCK ON THE END OF THE RESULTS OF REPAK.FOR
INPUTT4 fUJGV,KGGX,MGGXKDNN., 4/810$
$MATPRN UGV,KGGX,MGGX,KDNN//'$
MATMOD UGV,../UGV 1,,'1/C,Y,COLNUM =1 $
$MATPRN UGV 1/i $
SMPYAD UGV1,MGGX,UGV1,,,/E3/3////1 $
ADD KGGX,KDNN/KNEW/1.0/1.0 $
EQUTY KNEW,KGGXJALWAYS $
$MATPRN KGGXI/ $
SMPYAD UGV 1.KGGX,UGV1 .1,,F/31I 1 $
ADD EVE/LAMA $
ADD E,F/G 1. 0/- 1. 0 $
OUTPUT4 EMAT,... /8 $
MATPRN E,F,G,EMAT// $
END $
CEND
TITLE = ASSEMBLY OF MATRICES INTO CORRECTOR
SUBTITLE= FOR GRAY PROBLEM. 2ND 10% CHANGE
BEGIN BULK
PARAM* OMEGA 3.247201E3
ENDDATA

This next DMAP is the program for running the problem involving Coriolis forces.

ID GANS,BRONZ49A
TIME 30
DIAG 4,14
BEGIN $
FILE EMAT = APPEND $
$ TIS DMAP COMPUTES THE COMPONENTS FOR THE CORRECTOR STEP
$ FOR THE BRONZ PROBLEM. IT INVOLVES
$ 8 CBAR ELEMENTS.
PARAMR /IMPY/'V.N,OMEGA2/V,Y,OMEGAIV.Y, OMEGA/ $ SQUARE OMEGA
PARAMR //C,N,COMPLEX/V,N,OMEGA2/0.0/V,N,LAMA; $ CHANGE OMEGA2 TO
$COMPLEX
PARAMR //C,N,COMPLEX/fV,Y,OMEGA/O.0/V,N,OMEGAC,' $ CHANGE OMEGA
PRTPARM // $
$ THE NEXT SECTION INVOLVES THE CQUAD ELEMENTS
LABEL L2 $
INPUTT4 fKl,M1,D1,,/3/8/0 $ READ IN MATRICES
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INPUTT4 /UGVR1,UJGVI1,B1,,/3/8/O $ READ IN MATRICES
$MATPRN K1,M1,D 1/I $
$MATPRN UGVRI,UG VI1,B 1/I $
ADD Kl,JK1M/1.0/ $ CUBIC APPROXIMATION ALREADY ACCOMPLISHED
ADD K1M,D1/KlN/ $ ADD IN DIEFF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGVR1,K1N,UGXTR1,.../A2A13/1/1/0/1/ $ GET COMPONENTS FOR REDES
SMPYAD UGVI1,K1N,UGVI1,.../A2B/3/1/1/0/1/ $
ADD A2A,A2BIA2I1.0/- 1.0 $
SMIPYAD UGVR1,Ml,UGVR1,.../YY2AI3/1I1/0/1/ $ GET COMPONENTS FOR
$REDESIGN
SMPYAD UGVI1,M lUGVI1,../YY2B/3/111011/ $
ADD YY2A,YY2B/YY2I1.0I- 1.0 $
ADD YY2,/B2/LAMAI $ MULTIPLY Y Yl BY LAMA
ADD A2,B21E211.0/- 1.0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
$MATPRN A2,B2,Z2/I $ PRINT OUT RESULTS
APPEND E2,/EMAT/2 $
REPT L2,7 $
$ THE NEXT SECTION COMPUTES THE RHS OF THE
$ CORRECTOR EQUATION
$ THE FOLLOWING MATRICES ARE OUTPUT FROM THE WHITE6
$ PROBLEM AND STUCK ON THE END OF THE RESULTS OF REPAK.FOR
INPUTT4 /UJGVR,UG\TI,BCOR,,13/8/0 $
INPUTT4 /KGGX,MGGX,KDNN,,/3/8/0 $
$MATPRN KGGX,MGGX,KDNN,BCOR.// $
$MATPRN UGV 1/I $
SMPYAD UGVR,MGGX,UGVR,.../E3A/3/1/1/0/1 $
SMPYAD UGVI,MGGX,UGVI,...fE3B/3/1/1/0/1 $
ADD E3A,E3B/E3/1.0/- 1.0 $
ADD KGGX,KDNN/KNEW/1.0/1.0 $
EQUIV KNEW,KGGXIALWAYS $
$MATPRN KGGXI/ $
SMPYAD UGVR,KGGX,UGVR,...fFA/3/1/1J/i/ $
SMPYAD UGVI,KGGX,UGVI,...IFB/3/1/1/0/ 1 $
ADD FA,FB/F/1.0/- 1.0 $
ADD EVE/LAMA $
ADD E,F/I./1. 0/- 1. 0 $
OUTPUT4 EMAT,,..II 1-/8 $
MATPRN E,F,I,EMAkT// $
END $
CEND
TITLE= ASSEMBLY OF MATRICES INTO CORRECTOR EQUATION 1
SUBTITLE = FOR BRONZ PROBLEM, MIN STRUCT CHANGE, CORIOLIS
BEGIN BULK
PARAM* OMEGA 3.247136E3
ENDDATA

ID GANS,BRONZ49B
TIME 30
DIAG 4,14
BEGIN $
FILE FMAT =APPEND $
$ THIS DMAP COMPUTES THE COMPONENTS FOR THE CORRECTOR STEP
$ FOR THE BRONZ PROBLEM. IT INVOLVES
$ 8 CBAR ELEMENTS.
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PARAMR, //MPY/V,N,OMEGA2/V,Y,OMEGA/V,Y,OMEGAJ $ SQUARE OMEGA
PARAMR //C,N,COMPLEXI/V,N,OM:EGA2/0.OIV,N,LAMAi $ CHANGE OMEGA2 TO
$COM:PLEX
PARAMR, //C,N,COM:PLEX/V,Y,OMEGAO. O/,N,OMEGACI $ CHANGE OMEGA
PRTPARM // $
$ THE NEXT SECTION INVOLVES THE CQUAD ELEMENTS
LABEL L2 $
INPUTT4 IK1,M1,D1,,/3/8/O $ READ IN MATRICES
INPUTT4 fIJGVR1,UGVI1,B1,,/3/8/O $ READ IN MATRICES
$MATPRN K1,M1,D I// $
$MATPRN UGVR1,UGVI1,Bl// $
ADD Kl,IK1MI1.0/ $ CUBIC APPROXIMATION ALREADY ACCOMPLISHED
ADD KlM,D 1/KiN! $ ADD IN DIFF STIFFNESS FOR EXTENSIONAL ELMTS
SMPYAD UGVR1,KlN,UGVIl ... A2T/311/01// $ GET COMPONENTS FOR REDES
ADD A2T,1A212.0 $
SMPYAD UGVRi,M1,UGVII,...iYY2T3I1I1IO/iI $ GET COMPONENTS FOR
$REDESIGN
ADD YY2T./YY2/2.0 $
SMPYAD UGVR1,B1,UGVR1,.../ZZ2A/'3/1/1/0/i/ $ GET COMPONENTS FOR REDES
SMPYAD UGVIi.,B1,UGVI1 ...,/ZZ2B/3 /1/i/O/il $
ADD ZZ2A,ZZ2BIZZ2I $
ADD YY2,/B2/LAMA/ $ MULTIPLY YY1I BY LAMA
ADD ZZ2,IZ2IOMEGACI $ MULTIPLY ZZ2 BY OMEGAC
ADD A2,B2IC2Ii.0/I .0/ $ SUBTRACT MASS FROM STIFFNESS COMPONENTS
ADD C2,Z2/E2/1.0/1.0/ $ ADD CORIOLIS TERMS
$MATPRN A2,B2,C2.Z 2/I $ PRINT OUT RESULTS
APPEND E2,JFMAT/2 $
REPT L2,7 $
$ THE NEXT SECTION COMPUTES THE RHS OF THE
$ CORRECTOR EQUATION
$ THE FOLLOWING MATRICES ARE OUTPUT FROM THE WHITE6
$ PROBLEM AND STUCK ON THE END OF THE RESULTS OF REPAK.FOR
INPUTT4 fUGVR,UGVI,BCOR,,/3/8/0 $
INPUTT4 /KGGX,MGGX,KDNN,,/3/810 $
MATPRN KGGX,MGGX,KDNNBCORI/ $
$MATPRN UGV I// $
SMPYAD UGVR,MGGX,UGVI,.../E3T/3/ 1/110/1 $
ADD E3T,/E3/2.0 $
ADD KGGX,KDNN/KNEW/1.0/i.0 $
EQUIV KNEW,KGGX/ALWAYS $
$MATPRN KGGXI/ $
SMPYAD UGVR,KGGX,UGV ... /FTy'3/1//I $
ADD FT,/F/2.O $
ADD E3,E/LAMA $
SMPYAD UGVR,BCOR,UGVR,../H3A/3/i/i/0/ 1 $
SMPYAD UGVI,BCOR,UGVI,.../H13B/3/11/0/1 $
ADD H3A.H3B/H3/ $
ADD H3./HIOMEGAC $
ADD E,F/I/1. 0/ -1. 0 $
ADD I,H/G/i.0/- 1.0 $
OUTPUT4 FMAT,..,,II- 1/8$
MATPRN E,F,H,G,FMAT// $
END $
CEND
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TITLE = ASSEMBLY OF MATRICES INTO CORRECTOR EQUATION 1
SUBTITLE = FOR BRONZ PROBLEM, MIN STRUCT CHANGE, CORIOLIS
BEGIN BULK
PARAM* OMEGA 3.247136E3
ENDDATA

Next, the optimization step for the corrector is run. The objective function in this

part is either minimum change or minimum weight.

Once the corrected values of ae are obtained, the element thicknesses for the system

can be calculated. Then, another finite element analysis is run. This is required for the

intermediate iterative or incremental steps, but otherwise it is only used to check the final,

optimized solution.

P
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APPENDIX B

BEAM SOLUTIONS

Derivation of Exact Solution for Beam Vibration

In this Appendix, the exact solution for the nonrotating beam problem posed in

Chapter 4 will be obtained. Figure 29 illustrates the problem being considered: it is the

planar problem of a (nonrotating) beam of constant section with one end clamped and the

other end mounted on a roller that permits only vertical (y-axis) displacements and no

rotations. The beam has modulus of elasticity E, moment of inertia I, length L, linear

mass density m, density p, and cross-sectional area A. Let w be the eigenfrequency of the

structure and Y(x) denote the vertical displacement as a function of beamwise distance x.

y

Figure 29. Rotating Beam

The governing differential equation for this problem is:

gi
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d 2  d2y(x)l
-E I  - =w2 mY(x) (B. 1)
dix2 I 2

The boundary conditions are:

Y(0) - 0

Y'(0) = 0

Y'(L) = 0

Y"(L) = 0

Defining:

w2m 
(B.2)

EI

and noting that both E and I are constant in this problem obtains a new version of the

differential equation:

d 4Y(x)
-

4 Y(x) = 0 (B.3)dx4

The solution to the above equation may be assumed to be of the form:

Y(x) = C 1sinx + C2cos x + C 3sinh,3x + C 4cosh~x (B. 4)

Taking derivatives of Equation (B.4) and applying the boundary conditions results in

the following matrix equation where the unknowns are the C i constants.

[0 1 0 1 k1] (B. 5)
1i 0 1 0 C 2_o
cos3L - sin3L cesh3L sinh3L C3 = {0}

I-cos3L sin3L cosh3L sinhBL C4

For Equation (B.5) to have a nontrivial solution, the matrix on the left-hand side of the

equation must have zero determinant. Solving for the first mode one obtains:

,3L = 2.4259 (B.6)

Substituting for 2, one obtains the following expression for w:

V'V * e C ' ~. ~,%*
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5.8850 (B.7)

For this problem, the beam is made of IN-718 steel, with E of 73.77E3 MPa, I equal

to 3.2252E4 mm4 , A equal to 625 mm 2, p of 2.774E-9 Mg/mm 3, L equal to 250 mm, and

m calculated to be 1.73375E-6 Mg/mm. Using these values, the fundamental

eigenfrequency w1 is given as:

= 3.5043E3 rad/sec
= wl(theoretical)

This is the value used to calibrate the finite element model for the rotating beam.

Convergence of w, as determined by MSC/NASTRAN finite element analysis to the

theoretical value, as the model is refined, is shown in Chapter 6, Table 1.

Derivation of Tangent Stiffness Matrix

The nonlinear problem under consideration in this dissertation is called geometric

nonlinearity and the equations of equilibrium must be reformulated for the deformed

configuration. An incremental procedure can then be used to obtain a tangent stiffness

matrix (Przemieniecki, 1985).

For a linear elastic material, the relationship between stress {o} and strain {,} is

given by:

{0} = [G]{4 (B.8)

where [G] is the matrix that relates strain to stress. Since the material is linear, the same

matrix [G] relates the change in strain {} to the change in stress {Ao}:

{Aa} = [G]{Ae} (B.9)

Since the problem is geometrically nonlinear, one matrix [Bs] is needed to relate

displacement {u} to strain {e} and another matrix [Bt ] is required to related the change in

displacement {Au} to the change in strain {Ae} (Anderson, 1985):

{, = []{u) (B.10)

{Af} = [B t]{Au} (B. 11)

............... ..
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The matrix [Bt] is at most linear and can be taken to be the sum of the matrix that

relates displacements to strains for infinitesimally small displacements [Bt] and a

transformation matrix linearly dependent on displacements:

[B t] = [B'] + [Bt(u)] (B.12)

The tangent stiffness matrix [Kt] can be found by incrementing the applied load f

and the displacement u such that the equation of equilibrium for the structure becomes:

A(f v Bt]T{oadV) = A{f} (B.13)

Expanding the left-hand side of the above equation one obtains:

fv[ABt]T{a}dV + fv[Bt]T{ A}dV = {Af} (B.14)

The first integral gives the differential stiffness matrix:

[KD]{Au} = fV [ ,tT{.}dV (B. 15)

An alternative definition for the differential stiffness matrix is given by Cook (1974) and is

shown in Equation (5.1).

Equations (B.9), (B.11), and (B.12) are applied to the second integral of Equation

(B.14) so that Equation (B.14) may be expressed as:

[KT]{Au} = {f (B.16)

where

[K°]

-KTI =KD] + fV B0]T[G][B JdV
(B. 171

+ f fv -Bt]T[GJ[B']dV + fV [B']T[GJ[B )dV

[KLI

The first integral on the right hand side of Equation (B. 17) is the conventional.

infinitesimally small displacement stiffness matrix, [Ko]. The other three integrals

together comprise the 1- e displacement stiffness matrix [KL]. Therefore, Equation

(B.17) can be rewritten as:
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[TT = [K0] + [KD] + [KL] (B. 18)

The above equation is identical to Equation (4.1). In this dissertation, it will be assumed

that [KL] can be neglected in comparison to [K 0j and [KD].

As an example of a differential stiffness matrix, let us examine the rotating bar

shown in Figure 6 in Chapter 4, taken as a single element. First, define three degrees of

freedom at each end: x-displacement, z-displacement, and y-rotation. The applied stress

due to centrifugal loading is ax and is given by:

ax = P/A (B. 19

where A is the cross-sectional area of the bar and P is the centrifugal loading and is shown

in Equation (4.19) to be 4,,2Q2mL. Therefore, the differential matrix can be shown to be:

P

[KD] = x

0 0 0 0 0 0 (B.20)
0 6/5 L/10 0 -6/5 L/10
0 L/I1O 2L 2/15 0 -L10 -L 2/30
00 0 0 0 0
0 -6/5 -L/1 0 06/5 -L/10
0 L/10 -L 2 /30 0 -L/10 2L 2/15

S-* f \*
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APPENDIX C

DEGRADED SOLUTIONS FOR BLADE AND BEAM

In this section, the problems of the rotating blade and beam presented in Chapter 7

will be degraded (simplified by omitting certain features). This will permit the examination

of the results when centriigal effects are neglected in the optimization and in the

structural analysis.

Results of Degraded Cases

Table 9 shows the results in optimization for the degraded problems. This table is

similar to Table 3. Case 12 is the rotating blade shown in Figure 16 with no centrifugal

effects in the optimization constraints. Minimum change is used both in the predictor and

corrector. Case 13 is similar to Case 12 with the hybrid objective function employed: that

is, minimum weight is used in the predictor and minimum change is used in the corrector.

In Case 14, centrifugal effects are neglected both in the optimization and in the structural

analysis. Minimum change is used in both the predictor and the corrector. Caso 15 also

neglects the centrifugal forces, but the hybrid optimization routine is used. In Case 16 and

Case 17, the beam problem shown in Figure 10 is reanalyzed with centrifugal effects

negelected in the optimization but included in the structural analysis. Case 16 uses

minimum structural change while Case 17 uses the hybrid optimization.

Table 10 contains the results of the parameters in the optimization routines. This

table is similar to Table 6.

Observations

In the blade optimization, the change-change objective function obtains satisfactory

results for the frequency change even if centrifugal effects are completely ignored.

however, there is a slight amount of overshoot on the linear predictor step. The hybrid

objective function obtains good results at the end of a complete cycle when centrifugal

effects are retained in the structural analysis (Case 13), though the linear predictor does

not provide a good solution. When centrifugal effects are completely ignored (Cases 14 and

i!?
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15), satisfactory solutions are still obtained.

In the beam optimization, good results are observed in Case 16. However. Case 17

exhibits the worst results. Not even the corrector can obtain the frequency goal without a

significant error.

The results shown in Table 10 are similar to those shown in the cases where

centrifugal effects are included (see Tables 6 and 8). Once again, the optimizer gives a

value of the objective function close to zero for minimum change but a negative number for

minimum weight objective function. Values of the constraint close to zero imply that the

constraint is satisfied.

I 

*1 - ~ ~ '
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